WorldWideScience

Sample records for solid crystalline compounds

  1. Aromatic C-Nitroso Compounds and Their Dimers: A Model for Probing the Reaction Mechanisms in Crystalline Molecular Solids

    Directory of Open Access Journals (Sweden)

    Ivana Biljan

    2017-12-01

    Full Text Available This review is focused on the dimerization and dissociation of aromatic C-nitroso compounds and their dimers, the reactions that could be used as a convenient model for studying the thermal organic solid-state reaction mechanisms. This molecular model is simple because it includes formation or breaking of only one covalent bond between two nitrogen atoms. The crystalline molecular solids of nitroso dimers (azodioxides dissociate by photolysis under the cryogenic conditions, and re-dimerize by slow warming. The thermal re-dimerization reaction is examined under the different topotactic conditions in crystals: disordering, surface defects, and phase transformations. Depending on the conditions, and on the molecular structure, aromatic C-nitroso compounds can associate to form one-dimensional polymeric structures and are able to self-assemble on gold surfaces.

  2. Liquid-like thermal conduction in intercalated layered crystalline solids

    Science.gov (United States)

    Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.

    2018-03-01

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

  3. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  4. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  5. The physics of large deformation of crystalline solids

    CERN Document Server

    Bell, James F

    1968-01-01

    Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led...

  6. Solid State Characterization of Commercial Crystalline and Amorphous Atorvastatin Calcium Samples

    OpenAIRE

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K.

    2010-01-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot s...

  7. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples.

    Science.gov (United States)

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K

    2010-06-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot stage microscopy, scanning electron microscopy), contact angle, and intrinsic dissolution rate (IDR). All crystalline ATC samples were found to be stable form I, however one sample possessed polymorphic impurity, evidenced in XRPD and DSC analysis. Amongst the amorphous ATC samples, XRPD demonstrated five samples to be amorphous 'form 27', while, one matched amorphous 'form 23'. Thermal behavior of amorphous ATC samples was compared to amorphous ATC generated by melt quenching in DSC. ATC was found to be an excellent glass former with T(g)/T(m) of 0.95. Residual crystallinity was detected in two of the amorphous samples by complementary use of conventional and modulated DSC techniques. The wettability and IDR of all amorphous samples was found to be higher than the crystalline samples. In conclusion, commercial ATC samples exhibited diverse solid state behavior that can impact the performance and stability of the dosage forms.

  8. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  9. Ion conduction in crystalline superionic solids and its applications

    Science.gov (United States)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  10. Preparation of inorganic crystalline compounds induced by ionizing, UV and laser radiation

    International Nuclear Information System (INIS)

    Cuba, V.; Pavelkova, T.; Barta, J.; Indrei, J.; Gbur, T.; Pospisil, M.; Mucka, V.; Docekalova, Z.; Zavadilova, A.; Vlk, M.

    2011-01-01

    Complete text of publication follows. Radiation methods represent powerful tool for synthesis of various inorganic materials. Study of solid particles formation from solutions in the field of UV or ionizing radiation is one of the very promising and long term pursued trends in photochemistry and radiation chemistry. The motivation may be various, either preparation of new materials or removal of hazardous contaminants (e.g. heavy metals) from wastewater. This work deals with preparation of some metal oxides, synthetic garnets and spinel structures via irradiation of aqueous solutions containing precursors, i.e. soluble metal salts, radical scavengers and/or macromolecular stabilizers. Namely, results on radiation induced preparation of nickel, zinc, yttrium and aluminium oxides are summarized, as well as zinc peroxide, yttrium / lutetium - aluminium garnets and cobalt(II) aluminate. 60 Co irradiator, linear electron accelerator, medium pressure UV lamp and solid state laser were used as the sources of radiation. Aside from preparation, various physico-chemical and structural properties of compounds prepared were also studied. All used modifications of radiation method are rather convenient and simple, and yield (nano)powder materials with interesting characteristics. Prepared materials generally have high chemical purity, high specific surface area and narrow distribution of particles size (ranging in tens of nm). Generally, all types of irradiation result in materials with comparable properties and structural characteristics; but in the case of synthetic garnets and spinels, preparation using UV-radiation seems to be the most convenient for their preparation. Among compounds discussed, only zinc oxide and zinc peroxide were prepared directly via irradiation. For preparation of other crystalline compounds, additional heat treatment (at low temperature) of amorphous solid phase formed under irradiation was necessary.

  11. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Science.gov (United States)

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    Burzo, E.

    1975-01-01

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  13. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    Science.gov (United States)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  14. Rechargeable quasi-solid state lithium battery with organic crystalline cathode

    Science.gov (United States)

    Hanyu, Yuki; Honma, Itaru

    2012-01-01

    Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655

  15. Crystalline and amorphous solid phases in the classical hard sphere system

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Souza, R.F.T.; Llano, M. de; Mini, S.

    1984-01-01

    A qualitative crystalline, as well as amorphous, solid behavior is simultaneously extracted for a classical hard sphere system from its known virial power series expansion in the density augmented by only one further virial coefficient, taken from an extrapolated estimate of the Cauchy-Hadamard radius of convergence criterion. Results are compared with computer simulation data. (Author) [pt

  16. A quasimechanism of melt acceleration in the thermal decomposition of crystalline organic solids

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2009-01-01

    It has been know for half a century that many crystalline organic solids undergo an acceleration in the rate of thermal decomposition as the melting temperature is approached. This acceleration terminates at the melting point, exhibiting an Arrhenius-like temperature dependence in the faster decomposition rate from the liquid phase. This observation has been modeled previously using various premelting behaviors based on e.g. freezing point depression induced by decomposition products or solvent impurities. These models do not, however, indicate a mechanism for liquid formation and acceleration which is an inherent function of the bulk thermodynamics of the molecule. Here we show that such an inherent thermodynamic mechanism for liquid formation exists in the form of the so-called quasi-liquid layer at the solid surface. We explore a kinetic mechanism which describes the acceleration of rate and is a function of the free energies of sublimation and vaporization. We construct a differential rate law from these thermodynamic free energies and a normalized progress variable. We further construct a reduced variable formulation of the model which is a simple function of the metastable liquid activity below the melting point, and show that it is applicable to the observed melt acceleration in several common organic crystalline solids. A component of the differential rate law, zero order in the progress variable, is shown to be proportional to the thickness of the quasiliquid layer predicted by a recent thermodynamic theory for this phenomenon. This work therefore serves not only to provide new insight into thermal decomposition in a broad class or organic crystalline solids, but also further validates the underlying thermodynamic nature of the phenomenon of liquid formation on the molecular surface at temperatures below the melting point.

  17. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, J.; Loock, H.-P., E-mail: hploock@chem.queensu.ca; Cann, N. M., E-mail: ncann@chem.queensu.ca [Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

    2015-07-21

    Photoexcitation of crystalline ice Ih and amorphous solid water at 7-9 eV is examined using molecular dynamics simulations and a fully flexible water model. The probabilities of photofragment desorption, trapping, and recombination are examined for crystalline ice at 11 K and at 125 K and for amorphous solid water at 11 K. For 11 K crystalline ice, a fully rigid water model is also employed for comparison. The kinetic energy of desorbed H atoms and the distance travelled by trapped fragments are correlated to the location and the local environment of the photoexcited water molecule. In all cases, H atom desorption is found to be the most likely outcome in the top bilayer while trapping of all photofragments is most probable deeper in the solid where the likelihood for recombination of the fragments into H{sub 2}O molecules also rises. Trajectory analysis indicates that the local hydrogen bonding network in amorphous solid water is more easily distorted by a photodissociation event compared to crystalline ice. Also, simulations indicate that desorption of OH radicals and H{sub 2}O molecules are more probable in amorphous solid water. The kinetic energy distributions for desorbed H atoms show a peak at high energy in crystalline ice, arising from photoexcited water molecules in the top monolayer. This peak is less pronounced in amorphous solid water. H atoms that are trapped may be displaced by up to ∼10 water cages, but migrate on average 3 water cages. Trapped OH fragments tend to stay near the original solvent cage.

  18. The effect of crystallinity on cell growth in semi-crystalline microcellular foams by solid-state process: modeling and numerical simulation

    Science.gov (United States)

    Rezvanpanah, Elham; Ghaffarian Anbaran, S. Reza

    2017-11-01

    This study establishes a model and simulation scheme to describe the effect of crystallinity as one of the most effective parameters on cell growth phenomena in a solid batch foaming process. The governing model of cell growth dynamics, based on the well-known ‘Cell model’, is attained in details. To include the effect of crystallinity in the model, the properties of the polymer/gas mixtures (i.e. solubility, diffusivity, surface tension and viscosity) are estimated by modifying relations to consider the effect of crystallinity. A finite element-finite difference (FEFD) method is employed to solve the highly nonlinear and coupled equations of cell growth dynamics. The proposed simulation is able to evaluate all properties of the system at the given process condition and uses them to calculate the cell size, pressure and gas concentration gradient with time. A high-density polyethylene/nitrogen (HDPE/N2) system is used herein as a case study. Comparing the simulation results with the others works and experimental results verify the accuracy of the simulation scheme. The cell growth is a complicated combination of several phenomena. This study attempted to reach a better understanding of cell growth trend, driving and retarding forces and the effect of crystallinity on them.

  19. Effect of Liquid Crystalline Systems Containing Antimicrobial Compounds on Infectious Skin Bacteria.

    Science.gov (United States)

    Souza, Carla; Watanabe, Evandro; Aires, Carolina Patrícia; Lara, Marilisa Guimarães

    2017-08-01

    This study aimed (i) to prepare liquid crystalline systems (LCS) of glyceryl monooleate (GMO) and water containing antibacterial compounds and (ii) to evaluate their potential as drug delivery systems for topical treatment of bacterial infections. Therefore, LCS containing CPC (cetylpyridinium chloride) (LCS/CPC) and PHMB (poly(hexamethylene biguanide) hydrochloride) (LCS/PHMB) were prepared and the liquid crystalline phases were identified by polarizing light microscopy 24 h and 7 days after preparation. The in vitro drug release profile and in vitro antibacterial activity of the systems were assessed using the double layer agar diffusion method against Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Escherichia coli, and Enterococcus faecalis. The interaction between GMO and the drugs was evaluated by a drug absorption study. Stable liquid crystalline systems containing CPC and PHMB were obtained. LCS/PHMB decreased the PHMB release rate and exerted strong antibacterial activity against all the investigated bacteria. In contrast, CPC interacted with GMO so strongly that it became attached to the system; the amount released was not sufficient to exert antibacterial activity. Therefore, the studied liquid crystalline systems were suitable to deliver PHMB, but not CPC. Accordingly, it was demonstrated that GMO interacts with each drug differently, which may interfere in the final efficiency of GMO/water LCS.

  20. Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

    Directory of Open Access Journals (Sweden)

    Rulong Zhou

    2014-03-01

    Full Text Available Although CO_{2} and SiO_{2} both belong to group-IV oxides, they exhibit remarkably different bonding characteristics and phase behavior at ambient conditions. At room temperature, CO_{2} is a gas, whereas SiO_{2} is a covalent solid with rich polymorphs. A recent successful synthesis of the silicon-carbonate solid from the reaction between CO_{2} and SiO_{2} under high pressure [M. Santoro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 7689 (2011] has resolved a long-standing puzzle regarding whether a Si_{x}C_{1−x}O_{2} compound between CO_{2} and SiO_{2} exists in nature. Nevertheless, the detailed atomic structure of the Si_{x}C_{1−x}O_{2} crystal is still unknown. Here, we report an extensive search for the high-pressure crystalline structures of the Si_{x}C_{1−x}O_{2} compound with various stoichiometric ratios (SiO_{2}:CO_{2} using an evolutionary algorithm. Based on the low-enthalpy structures obtained for each given stoichiometric ratio, several generic structural features and bonding characteristics of Si and C in the high-pressure phases are identified. The computed formation enthalpies show that the SiC_{2}O_{6} compound with a multislab three-dimensional (3D structure is energetically the most favorable at 20 GPa. Hence, a stable crystalline structure of the elusive Si_{x}C_{1−x}O_{2} compound under high pressure is predicted and awaiting future experimental confirmation. The SiC_{2}O_{6} crystal is an insulator with elastic constants comparable to typical hard solids, and it possesses nearly isotropic tensile strength as well as extremely low shear strength in the 2D plane, suggesting that the multislab 3D crystal is a promising solid lubricant. These valuable mechanical and electronic properties endow the SiC_{2}O_{6} crystal for potential applications in tribology and nanoelectronic devices, or as a stable solid-state form for CO_{2} sequestration.

  1. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  2. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO2(cr)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.; Sasaki, Takayuki; Kobayashi, Taishi

    2016-01-01

    Solubility studies were conducted with HfO 2 (cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg -1 . These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO 2 (am) suspensions to 90 C to ascertain whether the HfO 2 (am) converts to HfO 2 (cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO 2 (cr) contains a small fraction of less crystalline, but not amorphous, material [HfO 2 (lcr)] and this, rather than the HfO 2 (cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log 10 K 0 values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO 2 (lcr)[HfO 2 (lcr) + 2H 2 O ↔ Hf 4+ + 4OH - ]. The log 10 of the solubility product of HfO 2 (cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  3. Synergy in lipofection by cationic lipid mixtures: superior activity at the gel-liquid crystalline phase transition.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C

    2007-07-12

    Some mixtures of two cationic lipids including phospholipid compounds (O-ethylphosphatidylcholines) as well as common, commercially available cationic lipids, such as dimethylammonium bromides and trimethylammonium propanes, deliver therapeutic DNA considerably more efficiently than do the separate molecules. In an effort to rationalize this widespread "mixture synergism", we examined the phase behavior of the cationic lipid mixtures and constructed their binary phase diagrams. Among a group of more than 50 formulations, the compositions with maximum delivery activity resided unambiguously in the solid-liquid crystalline two-phase region at physiological temperature. Thus, the transfection efficacy of formulations exhibiting solid-liquid crystalline phase coexistence is more than 5 times higher than that of formulations in the gel (solid) phase and over twice that of liquid crystalline formulations; phase coexistence occurring at physiological temperature thus appears to contribute significantly to mixture synergism. This relationship between delivery activity and physical property can be rationalized on the basis of the known consequences of lipid-phase transitions, namely, the accumulation of defects and increased disorder at solid-liquid crystalline phase boundaries. Packing defects at the borders of coexisting solid and liquid crystalline domains, as well as large local density fluctuations, could be responsible for the enhanced fusogenicity of mixtures. This study leads to the important conclusion that manipulating the composition of the lipid carriers so that their phase transition takes place at physiological temperature can enhance their delivery efficacy.

  4. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    OBJECTIVES: Solid-state transformations may occur during any stage of pharmaceutical processing and upon storage of a solid dosage form. Early detection and quantification of these transformations during the manufacture of solid dosage forms is important since the physical form of an active...... pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...... multivariate approaches where even overlapping spectral bands can be analysed. SUMMARY: This review discusses the applications of different vibrational spectroscopic techniques to detect and monitor solid-state transformations possible for crystalline polymorphs, hydrates and amorphous forms of pharmaceutical...

  5. Luminescence of Ce doped oxygen crystalline compounds based on Hf and Ba

    CERN Document Server

    Borisevich, A E; Lecoq, P

    2003-01-01

    The luminescence properties of the Ce-doped hafnium and barium compounds have been investigated to determine their potential as heavy scintillation materials. Compounds have been prepared by solid state synthesis. All of them have shown a bright luminescence attributed to trivalent cerium. Emission bands are peaked in the 425-475nm spectral region at room temperature.

  6. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO{sub 2}(cr)

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Ibaraki (Japan); Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, WA (United States); Sasaki, Takayuki; Kobayashi, Taishi [Kyoto Univ. (Japan)

    2016-11-01

    Solubility studies were conducted with HfO{sub 2}(cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg{sup -1}. These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO{sub 2}(am) suspensions to 90 C to ascertain whether the HfO{sub 2}(am) converts to HfO{sub 2}(cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO{sub 2}(cr) contains a small fraction of less crystalline, but not amorphous, material [HfO{sub 2}(lcr)] and this, rather than the HfO{sub 2}(cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log{sub 10} K{sup 0} values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO{sub 2}(lcr)[HfO{sub 2}(lcr) + 2H{sub 2}O ↔ Hf{sup 4+} + 4OH{sup -}]. The log{sub 10} of the solubility product of HfO{sub 2}(cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  7. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles.

    Science.gov (United States)

    Ruktanonchai, Uracha; Limpakdee, Surachai; Meejoo, Siwaporn; Sakulkhu, Usawadee; Bunyapraphatsara, Nuntavan; Junyaprasert, Varaporn; Puttipipatkhachorn, Satit

    2008-03-05

    This present study was aimed at investigating the effect of the crystallinity of cetyl palmitate based solid lipid nanoparticles (SLNs) on the physical properties of γ-oryzanol-loaded SLNs. SLNs consisting of varying ratios of cetyl palmitate and γ-oryzanol were prepared. Their hydrodynamic diameters were in the range 210-280 nm and the zeta potentials were in the range -27 to -35 mV. The size of SLNs increased as the amount of cetyl palmitate decreased whereas no significant change of zeta potentials was found. Atomic force microscopy pictures indicated the presence of disc-like particles. The crystallinity of SLNs, determined by differential scanning calorimetry and powder x-ray diffraction, was directly dependent on the ratio of cetyl palmitate to γ-oryzanol and decreased with decreasing cetyl palmitate content in the lipid matrix. Varying this ratio in the lipid mix resulted in a shift in the melting temperature and enthalpy, although the SLN structure remained unchanged as an orthorhombic lamellar lattice. This has been attributed to a potential inhibition by γ-oryzanol during lipid crystal growth as well as a less ordered structure of the SLNs. The results revealed that the crystallinity of the SLNs was mainly dependent on the solid lipid, and that the crystallinity has an important impact on the physical characteristics of active-loaded SLNs.

  8. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles

    International Nuclear Information System (INIS)

    Ruktanonchai, Uracha; Sakulkhu, Usawadee; Limpakdee, Surachai; Meejoo, Siwaporn; Bunyapraphatsara, Nuntavan; Junyaprasert, Varaporn; Puttipipatkhachorn, Satit

    2008-01-01

    This present study was aimed at investigating the effect of the crystallinity of cetyl palmitate based solid lipid nanoparticles (SLNs) on the physical properties of γ-oryzanol-loaded SLNs. SLNs consisting of varying ratios of cetyl palmitate and γ-oryzanol were prepared. Their hydrodynamic diameters were in the range 210-280 nm and the zeta potentials were in the range -27 to -35 mV. The size of SLNs increased as the amount of cetyl palmitate decreased whereas no significant change of zeta potentials was found. Atomic force microscopy pictures indicated the presence of disc-like particles. The crystallinity of SLNs, determined by differential scanning calorimetry and powder x-ray diffraction, was directly dependent on the ratio of cetyl palmitate to γ-oryzanol and decreased with decreasing cetyl palmitate content in the lipid matrix. Varying this ratio in the lipid mix resulted in a shift in the melting temperature and enthalpy, although the SLN structure remained unchanged as an orthorhombic lamellar lattice. This has been attributed to a potential inhibition by γ-oryzanol during lipid crystal growth as well as a less ordered structure of the SLNs. The results revealed that the crystallinity of the SLNs was mainly dependent on the solid lipid, and that the crystallinity has an important impact on the physical characteristics of active-loaded SLNs

  9. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  10. Importance of crystallinity of anchoring block of semi-solid amphiphilic triblock copolymers in stabilization of silicone nanoemulsions.

    Science.gov (United States)

    Le Kim, Trang Huyen; Jun, Hwiseok; Nam, Yoon Sung

    2017-10-01

    Polymer emulsifiers solidified at the interface between oil and water can provide exceptional dispersion stability to emulsions due to the formation of unique semi-solid interphase. Our recent works showed that the structural stability of paraffin-in-water emulsions highly depends on the oil wettability of hydrophobic block of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL). Here we investigate the effects of the crystallinity of hydrophobic block of triblock copolymer-based emulsifiers, PCLL-b-PEG-b-PCLL, on the colloidal properties of silicone oil-in-water nanoemulsions. The increased ratio of l-lactide to ε-caprolactone decreases the crystallinity of the hydrophobic block, which in turn reduces the droplet size of silicone oil nanoemulsions due to the increased chain mobility at the interface. All of the prepared nanoemulsions are very stable for a month at 37°C. However, the exposure to repeated freeze-thaw cycles quickly destabilizes the nanoemulsions prepared using the polymer with the reduced crystallinity. This work demonstrates that the anchoring chain crystallization in the semi-solid interphase is critically important for the structural robustness of nanoemulsions under harsh physical stresses. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire

    International Nuclear Information System (INIS)

    Rabkin, E.; Amram, D.; Alster, E.

    2014-01-01

    In this study, we deposited a 80 nm thick single crystalline Ni film on a sapphire substrate. Heat treatment of this film at 1000 °C followed by slow cooling resulted in the formation of faceted holes, star-like channel instabilities and faceted microwires. The ridges at the rims of faceted holes and channels exhibited a twinning orientation relationship with the rest of the film. A sub-nanometer-high hexagonal topography pattern on the surface of the unperturbed film was observed by atomic force microscopy. No such pattern was observed on the top facets of isolated Ni particles and hole ridges. We discuss the observed dewetting patterns in terms of the effects of Ni surface anisotropy and faceting on solid state dewetting. The hexagonal pattern on the surface of the unperturbed film was attributed to thermal stress relaxation in the film via dislocations glide. This work demonstrates that solid state dewetting of single crystalline metal films can be utilized for film patterning and for producing hierarchical surface topographies

  12. pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties.

    Science.gov (United States)

    Hsieh, Yi-Ling; Ilevbare, Grace A; Van Eerdenbrugh, Bernard; Box, Karl J; Sanchez-Felix, Manuel Vincente; Taylor, Lynne S

    2012-10-01

    To examine the precipitation and supersaturation behavior of ten weak bases in terms of the relationship between pH-concentration-time profiles and the solid state properties of the precipitated material. Initially the compound was dissolved at low pH, followed by titration with base to induce precipitation. Upon precipitation, small aliquots of acid or base were added to induce slight subsaturation and supersaturation respectively and the resultant pH gradient was determined. The concentration of the unionized species was calculated as a function of time and pH using mass and charge balance equations. Two patterns of behavior were observed in terms of the extent and duration of supersaturation arising following an increase in pH and this behavior could be rationalized based on the crystallization tendency of the compound. For compounds that did not readily crystallize, an amorphous precipitate was formed and a prolonged duration of supersaturation was observed. For compounds that precipitated to crystalline forms, the observed supersaturation was short-lived. This study showed that supersaturation behavior has significant correlation with the solid-state properties of the precipitate and that pH-metric titration methods can be utilized to evaluate the supersaturation behavior.

  13. Disproportionation of a crystalline citrate salt of a developmental pharmaceutical compound: characterization of the kinetics using pH monitoring and online Raman spectroscopy plus quantitation of the crystalline free base form in binary physical mixtures using FT-Raman, XRPD and DSC.

    Science.gov (United States)

    Skrdla, Peter J; Zhang, Dan

    2014-03-01

    The crystalline citrate salt (CS) of a developmental pharmaceutical compound, MK-Q, was investigated in this work from two different, but related, perspectives. In the first part of the paper, the apparent disproportionation kinetics were surveyed using two different slurry systems, one containing water and the other a pH 6.9 phosphate buffer, using time-dependent measurements of the solution pH or by acquiring online Raman spectra of the solids. While the CS is generally stable when stored as a solid under ambient conditions of temperature and humidity, its low pHmax (nucleation-and-growth mechanism. In the second part of this paper, more sensitive offline measurements made using XRPD, DSC and FT-Raman spectroscopy were applied to the characterization of binary physical mixtures of the CS and free base (FB) crystalline forms of MK-Q to obtain a calibration curve for each technique. It was found that all calibration plots exhibited good linearity of response, with the limit of detection (LOD) for each technique estimated to be ≤7 wt% FB. While additional calibration curves would need to be constructed to allow for accurate quantitation in various slurry systems, the general feasibility of these techniques is demonstrated for detecting low levels of CS disproportionation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Crystalline and Electronic Structures and Magnetic and Electrical Properties of La-Doped Ca2Fe2O5 Compounds

    Science.gov (United States)

    Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.

    2018-01-01

    Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.

  15. Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong

    2011-10-01

    Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be

  16. A green emissive amorphous fac-Alq3 solid generated by grinding crystalline blue fac-Alq3 powder.

    Science.gov (United States)

    Bi, Hai; Chen, Dong; Li, Di; Yuan, Yang; Xia, Dandan; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue

    2011-04-14

    A novel green emissive Alq(3) solid with a facial isomeric form has been obtained by grinding the typical blue luminescent fac-Alq(3) crystalline powder. This is the first report, to the best of our knowledge, that a fac-Alq(3) isomer emits green light.

  17. Molecular dynamics simulation of uranium compound adsorption on solid surface

    International Nuclear Information System (INIS)

    Omori, Yuki; Takizawa, Yuji; Okamoto, Tsuyoshi

    2010-01-01

    Particles mixed in the UF6 gas have the property of accumulating on the inside of piping or units. This type of accumulation will cause material unaccounted for (MUF) in the UF6 gas processing facilities. Development of a calculation model for estimating the accumulation rate of uranium compounds has been expected. And predicting possible part of the units where uranium compounds adsorb will contribute to design an effective detection system. The purpose of this study is to take the basic knowledge of the particle's adsorption mechanism from the microscopic point of view. In simulation analysis, UF5 model particle is produced, then two types of solid surfaces are prepared; one is a solid surface at rest and the other is a moving solid surface. The result obtained by the code 'PABS' showed that when the solid surface moves at a lower velocity, the particle's adsorption process dominates over the particle's breakup one. Besides the velocity of the solid surface, other principal factors affecting an adsorption ratio were also discussed. (author)

  18. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui

    2012-01-01

    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  19. Solid-state quantum chemistry and materials science: Solid compounds of the d and f elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1989-01-01

    Methods have been developed for calculating electron structures for solid compounds of d and f elements and for simulating physicochemical properties of materials based on them. Cluster and band calculations are considered for refractory compounds of d metals formed with light elements. There are bond and property regularities in doping by meals and metalloids, and defects and impurities have certain effects, where studies have been made on the electron structures for disordered phases and solid solutions in relation to sublattice compositions. Quantum-chemical simulation methods have been developed for optically active and fluorescent materials based on d and f metal oxides, fluorides, and chalcogenides, and compositions have been proposed for new optically active composites and protective coatings. New approaches have been defined to the magnetic parameters of metals, alloys, and compounds; these can be applied in simulating new magnetic materials. Calculations are given on energy spectra for high-temperature oxide superconductors. There is interesting scope for quantum-chemical methods in application to many topics in materials science

  20. Electronic structure and electric fields gradients of crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    The electronic structures of clusters representing crystalline compounds of Sn(II) and Sn(IV) were investigated, employing the first-principles Discrete Variational method and Local Density theory. Densities of states and related parameters were obtained and compared with experimental measurements and with results from band structure calculations. Effects of cluster size and of cluster truncated bonds are discussed. Electric field gradients at the Sn nucleus were calculated; results are analysed in terms of charge distribution and chemical bonding in the crystals. (author)

  1. Thorium-d-metals compounds and solid solutions

    International Nuclear Information System (INIS)

    Chachkhiani, Z.B.; Chechernikov, V.I.; Chachkhiani, L.G.

    1986-01-01

    Thorium compounds with Fe, Co, Ni dependence of their magnetic properties on temperature, pressure and concentration of the second element are considered. Anomalous magnetic behaviour of alloys in the Th-Fe system is noted. Special attention is paid to compounds with CaCu 5 type hexagonal structure and their solid solutions. Th-Co-Ni specimens containing up to 25% Ni are ferromagnetics and the rest are paramagnetics. Specimens with 60% cobalt content do not display ferromagnetic properties up to 4.2 K. Hydrides of Th 7 M 3 H 30 type (M - Fe, Co, Ni) are also considered. Highly hydrogenized specimens (under high pressure) appear to be stronger ferromagnetics

  2. A Hybrid Solid-State NMR and Electron Microscopy Structure-Determination Protocol for Engineering Advanced para-Crystalline Optical Materials

    NARCIS (Netherlands)

    Thomas, Brijith; Rombouts, Jeroen; Oostergetel, Gert T.; Gupta, Karthick B.S.S.; Buda, Francesco; Lammertsma, Koop; Orru, Romano; de Groot, Huub J.M.

    2017-01-01

    Hybrid magic-angle spinning (MAS) NMR spectroscopy and TEM were demonstrated for de novo structure determination of para-crystalline materials with a bioinspired fused naphthalene diimide (NDI)–salphen–phenazine prototype light-harvesting compound. Starting from chiral building blocks with C2

  3. The fabrication of quantum wires in silicon utilising the characteristics of solid phase epitaxial regrowth of crystalline silicon

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    1998-01-01

    The process of solid phase epitaxy (SPE) in semiconductor materials is one which has been intensively researched due to possible applications in the semiconductor industry. SPE is a solid phase transformation, in which an amorphous layer can be recrystallized either through heating or a combination of heating and ion bombardment. The transformation is believed to occur exclusively at the interface between the amorphous and crystalline layers, with individual atoms from the amorphous phase being incorporated into the crystalline phase by some point defect mechanism. The process has been observed to follow an Arrhenius temperature dependence. A wafer silicon was subjected to a multi-energy silicon implant through a fine nickel grid to amorphise region to a depth of 5μm creating an array of amorphous wells. Metal impurity atoms were then implanted in this region at energy of 500 keV. Samples were examined using an optical microscope and the Alphastep profiler at RMIT. It was confirmed that burgeoning wells were about 2 μm wide and rose about 0.01 μm above the silicon substrate

  4. Fingerprinting analysis of non-crystalline pharmaceutical compounds using high energy X-rays and the total scattering pair distribution function

    Science.gov (United States)

    Davis, Timur D.

    2011-12-01

    In the development of new medicinal products, poor oral bioavailability, due to the low solubilities of many active pharmaceutical ingredients (APIs), is increasingly a barrier for treatments to be administered using tablet or capsule formulations and one of the main challenges facing the pharmaceutical industry. Non-crystalline phases such as the amorphous and nanostructured states can confer increased solubility to a drug, and therefore, have recently garnered a lot of interest from pharmaceutical researchers. However, little is known about local ordering in non-crystalline pharmaceuticals due to the lack of reliable experimental probes, hindering the clinical application of these compounds. The powerful tools of crystallography begin to lose their potency for structures on the nanoscale; conventional X-ray powder diffraction (XRPD) patterns become broad and featureless in these cases and are not useful for differentiating between different local molecular packing arrangements. In this thesis, we introduce the use of high energy X-rays coupled with total scattering pair distribution function (TSPDF) and fingerprinting analysis to investigate the local structures of non-crystalline pharmaceutical compounds. The high energy X-rays allow us to experimentally collect diffuse scattering intensities, which contain information about a sample's local ordering, in addition to the Bragg scattering available in conventional XRPD experiments, while the TSPDF allows us to view the intra- and inter-molecular correlations in real space. The goal of this study was to address some fundamental problems involving fingerprinting non-crystalline APIs using TSPDF in order to lay the groundwork for the proper use of the technique by the pharmaceutical community. We achieved this by developing the methodology as well as the exploring the scientific implications. On the methodology side, we introduced PDFGetX3, a new software program for calculating TSPDFs that simplifies the procedure

  5. Chemical imaging and solid state analysis at compact surfaces using UV imaging

    DEFF Research Database (Denmark)

    Wu, Jian X.; Rehder, Sönke; van den Berg, Frans

    2014-01-01

    and excipients in a non-invasive way, as well as mapping the glibenclamide solid state form. An exploratory data analysis supported the critical evaluation of the mapping results and the selection of model parameters for the chemical mapping. The present study demonstrated that the multi-wavelength UV imaging......Fast non-destructive multi-wavelength UV imaging together with multivariate image analysis was utilized to visualize distribution of chemical components and their solid state form at compact surfaces. Amorphous and crystalline solid forms of the antidiabetic compound glibenclamide...

  6. Determination of the solubility limiting solid of the selenium in the presence of iron under anoxic conditions

    International Nuclear Information System (INIS)

    Iida, Y.; Yamaguchi, T.; Tanaka, T.; Kitamura, A.; Nakayama, S.

    2009-01-01

    Dissolution experiments of selenium were performed from both under saturation and over saturation directions to determine the solubility limiting solid of selenium under the conditions which thermodynamically prefer the formation of ferroselite (FeSe 2 ). X-ray diffractometry (XRD) showed that FeSe 2 was formed in the over-saturation experiments. However, the ion activity products for the reaction of 0.5 FeSe 2 + H + + e - 0.5 Fe 2+ + HSe - , aFe 2+0.5 aHSe - a H+ -1 a e- -1 , obtained from both under saturation and over saturation directions were 3 to 4 orders of magnitude higher than the equilibrium constants calculated from existing thermodynamic data. The dependencies of the selenium concentration on pH, Eh and the iron concentration were better interpreted as a dissolution reaction of selenium solid (Se(s)) than the iron-selenium compounds. The equilibrium constant of: Se(s) + H + + 2e - = HSe - was determined to be logK 0 -7.46±0.11. This value agrees with the value of logK 0 = -7.62±0.06 calculated from existing thermodynamic data of crystalline selenium within errors. Because crystalline selenium was not identified in the solid phases by XRD, the solubility limiting solid would be amorphous or minor amount of crystalline selenium, even if the iron-selenium compound was formed. (authors)

  7. Luminescent properties and energy transfer processes in Ce-Tb doped single crystalline film screens of Lu-based silicate, perovskite and garnet compounds

    Czech Academy of Sciences Publication Activity Database

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Martin, T.; Douissard, P.-A.; Nikl, Martin; Mareš, Jiří A.

    2013-01-01

    Roč. 56, Sept (2013), s. 415-419 ISSN 1350-4487 Institutional support: RVO:68378271 Keywords : single crystalline films * liquid phase epitaxy * perovskites * luminescence * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.140, year: 2013

  8. Investigating tautomeric polymorphism in crystalline anthranilic acid using terahertz spectroscopy and solid-state density functional theory.

    Science.gov (United States)

    Delaney, Sean P; Witko, Ewelina M; Smith, Tiffany M; Korter, Timothy M

    2012-08-02

    Terahertz spectroscopy is sensitive to the interactions between molecules in the solid-state and recently has emerged as a new analytical tool for investigating polymorphism. Here, this technique is applied for the first time to the phenomenon of tautomeric polymorphism where the crystal structures of anthranilic acid (2-aminobenzoic acid) have been investigated. Three polymorphs of anthranilic acid (denoted Forms I, II and III) were studied using terahertz spectroscopy and the vibrational modes and relative polymorph stabilities analyzed using solid-state density functional theory calculations augmented with London dispersion force corrections. Form I consists of both neutral and zwitterionic molecules and was found to be the most stable polymorph as compared to Forms II and III (both containing only neutral molecules). The simulations suggest that a balance between steric interactions and electrostatic forces is responsible for the favoring of the mixed neutral/zwitterion solid over the all neutral or all zwitterion crystalline arrangements.

  9. Magnetization, Magnetocrystalline Anisotropy and the Crystalline Electric Field in Rare-Earth Al2 Compounds

    DEFF Research Database (Denmark)

    Purwins, H. -G.; Walker, E.; Barbara, B.

    1974-01-01

    a quantitative quantum mechanical description of the magnetization and the related magnetocrystalline anisotropy in terms of a cubic crystalline electric field and an isotropic exchange interaction. The parameters used in this description can be unified to good approximation to all REAl2 intermetallic compounds......Magnetization measurements are reported for single crystals of PrAl2 in the range from 4.2K to 30K for magnetic fields up to 150 kOe applied in the (100), (110) and (111) directions. For these measurements, together with the magnetization results obtained earlier for TbAl2 the authors give...

  10. Solid-to-solid oxidation of a vanadium(IV) to a vanadium(V) compound: chemisty of a sulfur-containing siderophore.

    Science.gov (United States)

    Chatterjee, Pabitra B; Crans, Debbie C

    2012-09-03

    Visible light facilitates a solid-to-solid photochemical aerobic oxidation of a hunter-green microcrystalline oxidovanadium(IV) compound (1) to form a black powder of cis-dioxidovanadium(V) (2) at ambient temperature. The siderophore ligand pyridine-2,6-bis(thiocarboxylic acid), H(2)L, is secreted by a microorganism from the Pseudomonas genus. This irreversible transformation of a metal monooxo to a metal dioxo complex in the solid state in the absence of solvent is unprecedented. It serves as a proof-of-concept reaction for green chemistry occurring in solid matrixes.

  11. A fluctuation method to calculate the third order elastic constants in crystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zimu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Qu, Jianmin, E-mail: j-qu@northwestern.edu [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-05-28

    This paper derives exact expressions of the isothermal third order elastic constants (TOE) in crystalline solids in terms of the kinetic and potential energies of the system. These expressions reveal that the TOE constants consist of a Born component and a relaxation component. The Born component is simply the third derivative of the system's potential energy with respect to the deformation, while the relaxation component is related to the non-uniform rearrangements of the atoms when the system is subject to a macroscopic deformation. Further, based on the general expressions derived here, a direct (fluctuation) method of computing the isothermal TOE constants is developed. Numerical examples of using this fluctuation method are given to compute the TOE constants of single crystal iron.

  12. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  13. Anion effect on the retention of recoil atom of coordination crystalline compounds

    International Nuclear Information System (INIS)

    Dimotakis, P.N.; Papadopoulos, B.P.

    1980-01-01

    The anion effect of various cobaltic crystalline compounds - having the same cation and differing in anion -on the retention of neutron activated central cobalt atom has been studied. The cation was trans-dichloro(bis)ethylenediamine cobalt(III) and the anions were simple spherical anions (Cl - , Br - , I - ), planar anions (NO 3 - ), trigonal pyramidal anions (ClO 3 - , BrO 3 - ), tetrahedral anions (SO 4 2- , CrO 4 2- , MnO 4 - ) and linear anions (SCN - ). The cobalt-60 activity after reactor irradiation either in simple Co 2+ cation or in cobaltic complex cation determined the retention values. In all irradiations at ordinary temperature and at liquid nitrogen temperature the results showed an effect of the different anions, depending on the geometry, volume and charge, on the recombination of the recoil cobalt with the ligands in the coordination sphere. (author)

  14. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    Science.gov (United States)

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  15. Theory of diffusion of rare gases in solids

    International Nuclear Information System (INIS)

    Lidiard, A.B.

    1980-01-01

    This paper reviews the basic theoretical description of the solubility and diffusion of rare gas atoms in crystalline solids. It then shows how this description can be used in conjunction with atomistic calculations to understand experimental observations. This understanding is particularly good for ionic compounds and a brief summary of the present situation is given for three main classes, namely those with the rocksalt structure, the fluorite structure and the caesium chloride structure. (author)

  16. Study of crystalline morphology and phase structure in poly(styrene-b-ethylene oxide-b-styrene) triblock copolymers bu solid state RMN spin diffusion

    International Nuclear Information System (INIS)

    Mantovani, Gerson L.; Phan, Trang; Bertin, Denis; Azevedo, Eduardo R. de; Bonagamba, Tito J.

    2009-01-01

    The phase structure and crystalline morphology of a series of polystyrene-b-polyethylene oxide-b-polystyrene (PS-b- PEO-b-PS) triblock copolymers, with different compositions and molecular weights, has been studied by solid-state NMR. WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene oxide (PEO) blocks at room temperature as a function of the copolymer composition. 1 H NMR spin diffusion analyses provided an estimation of the size of the dispersed phases of the nano structured copolymers. (author)

  17. Rejection thresholds in solid chocolate-flavored compound coating.

    Science.gov (United States)

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2012-10-01

    Classical detection thresholds do not predict liking, as they focus on the presence or absence of a sensation. Recently however, Prescott and colleagues described a new method, the rejection threshold, where a series of forced choice preference tasks are used to generate a dose-response function to determine hedonically acceptable concentrations. That is, how much is too much? To date, this approach has been used exclusively in liquid foods. Here, we determined group rejection thresholds in solid chocolate-flavored compound coating for bitterness. The influences of self-identified preferences for milk or dark chocolate, as well as eating style (chewers compared to melters) on rejection thresholds were investigated. Stimuli included milk chocolate-flavored compound coating spiked with increasing amounts of sucrose octaacetate, a bitter and generally recognized as safe additive. Paired preference tests (blank compared to spike) were used to determine the proportion of the group that preferred the blank. Across pairs, spiked samples were presented in ascending concentration. We were able to quantify and compare differences between 2 self-identified market segments. The rejection threshold for the dark chocolate preferring group was significantly higher than the milk chocolate preferring group (P= 0.01). Conversely, eating style did not affect group rejection thresholds (P= 0.14), although this may reflect the amount of chocolate given to participants. Additionally, there was no association between chocolate preference and eating style (P= 0.36). Present work supports the contention that this method can be used to examine preferences within specific market segments and potentially individual differences as they relate to ingestive behavior. This work makes use of the rejection threshold method to study market segmentation, extending its use to solid foods. We believe this method has broad applicability to the sensory specialist and product developer by providing a

  18. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  19. The use of solid sorbents for direct accumulation of organic compounds from water matrices : a review of solid-phase extraction techniques

    NARCIS (Netherlands)

    Liska, I.; Krupcik, J.; Leclercq, P.A.

    1989-01-01

    The main principles of solid-phase extraction techniques are reviewed in this paper. Various solid sorbents can be used as a suitable trap for direct accumulation of organic compounds from aqueous solutions. The trapped analytes can be desorbed by elution with suitably chosen liquid phases. These

  20. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    Science.gov (United States)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  1. Solid fat content as a substitute for total polar compound analysis in edible oils

    Science.gov (United States)

    The solid fat contents (SFC) of heated edible oil samples were measured and found to correlate positively with total polar compounds (TPC) and inversely with triglyceride concentration. Traditional methods for determination of total polar compounds require a laboratory setting and are time intensiv...

  2. Crystalline cerium(IV) phosphates

    International Nuclear Information System (INIS)

    Herman, R.G.; Clearfield, A.

    1976-01-01

    The ion exchange behaviour of seven crystalline cerium(IV) phosphates towards some of the alkali metal cations is described. Only two of the compounds (A and C) possess ion exchange properties in acidic solutions. Four others show some ion exchange characteristics in basic media with some of the alkali cations. Compound G does not behave as an ion exchanger in solutions of pH + , but show very little Na + uptake. Compound E undergoes ion exchange with Na + and Cs + , but not with Li+. Both Li + and Na + are sorbed by compounds A and C. The results are indicative of structures which show steric exclusion phenomena. (author)

  3. Production and Recovery of Aroma Compounds Produced by Solid-State Fermentation Using Different Adsorbents

    Directory of Open Access Journals (Sweden)

    Adriane B. P. Medeiros

    2006-01-01

    Full Text Available Volatile compounds with fruity characteristics were produced by Ceratocystis fimbriata in two different bioreactors: columns (laboratory scale and horizontal drum (semi-pilot scale. Coffee husk was used as substrate for the production of volatile compounds by solid-state fermentation. The production of volatile compounds was significantly higher when horizontal drum bioreactor was used than when column bioreactors were used. These results showed that this model of bioreactor presents good perspectives for scale-up and application in an industrial production. Headspace analysis of the solid-state culture detected twelve compounds, among them: ethanol, acetaldehyde, ethyl acetate, ethyl propionate, and isoamyl acetate. Ethyl acetate was the predominant product in the headspace (28.55 µmol/L/g of initial dry matter. Activated carbon, Tenax-TA, and Amberlite XAD-2 were tested to perform the recovery of the compounds. The adsorbent columns were connected to the column-type bioreactor. All compounds present in the headspace of the columns were adsorbed in Amberlite XAD-2. With Tenax-TA, acetaldehyde was adsorbed in higher concentrations. However, the recovery found by using the activated carbon was very low.

  4. Quantum chemistry of solids and materials technology: solid-phase compounds of d- and f-elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1988-01-01

    The results of studies aimed at the development of methods of theoretical calculations of the electronic structure of solid phase compounds of α- and f-elements and the modelling of physicochemical properties of materials developed on their basis, are presented. The possibilities of cluster and zone calculations of the electronic structure of refractory compounds of d-metals with light elements are considered. The regularities of changes in the chemical bond and properties during crystal lattice alloying with metals, metalloids are found. The methods of quantum chemical modeling of optically active and luminescent materials on the base of oxides, fluorides, chalcogenides of d- and f-metals are developed. The compositions of new optically active compositions and protective coatings are suggested. New approaches to the study of magnetic properties of metals, alloys and compounds are developed. The results of calculations of the energy spectra of high-temperature oxide superconductors are given

  5. The potential for the fabrication of wires embedded in the crystalline silicon substrate using the solid phase segregation of gold in crystallising amorphous volumes

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    2004-01-01

    The refinement of gold in crystallising amorphous silicon volumes was tested as a means of creating a conducting element embedded in the crystalline matrix. Amorphous silicon volumes were created by self-ion-implantation through a mask. Five hundred kiloelectronvolt Au + was then implanted into the volumes. The amorphous volumes were crystallised on a hot stage in air, and the crystallisation was characterised using cross sectional transmission electron microscopy. It was found that the amorphous silicon volumes crystallised via solid phase epitaxy at all the lateral and vertical interfaces. The interplay of the effects of the gold and also the hydrogen that infilitrated from the surface oxide resulted in a plug of amorphous material at the surface. Further annealing at this temperature demonstrated that the gold, once it had reached a certain critical concentration nucleated poly-crystalline growth instead of solid phase epitaxy. Time resolved reflectivity and Rutherford backscattering and channeling measurements were performed on large area samples that had been subject to the same implantation regime to investigate this system further. It was discovered that the crystallisation dynamics and zone refinement of the gold were complicated functions of both gold concentration and temperature. These findings do not encourage the use of this method to obtain conducting elements embedded in the crystalline silicon substrate

  6. Characterization of crystalline structures in Opuntia ficus-indica

    OpenAIRE

    Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M.; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique

    2014-01-01

    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosph...

  7. Simulation of the channelling of ions from MeV C60 in crystalline solids

    International Nuclear Information System (INIS)

    Fetterman, A; Sinclair, L; Tanushev, N; Tombrello, T; Nardi, E

    2007-01-01

    Simulations were performed describing the motion and breakup of energetic C 60 ions interacting with crystalline targets. A hybrid algorithm was used that employs a binary collision model for the scattering of the carbon ions by the atoms of the solid, and molecular dynamics for the Coulomb interactions of the 60 carbon ions with one another. For the case of yttrium iron garnet (YIG), directions such as [1 1 0], [1 0 0], [0 1 0] and [0 0 1] demonstrate channelling for a large fraction of the C ions. For directions such as [1 1 1], [2 1 1] and [7 5 3] the trajectories show no more channelling than for random directions. The effects of tilt, shielding and wake-field interactions were investigated for YIG and α-quartz

  8. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids.

    Science.gov (United States)

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-11-01

    Stability of entrapped crystalline β-carotene as affected by water activity, solids microstructure, and composition of freeze-dried systems was investigated. Aliquots (1000 mm(3) , 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040:DE6, M100:DE11, and M250:DE25.5), M100-sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β-carotene were frozen at -20, -40, or -80 °C and freeze-dried. Glass transition and α-relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β-Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β-carotene stability. Small pores with thin walls and large surface area allowed β-carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β-carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β-carotene degradation. Stability of dispersed β-carotene was highest at around 0.2 a(w) , but decreasing structural relaxation times above the glass transition correlated well with the rate of β-carotene degradation at higher a(w) . Microstructure, a(w) , and component mobility are important factors in the control of stability of β-carotene in freeze-dried solids. β-Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β-carotene in freeze-dried foods, the amount of oxygen penetration need to be limited. The modification of freeze-dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β-carotene in freeze-dried solids. © 2012 Institute of Food Technologists®

  9. Structural and spectroscopic features of proton hydrates in the crystalline state. Solid-state DFT study on HCl and triflic acid hydrates

    Science.gov (United States)

    Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.

    2018-01-01

    Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.

  10. Structural and dynamic properties of solid state ionics

    International Nuclear Information System (INIS)

    Sakuma, T.

    1995-01-01

    The structural and dynamic properties of solid state ionics are reviewed. The low temperature phase transition of the copper halide-chalcogen compounds by specific heat measurements, electrical conductivity measurements and x-ray diffraction measurements are explained. The structures of solid state ionics investigated by the usual x-ray diffraction method and the anomalous x-ray scattering (AXS) measurement are discussed. The expression of the diffuse scattering intensity including the correlations among the thermal displacements of atoms has been given and applied to α-AgI type solid state ionics and lithium sulphate. The presence of low-energy excitations in crystalline copper ion conductors and the superionic conducting glass is investigated by neutron inelastic scattering measurements. The relation between the excitation energy and the mass of the cations is discussed. (author). 141 refs., 21 figs., 7 tabs

  11. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...... phase behavior and it was possible to convert one such compound partly into its vinylheptafulvene (VHF) isomer upon irradiation with light when in the liquid crystalline phase. This conversion resulted in an increase in the molecular alignment of the phase. In time, the meta-stable VHF returns...... to the DHA where the alignment is maintained. The systematic structural variation has revealed that a biaryl spacer between the DHA and the alkyl chain is needed for liquid crystallinity and that the one aromatic ring in the spacer cannot be substituted by a triazole. This work presents an important step...

  12. Introduction to chemistry of crystalline zeolites and its applications

    International Nuclear Information System (INIS)

    Lobo Cabezas, Raul Francisco

    2006-01-01

    Establishes the zeolites as the most important group of solid acids and its relation to the contemporaneous chemical industry. It describes that zeolites are used in the following applications: refineries, chemicals/petrochemicals, environmental chemistry, separation of gas, adsorbent ia and ionic exchange in water purification in mineral processes, medicine and agricultural industry. Zeolites are defined as crystalline aluminium silicates with a compound structure of interconnected tetrahedrons. It mentions the key components in zeolites structure. It focuses that structural basic unity of the zeolite is the tetrahedron and compound structural unities are: cells and columns. Besides, it describes that pore system defines a lot of all its properties; but chemical composition affects them. Composition and properties of zeolites are established: adsorption, molecular sieves, acidity, selectivity, transition state in the hydrocarbon's chemistry. It concludes that the newer application of zeolite is in oxidations: Titanium-Silicate-1; production of propylene's oxide using peroxide of hydrogen as oxidizing. The catalysis is an active area of research, and the most popular areas are related to chemicals and the environment [es

  13. [Representation and mathematical analysis of human crystalline lens].

    Science.gov (United States)

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  14. Disorder-induced localization in crystalline phase-change materials.

    Science.gov (United States)

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  15. Radioactive and stable metal bioaccumulation, crystalline compound and siderophore detection in Clavariadelphus truncatus

    International Nuclear Information System (INIS)

    Gaso, M.I.; Segovia, N.; Morton, O.; Lopez, J.L.; Machuca, A.; Hernandez, E.

    2007-01-01

    137 Cs and 40 K activity concentrations and stable elements have been measured in Clavariadelphus truncatus collected in Mexico. Iron-chelating compounds of siderophore-type was also studied in the species. 137 Cs and 40 K were determined in soil and mushroom samples with HpGe gamma-ray spectrometry. Macro- and micro-elemental concentrations were determined by XRF and ICP-MS. Siderophore detection was obtained with a colorimetric assay and X-ray diffraction analysis was performed using a Siemens D5000 diffractometer. 137 Cs geometric mean concentration in C. truncatus was 26 times higher as compared with other Mexican edible mushroom species, while 40 K showed stability. Soil-C. truncatus concentration ratio for 137 Cs and other micro-elements such as Cs, Rb and Pb were also higher than other Mexican edible species. The 137 Cs committed effective dose due to the ingestion of C. truncatus was 8 x 10 -6 Sv year -1 . The main crystalline structure found in C. truncatus was D-Mannitol

  16. Crystalline electric fields and magnetic properties of single-crystalline RNiC2 compounds R=Ho, Er and Tm

    International Nuclear Information System (INIS)

    Koshikawa, Y.; Onodera, H.; Kosaka, M.; Yamauchi, H.; Ohashi, M.; Yamaguchi, Y.

    1997-01-01

    Magnetometric investigations were performed on single-crystalline HoNiC 2 , ErNiC 2 and TmNiC 2 compounds. Susceptibility of HoNiC 2 shows no anomaly around T N , but a clear cusp appears at T t =2.9 K. Magnetization curves reveal that the anisotropy is relatively weak and that the Ho moments align not along any crystallographic axis. In addition to T N =8.5 K of ErNiC 2 , a new order-order transition at T t =3.6 K has been found. Although the Er moments align along the a-axis between T t and T N , it seems certain that the small moment-components along the b- and c-axes come into existence below T t . TmNiC 2 with T N =5.5 K has a strong uniaxial anisotropy along the a-axis. These results are discussed on the basis of competitions between the magnetic interactions and the crystal field effect which changes anomalously by the replacement of rare earth element. It has been found that the drastic change of crystal field occurs between HoNiC 2 and ErNiC 2 without any corresponding structural change. (orig.)

  17. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  18. Simulation of the channelling of ions from MeV C{sub 60} in crystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, A [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Sinclair, L [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Tanushev, N [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Tombrello, T [Basic and Applied Physics, California Institute of Technology, Pasadena, CA (United States); Nardi, E [Department of Particle Physics, Weizmann Institute of Science Rehovot, 76100 (Israel)

    2007-06-14

    Simulations were performed describing the motion and breakup of energetic C{sub 60} ions interacting with crystalline targets. A hybrid algorithm was used that employs a binary collision model for the scattering of the carbon ions by the atoms of the solid, and molecular dynamics for the Coulomb interactions of the 60 carbon ions with one another. For the case of yttrium iron garnet (YIG), directions such as [1 1 0], [1 0 0], [0 1 0] and [0 0 1] demonstrate channelling for a large fraction of the C ions. For directions such as [1 1 1], [2 1 1] and [7 5 3] the trajectories show no more channelling than for random directions. The effects of tilt, shielding and wake-field interactions were investigated for YIG and {alpha}-quartz.

  19. Opacity alterations of bovine crystalline proteins irradiated with 10 Co in vitro in the presence of sulfonate compounds

    International Nuclear Information System (INIS)

    Bernardes, D.M.L.; Mastro, N.L. del

    1990-01-01

    Sulfhydrilic compounds with a strong basic function separated from the SH group by no more than three C atoms, as amino ethyl iso thiourea (AET) and mercapto ethyl alanine (MEA) are exceptionally effective in competing with free radicals produced by water radiolysis. In a similar way, dimethyl sulfoxide (DMSO) is also effective in the removal of hydroxyl radicals. In the present work, aqueous solutions of crystalline removed surgically from bovine eyes were used. Crystalline were homogenized, the suspension centrifuged and the supernatant dialysed. From the dialysed supernatant a series of solutions was prepared that was 60 Co irradiated with different doses from 5,000 to 25,000 Gy in the presence of 10 mM AET, MEA and DMSO. The degree of opacification was read spectrophotometricaly at 600 nm. The results pointed out a decrease of the increment of opacity produced by the radiation in the presence of those free radical scavengers, showing a radioprotective action of them at the molecular level, that can be measured by this method that mimics the cataract formation in eye lens. (author)

  20. Self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state

    International Nuclear Information System (INIS)

    Mulloev, N.; Nurulloev, M.; Narziev, B.N.

    1993-01-01

    Present article is devoted to self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state. The study results of self-association specified by molecular hydrogen bonds of some heterocyclic compounds based on pyrrol on spectres of infrared absorption of stretching vibrations of N-H group were considered.

  1. Inverse problems in complex material design: Applications to non-crystalline solids

    Science.gov (United States)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  2. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Wuttig, M; Siegrist, T

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb 2 Te 3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  3. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  4. Determination of volatile compounds in grape distillates by solid-phase extraction and gas chromatography.

    Science.gov (United States)

    Lukić, Igor; Banović, Mara; Persurić, Dordano; Radeka, Sanja; Sladonja, Barbara

    2006-01-06

    Solid-phase extraction (SPE) procedure on octadecylsilica (C18) was developed for accumulation of volatile compounds from grape distillates. The procedure was optimised for final analysis by capillary gas chromatography. At mass concentrations in model solutions ranging from 0.1 to 50 mg/l solid-phase extraction recoveries of all analytes ranged from 69% for 2-phenylethanol to 102% for capric acid, with RSD values from 2 to 9%. SPE recoveries of internal standards to be added in the sample solution prior to extraction, higher alcohols 2-ethyl-1-hexanol and 1-undecanol, were 97 and 93%, respectively, with RSD values of 3%. Detection limits of analyzed compounds in model solutions ranged from 0.011 mg/l for isoamyl acetate to 0.037 mg/l for caproic acid. Method efficiency was tested in relation to acetic acid content, volume fraction of ethanol and possible matrix effects. A significant influence of matrix on SPE efficiency for geraniol, cis-2-hexen-1-ol and cis-3-hexen-1-ol was detected. For the same reason, 2-phenylethanol could not be determined by developed SPE method in samples of grape distillates. The developed solid-phase extraction method was successfully applied to determine the differences in volatile compound content in different grape distillates produced by the distillation of crushed, pressed and fermented grapes.

  5. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange.

    Science.gov (United States)

    Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul

    2018-05-22

    The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.

  6. Electronic processes in non-crystalline materials

    CERN Document Server

    Mott, Nevill Francis

    2012-01-01

    Since the first edition of this highly successful book the field saw many great developments both in experimental and theoretical studies of electrical properties of non-crystalline solids. It became necessary to rewrite nearly the whole book, while the aims of the second edition remained the same: to set out the theoretical concepts, to test them by comparison with experiment for a wide variety of phenomena, and to apply them to non-crystalline materials. Sir Nevill Mott shared the1977 Nobel Prize for Physics, awarded for his research work in this field. The reissue of this book as part of th

  7. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    Science.gov (United States)

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Radioactive and stable metal bioaccumulation, crystalline compound and siderophore detection in Clavariadelphus truncatus

    Energy Technology Data Exchange (ETDEWEB)

    Gaso, M.I. [ININ, Ap. Post. 18-1027, C.P. 11801, Mexico D.F. (Mexico)], E-mail: migp@nuclear.inin.mx; Segovia, N. [Instituto de Geofisica, UNAM, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico)], E-mail: nurina@terra.com.mx; Morton, O. [Instituto de Geofisica, UNAM, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico)], E-mail: omorton@geofisica.unam.mx; Lopez, J.L. [Instituto de Geografia, UNAM, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico)], E-mail: jlc@servidor.unam.mx; Machuca, A. [Departmento Forestal, Universidad de Concepcion, Los Angeles (Chile)], E-mail: angmachu@udec.cl; Hernandez, E. [Instituto de Geofisica, UNAM, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico)], E-mail: aeliza@geofisica.unam.mx

    2007-09-15

    {sup 137}Cs and {sup 40}K activity concentrations and stable elements have been measured in Clavariadelphus truncatus collected in Mexico. Iron-chelating compounds of siderophore-type was also studied in the species. {sup 137}Cs and {sup 40}K were determined in soil and mushroom samples with HpGe gamma-ray spectrometry. Macro- and micro-elemental concentrations were determined by XRF and ICP-MS. Siderophore detection was obtained with a colorimetric assay and X-ray diffraction analysis was performed using a Siemens D5000 diffractometer. {sup 137}Cs geometric mean concentration in C. truncatus was 26 times higher as compared with other Mexican edible mushroom species, while {sup 40}K showed stability. Soil-C. truncatus concentration ratio for {sup 137}Cs and other micro-elements such as Cs, Rb and Pb were also higher than other Mexican edible species. The {sup 137}Cs committed effective dose due to the ingestion of C. truncatus was 8 x 10{sup -6} Sv year{sup -1}. The main crystalline structure found in C. truncatus was D-Mannitol.

  9. Lamellar crystalline self-assembly behaviour and solid lipid nanoparticles of a palmityl prodrug analogue of Capecitabine—A chemotherapy agent

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J. [CSIRO/MSE

    2014-09-24

    An amphiphile prodrug, 5'-deoxy-5-fluoro-N4-(palmityloxycarbonyl) cytidine or 5'-deoxy-5-fluoro-N4-(hexadecanaloxycarbonyl) cytidine (5-FCPal), consisting of the same head group as the commercially available chemotherapeutic agent Capecitabine, linked to a palmityl hydrocarbon chain via a carbamate bond is reported. Thermal analysis of this prodrug indicates that it melts at ~115 °C followed quickly by degradation beginning at ~120 °C. The neat solid 5-FCPal amphiphile acquires a lamellar crystalline arrangement with a d-spacing of 28.6 ± 0.3 Å, indicating interdigitation of the hydrocarbon chains. Under aqueous conditions, solid 5-FCPal is non-swelling and no lyotropic liquid crystalline phase formation is observed. In order to assess the in vitro toxicity and in vivo efficacy in colloidal form, solid lipid nanoparticles (SLNs) with an average size of ~700 nm were produced via high pressure homogenization. The in vitro toxicity of the 5-FCPal SLNs against several different cancer and normal cell types was assessed over a 48 h period, and IC50 values were comparable to those observed for Capecitabine. The in vivo efficacy of the 5-FCPal SLNs was then assessed against the highly aggressive mouse 4T1 breast cancer model. To do so, the prodrug SLNs were administered orally at 3 different dosages (0.1, 0.25, 0.5 mmol/mouse/day) and compared to Capecitabine delivered at the same dosages. After 21 days of receiving the treatments, the 0.5 mmol dose of 5-FCPal exhibited the smallest average tumour volume. Since 5-FCPal is activated in a similar manner to Capecitabine via a 3 step enzymatic pathway with the final step occurring preferentially at the tumour site, formulation of the prodrug into SLNs combines the advantage of selective, localized activation with the sustained release properties of nanostructured amphiphile self-assembly and multiple payload materials thereby potentially creating a more effective anticancer agent.

  10. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  11. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    OpenAIRE

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their unique combination of mechanical properties and chemical resistance. Their use, however, has been limited mainly due to poor adhesion properties. Thermotropic liquid crystalline thermosets displayed ...

  12. Investigating the effect of moisture protection on solid-state stability and dissolution of fenofibrate and ketoconazole solid dispersions using PXRD, HSDSC and Raman microscopy.

    Science.gov (United States)

    Kanaujia, Parijat; Lau, Grace; Ng, Wai Kiong; Widjaja, Effendi; Schreyer, Martin; Hanefeld, Andrea; Fischbach, Matthias; Saal, Christoph; Maio, Mario; Tan, Reginald B H

    2011-09-01

    Enhanced dissolution of poorly soluble active pharmaceutical ingredients (APIs) in amorphous solid dispersions often diminishes during storage due to moisture-induced re-crystallization. This study aims to investigate the influence of moisture protection on solid-state stability and dissolution profiles of melt-extruded fenofibrate (FF) and ketoconazole (KC) solid dispersions. Samples were kept in open, closed and Activ-vials(®) to control the moisture uptake under accelerated conditions. During 13-week storage, changes in API crystallinity were quantified using powder X-ray diffraction (PXRD) (Rietveld analysis) and high sensitivity differential scanning calorimetry (HSDSC) and compared with any change in dissolution profiles. Trace crystallinity was observed by Raman microscopy, which otherwise was undetected by PXRD and HSDSC. Results showed that while moisture protection was ineffective in preventing the re-crystallization of amorphous FF, KC remained X-ray amorphous despite 5% moisture uptake. Regardless of the degree of crystallinity increase in FF, the enhanced dissolution properties were similarly diminished. Moisture uptake above 10% in KC samples also led to re-crystallization and significant decrease in dissolution rates. In conclusion, eliminating moisture sorption may not be sufficient in ensuring the stability of solid dispersions. Analytical quantification of API crystallinity is crucial in detecting subtle increase in crystallinity that can diminish the enhanced dissolution properties of solid dispersions.

  13. The application of positron annihilation lifetime spectroscopy to the study of glassy and partially crystalline materials

    International Nuclear Information System (INIS)

    Zipper, M.D.; Hill, A.J.

    1994-01-01

    The use of positron annihilation lifetime spectroscopy (PALS) as a materials characterisation technique is discussed and is illustrated by examples from the authors' laboratory. A brief guide to interpretation of PALS results for metals, semiconductors, ionic solids and molecular solids is presented; however, the paper focuses on recent results for glassy and partially crystalline ionic and molecular solids. Case studies are presented in which the phenomena studied by PALS include miscibility of polymer blends, plasticization of solid polymer electrolytes, crystallinity in molecular and ionic solids, nanostructure of glass-ceramics, and refractivity of fluoride glasses. Future directions for PALS research of the electronic and defect structures of materials are discussed. 140 refs., 1 tab., 19 figs

  14. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  15. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-01-01

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H 2 S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS 2 ) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O 2 concentration (p −1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%

  16. High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO 2 Nanowires

    KAUST Repository

    Tétreault, Nicolas

    2010-12-28

    Herein, we present a novel morphology for solid-state dye-sensitized solar cells based on the simple and straightforward self-assembly of nanorods into a 3D fibrous network of fused single-crystalline anatase nanowires. This architecture offers a high roughness factor, significant light scattering, and up to several orders of magnitude faster electron transport to reach a near-record-breaking conversion efficiency of 4.9%. © 2010 American Chemical Society.

  17. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  18. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    Science.gov (United States)

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M. J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43-ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO32- range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.

  19. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  20. Development of orodispersible polymer films with focus on the solid state characterization of crystalline loperamide.

    Science.gov (United States)

    Woertz, Christina; Kleinebudde, Peter

    2015-08-01

    The formulation of active pharmaceutical ingredients (API) as orodispersible films is gaining interest among novel oral drug delivery systems due to their small size, enhanced flexibility and improved patient compliance. The aim of this work was the preparation and characterization of orodispersible films containing loperamide hydrochloride (LPH) as model drug. As loperamide hydrochloride is poorly soluble in water it was used in crystalline form with a loading of 2mg/6cm(2) film. Hydroxypropyl methylcellulose (HPMC) and different types of hydroxypropyl cellulose (HPC) in different concentrations were used as film forming polymers whereas arabic gum, xanthan gum and tragacanth served as thickening agents. Films were characterized with respect to the content uniformity, morphology, thermal behavior and crystallinity. Suspensions were investigated regarding their viscosity using a rotational rheometer and the crystal structure of the Active Pharmaceutical Ingredient (API) was analyzed using polarized light microscopy. The development of flexible, non-brittle and homogeneous films of LPH was feasible. Two polymorphic forms of LPH appeared in the film formulations dependent on the utilized polymer. While in presence of HPMC the original polymorphic form I remained stable in suspension and films, the polymorphic form II occurred in presence of HPC. Both polymorphic forms were prepared separately and a solid state characterization was performed. Polymorph I showed isometric crystals whereas polymorph II showed needle shaped crystals. Tragacanth was able to prevent the transformation to polymorph II, if it was dissolved first before HPC. When HPC was added first to the suspension, the conversion to form II occurred irreversibly also after further addition of tragacanth. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Semiconducting Zinc Sulphide (ZnS) thin films were deposited on glass substrate using relatively simple Chemical Bath Deposition (CBD) technique. Nano crystalline ZnS thin films were fabricated in the study. Optical characterization of the films showed that the materials are transparent to visible light, opaque to ultraviolet ...

  2. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongyang; Wang, Zhendong; Guo, Min [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Mei, E-mail: zhangmei@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Jingbo [The Department of Chemistry, Texas A and M University-Kingsville, Kingsville, TX 78363 (United States); The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-11-15

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO{sub 3}/g, comparable to commercially-available zeolite (310 mg CaCO{sub 3}/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.

  3. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    International Nuclear Information System (INIS)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-01-01

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO 3 /g, comparable to commercially-available zeolite (310 mg CaCO 3 /g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China

  4. The thermal expansion of a highly crystalline hexagonal BC2N compound synthesized under high temperature and pressure

    International Nuclear Information System (INIS)

    Wu Qinghua; Liu Zhongyuan; Hu Qianku; Li Hui; He Julong; Yu Dongli; Li Dongchun; Tian Yongjun

    2006-01-01

    The thermal expansion has been investigated for a highly crystalline hexagonal BC 2 N compound synthesized by the compression of a turbostratic B-C-N precursor with iron catalyst at the high temperature of 1500 deg. C and the high pressure of 5.5 GPa. The thermal expansion in the c direction is large and linear with an expansion coefficient of 35.86 x 10 -6 K -1 up to 1000 deg. C, while in the basal plane, the a dimension displays a slight linear contraction up to 750 deg. C with a contraction coefficient of -8.76 x 10 -7 K -1 , but above 750 deg. C a linear expansion is observed with a larger expansion coefficient of 1.52 x 10 -6 K -1

  5. Characterization of the Key Aroma Compounds in Proso Millet Wine Using Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jingke Liu

    2018-02-01

    Full Text Available The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA, 100 μm polydimethylsiloxane (PDMS, 75 μm Carboxen (CAR/PDMS, and 50/30 μm divinylbenzene (DVB/CAR/PDMS fibers, and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV. Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1, and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50, having a high OAV. Principal component analysis (PCA showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME fibers.

  6. Co-grinding Effect on Crystalline Zaltoprofen with ?-cyclodextrin/Cucurbit[7]uril in Tablet Formulation

    OpenAIRE

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-01-01

    This work aimed to investigate the co-grinding effects of ?-cyclodextrin (?-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline Z...

  7. Enhanced extraction of phenolic compounds from coffee industry’s residues through solid state fermentation by Penicillium purpurogenum

    Directory of Open Access Journals (Sweden)

    Lady Rossana PALOMINO García

    2015-01-01

    Full Text Available Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.

  8. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu [Beijing Building Materials Academy of Science Research/State Key Laboratory of Solid Waste Reuse for Building Material, Beijing 100041 (China); College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Schuchardt, Frank [Johann Heinrich von Thuenen-Institute, Institute of Agricultural Technology and Biosystems Engineering, Bundesallee 50, 38116 Braunschweig (Germany); Li, Guoxue, E-mail: ligx@cau.edu.cn [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Yang, Jinbing; Yang, Qingyuan [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China)

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  9. The molecular chaperone function of α-crystallin is impaired by UV photolysis

    International Nuclear Information System (INIS)

    Borkman, R.F.; McLaughlin, J.

    1995-01-01

    Buffer solutions of the lens protein γ-crystallin and the enzymes aldolase and liver alcohol dehydrogenase became turbid and formed solid precipitate upon exposure to an elevated temperature of 63 o C or to UV radiation at 308 nm. When α-crystallin was added to the protein solutions in stoichiometric amounts, heat or UV irradiation did not cause turbidity, or turbidity developed much less rapidly than in the absence of α-crystallin. Hence, normal α-crystallin functioned as a ''molecular chaperone,'' providing protection against both UV and heat-induced protein aggregation. When α-crystallin was preirradiated with UV at 308 nm, its ability to function as a chaperone vis-a-vis both UV and heat-induced aggregation was significantly impaired, but only at relatively high UV doss. (author)

  10. Chapter 3. Determination of semivolatile organic compounds and polycyclic aromatic hydrocarbons in solids by gas chromatography/mass spectrometry

    Science.gov (United States)

    Zaugg, Steven D.; Burkhardt, Mark R.; Burbank, Teresa L.; Olson, Mary C.; Iverson, Jana L.; Schroeder, Michael P.

    2006-01-01

    A method for the determination of 38 polycyclic aromatic hydrocarbons (PAHs) and semivolatile organic compounds in solid samples is described. Samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from the solid sample twice at 13,800 kilopascals; first at 120 degrees Celsius using a water/isopropyl alcohol mixture (50:50, volume-to-volume ratio), and then the sample is extracted at 200 degrees Celsius using a water/isopropyl alcohol mixture (80:20, volume-to-volume ratio). The compounds are isolated using disposable solid-phase extraction (SPE) cartridges containing divinylbenzene-vinylpyrrolidone copolymer resin. The cartridges are dried with nitrogen gas, and then sorbed compounds are eluted from the SPE material using a dichloromethane/diethyl ether mixture (80:20, volume-to-volume ratio) and passed through a sodium sulfate/Florisil SPE cartridge to remove residual water and to further clean up the extract. The concentrated extract is solvent exchanged into ethyl acetate and the solvent volume reduced to 0.5 milliliter. Internal standard compounds are added prior to analysis by capillary-column gas chromatography/mass spectrometry. Comparisons of PAH data for 28 sediment samples extracted by Soxhlet and the accelerated solvent extraction (ASE) method described in this report produced similar results. Extraction of PAH compounds from standard reference material using this method also compared favorably with Soxhlet extraction. The recoveries of PAHs less than molecular weight 202 (pyrene or fluoranthene) are higher by up to 20 percent using this ASE method, whereas the recoveries of PAHs greater than or equal to molecular weight 202 are equivalent. This ASE method of sample extraction of solids has advantages over conventional Soxhlet extraction by increasing automation of the extraction process, reducing extraction time, and using less solvent. Extract cleanup also is greatly simplified because SPE replaces

  11. The strength of crystalline color superconductors

    International Nuclear Information System (INIS)

    Mannarelli, Massimo; Rajagopal, Krishna; Sharma, Rishi

    2007-01-01

    We present a study of the shear modulus of the crystalline color superconducting phase of quark matter, showing that this phase of dense, but not asymptotically dense, quark matter responds to shear stress as a very rigid solid. This phase is characterized by a gap parameter Δ that is periodically modulated in space and therefore spontaneously breaks translational invariance. We derive the effective action for the phonon fields that describe space- and time-dependent fluctuations of the crystal structure formed by Δ, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase of matter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superfluid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example (some) pulsar glitches may originate in crystalline superconducting neutron star cores

  12. Attenuation of Thermal Neutrons by Crystalline Silicon

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2002-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross - section including the Bragg scattering from different (hkt) planes to the neutron * transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy .A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500μ eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  13. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    International Nuclear Information System (INIS)

    Suplicz, A.; Szabo, F.; Kovacs, J.G.

    2013-01-01

    Highlights: • BN, talc and TiO 2 in 30 vol% were compounded with polypropylene matrix. • According to the DSC measurements, the fillers are good nucleating agents. • The thermal conductivity of the fillers influences the cooling rate of the melt. • The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO 2 )) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly

  14. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    Science.gov (United States)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  15. Characterization of crystalline structures in Opuntia ficus-indica.

    Science.gov (United States)

    Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique

    2015-01-01

    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.

  16. Synthesis and characterization of nano-crystalline Ce1-xGd xO2-x/2 (x = 0-0.30) solid solutions

    DEFF Research Database (Denmark)

    Jadhav, L. D.; Chourashiya, M. G.; Jamale, A. P.

    2010-01-01

    glycine-nitrate process (GNP) has been presented. Evolution of structural and morphological properties of nano-powders as a function of heat treatment has also been studied. The prepared samples were characterized using TG-DTA, FT-IR, Raman spectroscopy, XRD, SEM, etc. In addition, the effect of Gd......In recent years, doped ceria is an established and promising candidate as solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC). In this investigation, synthesis and characterizations of nano-crystalline Gd doped ceria, (Ce1-xGdxO2-x/2, where x = 0-0.3), prepared using...... of sintered samples was observed to hinder with an increase in Gd content....

  17. Effect of the processing parameters on the crystalline structure of lanthanide ortho tantalates

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Kisla P.F.; Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Quimica

    2014-08-15

    The influence of the synthesis parameters on the crystalline structures of ortho tantalate ceramics has been investigated. Powder materials were prepared by the solid-state reaction route. X-ray diffraction and Raman scattering measurements were employed to investigate the crystal structure of the produced materials. In this work, we analyzed three different examples in which the temperature and time were decisive on the final crystal structure of LnTaO{sub 4} compounds besides the lanthanide ionic size. Firstly, the thermal evolution for NdTaO{sub 4} samples showed that mixed crystal phases are formed up to 1100 °C, while well-crystallized M-NdTaO{sub 4} (I2/a) materials are obtained in temperatures higher than 1200 °C. Also, the influence of the synthesis time was investigated for the LaTaO{sub 4} ceramics: it was necessary 14 h to obtain samples in the P2{sub 1}/c structure. Finally, two polymorphs could be obtained for the DyTaO{sub 4} ceramics: P2/a and I2/a space groups were obtained at 1300 °C and 1500 °C, respectively. This study indicated that the temperature, time and lanthanide size are directly correlated with the crystalline arrangement of the ortho tantalate materials.(author)

  18. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  19. Crystalline misfit-angle implications for solid sliding

    International Nuclear Information System (INIS)

    Manini, Nicola; Braun, O.M.

    2011-01-01

    For the contact of two finite portions of interacting rigid crystalline surfaces, we compute the pinning energy barrier dependency on the misfit angle and contact area. This simple model allows us to investigate a broad contact-size and angular range, thus obtaining the statistical properties of the energy barriers opposing sliding for a single asperity. These data are used to generate the distribution of static frictional thresholds for the contact of polycrystals, as in dry or even lubricated friction. This distribution is used as the input of a master equation to predict the sliding properties of macroscopic contacts. -- Highlights: → The pinning energy barrier depends on the misfit angle and contact area. → We compute this dependence for a idealized rigid model. → We obtain a distribution of static frictional thresholds. → It is used as input of a master-equation model for macroscopic surfaces in contact. → Overall we predict a transition from stick-slip to smooth sliding.

  20. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  1. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    NARCIS (Netherlands)

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their

  2. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  3. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan

    2017-01-01

    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...

  4. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C2h symmetry trans conformation (O=C-C=O dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the com...

  6. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  7. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D.; Treu-Filho, O.; Bannach, G.

    2014-01-01

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L) 3 , in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand

  8. Amorphous-crystalline interface evolution during Solid Phase Epitaxy Regrowth of SiGe films amorphized by ion implantation

    International Nuclear Information System (INIS)

    D'Angelo, D.; Piro, A.M.; Mirabella, S.; Bongiorno, C.; Romano, L.; Terrasi, A.; Grimaldi, M.G.

    2007-01-01

    Transmission Electron Microscopy was combined with Time Resolved Reflectivity to study the amorphous-crystalline (a-c) interface evolution during Solid Phase Epitaxy Regrowth (SPER) of Si 0.83 Ge 0.17 films deposited on Si by Molecular Beam Epitaxy and amorphized with Ge + ion implantation. Starting from the Si/SiGe interface, a 20 nm thick layer regrows free of defects with the same SPER rate of pure Si. The remaining SiGe regrows with planar defects and dislocations, accompanied by a decrease of the SPER velocity. The sample was also studied after implantation with B or P. In these cases, the SPER rate raises following the doping concentration profile, but no difference in the defect-free layer thickness was observed compared to the un-implanted sample. On the other hand, B or P introduction reduces the a-c interface roughness, while B-P co-implantation produces roughness comparable to the un-implanted sample

  9. NATO Advanced Study Institute on the Physics of Structurally Disordered Solids

    CERN Document Server

    1976-01-01

    Structurally disordered solids are characterized by their lack of spatial order that is evidenced by the great variety of ordered solids. The former class of materials is commonly termed amorphous or glassy, the latter crystalline. However, both classes share, many of the other physical properties of solids, e. g. , me­ chanical stability, resistance to shear stress, etc. The traditional macroscopic distinction between the crystalline and the glassy states is that while the former has a fixed melting point, the latter does not. However, with the availability and production of a large number of materials in both crystalline and amorphous states, and their easy inter-convertability, simple de­ finitions are not possible or at best imprecise. For the present purpose, it is sufficient to say that in contrast to the crystalline state, in which the posi­ tions of atoms are fixed into adefinite structure, ex­ cept for small thermal vibrations, the amorphous state of the same material displays varying degrees of ...

  10. Methodology for uranium compounds characterization applied to biomedical monitoring

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Chalabreysse, J.; Henge-Napoli, M.H.; Pujol, E.

    1991-01-01

    Chronic exposure and accidental contamination to uranium compounds in the nuclear industry, led the authors to develop a methodology in order to characterize those compounds applied to biomedical monitoring. Such a methodology, based on the recommendation of the ICRP and the assessment of Annual Limit on Intake (ALI) values, involves two main steps: (1) The characterization of the industrial compound, i.e. its physico-chemical properties like density (g cm -3 ), specific area (m 2 g -1 ), x-ray spectrum (crystalline form), solid infrared spectrum (wavelength and bounds), mass spectrometry (isotopic composition), and particle size distribution including measurement of the Activity Median Aerodynamic Diameter (AMAD). They'll specially study aging and hydration state of some compounds. (2) The study of in vitro solubility in several biochemical medium like bicarbonates, Basal Medium Eagle (BME) used in cellular culture, Gamble solvent, which is a serum simulant, with oxygen bubbling, and Gamble added with superoxide anions O2 - . Those different mediums allow one to understand the dissolution mechanisms (oxidation, chelating effects...) and to give ICRP classification D, W, or Y. Those two steps are essential to assess a biomedical monitoring either in routine or accidental exposure, and to calculate the ALI. Results on UO3, UF4 and U02 in the French uranium industry are given

  11. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.

    2012-08-29

    and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.

  12. Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound.

    Science.gov (United States)

    Pais, Joana M; Barroca, Maria João; Marques, Maria Paula M; Almeida Paz, Filipe A; Braga, Susana S

    2017-01-01

    Fisetin is a natural antioxidant with a wide range of nutraceutical properties, including antidiabetic, neuroprotecting, and suppression or prevention of tumors. The present work describes the preparation of a water-soluble, solid inclusion compound of fisetin with gamma-cyclodextrin (γ-CD), a cyclic oligosaccharide approved for human consumption. A detailed physicochemical analysis of the product is carried out using elemental analysis, powder X-ray diffraction (PXRD), Raman, infrared and 13 C{ 1 H} CP-MAS NMR spectroscopies, and thermal analysis (TGA) to verify fisetin inclusion and to present a hypothetical structural arrangement for the host-guest units. The antioxidant activity of the γ-CD·fisetin inclusion compound is evaluated by the DPPH assay.

  13. Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound

    Directory of Open Access Journals (Sweden)

    Joana M. Pais

    2017-10-01

    Full Text Available Fisetin is a natural antioxidant with a wide range of nutraceutical properties, including antidiabetic, neuroprotecting, and suppression or prevention of tumors. The present work describes the preparation of a water-soluble, solid inclusion compound of fisetin with gamma-cyclodextrin (γ-CD, a cyclic oligosaccharide approved for human consumption. A detailed physicochemical analysis of the product is carried out using elemental analysis, powder X-ray diffraction (PXRD, Raman, infrared and 13C{1H} CP-MAS NMR spectroscopies, and thermal analysis (TGA to verify fisetin inclusion and to present a hypothetical structural arrangement for the host–guest units. The antioxidant activity of the γ-CD·fisetin inclusion compound is evaluated by the DPPH assay.

  14. Electric properties of a liquid crystalline methacrylic polymer

    International Nuclear Information System (INIS)

    Gonzalez Henriquez, C.M.; Soto Bustamante, E.A.; Haase, W.

    2009-01-01

    The formation of a liquid crystalline polymer called PM6R8 is reported. The polymers were obtained with different concentration of AIBN as initiator (0.25, 0.50, 1 and 2mg in 5ml solution) and time of reaction (24, 36 and 48 hours). The compounds were characterized by 1 H-NMR, differential thermal analysis (DTA), X-ray diffractometer and pyroelectric measurements. For the polymer a smectic C 2 phase occurs over broad temperature range, which is a possible explanation for the electric signal. The arrangement of the molecules within of the crystalline lattice is related with the kinetic of precipitation. (author)

  15. Determination of organotin compounds by headspace solid-phase microextraction-gas chromatography-pulsed flame-photometric detection (HS-SPME-GC-PFPD)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, Manuel [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique, LCABIE, UMR CNRS 5034, Pau (France); Pontificia Universidad Catolica de Valparaiso, Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Valparaiso (Chile); Lespes, Gaetane; Gautier, Martine Potin [Pontificia Universidad Catolica de Valparaiso, Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Valparaiso (Chile); Gregori, Ida de; Pinochet, Hugo [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique, LCABIE, UMR CNRS 5034, Pau (France)

    2005-12-01

    A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 {mu}m PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L{sup -1} in water and close to ng (Sn) kg{sup -1} in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME-GC-PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices. (orig.)

  16. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution

    KAUST Repository

    Bhunia, Manas Kumar; Yamauchi, Kazuo; Takanabe, Kazuhiro

    2014-01-01

    Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6-triaminopyrimidine as a dopant. The solid

  17. Effect of. gamma. -irradiation on the crystalline structure of silk fibroin and silk sericin

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Masuhiro; Aoki, Akira

    1985-02-01

    Changes in the crystalline structure of silk sericin and silk fibroin induced by gamma-irradiation in the atmosphere described. The crystalline structure of silk sericin which had been subjected to gamma-irradiation remained unchanged. However the decomposition temperature of the specimen decreased to about 230 deg C, when the total dose of ..gamma.. rays exceeded 4.6 Mrad. The structure of the silk 1 type crystal of silk fibroin in the solid state, with a low degree of molecular orientation, changed into the silk 2 type crystal, when the total dose of ..gamma.. rays exceeded 4.6 Mrad. No changes in the crystalline structure were observed in the solid state of the silk 2 type crystal regardless of gamma-irradiation. The decrease in the decomposition temperature of the specimen was attributed to the decrease in the molecular orientation. However, the molecular conformation of silk fibroin with a randomly coiled structure remained unchanged even after gamma-irradiation.

  18. Solid-Liquid Extraction Kinetics of Total Phenolic Compounds (TPC from Red Dates

    Directory of Open Access Journals (Sweden)

    Bee Lin Chua

    2018-01-01

    Full Text Available Red dates are one of the most famous herbal plants in making traditional Chinese medicine. They contain large amount of bioactive compounds. The objectives of this research were to optimise the crude extract yield and total phenolic compounds (TPC yield from red dates using response surface methodology (RSM and model the extraction kinetics of TPC yield from red dates. Date fruits were dried in an oven under temperatures 50°C, 60°C, 70°C and 80°C until a constant weight was obtained. The optimum drying temperature was 60°C as it gave the highest crude extract yield and TPC yield. Besides that, single factor experiments were used to determine the optimum range of four extraction parameters which were: liquid-solid ratio (10-30 ml/g; ultrasonic power (70-90%; extraction temperature (50-70°C; and extraction time (40-60min. The optimum range of the four parameters were further optimised using the Box-Behken Design (BBD of RSM. The extraction conditions that gave the highest crude extract yield and TPC yield were chosen. The optimum value for liquid-solid ratio, ultrasonic power, extraction temperature and extraction time were 30ml/g, 70%, 60°C and 60 min respectively. The two equations generated from RSM were reliable and can be used to predict the crude extract yield and TPC yield. The higher the extraction temperature, liquid-solid ratio, and extraction time and lower ultrasonic power, the higher the crude extract and TPC yield. Finally, the results of TPC yield versus time based on the optimum extraction parameters from RSM optimisation were fitted into three extraction kinetic models (Peleg’s model, Page’s model and Ponomaryov’s model. It was found that the most suitable kinetic model to represent the extraction process of TPC from red dates was Page’s model due to its coefficient of determination (R2 was the closest to unity, 0.9663 while its root mean square error (RMSE was the closest to zero, 0.001534.

  19. XP S, DRUV-Vis and ESR characterization of the non-stoichiometric compound Ge{sub 0.74}V{sub 0.21} □{sub 0.05}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Boldu, J. L.; Barreto, J.; Rosales, I.; Bucio, L.; Orozco, E., E-mail: eligio@fisica.unam.mx [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Ciudad de Mexico (Mexico)

    2017-11-01

    Microcrystalline powders of the nonstoichiometric Ge{sub 0.74}V{sub 0.21} □{sub 0.05}O{sub 2} compound were prepared by conventional high temperature solid-state reactions. The powders were characterized by X-ray diffraction (XRD); scanning electron microscopy (Sem); X-ray photoelectron spectroscopy (XP S); diffuse reflectance ultraviolet-visible spectroscopy (DRUV-Vis) and electron spin resonance (ESR) spectroscopy. From the analysis performed on compound, it was found that: the powders showed a rutile type crystalline structure with a rectangular prismatic crystalline habit. The XP S analysis, confirm the presence of V{sup 4+} and V{sup 5+} vanadium ions, the DRUV-Vis spectra show absorption bands in the 200-800 nm wave length interval and the ESR analysis confirms that the V{sup 4+} ions are within microcrystals, hosted as VO{sup 2+} at sites of rhombic (C{sub 2v}) symmetry. (Author)

  20. VOLATILE COMPOUNDS OF LITHRAEA CAUSTICA (LITRE) DETERMINATED BY SOLID PHASE MICRO-EXTRACTION (SPME)

    OpenAIRE

    GARBARINO, JUAN A; SALVATORE, GIUSEPPE; PIVANOVO, MARISA; CHAMY, MARÍA CRISTINA; NICOLETTI, MARCELLO; DE IOANNES, ALFREDO

    2002-01-01

    The head space of the aerial parts of Lithraea caustica was analyzed by Solid Phase Micro-Extraction (SPME) technique, obtaining as main volatile compounds the monoterpenes, myrcene, a -pinene, , p-cymene and limonene, as well as the sesquiterpene caryophylene. De las partes áereas de Lithraea caustica y usando la técnica de Micro-Extracción en Fase Sólida (MEFS), fueron identificados y cuantificados los principales compuestos volátiles: los monoterpenos, mirceno, a -pineno, p-cimeno y lim...

  1. Identification of poorly crystalline scorodite in uranium mill tailings

    International Nuclear Information System (INIS)

    Frey, R.; Rowson, J.; Hughes, K.; Rinas, C.; Warner, J.

    2010-01-01

    The McClean Lake mill, located in northern Saskatchewan, processes a variety of uranium ore bodies to produce yellowcake. A by-product of this process is an acidic waste solution enriched in arsenic, referred to as raffinate. The raffinate waste stream is treated in the tailings preparation circuit, where arsenic is precipitated as a poorly crystalline scorodite phase. Raffinate neutralization studies have successfully identified poorly crystalline scorodite using XRD, SEM, EM, XANES and EXAFS methods, but to date, scorodite has not been successfully identified within the whole tailing solids. During the summer of 2008, a drilling program sampled the in situ tailings within the McClean Lake tailings management facility. Samples from this drilling campaign were sent to the Canadian Light Source Inc. for EXAFS analysis. The sample spectra positively identify a poorly crystalline scorodite phase within the McClean tailings management facility. (author)

  2. Crystalline electric field at the rare-earth sites in RxY1-xCo5+y compounds (R= Dy and Tb)

    International Nuclear Information System (INIS)

    Han Xiufeng; Jin Hanmin; Chen Hong; Guo Guanghua; Zhao Tiesong

    1992-01-01

    The magnetic properties of R x Y 1-x Co 5+y compounds are reproduced well by a calculation based on the single-ion model. The values of the exchange field H cx and crystalline-electric-field parameters A m n at the rare-earth ion sites in R x Y 1-x Co 5+y (R = Dy and Tb) are evaluated by fitting the calculations to the experiments. The experiments include the temperature dependence of the spontaneous magnetization, the temperature dependence of the normalized magnetic moments of the rare-earth ions, the temperature dependence of the cone angle, the magnetization curves along the crystal axes at 4.2 K, and the hyperfine field at the Dy ion site

  3. Identifying a compound modifying a cellular response, comprises attaching cells having a reporter system onto solid supports, releasing a library member, screening and identifying target cells

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to methods for identifying compounds capable of modulating a cellular response. The methods involve attaching living cells to solid supports comprising a library of test compounds. Test compounds modulating a cellular response, for example via a cell surface molecule...... may be identified by selecting solid supports comprising cells, wherein the cellular response of interest has been modulated. The cellular response may for example be changes in signal transduction pathways modulated by a cell surface molecule....

  4. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  5. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  6. Determination of some volatile compounds in alcoholic beverage by headspace solid-phase microextraction gas chromatography - mass spectrometry

    Science.gov (United States)

    Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.

    2012-02-01

    The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.

  7. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  8. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  9. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    Science.gov (United States)

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  10. Characterization of Compounds with Tumor–Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii Mycelia Produced by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Henan Zhang

    2017-04-01

    Full Text Available The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC, high-speed countercurrent chromatography (HSCCC, and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS spectroscopic methods as ergosterol (RF1, ergosta-7,22-dien-3β-yl pentadecanoate (RF3, 3,4-dihydroxy benzaldehyde(RF6, inoscavinA (RF7, baicalein(RF10, and 24-ethylcholesta-5,22-dien-3β-ol (RF13. To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  11. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  12. Neutron spin-echo spectroscopy for diffusion in crystalline solids

    International Nuclear Information System (INIS)

    Kaisermayr, M.; Rennhofer, M.; Vogl, G.; Pappas, C.; Longeville, S.

    2002-01-01

    Neutron spin-echo spectroscopy (NSE) offers unprecedented opportunities in the investigation of diffusion in crystalline systems due to its outstanding energy resolution. NSE not only enables measurements at lower diffusivities than the established techniques of neutron spectroscopy, but it also gives a very immediate access to the different time scales involved in the diffusion process. This is demonstrated in detail on the example of the binary alloy NiGa where the Ni atoms hop between regular sites on the Ni sublattice and anti-sites on the Ga sublattice. Experiments on two different NSE instruments are compared to measurements using neutron backscattering spectroscopy. The potential of NSE for the investigation of jump diffusion and experimental requirements are discussed

  13. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  14. Introduction to solid state physics and crystalline nanostructures

    CERN Document Server

    Iadonisi, Giuseppe; Chiofalo, Maria Luisa

    2014-01-01

    This textbook provides conceptual, procedural, and factual knowledge on solid state and nanostructure physics. It is designed to acquaint readers with key concepts and their connections, to stimulate intuition and curiosity, and to enable the acquisition of competences in general strategies and specific procedures for problem solving and their use in specific applications. To these ends, a multidisciplinary approach is adopted, integrating physics, chemistry, and engineering and reflecting how these disciplines are converging towards common tools and languages in the field. Each chapter discusses essential ideas before the introduction of formalisms and the stepwise addition of complications. Questions on everyday manifestations of the concepts are included, with reasoned linking of ideas from different chapters and sections and further detail in the appendices. The final section of each chapter describes experimental methods and strategies that can be used to probe the phenomena under discussion. Solid state...

  15. Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids

    Science.gov (United States)

    2016-07-05

    interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, (8 2015): 0. doi: 10.1557/jmr...rupture • Comparison and validation with experimental observations/ measurements • New dislocation-density crystalline plasticity that accounts for...relationships between coherent interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, Vol. 30

  16. Radionuclide solubility control by solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.; Klinkenberg, M.; Rozov, K.; Bosbach, D. [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6); Vinograd, V. [Frankfurt Univ. (Germany). Inst. of Geosciences

    2015-07-01

    The migration of radionuclides in the geosphere is to a large extend controlled by sorption processes onto minerals and colloids. On a molecular level, sorption phenomena involve surface complexation, ion exchange as well as solid solution formation. The formation of solid solutions leads to the structural incorporation of radionuclides in a host structure. Such solid solutions are ubiquitous in natural systems - most minerals in nature are atomistic mixtures of elements rather than pure compounds because their formation leads to a thermodynamically more stable situation compared to the formation of pure compounds. However, due to a lack of reliable data for the expected scenario at close-to equilibrium conditions, solid solution systems have so far not been considered in long-term safety assessments for nuclear waste repositories. In recent years, various solid-solution aqueous solution systems have been studied. Here we present state-of-the art results regarding the formation of (Ra,Ba)SO{sub 4} solid solutions. In some scenarios describing a waste repository system for spent nuclear fuel in crystalline rocks {sup 226}Ra dominates the radiological impact to the environment associated with the potential release of radionuclides from the repository in the future. The solubility of Ra in equilibrium with (Ra,Ba)SO{sub 4} is much lower than the one calculated with RaSO{sub 4} as solubility limiting phase. Especially, the available literature data for the interaction parameter W{sub BaRa}, which describes the non-ideality of the solid solution, vary by about one order of magnitude (Zhu, 2004; Curti et al., 2010). The final {sup 226}Ra concentration in this system is extremely sensitive to the amount of barite, the difference in the solubility products of the end-member phases, and the degree of non-ideality of the solid solution phase. Here, we have enhanced the fundamental understanding regarding (1) the thermodynamics of (Ra,Ba)SO{sub 4} solid solutions and (2) the

  17. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.

    Science.gov (United States)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-01

    Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Thermodynamic properties of chemical species in nuclear waste: Topical report: The solubilities of crystalline neodymium and americium trihydroxides

    International Nuclear Information System (INIS)

    Silva, R.J.

    1982-12-01

    The solubilities of crystalline Nd(OH) 3 and Am(OH) 3 were measured at 25 +- 1 0 C in aqueous solutions of 0.1 M NaClO 4 under argon as a function of pH by determination of the solution concentrations of Nd and Am. Prior to use in the solubility measurements, the solid materials were characterized through their x-ray powder patterns. Analyses of the solubility data with the computer code MINEQL allowed estimates of the solubility product constants, K/sub s10/, and the second and third hydrolysis constants, K 12 and K 13 , for Nd 3+ and Am 3+ . Upper limits for the fourth hydrolysis constants were also estimated. For Nd, they are: log K/sub s10/ = 16.0 +- .2, log K 12 = -15.8 +- .5, log K 13 = -23.9 +- .2 and log K 14 12 = -16.0 +- .7, log K 13 = -24.3 +- .3 and log K 14 3 was found to be a factor of 100 to 300 less soluble than predicted from previously reported thermodynamic data over much of the pH range of environmental interest. The measured solubility of crystalline Am(OH) 3 was also considerably less than predicted from the previously estimated solubility product constant, i.e., a factor of about 600. For Am, the solubility of the crystalline material was a factor of about 30 less than the amorphous material. The solubilities of crystalline Nd(OH) 3 and Am(OH) 3 as a function of pH were found to be very similar and Nd(OH) 3 should be a good analog compound for Am(OH) 3

  19. Effect of pH on Separation of Solid Content from Paint Contained Wastewater by a Coagulant-flocculant Compound

    Directory of Open Access Journals (Sweden)

    Mojtaba Semnani Rahbar

    2014-05-01

    Full Text Available Chemical wastewater treatment is one of the attracting and common methods for wastewater treatment among the currently employed chemical unit processes. The use of coagulant-flocculant compound is one of the efficient methods for separating of paint and recovery of water. In this research, it was introduced and the effect of pH on removal of solid content from solution was studied experimentally. For this purpose, sludge and suspended solid content of the solution were determined in a jar test by measurement of UV absorption of treated solution and solid separation percentage. The results showed that in pH range 9.5-10.5, maximum efficiency of solid content removal was up to 95%. Consequently, maximum paint removal was obtained in this range of pH. The separation of solid content of the solution was due to formation of aluminum hydroxide. As shown by the results, the reduction of potassium hydroxide as pH adjuster caused decrease of pH and consequently decreases of aluminum hydroxide and solid content removal.  

  20. Mesomorphous versus traces of crystallinity: The itraconazole example

    Energy Technology Data Exchange (ETDEWEB)

    Atassi, Faraj, E-mail: fatassi@yahoo.com; Behme, Robert J.; Patel, Phenil J.

    2013-12-20

    Highlights: • Characterizing partially disordered pharmaceuticals is very challenging due to the fact that more than one discrete disordered phase can be present. • Dynamic mechanical analysis and dielectric analysis are extremely helpful in characterizing pharmaceutical mesophases (liquid crystals). • Thermotropic pharmaceutical mesophases, often mistaken as amorphous or partially crystalline, can show different phases of liquid crystallinity at different temperature. • Liquid crystalline pharmaceutical materials often show amorphous behavior along with other characteristics specific to mesomorphous materials. • The thermal and mechanical history of pharmaceutical disordered samples has a significant effect on their phase composition. - Abstract: Characterizing disordered pharmaceutical materials can be challenging, especially materials with partially disordered structures that lose one or two directional order (mesophases) and do not fit the traditional characterization categories of amorphous, crystalline or a combination of the two. Itraconazole, an antifungal agent, was chosen as a model compound that, when quench cooled, exhibits atypical disordered structure. Five different analytical tools were used to map out the molecular structure of this material and how it changes with changing temperature. X-ray diffraction showed some remnant crystallinity while dielectric analysis, dynamic mechanical analysis, DSC and hot stage microscopy gave more detailed molecular structure of the disordered material and explained all temperature related structural changes. The characterization of mesomorphous Itraconazole described here will help characterize a wide range of pharmaceuticals that exhibit thermotropic (temperature induced) mesomorphism at the molecular level.

  1. Mesomorphous versus traces of crystallinity: The itraconazole example

    International Nuclear Information System (INIS)

    Atassi, Faraj; Behme, Robert J.; Patel, Phenil J.

    2013-01-01

    Highlights: • Characterizing partially disordered pharmaceuticals is very challenging due to the fact that more than one discrete disordered phase can be present. • Dynamic mechanical analysis and dielectric analysis are extremely helpful in characterizing pharmaceutical mesophases (liquid crystals). • Thermotropic pharmaceutical mesophases, often mistaken as amorphous or partially crystalline, can show different phases of liquid crystallinity at different temperature. • Liquid crystalline pharmaceutical materials often show amorphous behavior along with other characteristics specific to mesomorphous materials. • The thermal and mechanical history of pharmaceutical disordered samples has a significant effect on their phase composition. - Abstract: Characterizing disordered pharmaceutical materials can be challenging, especially materials with partially disordered structures that lose one or two directional order (mesophases) and do not fit the traditional characterization categories of amorphous, crystalline or a combination of the two. Itraconazole, an antifungal agent, was chosen as a model compound that, when quench cooled, exhibits atypical disordered structure. Five different analytical tools were used to map out the molecular structure of this material and how it changes with changing temperature. X-ray diffraction showed some remnant crystallinity while dielectric analysis, dynamic mechanical analysis, DSC and hot stage microscopy gave more detailed molecular structure of the disordered material and explained all temperature related structural changes. The characterization of mesomorphous Itraconazole described here will help characterize a wide range of pharmaceuticals that exhibit thermotropic (temperature induced) mesomorphism at the molecular level

  2. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy.

    Science.gov (United States)

    Barnette, Anna L; Bradley, Laura C; Veres, Brandon D; Schreiner, Edward P; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  3. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  4. Some laws governing the electrosynthesis of organic compounds with a solid polymetric electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, N.A.; Avrutskaya, I.A.; Fioshin, M. Ya.; Khrizolitova, M.A.

    1986-01-01

    The electrosynthesis of organic compounds with a solid polymetric electrolyte (SPE) makes it possible to carry out the process in the absence of a supporting electrolyte. This facilitates the recovery of the desired product, eliminates the inorganic waste products, and allows a small interelectrode distance, and the absence of the accumulation of gases lowers the voltage in the cell. Some laws governing syntheses of SPE were studied in the example cases of the electrochemical reduction of 2,2,6,6-tetramethyl-4-oxopiperidine to 2,2,6,6-tetramethyl-4-hydroxy-piperidine, the reduction of triacetonamine oxime and triacetonamine azine to 2,2,6,6-tetramethyl-4- aminopiperidine and the oxidation of isobutanol to isobutyric acid. The electrolysis with an SPE was carried out under galvanostatic conditions in an electrolyzer of the filter-press type with forced circulation of the catholyte and anolyte. Low reaction rates are found to be characteristic of all the compounds investigated when the electrolysis is carried out with an SPE.

  5. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  6. Gas chromatographic-mass spectrometric determination of hydrophilic compounds in environmental water by solid-phase extraction with activated carbon fiber felt.

    Science.gov (United States)

    Kawata, K; Ibaraki, T; Tanabe, A; Yagoh, H; Shinoda, A; Suzuki, H; Yasuhara, A

    2001-03-09

    Simple gas chromatographic-mass spectrometric determination of hydrophilic organic compounds in environmental water was developed. A cartridge containing activated carbon fiber felt was made by way of trial and was evaluated for solid-phase extraction of the compounds in water. The hydrophilic compounds investigated were acrylamide, N,N-dimethylacetamide, N,N-dimethylformamide, 1,4-dioxane, furfural, furfuryl alcohol, N-nitrosodiethylamine and N-nitrosodimethylamine. Overall recoveries were good (80-100%) from groundwater and river water. The relative standard deviations ranged from 4.5 to 16% for the target compounds. The minimum detectable concentrations were 0.02 to 0.03 microg/l. This method was successfully applied to several river water samples.

  7. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry.

    Science.gov (United States)

    Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili

    2016-07-01

    Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications.

    Science.gov (United States)

    Nunes, Sara; Madureira, Ana Raquel; Campos, Débora; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Manuela; Reis, Flávio

    2017-06-13

    Drug delivery systems, accompanied by nanoparticle technology, have recently emerged as prominent solutions to improve the pharmacokinetic properties, namely bioavailability, of therapeutic and nutraceutical agents. Solid lipid nanoparticles (SLNs) have received much attention from researchers due to their potential to protect or improve drug properties. SLNs have been reported to be an alternative system to traditional carriers, such as emulsions, liposomes, and polymeric nanoparticles. Phenolic compounds are widespread in plant-derived foodstuffs and therefore abundant in our diet. Over the last decades, phenolic compounds have received considerable attention due to several health promoting properties, mostly related to their antioxidant activity, which can have important implications for health. However, most of these compounds have been associated with poor bioavailability being poorly absorbed, rapidly metabolized and eliminated, which compromises its biological and pharmacological benefits. This paper provides a systematic review of the use of SLNs as oral delivery systems of phenolic compounds, in order to overcome pharmacokinetic limitations of these compounds and improved nutraceutical potential. In vitro studies, as well as works describing topical and oral treatments will be revisited and discussed. The classification, synthesis, and clinical application of these nanomaterials will be also considered in this review article.

  9. Alloy with metallic glass and quasi-crystalline properties

    Science.gov (United States)

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  10. [Study of selegiline and related compounds with x-ray diffraction].

    Science.gov (United States)

    Simon, K; Böcskei, Z; Török, Z

    1992-09-01

    Selegiline and its parent compounds were studied by X-ray diffraction. It was established that the racemates of primary and secondary amines (p-fluoro-amphetamine, methamphetamine, p-fluoro-methamphetamine) hydrochloride do not form racemic compounds but crystalline as conglomerates, at the same time tertiary amines like selegiline and p-fluoro-selegiline hydrochlorides do. The crystalline structure of five enantiomeric hydrochlorides were determined, the CPhe-C-C-N torsion angle is anti-periplanar in all cases but in p-fluoro-amphetamine where it is gauche.

  11. Photochemistry on solid surfaces

    CERN Document Server

    Matsuura, T

    1989-01-01

    The latest developments in photochemistry on solid surfaces, i.e. photochemistry in heterogeneous systems, including liquid crystallines, are brought together for the first time in a single volume. Distinguished photochemists from various fields have contributed to the book which covers a number of important applications: molecular photo-devices for super-memory, photochemical vapor deposition to produce thin-layered electronic semiconducting materials, sensitive optical media, the control of photochemical reactions pathways, etc. Photochemistry on solid surfaces is now a major field and this

  12. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  13. Trace-level determination of polar flavour compounds in butter by solid-phase extraction and gas chromatography-mass spectrometry.

    NARCIS (Netherlands)

    Adahchour, M.; Vreuls, J.J.; van der Heijden, A.; Brinkman, U.A.T.

    1999-01-01

    Volatile compounds are responsible for the aromas of butter. A simple technique for the determination of these components is described which is based on solid-phase extraction (SPE) after melting of the butter and separation of the aqueous phase from the fat. Volatile flavours present in the water

  14. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR.

    Science.gov (United States)

    Policianova, Olivia; Brus, Jiri; Hruby, Martin; Urbanova, Martina; Zhigunov, Alexander; Kredatusova, Jana; Kobera, Libor

    2014-02-03

    Solid dispersions of active pharmaceutical ingredients are of increasing interest due to their versatile use. In the present study polyvinylpyrrolidone (PVP), poly[N-(2-hydroxypropyl)-metacrylamide] (pHPMA), poly(2-ethyl-2-oxazoline) (PEOx), and polyethylene glycol (PEG), each in three Mw, were used to demonstrate structural diversity of solid dispersions. Acetylsalicylic acid (ASA) was used as a model drug. Four distinct types of the solid dispersions of ASA were created using a freeze-drying method: (i) crystalline solid dispersions containing nanocrystalline ASA in a crystalline PEG matrix; (ii) amorphous glass suspensions with large ASA crystallites embedded in amorphous pHPMA; (iii) solid solutions with molecularly dispersed ASA in rigid amorphous PVP; and (iv) nanoheterogeneous solid solutions/suspensions containing nanosized ASA clusters dispersed in a semiflexible matrix of PEOx. The obtained structural data confirmed that the type of solid dispersion can be primarily controlled by the chemical constitutions of the applied polymers, while the molecular weight of the polymers had no detectable impact. The molecular structure of the prepared dispersions was characterized using solid-state NMR, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). By applying various (1)H-(13)C and (1)H-(1)H correlation experiments combined with T1((1)H) and T1ρ((1)H) relaxation data, the extent of the molecular mixing was determined over a wide range of distances, from intimate intermolecular contacts (0.1-0.5 nm) up to the phase-separated nanodomains reaching ca. 500 nm. Hydrogen-bond interactions between ASA and polymers were probed by the analysis of (13)C and (15)N CP/MAS NMR spectra combined with the measurements of (1)H-(15)N dipolar profiles. Overall potentialities and limitations of individual experimental techniques were thoroughly evaluated.

  15. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  16. Effects of crystalline state and self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of the novel anti-HIV compound 6-benzyl-1-benzyloxymethyl-5-iodouracil in rats.

    Science.gov (United States)

    Lu, Ying-Yuan; Dai, Wen-Bing; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Lu, Chuang; Zhang, Qiang; Zhang, Guo-Liang

    2018-02-01

    The objective of this study was to investigate the effect of crystalline state and a formulation of self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor, in rats. The crystalline states of W-1 were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). The SNEDDS was formulated by medium-chain lipids, characterized by droplet particle size. The plasma concentrations of W-1 were measured by high performance liquid chromatography (HPLC). The results indicated that W-1 compound were presented as crystalline forms, A and B, the degree of crystallization in form B was higher than that in form A. The SNEDDS of W-1 displayed a significant increase in the dissolution rate than W-1 powder. Furthermore, after oral administration of W-1 (100 mg/kg), the pharmacokinetic parameters of form A, form B, and W-1 SNEDDS were as follows: AUC 0-t 526.4 ± 123.5, 305.1 ± 58.5 and 2297 ± 451 ng h/mL (p < .05, when W-1 SNEDDS were compared with either form A or form B), respectively. With SNEDDS formulation, the relative bioavailabilities were enhanced by 4.36-fold and 7.53-fold over the form A and form B of W-1, respectively. In conclusion, the present results suggested that the crystalline states of W-1 might lead to the lower oral bioavailability, and SNEDDS formulation is a promising strategy of improving bioavailability, in spite of that crystalline states usually carry small lot-to-lot variability.

  17. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1999-01-01

    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  18. XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses.

    Science.gov (United States)

    Meza-Contreras, Juan C; Manriquez-Gonzalez, Ricardo; Gutiérrez-Ortega, José A; Gonzalez-Garcia, Yolanda

    2018-05-22

    The production and crystallinity of 13 C bacterial cellulose (BC) was examined in static culture of Komagataeibacter xylinus with different chemical and physical stimuli: the addition of NaCl or cloramphenicol as well as exposure to a magnetic field or to UV light. Crystalline BC biosynthesized under each stimulus was studied by XRD and solid state 13 C NMR analyses. All treatments produced BC with enhanced crystallinity over 90% (XRD) and 80% (NMR) compared to the control (83 and 76%, respectively) or to Avicel (77 and 62%, respectively). The XRD data indicated that the crystallite size was 80-85 Å. Furthermore, changes on the allomorphs (I α and I β ) ratio tendency of BC samples addressed to the stimuli were estimated using the C4 signal from 13 C NMR data. These results showed a decrease of the allomorph I α (3%) when BC was biosynthesized with UV light and chloramphenicol compared to control (58.79%). In contrast, the BC obtained with NaCl increased up to 60.31% of the I α allomorph ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Vacuum ultra-violet and electron energy loss spectroscopy of gaseous and solid organic compounds

    International Nuclear Information System (INIS)

    Koch, E.E.; Otto, A.

    1976-01-01

    The experimental arrangements used by the authors for the study of optical vacuum ultra-violet and electron energy loss spectra of organic compounds are described and some theoretical aspects of studies of higher excited states are considered. Results for alkanes, benzene, naphthalene, anthracene and some more complex hydrocarbons are reviewed. Recent results obtained by reflection and electron energy loss spectroscopy for single crystals of anthracene are included and their relevance for gas phase work as well as for the understanding of exciton effects in organic solids is described. (author)

  20. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  1. Solid-state laser pumping with a planar compound parabolic concentrator.

    Science.gov (United States)

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.

  2. Crystalline lens radioprotectors

    International Nuclear Information System (INIS)

    Belkacemi, Y.; Pasquier, D.; Castelain, B.; Lartigau, E.; Warnet, J.M.

    2003-01-01

    During more than a half of century, numerous compounds have been tested in different models against radiation-induced cataract. In this report, we will review the radioprotectors that have been already tested for non-human crystalline lens protection. We will focus on the most important published studies in this topic and the mechanisms of cyto-protection reported in. vitro and in. vivo from animals. The most frequent mechanisms incriminated in the cyto-protective effect are: free radical scavenging, limitation of lipid peroxidation, modulation of cycle progression increase of intracellular reduced glutathione pool, reduction of DNA strand breaks and limitation of apoptotic cell death. Arnifostine (or Ethyol) and anethole dithiolethione (or Sulfarlem), already used clinically as chemo- and radio-protectants, could be further test?r for ocular radioprotection particularly for radiation-induced cataract. (author)

  3. Formation of crystalline InGaO₃(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor.

    Science.gov (United States)

    Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won

    2015-12-11

    One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.

  4. LPE growth and scintillation properties of (Zn,Mg)O single crystalline film

    Czech Academy of Sciences Publication Activity Database

    Yoshikawa, A.; Yanagida, T.; Fujimoto, Y.; Kurosawa, S.; Yokota, Y.; Yamaji, A.; Sugiyama, M.; Wakahara, S.; Futami, Y.; Kikuchi, M.; Miyamoto, M.; Sekiwa, H.; Nikl, Martin

    2012-01-01

    Roč. 59, č. 5 (2012), 2286-2289 ISSN 0018-9499 R&D Projects: GA MŠk LH12150 Institutional research plan: CEZ:AV0Z10100521 Keywords : crystalline materials * epitaxial layers * liquid phase epitaxy * scintillator * semiconductor films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.219, year: 2012

  5. Periodically arranged benzene-linker molecules on boron-doped single-crystalline diamond films for DNA

    Czech Academy of Sciences Publication Activity Database

    Shin, D.; Tokuda, N.; Rezek, Bohuslav; Nebel, C.E.

    2006-01-01

    Roč. 8, - (2006), s. 844-850 ISSN 1388-2481 Institutional research plan: CEZ:AV0Z10100521 Keywords : electrochemical surface modification * single-crystalline CVD diamond * covalent DNA Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.484, year: 2006

  6. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants.

    Science.gov (United States)

    Duque, Luisa; Körber, Martin; Bodmeier, Roland

    2018-05-30

    The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired. Copyright © 2018. Published by Elsevier B.V.

  7. Quantum statistical effects in the mass transport of interstitial solutes in a crystalline solid

    Science.gov (United States)

    Woo, C. H.; Wen, Haohua

    2017-09-01

    The impact of quantum statistics on the many-body dynamics of a crystalline solid at finite temperatures containing an interstitial solute atom (ISA) is investigated. The Mori-Zwanzig theory allows the many-body dynamics of the crystal to be formulated and solved analytically within a pseudo-one-particle approach using the Langevin equation with a quantum fluctuation-dissipation relation (FDR) based on the Debye model. At the same time, the many-body dynamics is also directly solved numerically via the molecular dynamics approach with a Langevin heat bath based on the quantum FDR. Both the analytical and numerical results consistently show that below the Debye temperature of the host lattice, quantum statistics significantly impacts the ISA transport properties, resulting in major departures from both the Arrhenius law of diffusion and the Einstein-Smoluchowski relation between the mobility and diffusivity. Indeed, we found that below one-third of the Debye temperature, effects of vibrations on the quantum mobility and diffusivity are both orders-of-magnitude larger and practically temperature independent. We have shown that both effects have their physical origin in the athermal lattice vibrations derived from the phonon ground state. The foregoing theory is tested in quantum molecular dynamics calculation of mobility and diffusivity of interstitial helium in bcc W. In this case, the Arrhenius law is only valid in a narrow range between ˜300 and ˜700 K. The diffusivity becomes temperature independent on the low-temperature side while increasing linearly with temperature on the high-temperature side.

  8. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    Science.gov (United States)

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    International Nuclear Information System (INIS)

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E.

    2015-01-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO 2 and ZrO 2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO 2 > ZrO 2 ) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO 2 , which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO 2 and ZrO 2 coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO 2 and a-ZrO 2 than on their c-oxide counterpart. • E. coli adhesion on a-TiO 2 was lower than on the c-TiO 2

  10. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  11. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    Science.gov (United States)

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures. Published by Elsevier B.V.

  12. Crystalline anhydrous {alpha},{alpha}-trehalose (polymorph {beta}) and crystalline dihydrate {alpha},{alpha}-trehalose: A calorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Susana S. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: susanapinto@ist.utl.pt; Diogo, Herminio P. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: hdiogo@ist.utl.pt; Moura-Ramos, Joaquim J. [Centro de Quimica-Fisica Molecular, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: mouraramos@ist.utl.pt

    2006-09-15

    The mean values of the standard massic energy of combustion of crystalline anhydrous {alpha},{alpha}-trehalose (C{sub 12}H{sub 22}O{sub 11}, polymorph {beta}) and crystalline dihydrate {alpha},{alpha}-trehalose (C{sub 12}H{sub 26}O{sub 13}) measured by static-bomb combustion calorimetry in oxygen, at the temperature T=298.15K, are {delta}{sub c}u{sup o}=-(16434.05+/-4.50)J.g{sup -1} and {delta}{sub c}u{sup o}=-(14816.05+/-3.52)J.g{sup -1}, respectively. The standard (p{sup o}=0.1MPa) molar enthalpy of formation of these compounds were derived from the corresponding standard molar enthalpies of combustion, respectively, {delta}{sub f}H{sub m}{sup o} (C{sub 12}H{sub 22}O{sub 11},cr)=-(2240.9+/-3.9)kJ.mol{sup -1}, and {delta}{sub f}H{sub m}{sup o} (C{sub 12}H{sub 26}O{sub 13},cr)=-(2832.6+/-3.6)kJ.mol{sup -1}. The values of the standard enthalpies of formation obtained in this work, together with data on enthalpies of solution at infinite dilution ({delta}{sub sol}H{sup {approx}}) for crystalline dihydrate and amorphous anhydrous trehalose, allow a better insight on the thermodynamic description of the trehalose system which can provide, together with the future research on the subject, a contribution for understanding the metabolism in several organisms, as well as the phase transition between the different polymorphs.

  13. [Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].

    Science.gov (United States)

    Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying

    2013-05-01

    A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.

  14. Solid phase microextraction: measurement of volatile organic compounds (VOCs) in Dhaka City air pollution.

    Science.gov (United States)

    Hussam, A; Alauddin, M; Khan, A H; Chowdhury, D; Bibi, H; Bhattacharjee, M; Sultana, S

    2002-08-01

    A solid phase microextraction (SPME) technique was applied for the sampling of volatile organic compounds (VOCs) in ambient air polluted by two stroke autorickshaw engines and automobile exhausts in Dhaka city, Bangladesh. Analysis was carried out by capillary gas chromatography (GC) and GC-mass spectrometry (MS). The methodology was tested by insitu sampling of an aromatic hydrocarbon mixture gas standard with a precision of +/-5% and an average accuracy of 1-20%. The accuracy for total VOCs concentration measurement was about 7%. VOC's in ambient air were collected by exposing the SPME fiber at four locations in Dhaka city. The chromatograms showed signature similar to that of unburned gasoline (petrol) and weathered diesel containing more than 200 organic compounds; some of these compounds were positively identified. These are normal hydrocarbons pentane (n-C5H2) through nonacosane (n-C29H60), aromatic hydrocarbons: benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, 1,3,5-trimethylbenzene, xylenes, and 1-isocyanato-3-methoxybenzene. Two samples collected near an autorickshaw station contained 783000 and 1479000 microg/m3 of VOCs. In particular, the concentration of toluene was 50-100 times higher than the threshold limiting value of 2000 microg/m3. Two other samples collected on street median showed 135000 microg/m3 and 180000 microg/m3 of total VOCs. The method detection limit of the technique for most semi-volatile organic compounds was 1 microg/m3.

  15. Effect of solid-state fermentation with Rhizopus oligosporus on bioactive compounds and antioxidant capacity of raw and roasted buckwheat groats

    Directory of Open Access Journals (Sweden)

    Wronkowska Małgorzata

    2015-12-01

    Full Text Available The effect of solid-state fermentation with Rhizopus oligosporus on the changes in the total phenolic compounds, rutin, vitamin B and C, tocopherol, phytic acid and antioxidant capacity of raw and roasted buckwheat groats was studied. The roasted groats contained reduced level of studied bioactive compounds as compared to raw groats. In this study was evidenced that the solidstate fermentation with Rhizopus oligosporus enhanced water soluble vitamins (thiamine, pyridoxine and L-ascorbic acid as well as tocopherols contents. In contrast the decrease of the inositol hexaphosphate, phenolic compounds, the rutin content and antioxidant capacity determined by ACL and ABTS methods was noticed.

  16. Liquid structure as a guide for phase stability in the solid state: Discovery of a stable compound in the Au-Si alloy system

    International Nuclear Information System (INIS)

    Tasci, Emre S.; Sluiter, Marcel H.F.; Pasturel, Alain; Villars, Pierre

    2010-01-01

    A new crystalline ground state was discovered in the Au-Si system through first-principles electronic structure calculations. The new structure was found using the experimentally and theoretically determined local atomic structure in the liquid as a guide for the solid state. Local atomic structure in the liquid was matched with that for all known crystal structures as compiled in the Pauling File structural database. The best matching crystalline structures were then explicitly calculated using first-principles methods. Most candidate crystal structures were found to be close, but above the enthalpy of a composition weighted average of the face-centered cubic Au and diamond structure Si terminal phases, but one crystal structure was more stable than the terminal phases by about 10 meV atom -1 at T = 0 K. As first-principles simulations of local structure are feasible for most liquid alloys, the present methodology is applicable to other alloys lying near a eutectic composition.

  17. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species

    Czech Academy of Sciences Publication Activity Database

    Klejdus, B.; Kopecký, Jiří; Benešová, L.; Vacek, J.

    2009-01-01

    Roč. 1216, č. 5 (2009), s. 763-771 ISSN 0021-9673 R&D Projects: GA ČR GA525/07/0338 Grant - others:CZ(CZ) GP525/08/P540 Institutional research plan: CEZ:AV0Z50200510 Keywords : methanol * solid-phase extraction * phenolic compounds Subject RIV: EE - Microbiology, Virology Impact factor: 4.101, year: 2009

  18. Calcium carbonate interaction analysis in polypropylene compounds and their impact on the formation of beta crystalline phase of this polymer

    International Nuclear Information System (INIS)

    Sakahara, Rogerio M.; Hui, Wang S.

    2011-01-01

    The insertion of calcium carbonate (CaCO 3 ) in polypropylene compound is a thoroughly known technique widely studied in the academic area and in the industry. Its wide application is due, mainly, to increase mechanical properties with low manufacturing cost. These improvements in this polymer make it more versatile and competitive compared to other expensive polymers. In this study, the incorporation of four types of CaCO3 from the same manufacturer were compared and the focus was on the size of this mineral filler. Furthermore, it was analyzed the interaction of graphitized polypropylene with maleic anhydride (PP-g-MA) in the same samples. All these samples were analyzed by WAXS and SEM. The physical properties of tensile strength and impact were also analyzed. It was observed from this study that the smallest CaCO3 produced with PP-g-MA resulted in better physical properties with the formation of a crystalline phase beta, as originally studied by other authors using other raw materials. (author)

  19. Microbes in crystalline bedrock. Assimilation of CO2 and introduced organic compounds by bacterial populations in groundwater from deep crystalline bedrock at Laxemar and Stripa

    International Nuclear Information System (INIS)

    Pedersen, K.; Ekendahl, S.; Arlinger, J.

    1991-12-01

    The assimilation of CO 2 and of introduced organic compounds by bacterial populations in deep groundwater from fractured crystalline bedrock has been studied. Three depth horizons of the subvertical boreholes KLZ01 at Laxemar in southeastern Sweden, 830-841 m, 910-921 m and 999-1078 m, and V2 in the Stripa mine, 799-807m 812-820 m and 970-1240 m were sampled. The salinity profile of the KLX01 borehole is homogeneous and the groundwater had the following physico-chemical characteristics: pH values of 8.2, 8.4 and 8.5; Eh values of 270, no data and -220 mV; sulphide: 2.3, 11.0 and 5.6 μM; CO 3 2- : 104, 98 and 190 μM; CH 4 : 26, 27 and 31 μl/l and N 2 : 47, 25 and 18 ml/l, respectively. The groundwater in V2 in Stripa were obtained from fracture systems without close hydraulic connections and had the following physico-chemical characteristics: pH values of 9.5, 9.4 and 10.2; Eh values of +205, +199 and -3 mV; sulphide: 0, 106 and 233 μM; CO 3 2- : 50, 57 and 158 μM; CH 4 : 245, 170 and 290 μl/l and N 2 : 25, 31 and 25 ml/l, respectively. Biofilm reactors with hydrophilic glass surfaces were connected to the flowing groundwaters from each of the 3 depths with flow rates of approximately 3x10 -3 m sec -1 over 19 days in Laxemar and 27 to 161 days in Stripa. There were between 0.15 to 0.68 x 10 5 unattached bacteria ml -1 groundwater and 0.94 to 1.2 x 10 5 attached bacteria cm -2 on the surface in Laxemar and from 1.6 x 10 3 up to 3.2 x 10 5 bacteria ml -1 groundwater and from 2.4 x 10 5 up to 1.1 x 10 7 bacteria cm -2 of colonized test surfaces in Stripa. Assuming a mean channel width of 0.1 mm, our results imply that there would be from 10 3 up to 10 6 more attached than unattached bacteria in a water conducting channel in crystalline bedrock. (54 refs., 23 figs., 10 tabs.) (au)

  20. Processing and properties of PCL/cotton linter compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Elieber Barros; Franca, Danyelle Campos; Morais, Dayanne Diniz de Souza; Araujo, Edcleide Maria [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Rosa, Morsyleide de Freitas; Morais, Joao Paulo Saraiva [Embrapa Tropical Agroindustia, Fortaleza, CE (Brazil); Wellen, Renate Maria Ramos, E-mail: wellen.renate@gmail.com [Universidade Federal da Paraiaba (UFPB), Joao Pessoa, PB (Brazil)

    2017-03-15

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton nanolinter compounds. Adding cotton linter to PCL did not change its crystalline character as showed by XRD; however an increase in degree of crystallinity was observed by means of DSC. From mechanical tests in tension was observed an increase in ductility of PCL, and from mechanical tests in flexion an increase in elastic modulus upon addition of cotton linter, whereas impact strength presented lower values for PCL/cotton linter and PCL/cotton nanolinter compounds. SEM images showed that PCL presents plastic fracture and cotton linter has an interlacing fibril structure with high L/D ratio, which are in agreement with matrix/fibril morphology observed for PCL/cotton linter compounds. PCL/cotton linter compounds made in this work cost less than neat PCL matrix and presented improved properties making feasible its commercial use. (author)

  1. In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates

    International Nuclear Information System (INIS)

    Proehl, Holger; Nitsche, Robert; Dienel, Thomas; Leo, Karl; Fritz, Torsten

    2005-01-01

    We report an investigation of the excitonic properties of thin crystalline films of the archetypal organic semiconductor PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) grown on poly- and single crystalline surfaces. A sensitive setup capable of measuring the optical properties of ultrathin organic molecular crystals via differential reflectance spectroscopy (DRS) is presented. This tool allows to carry out measurements in situ, i.e., during the actual film growth, and over a wide spectral range, even on single crystalline surfaces with high symmetry or metallic surfaces, where widely used techniques like reflection anisotropy spectroscopy (RAS) or fluorescence excitation spectroscopy fail. The spectra obtained by DRS resemble mainly the absorption of the films if transparent substrates are used, which simplifies the analysis. In the case of mono- to multilayer films of PTCDA on single crystalline muscovite mica(0001) and Au(111) substrates, the formation of the solid state absorption from monomer to dimer and further to crystal-like absorption spectra can be monitored

  2. Encapsulation of solid dispersion in solid lipid particles for dissolution enhancement of poorly water-soluble drug.

    Science.gov (United States)

    Tran, Khanh Thi My; Vo, Toi Van; Tran, Phuong Ha-Lien; Lee, Beom-Jin; Duan, Wei; Tran, Thao Truong-Dinh

    2017-06-05

    The aim of this research was to engineer solid dispersion lipid particles (SD-SLs) in which a solid dispersion (SD) was encapsulated to form the core of solid lipid particles (SLs), thereby achieving an efficient enhancement in the dissolution of a poorly water-soluble drug. Ultrasonication was introduced into the process to obtain micro/nanoscale SLs. The mechanism of dissolution enhancement was investigated by analysing the crystalline structure, molecular interactions, and particle size of the formulations. The drug release from the SD-SLs was significantly greater than that from the SD or SLs alone. This enhancement in drug release was dependent on the preparation method and the drug-to-polymer ratio of the SD. With an appropriate amount of polymer in the SD, the solidification method had the potential to alter the drug crystallinity to an amorphous state, resulting in particle uniformity and molecular interactions in the SD-SLs. The proposed system provides a new strategy for enhancing the dissolution rate of poorly water-soluble drugs and further improving their bioavailability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Chemical structure and radiation stability of solid crystalline antibiotics: thiamphenicol and chloramphenicol

    International Nuclear Information System (INIS)

    Varshney, Lalit; Soe Nwe

    1997-01-01

    Antibiotics in solid state show significant radiation resistance and some of them are exposed to gamma or electron beam irradiation for sterilization. Even small radiation degradation in solid state antibiotics is not desirable. Two antibiotics namely thiamphenicol (TPL) and chloramphenicol (CPL) having similar chemical and solid state structure were irradiated at different graded radiation doses to study their stability. Differential scanning calorimetry (DSC) was used to evaluate purity, entropy of radiation processing, heat of fusion and melting point. (author). 3 refs., 1 tab

  4. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  5. Crystalline mono- and multilayer self-assemblies of oligothiophenes at the air-water interface

    DEFF Research Database (Denmark)

    Isz, S.; Weissbuch, I.; Kjær, K.

    1997-01-01

    The formation of Langmuir monolayers at the air-water interface has long been believed to be limited to amphiphilic molecules containing a hydrophobic chain and a hydrophilic headgroup. Here we report the formation of crystalline mono- and multilayer self-assemblies of oligothiophenes, a class...... of aromatic nonamphiphilic molecules, self-aggregated at the air-water interface. As model systems we have examined the deposition of quaterthiophene (S-4), quinquethiophene (S-5). and sexithiophene (S-6) from chloroform solutions on the water surface. The structures of the films were determined by surface...... surface. S-5 self-ageregates at the water surface to form mixtures of monolayers and bilayers of the beta polymorph; S-6 forms primarily crystalline monolayers of both alpha and beta forms. The crystalline assemblies preserve their integrity during transfer from the water surface onto solid supports...

  6. [Determination of flavor compounds in foxtail millet wine by gas chromatography-mass spectrometry coupled with headspace solid phase microextraction].

    Science.gov (United States)

    Liu, Jingke; Zhang, Aixia; Li, Shaohui; Zhao, Wei; Zhang, Yuzong; Xing, Guosheng

    2017-11-08

    To comprehensively understand flavor compounds and aroma characteristics of foxtail millet wine, extraction conditions were optimized with 85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm carboxen (CAR)/PDMS and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers. The flavor compounds in foxtail millet wine were investigated by gas chromatography-mass spectrometry (GC-MS) coupled with headspace solid phase microextraction (HS-SPME), and the odor characteristics and intensity were analyzed by odor active values (OAVs). The samples of 8 mL were placed in headspace vials with 1.5 g NaCl, then the headspace vials were heated at 60℃ for 40 min. Using HS-SPME with different fibers, a total of 55 flavor compounds were identified from the samples, including alcohols, esters, benzene derivatives, hydrocarbons, acids, aldehydes, ketones, terpenes, phenols and heterocycle compounds. The main flavor compounds were alcohols compounds. According to their OAVs, phenylethyl alcohol, styrene, 1-methyl-naphthalene, 2-methyl-naphthalene, benzaldehyde, benzeneacetaldehyde and 2-methoxy-phenol were established to be odor-active compounds. Phenylethyl alcohol and benzeneacetaldehyde were the most prominent odor-active compounds. PA and PDMS fibers had good extraction effect for polar and nonpolar compounds, respectively. CAR/PDMS and DVB/CAR/PDMS provided a similar compounds profile for moderate polar compounds. This research comprehensively determined flavor compounds of foxtail millet wine, and provided theoretical basis for product development and quality control.

  7. Optimized Solid Phase-Assisted Synthesis of Dendrons Applicable as Scaffolds for Radiolabeled Bioactive Multivalent Compounds Intended for Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Gabriel Fischer

    2014-05-01

    Full Text Available Dendritic structures, being highly homogeneous and symmetric, represent ideal scaffolds for the multimerization of bioactive molecules and thus enable the synthesis of compounds of high valency which are e.g., applicable in radiolabeled form as multivalent radiotracers for in vivo imaging. As the commonly applied solution phase synthesis of dendritic scaffolds is cumbersome and time-consuming, a synthesis strategy was developed that allows for the efficient assembly of acid amide bond-based highly modular dendrons on solid support via standard Fmoc solid phase peptide synthesis protocols. The obtained dendritic structures comprised up to 16 maleimide functionalities and were derivatized on solid support with the chelating agent DOTA. The functionalized dendrons furthermore could be efficiently reacted with structurally variable model thiol-bearing bioactive molecules via click chemistry and finally radiolabeled with 68Ga. Thus, this solid phase-assisted dendron synthesis approach enables the fast and straightforward assembly of bioactive multivalent constructs for example applicable as radiotracers for in vivo imaging with Positron Emission Tomography (PET.

  8. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  9. Formation of crystalline InGaO_3(ZnO)_n nanowires via the solid-phase diffusion process using a solution-based precursor

    International Nuclear Information System (INIS)

    Guo, Yujie; Seo, Jin Won; Bilzen, Bart Van; Locquet, Jean Pierre

    2015-01-01

    One-dimensional single crystalline InGaO_3(ZnO)_n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence. (paper)

  10. Applications of Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry (SPME-GC/MS in the Study of Grape and Wine Volatile Compounds

    Directory of Open Access Journals (Sweden)

    Annarita Panighel

    2014-12-01

    Full Text Available Volatile compounds are responsible for the wine “bouquet”, which is perceived by sniffing the headspace of a glass, and of the aroma component (palate-aroma of the overall flavor, which is perceived on drinking. Grape aroma compounds are transferred to the wine and undergo minimal alteration during fermentation (e.g., monoterpenes and methoxypyrazines; others are precursors of aroma compounds which form in winemaking and during wine aging (e.g., glycosidically-bound volatile compounds and C13-norisoprenoids. Headspace solid phase microextraction (HS-SPME is a fast and simple technique which was developed for analysis of volatile compounds. This review describes some SPME methods coupled with gas chromatography/mass spectrometry (GC/MS used to study the grape and wine volatiles.

  11. Analysis of an ideal amorphous solid

    International Nuclear Information System (INIS)

    To, L.T.; Stachurski, Z.H.

    2004-01-01

    Full text: In geometrical terms, amorphous solids are fundamentally different from crystalline solids in that they can not be constructed by the crystallographic method of translation of the basis along a lattice. Therefore, to study amorphous structures we must invoke concepts and use measures different to those used for ordered structures. Nevertheless, an ideal amorphous solid must share together with the ideal crystalline solid in the same definition of the term 'ideal'. In both cases it must be a perfect body, in which perfection is carried through in every detail to an unlimited (infinite) size without fault or defect. The latest results on this research will be presented. To qualify for a solid, rigid body, close packing of the spheres is required. For an ideal amorphous solids composed of hard spheres of identical size, we impose a stricter condition for the packing, namely, to be such that all spheres are in fixed positions (no loose spheres). To define the ideal solid, we must define what we mean by a perfect amorphous structure. Here, perfection is defined by, first the definition of imperfections, and next by the requirement of absence of imperfections of any kind. We envisage two types of defects: (i) geometrical, and (ii) statistical. Geometrical defects are: a sphere of different size, a loose sphere, and a vacancy. A statistical defect is defined with respect to two statistical functions: Ψ(N C ), and Φ(S β ). The former describes the probability of a given sphere having nc number of touching contacts, and the latter describes the disposition of the contacts on the surface of the sphere. Defects relating to the two functions will be described. The results for the functions, Ψ(N C ), and Φ(S β ), for the corresponding radial distribution function, and so called blocking number will be presented from simulations of an ideal amorphous solid

  12. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  13. Solid phase microextraction and stir bar sorptive extraction for organotin compounds - a comparison (P9)

    International Nuclear Information System (INIS)

    Mothes, S.; Wennrich, R.

    2002-01-01

    Full text: Organotin compounds have been largely used in agricultural and industrial applications. Hyphenated techniques were developed for the sensitive and selective determination of such species. For this task GC has been coupled with atomic emission detection. Derivatization to transform the Sn-compounds into sufficiently volatile compounds was necessary and carried out using sodium tetrapropylborate. For sample preparation the application of solid phase microextraction (SPME) give recent advances in comparison to classical liquid-liquid extraction (LEE). A problem in the usage of SPME exists however in the small volume of the PDMS coating for enrichment the analytes. For improvement of both sample enrichment and extraction of the organotin compounds stir bar sorptive extraction (SBSE) was applied. It base on the application of stir bars coated with PDMS. Here the extraction yield is substantially higher. Aim of this study was to compare the capabilities of GC-AED in combination with SPME and SBSE. After optimization of the experimental parameters it was possible to reach detection limits in the pg / 1 - level. A comparison of both methods shows the expected results. By application of SBSE it was possible to increase the detection limits one order of magnitude. With SPME the reproducibility of the analytical results (in the 1 ng / 1 concentration range) was found to be between 10 and 15 %, it could be enhanced to 5-8 % by application of SBSE. These low limits of detection and the good reproducibility allowed the determination of organotin compounds according required regulations. Ref. 1 (author)

  14. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  15. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    Science.gov (United States)

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  16. Infrared Spectra and Band Strengths of Amorphous and Crystalline N2O

    Science.gov (United States)

    Hudson, R. L.; Loeffler, M. J.; Gerakines, P. A.

    2017-01-01

    Infrared transmission spectra from 4000 to 400 cm (exp -1), and associated band strengths and absorption coefficients, are presented for the first time for both amorphous and crystalline N2O. Changes in the spectra as a function of ice thickness and ice temperature are shown. New measurements of density, refractive index, and specific refraction are reported for amorphous and crystalline N2O. Comparisons are made to published results, and the most-likely reason for some recent disagreements in the literature is discussed. As with CO2, its isoelectronic congener, the formation of amorphous N2O is found to require greater care than the formation of amorphous solids from more-polar molecules.

  17. Experimental synthesis of crystalline matrices based on Ce, Ba, Sr zirconates for immobilization of high-level radioactive actinides

    International Nuclear Information System (INIS)

    Anderson, E.B.; Burakov, B.E.; Vasiliev, V.G.; Starchenko, V.A.

    1993-01-01

    In geological disposal of high-level radioactive waste the main storage barriers, in the first place the matrix containing radionuclides, must remain undestructible over a long period of time. Very high requirements are imposed for the matrices from the viewpoint of their chemical stability and mechanical strength. Zirconates may be classified among compounds potentially suitable for the creation of crystalline matrices incorporating radionuclides in their structure. The paper considers results of laboratory experiments on the synthesis of crystalline matrices based on various zirconates by the methods of gas-static and axial pressing. Problems are discussed concerning the crystalline matrix industrial synthesis technology developed at the Radium Institute. One of the most promising directions in solving the problem of high-level waste (HLW) removal from the sphere of human activity is disposal in deep geological formations. The realization of this direction envisages creation of multibarrier compositions. Special attention is paid to the technology for the synthesis of the first, the most crucial, engineering barrier: the matrix into which radionuclides are incorporated. It is assumed that crystalline compounds best satisfy all the requirements as the most thermodynamically stable

  18. Quantum coherent transport in SnTe topological crystalline insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Assaf, B. A.; Heiman, D. [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Katmis, F.; Moodera, J. S. [Francis Bitter Magnet Laboratory, MIT, Cambridge, Massachusetts 02139 (United States); Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Wei, P. [Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Zhang, Z. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bennett, S. P.; Harris, V. G. [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-09-08

    Topological crystalline insulators (TCI) are unique systems where a band inversion that is protected by crystalline mirror symmetry leads to a multiplicity of topological surface states. Binary SnTe is an attractive lead-free TCI compound; the present work on high-quality thin films provides a route for increasing the mobility and reducing the carrier density of SnTe without chemical doping. Results of quantum coherent magnetotransport measurements reveal a multiplicity of Dirac surface states that are unique to TCI. Modeling of the weak antilocalization shows variations in the extracted number of carrier valleys that reflect the role of coherent intervalley scattering in coupling different Dirac states on the degenerate TCI surface.

  19. Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

    Science.gov (United States)

    Abramov, Yuriy A

    2015-06-01

    The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.

  20. Crystalline Organic Pigment-Based Field-Effect Transistors.

    Science.gov (United States)

    Zhang, Haichang; Deng, Ruonan; Wang, Jing; Li, Xiang; Chen, Yu-Ming; Liu, Kewei; Taubert, Clinton J; Cheng, Stephen Z D; Zhu, Yu

    2017-07-05

    Three conjugated pigment molecules with fused hydrogen bonds, 3,7-diphenylpyrrolo[2,3-f]indole-2,6(1H,5H)-dione (BDP), (E)-6,6'-dibromo-[3,3'-biindolinylidene]-2,2'-dione (IIDG), and 3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo-[3,4-c]pyrrole-1,4-dione (TDPP), were studied in this work. The insoluble pigment molecules were functionalized with tert-butoxylcarbonyl (t-Boc) groups to form soluble pigment precursors (BDP-Boc, IIDG-Boc, and TDPP-Boc) with latent hydrogen bonding. The single crystals of soluble pigment precursors were obtained. Upon simple thermal annealing, the t-Boc groups were removed and the soluble pigment precursor molecules with latent hydrogen bonding were converted into the original pigment molecules with fused hydrogen bonding. Structural analysis indicated that the highly crystalline soluble precursors were directly converted into highly crystalline insoluble pigments, which are usually only achievable by gas-phase routes like physical vapor transport. The distinct crystal structure after the thermal annealing treatment suggests that fused hydrogen bonding is pivotal for the rearrangement of molecules to form a new crystal in solid state, which leads to over 2 orders of magnitude enhancement in charge mobility in organic field-effect transistor (OFET) devices. This work demonstrated that crystalline OFET devices with insoluble pigment molecules can be fabricated by their soluble precursors. The results indicated that a variety of commercially available conjugated pigments could be potential active materials for high-performance OFETs.

  1. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  2. Development of solid dispersion systems of dapivirine to enhance its solubility.

    Science.gov (United States)

    Gorajana, Adinarayana; Ying, Chan Chiew; Shuang, Yeen; Fong, Pooi; Tan, Zhi; Gupta, Jyoti; Talekar, Meghna; Sharma, Manisha; Garg, Sanjay

    2013-06-01

    Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.

  3. Structural studies of different types of ferroelectric liquid crystalline substances

    Czech Academy of Sciences Publication Activity Database

    Obadović, D.Ž.; Stojanović, M.; Bubnov, Alexej; Éber, N.; Cvetinov, M.; Vajda, A.

    2011-01-01

    Roč. 35, č. 1 (2011), s. 3-13 ISSN 1450-7404 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA ČR(CZ) GAP204/11/0723 Grant - others:RFASI(RU) 02.740.11.5166 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric liquid crystals * phase transition * structure of liquid crystalline phases * molecular parameters Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Transport and diffusion on crystalline surfaces under external forces

    International Nuclear Information System (INIS)

    Lindenberg, Katja; Lacasta, A M; Sancho, J M; Romero, A H

    2005-01-01

    We present a numerical study of classical particles obeying a Langevin equation and moving on a solid crystalline surface under an external force that may either be constant or modulated by periodic oscillations. We focus on the particle drift velocity and diffusion. The roles of friction and equilibrium thermal fluctuations are studied for two nonlinear dynamical regimes corresponding to low and to high but finite friction. We identify a number of resonances and antiresonances, and provide phenomenological interpretations of the observed behaviour

  5. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Elena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Gath, Julia [ETH Zurich, Physical Chemistry (Switzerland); Habenstein, Birgit [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Ravotti, Francesco; Szekely, Kathrin; Huber, Matthias [ETH Zurich, Physical Chemistry (Switzerland); Buchner, Lena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Boeckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Guentert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2013-07-15

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and {alpha}-synuclein yielded 88-97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90 % correctness if also assignments classified as tentative by the algorithm are included.

  6. Formation, Physicochemical Characterization, and Thermodynamic Stability of the Amorphous State of Drugs and Excipients.

    Science.gov (United States)

    Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan

    2016-01-01

    Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.

  7. Controlling growth density and patterning of single crystalline silicon nanowires

    International Nuclear Information System (INIS)

    Chang, Tung-Hao; Chang, Yu-Cheng; Liu, Fu-Ken; Chu, Tieh-Chi

    2010-01-01

    This study examines the usage of well-patterned Au nanoparticles (NPs) as a catalyst for one-dimensional growth of single crystalline Si nanowires (NWs) through the vapor-liquid-solid (VLS) mechanism. The study reports the fabrication of monolayer Au NPs through the self-assembly of Au NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. Results indicate that the spin coating time of Au NPs plays a crucial role in determining the density of Au NPs on the surface of the silicon substrate and the later catalysis growth of Si NWs. The experiments in this study employed optical lithography to pattern Au NPs, treating them as a catalyst for Si NW growth. The patterned Si NW structures easily produced and controlled Si NW density. This approach may be useful for further studies on single crystalline Si NW-based nanodevices and their properties.

  8. Solid-State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  9. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    Science.gov (United States)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  10. Reduced weight decontamination formulation utilizing a solid peracid compound for neutralization of chemical and biological warfare agents

    Science.gov (United States)

    Tucker, Mark D [Albuquerque, NM

    2011-09-20

    A reduced weight decontamination formulation that utilizes a solid peracid compound (sodium borate peracetate) and a cationic surfactant (dodecyltrimethylammonium chloride) that can be packaged with all water removed. This reduces the packaged weight of the decontamination formulation by .about.80% (as compared to the "all-liquid" DF-200 formulation) and significantly lowers the logistics burden on the warfighter. Water (freshwater or saltwater) is added to the new decontamination formulation at the time of use from a local source.

  11. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  12. Organic compound emissions from a landfarm used for oil and gas solid waste disposal.

    Science.gov (United States)

    Lyman, Seth N; Mansfield, Marc L

    2018-04-13

    Solid or sludgy hydrocarbon waste is a by-product of oil and gas exploration and production. One commonly used method of disposing of this waste is landfarming. Landfarming involves spreading hydrocarbon waste on soils, tilling it into the soil, and allowing it to biodegrade. We used a dynamic flux chamber to measure fluxes of methane, a suite of 54 nonmethane hydrocarbons, and light alcohols from an active and a remediated landfarm in eastern Utah. Fluxes from the remediated landfarm were not different from a polytetrafluoroethylene (PTFE) sheet or from undisturbed soils in the region. Fluxes of methane, total nonmethane hydrocarbons, and alcohols from the landfarm in active use were 1.41 (0.37, 4.19) (mean and 95% confidence limits), 197.90 (114.72, 370.46), and 4.17 (0.03, 15.89) mg m -2  hr -1 , respectively. Hydrocarbon fluxes were dominated by alkanes, especially those with six or more carbons. A 2-ha landfarm with fluxes of the magnitude we observed in this study would emit 95.3 (54.3, 179.7) kg day -1 of total hydrocarbons, including 11.2 (4.3, 33.9) kg day -1 of BTEX (benzene, toluene, ethylbenzene, and xylenes). Solid and sludgy hydrocarbon waste from the oil and gas industry is often disposed of by landfarming, in which wastes are tilled into soil and allowed to decompose. We show that a land farm in Utah emitted a variety of organic compounds into the atmosphere, including hazardous air pollutants and compounds that form ozone. We calculate that a 2-ha landfarm facility would emit 95.0 ± 66.0 kg day -1 of total hydrocarbons, including 11.1 ± 1.5 kg day -1 of BTEX (benzene, toluene, ethylbenzene, and xylenes).

  13. Characterization of polymorphic solid-state changes using variable temperature X-ray powder diffraction

    DEFF Research Database (Denmark)

    Karjalainen, Milja; Airaksinen, Sari; Rantanen, Jukka

    2005-01-01

    The aim of this study was to use variable temperature X-ray powder diffraction (VT-XRPD) to understand the solid-state changes in the pharmaceutical materials during heating. The model compounds studied were sulfathiazole, theophylline and nitrofurantoin. This study showed that the polymorph form...... of sulfathiazole SUTHAZ01 was very stable and SUTHAZ02 changed as a function of temperature to SUTHAZ01. Theophylline monohydrate changed via its metastable form to its anhydrous form during heating and nitrofurantoin monohydrate changed via amorphous form to its anhydrous form during heating. The crystallinity...... to the anhydrous form. The average crystallite size of sulfathiazole samples varied only a little during heating. The average crystallite size of both theophylline and nitrofurantoin monohydrate decreased during heating. However, the average crystallite size of nitrofurantoin monohydrate returned back to starting...

  14. Trace-level determination of polar flavour compounds in butter by solid-phase extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Adahchour, M; Vreuls, R J; van der Heijden, A; Brinkman, U A

    1999-06-04

    Volatile compounds are responsible for the aromas of butter. A simple technique for the determination of these components is described which is based on solid-phase extraction (SPE) after melting of the butter and separation of the aqueous phase from the fat. Volatile flavours present in the water fraction are collected by off-line SPE on cartidges packed with a copolymer sorbent. After desorption with 500 microliters of methyl acetate, 1-microliter aliquots are quantified and/or identified by gas chromatography-mass spectrometry. The procedure was tested with respect to recovery, linearity and limit of detection in real-life samples using five polar model analytes. It allows the characterisation of polar flavour compounds in butter prior to and after heat treatment at 170 degrees C. From the five model compounds, vanillin, traces of diacetyl and maltol were found to be present in the butter samples. After heat treatment 500-1000-fold increased concentration of maltol, and substantial amounts of furaneol were detected.

  15. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  16. CLSM as quantitative method to determine the size of drug crystals in a solid dispersion

    NARCIS (Netherlands)

    de Waard, Hans; Hessels, Martin J T; Boon, Maarten; Sjollema, Klaas A; Hinrichs, Wouter L J; Eissens, Anko C; Frijlink, Henderik W

    2011-01-01

    PURPOSE: To test whether confocal laser scanning microscopy (CLSM) can be used as an analytical tool to determine the drug crystal size in a powder mixture or a crystalline solid dispersion. METHODS: Crystals of the autofluorescent drug dipyridamole were incorporated in a matrix of crystalline

  17. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution.

    Science.gov (United States)

    Zhao, Yan; Lu, Wenjing; Wang, Hongtao

    2015-12-30

    Odour pollution caused by municipal solid waste is a public concern. This study quantitatively evaluated the concentration, environmental impacts, and olfaction of volatile trace compounds released from a waste transfer station. Seventy-six compounds were detected, and ethanol presented the highest releasing rate and ratio of 14.76 kg/d and 12.30 g/t of waste, respectively. Life cycle assessment showed that trichlorofluoromethane and dichlorodifluoromethane accounted for more than 99% of impact potentials to global warming and approximately 70% to human toxicity (non-carcinogenic). The major contributor for both photochemical ozone formation and ecotoxicity was ethanol. A detection threshold method was also used to evaluate odour pollution. Five compounds including methane thiol, hydrogen sulphide, ethanol, dimethyl disulphide, and dimethyl sulphide, with dilution multiples above one, were considered the critical compounds. Methane thiol showed the highest contribution to odour pollution of more than 90%, as indicated by its low threshold. Comparison of the contributions of the compounds to different environmental aspects indicated that typical pollutants varied based on specific evaluation targets and therefore should be comprehensively considered. This study provides important information and scientific methodology to elucidate the impacts of odourant compounds to the environment and odour pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Growth mechanism and elemental distribution of beta-Ga2O3 crystalline nanowires synthesized by cobalt-assisted chemical vapor deposition.

    Science.gov (United States)

    Wang, Hui; Lan, Yucheng; Zhang, Jiaming; Crimp, Martin A; Ren, Zhifeng

    2012-04-01

    Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers. A solid diffusion growth mechanism is proposed based on the spatial elemental distribution along the beta-Ga2O3 nanowires at nanoscale.

  19. Metal impurities profile in a 450kg multi-crystalline silicon ingot by Cold Neutron Prompt Gamma-ray Activation Analysis

    International Nuclear Information System (INIS)

    Baek, Hani; Sun, Gwang Min; Kim, Ji seok; Oh, Mok; Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeol; Tuan, Hoang Sy Minh

    2014-01-01

    Metal impurities are harmful to multi-crystalline silicon solar cells. They reduce solar cell conversion efficiencies through increased carrier recombination. They are present as isolated point-like impurities or precipitates. This work is to study the concentration profiles of some metal impurities of the directionally solidified 450kg multi-crystalline silicon ingot grown for solar cell production. The concentration of such impurities are generally below 10 15 cm -3 , and as such cannot be detected by physical techniques such as secondary-ion-mass spectroscopy(SIMS). So, we have tried to apply Cold Neutron - Prompt Gamma ray Activation Analysis(CN-PGAA) at the HANARO reactor research. The impurity concentrations of Au, Mn, Pt, Mo of a photovoltaic grade multi-crystalline silicon ingot appear by segregation from the liquid to the solid phase in the central region of the ingot during the crystallization. In the impurities concentration of the bottom region is higher than middle region due to the solid state diffusion. Towards the top region the segregation impurities diffused, during cooling process

  20. Obtaining and characterizing the binary compound Zr3Pt

    International Nuclear Information System (INIS)

    Tanoni, Diego; Arico, Sergio F; Alonso, Paula R

    2006-01-01

    The equilibrium phases in the Zr - Pt binary system are not fully defined. Experiences carried out from 0% to 50% at. Pt in the equilibrium diagram of Zr-Pt phases in 2001 revealed the presence of the intermetallic compounds Zr 2 Pt, Zr 5 Pt 3 , ZrPt (already previously identified by other authors) and a compound of 25% composition at Pt with an unidentified crystalline structure. This experimental work aims to fill out the information on this compound by characterizing its crystallography. An alloy was produced in the binary system Zr-Pt with a composition close to the stoichiometry by casting in an arc furnace, and was studied by optic and electronic metallography. The identification and crystallographic characterization of the phase is based on measurements of composition in electronic microwave and on analysis of spectrums obtained by X-ray diffraction. The results are presented, showing the presence in the cast structure of the solid solution zircon phases (hexagonal) and of the inter-metallic compound Zr 5 Pt 3 . These two phases were identified in the X-ray diffraction diagrams as well as the presence of other reflections that are associated with the inter-metallic Zr 3 Pt. The measurements of composition consistently reveal the presence of a phase of 25%at Pt composition. The structure's morphology shown in metallographies reveals the occurrence of a eutectic type transformation during cooling. We conclude that the formation of the phase sought in a composition 25 % at Pt should occur at temperatures below the eutectic transformation, and could be a peritectoid formation as was previously proposed. Therefore, the sample needs to be homogenized with thermal treatments that favor the formation and stabilization of the compound (CW)

  1. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  2. Thermal conductivity of REIn3 compounds

    International Nuclear Information System (INIS)

    Mucha, J

    2006-01-01

    The results of measurements of the thermal conductivity of REIn 3 (RE Pr, Nd, Dy, Ho, Tm) compounds as a function of the temperature in the interval 4-300 K in the absence and in the presence of an external magnetic field of 8 T are presented. Except for PRIn 3 all the compounds are antiferromagnetic. YIn 3 was also measured as a reference compound. The results were analysed in the paramagnetic phase, where an influence of the crystalline electric field on the thermal conductivity was found. Drastic changes in the thermal conductivity were observed and analysed in the vicinity of the Neel temperature and in the antiferromagnetic phases of the compounds. Below the Neel temperature an additional magnon contribution to the thermal conductivity was separated out

  3. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    International Nuclear Information System (INIS)

    Schmidt, Elena; Gath, Julia; Habenstein, Birgit; Ravotti, Francesco; Székely, Kathrin; Huber, Matthias; Buchner, Lena; Böckmann, Anja; Meier, Beat H.; Güntert, Peter

    2013-01-01

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218–289) and α-synuclein yielded 88–97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77–90 % correctness if also assignments classified as tentative by the algorithm are included

  4. Solid-phase extraction element based on epoxy polymer monolith for determination of polar organic compounds in aqueous media.

    Science.gov (United States)

    Takahashi, Tadashi; Odagiri, Kayo; Watanabe, Atsushi; Watanabe, Chuichi; Kubo, Takuya; Hosoya, Ken

    2011-10-01

    A solid-phase extraction element based on epoxy polymer monolith was fabricated for sorptive enrichment of polar compounds from liquid and gaseous samples. After ultrasonication of the element in an aqueous solution for a given period of time, the thermal desorption (TD) using a pyrolyzer with gas chromatography/mass spectrometry (GC/MS), in which TD temperature was programmed from 50 to 250 °C for the analytes absorbed in the element, was used to evaluate the element for basic extraction performance using the aqueous standard mixtures consisting of compounds having varied polarities such as hexanol, isoamyl acetate, linalool, furfural and decanoic acid, in concentrations ranging from 10 μg/L to 1 mg/L. Excellent linear relationships were observed for all compounds in the standard mixture, except decanoic acid. In the extraction of beverages such as red wine, the extraction element showed stronger adsorption characteristics for polar compounds such as alcohols and acids than a non-polar polydimethylsiloxane-based element. This feature is derived from the main polymer structure along with hydroxyl and amino groups present in the epoxy-based monolith polymer matrix. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    Directory of Open Access Journals (Sweden)

    Hawkins Gary M

    2011-11-01

    Full Text Available Abstract Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda. Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight into 17

  6. In-Vitro Enzymatic Degradation of γ-irradiated Porous Chitosan Scaffold: Crystallinity and degree of deacetylation

    International Nuclear Information System (INIS)

    Ismail Zainol; Azreena Mastor; Suhaida Md Ghani; Ahmad Fuad Yahya; Hazizan Md Akil

    2009-01-01

    Full text: Enzymatic degradation behavior of porous chitosan membrane was carried out in vitro by using enzymatic hydrolysis of chitosan in lysozyme solution. Chitosan was first modified by reducing its molecular weight by gamma (γ) radiation in the solid state. The chitosan powder was irradiated with gamma Co 60 source with various doses of 10, 25, 50 and 100 kGy. The molecular weight of irradiated chitosan was measured using visco metric method. The modified chitosan was transform into a porous membrane by lyophilization method. Degree of deacetylation (DD) and crystallinity of samples were measured using FTIR and XRD respectively on both gamma irradiated and enzymatic degradation samples. The results suggested that the irradiated chitosan become less crystalline without changes in DD. The enzymatic degradation of chitosan however shows an increment in DD and crystallinity. (author)

  7. Chirality-dependent friction of bulk molecular solids.

    Science.gov (United States)

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  8. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    Science.gov (United States)

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  9. Flow acoustics in solid-fluid structures

    DEFF Research Database (Denmark)

    Willatzen, Morten; Mads, Mikhail Vladimirovich Deryabin

    2008-01-01

    along the x direction. In the first part of the paper, the governing set of differential equations are derived as well as the imposed boundary conditions. Solutions are provided using Hamilton's equations for the wavenumber vs. frequency as a function of the number and thickness of solid layers......The governing two-dimensional equations of a heterogeneous material composed of a fluid (allowed to flow in the absence of acoustic excitations) and a crystalline piezoelectric cubic solid stacked one-dimensionally (along the z direction) are derived and special emphasis is given to the discussion...

  10. Pharmaceutical cocrystals:formation mechanisms, solubility behaviour and solid-state properties

    OpenAIRE

    Alhalaweh, Amjad

    2012-01-01

    The primary aim of pharmaceutical materials engineering is the successful formulation and process development of pharmaceutical products. The diversity of solid forms available offers attractive opportunities for tailoring material properties. In this context, pharmaceutical cocrystals, multicomponent crystalline materials with definite stoichiometries often stabilised by hydrogen bonding, have recently emerged as interesting alternative solid forms with potential for improving the physical a...

  11. Surface damage-caused inelastic relaxation in solids

    International Nuclear Information System (INIS)

    Darinskij, B.M.; Izmajlov, N.V.; Loginov, V.A.; Mitrokhin, V.I.; Yaroslavtsev, N.P.

    1987-01-01

    Internal friction (IF) in solids having different structure: crystalline- Si, Ga, P, GaAs, InP, InAs, CdTe, LiNbO 3 ; amorphous-crystalline-devitrified glass ST-50; amorphous- quartz glass, has been studied. IF peak was observed in each of the specimens at the frequency of bed oscillations equal to 8-30 kHz in the -70- -50 deg C temperature range. Its parameters (activation energy, frequency factor, etc.) for each of the materials are presented. Strong dependence of the peak height on the amplitude of deformation is ascertained, the annealing temperature is determined

  12. Scintillating screens based on the single crystalline films of multicomponent garnets: new achievements and possibilities

    Czech Academy of Sciences Publication Activity Database

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Paprocki, K.; Nikl, Martin; Mareš, Jiří A.; Bilski, P.; Twardak, A.; Sidletskiy, O.; Gerasymov, I.; Grinyov, B.; Fedorov, A.

    2016-01-01

    Roč. 63, č. 2 (2016), s. 497-502 ISSN 0018-9499 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : Ce dopant * garnets * liquid phase epitaxy * luminescence * scintillators * single crystalline films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.171, year: 2016

  13. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  14. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    Energy Technology Data Exchange (ETDEWEB)

    Martena, Valentina; Censi, Roberta [University of Camerino, School of Pharmacy (Italy); Hoti, Ela; Malaj, Ledjan [University of Tirana, Department of Pharmacy (Albania); Di Martino, Piera, E-mail: piera.dimartino@unicam.it [University of Camerino, School of Pharmacy (Italy)

    2012-12-15

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the {gamma} form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of {alpha} and {gamma} polymorphic forms. IDM obtained by the two other methods remained in the {gamma} form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of {alpha} form than {gamma} form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  15. An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires.

    Science.gov (United States)

    Yu, Linwei; Alet, Pierre-Jean; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2009-03-27

    We report an in-plane solid-liquid-solid (IPSLS) mode for obtaining self-avoiding lateral silicon nanowires (SiNW) in a reacting-gas-free annealing process, where the growth of SiNWs is guided by liquid indium drops that transform the surrounding a-SiratioH matrix into crystalline SiNWs. The SiNWs can be approximately mm long, with the smallest diameter down to approximately 22 nm. A high growth rate of >10(2) nm/s and rich evolution dynamics are revealed in a real-time in situ scanning electron microscopy observation. A qualitative growth model is proposed to account for the major features of this IPSLS SiNW growth mode.

  16. Flavor and taste compounds analysis in Chinese solid fermented ...

    African Journals Online (AJOL)

    A total of 82 kinds of volatile compounds were identified, including alcohols, acids, esters, aldehydes, ketones, phenols, heterocyclic compounds, alkynes and benzenes. The subtle aroma of the soy sauce seemed to depend not only on particular key compounds but also on a “critical balance” or a “weighted concentration

  17. Langmuir-Blodgett films prepared from pre-formed cholestanic liquid-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Hodge, P.; Valli, L.; Davis, F. (Venice Univ. (Italy). Dip. di Scienze Ambientali Lecce Univ. (Italy). Dip. di Scienza dei Materiali Manchester Univ. (United Kingdom). Dep. of Chemistry)

    1992-01-01

    A series of alternating copolymers of maleic anhydride and a-olefins functionalized through different alkyl chains with cholestanic groups were synthetised and derivatives prepared by reactions of the anhydride residues with methanol, water, dimethylamine and morpholine, respectively. The same starting functionalized a-olefins were used to prepare other suitable compounds in order to correlate the features of the liquid-crystalline behaviour of the mesogenic cholestanic group with the stability of the forthcoming polymeric or not polymeric Langmuir-Blodgett (LB) films. For some copolymers surface pressure against area per molecule isotherms are reported. In some multilayer (LB) films, the spacings between the layers were determined by the detection of BRAGG peaks by X-ray diffraction. The (LB) films of these polymers are closed packed, owing to either the polymeric skeleton or liquid-crystalline interaction.

  18. Deformation-induced amorphization of crystalline particles in a Cu-Ti metallic glass

    International Nuclear Information System (INIS)

    Kamentzky, E.A.; Askenazy, P.D.; Johnson, W.L.; Tanner, L.E.

    1987-01-01

    Crystalline particles and grains embedded in Cu 35 Ti 65 glass ribbons have been amorphized by isothermal cold rolling. The structural evolution has been studied by X-ray diffraction and TEM techniques. Initial particle morphologies are spherulitic and spherical, the latter with sizes ranging between 10 and 100 nm. The new amorphous phase seems to nucleate at crystalline-amorphous matrix interfaces. Initially there is a well defined interface between the new and the existing amorphous phases but it disappears as rolling progresses. Crystallites on a nanoscale still present in the final stages of particle amorphization have been observed by convergent beam electron diffraction. After sufficient deformation the consolidated ribbon becomes a completely glassy. A morphological description of the transformation process in terms of crystal destabilization and solid- state particle melting is presented

  19. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution

    KAUST Repository

    Bhunia, Manas Kumar

    2014-08-14

    Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6-triaminopyrimidine as a dopant. The solid state NMR spectrum of 15N-enriched CN confirms the triazine as a building unit. Controlling the amount and arrangements of dopants in the CN structure can dramatically enhance the photocatalytic performance for H2 evolution. The polytriazine imide (PTI) exhibits the apparent quantum efficiency (AQE) of 15% at 400 nm. This method successfully enables a substantial amount of visible light to be harvested for H2 evolution, and provides a promising route for the rational design of a variety of highly active crystalline CN photocatalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    International Nuclear Information System (INIS)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si

  1. AN INFRARED SPECTROSCOPIC STUDY OF AMORPHOUS AND CRYSTALLINE ICES OF VINYLACETYLENE AND IMPLICATIONS FOR SATURN'S SATELLITE TITAN

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kaiser, R. I.

    2009-01-01

    Laboratory infrared spectra of amorphous and crystalline vinylacetylene ices were recorded in the range of 7000-400 cm -1 . The spectra showed several amorphous features in the ice deposited at 10 K, which were then utilized to monitor a phase transition between 93 ± 1 K to form the crystalline structure. Successive heating allows monitoring of the sublimation profile of the vinylacetylene sample in the range of 101-120 K. Considering Titan's surface temperature of 94 K, vinylacetylene ice is likely to be crystalline. Analogous studies on related planetary-bound molecules such as triaceylene and cyanoacetylene may be further warranted to gain better perspectives into the composition of the condensed phases in the Titan's atmosphere (aerosol particles) and of Titan's surface. Based on our studies, we recommend utilizing the ν 1 and ν 16 //ν 11 /ν 17 fundamentals at about 3300 and 650 cm -1 to determine if solid vinylacetylene is crystalline or amorphous on Titan.

  2. Study of solid chemical evolution in torrefaction of different biomasses through solid-state "1"3C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric analysis)

    International Nuclear Information System (INIS)

    Rodriguez Alonso, Elvira; Dupont, Capucine; Heux, Laurent; Da Silva Perez, Denilson; Commandre, Jean-Michel; Gourdon, Christophe

    2016-01-01

    The objective of this work is to compare mass loss and chemical evolution of the solid phase, versus time, during dynamic torrefaction of different types of biomass. For this purpose, two experiments, ThermoGravimetric Analysis and solid-state "1"3C Cross-Polarization/Magic Angle Spinning Nuclear Magnetic Resonance, were run on four representative biomasses. Overall mass loss and chemical evolution of the solid phase were followed, respectively, as a function of temperature and time. Thanks to this coupled information, it was shown that the knowledge of both solid mass loss and chemical evolution is necessary to characterize torrefaction severity. Moreover, biomasses containing higher proportions of xylan lost mass faster than those containing lower proportions. Lignin showed a protecting role towards cellulose, which would lead to a faster degradation of non-woody biomasses in comparison with woody biomasses. Three parameters would have an influence on solid chemical evolution during torrefaction: xylan content in hemicellulose, lignin content in biomass, and cellulose crystallinity. - Highlights: • Torrefaction of four biomasses was studied with TGA and solid-state NMR. • Both solid mass loss and chemical evolution characterize torrefaction severity. • Biomasses containing a higher proportion of xylan lose mass faster. • Lignin shows a stronger protecting role in degradation of woody biomasses. • Xylan, lignin and crystalline cellulose values influence solid chemical evolution.

  3. Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.

    2016-01-01

    Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016

  4. Fabrication and Application of (1-x) NaCl+xKCl Solid Solution

    International Nuclear Information System (INIS)

    Kyi Kyi Lwin

    2011-12-01

    (1-X)NaCl+xKCl solid solution are prepared by the starting materials NaCl (0.9, 0.95) in equal molar ratio. The solid solutions are heat-treated at various temperature and XRD analyses are carried out for the solid solutions to examine the crystalline phase, crystallographic orientation and lattice parameters. The electrical properties of the solutions are determined by using the conductometer. The solid solutions are utilized as crystal oscillator and outcoming frequencies, capacitances and dielectric constants are also investigated.

  5. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing [Energy; Lu, Dongping [Energy; Bowden, Mark [Environmental; El Khoury, Patrick Z. [Environmental; Han, Kee Sung [Environmental; Deng, Zhiqun Daniel [Energy; Xiao, Jie [Energy; Zhang, Ji-Guang [Energy; Liu, Jun [Energy

    2018-01-22

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport properties of liquid phase synthesized Li7P3S11 is identified and discussed.

  6. Nomenclature on an inorganic compound

    International Nuclear Information System (INIS)

    1998-10-01

    This book contains eleven chapters : which mention nomenclature of an inorganic compound with introduction and general principle on nomenclature of compound. It gives the description of grammar for nomenclature such as brackets, diagonal line, asterisk, and affix, element, atom and groups of atom, chemical formula, naming by stoichiometry, solid, neutral molecule compound, ion, a substituent, radical and name of salt, oxo acid and anion on introduction and definition of oxo acid, coordination compound like symbol of stereochemistry , boron and hydrogen compound and related compound.

  7. Solid ionic: these unusual materials applications in high-energy-density

    International Nuclear Information System (INIS)

    Shriver, D.F.; Farrington, G.C.

    1985-01-01

    The idea that ions can diffuse as rapidly in a solid as in an aqueous salt solution may seem strange to many chemists. But a variety of solids with high ionic conductivities are known. Compounds have been discovered that conduct anions (including F - and O 2- ) and cations (including monovalent, divalent, and trivalent cations). These substances range from hard, refractory materials, such as sodium β-alumina, through softer compounds, such as silver iodide (AgI) to the very soft polymer electrolytes. They include compounds that are stoichiometric (AgI), nonstoichiometric (sodium β-alumina), or doped (calcia-stabilized zirconia). A variety of names have been applied to these materials: among them, solid electrolytes, superionic conductors, and fast-ion conductors. Fast-ion transport in solids is a lively area of study in solid-state chemistry and physics. High-conductivity solid electrolytes have revolutionized conventional concepts of ionic compounds, and their potential uses range from high-energy-density battery and fuel-cell electrolytes to chemical sensors and from lasers to phosphors. Devices using solid electrolytes are already available commercially-oxygen detectors for automotive pollution-control systems employ solid O 2- electrolytes, and solid-state batteries using solid electrolytes are employed in heart pacemakers

  8. Magnetic properties of single crystalline UFeSi

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Honda, F.; Sechovský, V.; Diviš, M.; Izmaylov, N.; Chernyavski, O.; Homma, Y.; Shiokawa, Y.

    2002-01-01

    Roč. 335, - (2002), s. 91-94 ISSN 0925-8388 R&D Projects: GA ČR GA202/99/0184 Institutional research plan: CEZ:AV0Z1010914 Keywords : actinide compounds * electrical transport * magnetic measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2002

  9. Structure of 1,5-Anhydro-D-Fructose: X-ray Analysis of Crystalline Acetylated Dimeric Forms

    DEFF Research Database (Denmark)

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan

    1998-01-01

    Acetylation of 1,5-anhydro-D-fructose under acidic conditions gave two crystalline acetylated dimeric forms, which by X-ray analysis were shown to be diastereomeric spiroketals formed between C-2 and C-2´/C-3´. The structures of the compounds differed only at the configuration at C-2. Acetylation...... or benzoylation of 1,5-anhydro-D-fructose in pyridine yielded 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-enos-2-ulopyra -nose or crystalline 1,5-anhydro-3,6-di-O-benzoyl-4-deoxy-D-glycero-hex-3-enos-2-ulo-py ranose....

  10. Low-temperature growth of highly crystalline β-Ga2O3 nanowires by solid-source chemical vapor deposition.

    Science.gov (United States)

    Han, Ning; Wang, Fengyun; Yang, Zaixing; Yip, SenPo; Dong, Guofa; Lin, Hao; Fang, Ming; Hung, TakFu; Ho, Johnny C

    2014-01-01

    Growing Ga2O3 dielectric materials at a moderately low temperature is important for the further development of high-mobility III-V semiconductor-based nanoelectronics. Here, β-Ga2O3 nanowires are successfully synthesized at a relatively low temperature of 610°C by solid-source chemical vapor deposition employing GaAs powders as the source material, which is in a distinct contrast to the typical synthesis temperature of above 1,000°C as reported by other methods. In this work, the prepared β-Ga2O3 nanowires are mainly composed of Ga and O elements with an atomic ratio of approximately 2:3. Importantly, they are highly crystalline in the monoclinic structure with varied growth orientations in low-index planes. The bandgap of the β-Ga2O3 nanowires is determined to be 251 nm (approximately 4.94 eV), in good accordance with the literature. Also, electrical characterization reveals that the individual nanowire has a resistivity of up to 8.5 × 10(7) Ω cm, when fabricated in the configuration of parallel arrays, further indicating the promise of growing these highly insulating Ga2O3 materials in this III-V nanowire-compatible growth condition. 77.55.D; 61.46.Km; 78.40.Fy.

  11. Neutron scattering study of magnetic and crystalline electirc field interactions in RCrO3

    International Nuclear Information System (INIS)

    Shamir, N.

    1978-05-01

    Magnetic and crystalline electric field interactions in the compounds RCrO 3 (R-rare earth) , were studied by neutron scattering. Elastic neutron scattering was utilized in the study of the temperature dependence of the Cr 3+ and Ho 3+ magnetic reflections in Lu CrO 3 and HoCrO 3 , respectively. Analysis of this temperature dependence yielde constant canting angles for the Cr 3+ and Ho 3+ magnetic moments. Molecular magnetic field constants and crystalline electric field splitting were also calculated from the temperature dependence of the Ho 3+ magnetic reflection. These parameters were obtained directly by inelastic neutron scattering measurement. Inelastic neutron scattering measurements of crystlline electric field transitions of R 3+ (R=Pr, Nd, Tb, Ho, Er, Tm, Yb) in RCrO 3 , formed the basis for the calculation of the common crystalline electirc field parameters of the heavy R 3+ ions. (author)

  12. K. S. Krishnan Memorial Lecture: The role of crystallography in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Guinier, A [Paris-11 Univ., 91 - Orsay (France)

    1977-06-01

    The role of crystallography in solving problems in solid state physics, is explained. A few domains in solid state physics such as detection of localized defects, structure of metallic solid solutions, mechanism of phase transitions and the intermediate states between crystalline and amorphous states, have been investigated successfully by X-ray and neutron diffraction methods. The studies have helped a deeper understanding of solid state phenomena. Structures of CuBa, AlZn, ..beta..-alumina etc. are discussed.

  13. Chromium 51 em K2CrO4: reactions of dopant atoms in solid state

    International Nuclear Information System (INIS)

    Valim, J.B.; Nascimento, R.L.G. do; Collins, C.H.; Collins, K.E.

    1986-01-01

    The study of the chemistry of 'dopant' 51 Cr(III) atoms in crystalline Cr(VI) compounds began as a sub-field of Hot Atom Chemistry. We shall review the attempts to use 'dopant' chromium-51 atoms as surrogate chromium recoil atoms with the special property of having a low-energy, recoil-dam-age-free history. These dopant atoms have shown behaviors very similar to those of high energy recoil 51 Gr atoms, thus offering little hope of learning about special damage site structures and reactions by behavioral differences. Recent work has shown that at least some of the 'dopant' 51 Cr(III) is present as a second, non-chromate solid phase in 'doped crystal' experiments. Monodisperse 51 Cr(OH) 3 particles mixed with pure K 2 CrO 4 are very reactive. (Author) [pt

  14. Thermodynamic behavior of very stable binary compounds with a wide homogeneity range: Their influence in the liquid phase in ternary and higher component systems in the solid state

    International Nuclear Information System (INIS)

    Hoch, M.

    1988-01-01

    The Hoch-Arpshofen model is combined with the Schottky-Wagner disorder model to describe first binary liquid systems, where a very stable solid protrudes into the liquid. We analyze the systems K-I 2 , Cs-I 2 , U-UO 3 , Ag-S and Al-Sb. The system Al-Sb can be described as Al-Sb and as Al-AlSb-Sb. Then we examine the Al-Co, Al-Ni, and Al-Fe systems to describe the stable compounds CoAl, NiAl, and FeAl, which all have a wide homogeneity range in the solid state. Here the Schottky-Wagner model is sufficient. Finally we describe a model which treats the influence of these stable binary compounds in ternary and larger systems such as Al-Cr-Ni and Al-Cr-Fe, again in the solid state. (orig./IHOE) [de

  15. Water-Protein Hydrogen Exchange in the Micro-Crystalline Protein Crh as Observed by Solid State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Boeckmann, Anja; Juy, Michel; Bettler, Emmanuel; Emsley, Lyndon; Galinier, Anne; Penin, Francois; Lesage, Anne

    2005-01-01

    We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T 2 ' -selective 1 H- 13 C- 13 C correlation spectra for site-specific assignments of carbons nearby labile protein protons. We compare the proton T 2 ' selective scheme to frequency selective water observation in deuterated proteins, and discuss the impacts of deuteration on 13 C linewidths in Crh. We observe that in micro-crystalline proteins, solvent accessible hydroxyl and amino protons show comparable exchange rates with water protons as for proteins in solution, and that structural constraints, such as hydrogen bonding or solvent accessibility, more significantly reduce exchange rates

  16. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  17. Feasibility Study On Using Crystalline Lead As a Neutron and Gamma Ray Filter

    International Nuclear Information System (INIS)

    Adib, M.; Naguib, K.; Ashry, A.; Fathalla, M.

    2000-01-01

    A generalized formula is given which allows to calculate the contribution of the total neutron cross- section including the Bragg scattering from different (hkI) planes to the neutron transmission through a solid crystalline material. The formula takes into account the crystalline form of the material (poly- or mono- crystal ) and crystal parameters. A computer program ISCANF-II was developed to provide the required calculations. The calculated values of the neutron transmission through a lead single crystal cut along the (311) plane were compared with the previously measured ones in the wavelength range 0.03-0.52 nm. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The feasibility study on using a poly crystalline lead as a cold neutron filter and monocrystalline as a thermal neutron one is given. The optimum crystal thickness, temperature and characteristics for efficiently transmitting the thermal reactor neutrons, while removing simultaneously fast neutrons and gamma rays accompanying the thermal ones for the both cases are given

  18. Contribution to the study of the structure of silver krypton solid solutions

    International Nuclear Information System (INIS)

    Levy, V.; Tullairet, J.; Delaplace, J.; Antolin-Baudier, J.; Adda, Y.

    1964-01-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [fr

  19. Systematic study on intermolecular valence-band dispersion in molecular crystalline films

    International Nuclear Information System (INIS)

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2015-01-01

    Highlights: • Intermolecular valence-band dispersion of crystalline films of phthalocyanines. • Intermolecular transfer integral versus lattice constant. • Site-specific intermolecular interaction and resultant valence-band dispersion. • Band narrowing effect induced by elevated temperature. - Abstract: Functionalities of organic semiconductors are governed not only by individual properties of constituent molecules but also by solid-state electronic states near the Fermi level such as frontier molecular orbitals, depending on weak intermolecular interactions in various conformations. The individual molecular property has been widely investigated in detail; on the other hand, the weak intermolecular interaction is difficult to investigate precisely due to the presence of the structural and thermal energy broadenings in organic solids. Here we show quite small but essential intermolecular valence band dispersions and their temperature dependence of sub-0.1-eV scale in crystalline films of metal phthalocyanines (H_2Pc, ZnPc, CoPc, MnPc, and F_1_6ZnPc) by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The observed bands show intermolecular and site dependent dispersion widths, phases, and periodicities, for different chemical substitution of terminal groups and central metals in the phthalocyanine molecule. The precise and systematic band-dispersion measurement would be a credible approach toward the comprehensive understanding of intermolecular interactions and resultant charge transport properties as well as their tuning by substituents in organic molecular systems.

  20. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS.

    Science.gov (United States)

    Berg, Michael; Bolotin, Jakov; Hofstetter, Thomas B

    2007-03-15

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry was used to determine the delta15N and delta13C signatures of selected nitroaromatic contaminants such as the explosive 2,4,6-trinitrotoluene (TNT) for derivation of isotopic enrichment factors of contaminant transformation. Parameters for efficient extraction of nitroaromatic compounds (NACs) and substituted anilines from water samples were evaluated by SPME-GC/MS. delta13C signatures determined by SPME-GC/IRMS and elemental analyzer IRMS (EA-IRMS) were in good agreement, generally within +/-0.7 per thousand, except for 2,4-dinitrotoluene (2,4-DNT) and TNT, which showed slight deviations (IRMS were between 73 and 780 microg L-1 and correlated with the extraction efficiencies of the compounds determined by SPME-GC/MS. Nitrogen isotope measurements by SPME-GC/IRMS were of similar precision (standard deviations IRMS within +/-1.3 per thousand (+2.5 per thousand for TNT), but no systematic trend was found for the deviations. LODs of delta15N measurements ranged from 1.6 to 9.6 mg L-1 for nitrotoluenes, chlorinated NACs and DNTs (22 mg L-1 for TNT). The SPME-GC/IRMS method is well suited for the determination of isotopic enrichment factors of various NAC transformation processes and provides so far unexplored possibilities to elucidate behavior and degradation mechanisms of nitroaromatic contaminants in soils and groundwaters.

  1. Crystalline structure and microstructural characteristics of the cathode/electrolyte solid oxide half-cells

    International Nuclear Information System (INIS)

    Chiba, Rubens; Vargas, Reinaldo Azevedo; Andreoli, Marco; Santoro, Thais Aranha de Barros; Seo, Emilia Satoshi Miyamaru

    2009-01-01

    The solid oxide fuel cell (SOFC) is an electrochemical device generating of electric energy, constituted of cathode, electrolyte and anode; that together they form a unity cell. The study of the solid oxide half-cells consisting of cathode and electrolyte it is very important, in way that is the responsible interface for the reduction reaction of the oxygen. These half-cells are ceramic materials constituted of strontium-doped lanthanum manganite (LSM) for the cathode and yttria-stabilized zirconia (YSZ) for the electrolyte. In this work, two solid oxide half-cells have been manufactured, one constituted of LSM cathode thin film on YSZ electrolyte substrate (LSM - YSZ half-cell), and another constituted of LSM cathode and LSM/YSZ composite cathode thin films on YSZ electrolyte substrate (LSM - LSM/YSZ - YSZ half cell). The cathode/electrolyte solid oxide half-cells were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results have been presented with good adherence between cathode and electrolyte and, LSM and YSZ phases were identified. (author)

  2. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine

    DEFF Research Database (Denmark)

    Kasten, Georgia; Nouri, Khatera; Grohganz, Holger

    2017-01-01

    The introduction of a highly water soluble amino acid as co-amorphous co-former has previously been shown to significantly improve the dissolution rate of poorly water soluble drugs. In this work, dry ball milling (DBM) and liquid assisted grinding (LAG) were used to prepare different physical...... forms of salts of indomethacin (IND) with the amino acid lysine (LYS), allowing the direct comparison of their solid-state properties to their in vitro performance. X-ray powder diffraction and Fourier-transformed infrared spectroscopy showed that DBM experiments led to the formation of a fully co......-amorphous salt, while LAG resulted in a crystalline salt. Differential scanning calorimetry showed that the samples prepared by DBM had a single glass transition temperature (Tg) of approx. 100°C for the co-amorphous salt, while a new melting point (223°C) was obtained for the crystalline salt prepared by LAG...

  3. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  4. Characterization of organic compounds in biochars derived from municipal solid waste.

    Science.gov (United States)

    Taherymoosavi, Sarasadat; Verheyen, Vince; Munroe, Paul; Joseph, Stephen; Reynolds, Alicia

    2017-09-01

    Municipal solid waste (MSW) generation has been growing in many countries, which has led to numerous environmental problems. Converting MSW into a valuable biochar-based by-product can manage waste and, possibly, improve soil fertility, depending on the soil properties. In this study, MSW-based biochars, collected from domestic waste materials and kerbsides in two Sydney's regions, were composted and pyrolysed at 450°C, 550°C and 650°C. The characteristics of the organic components and their interactions with mineral phases were investigated using a range of analytical techniques, with special attention given to polycyclic aromatic hydrocarbons and heavy metal concentrations. The MSW biochar prepared at 450°C contained the most complex organic compounds. The highest concentration of fixed C, indicating the stability of biochar, was detected in the high-temperature-biochar. Microscopic analysis showed development of pores and migration of mineral phases, mainly Ca/P/O-rich phases, into the micro-pores and Si/Al/O-rich phases on the surface of the biochar in the MSW biochar produced at 550°C. Amalgamation of organic phases with mineral compounds was observed, at higher pyrolysis temperatures, indicating chemical reactions between these two phases at 650°C. XPS analysis showed the main changes occurred in C and N bonds. During heat treatment, N-C/C=N functionalities decomposed and oxidized N configurations, mainly pyridine-N-oxide groups, were formed. The majority of the dissolved organic carbon fraction in both MSW biochar produced at 450°C and 550°C was in the form of building blocks, whereas LMW acids was the main fraction in high-temperature-biochar (59.9%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    International Nuclear Information System (INIS)

    Rosencrance, S.

    2003-01-01

    The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing

  6. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    Science.gov (United States)

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  7. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.......This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  8. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  9. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  10. IR spectra and properties of solid acetone, an interstellar and cometary molecule

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2018-03-01

    Mid-infrared spectra of amorphous and crystalline acetone are presented along with measurements of the refractive index and density for both forms of the compound. Infrared band strengths are reported for the first time for amorphous and crystalline acetone, along with IR optical constants. Vapor pressures and a sublimation enthalpy for crystalline acetone also are reported. Positions of 13C-labeled acetone are measured. Band strengths are compared to gas-phase values and to the results of a density-functional calculation. A 73% error in previous work is identified and corrected.

  11. Fluidized-bed design for ICF reactor blankets using solid-lithium compounds

    International Nuclear Information System (INIS)

    Sucov, E.W.; Malick, F.S.; Green, L.; Hall, B.O.

    1983-01-01

    A fluidized-bed concept for blankets of dry or wetted first-wall ICF reactors using solid-lithium compounds is described. The reaction chamber is a right cylinder, 32 m high and 20 m in diameter; the blanket is composed of 36 steel tanks, 32 m high, which carry the sintered Li 2 O particles in the fluidizing helium gas. Each tank has a radial thickness of 2 m which generates a tritium breeding ration (TBR) of 1.27 and absorbs over 98% of the neutron energy; reducing the thickness to 1.2 m produces a TBR of 1.2 and energy absorption of 97% which satisfy the design goals. Calculations of tritium diffusion through the grains and heat removal from the grains showed that neither could be removed by the carrier gas; tritium and heat are therefore removed by removing the grains themselves by varying the helium flow rate. The particles are continuously fed into the bottom of the tanks at 300 0 C and removed at the top at 475 0 C. Tritium and heat extraction are easily and conveniently done outside the reactor

  12. Disorder-induced amorphization of intermetallic compounds: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Massobrio, C. (Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Physique Experimentale); Pontikis, V.; Doan, N.V.; Martin, G. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires)

    The reaction of the crystalline compound NiZr{sub 2} to imposed chemical disorder has been studied by molecular dynamics in the isobaric canonical ensemble. The cohesive energy used is inspired by the second moment apporoximation of the local density of states in the tight binding model. Imposed chemical disorder induced swelling (3% for full disorder, 1% for 10% disorder). Above 10% disorder, the crystalline structure athermally collapses to an amorphous state which retains much of the local chemical order. (orig.).

  13. Disorder-induced amorphization of intermetallic compounds: A molecular dynamics study

    International Nuclear Information System (INIS)

    Massobrio, C.; Pontikis, V.; Doan, N.V.; Martin, G.

    1991-01-01

    The reaction of the crystalline compound NiZr 2 to imposed chemical disorder has been studied by molecular dynamics in the isobaric canonical ensemble. The cohesive energy used is inspired by the second moment apporoximation of the local density of states in the tight binding model. Imposed chemical disorder induced swelling (3% for full disorder, 1% for 10% disorder). Above 10% disorder, the crystalline structure athermally collapses to an amorphous state which retains much of the local chemical order. (orig.)

  14. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste.

    Science.gov (United States)

    Zhang, Yuanyuan; Yue, Dongbei; Liu, Jianguo; Lu, Peng; Wang, Ying; Liu, Jing; Nie, Yongfeng

    2012-06-30

    Characteristics of non-methane organic compounds (NMOCs) emissions during the anaerobic decomposition of untreated (APD-0) and four aerobically pretreated (APD-20, APD-39, APD-49, and APD-63) samples of municipal solid waste (MSW) were investigated in laboratory. The cumulative mass of the NMOCs of APD-20, APD-39, APD-49, and APD-63 accounted for 15%, 9%, 16%, and 15% of that of APD-0, respectively. The intensities of the NMOC emissions calculated by dividing the cumulative NMOC emissions by the quantities of organic matter removed (Q(VS)) decreased from 4.1 mg/kg Q(VS) for APD-0 to 0.8-3.4 mg/kg Q(VS) for aerobically pretreated MSW. The lipid and starch contents might have significant impact on the intensity of the NMOC emissions. Alkanes dominated the NMOCs released from the aerobically pretreated MSW, while oxygenated compounds were the chief component of the NMOCs generated from untreated MSW. Aerobic pretreatment of MSW prior to landfilling reduces the organic content of the waste and the intensity of the NMOC emissions, and increases the odor threshold, thereby reducing the environmental impact of landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  16. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    Science.gov (United States)

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Assessment of the health risks and odor concentration of volatile compounds from a municipal solid waste landfill in China.

    Science.gov (United States)

    Wu, Chuandong; Liu, Jiemin; Liu, Shihua; Li, Wenhui; Yan, Luchun; Shu, Mushui; Zhao, Peng; Zhou, Peng; Cao, Wenbin

    2018-07-01

    Municipal solid waste (MSW) landfills are a source of odorous and toxic compounds. In this work, we present an integrated assessment of the odor concentration and human health risks of volatile compounds to evaluate the environmental quality at a MSW landfill. Air samples were collected seasonally from six areas of the landfill with different functions. The total concentrations of the compounds ranged from 204.0 to 7426.7 μg m -3 , and the concentrations in temporarily and permanently capped areas were 50.3 and 83.4% lower than those in the tipping area, respectively. The odor concentration was greatest at the leachate collection tank (1732-6254 ou E m -3 ) and tipping area (1573-4113 ou E m -3 ) and was mainly caused by hydrogen sulfide (57.9 and 49.1%, respectively). Moreover, the odor concentration was positively correlated with the temperature (r = 0.500, p waste areas exceeded acceptable levels. Moreover, the cumulative HI (2.5-5.7) and R (1.0E-04 to 3.4E-04) in the waste areas should receive special attention since they were above acceptable levels during all of the seasons. Aromatic and halogenated compounds dominated the cumulative R, accounting for 79 and 21% of the total, on average, while for the cumulative HI, sulfur compounds contributed the most (67%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. RNA aptamers targeted for human αA-crystallin do not bind αB-crystallin, and spare the α-crystallin domain.

    Science.gov (United States)

    Mallik, Prabhat K; Shi, Hua; Pande, Jayanti

    2017-09-16

    The molecular chaperones, α-crystallins, belong to the small heat shock protein (sHSP) family and prevent the aggregation and insolubilization of client proteins. Studies in vivo have shown that the chaperone activity of the α-crystallins is raised or lowered in various disease states. Therefore, the development of tools to control chaperone activity may provide avenues for therapeutic intervention, as well as enable a molecular understanding of chaperone function. The major human lens α-crystallins, αA- (HAA) and αB- (HAB), share 57% sequence identity and show similar activity towards some clients, but differing activities towards others. Notably, both crystallins contain the "α-crystallin domain" (ACD, the primary client binding site), like all other members of the sHSP family. Here we show that RNA aptamers selected for HAA, in vitro, exhibit specific affinity to HAA but do not bind HAB. Significantly, these aptamers also exclude the ACD. This study thus demonstrates that RNA aptamers against sHSPs can be designed that show high affinity and specificity - yet exclude the primary client binding region - thereby facilitating the development of RNA aptamer-based therapeutic intervention strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    Science.gov (United States)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  20. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, Vincent; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 1-8, č. článku 125029. ISSN 0960-1317 Institutional support: RVO:68378271 Keywords : hot wire * nano-crystalline diamond * active flow control * anemometry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.768, year: 2015

  1. Unravelling the distinct crystallinity and thermal properties of suberin compounds from Quercus suber and Betula pendula outer barks.

    Science.gov (United States)

    Sousa, Andreia F; Gandini, Alessandro; Caetano, Ana; Maria, Teresa M R; Freire, Carmen S R; Neto, Carlos Pascoal; Silvestre, Armando J D

    2016-12-01

    The main purpose of this study was to investigate the potential of suberin (a naturally occurring aromatic-aliphatic polyester ubiquitous to the vegetable realm) as a renewable source of chemicals and, in particular, to assess their physical properties. A comparison between cork and birch suberin fragments obtained by conventional depolymerisation processes (hydrolysis or methanolysis) is provided, focusing essentially on their thermal and crystallinity properties. It was found that suberin fragments obtained by the hydrolysis depolymerisation of birch had a high degree of crystallinity, as indicated by their thermal analysis and corroborated by the corresponding XRD diffractions, as opposed to hydrolysis-depolymerised cork suberin counterparts, which were essentially amorphous. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    Science.gov (United States)

    Gómez-Zavaglia, A.; Fausto, R.

    2003-12-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C 2h symmetry trans conformation (OC-CO dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the compound in vacuum. However, in the low temperature amorphous state, obtained by fast deposition of the vapour of the compound onto a suitable cold (9 K) substrate, as well as in the liquid and gaseous phases, spectroscopic features are observed that can only be explained by assuming that conformations without an inversion centre ( C 2 symmetry) do also contribute to the spectra. These results are in agreement with the experimental evidence that diacetyl has a permanent dipole moment (ca.1 Debye) in the vapour phase at room temperature and are here explained taking into consideration the influence of the low frequency large amplitude torsional vibration around the central C-C bond on the molecular properties.

  3. Solid-Phase Microextraction Coupled to Capillary Atmospheric Pressure Photoionization-Mass Spectrometry for Direct Analysis of Polar and Nonpolar Compounds.

    Science.gov (United States)

    Mirabelli, Mario F; Zenobi, Renato

    2018-04-17

    A novel capillary ionization source based on atmospheric pressure photoionization (cAPPI) was developed and used for the direct interfacing between solid-phase microextraction (SPME) and mass spectrometry (MS). The efficiency of the source was evaluated for direct and dopant-assisted photoionization, analyzing both polar (e.g., triazines and organophosphorus pesticides) and nonpolar (polycyclic aromatic hydrocarbons, PAHs) compounds. The results show that the range of compound polarity, which can be addressed by direct SPME-MS can be substantially extended by using cAPPI, compared to other sensitive techniques like direct analysis in real time (DART) and dielectric barrier discharge ionization (DBDI). The new source delivers a very high sensitivity, down to sub parts-per-trillion (ppt), making it a viable alternative when compared to previously reported and less comprehensive direct approaches.

  4. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array

    International Nuclear Information System (INIS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Hammond, Mark H.; Tillett, Duane; Streckert, Holger H.

    2007-01-01

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO 2 , H 2 S, and CS 2 in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO 2 , H 2 S, and CS 2 , respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO 2 , H 2 S, and CS 2 , respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  5. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.

    Science.gov (United States)

    Kramer, Kirsten E; Rose-Pehrsson, Susan L; Hammond, Mark H; Tillett, Duane; Streckert, Holger H

    2007-02-12

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  6. Wetting behavior of molten In-Sn alloy on bulk amorphous and crystalline Cu40Zr44Al8Ag8

    International Nuclear Information System (INIS)

    Ma, G. F.; Zhang, H. F.; Li, H.; Hu, Z. Q.

    2007-01-01

    Using the sessile-drop method, the wettability of the molten In-Sn alloy on bulk amorphous and crystalline Cu 40 Zr 44 Al 8 Ag 8 alloy was studied at different temperatures. It was found that the equilibrium contact angle of In-Sn alloy melt on bulk amorphous substrate was smaller than that of the crystalline one. An intermetallic compound existed at the interface of In-Sn alloy on amorphous Cu 40 Zr 44 Al 8 Ag 8 , while no intermediate reaction layer was formed at the interface of In-Sn alloy on crystalline Cu 40 Zr 44 Al 8 Ag 8 in the temperature range studied

  7. Ion-beam mixing and solid-state reaction in Zr-Fe multilayers

    International Nuclear Information System (INIS)

    Paesano, A. Jr.; Motta, A.T.; Birtcher, R.C.; Ryan, E.A.; Teixeira, S.R.; Bruckmann, M.E.; Amaral, L.

    1997-01-01

    Vapor-deposited Zr-Fe multilayered thin films with various wavelengths and of overall composition either 50% Fe or Fe-rich up to 57% Fe were either irradiated with 300 keV Kr ions at temperatures from 25 K to 623 K to fluences up to 2 x 10 16 cm -2 , or simply annealed at 773 K in-situ in the Intermediate Voltage Electron microscope At Argonne National Laboratory. Under irradiation, the final reaction product is the amorphous phase in all cases studied, but the dose to amorphization depends on the temperature and on the wavelength. In the purely thermal case (annealing at 773 K), the 50-50 composition produces the amorphous phase but for the Fe-rich multilayers the reaction products depend on the multilayer wavelength. For small wavelength, the amorphous phase is still formed, but at large wavelength the Zr-Fe crystalline intermetallic compounds appear. These results are discussed in terms of existing models of irradiation kinetics and phase selection during solid state reaction

  8. Bent silica nanosheets directed from crystalline templates controlled by proton donors

    International Nuclear Information System (INIS)

    Matsukizono, Hiroyuki; Jin, Ren-Hua

    2011-01-01

    Linear poly(ethyleneimine) (LPEI) is easily crystallizable with the formation of various morphologies in the aqueous medium when its hot solution cooled down to room temperature. Herein, we prepared a series of crystalline precipitates of LPEI grown in the presence of proton donating compounds such as Tris–HCl, tartaric acid, amino acids, and used the precipitates in directing silica deposition. Since the proton donating compounds can mediate the pH with donating the proton to LPEI, the crystallization of LPEI evidently depended on the concentrations of the proton donating compounds. It was found that the precipitates grown in the conditions of the pH ranged 8.2–8.5 directed well-controlled bent nanosheet of silica/LPEI composites. The bent nanosheet is constructed by multi-layered structures with a little slippage between layers. The bent nanosheet silica has slit-like pore with ca. 10 nm width.

  9. Preparation and Characterization of Emamectin Benzoate Solid Nanodispersion

    OpenAIRE

    Yang, Dongsheng; Cui, Bo; Wang, Chunxin; Zhao, Xiang; Zeng, Zhanghua; Wang, Yan; Sun, Changjiao; Liu, Guoqiang; Cui, Haixin

    2017-01-01

    The solid nanodispersion of 15% emamectin benzoate was prepared by the method of solidifying nanoemulsion. The mean particle size and polydispersity index of the solid nanodispersions were 96.6±1.7 nm and 0.352±0.041, respectively. The high zeta potential value of 31.3±0.5 mV and stable crystalline state of the nanoparticles suggested the excellent physical and chemical stabilities. The contact angle and retention compared with microemulsions and water dispersible granules on rice, cabbage, a...

  10. Manufacturing Amorphous Solid Dispersions with a Tailored Amount of Crystallized API for Biopharmaceutical Testing.

    Science.gov (United States)

    Theil, Frank; Milsmann, Johanna; Anantharaman, Sankaran; van Lishaut, Holger

    2018-05-07

    The preparation of an amorphous solid dispersion (ASD) by dissolving a poorly water-soluble active pharmaceutical ingredient (API) in a polymer matrix can improve the bioavailability by orders of magnitude. Crystallization of the API in the ASD, though, is an inherent threat for bioavailability. Commonly, the impact of crystalline API on the drug release of the dosage form is studied with samples containing spiked crystallinity. These spiked samples possess implicit differences compared to native crystalline samples, regarding size and spatial distribution of the crystals as well as their molecular environment. In this study, we demonstrate that it is possible to grow defined amounts of crystalline API in solid dosage forms, which enables us to study the biopharmaceutical impact of actual crystallization. For this purpose, we studied the crystal growth in fenofibrate tablets over time under an elevated moisture using transmission Raman spectroscopy (TRS). As a nondestructive method to assess API crystallinity in ASD formulations, TRS enables the monitoring of crystal growth in individual dosage forms. Once the kinetic trace of the crystal growth for a certain environmental condition is determined, this method can be used to produce samples with defined amounts of crystallized API. To investigate the biopharmaceutical impact of crystallized API, non-QC dissolution methods were used, designed to identify differences between the various amounts of crystalline materials present. The drug release in the samples manufactured in this fashion was compared to that of samples with spiked crystallinity. In this study, we present for the first time a method for targeted crystallization of amorphous tablets to simulate crystallized ASDs. This methodology is a valuable tool to generate model systems for biopharmaceutical studies on the impact of crystallinity on the bioavailability.

  11. Fokker-Planck transport in solid state accelerator concepts

    International Nuclear Information System (INIS)

    Newberger, B.; Tajima, T.

    1989-01-01

    Particle transport in a crystalline solid under channeling conditions is considered by means of a Fokker-Planck description. The model includes electron multiple scattering, radiation damping and an accelerating electric field. Analytic solutions have been obtained using a harmonic potential model to describe the channeling forces. These solutions will be described

  12. In Situ Insight into Reversible O2 Gas-Solid Reactions

    DEFF Research Database (Denmark)

    Wegeberg, Christina

    2016-01-01

    Non-porous crystalline solids containing a series of cationic tetracobalt complexes reversibly, selectively and stoichiometrically chemisorb dioxygen in temperature/O2 partial pressure induced processes involving the oxidation of cobalt with concurrent reduction of two equivalents of sorbed O2 to...

  13. Synthesis and chlorination of manganese-columbine by means of a solid-gas reaction. Determination of crystalline structures

    International Nuclear Information System (INIS)

    Gonzales, J.; Ruiz, M. del C.

    1997-01-01

    Full text. The synthesis of mangano-columbite was carried out as follows: Mixing of N B 203 and Mn Cl 2 with an 10% weight excess of the latter in order to compensate for losses due to volatilization; grinding of the mixture in an agate mortar with agate handle in order to achieve close contact between the two solids; calcination of the sample in a quartz crucible at temperatures between 610 and 620 C (fusion temperature for Mn Cl2) in N2 current for six hours. After this time, temperature was increased at a eat of 50 C/h until reaching 800 C. This temperature was maintained for two hours in order to eliminate Mn Cl2 excess; cooling of the obtained product in N2 current. XRD analysis showed that the obtained products is a mangano-columbite. The mineral in natural state presents and orthorhombic structure. The structure of the synthesized product, though corresponding to mangano-columbite according to DRX, should be confirmed by means of an additional technique such as EXAFS. Th mangano-columbite obtained was subsequently chlorinated at 900 deg C for two hours to obtain conversions close to 50%, at 101 kPa, with a chlorine molar fraction of 1 and a flow of 50 cm3/min. By XRD it can be observed that the chlorination residue presents unreacted mangano-columbite and niobium oxide in an unknown phase, whose crystalline structure is currently under study. Measurements to be performed by means Synchrotron Radiation (EXAFS and XANES) might help elucidate this new structure. (author)

  14. Concerted Electrodeposition and Alloying of Antimony on Indium Electrodes for Selective Formation of Crystalline Indium Antimonide.

    Science.gov (United States)

    Fahrenkrug, Eli; Rafson, Jessica; Lancaster, Mitchell; Maldonado, Stephen

    2017-09-19

    The direct preparation of crystalline indium antimonide (InSb) by the electrodeposition of antimony (Sb) onto indium (In) working electrodes has been demonstrated. When Sb is electrodeposited from dilute aqueous electrolytes containing dissolved Sb 2 O 3 , an alloying reaction is possible between Sb and In if any surface oxide films are first thoroughly removed from the electrode. The presented Raman spectra detail the interplay between the formation of crystalline InSb and the accumulation of Sb as either amorphous or crystalline aggregates on the electrode surface as a function of time, temperature, potential, and electrolyte composition. Electron and optical microscopies confirm that under a range of conditions, the preparation of a uniform and phase-pure InSb film is possible. The cumulative results highlight this methodology as a simple yet potent strategy for the synthesis of intermetallic compounds of interest.

  15. Multistimuli-responsive benzothiadiazole-cored phenylene vinylene derivative with nanoassembly properties.

    Science.gov (United States)

    Dou, Chuandong; Chen, Dong; Iqbal, Javed; Yuan, Yang; Zhang, Hongyu; Wang, Yue

    2011-05-17

    A trifluoromethyl-substituted benzothiadiazole-cored phenylene vinylene fluorophore (1) was synthesized and displayed piezo- and vapochromism and thermo-induced fluorescence variation in solid phase. Grinding could disrupt the crystalline compound 1 with orange emission into amorphous compound 1 with green emission, and heating treatment could change the amorphous compound 1 into crystalline compound 1. Ultraviolet-visible (UV-vis) absorption spectra, (13)C nuclear magnetic resonance (NMR), and powder X-ray diffraction (PXRD) characterizations demonstrated that crystalline and amorphous compound 1 possess different molecular packing. A differential scanning calorimetry (DSC) measurement revealed that the emission switching was due to the exchange between the thermodynamic-stable crystalline and metastable amorphous states. The ground sample exhibited vapochromic fluorescence property. Furthermore, compound 1 showed interesting supramolecular assembly characteristics in solution. Slowly cooling the hot N,N-dimethylformamide (DMF) solution of compound 1 resulted in the formation of orange fluorescent fibers, whereas sonication treatment of the cooling solution led to the generation of organic molecular gel. The field emission scanning electronic microscope (FESEM) and fluorescent microscopy images revealed smooth nano- or microfiber and network morphology properties. The PXRD spectra confirmed that these nano- or microstructures had a similar molecular-packing model with the crystalline state of compound 1. Slow evaporation of the toluene solution of compound 1 could produce green emissive microrods, which exhibited interesting thermo-induced fluorescence variation.

  16. Unravelling the local structure of topological crystalline insulators using hyperfine interactions

    CERN Multimedia

    Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semi-metals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperfine interactions: emission Mössbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on: \\\\ \\\\(1) the mag...

  17. Contribution to the study of the structure of silver krypton solid solutions; Contribution a l'etude de la structure des solutions solides argent-krypton

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Tullairet, J; Delaplace, J; Antolin-Baudier, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [French] Les solutions solides argent, krypton, realisees par decharges electrique ont ete etudiees par Rayons X, resistivite electrique et microscopie electronique en transmission. Les mesures de parametre cristallin et de resistivite residuelle ont montre que le comportement de l'atome de krypton est tres different de celui des autres elements de la classification periodique en solution dans l'argent. La restauration du parametre cristallin et de la resistivite electrique en fonction de la temperature a ete etudiee. (auteurs)

  18. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  19. Effects of stoichiometry on the transport properties of crystalline phase-change materials.

    Science.gov (United States)

    Zhang, Wei; Wuttig, Matthias; Mazzarello, Riccardo

    2015-09-03

    It has recently been shown that a metal-insulator transition due to disorder occurs in the crystalline state of the GeSb2Te4 phase-change compound. The transition is triggered by the ordering of the vacancies upon thermal annealing. In this work, we investigate the localization properties of the electronic states in selected crystalline (GeTe)x-(Sb2Te3)y compounds with varying GeTe content by large-scale density functional theory simulations. In our models, we also include excess vacancies, which are needed to account for the large carrier concentrations determined experimentally. We show that the models containing a high concentration of stoichiometric vacancies possess states at the Fermi energy localized inside vacancy clusters, as occurs for GeSb2Te4. On the other hand, the GeTe-rich models display metallic behavior, which stems from two facts: a) the tail of localized states shrinks due to the low probability of having sizable vacancy clusters, b) the excess vacancies shift the Fermi energy to the region of extended states. Hence, a stoichiometry-controlled metal-insulator transition occurs. In addition, we show that the localization properties obtained by scalar-relativistic calculations with gradient-corrected functionals are unaffected by the inclusion of spin-orbit coupling or the use of hybrid functionals.

  20. Solid state radiation chemistry. Features important in basic research and applications

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1998-01-01

    The basic research of chemical radiation effects has been mostly proceeded in aqueous systems. When one turns from aqueous to the 'dry solute' systems, reactions are running in a very different way. The examined compound, previously the solute, becomes then the only constituent of the system, absorbing all ionising energy. Majority of dosimeters and of radiation processed systems is solid: these are crystalline or rigid substances of high viscosity, sometimes of complicated phase-compositions being no longer homogenous like liquids. Main features of the solid (and rigid) state radiation chemistry is to be discussed in five parts: I. Character of absorption process. Absorption of radiation is in all media heterogenous on the molecular level, i.e. with formation of single- and multi-ionisation spurs. The yield of the latters is 15-25% of the total ionisations, depending on the system, even at low LET radiation. In spite of random distribution of initial ionisations, the single-ionisation spurs can turn rapidly into specifically arranged, temporal localisations. The variety of spur reactions is usually more complicated than that in aqueous systems. II. Character of transients. Intermediates in solid state radiation chemistry exhibit very different transport properties: from free electrons moving fast and far, to electrons changing the position by different physicochemical mechanisms, to easy movable H-atoms, and to practically unmovable, only vibrating, new fragments of a lattice or glass. III. Paramagnetic intermediates. Radicals living for microseconds in liquids, when created and trapped in a solid matrix are usually very stable, e.g. they can have a difference of half-life times of 12 orders of magnitude, however their chemical composition remais identical. (author)

  1. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  2. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability

    International Nuclear Information System (INIS)

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan; Zhang, Zhiwen; Jiang, Tongying; Sun, Jin; Li, Yaping; Wang, Siling

    2014-01-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability. - Highlights: • Mesoporous carbon with spherical pore structure was prepared according to the needlelike crystalline of celecoxib. • The

  3. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China); Zhang, Zhiwen [Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Jiang, Tongying; Sun, Jin [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China); Li, Yaping [Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China)

    2014-06-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability. - Highlights: • Mesoporous carbon with spherical pore structure was prepared according to the needlelike crystalline of celecoxib. • The

  4. Direct assembly of in situ templated CdSe quantum dots via crystalline lamellae structure of polyamide 66

    Energy Technology Data Exchange (ETDEWEB)

    Cheval, Nicolas; Brooks, Richard [University of Nottingham, Division of Materials, Mechanics and Structures, Faculty of Engineering (United Kingdom); Fahmi, Amir, E-mail: Amir.Fahmi@hochschule-Rhein-waal.de [Rhein-Waal University of Applied Sciences, Faculty of Technology and Bionics (Germany)

    2012-03-15

    A simple concept is proposed for templating in situ synthesised CdSe quantum dots (QDs) into an organised nano-pattern using the crystalline lamellae structure of polyamide 66 (PA66). The morphology obtained for PA66 and the hybrid material on Si/SiO{sub x} solid substrate was characterised by means of atomic force microscope. Controlling the PA66 concentration in solution and the organic-inorganic interactions are found to be the keys factors to direct the assembly of CdSe QDs along the PA66 linear crystalline structure. This simple approach could be opened a new avenue for a large spectrum of innovative high-tech applications.

  5. Internal Structure Quality Control of Solid Pharmaceuticals. A Comparative Study

    Directory of Open Access Journals (Sweden)

    Imre Silvia

    2016-03-01

    Full Text Available Objective: The aim of the study was a comparative investigation by spectral and thermal analysis in order to asses a number of characteristics of different varieties ofrawmaterials of ursodeoxycholic acid and ibuprofen. The different dissolution behavior of two ursodeoxycholic acid pharmaceutical product by crystallinity pattern was investigated. Methods: Raw materials of ursodeoxycholic acid and ibuprofen were used. IR spectroscopy, differential scanning calorimetry and X-Ray Diffraction Analysis were applied. Results: The results show no crystallinitydifferences for different batches of the tested drugs. No solid solid transition was proved during sample preparation for transmission IR analysis. Conclusions: A combination of two more affordabletests by IR spectrometry and differential scanning calorimetry lead to the same results as X-Ray diffraction analysis for crystallinity similarity assessment of the studied substances. The dissolution differences of test drugs were not related to the polymorphism of the raw materials.

  6. Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index.

    Science.gov (United States)

    da Silva Morais, Alaine Patrícia; Sansígolo, Cláudio Angeli; de Oliveira Neto, Mario

    2016-08-01

    Samples of Eucalyptus urograndis and Eucalyptus grandis sawdust were autohydrolyzed in aqueous conditions to reach temperatures in the range 110-190°C and reaction times of 0-150min in a minireactor. In each minireactor were used a liquor:wood ratio (10:1 L:kg dry wood), in order to assess the effects of the autohydrolysis severity and the crystalline properties of cellulose. The content of extractives, lignin, holocellulose, cellulose, hemicelluloses and crystallinity index obtained from the solid fraction after autohydrolysis of sawdust were determined. This study demonstrated that the hemicelluloses were extensively removed at 170 and 190°C, whereas cellulose was partly degraded to Eucalyptus urograndis and Eucalyptus grandis sawdust. The lignin content decreased, while the extractives content increased. It was defined that during autohydrolysis, had a slight decreased on crystalline structure of cellulose of Eucalyptus urogandis and Eucalyptus grandis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  8. Preparation and intercalation study of ternary transition elements chalcogenides AxMXn

    International Nuclear Information System (INIS)

    Kassem, M.

    1999-01-01

    The crystalline powders of transition elements chalcogenides have been prepared by solid-solid reaction method starting from elemental powders in evacuated and sealed quartz tubes heated at various temperatures depending on the compound to be prepared. The structures and composition of the obtained compounds have been studied by X-ray diffraction and X-ray fluorescence techniques. Intercalation compounds Co x MX 2 have been obtained by heating the powder with elemental cobalt at 500 Centigrade. The results of the structural studies show that the intercalation of cobalt is a regular phenomena and the cobalt atoms play the role of staples for the layers constructing the crystalline structure of starting materials. This stapling phenomena is accompanied by changes in distance between the layers and therefore changes in the length of bonds between the elements of compound. The changes in the length of bonds have been confirmed by the results of FTIR studies.(author)

  9. Synthesis of nano-crystalline Zn-Ni alloy coatings by D.C plating

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.; Imran, M.; Akhtar, J.I.

    2006-01-01

    Nano crystalline Zinc-Nickel Alloy coatings were obtained from additive free chloride bath. The aqueous bath composition was varied from ZnCl/sub 2/ -200 g/l to 50 g/l, NiCI/sub 2/ 6H/sub 2/O -200 g/l to 50 g/l and H/sub 3/BO/sub 3/ -40 g/l. XRD patterns of electrodeposited alloys on copper substrate revealed the presence of gamma (Ni/sub 5/Zn/sub 21/) inter-metallic compound and eta (solid solution of nickel in zinc). The apparent grain size measured from FWHM of XRD reflections was found to be about 20nm- 50nm depending upon deposit composition. Analysis by EDX of deposits confirms the presence of Zn (81 to 94%), and Ni (6-19%) depending upon bath composition and current density applied. With increase in bath temperature deposition and dissolution potentials are shifted to nobler values. The temperature also affects the phase composition of alloy deposited. Cyclic Voltametry was performed on platinum substrate and deposits obtained for short duration exhibit voltamograms that reflects strong dependence of alloy components on solution chemistry during initial stage of deposition. Hence, initial composition of the deposit varies with solution chemistry but composition becomes almost independent of solution chemistry for thick deposits. The grain size of the deposits also depends upon the composition of deposit. (author)

  10. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  11. Decoupling of crystalline and conformational degrees of freedom in lipid monolayers

    DEFF Research Database (Denmark)

    Ipsen, John Hjorth; Mouritsen, Ole G.; Zuckermann, Martin J.

    1989-01-01

    of variables which describe the orientations of crystalline domains in the solid. The phase behavior of the model as a function of temperature and lateral pressure is explored using mean-field theory and computer-simulation techniques. Attention is paid to the particular interplay between the two types......-formation processes observed along the isotherms in the phase diagram spanned by lateral pressure and area. A description is given of the kinetics of the nonequilibrium phase transitions and the concomitant heterogeneous microstructure of the monolayer. This leads to an explanation of the peculiarities...

  12. Pressurized liquid extraction using water/isopropanol coupled with solid-phase extraction cleanup for industrial and anthropogenic waste-indicator compounds in sediment

    Science.gov (United States)

    Burkhardt, M.R.; ReVello, R.C.; Smith, S.G.; Zaugg, S.D.

    2005-01-01

    A broad range of organic compounds is recognized as environmentally relevant for their potential adverse effects on human and ecosystem health. This method was developed to better determine the distribution of 61 compounds that are typically associated with industrial and household waste as well as some that are toxic and known (or suspected) for endocrine-disrupting potential extracted from environmental sediment samples. Pressurized liquid extraction (PLE) coupled with solid-phase extraction (SPE) was used to reduce sample preparation time, reduce solvent consumption to one-fifth of that required using dichloromethane-based Soxhlet extraction, and to minimize background interferences for full scan GC/MS analysis. Recoveries from spiked Ottawa sand, commercially available topsoil, and environmental stream sediment, fortified at 4-720 ??g per compound, averaged 76 ?? 13%. Initial method detection limits for single-component compounds ranged from 12.5 to 520 ??g/kg, based on 25 g samples. Results from 103 environmental sediment samples show that 36 out of 61 compounds (59%) were detected in at least one sample with concentrations ranging from 20 to 100,000 ??g/kg. The most frequently detected compound, beta-sitosterol, a plant sterol, was detected in 87 of the 103 (84.5%) environmental samples with a concentration range 360-100,000 ??g/kg. Results for a standard reference material using dichloromethane Soxhlet-based extraction are also compared. ?? 2004 Published by Elsevier B.V.

  13. Solid-phase synthesis of compounds of europium and terbium with nitrogen-containing heterocyclic compounds under mechanical activation

    International Nuclear Information System (INIS)

    Kalinovskaya, I.V.; Karasev, V.E.

    2000-01-01

    Effect of solvents and parameters of mechanical treatment on basic regularities of synthesis of rare earth compounds with nitrogen-containing heterocyclic compounds is studied. It is shown that interaction on europium (3) and terbium (3) nitrates with nitrogen-containing heterocyclic compounds leads to formation of compounds of Ln(NO 3 )·2D composition, where Ln=Eu, Tb; D=2,2-dipyridyl, 1,10-phenanthroline, diphenylguanidine. Effect of conditions of mechanical treatment and different additions on process and yield of products is studied. Compounds prepared are characterized by the methods of chemical element analysis, IR spectroscopy and luminescent spectroscopy [ru

  14. Crystalline matter for solidification of highly radioactive wastes

    International Nuclear Information System (INIS)

    Grauer, R.

    1984-02-01

    Highly active wastes from reprocessed nuclear fuels must be incorporated into a solid chemically resistant inorganic matrix prior to final storage. One possible alternative to glassification is to embed the complex oxide mixture in a crystalline ceramic. A discussion from the structural and chemical viewpoint is presented giving guidelines for the selection and development of such a product. The chemical and phase composition concerning the most important developments are described. SYNROC is the most highly developed solid ceramic that has been evaluated to date for power reactor wastes. However, its testing and development so far has been restricted to simulated inactive materials. One of the most important aspects of solid high activity wastes is their behaviour in water. SYNROC reacts more slowly than glasses with water at temperatures over 100 0 C. Its low release of actinides under these conditions is remarkable. At temperatures under 100 0 C the important nuclide Cs 137 is released from SYNROC and from glasses at comparable rates. These assertions concerning chemical stability are however based on short term experiments, which have not considered the possibly complex interactions occurring during final storage. The information is therefore insufficient to describe the basic model required to predict long term behaviour under final storage conditions. Finally the report makes recommendations for a further programme of work. (Auth.)

  15. Effect of kind of solid fuel onto noxious compound emissions in the firing up process of a low output water boiler

    International Nuclear Information System (INIS)

    Wilk, R.; Szymczyk, J.; Zielinski, Z.; Wystemp, E.

    1992-01-01

    NO x , SO 2 , CO and polynuclear aromatic hydrocarbon emission tests were carried out during the firing up process of a low output boiler for three kinds of smokeless solid fuels and boiler coal. It has been stated that the use of low emissive fuels in low output boilers did not protect against noxious compound emissions during firing up the boiler. (author). 13 refs, 8 figs, 4 tabs

  16. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    Science.gov (United States)

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ELECTRICAL RESISTIVITY AND SEEBECK COEFFICIENT IN Ca(LaMnO COMPOUNDS PREPARED BY SOLID STATE REACTION METHOD

    Directory of Open Access Journals (Sweden)

    Jorge I. Villa

    2017-01-01

    Full Text Available By using the solid state reaction method samples of  Ca1-xLaxMnO3 (0 ≤ x ≥ 0.15 were prepared. Their transport properties were studied by electrical resistivity rho(T and Seebeck coefficient S(T measurements as a function of temperature and lanthanum content, in the temperature range between 100 and 290K. The structural and morphological properties were studied by X-ray diffraction analysis (XRD and scanning electron microscopy (SEM, respectively. The Seebeck coefficient is negative throughout the studied temperature range indicating a conduction given by negative charge carriers, its magnitude decreases with the lanthanum content from |-261| mV/K to |-120| mV/K. The electrical resistivity shows a semiconducting behavior, it was interpreted in terms of small polaron hopping model. Thermoelectric properties of the obtained compounds were studied by the thermoelectric power factor PF, which reaches maximum values around 2mW/K2cm, these values become this kind of ceramics promising thermoelectric compound, to be used in technological applications.

  18. Semiclassical and quantum polarons in crystalline acetanilide

    Science.gov (United States)

    Hamm, P.; Tsironis, G. P.

    2007-08-01

    Crystalline acetanilide is a an organic solid with peptide bond structure similar to that of proteins. Two states appear in the amide I spectral region having drastically different properties: one is strongly temperature dependent and disappears at high temperatures while the other is stable at all temperatures. Experimental and theoretical work over the past twenty five years has assigned the former to a selftrapped state while the latter to an extended free exciton state. In this article we review the experimental and theoretical developments on acetanilide paying particular attention to issues that are still pending. Although the interpretation of the states is experimentally sound, we find that specific theoretical comprehension is still lacking. Among the issues that that appear not well understood is the effective dimensionality of the selftrapped polaron and free exciton states.

  19. Head Space Solid Phase Micro-Extraction (HS - SPME of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636

    Directory of Open Access Journals (Sweden)

    Eunice Valduga

    2010-12-01

    Full Text Available The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636 using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME. Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm, temperature (25-60 ºC, extraction time (10-30 minutes, and sample volume (2-3 mL. The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD. The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v. In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm, temperature (23-33 ºC, pH (4.0-8.0, precursor concentration (0.02-0.1%, mannitol (0-6%, and asparagine concentration (0-0.2% was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.

  20. Ultrafast rotation in an amphidynamic crystalline metal organic framework.

    Science.gov (United States)

    Vogelsberg, Cortnie S; Uribe-Romo, Fernando J; Lipton, Andrew S; Yang, Song; Houk, K N; Brown, Stuart; Garcia-Garibay, Miguel A

    2017-12-26

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4 O cubic lattice. Using spin-lattice relaxation 1 H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3-80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1 These results were confirmed with 2 H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.

  1. Luminescence properties of copper(I), zinc(II) and cadmium(II) coordination compounds with picoline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan Grzegorz, E-mail: gmalecki@us.edu.pl; Maroń, Anna

    2017-06-15

    Mononuclear coordination compounds of copper(I) – [Cu(PPh{sub 3}){sub 2}(picoline)(NO{sub 3})], zinc(II) – [ZnCl{sub 2}(picoline){sub 2}] (picoline=3– and 4–methylpyridine) and polymeric cadmium(II) – [CdCl{sub 2}(β-picoline){sub 2}]{sub n} were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. Single crystal X-ray crystallography revealed distorted tetrahedral geometry around the central ions of the compounds. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. The emission of copper(I) compounds originated from metal-to-ligand charge transfer state combined with nitrato-to-picoline charge transfer state i.e. ({sup 1}(M+X)LCT). The presence of nitrato ligand in the coordination sphere of copper(I) compounds quenches the emission. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution). - Graphical abstract: Coordination compounds of copper(I), zinc(II) and polymeric cadmium(II) with picoline ligands were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. Emission of copper(I) compounds originated from {sup 1}(M+X)LCT state. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution).

  2. On the use of semiempirical models of (solid + supercritical fluid) systems to determine solid sublimation properties

    International Nuclear Information System (INIS)

    Tabernero, Antonio; Martin del Valle, Eva M.; Galan, Miguel A.

    2011-01-01

    Research highlights: → We propose a method to determine sublimation properties of solids. → Low deviations were produced calculating sublimation enthalpies and pressures. → It is a required step to determine the vaporization enthalpy of the solid. → It is possible to determine solid properties using semiempirical models solid-SCF. - Abstract: Experimental solubility data of solid-supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle's equation to model equilibria data solid-supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid-supercritical fluids and solid-solvent-supercritical fluids with the Peng-Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid-supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO 2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.

  3. Capture of negative muons in magnesium oxides and crystalline modifications of phosphorus

    International Nuclear Information System (INIS)

    Zinov, V.G.; Kachalkin, A.K.; Nikityuk, L.N.; Pokrovskij, V.N.; Rybakov, V.N.; Yutlandov, I.A.

    1977-01-01

    The paper is aimed at comparing the structure of mesic K X-ray patterns of phosphorus in its crystalline modifications, comparing the structure of mesic X-ray patterns of magnesium and oxygen in compounds of MgO, MgO 2 , H 2 O and metallic magnesium, as well as comparison of propabilities of μ - atomic capture in magnesium oxides. By analyzing the mesic K X-ray patterns of red and white phosphorus it is concluded that the phosphorus crystalline modification produces the effect on the line structure, the higher series number being somewhat larger for the allotrope of phosphorus with polymeric structure. A comparison is made of the mesic X-ray series of the magnesium in oxide and metal, of the oxygen in oxide and water with the analogous data for aluminium and silicon. The data confirm the supposition that chemical bond (valence electrons) plays a substantial role in meson capture

  4. Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Hari Prasad, D.; Kim, H.-R.; Park, J.-S.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H.

    2010-01-01

    Reduced sintering temperature of doped ceria can greatly simplify the fabrication process of solid oxide fuel cells (SOFCs) by utilizing the co-firing of all cell components with a single step. In the present study, nano-crystalline gadolinium doped ceria (GDC) powders of high sinterability at lower sintering temperature has been synthesized by co-precipitation at room temperature. The successful synthesis of nano-crystalline GDC was confirmed by XRD, TEM and Raman spectroscopy analysis. Dilatometry studies showed that GDC prepared by this method can be fully densified (97% relative density) at a sintering temperature of 950 o C which is fairly lower than ever before. It has also been found that the sintered samples have a higher ionic conductivity of 1.64 x 10 -2 S cm -1 at 600 o C which is suitable for the intermediate temperature SOFC application.

  5. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion

    KAUST Repository

    Lee, S. W.

    2012-02-27

    From surface hardening of steels to doping of semiconductors, atom insertion in solids plays an important role in modifying chemical, physical, and electronic properties of materials for a variety of applications. High densities of atomic insertion in a solid can result in dramatic structural transformations and associated changes in mechanical behavior: This is particularly evident during electrochemical cycling of novel battery electrodes, such as alloying anodes, conversion oxides, and sulfur and oxygen cathodes. Silicon, which undergoes 400% volume expansion when alloying with lithium, is an extreme case and represents an excellent model system for study. Here, we show that fracture locations are highly anisotropic for lithiation of crystalline Si nanopillars and that fracture is strongly correlated with previously discovered anisotropic expansion. Contrary to earlier theoretical models based on diffusion-induced stresses where fracture is predicted to occur in the core of the pillars during lithiation, the observed cracks are present only in the amorphous lithiated shell. We also show that the critical fracture size is between about 240 and 360 nm and that it depends on the electrochemical reaction rate.

  6. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  7. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  8. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  9. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  10. Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions.

    Science.gov (United States)

    Vu, Tuan Hoang; Cable, Morgan L; Choukroun, Mathieu; Hodyss, Robert; Beauchamp, Patricia

    2014-06-12

    We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

  11. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole.

    Science.gov (United States)

    Dave, Rutesh H; Patel, Hardikkumar H; Donahue, Edward; Patel, Ashwinkumar D

    2013-10-01

    The solubility of drugs remains one of the most challenging aspects of formulation development. There are numerous ways to improve the solubility of drugs amongst which the most promising strategy is solid dispersion. Different ratios of sulfathiazole: PVP-K29/32: sodium lauryl sulfate (SLS) were prepared (1:1:0.1, 1:1:0.5, 1:1:1) and various methods were employed to characterize the prepared solid dispersions, namely modulated differential scanning calorimeter, X-ray powder diffraction, Fourier Transformed Infrared Spectroscopy and dissolution studies. Lack of crystallinity was observed in internal and external systems suggesting a loss of crystallinity, whereas the physical mixtures showed a characteristic peak of sulfathiazole. In vitro dissolution results clearly showed that the incorporation of a relatively small amount of surfactants (5, 20 or 33% w/w) into a solid dispersion can improve its dissolution rates compared to binary solid dispersion (SD) alone and pure sulfathiazole. In all ratios solid dispersion internal shows a higher dissolution rate compared to a physical mixture and solid dispersion external which suggests that the way that the surfactant is incorporated into the solid dispersion plays an important role in changing the solubility of a drug. The solubilization mechanism is mainly responsible for this higher dissolution rate when we incorporate the SLS in SD.

  12. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  13. Principles of the theory of solids

    CERN Document Server

    Ziman, J M

    1972-01-01

    Professor Ziman's classic textbook on the theory of solids was first pulished in 1964. This paperback edition is a reprint of the second edition, which was substantially revised and enlarged in 1972. The value and popularity of this textbook is well attested by reviewers' opinions and by the existence of several foreign language editions, including German, Italian, Spanish, Japanese, Polish and Russian. The book gives a clear exposition of the elements of the physics of perfect crystalline solids. In discussing the principles, the author aims to give students an appreciation of the conditions which are necessary for the appearance of the various phenomena. A self-contained mathematical account is given of the simplest model that will demonstrate each principle. A grounding in quantum mechanics and knowledge of elementary facts about solids is assumed. This is therefore a textbook for advanced undergraduates and is also appropriate for graduate courses.

  14. Determination of quaternary ammonium compounds in seawater samples by solid-phase extraction and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bassarab, P; Williams, D; Dean, J R; Ludkin, E; Perry, J J

    2011-02-04

    A method for the simultaneous determination of two biocidal quaternary ammonium compounds; didecyldimethylammonium chloride (didecyldimethyl quat) and dodecylbenzyldimethylammonium chloride (benzyl quat), in seawater by solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS) was developed. The optimised procedure utilised off-line extraction of the analytes from seawater using polymeric (Strata-X) SPE cartridges. Recoveries ranged from 80 to 105%, with detection limits at the low parts-per-trillion (ng/l) level for both analytes. To demonstrate sensitivity, environmental concentrations were measured at three different locations along the North East coast of England with measured values in the range 120-270ng/l. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    Science.gov (United States)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  16. Quantum diffusion of muon and muonium in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kadono, Ryosuke [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-10-01

    The quantum tunneling diffusion of muon and muonium in crystalline solids is discussed with emphasis on the effects of disorder and superconductivity. The complex effect of disorder on muonium diffusion in inhomogeneous crystal is scrutinized. The enhanced muon diffusion in the superconducting state of high-purity tantalum establishes the predominant influence of conduction electrons on the quantum diffusion in metals. (author)

  17. Scattering of energetic ions by solids: a simulation

    International Nuclear Information System (INIS)

    Pearce, J.G.; Shaar, Z.; Crosbie, R.E.

    1977-01-01

    Digital computer simulation of an experiment is described which measures the energy-intensity distribution of noble gas ions scattered by crystalline solids. The discussion emphasizes the simulation techniques employed (in particular, the choice of integration method), the methods of relating computer input data to the experimental variables, and the transformation of computer results into a form directly comparable to experimental data

  18. Applicability of solid-phase microextraction combined with gas chromatography atomic emission detection (GC-MIP AED) for the determination of butyltin compounds in sediment samples

    Energy Technology Data Exchange (ETDEWEB)

    Carpinteiro, J.; Rodriguez, I.; Cela, R. [Universidad de Santiago de Compostela, Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Santiago de Compostela 15782 (Spain)

    2004-11-01

    The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED. (orig.)

  19. Crystalline Bioceramic Materials

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2005-06-01

    Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.

    A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados

  20. Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers.

    Science.gov (United States)

    Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi

    2018-05-17

    Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.

  1. Crystalline structure of the manganites solid solution RE(Me,MnO3, (RE=Gd,Er; Me=Ni,Co

    Directory of Open Access Journals (Sweden)

    Peña, O.

    2009-08-01

    Full Text Available The structural properties of the manganites solid solution RE(Me,MnO3, RE=Er,Gd, have been studied by X-ray diffraction and electric measurements. Powders were prepared by solid state reaction between the component oxides. Incorporation of Ni2+ or Co2+ on the lattice in the Mn sites leads to changes in the parameters and symmetry of the perovskite or hexagonal compounds GdMnO3 and ErMnO3 respectively. The phase transitions depend on the amount of substituted Jahn-Teller Mn3+ cations, and, therefore, of the cooperative Jahn-Teller interaction weakness. Solid solutions based on GdMnO3 perovskite compound change from O’-type to O-type orthorhombic perovskite symmetry when the Mn3+ cation amount decreases, because of the progressive substitution for Ni, Co. This transition occurs for lower amount of Ni2+ than for Co2+ cation. The Er-based solid solutions showed a different behaviour. For Ni2+ and Co2+ incorporation there are changes from hexagonal ErMnO3-type lattice to perovskite-type symmetry, for 20 at% and 30 at% respectively of substituting cations. The resultant perovskites crystallised directly in the O-type orthorhombic perovskite structure. The steric influence seems to play a secondary role, such as it can be deduced of the small variation of the Goldschmidt tolerance factor, t, for perovskite structure.

    Las propiedades estructurales de las soluciones sólidas RE(Me,MnO3, RE=Gd,Er, Me=Ni,Co, han sido estudiadas por difracción de rayos X, (DRX y medidas eléctricas. Las fases se sintetizaron por reacción en estado sólido entre los óxidos componentes. La incorporación de los cationes Ni2+ y Co2+,3+ en la red en lugar de Mn lleva a cambios en los parámetros de red y en la simetría de la perovskita, GdMnO3 o del compuesto hexagonal Er

  2. STM, SECPM, AFM and Electrochemistry on Single Crystalline Surfaces

    Directory of Open Access Journals (Sweden)

    Ulrich Stimming

    2010-08-01

    Full Text Available Scanning probe microscopy (SPM techniques have had a great impact on research fields of surface science and nanotechnology during the last decades. They are used to investigate surfaces with scanning ranges between several 100 mm down to atomic resolution. Depending on experimental conditions, and the interaction forces between probe and sample, different SPM techniques allow mapping of different surface properties. In this work, scanning tunneling microscopy (STM in air and under electrochemical conditions (EC-STM, atomic force microscopy (AFM in air and scanning electrochemical potential microscopy (SECPM under electrochemical conditions, were used to study different single crystalline surfaces in electrochemistry. Especially SECPM offers potentially new insights into the solid-liquid interface by providing the possibility to image the potential distribution of the surface, with a resolution that is comparable to STM. In electrocatalysis, nanostructured catalysts supported on different electrode materials often show behavior different from their bulk electrodes. This was experimentally and theoretically shown for several combinations and recently on Pt on Au(111 towards fuel cell relevant reactions. For these investigations single crystals often provide accurate and well defined reference and support systems. We will show heteroepitaxially grown Ru, Ir and Rh single crystalline surface films and bulk Au single crystals with different orientations under electrochemical conditions. Image studies from all three different SPM methods will be presented and compared to electrochemical data obtained by cyclic voltammetry in acidic media. The quality of the single crystalline supports will be verified by the SPM images and the cyclic voltammograms. Furthermore, an outlook will be presented on how such supports can be used in electrocatalytic studies.

  3. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    Science.gov (United States)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  4. Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications

    International Nuclear Information System (INIS)

    Tsao, Chao-Yang; Weber, Juergen W.; Campbell, Patrick; Widenborg, Per I.; Song, Dengyuan; Green, Martin A.

    2009-01-01

    Poly-crystalline germanium (poly-Ge) thin films have potential for lowering the manufacturing cost of photovoltaic devices especially in tandem solar cells, but high crystalline quality would be required. This work investigates the crystallinity of sputtered Ge thin films on glass prepared by in situ growth and ex situ solid-phase crystallization (SPC). Structural properties of the films were characterized by Raman, X-ray diffraction and ultraviolet-visible reflectance measurements. The results show the transition temperature from amorphous to polycrystalline is between 255 deg. C and 280 deg. C for in situ grown poly-Ge films, whereas the transition temperature is between 400 deg. C and 500 deg. C for films produced by SPC for a 20 h annealing time. The in situ growth in situ crystallized poly-Ge films at 450 deg. C exhibit significantly better crystalline quality than those formed by solid-phase crystallization at 600 deg. C. High crystalline quality at low substrate temperature obtained in this work suggests the poly-Ge films could be promising for use in thin film solar cells on glass.

  5. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    Science.gov (United States)

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  6. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures.

    Science.gov (United States)

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A

    2012-09-03

    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  7. Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2

    Science.gov (United States)

    Pikul, A. P.; Kaczorowski, D.; Gajek, Z.; Stȩpień-Damm, J.; Ślebarski, A.; Werwiński, M.; Szajek, A.

    2010-05-01

    Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific-heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab initio band-structure calculations performed within the density-functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma No.74, Pearson symbol: oI24 ) with the lattice parameters a=7.1330(14)Å , b=9.7340(19)Å , and c=5.6040(11)Å . Analysis of the magnetic and XPS data revealed the presence of well-localized magnetic moments of trivalent cerium ions. All the physical properties were found to be highly anisotropic over the whole temperature range studied and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN=4.70(1)K and their subsequent spin rearrangement at Tt=4.48(1)K manifest themselves as distinct anomalies in the temperature characteristic of all the physical properties investigated and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2 , similar to that recently reported for an isostructural compound CeIr3Si2 . The electronic band-structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well-reproduced the experimental XPS valence-band spectrum.

  8. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.; Yang, Song; Houk, K. N.; Brown, Stuart; Garcia-Garibay, Miguel A.

    2017-12-11

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol-1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.

  9. Amorphous and Crystalline Particulates: Challenges and Perspectives in Drug Delivery.

    Science.gov (United States)

    Al-Obaidi, Hisham; Majumder, Mridul; Bari, Fiza

    2017-01-01

    Crystalline and amorphous dispersions have been the focus of academic and industrial research due to their potential role in formulating poorly water-soluble drugs. This review looks at the progress made starting with crystalline carriers in the form of eutectics moving towards more complex crystalline mixtures. It also covers using glassy polymers to maintain the drug as amorphous exhibiting higher energy and entropy. However, the amorphous form tends to recrystallize on storage, which limits the benefits of this approach. Specific interactions between the drug and the polymer may retard this spontaneous conversion of the amorphous drug. Some studies have shown that it is possible to maintain the drug in the amorphous form for extended periods of time. For the drug and the polymer to form a stable mixture they have to be miscible on a molecular basis. Another form of solid dispersions is pharmaceutical co-crystals, for which research has focused on understanding the chemistry, crystal engineering and physico-chemical properties. USFDA has issued a guidance in April 2013 suggesting that the co-crystals as a pharmaceutical product may be a reality; but just not yet! While some of the research is still oriented towards application of these carriers, understanding the mechanism by which drug-carrier miscibility occurs is also covered. Within this context is the use of thermodynamic models such as Flory-Huggins model with some examples of studies used to predict miscibility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. A unified description of crystalline-to-amorphous transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R. [Argonne National Lab., IL (United States); Devanathan, R. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Meshii, M. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

    1993-07-01

    Amorphous metallic alloys can now be synthesized by a variety of solid-state processes demonstrating the need for a more general approach to crystalline-to-amorphous (c-a) transitions. By focusing on static atomic displacements as a measure of chemical and topological disorder, we show that a unified description of c-a transformations can be based on a generalization of the phenomenological melting criterion proposed by Lindemann. The generalized version assumes that melting of a defective crystal occurs whenever the sum of thermal and static mean-square displacements exceeds a critical value identical to that for melting of the defect-free crystal. This implies that chemical or topological disorder measured by static displacements is thermodynamically equivalent to heating, and therefore that the melting temperature of the defective crystal will decrease with increasing amount of disorder. This in turn implies the existence of a critical state of disorder where the melting temperature becomes equal to a glass-transition temperature below which the metastable crystal melts to a glass. The generalized Lindemann melting criterion leads naturally to an interpretation of c-a transformations as defect-induced, low-temperature melting of critically disordered crystals. Confirmation of this criterion is provided by molecular-dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds caused either by the production of Frenkel pairs or anti-site defects. The thermodynamic equivalence between static atomic disorder and heating is reflected in the identical softening effects which they have on elastic properties and also in the diffraction analysis of diffuse scattering from disordered crystals, where the effect of static displacements appears as an artificially-enlarged thermal Debye-Waller factor. Predictions of this new, unified approach to melting and amorphization are compared with available experimental information.

  11. Numerically robust geometry engine for compound solid geometries

    International Nuclear Information System (INIS)

    Vlachoudis, V.; Sinuela-Pastor, D.

    2013-01-01

    Monte Carlo programs heavily rely on a fast and numerically robust solid geometry engines. However the success of solid modeling, depends on facilities for specifying and editing parameterized models through a user-friendly graphical front-end. Such a user interface has to be fast enough in order to be interactive for 2D and/or 3D displays, but at the same time numerically robust in order to display possible modeling errors at real time that could be critical for the simulation. The graphical user interface Flair for FLUKA currently employs such an engine where special emphasis has been given on being fast and numerically robust. The numerically robustness is achieved by a novel method of estimating the floating precision of the operations, which dynamically adapts all the decision operations accordingly. Moreover a predictive caching mechanism is ensuring that logical errors in the geometry description are found online, without compromising the processing time by checking all regions. (authors)

  12. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice.

    Science.gov (United States)

    Yu, Huan-Yun; Wang, Xiangqin; Li, Fangbai; Li, Bin; Liu, Chuanping; Wang, Qi; Lei, Jing

    2017-05-01

    Iron (Fe)-based solids can reduce arsenic (As) mobility and bioavailability in soils, which has been well recognized. However, to our knowledge, there are few studies on As uptake at different growth stages of rice under Fe compound amendments. In addition, the formation of Fe plaques at different growth stages of rice has also been rarely reported. Therefore, the present study was undertaken to investigate As mobility and bioavailability in paddy soil under Fe compound amendments throughout the whole growth stage of rice plants. Amendments of poorly crystalline Fe oxides (PC-Fe), FeCl 2 +NaNO 3 and FeCl 2 reduced grain As by 54% ± 3.0%, 52% ± 3.0% and 46% ± 17%, respectively, compared with that of the non-amended control. The filling stage was suggested to be the key stage to take measures to reduce As uptake. At this stage, all soil amendments significantly reduced As accumulation in rice plants. At the maturation stage, PC-Fe amendment significantly reduced mobile pools and increased immobile pools of soil As. Besides, PC-Fe treatment promoted the transformation of Fe fractions from dissolved Fe to adsorbed, poorly crystalline and free Fe oxides. Moreover, significant positive correlations between soil Fe fractions and As fractions were found. Accordingly, we hypothesized that Fe compound amendments might affect the concentration distribution of Fe fractions first and then affect As fractionation in soil and its bioavailability to rice plants indirectly. The formation of Fe plaques varied with growth stages and different treatments. Significantly negative correlations between mobile pools of As and Fe or As in Fe plaques indicated that Fe plaques could immobilize mobile As in soils and thus affect As bioavailability. Overall, the effect of the soil amendments on reduction of As uptake varied with growth stages and different treatments, and further research on the key stage for reducing As uptake is still required. Copyright © 2017 Elsevier Ltd. All

  13. A methodology for modeling surface effects on stiff and soft solids

    Science.gov (United States)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  14. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanli, E-mail: flmeng@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Hou, Nannan [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Ge, Sheng [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Sun, Bai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Zhen, E-mail: zjin@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Shen, Wei; Kong, Lingtao; Guo, Zheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Yufeng, E-mail: sunyufeng118@126.com [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wu, Hao; Wang, Chen [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Li, Minqiang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-03-25

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion.

  15. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Meng, Fanli; Hou, Nannan; Ge, Sheng; Sun, Bai; Jin, Zhen; Shen, Wei; Kong, Lingtao; Guo, Zheng; Sun, Yufeng; Wu, Hao; Wang, Chen; Li, Minqiang

    2015-01-01

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion

  16. NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2

    International Nuclear Information System (INIS)

    Lin, W.-H.; Cheng, C.; Hu, C.-C.; Teng, H.

    2006-01-01

    Perovskite-type NaTaO 3 derived from a sol-gel synthesis exhibited a larger surface area and a remarkably higher photocatalytic activity in water splitting than the solid-state synthesized NaTaO 3 . The sol-gel and solid-state NaTaO 3 had different crystalline structures of monoclinic P2/m and orthorhombic Pcmn, respectively. Diffuse reflectance spectra showed that the sol-gel specimen had a slightly larger band gap. The band structure analysis revealed an indirect band gap for the sol-gel NaTaO 3 , contrary to the direct band gap of the solid-state one. The difference in the electronic structure and surface area explained the higher photocatalytic activity of the sol-gel NaTaO 3

  17. Use of solid phase microextraction to identify volatile organic compounds in brazilian wines from different grape varieties

    Directory of Open Access Journals (Sweden)

    Natália Cristina Morais Fernandes

    Full Text Available Abstract The Brazilian wine industry has shown significant growth in recent years and the insertion of new concepts, such as geographical indications as signs of quality, has placed Brazil in tune with the tendencies of world wine production. The aim of this work was to apply the Solid Phase Microextraction technique in combination with Gas Chromatography-Mass Spectrometry to study Brazilian wines made from different grape varieties, in order to separate and identify their volatile organic compounds. These substances were identified by comparisons between the spectra obtained with those presented in the NIST library database, and by comparisons with linear retention indices and literature data. The amounts of the compounds were calculated based on the total peak areas of the chromatograms. Forty-seven volatile compounds were identified and grouped into alcohols, aldehydes, fatty acids, esters, hydrocarbons, ketones and terpenes. Most of them belonged to the ester function, conferring a fruity aroma on the wines. The alcohols may have originated from the yeast metabolism, contributing to the alcoholic and floral aromas. Ethyl lactate, 1-hexanol and diethyl maleate were identified in all the varieties, except Merlot. Decanal, methyl citronellate, (E-2-hexenyl-3-methylbutyrate were only found in Merlot, while 2,3-butanediol was only present in the Tannat wines. 2-Phenylethanol was present in all varieties and is recognized as giving pleasant rose and honey attributes to wines. This study showed that the volatile profile of red wines is mainly characterized by esters and higher alcohols. The statistical analysis of the comparison of averages showed a greater amount of averages significantly different in the relative areas of Merlot wine. The Principal Component Analysis showed one grouping composed only of the Merlot wine samples, and this was probably related to the existence of the volatile organic compounds that were specifically identified in

  18. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry.

    Science.gov (United States)

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  19. Nanometre-thick single-crystalline nanosheets grown at the water-air interface

    Science.gov (United States)

    Wang, Fei; Seo, Jung-Hun; Luo, Guangfu; Starr, Matthew B.; Li, Zhaodong; Geng, Dalong; Yin, Xin; Wang, Shaoyang; Fraser, Douglas G.; Morgan, Dane; Ma, Zhenqiang; Wang, Xudong

    2016-01-01

    To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can serve as soft templates guiding the nucleation and growth of 2D nanomaterials in large area beyond the limitation of van der Waals solids. One- to 2-nm-thick, single-crystalline free-standing ZnO nanosheets with sizes up to tens of micrometres are synthesized at the water-air interface. In this process, the packing density of surfactant monolayers adapts to the sub-phase metal ions and guides the epitaxial growth of nanosheets. It is thus named adaptive ionic layer epitaxy (AILE). The electronic properties of ZnO nanosheets and AILE of other materials are also investigated.

  20. Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxen-povidone formulations.

    Science.gov (United States)

    Haser, Abbe; Cao, Tu; Lubach, Joe; Listro, Tony; Acquarulo, Larry; Zhang, Feng

    2017-05-01

    Our hypothesis is that melt extrusion is a more suitable processing method than spray drying to prepare amorphous solid dispersions of drugs with a high crystallization tendency. Naproxen-povidone K25 was used as the model system in this study. Naproxen-povidone K25 solid dispersions at 30% and 60% drug loadings were characterized by modulated DSC, powder X-ray diffraction, FT-IR, and solid-state 13 C NMR to identify phase separation and drug recrystallization during processing and storage. At 30% drug loading, hydrogen bond (H-bond) sites of povidone K25 were not saturated and the glass transition (T g ) temperature of the formulation was higher. As a result, both melt-extruded and spray-dried materials were amorphous initially and remained so after storage at 40°C. At 60% drug loading, H-bond sites were saturated, and T g was low. We were not able to prepare amorphous materials. The initial crystallinity of the formulations was 0.4%±0.2% and 5.6%±0.6%, and increased to 2.7%±0.3% and 21.6%±1.0% for melt-extruded and spray-dried materials, respectively. Spray-dried material was more susceptible to re-crystallization during processing, due to the high diffusivity of naproxen molecules in the formulation matrix and lack of kinetic stabilization from polymer solution. A larger number of crystalline nucleation sites and high surface area made the spray-dried material more susceptible to recrystallization during storage. This study demonstrated the unique advantages of melt extrusion over spray drying for the preparation of amorphous solid dispersions of naproxen at high drug level. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Variation in Scent Compounds of Oil-Bearing Rose (Rosa damascena Mill. Produced by Headspace Solid Phase Microextraction, Hydrodistillation and Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Sabri Erbaş

    2016-03-01

    Full Text Available In this research, rose oil and rose water were hydro-distilled from the fresh oil-bearing rose flowers (Rosa damascena Mill. using Clevenger-type apparatus. Rose concretes were extracted from the fresh rose flowers by using non-polar solvents, e.g. diethyl ether, petroleum ether, cyclo-hexane, chloroform and n-hexane, and subsequently by evaporation of the solvents under vacuum. Absolutes were produced from the concretes with ethyl alcohol extraction at -20°C, leaving behind the wax and other paraffinic substances. Scent compounds of all these products detected by gas chromatography (GC-FID/GC-MS were compared with the natural scent compounds of fresh rose flower detected by using headspace solid phase microextraction (HS-SPME with carboxen/polydimethylsiloxane (CAR/PDMS fiber. A total of 46 compounds analysis were identified by HS-SPME-GC-MS in the fresh flower, and a total of 15 compounds were identified by GC-MS in the hydrodistilled rose oil. While main compounds in rose oil were geraniol (35.4%, citronellol (31.6%, and nerol (15.3%, major compound in fresh rose flower, rose water and residue water was phenylethyl alcohol (43.2, 35.6 and 98.2%, respectively. While the highest concrete yield (0.7% was obtained from diethyl ether extraction, the highest absolute yield (70.9% was obtained from the n-hexane concrete. The diethyl ether concrete gave the highest productivity of absolute, as 249.7 kg of fresh rose flowers was needed to produce 1 kg of absolute.

  2. Diverse topics in crystalline beams

    International Nuclear Information System (INIS)

    Wei, Jie; Draeseke, A.; Sessler, A.M.; Li, Xiao-Ping

    1995-01-01

    Equations of motion are presented, appropriate to interacting charged particles of diverse charge and mass, subject to the external forces produced by various kinds of magnetic fields and radio-frequency (rf) electric fields in storage rings. These equations are employed in the molecular dynamics simulations to study the properties of crystalline beams. The two necessary conditions for the formation and maintenance of crystalline beams are summarized. The transition from ID to 2D, and from 2D to 3D is explored, and the scaling behavior of the heating rates is discussed especially in the high temperature limit. The effectiveness of various cooling techniques in achieving crystalline states has been investigated. Crystalline beams made of two different species of ions via sympathetic cooling are presented, as well as circulating ''crystal balls'' bunched in all directions by magnetic focusing and rf field. By numerically reconstructing the original experimental conditions of the NAP-M ring, it is found that only at extremely low beam intensities, outside of the range of the original measurement, proton particles can form occasionally-passing disks. The proposed New ASTRID ring is shown to be suitable for the formation and maintenance of crystalline beams of all dimensions

  3. Molecular reorientations in a substance with liquid-crystalline and plastic-crystalline phases

    International Nuclear Information System (INIS)

    Nguyen, Xuan Phuc.

    1986-05-01

    Results of dielectric relaxation (DR), quasielastic neutron scattering (QNS), far infrared absorption (FIR), proton magnetic resonance (PMR), differential scanning calorimetry (DSC) and preliminary X-ray diffraction measurements on the di-n-pentyloxyazoxybenzene (5.OAOB) are presented. The measurements carried out by all these methods showed that 5.OAOB exhibits a nontypical for liquid-crystalline materials phase diagram. It has two mesophases: a nematic (N) and an ''intermediate'' crystalline phase just below it. A complex interpretation of results obtained is given. All suggestions concerning the character of reorientational motions of the molecule as a whole as well as of its segments in mesomorphic phases are analyzed. From comparison of the DR and QNS studies one can conclude that in the N phase the molecule as a whole performs rotational diffusion around the long axis (τ DR ∼ 100 ps) and at the same time the two moieties perform faster independent reorientations around N - benzene rings bonds withτ QNS ∼ 5 ps. On the basis of various experimental data it is shown that the CrI phase is a plastic-crystalline phase for which the molecule and its segments perform fast stochastic unaxial reorientations. This is the first case where the existence of such a phase in liquid-crystalline materials has been experimentally confirmed. (author)

  4. Neutron transmission through crystalline Fe

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Kilany, M.; El-Mesiry, M.S.

    2004-01-01

    The neutron transmission through crystalline Fe has been calculated for neutron energies in the range 10 4 < E<10 eV using an additive formula. The formula permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-section as a function of temperature and crystalline form. The obtained agreement between the calculated values and available experimental ones justifies the applicability of the used formula. A feasibility study on using poly-crystalline Fe as a cold neutron filter and a large Fe single crystal as a thermal one is given

  5. Investigation on the magnetocaloric effect in TbN compound

    Energy Technology Data Exchange (ETDEWEB)

    Ranke, P.J. von, E-mail: von.ranke@uol.com.br [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil); Alvarenga, T.S.T.; Nóbrega, E.P.; Alho, B.P.; Ribeiro, P.O. [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil); Carvalho, A. Magnus G. [Divisão de Metrologia de Materiais (DIMAT), Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Sousa, V.S.R. de; Caldas, A.; Oliveira, N.A. de [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil)

    2013-09-15

    One of the biggest challenges in materials science is to understand the microscopic mechanisms responsible in storage and release material entropy. TbN compound, which presents non-degeneracy in ground state, was studied and the calculated magnetocaloric effect is in good agreement with the recent experimental data. Also inverse magnetocaloric effect and spin reorientation transition were predicted in TbN. The theoretical investigations were carried out using a Hamiltonian, which includes the crystalline electrical field, Zeeman and exchange interactions. - Highlights: • Theoretical description of the magnetocaloric effect in TbN. • Influence of the crystalline electrical field anisotropy on TbN. • Predictions of inverse and anomalous magnetocaloric effect in TbN.

  6. Origin of melting point depression for rare gas solids confined in carbon pores

    International Nuclear Information System (INIS)

    Morishige, Kunimitsu; Kataoka, Takaaki

    2015-01-01

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point

  7. Origin of melting point depression for rare gas solids confined in carbon pores

    Energy Technology Data Exchange (ETDEWEB)

    Morishige, Kunimitsu, E-mail: morishi@chem.ous.ac.jp; Kataoka, Takaaki [Department of Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan)

    2015-07-21

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  8. Solid-phase reduction of silico-12-molybdic acid H4SiMo12O40 by some organic oxygen containing compounds

    International Nuclear Information System (INIS)

    Chuvaev, V.F.; Pinchuk, I.N.; Spitsyn, V.I.

    1982-01-01

    A study is made on reduction reactions of anhydrous silico-12-molybdic acid by vapors of organic oxygen-containing compounds at 170 deg C: alcohols, simple carbonyl compounds. Methods of thermal analysis, electron paramagnetic resonance, paramagnetic resonance were used to established that depending on the nature of organic reagent and temperature, H 6 SiMo 2 5 Mo 10 6 O 40 two-electron or H 8 SiMo 4 5 Mo 8 6 O 40 four-electron flues form. It is shown that the increase of heterogeneous reduction temperature can lead to formation of anhydrous phases of SiMo 12 O 38 -(n/2), able to attach water reversibly with formation of corresponding blue. Characteristics of blues, prepared during solid-phase reduction of silico-12-molybdic acid and mixed valent forms with corresponding reduction degree, separated from water solutions, were compared

  9. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  10. Multivariate analysis of volatile compounds detected by headspace solid-phase microextraction/gas chromatography: A tool for sensory classification of cork stoppers.

    Science.gov (United States)

    Prat, Chantal; Besalú, Emili; Bañeras, Lluís; Anticó, Enriqueta

    2011-06-15

    The volatile fraction of aqueous cork macerates of tainted and non-tainted agglomerate cork stoppers was analysed by headspace solid-phase microextraction (HS-SPME)/gas chromatography. Twenty compounds containing terpenoids, aliphatic alcohols, lignin-related compounds and others were selected and analysed in individual corks. Cork stoppers were previously classified in six different classes according to sensory descriptions including, 2,4,6-trichloroanisole taint and other frequent, non-characteristic odours found in cork. A multivariate analysis of the chromatographic data of 20 selected chemical compounds using linear discriminant analysis models helped in the differentiation of the a priori made groups. The discriminant model selected five compounds as the best combination. Selected compounds appear in the model in the following order; 2,4,6 TCA, fenchyl alcohol, 1-octen-3-ol, benzyl alcohol and benzothiazole. Unfortunately, not all six a priori differentiated sensory classes were clearly discriminated in the model, probably indicating that no measurable differences exist in the chromatographic data for some categories. The predictive analyses of a refined model in which two sensory classes were fused together resulted in a good classification. Prediction rates of control (non-tainted), TCA, musty-earthy-vegetative, vegetative and chemical descriptions were 100%, 100%, 85%, 67.3% and 100%, respectively, when the modified model was used. The multivariate analysis of chromatographic data will help in the classification of stoppers and provide a perfect complement to sensory analyses. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Analyses of Indole Compounds in Sugar Cane (Saccharum officinarum L. Juice by High Performance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry after Solid-Phase Extraction

    Directory of Open Access Journals (Sweden)

    Jean Wan Hong Yong

    2017-03-01

    Full Text Available Simultaneous quantitative analysis of 10 indole compounds, including indole-3-acetic acid (IAA, one of the most important naturally occurring auxins and some of its metabolites, by high performance liquid chromatography (HPLC and liquid chromatography-mass spectrometry (LC-MS after solid-phase extraction (SPE was reported for the first time. The analysis was carried out using a reverse phase HPLC gradient elution, with an aqueous mobile phase (containing 0.1% formic acid modified by methanol. Furthermore, a novel SPE procedure was developed for the pre-concentration and purification of indole compounds using C18 SPE cartridges. The combination of SPE, HPLC, and LC-MS was applied to screen for the indole compounds present in sugar cane (Saccharum officinarum L. juice, a refreshing beverage with various health benefits. Finally, four indole compounds were successfully detected and quantified in sugar cane juice by HPLC, which were further unequivocally confirmed by LC-MS/MS experiments operating in the multiple reaction monitoring (MRM mode.

  12. Explanation od sudden temperature dependence of muon catalysis in solid deuterium

    CERN Document Server

    Gershtejn, S S

    2001-01-01

    It is indicated, that the elastic scattering of the d mu-meson atoms in the solid deuterium at sufficiently low temperatures (as well as of slow neutrons) occurs on the whole crystalline lattice practically without energy loss, and the inelastic collision with the phonon excitation is low.Therefore, the resonance formation of the dd mu-molecules in the solid deuterium takes place before the d mu mesoatoms thermalization and it explains practically observed independence of the dd mu-molecules formation rate and muon catalysis of the temperatures

  13. Long-Lived Correlated Triplet Pairs in a π-Stacked Crystalline Pentacene Derivative.

    Science.gov (United States)

    Folie, Brendan D; Haber, Jonah B; Refaely-Abramson, Sivan; Neaton, Jeffrey B; Ginsberg, Naomi S

    2018-02-14

    Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.

  14. All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. Application to M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) compounds.

    Science.gov (United States)

    Bernardes, Carlos E S; Canongia Lopes, José N; Minas da Piedade, Manuel E

    2013-10-31

    A previously developed OPLS-based all-atom force field for organometallic compounds was extended to a series of first-, second-, and third-row transition metals based on the study of M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) complexes. For materials that are solid at ambient temperature and pressure (M = Cr, Mo, W) the validation of the force field was based on reported structural data and on the standard molar enthalpies of sublimation at 298.15 K, experimentally determined by Calvet-drop microcalorimetry using samples corresponding to a specific and well-characterized crystalline phase: Δ(sub)H(m)° = 72.6 ± 0.3 kJ·mol(–1) for Cr(CO)(6), 73.4 ± 0.3 kJ·mol(–1) for Mo(CO)(6), and 77.8 ± 0.3 kJ·mol(–1) for W(CO)(6). For liquids, where problems of polymorphism or phase mixtures are absent, critically analyzed literature data were used. The force field was able to reproduce the volumetric properties of the test set (density and unit cell volume) with an average deviations smaller than 2% and the experimentally determined enthalpies of sublimation and vaporization with an accuracy better than 2.3 kJ·mol(–1). The Lennard-Jones (12-6) potential function parameters used to calculate the repulsive and dispersion contributions of the metals within the framework of the force field were found to be transferable between chromium, iron, and nickel (first row) and between molybdenum and ruthenium (second row).

  15. Distinct crystallinity and orientations of hydroxyapatite thin films deposited on C- and A-plane sapphire substrates

    Science.gov (United States)

    Akazawa, Housei; Ueno, Yuko

    2014-10-01

    We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.

  16. Solid-state amorphization in the Ni-Zr system investigated by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Bernal, M.J.; De La Cruz, R.M.; Leguey, T.; Pareja, R.; Riveiro, J.M.

    1995-01-01

    The process of mechanical alloying and amorphization of Ni-Zr powders is investigated by positron lifetime spectroscopy, X-ray diffraction and differential scanning calorimetry. The short-lived component of the lifetime spectra is composition and milling-time dependent. The second lifetime component, found during the initial stages of the milling process, appears to be due to annihilation from states trapped at crystalline interface joints. The results indicate that the solid-state reactions induced by ball milling involve the transformation and disappearance of the crystalline interface joints in the powder particles. (orig.)

  17. The hot-atom chemistry of crystalline chromates. Chapter 8

    International Nuclear Information System (INIS)

    Collins, C.H.; Collins, K.E.

    1979-01-01

    Chromates in general and potassium chromate in particular, have been attractive as compounds for hot-atom chemical study because of the favourable nuclear properties of chromium, the great thermal and radiation stability of the compounds, the apparent structural simplicity of the crystals and the presumed known and simple chemistry of the expected recoil products. A wealth of information has been accumulated over the past 25 years, from which the anticipation of a straightforward chemistry has given way to an expanding realization that these systems are actually quite complex. More solid-state hot-atom chemical studies have dealt with potassium chromate than with any other compound. Thus, a major fraction of this review is given to this compound. The emphasis is on recent literature and on the pesent views of phenomena which affect the chemical fate of recoil chromium atoms in chromates. Many other data are tabulated so that the interested reader can speculate independently on the results of a wide variety of experiments. (Auth.)

  18. The make up of crystalline bedrock - crystalline body and blocks

    International Nuclear Information System (INIS)

    Huber, M.; Huber, A.

    1986-01-01

    Statements of a geological nature can be made on the basis of investigations of the bedrock exposed in southern Black Forest and these can, in the form of prognoses, be applied to the crystalline Basement of northern Switzerland. Such statements relate to the average proportions of the main lithological groups at the bedrock surface and the surface area of the granite body. Some of the prognoses can be compared and checked with the results from the deep drilling programme in northern Switzerland. Further, analogical interferences from the situation in the southern Black Forest allow predictions to be made on the anticipated block structure of the crystalline Basement. (author)

  19. Solids, liquids, and gases under high pressure

    Science.gov (United States)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  20. Pengaruh Kecepatan Pendinginan Terhadap Perubahan Volume Leburan Polymer Crystalline dan Non-Crystalline

    OpenAIRE

    Fahrurrozi, Mohammad; Moristanto, Bagus Senowulung dan

    2003-01-01

    AbstractThe study was directed to develop a method to predict the influence of the rate of cooling to the degree of crystallittitv (DOC) and volume change of crystalline polymers. Crystalline polymer melts exhibit volume shrinkage on cooling below melting point due to crystallization. Crystallization and volunrc shrinkage will proceed with varies rate as long as the temperature is above the glass tansition temperatrre. DOC achieved by polymer is not only determined by the inherent crystallini...

  1. Crystallins are regulated biomarkers for monitoring topical therapy of glaucomatous optic neuropathy.

    Directory of Open Access Journals (Sweden)

    Verena Prokosch

    Full Text Available Optic nerve atrophy caused by abnormal intraocular pressure (IOP remains the most common cause of irreversible loss of vision worldwide. The aim of this study was to determine whether topically applied IOP-lowering eye drugs affect retinal ganglion cells (RGCs and retinal metabolism in a rat model of optic neuropathy. IOP was elevated through cauterization of episcleral veins, and then lowered either by the daily topical application of timolol, timolol/travoprost, timolol/dorzolamide, or timolol/brimonidine, or surgically with sectorial iridectomy. RGCs were retrogradely labeled 4 days prior to enucleation, and counted. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE, matrix-assisted laser desorption ionization mass spectrometry, Western blotting, and immunohistochemistry allowed the identification of IOP-dependent proteomic changes. Genomic changes were scrutinized using microarrays and qRT-PCR. The significant increase in IOP induced by episcleral vein cauterization that persisted until 8 weeks of follow-up in control animals (p<0.05 was effectively lowered by the eye drops (p<0.05. As anticipated, the number of RGCs decreased significantly following 8 weeks of elevated IOP (p<0.05, while treatment with combination compounds markedly improved RGC survival (p<0.05. 2D-PAGE and Western blot analyses revealed an IOP-dependent expression of crystallin cry-βb2. Microarray and qRT-PCR analyses verified the results at the mRNA level. IHC demonstrated that crystallins were expressed mainly in the ganglion cell layer. The data suggest that IOP and either topically applied antiglaucomatous drugs influence crystallin expression within the retina. Neuronal crystallins are thus suitable biomarkers for monitoring the progression of neuropathy and evaluating any neuroprotective effects.

  2. The Importance of Phonons with Negative Phase Quotient in Disordered Solids.

    Science.gov (United States)

    Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun

    2018-02-08

    Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.

  3. Studies in solid state ionics

    International Nuclear Information System (INIS)

    Jakes, D.; Rosenkranz, J.

    1987-01-01

    Studies performed over 10 years by the high temperature chemistry group are reviewed. Attention was paid to different aspects of ionic solids from the point of view of practical as well as theoretical needs of nuclear technology. Thus ceramic fuel compound like uranates, urania-thoria system, solid electrolytes based on oxides and ionics transformations were studied under reactor irradiation. (author) 13 figs., 3 tabs., 46 refs

  4. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    Science.gov (United States)

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  5. Crystallographic properties of fertilizer compounds

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  6. The quest for crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2002-01-01

    The phase transition of an ion beam into its crystalline state has long been expected to dramatically influence beam dynamics beyond the limitations of standard accelerator physics. Yet, although considerable improvement in beam cooling techniques has been made, strong heating mechanisms inherent to existing high-energy storage rings have prohibited the formation of the crystalline state in these machines up to now. Only recently, laser cooling of low-energy beams in the table-top rf quadrupole storage ring PAaul Laser cooLing Acceleration System (PALLAS) has lead to the experimental realization of crystalline beams. In this article, the quest for crystalline beams as well as their unique properties as experienced in PALLAS will be reviewed.

  7. Nitrogen in highly crystalline carbon nanotubes

    International Nuclear Information System (INIS)

    Ducati, C; Koziol, K; Stavrinadis, A; Friedrichs, S; Windle, A H; Midgley, P A

    2006-01-01

    Multiwall carbon nanotubes (MWCNTs) with an unprecedented degree of internal order were synthesised by chemical vapour deposition (CVD) adding a nitrogen-containing compound to the hydrocarbon feedstock. Ferrocene was used as the metal catalyst precursor. The remarkable crystallinity of these nanotubes lies both in the isochirality and in the crystallographic register of their walls, as demonstrated by electron diffraction and high resolution electron microscopy experiments. High resolution transmission electron microscopy analysis shows that the walls of the nanotubes consist of truncated stacked cones, instead of perfect cylinders, with a range of apex angles that appears to be related to the nitrogen concentration in the synthesis process. The structure of armchair, zigzag and chiral nanotubes is modelled and discussed in terms of density of topological defects, providing an interesting comparison with our microscopy experiments. A growth mechanism based on the interplay of base- and tip-growth is proposed to account for our experimental observations

  8. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    International Nuclear Information System (INIS)

    Lehtinen, Jenni; Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hänninen, Kari

    2013-01-01

    Highlights: ► Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ► VOC concentrations did not exceed occupational exposure limit concentrations. ► 2,3-Butanedione as the health effecting compound is discussed. ► Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m 3 which clearly exceeded the threshold value of 90 EU/m 3 . In the wheel loader cabin the endotoxin concentrations were below 1 EU/m 3 . High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m 3 , a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most problematic factor was

  9. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, Jenni, E-mail: jenni.k.lehtinen@jyu.fi [University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 Jyväskylä (Finland); Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hänninen, Kari [University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 Jyväskylä (Finland)

    2013-04-15

    Highlights: ► Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ► VOC concentrations did not exceed occupational exposure limit concentrations. ► 2,3-Butanedione as the health effecting compound is discussed. ► Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m{sup 3} which clearly exceeded the threshold value of 90 EU/m{sup 3}. In the wheel loader cabin the endotoxin concentrations were below 1 EU/m{sup 3}. High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m{sup 3}, a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most

  10. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology (Survey and research on practical application - Volume 1); 1999 nendo taiyoko hatsauden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu - 1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A 'Sub-committee for investigation of crystalline compound semiconductor solar cells' was established with the participation of experts from the industrial, bureaucratic, and academic circles to support the manufacture of ultrahigh-efficiency crystalline compound solar cells, and a survey was conducted about technical trends relating to III-V group compound solar cells. In the study of the trends and tasks of the state of the art technology, it is stated that the III-V group compound semiconductor multi-junction solar cell was steadily improving in efficiency, that the InGaP/GaAs 2-junction cell on a Ge substrate and InGaP/GaAs/Ge 3-junction cell in particular were moving toward mass production, and that the target for the 4-junction cell to achieve was 40% or higher in efficiency. For cost reduction, investigations were made into the heteroepitaxial technology, dimensional enlargement, mass production, raw material cost reduction, feasibility of the polycrystalline thin-film technology, light concentration, etc. For efficiency improvement, boundary layer control, structure designs, etc., were studied. Investigations were also conducted into nitride semiconductors, superlattice construction, etc., which related to new materials for thin films. TPV (thermophotovoltaic) power, etc., were reviewed for their practical application. (NEDO)

  11. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    Science.gov (United States)

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  12. Synthesis, characterization, and thermochemistry of the solid state coordination compound Zn(Nic){sub 2} . H{sub 2}O(s) (Nic = nicotinic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Di Youying [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong (China)], E-mail: yydi@lcu.edu.cn; Hong Yuanping; Kong Yuxia; Yang Weiwei [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong (China); Tan Zhicheng [Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2009-01-15

    A novel compound, viz. zinc nicotinate monohydrate, was synthesized by the method of room temperature solid phase synthesis. The techniques of FT-IR chemical and elemental analyses and X-ray powder diffraction were applied to characterise the structure and composition of the complex. In accordance with Hess' law, a thermochemical cycle was designed and the enthalpy change of the solid phase reaction of nicotinic acid with hydrated zinc acetate was determined to be {delta}{sub r}H{sub m}{sup 0}=(46.71{+-}0.21)kJ.mol{sup -1} by use of an isoperibol solution-reaction calorimeter. The standard molar enthalpy of formation of the title complex Zn(Nic){sub 2} . H{sub 2}O(s) was calculated as -(1062.3 {+-} 2.0) kJ . mol{sup -1} by use of the enthalpies of dissolution and other auxiliary thermodynamic data.

  13. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.J. [Department of Engineering Technology, College of Engineering and Engineering Technology, Northern Illinois University, 301B Still Gym, DeKalb, IL 60115 (United States); Hubaud, A.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Vaughey, J.T., E-mail: vaughey@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  14. Crystallinity of polyethylene in uni-axial extensional flow

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; van Drongelen, Martin; Mortensen, Kell

    Flow history of polymer melts in processing greatly influences the crystallinity and hence the solid properties of the final material. A wide range of polymer processes involve extensional flows e.g. fiber spinning, blow moulding etc. However, due to instrumental difficulties, experimental studies...... on polymer crystallization in controlled uniaxial extension are quite rare compared to studies of crystallization in shear. Inherently uniaxial extensional flows are strong and simple relative to shear flows, in the sense that chain stretch is easily obtained and that the molecules experience no tumbling...... such that crystallization from a stretched state can take place. In this work we explore this feature in the attempt to link the nonlinear extensional rheology to the final morphology. We investigate polyethylenes (PE) of various chain architectures and observe that, even for complex architectures like long chain branched...

  15. First-principles study of the amorphous In3SbTe2 phase change compound

    Science.gov (United States)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-11-01

    Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.

  16. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Masayoshi Yamamoto

    2014-01-01

    Full Text Available Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS, has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera, Tokushima (Ulva prolifera, and Ehime prefecture (Ulva linza. Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera and Tokushima prefecture (Ulva prolifera. Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum. Multivariant statistical analysis (PCA enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  17. Solid state crystallisation of oligosaccharide ester derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Elaine Ann

    2002-07-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-({beta}-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and {beta} = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores

  18. Solid state crystallisation of oligosaccharide ester derivatives

    International Nuclear Information System (INIS)

    Wright, Elaine Ann

    2002-01-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-(β-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2 1 2 1 2 1 with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and β = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores which allows diffusion of

  19. Sampling gaseous compounds from essential oils evaporation by solid phase microextraction devices

    Science.gov (United States)

    Cheng, Wen-Hsi; Lai, Chin-Hsing

    2014-12-01

    Needle trap samplers (NTS) are packed with 80-100 mesh divinylbenzene (DVB) particles to extract indoor volatile organic compounds (VOCs). This study compared extraction efficiency between an NTS and a commercially available 100 μm polydimethylsiloxane-solid phase microextration (PDMS-SPME) fiber sampler used to sample gaseous products in heated tea tree essential oil in different evaporation modes, which were evaporated respectively by free convection inside a glass evaporation dish at 27 °C, by evaporation diffuser at 60 °C, and by thermal ceramic wicks at 100 °C. The experimental results indicated that the NTS performed better than the SPME fiber samplers and that the NTS primarily adsorbed 5.7 ng ethylbenzene, 5.8 ng m/p-xylenes, 11.1 ng 1,2,3-trimethylbenzene, 12.4 ng 1,2,4-trimethylbenzene and 9.99 ng 1,4-diethylbenzene when thermal ceramic wicks were used to evaporate the tea tree essential oil during a 1-hr evaporation period. The experiment also indicated that the temperature used to heat the essential oils should be as low as possible to minimize irritant VOC by-products. If the evaporation temperature does not exceed 100 °C, the concentrations of main by-products trimethylbenzene and diethylbenzene are much lower than the threshold limit values recommended by the National Institute for Occupational Safety and Health (NIOSH).

  20. Enthalpies of vaporization of organometallic compounds

    International Nuclear Information System (INIS)

    Kuznetsov, N.T.; Sevast'yanov, V.G.; Mitin, V.A.; Krasnodubskaya, S.V.; Zakharov, L.N.; Domrachev, G.A.; AN SSSR, Gor'kij. Inst. Khimii)

    1987-01-01

    A possibility to use the method of additive schemes for the calculation of vaporizaton enthalpies of uranium organometallic compounds is discussed while comparing the values obtained using the method with experimental data. The possibility of apriori evaluation of evaporation enthalpy values of different uranium compounds using the method of additive schemes and structural characteristics of molecules, such as the sum of ligand solid angles, is shown

  1. Annual report 1983/1984. Division of Solid State Physics

    International Nuclear Information System (INIS)

    1984-10-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, as well as optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  2. Powder diffraction in structural characterization of ...

    Indian Academy of Sciences (India)

    Administrator

    scientists for studying the structure and microstruc- ture of crystalline solids. .... No specific colour brown habit, brown habit, dark red habit, brown habit, dark red ..... polymorphic modifications of this compound, where atom N14 will play a role ...

  3. Improved modeling of two-dimensional transitions in dense phases on crystalline surfaces. Krypton-graphite system.

    Science.gov (United States)

    Ustinov, E A

    2015-02-21

    This paper presents a refined technique to describe two-dimensional phase transitions in dense fluids adsorbed on a crystalline surface. Prediction of parameters of 2D liquid-solid equilibrium is known to be an extremely challenging problem, which is mainly due to a small difference in thermodynamic functions of coexisting phases and lack of accuracy of numerical experiments in case of their high density. This is a serious limitation of various attempts to circumvent this problem. To improve this situation, a new methodology based on the kinetic Monte Carlo method was applied. The methodology involves analysis of equilibrium gas-liquid and gas-solid systems undergoing an external potential, which allows gradual shifting parameters of the phase coexistence. The interrelation of the chemical potential and tangential pressure for each system is then treated with the Gibbs-Duhem equation to obtain the point of intersection corresponding to the liquid/solid-solid equilibrium coexistence. The methodology is demonstrated on the krypton-graphite system below and above the 2D critical temperature. Using experimental data on the liquid-solid and the commensurate-incommensurate transitions in the krypton monolayer derived from adsorption isotherms, the Kr-graphite Lennard-Jones parameters have been corrected resulting in a higher periodic potential modulation.

  4. Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres

    International Nuclear Information System (INIS)

    Bergamasco, Juliana; Araujo, Marcelo V. de; Vasconcellos, Adriano de; Luizon Filho, Roberto A.; Hatanaka, Rafael R.; Giotto, Marcus V.; Aranda, Donato A.G.; Nery, José G.

    2013-01-01

    Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg −1 ), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg −1 ). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23 Na- and 13 C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. Highlights: • Rhizomucor miehei lipase was immobilized on PVA microspheres (PVA4, PVA12, PVA25). • Polymer-enzyme complex was characterized by XDR, SEM, ATR-FTIR, 13 C-CPMAS-NMR, 23 Na-MAS-NMR. • Polymer-enzymes (PVA12 and PVA25) enzymes yielded considerable amount of ethyl esters. • Synergistic effect was observed for the polymer-enzyme complexes

  5. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  6. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures

    International Nuclear Information System (INIS)

    Guo Feng; Hu Hai-Quan; Zhang Hong; Cheng Xin-Lu

    2014-01-01

    To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC–DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra- and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter- and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C–H bond is observed in solid RDX, which may lead to further decomposition and even detonation. (condensed matter: structural, mechanical, and thermal properties)

  7. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML

    2013-10-01

    Full Text Available Mechanical alloying of an equiatomic mixture of crystalline elemental powders of Ti and Pt in a high-energy ball mill results in formation of an amorphous alloy by solid-state reactions. Mechanical alloying was carried out in an argon atmosphere...

  8. Effect of crystalline electric field on heat capacity of LnBaCuFeO5 (Ln = Gd, Ho, Yb)

    Science.gov (United States)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-02-01

    Structural, magnetic and thermodynamic properties of layered perovskite compounds LnBaCuFeO5 (Ln = Ho, Gd, Yb) have been investigated. Unlike the iso-structural compound YBaCuFeO5, which shows commensurate antiferromagnetic to incommensurate antiferromagnetic ordering below ∼200 K, the studied compounds do not show any magnetic transition in measured temperature range of 2-350 K. The high temperature heat capacity of the compounds is understood by employing contributions from both optical and acoustic phonons. At low temperature, the observed upturn in the heat capacity is attributed to the Schottky anomaly. The magnetic field dependent heat capacity shows the variation in position of the anomaly with temperature, which appears due to the removal of ground state degeneracy of the rare earth ions, by the crystalline electric field.

  9. Nanostructured polypyrrole for automated and electrochemically controlled in-tube solid-phase microextraction of cationic nitrogen compounds

    International Nuclear Information System (INIS)

    Asiabi, Hamid; Yamini, Yadollah; Rezaei, Fatemeh; Seidi, Shahram

    2015-01-01

    The authors describe an efficient method for microextraction and preconcentration of trace quantities of cationic nitrogen compounds, specifically of anilines. It relies on a combination of electrochemically controlled solid-phase microextraction and on-line in-tube solid-phase microextraction (SPME) using polypyrrole-coated capillaries. Nanostructured polypyrrole was electrically deposited on the inner surface of a stainless steel tube and used as the extraction phase. It also acts as a polypyrrole electrode that was used as a cation exchanger, and a platinum electrode that was used as the anode. The solution to be extracted is passed over the inner surface of the polypyrrole electrode, upon which cations are extracted by applying a negative potential under flow conditions. This method represents an ideal technique for SPME of protonated anilines because it is fast, easily automated, solvent-free, and inexpensive. Under optimal conditions, the limits of detection are in the 0.10–0.30 μg L -1 range. The method works in the 0.10 to 300 μg L -1 concentration range. The inter- and intra-assay precisions (RSD%; for n = 3) range from 5.1 to 7.5 % and from 4.7 to 6.0 % at the concentration levels of 2, 10 and 20 μg L -1 , respectively. The EC-in-tube SPME method was successfully applied to the analysis of methyl-, 4-chloro-, 3-chloro and 3,4-dichloroanilines in (spiked) water samples. (author)

  10. Unipolar time-differential charge sensing in non-dispersive amorphous solids

    International Nuclear Information System (INIS)

    Goldan, A. H.; Rowlands, J. A.; Tousignant, O.; Karim, K. S.

    2013-01-01

    The use of high resistivity amorphous solids as photodetectors, especially amorphous selenium, is currently of great interest because they are readily produced over large area at substantially lower cost compared to grown crystalline solids. However, amorphous solids have been ruled out as viable radiation detection media for high frame-rate applications, such as single-photon-counting imaging, because of low carrier mobilities, transit-time-limited photoresponse, and consequently, poor time resolution. To circumvent the problem of poor charge transport in amorphous solids, we propose unipolar time-differential charge sensing by establishing a strong near-field effect using an electrostatic shield within the material. For the first time, we have fabricated a true Frisch grid inside a solid-state detector by evaporating amorphous selenium over photolithographically prepared multi-well substrates. The fabricated devices are characterized with optical, x-ray, and gamma-ray impulse-like excitations. Results prove the proposed unipolar time-differential property and show that time resolution in non-dispersive amorphous solids can be improved substantially to reach the theoretical limit set by spatial spreading of the collected Gaussian carrier cloud.

  11. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  12. Optimization of the quantitative direct solid total-reflection X-ray fluorescence analysis of glass microspheres functionalized with Zr organometallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, Ramon, E-mail: ramon.fernandez@uam.e [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049, Madrid (Spain); Andres, Roman; Jesus, Ernesto de [Departamento de Quimica Inorganica, Universidad de Alcala, Campus Universitario, 28871, Alcala de Henares, Madrid (Spain); Terreros, Pilar [Instituto de Catalisis y Petroleo-Quimica, CSIC, Cantoblanco, 28049, Madrid (Spain)

    2010-06-15

    Quantitative determination of Zr in the system constituted by quartz microspheres functionalized with two kinds of organometallic compounds has been studied due to the importance of the correct quantization of the Zr from a catalytic point of view. Two parallel approximations were done, i.e. acid leaching and direct solid quantization. To validate the acid leaching TXRF measures, ICP-MS analysis were carried out. The results obtained by means of the optimization of the quantitative direct solid procedure show that, with a previous particle size distribution modification, TXRF obtain the same analytical results as ICP-MS and TXRF by acid leaching way but without previous chemical acid manipulation. This fact implies an important improvement for the analysis time, reagents costs and analysis facility and it proves again the versatility of TXRF to solve analytical problems in an easy, quick and accurate way. Additionally and for the direct solid TXRF measurements, a deeper study was done to evaluate the intrinsic analytical parameters of the Zr TXRF analysis of this material. So, the influence of the particle size distributions (modified by means of a high power ultrasound probe) with respect to uncertainty and detection limits for Zr were developed. The main analytical conclusion was the strong correlation between the average particle sizes and the TXRF analytical parameters of Zr measurements, i.e. concentration, accuracy, uncertainty and detection limits.

  13. The Influence of Surface Anisotropy Crystalline Structure on Wetting of Sapphire by Molten Aluminum

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2013-05-01

    The wetting of sapphire by molten aluminum was investigated by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) at PO2 <10-15 Pa under Ar atmosphere. This study focuses on sapphire crystalline structure and its principle to the interface. The planes " a" and " b" are oxygen terminated structures and wet more by Al, whereas the " c" plane is an aluminum terminated structure. A wetting transition at 1273 K (1000 °C) was obtained and a solid surface tension proves the capillarity trends of the couple.

  14. Determination of phases of {alpha} - Fe{sub 2}O{sub 3}: SiO{sub 2} compound by the Rietveld refinement

    Energy Technology Data Exchange (ETDEWEB)

    Palomares S, S.A. [Istituto Materiali Speciali per Elettronica e Magnetismo (MASPEC), Parco Area delle Scienze 37A-43010 Loc. Fontanni, Parma (Italy); Ponce C, S.; Martinez, J.R. [Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, 78000 San Luis Potosi (Mexico); Ruiz, F. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Av. V. Carranza 2025, San Luis Potosi (Mexico)

    2002-07-01

    We use a variation of the Rietveld refinement method to calculate the amorphous content of composites formed by a silica xerogel amorphous matrix and iron particles embedded into. In order to apply the Rietveld refinement to amorphous structures an initial crystalline model is assumed with the same composition as the material to be modelled. In this work we try to refine the structure of compounds using the program MAUD. It is shown how this program can be used to determine the amorphous and crystalline fractions in composites consisting of an amorphous matrix and incorporated iron oxide particles. The analysed compounds underwent different thermal treatments. (Author)

  15. Solid-state 13C magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic nanodiamonds

    International Nuclear Information System (INIS)

    Alam, Todd M.

    2004-01-01

    Solid-state 13 C magic angle spinning (MAS) NMR spectroscopy has been used to quantify the different carbon species observed in synthetically produced nanodiamonds. Two different diamond-like carbon species were observed using 13 C MAS NMR, which have been attributed to a highly ordered crystalline diamond phase and a disordered crystalline diamond phase. The relative ratio of these different diamond phases was found to vary with the particle size of the nanodiamond materials

  16. Micelle assisted thin-film solid phase microextraction: a new approach for determination of quaternary ammonium compounds in environmental samples.

    Science.gov (United States)

    Boyacı, Ezel; Pawliszyn, Janusz

    2014-09-16

    Determination of quaternary ammonium compounds (QACs) often is considered to be a challenging undertaking owing to secondary interactions of the analytes' permanently charged quaternary ammonium head or hydrophobic tail with the utilized labware. Here, for the first time, a micelle assisted thin-film solid phase microextraction (TF-SPME) using a zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) as a matrix modifier is introduced as a novel approach for in-laboratory sample preparation of the challenging compounds. The proposed micelle assisted TF-SPME method offers suppression/enhancement free electrospray ionization of analytes in mass spectrometric detection, minimal interaction of the micelles with the TF-SPME coating, and chromatographic stationary phase and analysis free of secondary interactions. Moreover, it was found that the matrix modifier has multiple functions; when its concentration is found below the critical micelle concentration (CMC), the matrix modifier primarily acts as a surface deactivator; above its CMC, it acts as a stabilizer for QACs. Additionally, shorter equilibrium extraction times in the presence of the modifier demonstrated that micelles also assist in the transfer of analytes from the bulk of the sample to the surface of the coating. The developed micelle assisted TF-SPME protocol using the 96-blade system requires only 30 min of extraction and 15 min of desorption. Together with a conditioning step (15 min), the entire method is 60 min; considering the advantage of using the 96-blade system, if all the blades in the brush are used, the sample preparation time per sample is 0.63 min. Moreover, the recoveries for all analytes with the developed method were found to range within 80.2-97.3%; as such, this method can be considered an open bed solid phase extraction. The proposed method was successfully validated using real samples.

  17. Synthesis, characterization, and properties of peroxo-based oxygen-rich compounds for potential use as greener high energy density materials

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha Horadugoda

    ,4,6-trinitrobenzoperoxoic acid (7885 m/s) is close to the detonation velocity of the secondary high explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Peroxy acids have surprisingly low impact and friction sensitivities that are well below the known peroxo-based explosives TATP, DADP, HMTD, and MEKP. Based on the crystal structure of 3,5-dinitrobenzoperoxoic acid, the low sensitivities can be attributed to the stabilization of the weak O--O bonds in the crystalline lattice by O--H•••O hydrogen bonds and O•••O short contacts. These are the first peroxo-based oxygen-rich compounds that can be useful as secondary HEDMs. The ease of synthesis in high yields with minimum synthetic manipulations, storability, and high thermal stabilities are all advantageous properties of peroxy acids for their use as HEDMs. Through this work, we have gained a wealth of fundamental information about the structures and energetic materials properties of a large family of peroxo-based compounds. Solid state intermolecular interactions were useful to understand the impact and friction sensitivities. The safe peroxy O:C ratio was found to be approximately 1.00. However, the oxygen contents could be further increased with more stable nitro and hydroxy groups. Highly attractive low sensitivity peroxo-based compounds were obtained with impressive detonation performances for potential use as greener primary and secondary HEDMs.

  18. Oxidative Stress Biomarkers in Exhaled Breath of Workers Exposed to Crystalline Silica Dust by SPME-GC-MS.

    Science.gov (United States)

    Jalali, Mahdi; Zare Sakhvidi, Mohammad Javad; Bahrami, Abdulrahman; Berijani, Nima; Mahjub, Hussein

    2016-01-01

    Silicosis is considered an oxidative stress related disease that can lead to the development of lung cancer. In this study, our purpose was to analysis of volatile organic compounds (VOCs) in the exhaled breath of workers exposed to silica containing dust and compare peak area of these compounds with silicosis patients and healthy volunteers (smokers and nonsmokers) groups. In this cross sectional case-control study, the exhaled breath of 69 subjects including workers exposed to silica (n=20), silicosis patient (n=4), healthy non-smoker (n=20) and healthy smoker (n=25) were analyzed. We collected breath samples using 3-liter Tedlar bags. The VOCs were extracted with solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). Personal exposure intensity was measured according to NIOSH 7601 method. Respiratory parameters were measured using spirometry. Seventy percent and 100% of the exposures to crystalline silica dust exceeded from 8 h TWA ACGIH TLVs in case and positive control groups, respectively. A significant negative correlation was found between dust exposure intensity and FEV1/FVC when exposure and positive control groups were studied in a group (r2=-0.601, P<0.001). Totally, forty VOCs were found in all exhaled breath samples. Among the VOCs, the mean of peak area acetaldehyde, hexanal, nonanal, decane, pentad cane, 2-propanol and 3-hydroxy-2-butanone were higher in exhaled breath of the workers exposed to silica and silicosis patient compared to the healthy smoker and nonsmoker controls. In some cases the difference was significant (P<0.05). The analysis of some VOCs in exhaled breath of subjects is appropriate biomarker to determine of exposure to silica.

  19. Nanoscale formation of new solid-state compounds by topochemical effects: The interfacial reactions ZnO with Al2O3 as a model system

    International Nuclear Information System (INIS)

    Pin, Sonia; Ghigna, Paolo; Spinolo, Giorgio; Quartarone, Eliana; Mustarelli, Piercarlo; D'Acapito, Francesco; Migliori, Andrea; Calestani, Gianluca

    2009-01-01

    The chemical reactivity of thin layers (ca. 10 nm thick) of ZnO deposited onto differently oriented Al 2 O 3 single crystals has been investigated by means of atomic force microscopy inspections and X-ray absorption spectroscopy at the Zn-K edge. The (0001) ZnO -parallel (112-bar0) sapphire interface yields the ZnAl 2 O 4 spinel and a quite stable film morphology. Instead, the (112-bar0) ZnO -parallel (11-bar02) sapphire and (0001) ZnO -parallel (0001) sapphire interfaces give origin to a new compound (or, possibly, even two new compounds), whose chemical nature is most likely that of a ZnO/Al 2 O 3 phase, with still unknown composition and crystal structure. In addition, in the last two cases, films collapse into prismatic twins of ca. 1 μm in dimension. These experimental findings demonstrate that in a solid-state reaction, the topotactical relationships between the reacting solids are of crucial importance not only in determining the kinetic and mechanisms of the process in its early stages, but even the chemical nature of the product. - Graphical abstract: EXAFS Fourier transforms and morphology of different reactive interfaces between ZnO and Al 2 O 3 .

  20. neutron transmission through crystalline materials

    International Nuclear Information System (INIS)

    El Mesiry, M.S.

    2011-01-01

    The aim of the present work is to study the neutron transmission through crystalline materials. Therefore a study of pyrolytic graphite (PG) as a highly efficient selective thermal neutron filter and Iron single crystal as a whole one, as well as the applicability of using their polycrystalline powders as a selective cold neutron filters is given. Moreover, the use of PG and iron single crystal as an efficient neutron monochromator is also investigated. An additive formula is given which allows calculating the contribution of the total neutron cross-section including the Bragg scattering from different )(hkl planes to the neutron transmission through crystalline iron and graphite. The formula takes into account their crystalline form. A computer CFe program was developed in order to provide the required calculations for both poly- and single-crystalline iron. The validity of the CFe program was approved from the comparison of the calculated iron cross-section data with the available experimental ones. The CFe program was also adapted to calculate the reflectivity from iron single crystal when it used as a neutron monochromator The computer package GRAPHITE, developed in Neutron Physics laboratory, Nuclear Research Center, has been used in order to provide the required calculations for crystalline graphite in the neutron energy range from 0.1 meV to 10 eV. A Mono-PG code was added to the computer package GRAPHITE in order to calculate the reflectivity from PG crystal when it used as a neutron monochromator.

  1. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins.

    Science.gov (United States)

    Grohe, Kristof; Movellan, Kumar Tekwani; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2017-05-01

    We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1 H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.

  2. Contribution to the study of chlorine, fluorine and oxygen compounds

    International Nuclear Information System (INIS)

    Barberi, Paul.

    1976-09-01

    The combustion heat of excess hydrogen in chloro fluoride compounds ClF, ClF 3 , ClF 5 and oxychloro fluoride compounds O 2 ClF, O 3 ClF, OClF 3 were determined in an original bomb calorimeter. This apparatus which can work at temperature up to 473K and under 10 atmospheres pressure as two compartments and high frequency electric spark ignition. The enthalpies of formation and bond energies are calculated. The temperature and enthalpies of the solid/solid and solid/liquid transformations were determined with a differential micro-calorimeter, of the fluxmeter type (M.C.B.) (sensibility 70μV detector/mW.cell, temperature range 80-1000K, maximal pressure 15 atmospheres) [fr

  3. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  4. The Effect of Alkaline Concentration on Coconut Husk Crystallinity and the Yield of Sugars Released

    Science.gov (United States)

    Sangian, H. F.; Widjaja, A.

    2018-02-01

    This work was to analyze the effect of alkaline concentration on coconut coir husk crystallinity and sugar liberated enzymatically. The data showed that the employing of alkaline on lignocellulose transformed the crystallinity. The XRD peaks increased highly which indicated that cellulose was more opened and exposed. After pretreatment, the chemical compositions (cellulose, hemicellulose, and lignin) were changed significantly. The employing 1% alkaline, the cellulosic content inclined if compared to that of non-pretreatment. When the alkaline concentration was added to 4%, the cellulose was decreased slightly which indicated that a part of cellulose and hemicellulose was dissolved into solution. It was found the alkaline pretreatment influenced by the biochemical reaction of treated substrates in producing the reducing sugars. The amounts of sugar liberated enzymatically of coconut husk treated by 1% and 4% alkaline increased to 0.26, and 0.24 g sugar/g (cellulose+hemicellulose), respectively, compared to that of native solid recorded at 0.18 g sugar/g (cellulose+hemicellulose).

  5. Elucidation and visualization of solid-state transformation and mixing in a pharmaceutical mini hot melt extrusion process using in-line Raman spectroscopy.

    Science.gov (United States)

    Van Renterghem, Jeroen; Kumar, Ashish; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; Vander Heyden, Yvan; De Beer, Thomas

    2017-01-30

    Mixing of raw materials (drug+polymer) in the investigated mini pharma melt extruder is achieved by using co-rotating conical twin screws and an internal recirculation channel. In-line Raman spectroscopy was implemented in the barrels, allowing monitoring of the melt during processing. The aim of this study was twofold: to investigate (I) the influence of key process parameters (screw speed - barrel temperature) upon the product solid-state transformation during processing of a sustained release formulation in recirculation mode; (II) the influence of process parameters (screw speed - barrel temperature - recirculation time) upon mixing of a crystalline drug (tracer) in an amorphous polymer carrier by means of residence time distribution (RTD) measurements. The results indicated a faster mixing endpoint with increasing screw speed. Processing a high drug load formulation above the drug melting temperature resulted in the production of amorphous drug whereas processing below the drug melting point produced solid dispersions with partially amorphous/crystalline drug. Furthermore, increasing the screw speed resulted in lower drug crystallinity of the solid dispersion. RTD measurements elucidated the improved mixing capacity when using the recirculation channel. In-line Raman spectroscopy has shown to be an adequate PAT-tool for product solid-state monitoring and elucidation of the mixing behavior during processing in a mini extruder. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Magnetomechanical coupling in thermal amorphous solids

    Science.gov (United States)

    Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar

    2018-05-01

    Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.

  7. Deuteron NMR and modelling in solid polymers

    International Nuclear Information System (INIS)

    Hirschinger, J.

    1992-01-01

    Deuteron NMR techniques are described and some recent applications to the study of rotational motions in solid polymers are reviewed. The information content and the domain of applicability of each technique are presented. Ultra-slow motions are studied in real time without any motional model consideration. For very fast motions, computer molecular dynamics simulations are shown to complement the NMR results. Experimental examples deal with the chain motion in the crystalline α-phase of poly(vinylidenefluoride) and nylon 6,6

  8. An Investigation of X-ray Luminosity versus Crystalline Powder Granularity

    Energy Technology Data Exchange (ETDEWEB)

    Borade, Ramesh; Bourret-Courchesne, Edith; ,

    2012-03-07

    At the High-throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a "full-size" scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi{sub 4}Ge{sub 3}O{sub 12} (BGO), Lu{sub 2}SiO{sub 5}:Ce (LSO), YAlO{sub 3}:Ce (YAP:Ce), and CsBa{sub 2}I{sub 5}:Eu{sup 2+} (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-{micro}m crystal grain sizes for BGO and LSO, for 310- to 600-{micro}m crystal grain sizes for CBI, and for crystal grains larger than 165{micro}m for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000- {micro}m crystal grain size range down to the 20- to 36-{micro}m range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-{micro}m crystal grains to the 20- to 36-{micro}m range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-{micro}m crystal grain range to the 36- to 50-{micro}m range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 {micro}m.

  9. An investigation of X-ray luminosity versus crystalline powder granularity

    International Nuclear Information System (INIS)

    Janecek, Martin; Borade, Ramesh; Bourret-Courchesne, Edith; Derenzo, Stephen E.

    2011-01-01

    At the High-Throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a “full-size” scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi 4 Ge 3 O 12 (BGO), Lu 2 SiO 5 :Ce 3+ (LSO), YAlO 3 :Ce 3+ (YAP:Ce), and CsBa 2 I 5 :Eu 2+ (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-μm crystal grain sizes for BGO and LSO, for 310- to 600-μm crystal grain sizes for CBI, and for crystal grains larger than 165 μm for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000-μm crystal grain size range down to the 20- to 36-μm range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-μm crystal grains to the 20- to 36-μm range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-μm crystal grain range to the 36- to 50-μm range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 μm.

  10. Ultrasound-Assisted Extraction of Total Phenolic Compounds from Inula helenium

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2013-01-01

    Full Text Available Ultrasound-assisted extraction (UAE of phenolic compounds from Inula helenium was studied. Effects of ethanol concentration, ultrasonic time, solid-liquid ratio, and number of extractions were investigated. An orthogonal array was constructed to optimize UAE process. The optimized extraction conditions were as follows: ethanol concentration, 30%; solid-liquid ratio, 1 : 20; number of extractions, 2 times; extraction time, 30 min. Under the optimal conditions, the yield of total phenolic compounds and chlorogenic acid was 6.13±0.58 and 1.32±0.17 mg/g, respectively. The results showed that high amounts of phenolic compounds can be extracted from I. helenium by ultrasound-assisted extraction technology.

  11. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  12. Phase equilibria and crystalline structure of compounds in the Lu-Al and Lu-Cu-Al systems

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Stel'makhovich, B.M.; Galamushka, L.I.

    1992-01-01

    Phase equilibria and crystal structure of compounds in Lu-Al and Lu-Cu-Al systems were studied. Existence of Lu 2 Al compound having the structure of the PbCl 2 type is ascertained. Diagram of phase equilibria of Lu-Cu-Al system at 870 K is plotted. Compounds Lu 2 (Cu,Al) 17 (the Th 2 Zn 17 type structure), Lu(Cu,Al) 5 (CaCu 5 type structure), Lu 6 (Cu,Al) 23 (Th 6 Mn 23 type structure) and ∼ LuCuAl 2 have been prepared for the first time. Investigation of component interaction in Lu-Cu-Al system shows that the system is similar to previously studied systems Dy-Cu-Al and Er-Cu-Al. The main difference consists in the absence of LuCuAl 3 compound with rhombic structure of the CeNi 2+x Sb 2-x type in the system investigated

  13. Crystallinity in starch plastics: consequences for material properties

    NARCIS (Netherlands)

    Soest, van J.J.G.; Vliegenthart, J.F.G.

    1997-01-01

    The processing of starches with biodegradable additives has made biodegradable plastics suitable for a number of applications. Starch plastics are partially crystalline as a result of residual crystallinity and the recrystallization of amylose and amylopectin. Such crystallinity is a key determinant

  14. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    Science.gov (United States)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  15. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun

    2015-02-11

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  16. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  17. Electron polarizability of crystalline solids in quantizing magnetic fields and topological gap numbers

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Jonckheere, T.; Martin, T.

    2008-01-01

    Roč. 100, - (2008), 146804/1-146804/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0365 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron polarizability * quantum Hall effect * topological numbers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  18. Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-03-01

    Full Text Available Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid (SSA and Cs2.5H0.5PW12O40 supported on K10 clay (Cs2.5/K10, 30 wt. %. These compounds include phenol, water, acetic acid, acetaldehyde, hydroxyacetone, d-glucose and 2-hydroxymethylfuran. Mechanisms for the overall conversions were proposed. Other olefins (1,7-octadiene, cyclohexene, and 2,4,4-trimethylpentene and alcohols (iso-butanol with different activities were also investigated. All the olefins and alcohols used were effective but produced varying product selectivities. A complex model bio-oil, synthesized by mixing all the above-stated model compounds, was refined under similar conditions to test the catalyst’s activity. SSA shows the highest hydrothermal stability. Cs2.5/K10 lost most of its activity. A global reaction pathway is outlined. Simultaneous and competing esterification, etherfication, acetal formation, hydration, isomerization and other equilibria were involved. Synergistic interactions among reactants and products were determined. Acid-catalyzed olefin hydration removed water and drove the esterification and acetal formation equilibria toward ester and acetal products.

  19. Plastic deformation of solids viewed as a self-excited wave process

    International Nuclear Information System (INIS)

    Zuev, L.B.; Danilov, V.I.

    1998-01-01

    A self-excited wave model of plastic flow in crystalline solids is proposed. Experimental data on plastic flow in single crystals and polycrystalline solids involving different mechanisms have been correlated. The main types of strain localization in the materials investigated have been established and correlated with the respective stages of plastic flow curves. The best observing conditions have been defined for the major types of autowaves emerging by plastic deformation. The synergetic concepts of self-organization are shown to apply to description of plastic deformation. Suggested is a self-excited wave model of plastic flow in materials with different mechanisms of deformation. (orig.)

  20. Solid phase extraction of hydroxyaromatic compounds from aquatic environment

    Directory of Open Access Journals (Sweden)

    P. T. Sukhanov

    2012-01-01

    Full Text Available The dependence of extraction parameters of hydroxyaromatic compounds on sort of polyurethane foam, nature and composition of solution deposited on a polymer foam, content of inorganic salt in solution.

  1. Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China

    DEFF Research Database (Denmark)

    Guo, Hanwen; Duan, Zhenhan; Zhao, Yan

    2017-01-01

    Transfer station, incineration plant, and landfill site made up the major parts of municipal solid waste disposal system of S city in Eastern China. Characteristics of volatile compounds (VCs) and odor pollution of each facility were investigated from a systematic perspective. Also major index...... in the waste tipping port of the incineration plant. A positive correlation between the olfactory and chemical odor concentrations was found with R2 = 0.918 (n = 15, P technology to deal...... with the non-source-separated waste. Strong attention thus needs to be paid on the enclosed systems in incineration plant to avoid any accidental odor emission....

  2. Preparation of solid-state samples of a transition metal coordination compound for synchrotron radiation photoemission studies

    CERN Document Server

    Crotti, C; Celestino, T; Fontana, S

    2003-01-01

    The aim of this research was to identify a sample preparation method suitable for the study of transition metal complexes by photoemission spectroscopy with synchrotron radiation as the X-ray source, even in the case where the compound is not evaporable. Solid-phase samples of W(CO) sub 4 (dppe) [dppe=1,2-bis(diphenylphosphino)ethane] were prepared according to different methods and their synchrotron radiation XPS spectra measured. The spectra acquired from samples prepared by spin coating show core level peaks only slightly broader than the spectrum recorded from UHV evaporated samples. Moreover, for these samples the reproducibility of the binding energy values is excellent. The dependence of the spin coating technique on parameters such as solvent and solution concentration, spinning speed and support material was studied. The same preparation method also allowed the acquisition of valence band spectra, the main peaks of which were clearly resolved. The results suggest that use of the spin coating techniqu...

  3. Computer-learning methods in forecasting crystalline phases in ternary systems containing group V elements

    Energy Technology Data Exchange (ETDEWEB)

    Kiseleva, N.N.; Burkhanov, G.S.

    1988-05-01

    New ABC compounds have been forecast as having structures of TiNiSi, ZrNiAl, MgAgAs and PbFCl types, while AB/sub 2/C/sub 2/ ones have structures of ThCr/sub 2/Si/sub 2/ and CaAl/sub 2/Si/sub 2/ (C = P, As, Sb, or Bi, while A and B are metals or semimetals). Only the fundamental properties of the elements are used. Cybernetic methods and computer training are effective in forecasting new crystalline phases.

  4. Phase relations in crystalline ceramic nuclear waste forms the system UO/sub 2 + x/-CeO2-ZrO2-ThO2 at 12000C in air

    International Nuclear Information System (INIS)

    Pepin, J.G.; McCarthy, G.J.

    1981-01-01

    Steady-state phase relations in the system UO/sub 2 + x/-CeO 2 -ZrO 2 -ThO 2 were determined for application to phase relations in the high-level crystalline ceramic nuclear waste form Supercalcine-Ceramics. Samples were treated at 1200 0 C at an oxygen partial pressure of 0.21 atm and a total pressure of 1 atm. Phase assemblages were found to be composed of cubic solid solutions of the flourite structure type, solid solutions based on ZrO 2 , and orthorhombic solid solutions based on U 3 O 8

  5. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  6. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  7. Synthesis of f metal coordination polymers: properties and conversion into inorganic solids

    International Nuclear Information System (INIS)

    Demars, Thomas

    2012-01-01

    Coordination polymers (CP) are of great academic and industrial interest due to flexible structure and composition and offer prospects for original chemical (catalysis, soft-hard materials conversion..) and physical properties (magnetism, optics..). The major interest of these studies is to check the transfer of the structure, meso-structure and composition from the CP to the ceramic via a thermal treatment. In this context, this thesis describes studies on conversion of coordination polymers obtained by self-assembly of 4f and 5f metal ions with 2,5-dihydroxy-1,4-benzoquinone (DHBQ). Aqueous and anhydrous synthetic ways were developed, which yielded different kinds of CPs (4f, 4f-4f, 4f-5f); solid solutions were obtained with the mixed compounds. The products were characterized and their behaviour under thermal treatment was studied. The main results show that the DHBQ-based precursors obtained by aqueous way have a micrometric meso-structure, formed by the assembly of micro-crystalline subunits which all posses the same crystallographic structure. The study of the assembly of the meso-structure allowed controlling the morphology of the elementary grain (cylinder, cube, disk...) with very good size distribution. The implementation of anhydrous systems in a controlled atmosphere allowed yielded a wider range of micro-structural parameters (surface area, porosity...). For all CP-type compounds, the thermal conversion to ceramic has barely altered the morphology of the materials. The microstructural aspects could be controlled via the method of synthesis. (author) [fr

  8. Determination of structure of oriented samples using two-dimensional solid state NMR techniques

    International Nuclear Information System (INIS)

    Jin Hong; Harbison, G.S.

    1990-01-01

    One dimensional and two-dimensional MAS techniques can give detailed information about the structure and dynamics of oriented systems. We describe the application of such techniques to the liquid-crystalline polymer poly(p-phenyleneterphtalimide) (PPTA), and thence deduce the solid-state structure of the material. (author). 9 refs.; 6 figs

  9. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  10. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    International Nuclear Information System (INIS)

    Smith, Alan M.; Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L.; Grover, Liam M.

    2015-01-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity

  11. Nuclear solid-state research at the FR2

    International Nuclear Information System (INIS)

    Heger, G.; Weitzel, H.

    1979-12-01

    This volume reports on the scientific investigations carried out by external users of the FR 2 research reactor between mid-1978 and mid-1979. Subjects of investigation were the structure of crystalline materials, problems of hydrogen bonds, electron density distributions and structural phase transitions. Plastic phases and supenion conductors, in particular, were studied at high temperatures. Apart from investigations of magnetic structures of solid, particular emphasis is laid on the critical phenomena during magnetic phase transitions. (GSCH) [de

  12. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    Directory of Open Access Journals (Sweden)

    Omed Gh. Abdullah

    Full Text Available Solid polymer electrolyte films of polyvinyl alcohol (PVA doped with a different weight percent of potassium permanganate (KMnO4 were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content. Keywords: Solid polymer electrolyte, XRD analysis, FTIR study, Optical band gap, Dielectric constant, Refractive index

  13. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  14. Mechanical dispersion in fractured crystalline rock systems

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m

  15. Solid phase crystallisation of HfO2 thin films

    International Nuclear Information System (INIS)

    Modreanu, M.; Sancho-Parramon, J.; O'Connell, D.; Justice, J.; Durand, O.; Servet, B.

    2005-01-01

    In this paper, we report on the solid phase crystallisation of carbon-free HfO 2 thin films deposited by plasma ion assisted deposition (PIAD). After deposition, the HfO 2 films were annealed in N 2 ambient for 3 h at 350, 550 and 750 deg. C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and atomic force microscopy (AFM) were used for the physical characterisation of as-deposited and annealed HfO 2 . XRD has revealed that the as-deposited HfO 2 film is in an amorphous-like state with only traces of crystalline phase and that the annealed films are in a highly crystalline state. These results are in good agreement with the SE results showing an increase of refractive index by increasing the annealing temperature. XRR results show a significant density gradient over the as-deposited film thickness, which is characteristic of the PIAD method. The AFM measurements show that the HfO 2 layers have a smooth surface even after annealing at 750 deg. C. The present study demonstrates that the solid phase crystallisation of HfO 2 PIAD thin films starts at a temperature as low as 550 deg. C

  16. Study of compounds emitted during thermo-oxidative decomposition of polyester fabrics

    Directory of Open Access Journals (Sweden)

    Dzięcioł Małgorzata

    2016-03-01

    Full Text Available Compounds emitted during thermo-oxidative decomposition of three commercial polyester fabrics for indoor outfit and decorations (upholstery, curtains were studied. The experiments were carried out in a flow tubular furnace at 600°C in an air atmosphere. During decomposition process the complex mixtures of volatile and solid compounds were emitted. The main volatile products were carbon oxides, benzene, acetaldehyde, vinyl benzoate and acetophe-none. The emitted solid compounds consisted mainly of aromatic carboxylic acids and its derivatives, among which the greatest part took terephthalic acid, monovinyl terephthalate and benzoic acid. The small amounts of polycyclic aromatic hydrocarbons were also emitted. The emission profiles of the tested polyester fabrics were similar. The presence of toxic compounds indicates the possibility of serious hazard for people during fire.

  17. Crystallinity and mechanical effects from annealing Parylene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Nathan, E-mail: Nathan.Jackson@tyndall.ie [Tyndall National Institute, University College Cork, Cork (Ireland); Stam, Frank; O' Brien, Joe [Tyndall National Institute, University College Cork, Cork (Ireland); Kailas, Lekshmi [University of Limerick, Limerick (Ireland); Mathewson, Alan; O' Murchu, Cian [Tyndall National Institute, University College Cork, Cork (Ireland)

    2016-03-31

    Parylene is commonly used as thin film polymer for MEMS devices and smart materials. This paper investigates the impact on bulk properties due to annealing various types of Parylene films. A thin film of Parylene N, C and a hybrid material consisting of Parylene N and C were deposited using a standard Gorham process. The thin film samples were annealed at varying temperatures from room temperature up to 300 °C. The films were analyzed to determine the mechanical and crystallinity effects due to different annealing temperatures. The results demonstrate that the percentage of crystallinity and the full-width-half-maximum value on the 2θ X-ray diffraction scan increases as the annealing temperature increases until the melting temperature of the Parylene films was achieved. Highly crystalline films of 85% and 92% crystallinity were achieved for Parylene C and N respectively. Investigation of the hybrid film showed that the individual Parylene films behave independently to each other, and the crystallinity of one film had no significant impact to the other film. Mechanical testing showed that the elastic modulus and yield strength increase as a function of annealing, whereas the elongation-to-break parameter decreases. The change in elastic modulus was more significant for Parylene C than Parylene N and this is attributed to the larger change in crystallinity that was observed. Parylene C had a 112% increase in crystallinity compared to a 61% increase for Parylene N, because the original Parylene N material was more crystalline than Parylene C so the change of crystallinity was greater for Parylene C. - Highlights: • A hybrid material consisting of Parylene N and C was developed. • Parylene N has greater crystallinity than Parylene C. • Phase transition of Parylene N due to annealing results in increased crystallinity. • Annealing caused increased crystallinity and elastic modulus in Parylene films. • Annealed hybrid Parylene films crystallinity behave

  18. Local order dynamics: its application to the study of atomic mobility, of point defects in crystalline alloys, and of structural relaxation in amorphous alloys

    International Nuclear Information System (INIS)

    Balanzat, Emmanuel

    1983-01-01

    This research thesis addressed the study of the atomic mobility mechanism and of the atom movement dynamics in the case of crystalline alloys and of amorphous alloys. The first part is based on a previous study performed on an α-Cu 70 -Zn 30 crystalline alloy, and addresses the case of an α-Au 70 -Ni 30 alloy. The specificity of this case relies in the fact that the considered solid solution is metastable and susceptible to de-mixing in the considered temperature range. This case of off-equilibrium crystalline alloy is at the crossroad between steady crystalline alloys and metallic glasses which are studied in the second part. The third part addresses the irradiation of metallic amorphous alloys by fast particles (neutrons or electrons). The author tried to characterise atomic defects induced by irradiation and to compare them with pre-existing ones. He studied how these defects may change atomic mobility, and, more generally, to which extent the impact of energetic particles could modify local order status

  19. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    DEFF Research Database (Denmark)

    Nielsen, Thomas Eiland

    2009-01-01

    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...... with significant structural complexity and diversity. This review describes some of the most systematic solid-phase approaches that are potentially suited for pharmaceutical applications, that is, the methods described are useful for the synthesis of compound collections, and exhibit tunable stereochemistry...

  20. Electron beam-induced Fries rearrangement of arylsulfonamides and arylsulfonates in the crystalline state

    International Nuclear Information System (INIS)

    Kato, Jun; Yuasa, Kanako; Yamashita, Takashi; Maekawa, Yasunari; Yoshida, Masaru

    2003-01-01

    Electron beam (EB)-induced reactions of organic crystals containing a carbonyl or a sulfonyl group have been investigated. The EB irradiation of benzenesulfonanilide (BSA) in the crystalline state induced the Fries rearrangement to yield o- and p-aminodiphenylsulfones as the major and minor products, respectively. Several BSA derivatives also had the same reactivity, while benzanilide as the corresponding carbonyl compound did not rearrange under the same conditions. These results showed that the S-N bond could be cleaved selectively by EB irradiation but the C-N bond couldn't, which could take place only by the use of EB. The EB irradiation of phenyl p-toluenesulfonate (PTS) crystals gave not only Fries-type products but also the oxidation product. By comparing with the reactivity of liquid phenyl benzenesulfonate, the EB-induced Fries rearrangement was suggested to proceed under crystalline lattice restrictions. The G-values of arylsulfonamides and arylsulfonates were in the range of ca. 1-2 molecules per 100 eV of absorbed energy. This is the first Fries rearrangement via direct excitation by EB irradiation. (author)

  1. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  2. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    International Nuclear Information System (INIS)

    Pachmayr, Ursula Elisabeth

    2017-01-01

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe_1_-_xS_x was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li_0_._8Fe_0_._2)OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li_0_._8Fe_0_._2)OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe_4 tetrahedra were found via this synthesis method. The iron selenides A_2Fe_4Se_6 (A = K, Rb, Cs) consist of double chains of [Fe_2Se_3]"1"-, whereas a new compound Na_6(H_2O)_1_8Fe_4Se_8 exhibits [Fe_4Se_8]"6"- 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard to iron-chalcogenide based superconductors this synthesis strategy is encouraging. It seems probable

  3. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pachmayr, Ursula Elisabeth

    2017-04-06

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe{sub 1-x}S{sub x} was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li{sub 0.8}Fe{sub 0.2})OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li{sub 0.8}Fe{sub 0.2})OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe{sub 4} tetrahedra were found via this synthesis method. The iron selenides A{sub 2}Fe{sub 4}Se{sub 6} (A = K, Rb, Cs) consist of double chains of [Fe{sub 2}Se{sub 3}]{sup 1-}, whereas a new compound Na{sub 6}(H{sub 2}O){sub 18}Fe{sub 4}Se{sub 8} exhibits [Fe{sub 4}Se{sub 8}]{sup 6-} 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard

  4. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity.

    Science.gov (United States)

    Radwan, Asma; Amidon, Gordon L; Langguth, Peter

    2012-10-01

    A negative food effect, i.e. a decrease in bioavailability upon the co-administration of compounds together with food, has been attributed particularly with high solubility/low permeability compounds (BCS class III). Different mechanisms have been proposed including intestinal dilution leading to a lower concentration gradient across the intestinal wall as well as binding of the active pharmaceutical ingredient to food components in the intestine and thereby decreasing the fraction of the dose available for absorption. These mechanisms refer primarily to the compound and not to the dosage form. An increase in viscosity of the dissolution fluid will in particular affect the absorption of BCS type III compounds with preferential absorption in the upper small intestine if the API release is delayed from the dosage form. The present study demonstrated that the increase in viscosity of the dissolution medium, following ingestion of a solid meal, may drastically reduce disintegration and dissolution. For that purpose the viscosity of the standard FDA meal was determined and simulated by solutions of HPMC in buffer. As model formulations, three commercially available tablets containing trospium chloride, a BCS class III m-cholinoreceptor antagonist was used. Trospium chloride drug products have been described to undergo a negative food effect of more than 80% following ingestion with food. The tablets showed prolonged disintegration times and reduced dissolution rates in viscous media, which could be attributed to changes in the liquid penetration rates. The effect was particularly significant for film-coated tablets relative to uncoated dosage forms. The results show the necessity of considering media viscosity when designing in vitro models of drug release for BCS type III drug formulations. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Determination of crystallinity of ceramic materials from the Ruland Method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Gomes Junior, J.C.; Lima, J.C. de; Riella, H.G.; Kuhnen, N.C.

    2011-01-01

    Some methods found in literature approach the different characteristics between crystalline and amorphous phases by X ray diffraction technique. These methods use the relation between the intensities of the crystalline peaks and background amorphous or the absolute intensity of one of these to determine the relative amount of crystalline and amorphous material. However, a crystalline substance presents shows coherent diffuse scattering and a loss in the intensity of the peaks of diffraction in function of thermal vibrations of atoms and imperfections in the crystalline structure. A correct method for the determination of the crystallinity must take in account these effects. This work has as objective to determine the crystallinity of ceramic materials obtained with the addition of mineral coal bottom ashes, using the X ray diffraction technique and the Ruland Method, that considers the diminution of the intensity of the crystalline peak because of the disorder affects. The Ruland Method shows adequate for the determination of the crystallinity of the ceramic materials. (author)

  6. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  7. Field measurements of biogenic volatile organic compounds in the atmosphere using solid-phase microextraction Arrow

    Science.gov (United States)

    Feijó Barreira, Luís Miguel; Duporté, Geoffroy; Rönkkö, Tuukka; Parshintsev, Jevgeni; Hartonen, Kari; Hyrsky, Lydia; Heikkinen, Enna; Jussila, Matti; Kulmala, Markku; Riekkola, Marja-Liisa

    2018-02-01

    Biogenic volatile organic compounds (BVOCs) emitted by terrestrial vegetation participate in a diversity of natural processes. These compounds impact both short-range processes, such as on plant protection and communication, and long-range processes, for example by participating in aerosol particle formation and growth. The biodiversity of plant species around the Earth, the vast assortment of emitted BVOCs, and their trace atmospheric concentrations contribute to the substantial remaining uncertainties about the effects of these compounds on atmospheric chemistry and physics, and call for the development of novel collection devices that can offer portability with improved selectivity and capacity. In this study, a novel solid-phase microextraction (SPME) Arrow sampling system was used for the static and dynamic collection of BVOCs from a boreal forest, and samples were subsequently analyzed on site by gas chromatography-mass spectrometry (GC-MS). This system offers higher sampling capacity and improved robustness when compared to traditional equilibrium-based SPME techniques, such as SPME fibers. Field measurements were performed in summer 2017 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. Complementary laboratory tests were also performed to compare the SPME-based techniques under controlled experimental conditions and to evaluate the effect of temperature and relative humidity on their extraction performance. The most abundant monoterpenes and aldehydes were successfully collected. A significant improvement on sampling capacity was observed with the new SPME Arrow system over SPME fibers, with collected amounts being approximately 2 × higher for monoterpenes and 7-8 × higher for aldehydes. BVOC species exhibited different affinities for the type of sorbent materials used (polydimethylsiloxane (PDMS)-carbon wide range (WR) vs. PDMS-divinylbenzene (DVB)). Higher extraction efficiencies were obtained with dynamic

  8. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-20

    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  9. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Thallium chalcogenides; crystalline solids; electrical conduction; photosensitivity. Abstract. The Tl2S compound was prepared in a single crystal form using a special local technique, and the obtained crystals were analysed by X-ray diffraction. For the resultant crystals, the electrical properties (electrical ...

  10. Co-grinding Effect on Crystalline Zaltoprofen with β-cyclodextrin/Cucurbit[7]uril in Tablet Formulation

    Science.gov (United States)

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-04-01

    This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant.

  11. Co-grinding Effect on Crystalline Zaltoprofen with β-cyclodextrin/Cucurbit[7]uril in Tablet Formulation

    Science.gov (United States)

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-01-01

    This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant. PMID:28368030

  12. Determination of Wastewater Compounds in Sediment and Soil by Pressurized Solvent Extraction, Solid-Phase Extraction, and Capillary-Column Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Burkhardt, Mark R.; Zaugg, Steven D.; Smith, Steven G.; ReVello, Rhiannon C.

    2006-01-01

    A method for the determination of 61 compounds in environmental sediment and soil samples is described. The method was developed in response to increasing concern over the effects of endocrine-disrupting chemicals in wastewater and wastewater-impacted sediment on aquatic organisms. This method also may be used to evaluate the effects of combined sanitary and storm-sewer overflow on the water and sediment quality of urban streams. Method development focused on the determination of compounds that were chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Sediment and soil samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from interfering matrix components by high-pressure water/isopropyl alcohol extraction. The compounds were isolated using disposable solid-phase extraction (SPE) cartridges containing chemically modified polystyrene-divinylbenzene resin. The cartridges were dried with nitrogen gas, and then sorbed compounds were eluted with methylene chloride (80 percent)-diethyl ether (20 percent) through Florisil/sodium sulfate SPE cartridge, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-sand samples fortified at 4 to 72 micrograms averaged 76 percent ?13 percent relative standard deviation for all method compounds. Initial method reporting levels for single-component compounds ranged from 50 to 500 micrograms per kilogram. The concentrations of 20 out of 61 compounds initially will be reported as estimated with the 'E' remark code for one of three reasons: (1) unacceptably low-biased recovery (less than 60 percent) or highly variable method performance

  13. Speciation analysis of organotin compounds in human urine by headspace solid-phase micro-extraction and gas chromatography with pulsed flame photometric detection.

    Science.gov (United States)

    Valenzuela, Aníbal; Lespes, Gaëtane; Quiroz, Waldo; Aguilar, Luis F; Bravo, Manuel A

    2014-07-01

    A new headspace solid-phase micro-extraction (HS-SPME) method followed by gas chromatography with pulsed flame photometric detection (GC-PFPD) analysis has been developed for the simultaneous determination of 11 organotin compounds, including methyl-, butyl-, phenyl- and octyltin derivates, in human urine. The methodology has been validated by the analysis of urine samples fortified with all analytes at different concentration levels, and recovery rates above 87% and relative precisions between 2% and 7% were obtained. Additionally, an experimental-design approach has been used to model the storage stability of organotin compounds in human urine, demonstrating that organotins are highly degraded in this medium, although their stability is satisfactory during the first 4 days of storage at 4 °C and pH=4. Finally, this methodology was applied to urine samples collected from harbor workers exposed to antifouling paints; methyl- and butyltins were detected, confirming human exposure in this type of work environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  15. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    International Nuclear Information System (INIS)

    Wang, S.-K.; Mamontov, Eugene; Bai, M.; Hansen, F.Y.; Taub, H.; Copley, J.R.D.; Garcia Sakai, V.; Gasparovic, Goran; Jenkins, Timothy; Tyagi, M.; Herwig, Kenneth W.; Neumann, D.A.; Montfrooij, W.; Volkmann, U.G.

    2010-01-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a 'fast' motion corresponding to uniaxial rotation about the long molecular axis; and a 'slow' motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  16. EFFECT OF AGING TIME TOWARD CRYSTALLINITY OF PRODUCTS IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2010-12-01

    Full Text Available Researches about the effects of aging time toward crystallinity of products in the synthesis of mesoporous silicates MCM-41 have been done. MCM-41 was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium hydroxide, cetyltrimetylammoniumbromide (CTMAB and aquadest in the molar ratio of 8Na2SiO3 : CTMAB : NaOH : 400H2O. Hydrothermal treatment was carried out at 110 °C in a teflon-lined stainless steel autoclave heated in the oven, with variation of aging time, i.e.: 4, 8, 12, 16, 24, 36, 48, and 72 h respectively. The solid phase were filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcinations at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined powders were characterized by using FTIR spectroscopy and X-ray diffraction method. The relative crystallinity of products was evaluated based on the intensity of d100 peaks. The best product was characterized by using N2 physisorption method in order to determine the specific surface area, mean pore diameter, lattice parameter, and pore walls thickness. It was concluded that the relative crystallinity of the products was sensitively influenced by the aging time. The highest relative crystallinity was achieved when used 36 h of aging time in hydrothermal treatment. In this optimum condition the product has 946.607 m2g-1 of specific surface area, 3.357 nm of mean pore diameter, 4.533 nm of lattice parameter, and 1.176 nm of pore walls thickness.

  17. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition

    Science.gov (United States)

    Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki

    2018-05-01

    Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.

  18. Oxidation of refractory sulfur compounds over Ti-containing mesoporous molecular sieves prepared by using a fluorosilicon compound.

    Science.gov (United States)

    Jeong, Kwang-Eun; Cho, Chin-Soo; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong

    2010-05-01

    Titanium containing mesoporous molecular sieve (Ti-MMS) catalysts were studied for the oxidative desulfurization of refractory sulfur compounds. Ti-MMS catalysts were synthesized from fluorosilicon compounds and Ti with the hydrolysis reaction of H2SiF6 in an ammonia-surfactant mixed solution. The solid products were characterized by XRD, XRF, nitrogen adsorption, and diffuse reflectance UV-vis spectroscopy. Effects of Ti loading and oxidant/sulfur mole ratio, and sulfur species on ODS activity were investigated.

  19. NATO Advanced Study Institute on Engineering of Crystalline Materials Properties : State of the Art in Modeling Design and Applications. New Materials for better Defence and Security

    CERN Document Server

    Braga, Dario; Addadi, Lia

    2008-01-01

    This volume collects the lecture notes (ordered alphabetically according to the first author surname) of the talks delivered by the main speakers at the Erice 2007 International School of Crystallography, generously selected by NATO as an Advanced Study Institute (# 982582). The aim of the school was to discuss the state-of-the-art in molecular materials design, that is, the rational analysis and fabrication of crystalline solids showing a predefined structural organization of their component molecules and ions, which results in the manifestation of a specific collective property of technological interest. The School was held on June 7–17, 2007, in Erice (an old town, over 3000 years, located on the top of a Sicilian hill that oversees the sea near Trapani). The school developed following two parallel lines. First we established “where we are” in terms of modelling, design, synthesis and applications of crystalline solids with predefined properties. Second, we attempted to define current and possible fu...

  20. Hybrid composites of monodisperse pi-conjugated rodlike organic compounds and semiconductor quantum particles

    DEFF Research Database (Denmark)

    Hensel, V.; Godt, A.; Popovitz-Biro, R.

    2002-01-01

    Composite materials of quantum particles (Q-particles) arranged in layers within crystalline powders of pi-conjugated, rodlike dicarboxylic acids are reported. The synthesis of the composites, either as three-dimensional crystals or as thin films at the air-water interface, comprises a two...... analysis of the solids and grazing incidence X-ray diffraction analysis of the films on water. 2) Topotactic solid/gas reaction of these salts with H2S to convert the metal ions into Q-particles of CdS or PbS embedded in the organic matrix that consists of the acids 6(H) and 8(H). These hybrid materials...