WorldWideScience

Sample records for solid core nuclear

  1. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  2. Solid-Core Heat-Pipe Nuclear Batterly Type Reactor

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2008-01-01

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HPENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors in which the fission gas plena are embedded and transfer heat to an intermediate coolant that flows by natural-circulation. The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walkaway passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of advantageous features including: (1) significantly enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3) relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. This preliminary study focuses on five areas: material compatibility analysis, HP performance analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the

  3. In-core gamma dosimetry by solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Khan, H.A.

    1980-02-01

    Results are reported of a study undertaken to develop Solid State Nuclear Track Detectors (SSNTD) for the measurement of gamma doses in the megarad region such as those existing in and around a nuclear reactor core. The changes brought about in the track etching parameters and in the ultraviolet and infrared transmittances, have been studied for possible use as gamma dose measuring indices. Effects of various parameters in the core such as neutron flux, beta particles, water, temperature, and gamma ray spectrum have been investigated and found to have only small influence on the proposed gamma dose measuring indices

  4. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Clark, J.S.; Walton, J.T.; Mcguire, M.L.

    1992-07-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines. 11 refs

  5. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  6. Systems analysis of nuclear solid-core engines for cis-lunar trajectories

    International Nuclear Information System (INIS)

    Ulrich, T.

    1984-01-01

    This report summarizes the result of a comprehensive study about the use of nuclear engines in cis-lunar space. The nuclear space transportation system elements were defined and the restrictions imposed on the nuclear ferries by the chemical Earth-to-LEO transportation system were analyzed. Operating conditions are met best by tungsten-water-moderated reactors due to a high specific impulse and long durability. Specific transportation cost for LEO-to-GEO and LEO-to-lunar orbit flights were calculated for a transportation system life of 50 years. Average transportation cost were estimated to be about 141 $/kg. No difference was made for both routes mentioned above. An additional analysis of smaller and larger flight units showed only small cost reductions by employing larger ferries but a significant cost increase in case smaller flight units would be used. (orig.) [de

  7. Nuclear core baffling apparatus

    International Nuclear Information System (INIS)

    Cooper, F.W. Jr.; Silverblatt, B.L.; Knight, C.B.; Berringer, R.T.

    1979-01-01

    An apparatus for baffling the flow of reactor coolant fluid into and about the core of a nuclear reactor is described. The apparatus includes a plurality of longitudinally aligned baffle plates with mating surfaces that allow longitudinal growth with temperature increases while alleviating both leakage through the aligned plates and stresses on the components supporting the plates

  8. Mathematical model for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239a

    Energy Technology Data Exchange (ETDEWEB)

    Grey, J.; Chow, S.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. Such a concept could be particularly useful for missions which require both relatively high acceleration (e.g., for planetocentric maneuvers) and high performance at low acceleration (e.g., on heliocentric trajectories or for trajectory shaping). The first volume develops the mathematical model of the system.

  9. Nuclear core catchers

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1976-01-01

    A receptacle is described for taking the molten fragments of a nuclear reactor during a reactor core fusion accident. The receptacle is placed under the reactor. It includes at least one receptacle for the reactor core fragments, with a dome shaped part to distribute the molten fragments and at least one outside layer of alumina bricks around the dome. The characteristic of this receptacle is that the outer layer of bricks contains neutron poison rods which pass through the bricks and protrude in relation to them [fr

  10. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  11. Design study of nuclear power systems for deep space explorers. (2) Electricity supply capabilities of solid cores

    International Nuclear Information System (INIS)

    Yamaji, Akifumi; Takizuka, Takakazu; Nabeshima, Kunihiko; Iwamura, Takamichi; Akimoto, Hajime

    2009-01-01

    This study has been carried out in series with the other study, 'Criticality of Low Enriched Uranium Fueled Core' to explore the possibilities of a solid reactor electricity generation system for supplying propulsion power of a deep space explorer. The design ranges of two different systems are determined with respect to the electric power, the radiator mass, and the operating temperatures of the heat-pipes and thermoelectric converters. The two systems are the core surface cooling with heat-pipe system (CSHP), and the core direct cooling with heat-pipe system (CDHP). The evaluated electric powers widely cover the 1 to 100 kW range, which had long been claimed to be the range that lacked the power sources in space. Therefore, the concepts shown by this study may lead to a breakthrough of the human activities in space. The working temperature ranges of the main components, namely the heat-pipes and thermoelectric converters, are wide and covers down to relatively low temperatures. This is desirable from the viewpoints of broadening the choices, reducing the development needs, and improving the reliabilities of the devices. Hence, it is advantageous for an early establishment of the concept. (author)

  12. Computer code and users' guide for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239b

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.A.; Smith, W.W.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The second volume describes the computer code and users' guide for the preliminary analysis of the system.

  13. Nuclear reactor core stabilizing arrangement

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    A nuclear reactor core stabilizing arrangement is described wherein a plurality of actuators, disposed in a pattern laterally surrounding a group of elongated fuel assemblies, press against respective contiguous fuel assemblies on the periphery of the group to reduce the clearance between adjacent fuel assemblies thereby forming a more compacted, vibration resistant core structure. 7 claims, 4 drawing figures

  14. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  15. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  16. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  17. Nuclear reactor core

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo; Ishibashi, Yoko; Mochida, Takaaki; Haikawa, Katsumasa; Yamanaka, Akihiro.

    1995-01-01

    A reactor core is radially divided into an inner region, an outer region and an outermost region. As a fuel, three kinds of fuels, namely, a high enrichment degree fuel at 3.4%, a middle enrichment degree fuel at 2.3% and a low enrichment degree at 1.1% of a fuel average enrichment degree of fission product are used. Each of the fuels is bisected to upper and lower portions at an axial center thereof. The difference of average enrichment degrees between upper and lower portions is 0.1% for the high enrichment degree fuel, 0.3% for the middle enrichment degree fuel and 0.2% for the low enrichment degree fuel. In addition, the composition of fuels in each of radial regions comprises 100% of the low enrichment degree fuels in the outermost region, 91% of the higher enrichment degree fuels and 9% of the middle enrichment degree fuels in the outer region, and 34% of the high enrichment degree fuels and 30% of the middle enrichment degree fuels in the inner region. With such a constitution, fuel economy can be improved while maintaining the thermal margin in an initially loaded reactor core of a BWR type reactor. (I.N.)

  18. Nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F

    1974-07-11

    The core of the fast neutron reactor consisting, among other components, of fuel elements enriched in plutonium is divided into modules. Each module contains a bundle of four or six elongated components (fuel elements and control rods). In the arrangement with four components, one is kept rigid while the other three are elastically yielding inclined towards the center and lean against the rigid component. In the modules with six pieces, each component is elastically yielding inclined towards a central cavity. In this way, they form a circular arc. A control rod may be placed in the cavity. In order to counteract a relative lateral movement, the outer surfaces of the components which have hexagonal cross-sections have interlocking bearing cushions. The bearing cushions consist of keyway-type ribs or grooves with the wedges or ribs gripping in the grooves of the neighbouring components. In addition, the ribs have oblique entering surfaces.

  19. A Large Solid Inner Core at Mercury

    Science.gov (United States)

    Genova, A.; Goossens, S.; Mazarico, E.; Lemoine, F. G.; Neumann, G. A.; Kuang, W.; Sabaka, T. J.; Smith, D. E.; Zuber, M. T.

    2018-05-01

    New measurements of the polar moments of inertia of the whole planet and of the outer layers (crust+mantle), and simulations of Mercury’s magnetic field dynamo suggest the presence of a solid inner core with a Ric 0.3-0.5 Roc.

  20. Nuclear reactor core safety device

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The danger of a steam explosion from a nuclear reactor core melt-down can be greatly reduced by adding a gasifying agent to the fuel that releases a large amount of gas at a predetermined pre-melt-down temperature that ruptures the bottom end of the fuel rod and blows the finely divided fuel into a residual coolant bath at the bottom of the reactor. This residual bath should be equipped with a secondary cooling loop

  1. Nuclear reactor core servicing apparatus

    International Nuclear Information System (INIS)

    Andrea, C.

    1977-01-01

    Disclosed is an improved core servicing apparatus for a nuclear reactor of the type having a reactor vessel, a vessel head having a head penetration therethrough, a removable plug adapted to fit in the head penetration, and a core of the type having an array of elongated assemblies. The improved core servicing apparatus comprises a plurality of support columns suspended from the removable plug and extending downward toward the nuclear core, rigid support means carried by each of the support columns, and a plurality of servicing means for each of the support columns for servicing a plurality of assemblies. Each of the plurality of servicing means for each of the support columns is fixedly supported in a fixed array from the rigid support means. Means are provided for rotating the rigid support means and servicing means between condensed and expanded positions. When in the condensed position, the rigid support means and servicing means lie completely within the coextensive boundaries of the plug, and when in the expanded position, some of the rigid support means and servicing means lie without the coextensive boundaries of the plug

  2. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  3. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  4. Core catcher for nuclear reactor core meltdown containment

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Bowman, F.L.

    1978-01-01

    A bed of graphite particles is placed beneath a nuclear reactor core outside the pressure vessel but within the containment building to catch the core debris in the event of failure of the emergency core cooling system. Spray cooling of the debris and graphite particles together with draining and flooding of coolant fluid of the graphite bed is provided to prevent debris slump-through to the bottom of the bed

  5. Nuclear reactor with several cores

    International Nuclear Information System (INIS)

    Swars, H.

    1977-01-01

    Several sodium-cooled cores in separate vessels with removable closures are placed in a common reactor tank. Each individual vessel is protected against the consequences of an accident in the relevant core. Maintenance devices and inlet and outlet pipes for the coolant are also arranged within the reactor tank. The individual vessels are all enclosed by coolant in a way that in case of emergency cooling or refuelling each core can be continued to be cooled by means of the coolant loops of the other cores. (HP) [de

  6. Sensors for use in nuclear reactor cores

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1978-01-01

    Sensors including radiation detectors and the like for use within the core of nuclear reactors and which are constructed in a manner to provide optimum reliability of the sensor during use are described

  7. Method for refuelling a nuclear reactor core

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This invention relates to an improved method for refuelling a nuclear reactor core inside a reactor vessel. The technique allows a substantial reduction in the refuelling time as compared with previously known methods and permits fewer out of core operations and smaller temporary storage space. (U.K.)

  8. Core baffle for nuclear reactors

    International Nuclear Information System (INIS)

    Machado, O.J.; Berringer, R.T.

    1977-01-01

    The invention concerns the design of the core of a LWR with a large number of fuel assemblies formed by fuel rods and kept in position by spacer grids. According to the invention, at the level of the spacer grids match plates are mounted with openings so the flow of coolant directed upwards will not be obstructed and a parallel bypass will be obtained in the space between the core barrel and the baffle plates. In case of an accident, this configuration reduces or avoids damage from overpressure reactions. (HP) [de

  9. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  10. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control systemm for a nuclear reactor core provides an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit is composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased by an amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  11. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1978-01-01

    Disclosed is a lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  12. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  13. Core construction for nuclear reactors

    International Nuclear Information System (INIS)

    Pettinger, D.S.

    1977-01-01

    HTR core construction with prismatic graphite blocks piled into columns. The front of the blocks is concavely curved. The lines of contact of two blocks are always not vertical, i.e. the blocks of one column are supported by the blocks of neighbouring columns so that ducts are formed. Groups of three or four of these columns may additionally be arranged around a central column which has recesses in order to lock the blocks of one group together. With this arrangement, dimensional changes of the graphite blocks under operating conditions can be taken up. (DG) [de

  14. Lunar Fluid Core and Solid-Body Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  15. Actively doped solid core Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Broeng, Jes; Olausson, Christina Bjarnal Thulin; Lyngsøe, Jens Kristian

    2010-01-01

    Solid photonic bandgap fibers offer distributed spectral filtering with extraordinary high suppression. This opens new possibilities of artificially tailoring the gain spectrum of fibers. We present record-performance of such fibers and outline their future applications....

  16. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  17. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  18. Nuclear reactor core modelling in multifunctional simulators

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  19. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  20. Apparatus for controlling nuclear core debris

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  1. Modular core component support for nuclear reactor

    International Nuclear Information System (INIS)

    Finch, L.M.; Anthony, A.J.

    1975-01-01

    The core of a nuclear reactor is made up of a plurality of support modules for containing components such as fuel elements, reflectors and control rods. Each module includes a component support portion located above a grid plate in a low-pressure coolant zone and a coolant inlet portion disposed within a module receptacle which depends from the grid plate into a zone of high-pressure coolant. Coolant enters the module through aligned openings within the receptacle and module inlet portion and flows upward into contact with the core components. The modules are hydraulically balanced within the receptacles to prevent expulsion by the upward coolant forces. (U.S.)

  2. Core support structure for nuclear power plants

    International Nuclear Information System (INIS)

    Steinkamp, E.; Tautz, J.; Ries, H.

    1979-01-01

    A core support structure for nuclear power plants includes a grid of mutually crossing bridges and a support ring surrounding the grid and connected to ends of the outer bridges of the grid, the grid being formed of profile rod crosses having legs of given length, respective legs of pairs of adjacent crosses abutting one another endwise to form together a side of the smallest mesh opening of the grid, and weld means for securing the profile rod crosses to one another at the mutually abutting ends of the legs thereof; and method of producing the foregoing core support structure

  3. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  4. Fast breeder physics and nuclear core design

    International Nuclear Information System (INIS)

    Marth, W.; Schroeder, R.

    1983-07-01

    This report gathers the papers that have been presented on January 18/19, 1983 at a seminar ''Fast breeder physics and nuclear core design'' held at KfK. These papers cover the results obtained within about the last five years in the r+d program and give some indication, what still has to be done. To begin with, the ''tools'' of the core designer, i.e. nuclear data and neutronics codes are covered in a comprehensive way, the seminar emphasized the applications, however. First of all the accuracies obtained for the most important parameters are presented for the design of homogeneous and heterogeneous cores of about 1000 MWe, they are based on the results of critical experiments. This is followed by a survey on activities related to the KNK II reactor, i.e. calculations concerning a modification of the core as well as critical experiments done with respect to re-loads. Finally, work concerning reactivity worths of accident configurations is presented: the generation of reactivity worths for the input of safety-related calculations of a SNR 2 design, and critical experiments to investigate the requirements for the codes to be used for these calculations. These papers are accompanied by two contributions from the industrial partners. The first one deals with the requirements to nuclear design methods as seen by the reactor designer and then shows what has been achieved. The latter one presents state, trends, and methods of the SNR 2 design. The concluding remarks compare the state of the art reached within DeBeNe with international achievements. (orig.) [de

  5. Gas core nuclear rocket feasibility project

    International Nuclear Information System (INIS)

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed

  6. Nuclear reactor core and fuel element therefor

    International Nuclear Information System (INIS)

    Fortescue, P.

    1986-01-01

    This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces

  7. Sensors for use in nuclear reactor cores

    International Nuclear Information System (INIS)

    1980-01-01

    A neutron sensor is described for use in nuclear reactor cores which does not require external power but merely an emitter, a collector and an insulator material between the two to generate an electric current that is indicative of the intensity of the radiation. The sensor is manufactured in such a way that brazed joints or spices are avoided and the insulation material used may be of relatively low density of compaction and will center the emitter and the lead wire with respect to the outer sheath or tube without deformation or varying geometry of the center wire or emitter. (UK)

  8. Sensors for use in nuclear reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-21

    A neutron sensor is described for use in nuclear reactor cores which does not require external power but merely an emitter, a collector and an insulator material between the two to generate an electric current that is indicative of the intensity of the radiation. The sensor is manufactured in such a way that brazed joints or spices are avoided and the insulation material used may be of relatively low density of compaction and will center the emitter and the lead wire with respect to the outer sheath or tube without deformation or varying geometry of the center wire or emitter.

  9. Core of a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    Giacometti, Christian; Mougniot, J.-C.; Ravier, Jean.

    1974-01-01

    The fast neutron nuclear reactor described includes an internal area in fissile material completely enclosed in an area of fertile material forming the outside blanket. The internal fissile area is provided with housings exclusively filled with fertile material forming one or more inside blankets. In this core the internal blankets are shaped like rings vertically separating superimposed rings of fissile material. The blanket of material nearest to the periphery is circumscribed externally by a contour having an indented shape on its straight section so as to increase the contact area between this blanket and the external blanket [fr

  10. Computation system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals

  11. Core Technology Development of Nuclear spin polarization

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Gwon, Sung Ok; Kwon, Duck Hee; Lee, Sung Man

    2009-12-01

    In order to study nuclear spin polarization, we need several core technologies such as laser beam source to polarize the nuclear spin, low pressured helium cell development whose surface is essential to maintain polarization otherwise most of the polarized helium relaxed in short time, development of uniform magnetic field system which is essential for reducing relaxation, efficient vacuum system, development of polarization measuring system, and development of pressure raising system about 1000 times. The purpose of this study is to develop resonable power of laser system, that is at least 5 watt, 1083 nm, 4GHz tuneable. But the limitation of this research fund enforce to develop amplifying system into 5 watt with 1 watt system utilizing laser-diod which is already we have in stock. We succeeded in getting excellent specification of fiber laser system with power of 5 watts, 2 GHz linewidth, more than 80 GHz tuneable

  12. Core access system for nuclear reactor

    International Nuclear Information System (INIS)

    Andrea, C.

    1977-01-01

    Disclosed is an improved nuclear reactor arrangement to facilitate both through-the-head instrumentation and insertion and removal of assemblies from the nuclear core. The arrangement is of the type including a reactor vessel head comprising a large rotatable cover having a plurality of circular openings therethrough, a plurality of upwardly extending nozzles mounted on the upper surface of a large cover, and a plurality of upwardly extending skirts mounted on a large cover about the periphery or boundary of the circular openings; a plurality of small plugs for each of the openings in the large cover, the plugs also having nozzles mounted on the upper surface thereof, and drive mechanisms mounted on top of some of the nozzles and having means extending therethrough into the reactor vessel, the drive mechanisms and nozzles extending above the elevation of the upwardly extending skirts

  13. Fuel assembly and nuclear reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Yamashita, Jun-ichi.

    1995-01-01

    The present invention concerns a fuel assembly and a nuclear reactor core capable of improving a transmutation rate of transuranium elements while improving a residual rate of fission products. In a reactor core of a BWR type reactor to which fuel rods with transuranium elements (TRU) enriched are loaded, the enrichment degree of transuranium elements occupying in fuel materials is determined not less than 2wt%, as well as a ratio of number of atoms between hydrogen and fuel heavy metals in an average reactor core under usual operation state (H/HM) is determined not more than 3 times. In addition, a ratio of the volumes between coolant regions and fuel material regions is determined not more than 2 times. A T ratio (TRU/Pu) is lowered as the TRU enrichment degree is higher and the H/HM ratio is lower. In order to reduce the T ratio not more than 1, the TRU enrichment degree is determined as not less than 2wt%, and the H/HM ratio is determined to not more than 3 times. Accordingly, since the H/HM ratio is reduced to not more than 1, and TRU is transmuted while recycling it with plutonium, the transmutation ratio of transuranium elements can be improved while improving the residual rate of fission products. (N.H.)

  14. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  15. Solid charged-core model of ball lightning

    Science.gov (United States)

    Muldrew, D. B.

    2010-01-01

    In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon - a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  16. Theoretical studies on core-level spectra of solids

    International Nuclear Information System (INIS)

    Kotani, Akio

    1995-01-01

    I present a review on theoretical studies of core-level spectra (CLS) in solids. In CLS, the dynamical response of outer electrons to a core hole is reflected through the screening of core hole potential. Impurity Anderson model (IAM) or cluster model is successfully applied to the analysis of X-ray photoemission spectra (XPS) and X-ray absorption spectra (XAS) in f and d electron systems, where the f and d electron states are hybridized with the other valence or conduction electron states. The effect of the core-hole potential in the final state of XPS and XAS plays an important role, as well as the solid state hybridization and intra-atomic multiplet coupling effects. As typical examples, the calculated results for XPS of rare-earth compounds and transition metal compounds are shown, and some discussions are given. As a subject of remarkable progress with high brightness synchrotron radiation sources, I discuss some theoretical aspects of X-ray emission spectra (XES) and their resonant enhancement at the X-ray absorption threshold. Some experimental data and their theoretical analysis are also given. (author)

  17. Solid oxide fuel cell having a monolithic core

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Young, J.E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick

  18. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  19. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  20. Modeling of the core of Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Blanco, Anibal

    2007-01-01

    This work is part of a Nuclear Engineer degree thesis of the Instituto Balseiro and it is carried out under the development of an Argentinean Nuclear Power Plant Simulator. To obtain the best representation of the reactor physical behavior using the state of the art tools this Simulator should couple a 3D neutronics core calculation code with a thermal-hydraulics system code. Focused in the neutronic nature of this job, using PARCS, we modeled and performed calculations of the nuclear power plant Atucha 2 core. Whenever it is possible, we compare our results against results obtained with PUMA (the official core code for Atucha 2). (author) [es

  1. Core clamping device for a nuclear reactor

    International Nuclear Information System (INIS)

    Guenther, R.W.

    1974-01-01

    The core clamping device for a fast neutron reactor includes clamps to support the fuel zone against the pressure vessel. The clamps are arranged around the circumference of the core. They consist of torsion bars arranged parallel at some distance around the core with lever arms attached to the ends whose force is directed in the opposite direction, pressing against the wall of the pressure vessel. The lever arms and pressure plates also actuated by the ends of the torsion bars transfer the stress, the pressure plates acting upon the fuel elements or fuel assemblies. Coupling between the ends of the torsion bars and the pressure plates is achieved by end carrier plates directly attached to the torsion bars and radially movable. This clamping device follows the thermal expansions of the core, allows specific elements to be disengaged in sections and saves space between the core and the neutron reflectors. (DG) [de

  2. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  3. Neutronic analysis of the ford nuclear reactor leu core

    International Nuclear Information System (INIS)

    Raza, S.S.; Hayat, T.

    1989-08-01

    Neutronic analysis of the ford nuclear reactor low enriched uranium core has been carried out to gain confidence in the com puting methodology being used for Pakistan Research Reactor-1 core conversion calculations. The computed value of the effective multiplication factor (Keff) is found to be in good agreement with that quoted by others. (author). 6 figs

  4. Supporting system for the core restraint of nuclear reactors

    International Nuclear Information System (INIS)

    Kaser, A.

    1973-01-01

    The core restraint of water cooled nuclear reactors which is needed to direct the flow of the coolant through the core can be manufactured only in a moderate wall thickness. Thus, the majority of the loads have to be transmitted to the core barrel which is more rigid. The patent refers to a system of circumferential and vertical support members most of which are free to move relatively to each other, thus reducing thermal stresses during operation. (P.K.)

  5. 16. international conference on nuclear tracks in solids: abstracts

    International Nuclear Information System (INIS)

    1992-09-01

    16th International Conference on Nuclear Tracks in Solids was held on 7-11 September, 1992 in Beijing. The specialists discussed nuclear tracks formation, development and observation. The applications of nuclear tracks technique in the fields of nuclear physics, life science, geoscience and environment monitoring were discussed at the meeting. More than 300 papers were contributed to the meeting

  6. Emergency core cooling systems in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1981-12-01

    This report contains the responses by the Advisory Committee on Nuclear Safety to three questions posed by the Atomic Energy Control Board concerning the need for Emergency Core Cooling Systems (ECCS) in CANDU nuclear power plants, the effectiveness requirement for such systems, and the extent to which experimental evidence should be available to demonstrate compliance with effectiveness standards

  7. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  8. Station blackout core damage frequency in an advanced nuclear reactor

    International Nuclear Information System (INIS)

    Carvalho, Luiz Sergio de

    2004-01-01

    Even though nuclear reactors are provided with protection systems so that they can be automatically shut down in the event of a station blackout, the consequences of this event can be severe. This is because many safety systems that are needed for removing residual heat from the core and for maintaining containment integrity, in the majority of the nuclear power plants, are AC dependent. In order to minimize core damage frequency, advanced reactor concepts are being developed with safety systems that use natural forces. This work shows an improvement in the safety of a small nuclear power reactor provided by a passive core residual heat removal system. Station blackout core melt frequencies, with and without this system, are both calculated. The results are also compared with available data in the literature. (author)

  9. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  10. Apparatus for controlling nuclear core debris

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    Disclosed is an apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling

  11. Core of a liquid-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Wright, J.R.; McFall, A.

    1975-01-01

    The core of a liquid-cooled nuclear reactor, e.g. of a sodium-cooled fast reactor, is protected in such a way that the recoil wave resulting from loss of coolant in a cooling channel and caused by released gas is limited to a coolant inlet chamber of this cooling channel. The channels essentially consist of the coolant inlet chamber and a fuel chamber - with a fission gas storage plenum - through which the coolant flows. Between the two chambers, a locking device within a tube is provided offering a much larger flow resistance to the backflow of gas or coolant than in flow direction. The locking device may be a hydraulic countertorque control system, e.g. a valvular line. Other locking devices have got radially helical vanes running around an annular flow space. Furthermore, the locking device may consist of a number of needles running parallel to each other and forming a circular grid. Though it can be expanded by the forward flow - the needles are spreading - , it acts as a solid barrier for backflows. (TK) [de

  12. Device for supporting a nuclear reactor core

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The core of a light-water reactor which is enclosed in a prestressed concrete pressure vessel and held within a diffuser basket is supported by a device consisting of a cylindrical shell which surrounds the basket and is rigidly fixed to a plurality of frusto-conical skirts having concurrent axes and located substantially at right angles to the axis of the reactor core. The small base of each skirt is rigidly fixed to the shell and the large base is anchored in openings formed in the reactor vessel for the penetration of coolant inlet and outlet pipes. The top portion of the shell is secured to the top portion of the diffuser basket, a flat surface being formed on the shell at the point of connection with each frusto-conical skirt so as to ensure rigid suspension while permitting thermal expansion

  13. SMART core preliminary nuclear design-II

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Chan; Ji, Seong Kyun; Chang, Moon Hee

    1997-06-01

    Three loading patterns for 330 MWth SMART core are constructed for 25, 33 and 29 CRDMs, and one loading pattern for larger 69-FA core with 45 CRDMs is also constructed for comparison purpose. In this study, the core consists of 57 reduced height Korean Optimized Fuel Assemblies (KOFAs) developed by KAERI. The enrichment of fuel is 4.95 w/o. As a main burnable poison, 35% B-10 enriched B{sub 4}C-Al{sub 2}O{sub 3} shim is used. To control stuck rod worth, some gadolinia bearing fuel rods are used. The U-235 enrichment of the gadolinia bearing fuel rods is 1.8 w/o as used in KOFA. All patterns return cycle length of about 3 years. Three loading patterns except 25-CRDM pattern satisfy cold shutdown condition of keff {<=} 0.99 without soluble boron. These three patterns also satisfy the refueling condition of keff {<=} 0.95. In addition to the construction of loading pattern, an editing module of MASTER PPI files for rod power history generation is developed and rod power histories are generated for 29-CRDM loading pattern. Preliminary Fq design limit is suggested as 3.71 based on KOFA design experience. (author). 9 tabs., 45 figs., 16 refs.

  14. Thermal barrier and support for nuclear reactor fuel core

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Pickering, J.L.; Black, W.E.

    1987-01-01

    A nuclear reactor is described having a thermal barrier for supporting a fuel column of a nuclear reactor core within a reactor vessel having a fixed rigid metal liner. The fuel column has a refractory post extending downward. The thermal barrier comprises, in combination, a metallic core support having an interior chamber secured to the metal liner; fibrous thermal insulation material covering the metal liner and surrounding the metallic core support; means associated with the metallic core support and resting on the top for locating and supporting the full column post; and a column of ceramic material located within the interior chamber of the metallic core support, the height of the column is less than the height of the metallic core support so that the ceramic column will engage the means for locating and supporting the fuel column post only upon plastic deformation of the metallic core support; the core support comprises a metallic cylinder and the ceramic column comprises coaxially aligned ceramic pads. Each pad has a hole located within the metallic cylinder by means of a ceramic post passing through the holes in the pads

  15. Spring unit especially intended for a nuclear reactor core

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, Wilhelm.

    1977-01-01

    This invention relates to a spring unit or a group of springs bearing up a sprung mass against an unsprung mass. For instance, a gas cooled high temperature nuclear reactor includes a core of relatively complex structure supported inside a casing or vessel forming a shielded cavity enclosing the reactor core. This core can be assembled from a large number of graphite blocks of different sizes and shapes joined together to form a column. The blocks of each column can be fixed together so as to form together a loose side support. Under the effect of thermal expansion and contraction, shrinkage resulting from irradiation, the effects of pressure and the contraction and creep of the reactor vessel, it is not possible to confine all the columns of the reactor core in a cylindrical rigid structure. Further, the working of the nuclear reactor requires that the reactivity monitoring components may be inserted at any time in the reactor core. A standard process consists in mounting this loosely assembled reactor core in a floating manner by keeping it away from the vessel enclosure around it by means of a number of springs fitted between the lateral surfaces of the core unit and the reactor vessel. The core may be considered as a spring supported mass whereas, relatively, the reactor vessel is a mass that is not flexibly supported [fr

  16. The online simulation of core physics in nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Qiang

    2005-01-01

    The three-dimensional power distribution in core is one of the most important status variables of nuclear reactor. In order to monitor the 3-D in core power distribution timely and accurately, the online simulation system of core physics was designed in the paper. This system combines core physics simulation with the data, which is from the plant and reactor instrumentation. The design of the system consists of the hardware part and the software part. The online simulation system consists of a main simulation computer and a simulation operation station. The online simulation system software includes of the real-time simulation support software, the system communication software, the simulation program and the simulation interface software. Two-group and three-dimensional neutron kinetics model with six groups delayed neutrons was used in the real-time simulation of nuclear reactor core physics. According to the characteristics of the nuclear reactor, the core was divided into many nodes. Resolving the neutron equation, the method of separate variables was used. The input data from the plant and reactor instrumentation system consist of core thermal power, loop temperatures and pressure, control rod positions, boron concentration, core exit thermocouple data, Excore detector signals, in core flux detectors signals. There are two purposes using the data, one is to ensure that the model is as close as the current actual reactor condition, and the other is to calibrate the calculated power distribution. In this paper, the scheme of the online simulation system was introduced. Under the real-time simulation support system, the simulation program is being compiled. Compared with the actual operational data, the elementary simulation results were reasonable and correct. (author)

  17. Methods and techniques of nuclear in-core fuel management

    International Nuclear Information System (INIS)

    Jong, A.J. de.

    1992-04-01

    Review of methods of nuclear in-core fuel management (the minimal critical mass problem, minimal power peaking) and calculational techniques: reactorphysical calculations (point reactivity models, continuous refueling, empirical methods, depletion perturbation theory, nodal computer programs); optimization techniques (stochastic search, linear programming, heuristic parameter optimization). (orig./HP)

  18. Temperature measurements inside nuclear reactor cores

    International Nuclear Information System (INIS)

    Tarassenko, Serge

    1969-11-01

    Non negligible errors may happen in nuclear reactor temperature measurements using magnesium oxide insulated and stainless steel sheathed micro-wire thermocouples, when these thermometric lines are placed under operational conditions typical of electrical power stations. The present work shows that this error is principally due to electrical hysteresis and polarization phenomena in the insulator subjected to the strong fields generated by common-mode voltages. These phenomena favour the unsymmetrical common-mode current flow and thus lead to the differential-mode voltage generation which is superposing on the thermoelectric hot junction potential. A calculation and an experimental approach make possible the importance of the magnesium oxide insulating characteristics, the hot junction insulation, the choice of the main circuits in the data processing equipment as well as the galvanic isolation performances and the common-mode rejection features of all the measurement circuits. A justification is thereby given for the severe conditions imposed for the acceptance of thermoelectric materials; some particular precautions to be taken are described, as well as the high performance characteristics which have to be taken into account in choosing measurement systems linked to thermometric circuits with sheathed micro-wire thermocouples. (author) [fr

  19. Status of core nuclear design technology for future fuel

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Jung, Hyung Guk; Noh, Jae Man; Kim, Yeong Il; Kim, Taek Kyum; Gil, Choong Sup; Kim, Jung Do; Kim, Young Jin; Sohn, Dong Seong

    1997-01-01

    The effective utilization of nuclear resource is more important factor to be considered in the design of next generation PWR in addition to the epochal consideration on economics and safety. Assuming that MOX fuel can be considered as one of the future fuel corresponding to the above request, the establishment of basic technology for the MOX core design has been performed : : the specification of the technical problem through the preliminary core design and nuclear characteristic analysis of MOX, the development and verification of the neutron library for lattice code, and the acquisition of data to be used for verification of lattice and core analysis codes. The following further studies will be done in future: detailed verification of library E63LIB/A, development of the spectral history effect treatment module, extension of decay chain, development of new homogenization for the MOX fuel assembly. (author). 6 refs., 7 tabs., 2 figs

  20. Thermal radiation in gas core nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J.

    1994-01-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs

  1. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  2. Preliminary concept of a zero power nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Luiz Antonio; Siqueira, Paulo de Tarso D., E-mail: lamai@ipen.b, E-mail: ptsiquei@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The purpose of this work is to define a zero power core to study the neutronic behavior of a modern research reactor as the future RMB (Brazilian Nuclear Multipurpose reactor). The platform used was the IPEN/MB-01 nuclear reactor, installed at the Nuclear and Energy Research Institute (IPEN-CNEN/SP). Equilibrium among minimal changes in the current reactor facilities and an arrangement that will be as representative as possible of a future core were taken into account. The active parts of the elements (fuel and control/safety) were determined to be exactly equal the elements of a future reactor. After several technical discussions, a basic configuration for the zero power core was defined. This reactor will validate the neutronic calculations and will allow the execution of countless future experiments aiming a real core. Of all possible alternative configurations for the zero power core representative of a future reactor - named ZPC-MRR (Zero Power Core - Modern Research Reactor), it was concluded, through technical and practical arguments, that the core will have an array of 4 x 5 positions, with 19 fuel elements, identical in its active part to a standard MTR (Material Test Reactor), 4 control/safety elements having a unique flat surface and a central position of irradiation. The specifications of the fuel elements (FEs) are the same as defined to standard MTR in its active part, but the inferior nozzles are differentiated because ZPC-MRR will be a set without heat generation. A study of reactivity was performed using MCNP code, and it was estimated that it will have around 2700 pcm reactivity excess in its 19 FEs configuration (alike the present IPEN/MB-01 reactivity). The effective change in the IPEN/MB-01 reactor will be made only in the control rods drive mechanism. It will be necessary to modify the center of this mechanism. Major modifications in the facility will not be necessary. (author)

  3. Preliminary concept of a zero power nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, Luiz Antonio; Siqueira, Paulo de Tarso D.

    2011-01-01

    The purpose of this work is to define a zero power core to study the neutronic behavior of a modern research reactor as the future RMB (Brazilian Nuclear Multipurpose reactor). The platform used was the IPEN/MB-01 nuclear reactor, installed at the Nuclear and Energy Research Institute (IPEN-CNEN/SP). Equilibrium among minimal changes in the current reactor facilities and an arrangement that will be as representative as possible of a future core were taken into account. The active parts of the elements (fuel and control/safety) were determined to be exactly equal the elements of a future reactor. After several technical discussions, a basic configuration for the zero power core was defined. This reactor will validate the neutronic calculations and will allow the execution of countless future experiments aiming a real core. Of all possible alternative configurations for the zero power core representative of a future reactor - named ZPC-MRR (Zero Power Core - Modern Research Reactor), it was concluded, through technical and practical arguments, that the core will have an array of 4 x 5 positions, with 19 fuel elements, identical in its active part to a standard MTR (Material Test Reactor), 4 control/safety elements having a unique flat surface and a central position of irradiation. The specifications of the fuel elements (FEs) are the same as defined to standard MTR in its active part, but the inferior nozzles are differentiated because ZPC-MRR will be a set without heat generation. A study of reactivity was performed using MCNP code, and it was estimated that it will have around 2700 pcm reactivity excess in its 19 FEs configuration (alike the present IPEN/MB-01 reactivity). The effective change in the IPEN/MB-01 reactor will be made only in the control rods drive mechanism. It will be necessary to modify the center of this mechanism. Major modifications in the facility will not be necessary. (author)

  4. Electron momentum spectroscopy of the core state of solid carbon

    International Nuclear Information System (INIS)

    Caprari, R.S.; Clark, S.A.C.; McCarthy, I.E.; Storer, P.J.; Vos, M.; Weigold, E.

    1994-08-01

    Electron momentum spectroscopy (binary encounter (e,2e)) experimental results are presented for the core state of an amorphous carbon allotrope. The (e,2e) cross section has two identifiable regions. One is a narrow energy width 'core band peak' that does not disperse with momentum. At higher binding energies there is an energy diffuse 'multiple scattering continuum', which is a consequence of (e,2e) collisions with core electrons that are accompanied by inelastic scattering of one or more of the incoming or outgoing electrons. Comparisons of experimental momentum distributions with the Hartree-Fock atomic carbon ls orbital are presented for both regions. 16 refs., 4 figs

  5. Recent applications of nuclear orientation to solid state physics

    International Nuclear Information System (INIS)

    Turrell, B.G.

    1985-01-01

    The author reviews how certain problems in solid state physics have been clarified by low temperature nuclear orientation and nuclear magnetic resonance of oriented nuclei. The advantages of these techniques, a brief survey of recent progress in traditional applications, and new developments are discussed, and, finally, future trends are suggested. (Auth.)

  6. International survey on solid state nuclear track detection

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Wernli, C.

    1992-04-01

    The results of the 1990 international survey on solid state nuclear track detection are presented. The survey was performed in collaboration with the International Nuclear Track Society (INTS). These results include the data on principal investigator(s), collaborator(s), institution, field of application(s), material(s), and method(s) of track observation from 28 countries. (author)

  7. Improving the calculated core stability by the core nuclear design optimization

    International Nuclear Information System (INIS)

    Partanen, P.

    1995-01-01

    Three different equilibrium core loadings for TVO II reactor have been generated in order to improve the core stability properties at uprated power level. The reactor thermal power is assumed to be uprated from 2160 MW th to 2500 MW th , which moves the operating point after a rapid pump rundown where the core stability has been calculated from 1340 MW th and 3200 kg/s to 1675 MW th and 4000 kg/s. The core has been refuelled with ABB Atom Svea-100 -fuel, which has 3,64% w/o U-235 average enrichment in the highly enriched zone. PHOENIX lattice code has been used to provide the homogenized nuclear constants. POLCA4 static core simulator has been used for core loadings and cycle simulations and RAMONA-3B program for simulating the dynamic response to the disturbance for which the stability behaviour has been evaluated. The core decay ratio has been successfully reduced from 0,83 to 0,55 mainly by reducing the power peaking factors. (orig.) (7 figs., 1 tab.)

  8. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  9. Nuclear Human Resources Development Program using Educational Core Simulator

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Hong, Soon Kwan

    2015-01-01

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides

  10. Nuclear Human Resources Development Program using Educational Core Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Hong, Soon Kwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides.

  11. Enhanced core monitoring system for Browns Ferry Nuclear Plant

    International Nuclear Information System (INIS)

    Lindsey, R.S.

    1980-01-01

    A system of computer hardware and software is being developed to supplement the process computers at Browns Ferry Nuclear Plant in the area of reactor core monitoring. All data stored in the process computers will be made available through a data link to an onsite minicomputer which will store and edit the data for engineering and operations personnel. Important core parameters will be effectively displayed on color graphic CRT terminals using techniques such as blinking, shading, and color coding to emphasize significant values. This data will also be made available to Tennessee Valley Authority's Chattanooga central office support groups through a data network between existing computers

  12. Hyper-heuristic applied to nuclear reactor core design

    International Nuclear Information System (INIS)

    Domingos, R P; Platt, G M

    2013-01-01

    The design of nuclear reactors gives rises to a series of optimization problems because of the need for high efficiency, availability and maintenance of security levels. Gradient-based techniques and linear programming have been applied, as well as genetic algorithms and particle swarm optimization. The nonlinearity, multimodality and lack of knowledge about the problem domain makes de choice of suitable meta-heuristic models particularly challenging. In this work we solve the optimization problem of a nuclear reactor core design through the application of an optimal sequence of meta-heuritics created automatically. This combinatorial optimization model is known as hyper-heuristic.

  13. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    Housman, J.J.

    1976-01-01

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  14. Real-time advanced nuclear reactor core model

    International Nuclear Information System (INIS)

    Koclas, J.; Friedman, F.; Paquette, C.; Vivier, P.

    1990-01-01

    The paper describes a multi-nodal advanced nuclear reactor core model. The model is based on application of modern equivalence theory to the solution of neutron diffusion equation in real time employing the finite differences method. The use of equivalence theory allows the application of the finite differences method to cores divided into hundreds of nodes, as opposed to the much finer divisions (in the order of ten thousands of nodes) where the unmodified method is currently applied. As a result the model can be used for modelling of the core kinetics for real time full scope training simulators. Results of benchmarks, validate the basic assumptions of the model and its applicability to real-time simulation. (orig./HP)

  15. Development of Core Monitoring System for Nuclear Power Plants (I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Kim, Y.B.; Park, M.G; Lee, E.K.; Shin, H.C.; Lee, D.J. [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    1997-12-31

    1.Object and Necessity of the Study -The main objectives of this study are (1)conversion of APOLLO version BEACON system to HP-UX version core monitoring system, (2)provision of the technical bases to enhance the in-house capability of developing more advanced core monitoring system. 2.Results of the Study - In this study, the revolutionary core monitoring technologies such as; nodal analysis and isotope depletion calculation method, advanced schemes for power distribution control, and treatment of nuclear databank were established. The verification and validation work has been successfully performed by comparing the results with those of the design code and measurement data. The advanced graphic user interface and plant interface method have been implemented to ensure the future upgrade capability. The Unix shell scripts and system dependent software are also improved to support administrative functions of the system. (author). 14 refs., 112 figs., 52 tabs.

  16. In-core fuel management for nuclear reactor

    International Nuclear Information System (INIS)

    Ross, M.F.; Visner, S.

    1986-01-01

    This patent describes in-core fuel management for nuclear reactor in which the first cycle of a pressurized water nuclear power reactor has a multiplicity of elongated, square fuel assemblies supported side-by-side to form a generally cylindrical, stationary core consisting entirely of fresh fuel assemblies. Each assembly of the first type has a substantially similar low average fissile enrichment of at least about 1.8 weight percent U-235, each assembly of the second type having a substantially similar intermediate average fissile enrichment at least about 0.4 weight percent greater than that of the first type, and each assembly of the third type having a substantially similar high average fissile enrichment at least about 0.4 weight percent greater than that of the intermediate type, the arrangement of the low, intermediate, and high enrichment assembly types which consists of: a generally cylindrical inner core region consisting of approximately two-thirds the total assemblies in the core and forming a figurative checkerboard array having a first checkerboard component at least two-thirds of which consists of high enrichment and intermediate enrichment assemblies, at least some of the high enrichment assemblies containing fixed burnable poison shims, and a second checkerboard component consisting of assemblies other than the high enrichment type; and a generally annular outer region consisting of the remaining assemblies and including at least some but less than two-thirds of the high enrichment type assemblies

  17. The development of direct core monitoring in Nuclear Electric plc

    International Nuclear Information System (INIS)

    Curtis, R.F.; Jones, S. Reed, J.; Wickham, A.J.

    1996-01-01

    Monitoring of graphite behaviour in Nuclear Electric Magnox and AGR reactors is necessary to support operating safety cases and to ensure that reactor operation is optimized to sustain the necessary core integrity for the economic life of the reactors. The monitoring programme combines studies for pre-characterized ''installed'' samples with studies on samples trepanned from within the cores and also with studies of core and channel geometry using specially designed equipment. Nuclear Electric has two trepanning machines originally designed for Magnox-reactor work which have been used for a substantial programme over many years. They have recently been upgraded to improve sampling speed, safety and versatility - the last being demonstrated by their adaptation for a recently-won contract associated with decommissioning the Windscale piles. Radiological hazards perceived when the AGR trepanning system was designed resulted in very cumbersome equipment. This has worked well but has been inconvenient in operation. The development of a smaller and improved system for deploying the equipment is now reported. Channel dimension monitoring equipment is discussed in detail with examples of data recovered from both Magnox and AGR cores. A resolution of ± 2 of arc (tilt) and ± 0.01 mm change in diameter in attainable. It is also theoretically possible to establish brick stresses by measuring geometry changes which result from trepanning. Current development work on a revolving scanning laser rangefinder which will enable the measurement of diameters to a resolution of 0.001 mm will also be discussed. This paper also discusses non-destructive techniques for crack detection employing ultrasound or resistance networks, the use of special manipulators to deliver inspection and repair equipment and recent developments to install displacement monitors in peripheral regions of the cores, to aid the understanding of the interaction of the restraint system with the core - the region

  18. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  19. Westinghouse Nuclear Core Design Training Center - a design simulator

    International Nuclear Information System (INIS)

    Altomare, S.; Pritchett, J.; Altman, D.

    1992-01-01

    The emergence of more powerful computing technology enables nuclear design calculations to be done on workstations. This shift to workstation usage has already had a profound effect in the training area. In 1991, the Westinghouse Electric Corporation's Commercial Nuclear Fuel Division (CNFD) developed and implemented a Nuclear Core Design Training Center (CDTC), a new concept in on-the-job training. The CDTC provides controlled on-the-job training in a structured classroom environment. It alllows one trainer, with the use of a specially prepared training facility, to provide full-scope, hands-on training to many trainees at one time. Also, the CDTC system reduces the overall cycle time required to complete the total training experience while also providing the flexibility of individual training in selected modules of interest. This paper provides descriptions of the CDTC and the respective experience gained in the application of this new concept

  20. Nuclear physics: the core of matter, the fuel of stars

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1999-01-01

    Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe

  1. Chemical digestion of low level nuclear solid waste material

    International Nuclear Information System (INIS)

    Cooley, C.R.; Lerch, R.E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230 0 --300 0 C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue. 6 claims, no drawings

  2. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  3. Device for measuring flow rate in a nuclear reactor core

    International Nuclear Information System (INIS)

    Hamano, Jiro.

    1980-01-01

    Purpose: To always calculate core flow rate automatically and accurately in BWR type nuclear power plants. Constitution: Jet pumps are provided to the recycling pump and to the inside of the pressure vessel of a nuclear reactor. The jet pumps comprise a plurality of calibrated jet pumps for forcively convecting the coolants and a plurality of not calibrated jet pumps in order to cool the heat generated in the reactor core. The difference in the pressures between the upper and the lower portions in both of the jet pumps is measured by difference pressure transducers. Further, a thermo-sensitive element is provided to measure the temperature of recycling water at the inlet of the recycling pump. The output signal from the difference pressure transducer is inputted to a process computer, calculated periodically based on predetermined calculation equations, compensated for the temperature by a recycling water temperature signal and outputted as a core flow rate signal to a recoder. The signal is also used for the power distribution calculation in the process computer and the minimum limit power ratio as the thermal limit value for the fuels is outputted. (Furukawa, Y.)

  4. Solid radioactive waste management in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Huang Laixi; He Wenxin; Chen Degan

    2004-01-01

    This paper introduces the solid radwaste management system, treatment methods and its continuous improvement during the past 9 years in Guangdong Daya Bay Nuclear Power Station (GNPS). GNPS has paid great attention and made a lot of efforts to implement the principle of waste minimization with source control, improvement of treatment process and strict management, so the output of solid radwastes has annually decreased since 1994. In 2002, the output of solid radwastes in GNPS was 63.5 m 3 , only 50% of 1995 (127 m 3 ), reached the advanced level as the same type NPPs in France. During the period 1994-2002, the accumulated production of solid radwaste Packages in GNPS is 1563.51 m 3 only 18% of the design value; all the packages meet the standard and requirement for safe disposal. Besides, this paper analyzes some new technical processes and presents some proposals for further decreasing the solid radwaste production

  5. Nuclear piston engine and pulsed gaseous core reactor power systems

    International Nuclear Information System (INIS)

    Dugan, E.T.

    1976-01-01

    The investigated nuclear piston engines consist of a pulsed, gaseous core reactor enclosed by a moderating-reflecting cylinder and piston assembly and operate on a thermodynamic cycle similar to the internal combustion engine. The primary working fluid is a mixture of uranium hexafluoride, UF 6 , and helium, He, gases. Highly enriched UF 6 gas is the reactor fuel. The helium is added to enhance the thermodynamic and heat transfer characteristics of the primary working fluid and also to provide a neutron flux flattening effect in the cylindrical core. Two and four-stroke engines have been studied in which a neutron source is the counterpart of the sparkplug in the internal combustion engine. The piston motions which have been investigated include pure simple harmonic, simple harmonic with dwell periods, and simple harmonic in combination with non-simple harmonic motion. The results of the conducted investigations indicate good performance potential for the nuclear piston engine with overall efficiencies of as high as 50 percent for nuclear piston engine power generating units of from 10 to 50 Mw(e) capacity. Larger plants can be conceptually designed by increasing the number of pistons, with the mechanical complexity and physical size as the probable limiting factors. The primary uses for such power systems would be for small mobile and fixed ground-based power generation (especially for peaking units for electrical utilities) and also for nautical propulsion and ship power

  6. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  7. Nuclear detectors for in-core power-reactors

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1979-12-01

    Nuclear reactor control is commonly obtained through neutronic measurements, ex-core and in-core. In large size reactors flux instabilities may take place. For a good monitoring of them, local in-core power measurements become particularly useful. This paper intends to review the questions about neutronic sensors with could be used in-core. A historical account about methods is given first, from early power reactors with brief description of each system. Sensors presently used (ionization fission chambers, self-powered detectors) are then considered and also those which could be developped such as gamma thermometers. Their physical basis, main characteristics and operation modes are detailed. Preliminary tests and works needed for an extension of their life-time are indicated. As an example present irradiation tests at the CEA are then proposed. Two tables will help comparing the characteristics of each type in terms of its precise purpose: fuel monitoring, safety or power control. Finally a table summarizes the kind of sensors mounted on working power reactors and another one is a review of characteristics for some detectors from obtainable commercial sheets [fr

  8. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  9. Review of coaxial flow gas core nuclear rocket fluid mechanics

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    In a prematurely aborted attempt to demonstrate the feasibility of using a gas core nuclear reactor as a rocket engine, NASA initiated a number of studies on the relevant fluid mechanics problems. These studies were carried out at NASA laboratories, universities and industrial research laboratories. Because of the relatively sudden termination of most of this work, a unified overview was never presented which demonstrated the accomplishments of the program and pointed out the areas where additional work was required for a full understanding of the cavity flow. This review attempts to fulfill a part of this need in two important areas

  10. Computation system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.

  11. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  12. Automated software analysis of nuclear core discharge data

    International Nuclear Information System (INIS)

    Larson, T.W.; Halbig, J.K.; Howell, J.A.; Eccleston, G.W.; Klosterbuer, S.F.

    1993-03-01

    Monitoring the fueling process of an on-load nuclear reactor is a full-time job for nuclear safeguarding agencies. Nuclear core discharge monitors (CDMS) can provide continuous, unattended recording of the reactor's fueling activity for later, qualitative review by a safeguards inspector. A quantitative analysis of this collected data could prove to be a great asset to inspectors because more information can be extracted from the data and the analysis time can be reduced considerably. This paper presents a prototype for an automated software analysis system capable of identifying when fuel bundle pushes occurred and monitoring the power level of the reactor. Neural network models were developed for calculating the region on the reactor face from which the fuel was discharged and predicting the burnup. These models were created and tested using actual data collected from a CDM system at an on-load reactor facility. Collectively, these automated quantitative analysis programs could help safeguarding agencies to gain a better perspective on the complete picture of the fueling activity of an on-load nuclear reactor. This type of system can provide a cost-effective solution for automated monitoring of on-load reactors significantly reducing time and effort

  13. Nuclear fusion in a solid body

    International Nuclear Information System (INIS)

    Romodanov, V.A.; Savin, V.I.; Shakhurin, M.V.; Chernyavskij, V.T.; Pustovit, A.E.

    1991-01-01

    The present work was aimed at investigating a possibility to have a fusion reaction during the interaction of gaseous deuterium with various metals under conditions of glow discharge. It is shown that neutron flux which presumably occurs due to the reaction of nuclear fusion exceeded the background level two times maximum for such materials as Cr, Pd, B, Li. A conclusion is made that for the recording of neutrons which can be generated under bombardment of material surfaces with accelerated ions an additional shielding of standard recorders is required against electromagnetic oscillations both in the input circuits and power supply circuits. A significant increase of tritium concentration in deuterium was recorded (by mass spectrometry and β activity measurement) during the passage of the latter through the metal being bombarded with accelerated ions from glow discharge plasma

  14. Performance of a 229Thorium solid-state nuclear clock

    International Nuclear Information System (INIS)

    Kazakov, G A; Schreitl, M; Winkler, G; Schumm, T; Litvinov, A N; Romanenko, V I; Yatsenko, L P; Romanenko, A V

    2012-01-01

    The 7.8 eV nuclear isomer transition in 229 thorium has been suggested as a clock transition in a new type of optical frequency standard. Here we discuss the construction of a ‘solid-state nuclear clock’ from thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of calcium fluoride. At liquid nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the thorium nuclei to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose clock stabilization based on a fluorescence spectroscopy method and present optimized operation parameters. Taking advantage of the large number of quantum oscillators under continuous interrogation, a fractional instability level of 10 −19 might be reached within the solid-state approach. (paper)

  15. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L. [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities

  16. Global physical and numerical stability of a nuclear reactor core

    International Nuclear Information System (INIS)

    Morales-Sandoval, Jaime; Hernandez-Solis, Augusto

    2005-01-01

    Low order models are used to investigate the influence of integration methods on observed power oscillations of some nuclear reactor simulators. The zero-power point reactor kinetics with six-delayed neutron precursor groups are time discretized using explicit, implicit and Crank-Nicholson methods, and the stability limit of the time mesh spacing is exactly obtained by locating their characteristic poles in the z-transform plane. These poles are the s to z mappings of the inhour equation roots and, except for one of them, they show little or no dependence on the integration method. Conditions for stable power oscillations can be also obtained by tracking when steady state output signals resulting from reactivity oscillations in the s-Laplace plane cross the imaginary axis. The dynamics of a BWR core operating at power conditions is represented by a reduced order model obtained by adding three ordinary differential equations, which can model void and Doppler reactivity feedback effects on power, and collapsing all delayed neutron precursors in one group. Void dynamics are modeled as a second order system and fuel heat transfer as a first order system. This model shows rich characteristics in terms of indicating the relative importance of different core parameters and conditions on both numerical and physical oscillations observed by large computer code simulations. A brief discussion of the influence of actual core and coolant conditions on the reduced order model is presented

  17. Core fusion accidents in nuclear power reactors. Knowledge review

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    This reference document proposes a large and detailed review of severe core fusion accidents occurring in nuclear power reactors. It aims at presenting the scientific aspects of these accidents, a review of knowledge and research perspectives on this issue. After having recalled design and operation principles and safety principles for reactors operating in France, and the main studied and envisaged accident scenarios for the management of severe accidents in French PWRs, the authors describe the physical phenomena occurring during a core fusion accident, in the reactor vessel and in the containment building, their sequence and means to mitigate their effects: development of the accident within the reactor vessel, phenomena able to result in an early failure of the containment building, phenomena able to result in a delayed failure with the corium-concrete interaction, corium retention and cooling in and out of the vessel, release of fission products. They address the behaviour of containment buildings during such an accident (sizing situations, mechanical behaviour, bypasses). They review and discuss lessons learned from accidents (Three Mile Island and Chernobyl) and simulation tests (Phebus-PF). A last chapter gives an overview of software and approaches for the numerical simulation of a core fusion accident

  18. Nuclear power reactor core melt accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Jacquemain, Didier; Cenerino, Gerard; Corenwinder, Francois; Raimond, Emmanuel IRSN; Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Couturier, Jean; Debaudringhien, Cecile; Duprat, Anna; Dupuy, Patricia; Evrard, Jean-Michel; Nicaise, Gregory; Berthoud, Georges; Studer, Etienne; Boulaud, Denis; Chaumont, Bernard; Clement, Bernard; Gonzalez, Richard; Queniart, Daniel; Peltier, Jean; Goue, Georges; Lefevre, Odile; Marano, Sandrine; Gobin, Jean-Dominique; Schwarz, Michel; Repussard, Jacques; Haste, Tim; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno; Durin, Michel; Andreo, Francois; Atkhen, Kresna; Daguse, Thierry; Dubreuil-Chambardel, Alain; Kappler, Francois; Labadie, Gerard; Schumm, Andreas; Gauntt, Randall O.; Birchley, Jonathan

    2015-11-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus-FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day. Following the introduction, which describes the structure of this book and highlights the objectives of R and D on core melt accidents, this book briefly presents the design and operating principles (Chapter 2) and safety principles (Chapter 3) of the reactors currently in operation in France, as well as the main accident scenarios envisaged and studied (Chapter 4). The objective of these chapters is not to provide exhaustive information on these subjects (the reader should refer to the general reference documents listed in the corresponding chapters), but instead to provide the information needed in order to understand, firstly, the general approach adopted in France for preventing and mitigating the consequences of core melt

  19. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Gaurav; Jensen, David S.; Wiest, Landon A.; Vail, Michael A.; Dadson, Andrew; Lee, Milton L.; Shutthanandan, V.; Linford, Matthew R.

    2010-06-01

    We report the formation of core-shell diamond particles for solid phase extraction (SPE) and high performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO2 surfaces, which were characterized by SEM, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer Emmett Teller (BET) surface area and pore size measurements. Larger (ca. 50 μm) core-shell diamond particles have much higher surface areas, and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 μm), normal and reversed phase, core-shell diamond particles have been used for HPLC, with 36,300 plates per meter for mesitylene in a separation of benzene and alkyl benzenes on a C18 adsorbent, and 54,800 plates per meter for diazinon in a similar separation of two pesticides.

  20. Core-shell diamond as a support for solid-phase extraction and high-performance liquid chromatography.

    Science.gov (United States)

    Saini, Gaurav; Jensen, David S; Wiest, Landon A; Vail, Michael A; Dadson, Andrew; Lee, Milton L; Shutthanandan, V; Linford, Matthew R

    2010-06-01

    We report the formation of core-shell diamond particles for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO(2) surfaces, which were characterized by scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer-Emmett-Teller (BET) surface area and pore size measurements. Larger (ca. 50 microm) core-shell diamond particles have much higher surface areas and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 microm), normal and reversed-phase, core-shell diamond particles have been used for HPLC, with 36,300 plates/m for mesitylene in a separation of benzene and alkyl benzenes and 54,800 plates/m for diazinon in a similar separation of two pesticides on a C(18) adsorbent.

  1. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography

    International Nuclear Information System (INIS)

    Saini, Gaurav; Jensen, David S.; Wiest, Landon A.; Vail, Michael A.; Dadson, Andrew; Lee, Milton L.; Shutthanandan, V.; Linford, Matthew R.

    2010-01-01

    We report the formation of core-shell diamond particles for solid phase extraction (SPE) and high performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO2 surfaces, which were characterized by SEM, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer Emmett Teller (BET) surface area and pore size measurements. Larger (ca. 50 ?m) core-shell diamond particles have much higher surface areas, and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 ?m), normal and reversed phase, core-shell diamond particles have been used for HPLC, with 36,300 plates per meter for mesitylene in a separation of benzene and alkyl benzenes on a C18 adsorbent, and 54,800 plates per meter for diazinon in a similar separation of two pesticides.

  2. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes.

  3. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    International Nuclear Information System (INIS)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun

    2016-01-01

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes

  4. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    Science.gov (United States)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of

  5. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  6. Solid state nuclear track detection : theory and applications

    International Nuclear Information System (INIS)

    Bhagwat, A.M.

    1993-01-01

    Solid state nuclear track detection (SSNTD) technique is simple and inexpensive in nature. The two main steps involved in SSNTD are the formation of latent tracks and their subsequent development (visualisation) by chemical or other means. These are discussed in detail. Applications of SSNTD in the fields of nuclear physics, dosimetry, biology and for determination of contents of an element and its spatial distribution are described. The monograph is intended to serve both beginners and specialists. It also gives a list of simple experiments that can be conveniently introduced at the undergraduate/postgraduate level. (M.G.B.). 20 refs., 8 figs., 3 tabs

  7. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    Science.gov (United States)

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  8. Minaret, a deterministic neutron transport solver for nuclear core calculations

    International Nuclear Information System (INIS)

    Moller, J-Y.; Lautard, J-J.

    2011-01-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  9. Minaret, a deterministic neutron transport solver for nuclear core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Moller, J-Y.; Lautard, J-J., E-mail: jean-yves.moller@cea.fr, E-mail: jean-jacques.lautard@cea.fr [CEA - Centre de Saclay , Gif sur Yvette (France)

    2011-07-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  10. Reducing the risk to Mars: The gas core nuclear rocket

    International Nuclear Information System (INIS)

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions

  11. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  12. Theory of nuclear quadrupole interactions in solid hydrogen fluoride

    International Nuclear Information System (INIS)

    Mohamed, N.S.; Sahoo, N.; Das, T.P.; Kelires, P.C.

    1990-01-01

    The nuclear quadrupole interaction of 19 F * (I=5/2) nucleus in solid hydrogen fluoride has been studied using the Hartree Fock cluster technique to understand the influence of both intrachain hydrogen bonding effects and the weak interchain interaction. On the basis of our investigations, the 34.04 MHz coupling constant observed by TDPAD measurements has been ascribed to the bulk solid while the observed 40.13 MHz coupling constant is suggested as arising from a small two- or three-molecule cluster produced during the proton irradiation process. Two alternate explanations are offered for the origin of coupling constants close to 40 MHz in a number of solid hydrocarbons containing hydrogen and fluorine ligands. (orig.)

  13. Nuclear many-body problem with repulsive hard core interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, L M

    1965-07-01

    The nuclear many-body problem is considered using the perturbation-theoretic approach of Brueckner and collaborators. This approach is outlined with particular attention paid to the graphical representation of the terms in the perturbation expansion. The problem is transformed to centre-of-mass coordinates in configuration space and difficulties involved in ordinary methods of solution of the resulting equation are discussed. A new technique, the 'reference spectrum method', devised by Bethe, Brandow and Petschek in an attempt to simplify the numerical work in presented. The basic equations are derived in this approximation and considering the repulsive hard core part of the interaction only, the effective mass is calculated at high momentum (using the same energy spectrum for both 'particle' and 'hole' states). The result of 0.87m is in agreement with that of Bethe et al. A more complete treatment using the reference spectrum method in introduced and a self-consistent set of equations is established for the reference spectrum parameters again for the case of hard core repulsions. (author)

  14. Reactor core cooling device for nuclear power plant

    International Nuclear Information System (INIS)

    Tsuda, Masahiko.

    1992-01-01

    The present invention concerns a reactor core cooling facility upon rupture of pipelines in a BWR type nuclear power plant. That is, when rupture of pipelines should occur in the reactor container, an releasing safety valve operates instantly and then a depressurization valve operates to depressurize the inside of a reactor pressure vessel. Further, an injection valve of cooling water injection pipelines is opened and cooling water is injected to cool the reactor core from the time when the pressure is lowered to a level capable of injecting water to the pressure vessel by the static water head of a pool water as a water source. Further, steams released from the pressure vessel and steams in the pressure vessel are condensed in a high pressure/low pressure emergency condensation device and the inside of the reactor container is depressurized and cooled. When the reactor is isolated, since the steams in the pressure vessel are condensed in the state that the steam supply valve and the return valve of a steam supply pipelines are opened and a vent valve is closed, the reactor can be maintained safely. (I.S.)

  15. Development of an automated core model for nuclear reactors

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input

  16. Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

    Energy Technology Data Exchange (ETDEWEB)

    Togashi, H., E-mail: hajime.togashi@riken.jp [Nishina Center for Accelerator-Based Science, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakazato, K. [Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Takehara, Y.; Yamamuro, S.; Suzuki, H. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan); Takano, M. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2017-05-15

    A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas–Fermi calculation is performed to obtain the minimized free energy of a Wigner–Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas–Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid–gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.

  17. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    International Nuclear Information System (INIS)

    Thies, C.; Geddis, A.M.; Guzman, A.G.

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1 degrees C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm 3 with less than 1% error

  18. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    Energy Technology Data Exchange (ETDEWEB)

    Thies, C. [ed.; Geddis, A.M.; Guzman, A.G. [and others

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.

  19. Lower Bound for the Radiation $Q$ of Electrically Small Magnetic Dipole Antennas With Solid Magnetodielectric Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    A new lower bound for the radiation $Q$ of electrically small spherical magnetic dipole antennas with solid magnetodielectric core is derived in closed form using the exact theory. The new bound approaches the Chu lower bound from above as the antenna electrical size decreases. For $ka, the new...... bound is lower than the bounds for spherical magnetic as well as electric dipole antennas composed of impressed electric currents in free space....

  20. Constant sensitivity circuit for solid state nuclear radiation counters

    International Nuclear Information System (INIS)

    Kronenberg, S.; Erkkila, B.

    1985-01-01

    The utilization of solid state counters in tactical radiological instruments for measuring intensities and doses of fallout gamma rays offers advantages over Geiger-Mueller (GM) counters such as a much wider dynamic range and low operating voltages. Their very small size is suitable for use in miniaturized equipment. However, these devices have a serious problem if used in a mixed, fast neutron/gamma environment such as is encountered e.g. in a battlefield where tactical nuclear weapons are used and neutrons, prompt, initial gammas and fallout gammas are killing factors of comparable importance. Exposure to fast neutrons reduces seriously their sensitivity. This makes the solid state counters at this time unacceptable for use in Army tactical surveillance equipment and in other applications where according to requirements the performance must not be impaired by exposure to fast neutrons. It seems to be possible to reduce to some extent this neutron generated damage by improving the crystal counters

  1. Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors

    Science.gov (United States)

    Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang

    2013-10-01

    Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance. Electronic supplementary information (ESI) available: Experimental details, XRD pattern, FT-IR absorption spectrum and CV curves of TiO2@PPy NWs, and SEM images of the PPy. See DOI: 10.1039/c3nr03578f

  2. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  3. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    Directory of Open Access Journals (Sweden)

    Andrea Cerutti

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS, but no nuclear export signal (NES has yet been identified.We show here that the aa(109-133 region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126 in the identified NES or in the sequence encoding the mature core aa(1-173 significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  4. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    Science.gov (United States)

    Cerutti, Andrea; Maillard, Patrick; Minisini, Rosalba; Vidalain, Pierre-Olivier; Roohvand, Farzin; Pecheur, Eve-Isabelle; Pirisi, Mario; Budkowska, Agata

    2011-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  5. Radon detection in soils by solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1986-01-01

    The solid state nuclear track detectors technique was developed to be used in radon detection, by alpha particles tracks, and its application in uranium prospecting on the ground. The sensitive films to alpha particles used are the cellulose nitrate films LR 115 and CA 8015. Several simulations experiments and field measurements were carried out to verify the method possibilities. Maps of some anomalies in Caetite City (Bahia, Brazil) were made with the densities of tracks obtained. The results were compared with scintillation counter measurements. (Author) [pt

  6. Nuclear Power Reactor Core Melt Accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus- FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day

  7. Localization of Vibrating Noise Sources in Nuclear Reactor Cores

    International Nuclear Information System (INIS)

    Hultqvist, Pontus

    2004-09-01

    In this thesis the possibility of locating vibrating noise sources in a nuclear reactor core from the neutron noise has been investigated using different localization methods. The influence of the vibrating noise source has been considered to be a small perturbation of the neutron flux inside the reactor. Linear perturbation theory has been used to construct the theoretical framework upon which the localization methods are based. Two different cases have been considered: one where a one-dimensional one-group model has been used and another where a two-dimensional two-energy group noise simulator has been used. In the first case only one localization method is able to determine the position with good accuracy. This localization method is based on finding roots of an equation and is sensitive to other perturbations of the neutron flux. It will therefore work better with the assistance of approximative methods that reconstruct the noise source to determine if the results are reliable or not. In the two-dimensional case the results are more promising. There are several different localization techniques that reproduce both the vibrating noise source position and the direction of vibration with enough precision. The approximate methods that reconstruct the noise source are substantially better and are able to support the root finding method in a more constructive way. By combining the methods, the results will be more reliable

  8. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    International Nuclear Information System (INIS)

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  9. Seismic response of a block-type nuclear reactor core

    International Nuclear Information System (INIS)

    Dove, R.C.; Bennett, J.G.; Merson, J.L.

    1976-05-01

    An analytical model is developed to predict seismic response of large gas-cooled reactor cores. The model is used to investigate scaling laws involved in the design of physical models of such cores, and to make parameter studies

  10. Method of fabricating a monolithic core for a solid oxide fuel cell

    International Nuclear Information System (INIS)

    Zwick, S.A.; Ackerman, J.P.

    1985-01-01

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable

  11. Rubrene: The interplay between intramolecular and intermolecular interactions determines the planarization of its tetracene core in the solid state

    KAUST Repository

    Sutton, Christopher; Marshall, Michael S.; Sherrill, C. David; Risko, Chad; Bredas, Jean-Luc

    2015-01-01

    exchange-repulsion interactions among the phenyl side groups. Calculations based on available crystallographic structures reveal that planar conformations of the tetracene core in the solid state result from intermolecular interactions that can be tuned

  12. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  13. Nuclear spin relaxation by translational diffusion in solids

    International Nuclear Information System (INIS)

    Barton, W.A.; Sholl, C.A.

    1978-01-01

    The theory of nuclear spin relaxation by translational diffusion in solids developed in previous papers is applied to two-spin systems and third-nearest-neighbour jump models in FCC crystals. The two-spin systems describe the dipole-dipole interactions between stationary host spins and spins migrating amongst either the tetrahedral or the octahedral interstitial sites. The tetrahedral sites in a FCC crystal form a SC lattice and two models, the symmetric and asymmetric jump models, are considered for third-nearest-neighbour jumps on this lattice. Numerical results for the correlation function relevant for single crystals and polycrystals are presented over the entire temperature range. It is found that the simpler, but unphysical, symmetric jump model is a good approximation to the more complicated asymmetric jump model. (author)

  14. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  15. Fast neutron detection using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Vilela, E.C.

    1990-01-01

    CR-39 and Makrofol-E solid state nuclear track detectors were studied aiming their application to fast neutron detection. Optimum etching conditions of those two kinds of materials were determined the followings - the Makrofol-E detector is electrochemically etched in a PEW solution (15% KOH, 40% ethilic alcohol and 45% water) for 2 h., with an applied electric field strength of 30 kV/cm (r/m/s/) and frequency of 2 kHz, at room temperature; - the CR-39 detector is chemically pre-etched during 1 h in a 20% (w/v) NaOH solution at 70 sup(0)C, followed by 13 h electrochemical etch using the same solution at room temperature and an electric field strength of 30 kV/cm (r.m.s.) and frequency of 2 kHz.(E.G.)

  16. Diallyl phthalate (DAP) solid state nuclear track detector

    CERN Document Server

    Koguchi, Y; Ashida, T; Tsuruta, T

    2003-01-01

    Diallyl phthalate (DAP) solid state nuclear track detector is suitable for detecting heavy ions such as fission fragments, because it is insensitive to right ions such as alpha particles and protons. Detection efficiency of fission tracks is about 100%, which is unaffected under conditions below 240degC lasting for 1h or below 1 MGy of gamma-ray irradiation. Optimum etching condition for the DAP detector for detection of fission fragments is 2-4 h using 30% KOH aqueous solution at 90degC or 8-15 min using PEW-65 solution at 60degC. DAP detector is useful in detecting induced fission tracks for dating of geology or measuring intense heavy ions induced by ultra laser plasma. The fabrication of copolymers of DAP and CR-39 makes it possible to control the discrimination level for detection threshold of heavy ions. (author)

  17. Nuclear-fuel-cycle education: Module 5. In-core fuel management

    International Nuclear Information System (INIS)

    Levine, S.H.

    1980-07-01

    The purpose of this project was to develop a series of educational modules for use in nuclear-fuel-cycle education. These modules are designed for use in a traditional classroom setting by lectures or in a self-paced, personalized system of instruction. This module on in-core fuel management contains information on computational methods and theory; in-core fuel management using the Virginia Polytechnic Institute and State University computer modules; pressurized water reactor in-core fuel management; boiling water reactor in-core fuel management; and in-core fuel management for gas-cooled and fast reactors

  18. Some experimental justifications of constructions of nuclear reactors with the use of solid coolant

    International Nuclear Information System (INIS)

    Deniskin, V.; Nalivaev, V.; Fedik, I.; Vishnevski, U.; Dmitriev, A.

    2003-01-01

    Full text: The work that has been conducted so far justifies a possibility of constructing a reactor with a non-traditional coolant to develop radically new reactors and their cycles with perfect architecture. A solid coolant, for example, the carbon-based one, allows to design the primary circuit of nuclear reactor without excess pressure. Such coolant withstands temperatures up to ∼4000 deg. K without a collapse. The analysis of theory and experiments produced requirements to be met by a solid coolant used in the primary circuit of nuclear reactor. One of the most important requirements is the arrangements for a continuous and homogeneous gravity flow of the coolant through all core sections taking into account the dust caused by wear and some amount of fractured particles. Therefore, the idea is that the mass of particles should resemble a liquid to a certain extend. The particles should be sphere like with average diameter from 0.5 to 2.0 mm and nonsphericity rate not more than 10%. 'Angle of repose' of particles to the horizon can be utilised as a validity criterion of particles which should not exceed 25 deg. The heat transfer coefficient should be increased up to the practical maximum value. In 1996 - 1997 the system of experimental facilities were built in the Scientific and Research Institute 'Luch' to prove the possibility to reliably cool a nuclear reactor with a flow of solid particles and to obtain a minimum set of data for the conceptual design of such reactor with solid coolant. The facility allows the research of the flow stability, heat mass transfer in the core, lifetime wearing of particles of the solid coolant. In 1994-1999 5 batches of particles of different size were fabricated in accordance to different technologies. Four batches were graphite-based and one was aluminium oxide-based (Al 2 O 3 ). The purpose was to verify how the heat transfer coefficient was changing as the particle size varied. The average diameter of graphite particles

  19. Phosphorus nuclear magnetic resonance imaging in solid bone

    International Nuclear Information System (INIS)

    Li, Limin.

    1990-01-01

    Phosphorus ( 31 P) nuclear magnetic resonance (NMR) double-pulse transient experiments of solid bone have shown that the spins dephased by the dipolar spin-spin interactions can be refocused with a 90 degree-β pulse sequence so that an echo is observable at some time following the second pulse. The decay time constant of the maximum echo amplitude is larger than that of the free induction decay (FID) signal from a single 90 degree pulse. Depending on the nutation angle of the second pulse, the former decay time constant is about three-five times as long as the latter one. The dipolar-echo properties of the bone may be relevant with the interpair dipolar interactions. The experiments have also show that, in general, the time for the transient signal from the double pulses to reach the maximum amplitude is not equal to the pulse separation. This can be attributed to the effect of the heteronuclear dipolar interactions. In addition, it is found experimentally that refocused gradients applied only in a time interval of the formation of an echo have the capability of phase-encoding spatial information. Based on this, a new imaging method was proposed. With the method, several 31 P images of the solid bone samples have been obtained. The picture element size is 1-1.5 mm with very good signal-to-noise ratios. The imaging ability of the refocused gradients may be relevant with the inhomogeneous local field produced by the interpair dipolar interactions

  20. The effects of radiation on aluminium alloys in the core of energy nuclear reactors

    International Nuclear Information System (INIS)

    Petrossian, V.G.

    1995-01-01

    One of the attractive directions in the worldwide practice of nuclear installations is the replacement of expensive zirconium alloy with more cheap materials, particularly aluminium allo. For Heat Supply Nuclear Plants (HSNP) with approximately 473 K core temperatures, the use of heat-resistant aluminium alloys seems to be reasonable. The present work is concerned with the studies on radiation effects on aluminium alloy, and interaction between the alloy and coolant in the reactor core. (author). 2 refs., 3 figs., 1 tab

  1. Influence of tracks densities in solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Guedes O, S.; Hadler N.; Lunes, P.; Saenz T, C.

    1996-01-01

    When Solid State Nuclear Track Detectors (SSNTD) is employed to measure nuclear tracks produced mainly by fission fragments and alpha particles, it is considered that the tracks observation work is performed under an efficiency, ε 0 , which is independent of the track density (number of tracks/area unit). There are not published results or experimental data supporting such an assumption. In this work the dependence of ε 0 with track density is studied basing on experimental data. To perform this, pieces of CR-39 cut from a sole 'mother sheet' were coupled to thin uranium films for different exposition times and the resulting ratios between track density and exposition time were compared. Our results indicate that ε 0 is constant for track densities between 10 3 and 10 5 cm -2 . At our etching conditions track overlapping makes impossible the counting for densities around 1.7 x 10 5 cm -2 . For track densities less than 10 3 cm -2 , ε 0 , was not observed to be constant. (authors). 4 refs., 2 figs

  2. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated

  3. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    Science.gov (United States)

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  4. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    Directory of Open Access Journals (Sweden)

    Jens Milbradt

    2018-01-01

    Full Text Available The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  5. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs. Final summary report

    International Nuclear Information System (INIS)

    Greenspan, E

    2006-01-01

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity in particular for BWR's, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR's and BWR's without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR's and BWR's were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density ? on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR's more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fueled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ∼2/3 that of the MOX fuel and the discharged hydride fuel is

  6. Analysis of ex-core detector response measured during nuclear ship Mutsu land-loaded core critical experiment

    International Nuclear Information System (INIS)

    Itagaki, M.; Abe, J.I.; Kuribayashi, K.

    1987-01-01

    There are some cases where the ex-core neutron detector response is dependent not only on the fission source distribution in a core but also on neutron absorption in the borated water reflector. For example, an unexpectedly large response variation was measured during the nuclear ship Mutsu land-loaded core critical experiment. This large response variation is caused largely by the boron concentration change associated with the change in control rod positioning during the experiment. The conventional Crump-Lee response calculation method has been modified to take into account this boron effect. The correction factor in regard to this effect has been estimated using the one-dimensional transport code ANISN. The detector response variations obtained by means of this new calculation procedure agree well with the measured values recorded during the experiment

  7. Core power distribution measurement and data processing in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Hong

    1997-01-01

    For the first time in China, Daya Bay Nuclear Power Station applied the advanced technology of worldwide commercial pressurized reactors to the in-core detectors, the leading excore six-chamber instrumentation for precise axial power distribution, and the related data processing. Described in this article are the neutron flux measurement in Daya Bay Nuclear Power Station, and the detailed data processing

  8. Real-time simulation of ex-core nuclear instrumentation system

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhang Zhijian; Cao Xinrong

    2005-01-01

    Real-time simulation of ex-core nuclear instrumentation system is an indispensable part of nuclear power plant (NPP) full-scope training simulator. The simulation method, which is based upon the theory of measurement, is introduced in the paper. The fitting formula between the measured data and the three-dimensional neutron flux distribution in the core is established. The fitting parameter is adjusted according to the reactor physical calculation or the experiment of power calibration. The simulation result shows that the method can simulate the ex-core neutron instrumentation system accurately in real-time and meets the needs of NPP full-scope training simulator. (authors)

  9. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  10. Nuclear characteristics evaluation for Kyoto University Research Reactor with low-enriched uranium core

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken; Unesaki, Hironobu [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun Osaka (Japan)

    2008-07-01

    A project to convert the fuel of Kyoto University Research Reactor (KUR) from highly enriched uranium (HEU) to low-enriched uranium (LEU) is in progress as a part of RERTR program. Prior to the operation of LEU core, the nuclear characteristics of the core have been evaluated to confirm the safety operation. In the evaluation, nuclear parameters, such as the excess reactivity, shut down margin control rod worth, reactivity coefficients, were calculated, and they were compared with the safety limits. The results of evaluation show that the LEU core is able to satisfy the safety requirements for operation, i.e. all the parameters satisfy the safety limits. Consequently, it was confirmed that the LEU fuel core has the proper nuclear characteristics for the safety operation. (authors)

  11. A nuclear reactor core fuel reload optimization using Artificial-Ant-Colony Connective Networks

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto

    2005-01-01

    A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly pattern that maximizes the number of full operational days. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is introduced to solve the nuclear reactor core fuel reload optimization problem. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)

  12. Development of a new method for high temperature in-core characterisation of solid surfaces

    International Nuclear Information System (INIS)

    Yamawaki, M.; Suzuki, A.; Yokota, T.; Nan Luo, G.; Yamaguchi, K.; Hayashi, K.

    2000-01-01

    In order to develop a new method for establishing in situ characterizations and monitoring of solid surfaces under irradiation and in controlled atmospheres, the high temperature Kelvin probe has been applied and tested to measure work function changes under such conditions. In the case of Li 4 SiO 4 and Li 2 ZrO 3 , two steps of distinct change of work function were observed when the specimen was exposed to hydrogen gas and also when it was retrieved. These changes were attributed to the oxygen vacancies formation/annihilation and the adsorption/desorption of gas (H 2 ). While the work function measured on a gold specimen under proton beam irradiation showed a steep drop in the work function during the initial irradiation, it gradually recovered after the end of irradiation. The second irradiation gave rise to a smaller value of the work function decrease of gold. These results support a possibility of adopting the high temperature Kelvin probe for the purpose of monitoring/characterising solid surface under irradiation in nuclear reactors and other facilities so as to detect the formation of defects in the surface and near-surface region of solid specimens. (authors)

  13. Nuclear cardiology core syllabus of the European Association of Cardiovascular Imaging (EACVI).

    Science.gov (United States)

    Gimelli, Alessia; Neglia, Danilo; Schindler, Thomas H; Cosyns, Bernard; Lancellotti, Patrizio; Kitsiou, Anastasia

    2015-04-01

    The European Association of Cardiovascular Imaging (EACVI) Core Syllabus for Nuclear Cardiology is now available online. The syllabus lists key elements of knowledge in nuclear cardiology. It represents a framework for the development of training curricula and provides expected knowledge-based learning outcomes to the nuclear cardiology trainees. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  14. Improvements to the sodium supply system of a nuclear reactor core

    International Nuclear Information System (INIS)

    Chevallier, Rene; Marchais, Christian.

    1981-01-01

    This invention concerns an improvement to the sodium supply system of a nuclear reactor core and, in particular, concerns the area included between the outlet of the primary circulation pumps and the core proper. A simplified structure and a lightening of all this linking area between the circulation pumps and the distribution tank under the core is achieved and this results in a very significant reduction in the risks of deterioration and in a definite increase in the reliability of the reactor. The invention is therefore an improvement to the sodium supply system of the nuclear reactor core vessel with incorporated exchangers, in which the cool sodium, after passing through the primary exchangers, is collected in a ring compartment from whence it is taken up by the pumps and moved to at least one pipe reaching a distribution tank located under the reactor core [fr

  15. Safety And Transient Analyses For Full Core Conversion Of The Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong

    2011-01-01

    Preparing for full core conversion of Dalat Nuclear Research Reactor (DNRR), safety and transient analyses were carried out to confirm about ability to operate safely of proposed Low Enriched Uranium (LEU) working core. The initial LEU core consisting 92 LEU fuel assemblies and 12 Beryllium rods was analyzed under initiating events of uncontrolled withdrawal of a control rod, cooling pump failure, earthquake and fuel cladding fail. Working LEU core response were evaluated under these initial events based on RELAP/Mod3.2 computer code and other supported codes like ORIGEN, MCNP and MACCS2. Obtained results showed that safety of the reactor is maintained for all transients/accidents analyzed. (author)

  16. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Science.gov (United States)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  17. Solving the uncommon nuclear reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-01-01

    Calculational procedures have been implemented for solving importance and higher harmonic neutronics problems. Solutions are obtained routinely to support analysis of reactor core performance, treating up to three space coordinates with the multigroup diffusion theory approximation to neutron transport. The techniques used and some of the calculational difficulties are discussed

  18. Analysis of the Ford Nuclear Reactor LEU core

    Energy Technology Data Exchange (ETDEWEB)

    Rathkopf, J A; Drumm, C R; Martin, W R; Lee, J C [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States)

    1983-09-01

    This paper has summarized the current status of the effort to analyze the FNR HEU/LEU cores and to compare the calculated results with measurements. In general, calculated predictions of experimental results are quite good, especially for global parameters such as reactivity, as seen in the single HEU/LEU element substitution experiment and the LEU full core critical loading. Shim rod worths are predicted well for two of the rods but too high for a third rod possibly due to inaccurate thermal flux distribution calculation. The calculated thermal flux maps show excellent agreement with experiment throughout the FNR core. In the heavy water tank, however, experimental values for the thermal flux obtained by different methods are inconsistent among themselves as well as with the calculated finding. Work is under.way to use our computational tools to correct the discrepancies between the various measurement techniques and to improve the computational results for flux distribution and the rod worth experiment. Although uncertainties exist in our analysis, as evidenced by the discrepancies mentioned above, we consider our present calculational package to be a useful, reasonably accurate, and efficient system for performing analyses of MTR LEU/HEU core configurations.

  19. A 98 W 1178 nm Yb-doped solid-core photonic bandgap fiber oscillator

    International Nuclear Information System (INIS)

    Fan, Xinyan; Chen, Mingchen; Shirakawa, Akira; Ueda, Ken-ichi; Olausson, Christina B; Broeng, Jes

    2013-01-01

    A high-power ytterbium-doped solid-core photonic bandgap fiber laser directly oscillating at 1178 nm is reported. The sharp-cut bandpass distributed filtering effect of photonic bandgap fiber can suppress amplified spontaneous emission (ASE) in the conventional high-gain spectral region. The oscillator is composed of a high reflection fiber Bragg grating spliced with a 39 m gain fiber and a Fresnel fiber end surface. A model based on rate equations is investigated numerically. A record output power of 98 W is achieved with a slope efficiency of 54%. The laser linewidth is 0.5 nm. The spectrum at 98 W indicates that ASE and parasitic lasing are suppressed effectively. (letter)

  20. Extended Fenske-Hall LCAO MO calculations of core-level shifts in solid P compounds

    Science.gov (United States)

    Franke, R.; Chassé, T.; Reinhold, J.; Streubel, P.; Szargan, R.

    1997-08-01

    Extended Fenske-Hall LCAO-MO ΔSCF calculations on solids modelled as H-pseudoatom saturated clusters are reported. The computational results verify the experimentally obtained initial-state (effective atomic charges, Madelung potential) and relaxation-energy contributions to the XPS phosphorus core-level binding energy shifts measured in Na 3PO 3S, Na 3PO 4, Na 2PO 3F and NH 4PF 6 in reference to red phosphorus. It is shown that the different initial-state contributions observed in the studied phosphates are determined by local and nonlocal terms while the relaxation-energy contributions are mainly dependent on the nature of the nearest neighbors of the phosphorus atom.

  1. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    Science.gov (United States)

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  2. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar.

    Science.gov (United States)

    Wang, Zong-Min; Lu, Zhen-Ming; Shi, Jin-Song; Xu, Zheng-Hong

    2016-05-31

    Multispecies solid-state fermentation (MSSF), a natural fermentation process driven by reproducible microbiota, is an important technique to produce traditional fermented foods. Flavours, skeleton of fermented foods, was mostly produced by microbiota in food ecosystem. However, the association between microbiota and flavours and flavour-producing core microbiota are still poorly understood. Here, acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar was taken as a typical case of MSSF. The structural and functional dynamics of microbiota during AAF process was determined by metagenomics and favour analyses. The dominant bacteria and fungi were identified as Acetobacter, Lactobacillus, Aspergillus, and Alternaria, respectively. Total 88 flavours including 2 sugars, 9 organic acids, 18 amino acids, and 59 volatile flavours were detected during AAF process. O2PLS-based correlation analysis between microbiota succession and flavours dynamics showed bacteria made more contribution to flavour formation than fungi. Seven genera including Acetobacter, Lactobacillus, Enhydrobacter, Lactococcus, Gluconacetobacer, Bacillus and Staphylococcus were determined as functional core microbiota for production of flavours in Zhenjiang aromatic vinegar, based on their dominance and functionality in microbial community. This study provides a perspective for bridging the gap between the phenotype and genotype of ecological system, and advances our understanding of MSSF mechanisms in Zhenjiang aromatic vinegar.

  3. Analysis of LWR Full MOX Core Physics Experiments with Major Nuclear Data Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toru [Japan Nuclear Energy Safety Organization, Tokyo (Japan)

    2007-07-01

    Nuclear Power Engineering Corporation (NUPEC) studied high moderation full MOX cores as a part of advanced LWR core concept studies from 1994 to 2003 supported by the Ministry of Economy, Trade and Industry. In order to obtain the major physics characteristics of such advanced MOX cores, NUPEC carried out core physics experimental programs called MISTRAL and BASALA from 1996 to 2002 in the EOLE critical facility of the Cadarache Center in collaboration with CEA. NUPEC also obtained a part of experimental data of the EPICURE program that CEA had conducted for 30 % Pu recycling in French PWRs. Japan Nuclear Energy Safety Organization(JNES) established in 2003 as an incorporated administrative agency took over the NUPEC's projects for nuclear regulation and has been implementing FUBILA program that is for high burn up BWR full MOX cores. This paper presents an outline of the programs and a summary of the analysis results of the criticality of those experimental cores with major nuclear data libraries.

  4. In-core fuel management programs for nuclear power reactors

    International Nuclear Information System (INIS)

    1984-10-01

    In response to the interest shown by Member States, the IAEA organized a co-ordinated research programme to develop and make available in the open domain a set of programs to perform in-core fuel management calculations. This report summarizes the work performed in the context of the CRP. As a result of this programme, complete in-core fuel management packages for three types of reactors, namely PWR's, BWR's and PHWR are now available from the NEA Data Bank. For some reactor types, these program packages are available with three levels of sophistication ranging from simple methods for educational purposes to more comprehensive methods that can be used for reactor design and operation. In addition some operating data have been compiled to allow code validation. (author)

  5. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    Science.gov (United States)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  6. High-Power Yb-Doped Solid-Core Photonic Bandgap Fiber Amplifier at 1150-1200nm

    DEFF Research Database (Denmark)

    Maruyama, H.; Shirakawa, A.; Ueda, K.

    2008-01-01

    Solid-core photonic-bandgap fiber amplification at the long-wavelength edge of ytterbium band is reported. A 32W output at 1156nm with a 66% slope efficiency and 9.1W output at 1178nm were succesfully obtained.......Solid-core photonic-bandgap fiber amplification at the long-wavelength edge of ytterbium band is reported. A 32W output at 1156nm with a 66% slope efficiency and 9.1W output at 1178nm were succesfully obtained....

  7. Feasibility study on nuclear core design for soluble boron free small modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Hah, Chang Joo; Ju, Cho Sung [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  8. Core safety of Indian nuclear power plants (NPPs) under extreme ...

    Indian Academy of Sciences (India)

    Of course, the accidents led to release of radioactivity due to probable melt down of reactor ... advances in technology and a better understanding of the nuclear power, the ..... PHWR system offers certain intrinsic advantages (Narora Atomic Power ...... system, Non Active Process Water System (NAPWS), Service Water Sys-.

  9. Pinning down nuclear. To the core of the matter

    International Nuclear Information System (INIS)

    Boeck, Helmut; Gerstmayr, Michael; Radde, Eileen

    2014-01-01

    The nuclear disaster in Fukushima shocked the world tremendously. The call to pull out of nuclear energy is getting louder - and more often than not by politicians trying to lure the favour of voters. Through the media there are half-truths and false information floating about the global consequences of the disaster and sensational prognoses for the future, all of which are in turn unsettling for the general public. Are the opposers to nuclear energy playing with the fear of the public or is the threat real? This book tells, in a captivating manner - authenticated with examples and incidents not known by many - what the threat for the area actually looks like. They confront the level of truth in the frightening scenarios and inform about the situation in case of emergency. Furthermore, they examine factors that preceded the disaster and broach the subject of the incredible hunger for energy, which dominates the world and continues to drive the commercial use of nuclear energy. Also the ghost of Chernobyl and its aftermath, which has been dismissed from our minds, is re-examined based on current knowledge. The book impresses with insider know-how, latest detailed knowledge, amazing facts and an entertaining narrative style.

  10. Pinning down nuclear. To the core of the matter

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, Helmut; Gerstmayr, Michael [Technische Univ., Vienna (Austria); International Atomic Energy Agency, Vienna (Austria); Radde, Eileen [Nuclear Engineering Seibersdorf GmbH (Austria); International Atomic Energy Agency, Vienna (Austria)

    2014-07-01

    The nuclear disaster in Fukushima shocked the world tremendously. The call to pull out of nuclear energy is getting louder - and more often than not by politicians trying to lure the favour of voters. Through the media there are half-truths and false information floating about the global consequences of the disaster and sensational prognoses for the future, all of which are in turn unsettling for the general public. Are the opposers to nuclear energy playing with the fear of the public or is the threat real? This book tells, in a captivating manner - authenticated with examples and incidents not known by many - what the threat for the area actually looks like. They confront the level of truth in the frightening scenarios and inform about the situation in case of emergency. Furthermore, they examine factors that preceded the disaster and broach the subject of the incredible hunger for energy, which dominates the world and continues to drive the commercial use of nuclear energy. Also the ghost of Chernobyl and its aftermath, which has been dismissed from our minds, is re-examined based on current knowledge. The book impresses with insider know-how, latest detailed knowledge, amazing facts and an entertaining narrative style.

  11. Nuclear design and analysis report for KALIMER breakeven core conceptual design

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Song, Hoon; Lee, Ki Bog; Chang, Jin Wook; Hong, Ser Gi; Kim, Young Gyun; Kim, Yeong Il

    2002-04-01

    During the phase 2 of LMR design technology development project, the breakeven core configuration was developed with the aim of the KALIMER self-sustaining with regard to the fissile material. The excess fissile material production is limited only to the extent of its own requirement for sustaining its planned power operation. The average breeding ratio is estimated to be 1.05 for the equilibrium core and the fissile plutonium gain per cycle is 13.9 kg. The nuclear performance characteristics as well as the reactivity coefficients have been analyzed so that the design evaluation in other activity areas can be made. In order to find out a realistic heavy metal flow evolution and investigate cycle-dependent nuclear performance parameter behaviors, the startup and transition cycle loading strategies are developed, followed by the startup core physics analysis. Driver fuel and blankets are assumed to be shuffled at the time of each reload. The startup core physics analysis has shown that the burnup reactivity swing, effective delayed neutron fraction, conversion ratio and peak linear heat generation rate at the startup core lead to an extreme of bounding physics data for safety analysis. As an outcome of this study, a whole spectrum of reactor life is first analyzed in detail for the KALIMER core. It is experienced that the startup core analysis deserves more attention than the current design practice, before the core configuration is finalized based on the equilibrium cycle analysis alone.

  12. Notes on nuclear reactor core analysis code: CITATION

    International Nuclear Information System (INIS)

    Cepraga, D.G.

    1980-01-01

    The method which has evolved over the years for making power reactor calculations is the multigroup diffusion method. The CITATION code is designed to solve multigroup neutronics problems with application of the finite-difference diffusion theory approximation to neutron transport in up to three-dimensional geometry. The first part of this paper presents information about the mathematical equations programmed along with background material and certain displays to convey the nature of some of the formulations. The results obtained with the CITATION code regarding the neutron and burnup core analysis for a typical PWR reactor are presented in the second part of this paper. (author)

  13. Nuclear reactor ex-core startup neutron detector

    International Nuclear Information System (INIS)

    Wyvill, J.R.

    1980-01-01

    A sensitive ex-core neutron detector is needed to monitor the power level of reactors during startup. The neutron detector of this invention has a photomultiplier with window resistant to radiation darkening at the input end and an electrical connector at the output end. The photomultiplier receives light signals from a neutron-responsive scintillator medium, typically a cerium-doped lithium silicate glass, that responds to neutrons after they have been thermalized by a silicone resin moderator. Enclosing and shielding the photmultiplier, the scintillator medium and the moderator is a combined lead and borated silicone resin housing

  14. Nuclear determination of saturation profiles in core plugs

    International Nuclear Information System (INIS)

    Sletsgaard, J.; Oelgaard, P.L.

    1997-01-01

    A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)

  15. The density jump at the inner core boundary using underground nuclear explosion records

    International Nuclear Information System (INIS)

    Krasnoshchekov, D.N.; Ovchinnikov, V.M.

    2001-01-01

    This paper presents the estimation of the minimum jump value using experimental wave forms reflected from the boundary between the Earth core and mantle (PcP) and the one between the inner and outer core (PKiKP) at a distance of 6 deg. Digital seismic records of underground nuclear tests conducted at the Semipalatinsk test site in 70s by Zerenda-Vostochny-Chkalovo seismic array have been used. (author)

  16. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    International Nuclear Information System (INIS)

    Giachetti, R.T.

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs

  17. Development of LIBS for online analysis of solid nuclear materials

    International Nuclear Information System (INIS)

    Picard, Jessica

    2015-01-01

    With the objective to implement a fast, online analysis technique for control of solid metal nuclear materials, laser-induced breakdown spectroscopy (LIBS) technique is developed for quantitative analysis in uranium and plutonium. Since these matrices have a very dense emission spectrum in the UV-Visible range, the Vacuum Ultra-Violet (VUV) spectral range, less rich in lines, is explored. The aim of this thesis is to perform the analytical development of VUV-LIBS for quantitative analysis between 500 and 5000 ppm with an uncertainty of 3%. For that purpose, four steps were defined. First, for practical and safety reasons, it is generally better to perform experiments on surrogate materials. LIBS based on laser-material interaction, it is relevant to seek a surrogate of material of interest from the viewpoint of the ablated mass. Thus, a complete study of laser ablation of several metals was enabled to build a predictive model of the ablation efficiency. Titanium and stainless steel were defined as surrogate materials of plutonium and uranium for laser ablation. Secondly, the VUV-LIBS setup analytical performances were optimized for several elements of interest in four metals. Then, two calibration methods are used to determine the analytical performances. The limits of quantification are of the order of a few hundreds of ppm for all studied matrices, which validates the objective of impurities quantitation in the 500-5000 ppm range. Uncertainty is lower than 3% in the best cases. Finally, the calibration transfer between the four matrices was studied. A normalization of the nickel net signal measured in three matrices was presented. (author) [fr

  18. Solid state nuclear track detectors kit for the use in teaching

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.

    1988-11-01

    The kit intends to improve the possibilities in performing experiments of Nuclear Physics in Modern Physics laboratories of Physics Course introducing the solid state nuclear track detectors. In these materials the passage of heavily ionizing nuclear particles creates paths (tracks) that may be revealed and made visible in an optical microscope. By the help of the kit several experiments and/or demonstrations may be performed. The kit contains solid state nuclear track detectors unirradiated and irradiated, irradiated etched and unetched sheets: an alpha source of 241 Am and an instrution text with photomicrographs. To use the kit the laboratory must have an ordinary optical microscope. (author) [pt

  19. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    In most advanced nodal methods the transverse integration is commonly used to reduce the multi-dimensional diffusion equation into equivalent one- dimensional diffusion equations when derving the nodal coupling equations. But the use of the transverse integration results in some limitations. The first limitation is that the transverse leakage term which appears in the transverse integration procedure must be appropriately approximated. The second limitation is that the one-dimensional flux shapes in each spatial direction resulted from the nodal calculation are not accurate enough to be directly used in reconstructing the pinwise flux distributions. Finally the transverse leakage defined for a non-rectangular node such as a hexagonal node or a triangular node is too complicated to be easily handled and may contain non-physical singular terms of step-function and delta-function types. In this thesis, the Analytic Function Expansion Nodal (AFEN) method and its two variations : the Polynomial Expansion Nodal (PEN) method and the hybrid of the AFEN and PEN methods, have been developed to overcome the limitations of the transverse integration procedure. All of the methods solve the multidimensional diffusion equation without the transverse integration. The AFEN method which we believe is the major contribution of this study to the reactor core analysis expands the homogeneous flux distributions within a node in non-separable analytic basis functions satisfying the neutron diffusion equations at any point of the node and expresses the coefficients of the flux expansion in terms of the nodal unknowns which comprise a node-average flux, node-interface fluxes, and corner-point fluxes. Then, the nodal coupling equations composed of the neutron balance equations, the interface current continuity equations, and the corner-point leakage balance equations are solved iteratively to determine all the nodal unknowns. Since the AFEN method does not use the transverse integration in

  20. Impact of nuclear 'pasta' on neutrino transport in collapsing stellar cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Takiwaki, Tomoya; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2007-01-01

    Nuclear 'pasta', nonspherical nuclei in dense matter, is predicted to occur in collapsing supernova cores. We show how pasta phases affect the neutrino transport cross section via weak neutral current using several nuclear models. This is the first calculation of the neutrino opacity of the phases with rod-like and slab-like nuclei taking account of finite temperature effects, which are well described by the quantum molecular dynamics. We also show that pasta phases can occupy 10-20% of the mass of supernova cores in the later stage of the collapse

  1. Calculations and selection of a TRIGA core for the Nuclear Reactor IAN-R1

    International Nuclear Information System (INIS)

    Castiblanco, L.A.; Sarta, J.A.

    1997-01-01

    The Reactor Group used the code WIMS reduced to five groups of energy, together with the code CITATION, and evaluated four configurations for a core, according to the grid actually installed. The four configurations were taken from the two proposals presented to the Instituto de Ciencias Nucleares y Energias Alternativas by General Atomics Company. In this paper, the Authors selected the best configuration according to the performance of flux distribution and excess reactivity, for a TRIGA core to be installed in the Nuclear Reactor IAN-R1

  2. Pattern recognition of subcooled boiling in core of nuclear reactors

    International Nuclear Information System (INIS)

    Inyushev, V.V.; Sharaevskij, I.G.

    2003-01-01

    The noise signals at the outlet of main nuclear power plant technological parameter gauges (neutron flux, dynamic pressure etc.) contain important information on technical state of the equipment. In the work efficient algorithms of random process identification that after respective spectral transformation are considered as multidimensional random vectors were developed. Automated classification of these vector in the developed algorithms in realized on the base of probability function, especially of Bayes classifier. Application of classifier is based on construction of multidimensional distribution of probabilities in feature space of corresponding dimension, with the help of which random vectors-realizations of corresponding images that are subjected to automated classification are described

  3. FFTF reload core nuclear design for increased experimental capability

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Nelson, J.V.; Dobbin, K.D.; Bennett, R.A.

    1976-01-01

    In anticipation of continued growth in the FTR experimental irradiations program, the enrichments for the next batches of reload driver fuel to be manufactured have been increased to provide a substantially enlarged experimental reactivity allowance. The enrichments for these fuel assemblies, termed ''Cores 3 and 4,'' were selected to meet the following objectives and constraints: (1) maintain a reactor power capability of 400 MW (based on an evaluation of driver fuel centerline melting probability at 15 percent overpower); (2) provide a peak neutron flux of nominally 7 x 10 15 n/cm 2 -sec, with a minimum acceptable value of 95 percent of this (i.e., 6.65 x 10 15 n/cm 2 -sec); and (3) provide the maximum experimental reactivity allowance that is consistent with the above constraints

  4. 2. International workshop Solid state nuclear track detectors and their applications

    International Nuclear Information System (INIS)

    Perelygin, V.P.

    1992-01-01

    The 2. Workshop on Solid state nuclear track detectors (SSNTD) held in Dubna, 24-26 Mar 1992. Possibilities of SSNTD applications in the fields of high and low energy physics, dosimetry and radioecology were discussed

  5. Studies on the inhomogeneous core density of a fluidized bed nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hagen, T.H.J.J.; Van Dam, H.; Hoogenboom, J.E.; Khotylev, V.A. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.; Harteveld, W.; Mudde, R.F.

    1997-12-31

    Results are reported on the expected time dependent core density profile of a fluidized-bed nuclear fission reactor. Core densities have been measured in a test facility by the gamma-transmission technique. Bubble and particle-cluster sizes, positions, velocities and frequencies could be determined. Neutronic studies have been performed on the influence of core voids on reactivity using Monte-Carlo and neutron-transport codes. Fuel-particle importance has been determined. Point-kinetic parameters have been calculated for linking reactivity perturbations to power fluctuations. (author)

  6. Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer

    International Nuclear Information System (INIS)

    Reid, Ellen F.; Burn, Paul L.; Lo, Shih-Chun; Hogan, Conor F.

    2013-01-01

    The solution phase and solid-state electrochemistry and electrochemiluminescence (ECL) of an iridium(III) complex-cored dendrimeric analogue of Ir(ppy) 3 , (G1pIr), are reported. The solid-state electrochemistry and solid-state ECL of Ir(ppy) 3 itself is also described for the first time. In solution phase, the dendrimer displays greater immunity to oxygen quenching in photoluminescence (PL) experiments and exhibits greater ECL efficiency compared to the parent Ir(ppy) 3 core under the same conditions, despite a lower photoluminescence quantum yield. It is proposed that the dendrons which effectively shield the core from PL quenching interactions in the solid-state counteract the effects of parasitic side-reactions during the solution ECL experiments. Electroactive and ECL-active solid-state films of both Ir(ppy) 3 and G1pIr were produced by drop-coating on boron doped diamond electrodes. Films of Ir(ppy) 3 produced stable co-reactant ECL. However, films of G1pIr produced lower than expected ECL intensity. This was attributed to poorer charge transport and the lipophilicity of the film limiting the rate of interaction with the co-reactant required for formation of the excited state

  7. Analysis of a basic core performance for FBR core nuclear design. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    1999-03-01

    The spatial distribution of reaction rates in the ZPPR-13A, having an axially heterogeneous core, has been analyzed. The ZPPR-13A core is treated as a 2-dimensional RZ configuration consisting of a homogeneous core. The analysis is performed by utilizing both probabilistic and deterministic treatments. The probabilistic treatment is performed with the Monte Carlo Code MVP running with continuous energy variable. By comparing the results obtained by both treatments and reviewing the calculation method of effective resonance cross sections, for deterministic treatment, utilized for the reaction rate distributions, it is revealed that the present treatment of effective resonance cross sections is not accurate, since there are observed effects due to dependence on energy group number or energy group width, and on anisotropic scattering. To utilize multi-band method for calculating effective resonance cross sections, widely used by the European researchers, the computer code GROUPIE is installed and the performance of the code is confirmed. Although, in order to improve effective resonance cross sections accuracy, the thermal neutron reactor standard code system SRAC-95 was introduced last year in which the ultra-fine group spectrum calculation module PEACO worked specially under the restriction that number of nuclei having resonance cross section, in any zone, should be less than three, because collision probabilities were obtained by an interpolation method. This year, the module is improved so that these collision probabilities are directly calculated, and by this improvement the highly accurate effective resonance cross sections below the energy of 40.868 keV can be calculated for whole geometrical configurations considered. To extend the application range of the module PEACO, the cross sections of sodium and structure material nuclei are prepared so that they are also represented as ultra-fine group cross sections. By such modifications of cross section library

  8. Solid core dipoles and switching power supplies: lower cost light sources?

    Science.gov (United States)

    Benesch, J.; Philip, S.

    2015-05-01

    As a result of improvements in power semiconductors, moderate frequency switching supplies can now provide the hundreds of amps typically required by accelerators with zero-to-peak noise in the kHz region ~ 0.06% in current or voltage mode. Modeling was undertaken using a finite electromagnetic program to determine if eddy currents induced in the solid steel of CEBAF magnets and small supplemental additions would bring the error fields down to the 5ppm level needed for beam quality. The expected maximum field of the magnet under consideration is 0.85 T and the DC current required to produce that field is used in the calculations. An additional 0.1% current ripple is added to the DC current at discrete frequencies 360 Hz, 720 Hz or 7200 Hz. Over the region of the pole within 0.5% of the central integrated BdL the resulting AC field changes can be reduced to less than 1% of the 0.1% input ripple for all frequencies, and a sixth of that at 7200 Hz. Doubling the current, providing 1.5 T central field, yielded the same fractional reduction in ripple at the beam for the cases checked. A small dipole was measured at 60, 120, 360 and 720 Hz in two conditions and the results compared to the larger model for the latter two frequencies with surprisingly good agreement. For light sources with aluminum vacuum vessels and full energy linac injection, the combination of solid core dipoles and switching power supplies may result in significant cost savings. The work may also be used to guide retrofit of existing machines to reduce the level of ripple in the particle beam path.

  9. Application of gaseous core reactors for transmutation of nuclear waste

    Science.gov (United States)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  10. Sustaining Nuclear Safety: Upholding the Core Regulatory Values

    International Nuclear Information System (INIS)

    Kumar, S.

    2016-01-01

    Nuclear Energy and management of safety therein, has a somewhat distinct streak in that from its early days it has had the privilege of being shaped and supervised by the eminent scientists and engineers, in fact it owes its very origin to them. This unique engagement has resulted in culmination of the several safety elements like defence-in-depth in the form of multiple safety layers, redundancy, diversity and physical separation of components, protection against single failures as well as common cause failures right at the beginning of designing a nuclear reactor. The fundamental principles followed by regulators across the globe have many similarities such as, creation of an organization which has a conflict-free primary responsibility of safety supervision, laying down the safety criteria and requirements for the respective industry and developing and using various tools and regulatory methodology to ensure adherence to the laid down regulatory requirements. Yet the regulatory regimes in different States have evolved differently and therefore, has certain attributes which are unique to these and confer on them their identity.

  11. Nuclear start-up, testing and core management of the Fast Test Reactor (FTR)

    International Nuclear Information System (INIS)

    Bennett, R.A.; Daughtry, J.W.; Harris, R.A.; Jones, D.H.; Nelson, J.V.; Rawlins, J.A.; Rothrock, R.B.; Sevenich, R.A.; Zimmerman, B.D.

    1980-01-01

    Plans for the nuclear start-up, low and high power physics testing, and core management of the Fast Test Reactor (FTR) are described. Owing to the arrangement of the fuel-handling system, which permits continuous instrument lead access to experiments during refuelling, it is most efficient to load the reactor in an asymmetric fashion, filling one-third core sectors at a time. The core neutron level will be monitored during this process using both in-core and ex-core detectors. A variety of physics tests are planned following the core loading. Because of the experimental purpose of the reactor, these tests will include a comprehensive characterization programme involving both active and passive neutron and gamma measurements. Following start-up tests, the FTR will be operated as a fast neutron irradiation facility, to test a wide variety of fast reactor core components and materials. Nuclear analyses will be made prior to each irradiation cycle to confirm that the planned arrangement of standard and experimental components satisfies all safety and operational constraints, and that all experiments are located so as to achieve their desired irradiation environment. (author)

  12. Solid state nuclear track detectors and their application in industrial health, radiological and environmental protection

    International Nuclear Information System (INIS)

    Urban, M.

    1993-09-01

    Passive Solid State Nuclear Track Detectors are electrically non conductive solids, mainly used for the registration of α-particles and neutron induced recoils. The stability of the particle tracks in the solid allow longer integration periods, what is essential for the measurement of small, time variant radiation exposures. This report gives an overview on non-photographic track detectors, their processing, dosimetric properties and examples for their application in industrial health, radiological and environmental protection. (orig.) [de

  13. Solid state nuclear magnetic resonance of fossil fuels

    International Nuclear Information System (INIS)

    Axelson, D.E.

    1985-01-01

    This book contains the following chapters: Principles of solid state NMR; Relaxation processes: Introduction to pulse sequences; Quantitative analysis; Removal of artifacts from CPMAS FT experiments; Line broadening mechanisms; Resolution enhancement of solid state NMR spectra; and /sup 13/C CPMAS NMR of fossil fuels--general applications

  14. Department of Nuclear Methods in the Solid State Physics

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activity of the Department of Nuclear Methods in the Solid State Physics is focused on experimental research in condensed matter physics. Thermal neutron scattering and Moessbauer effect are the main techniques mastered in the laboratory. Most of the studies aim at better understanding of properties and processes observed in modern materials. Some applied research and theoretical studies were also performed. Research activities of the Department in 2001 can be summarized as follows: Neutron scattering studies concerned the magnetic ordering in TbB 12 and TmIn 3 and some special features of magnetic excitations in antiferromagnetic γ-Mn-alloys. Some work was devoted to optimization of the neutron single crystal monochromators and polarizers grown in Crystal Growth Laboratory. Small angle scattering studies on the surfactant - water ternary system were performed in cooperation with JINR Dubna. Moessbauer effect investigations of dysprosium intermetallic compounds yielded the new data for Pauling-Slater curves. The same technique applied to perovskites and ferrocene adduct to fullerene helped to resolve their structure. X-ray topographic and diffractometric studies were performed on hydrogen implanted semiconductor surfaces employing the synchrotron radiation sources. The X-ray method was applied also to investigations of plasma spraying process and phase composition of ceramic oxide coatings. Large part of studies concerned the structure of biologically active, pharmacologically important organic complexes, supported by modeling of their electron structure. Crystal growth of large size single-crystals of metals and alloys was used for preparation of specimens with mosaic structure suitable for neutron monochromator and polarizer systems. The construction work of the Neutron and Gamma Radiography Station has been completed. The results of first tests and studies proved the expected abilities of the systems. The possibility to visualize inner structures

  15. Proceedings of the seventeenth national symposium on solid state nuclear track detectors and their applications: abstracts and souvenir

    International Nuclear Information System (INIS)

    Patel, Gaurang; Kishore, Sangeeta; Patel, Purvi

    2011-10-01

    The proceedings of the seventeenth national symposium on solid state nuclear track detectors and their applications (SSNTD-17) contains a number of research papers on different areas of solid state nuclear track detectors. It provides a common scientific platform to the scientists for sharing their knowledge and reviews the present state-of-art and advancements in the field of solid state nuclear track detectors and their applications and also some aspects of nuclear energy. Papers relevant to INIS are indexed separately

  16. Modelling of core protection and monitoring system for PWR nuclear power plant simulator

    International Nuclear Information System (INIS)

    Jung Kun Lee; Byoung Sung Han

    1997-01-01

    A nuclear power plant simulator was developed for Younggwang units 3 and 4 nuclear power plant (YGN Nos 3 and 4) in Korea; it has been in operation on training center since November 1996. The core protection calculator (CPC) and the core operating limit supervisory system (COLSS) for the simulator were also developed. The CPC is a digital computer-based core protection system, which performs on-line calculation of departure from nucleate boiling ratio (DNBR) and local power density (LPD). It initiates reactor trip when the core conditions exceed designated DNBR or LPD limitations. The COLSS is designed to assist operators by implementing the limiting conditions for operations in the technical specifications. With these systems, it is possible to increase capacity factor and safety of nuclear power plants, because the COLSS data can show accurate operation margin to plant operators and the CPC can protect reactor core. In this study, the function of CPC/COLSS is analyzed in detail, and then simulation model for CPC/COLSS is presented based on the function. Compared with the YGN Nos 3 and 4 plant operation data and CEDIPS/COLSS FORTRAN code test results, the predictions with the model show reasonable results. (Author)

  17. A nuclear reactor core fuel reload optimization using artificial ant colony connective networks

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto; Carvalho da Silva, Fernando; Medeiros, Jose Antonio Carlos Canedo

    2008-01-01

    The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem

  18. Study on in-core fuel management for CNP1500 nuclear power plant

    International Nuclear Information System (INIS)

    Li Dongsheng

    2005-10-01

    CNP1500 is a four-loop PWR nuclear power plant with light water as moderator and coolant. The reactor core is composed of 205 AFA-3GXL fuel assemblies. The active core height at cold is 426.4 cm and equivalent diameter is 347.0 cm. The reactor thermal output is 4250 MW, and average linear power density is 179.5 W/cm. The cycle length of equilibrium cycle core is 470 equivalent full power days. For all cycles, the moderator temperature coefficients at all conditions are negative values, the nuclear enthalpy rise factors F ΔH at hot full power, all control rods out and equilibrium xenon are less than the limit value, the maximum discharge assembly burnup is less 55000 MW·d/tU, and the shutdown margin values at the end of life meet design criteria. The low-leakage core loading reduces radiation damage on pressure vessel and is beneficial to prolong use lifetime of it. The in-core fuel management design scheme and main calculation results for CNP1500 nuclear power plant are presented. (author)

  19. A nuclear reactor core fuel reload optimization using artificial ant colony connective networks

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alan M.M. de [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: alanmmlima@yahoo.com.br; Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: schirru@lmp.ufrj.br; Carvalho da Silva, Fernando [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: fernando@con.ufrj.br; Medeiros, Jose Antonio Carlos Canedo [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: canedo@lmp.ufrj.br

    2008-09-15

    The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem.

  20. Comparison of Histologic Core Portions Acquired from a Core Biopsy Needle and a Conventional Needle in Solid Mass Lesions: A Prospective Randomized Trial.

    Science.gov (United States)

    Lee, Ban Seok; Cho, Chang-Min; Jung, Min Kyu; Jang, Jung Sik; Bae, Han Ik

    2017-07-15

    The superiority of endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) over EUS-guided fine needle aspiration (EUS-FNA) remains controversial. Given the lack of studies analyzing histologic specimens acquired from EUS-FNB or EUS-FNA, we compared the proportion of the histologic core obtained from both techniques. A total of 58 consecutive patients with solid mass lesions were enrolled and randomly assigned to the EUS-FNA or EUS-FNB groups. The opposite needle was used after the failure of core tissue acquisition using the initial needle with up to three passes. Using computerized analyses of the scanned histologic slide, the overall area and the area of the histologic core portion in specimens obtained by the two techniques were compared. No significant differences were identified between the two groups with respect to demographic and clinical characteristics. Fewer needle passes were required to obtain core specimens in the FNB group (pcore (11.8%±19.5% vs 8.0%±11.1%, p=0.376) or in the diagnostic accuracy (80.6% vs 81.5%, p=0.935) between two groups. The proportion of histologic core and the diagnostic accuracy were comparable between the FNB and FNA groups. However, fewer needle passes were required to establish an accurate diagnosis in EUS-FNB.

  1. NUCORE - A system for nuclear structure calculations with cluster-core models

    International Nuclear Information System (INIS)

    Heras, C.A.; Abecasis, S.M.

    1982-01-01

    Calculation of nuclear energy levels and their electromagnetic properties, modelling the nucleus as a cluster of a few particles and/or holes interacting with a core which in turn is modelled as a quadrupole vibrator (cluster-phonon model). The members of the cluster interact via quadrupole-quadrupole and pairing forces. (orig.)

  2. A new nodal kinetics method for analyzing fast control rod motions in nuclear reactor cores

    International Nuclear Information System (INIS)

    Kaya, S.; Yavuz, H.

    2001-01-01

    A new nodal kinetics approach is developed for analyzing large reactivity accidents in nuclear reactor cores. This method shows promising that it has capability of inspecting promt criticality transients and it gives comparable results with respect to those of other techniques. (orig.)

  3. Results of an analysis of in-core measurements during the first core cycle of the Greifswald nuclear power plant, unit 3

    International Nuclear Information System (INIS)

    Gehre, G.

    1982-01-01

    First results of an analysis of flux and temperature values obtained from the in-core system in the third unit of the Greifswald nuclear power plant during the first core cycle are presented. The analysis has been performed with the aid of the computer code INCA. Possibilities and limits of this code are shown. (author)

  4. Solid State nuclear track detector - [Part] III : applications in science and technology

    International Nuclear Information System (INIS)

    Lal, Nand

    1992-01-01

    The present article describes the applications of solid state nuclear track detection techniques in different branches of science (e.g. life sciences, nuclear physics, cosmic ray and solar physics, earth sciences, teaching laboratories) and technology with selected examples from voluminous literature available on the subject. (author). 28 refs., 6 figs., 3 tabs

  5. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures

    DEFF Research Database (Denmark)

    Kuzma, N. N.; Pourfathi, M.; Kara, H.

    2012-01-01

    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, Xe-129 nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by H-1 neighbors. A second peak appears upon annealing for several hours at 125 K. Its...

  6. Uncertainly propagation analysis for Yonggwang nuclear unit 4 by McCARD/MASTER core analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Dong Hyuk; Shim, Hyung Jin; Kim, Chang Hyo [Seoul National University, Seoul (Korea, Republic of)

    2014-06-15

    This paper concerns estimating uncertainties of the core neutronics design parameters of power reactors by direct sampling method (DSM) calculations based on the two-step McCARD/MASTER design system in which McCARD is used to generate the fuel assembly (FA) homogenized few group constants (FGCs) while MASTER is used to conduct the core neutronics design computation. It presents an extended application of the uncertainty propagation analysis method originally designed for uncertainty quantification of the FA FGCs as a way to produce the covariances between the FGCs of any pair of FAs comprising the core, or the covariance matrix of the FA FGCs required for random sampling of the FA FGCs input sets into direct sampling core calculations by MASTER. For illustrative purposes, the uncertainties of core design parameters such as the effective multiplication factor (k{sub eff}), normalized FA power densities, power peaking factors, etc. for the beginning of life (BOL) core of Yonggwang nuclear unit 4 (YGN4) at the hot zero power and all rods out are estimated by the McCARD/MASTER-based DSM computations. The results are compared with those from the uncertainty propagation analysis method based on the McCARD-predicted sensitivity coefficients of nuclear design parameters and the cross section covariance data.

  7. In-core nuclear fuel management optimization of VVER1000 using perturbation theory

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser

    2011-01-01

    In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain fuel integrity. Because of the numerous possible patterns of the fuel assemblies in the reactor core, finding the best configuration is so important and complex. Different methods for optimization of fuel loading pattern in the core have been introduced so far. In this study, a software is programmed in C ⧣ language to find an order of the fuel loading pattern of the VVER-1000 reactor core using the perturbation theory. Our optimization method is based on minimizing the radial power peaking factor. The optimization process lunches by considering the initial loading pattern and the specifications of the fuel assemblies which are given as the input of the software. It shall be noticed that the designed algorithm is performed by just shuffling the fuel assemblies. The obtained results by employing the mentioned method on a typical reactor reveal that this method has a high precision in achieving a pattern with an allowable radial power peaking factor. (author)

  8. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1978-01-01

    The use of graphite as a structural element presents unusual problems both for the designer and stress analysist. When the structure happens to be a nuclear reactor core, these problems are significantly magnified both by the environment and the attendant safety requirements. In the high temperature gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. The study of this subject was undertaken under contract to the U.S. Nuclear Regulatory Commission. (Auth.)

  9. Phase diagram of nuclear 'pasta' and its uncertainties in supernova cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2008-01-01

    We examine the model dependence of the phase diagram of inhomogeneous nulcear matter in supernova cores using the quantum molecular dynamics (QMD). Inhomogeneous matter includes crystallized matter with nonspherical nuclei--''pasta'' phases--and the liquid-gas phase-separating nuclear matter. Major differences between the phase diagrams of the QMD models can be explained by the energy of pure neutron matter at low densities and the saturation density of asymmetric nuclear matter. We show the density dependence of the symmetry energy is also useful to understand uncertainties of the phase diagram. We point out that, for typical nuclear models, the mass fraction of the pasta phases in the later stage of the collapsing cores is higher than 10-20%

  10. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    Science.gov (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  11. A system for obtaining an optimized pre design of nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.

    1989-01-01

    This work proposes a method for obtaing a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one-energy-group, unidimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, refletor thickness, enrichement and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for futures works. (author) [pt

  12. Analysis of core melt accident in Fukushima Daiichi-Unit 1 nuclear reactor

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    2011-01-01

    In order to obtain a profound understanding of the serious situation in Unit 1 and Unit 2/3 reactors of Fukushima Daiichi Nuclear Power Station (hereafter abbreviated as 1F1 and 1F2/3, respectively), which was directly caused by tsunami due to a huge earthquake on 11 March 2011, analyses of severe core damage are performed. In the present report, the analysis method and 1F1 analysis are described. The analysis is essentially based on the total energy balance in the core. In the analysis, the total energy vs. temperature curve is developed for each reactor, which is based on the estimated core materials inventory and material property data. Temperature and melt fraction are estimated by comparing the total energy curve with the total stored energy in the core material. The heat source is the decay heat of fission products and actinides together with reaction heat from the zirconium steam reaction. (author)

  13. A system to obtain an optimized first design of a nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.

    1988-01-01

    This work proposes a method for obtaining a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one energy-group, one-dimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, reflector thickness, enrichment and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for future works. (autor)

  14. Nuclear effects in electron spin resonance of crystalline solids

    International Nuclear Information System (INIS)

    Ursu, I.; Nistor, S.V.

    1976-01-01

    A survey on the theory of paramagnetic ions in crystals is given. Some recent applications in which nuclear properties are studied by means of the ESR method are presented against this background. Finer effects in the hyperfine structure of ESR spectra, temperature dependance of the hyperfine coupling of S-state ions, observation of nuclear isotopic shift in ESR represent the applications discussed

  15. Use of nuclear method analysis in ultrahigh vacuum. Application to the hydrogen dosage in solids

    International Nuclear Information System (INIS)

    Chartoire, M.

    1982-01-01

    It is possible to determine hydrogen by the 1 H( 15 N,αγ) 12 C nuclear reaction, in an ultra-high vacuum and with sample temperature monitoring, without reducing the detection efficiency of the γ rays emitted. This method is sensitive on the surface of the samples as well as in the core. Further, its resolution in depth on the surface is less than 50 x 10 -4 μm for elements with an atomic number above that of silicon. This surface analysis technique competes with and supplements the performance of the Auger and ESCA spectrometries. The cooling or heating of the samples in-situ from -150 0 C to +450 0 C enables an initial approach to be made to the phenomena of adsorption of the hydrogenated species on the surface of the samples. The possibility of plotting concentration profiles to depths of around a micrometer, also provides a means for studying the sorption of hydrogen in solids. The importance is brought to light of the quality of the residual vacuum and mainly of the partial steam pressure in the curves showing the change in the concentration of surface contamination hydrogen according to the quantity of incident ions. At temperatures above 300 0 C, the radiolysis and desorption phenomena of the species thus created become very significant. These were obtained only by making a study in greater depth of the validity conditions of the model used for describing the effusion of hydrogen under the analytical beam [fr

  16. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  17. The whiteStar development project: Westinghouse's next generation core design simulator and core monitoring software to power the nuclear renaissance

    International Nuclear Information System (INIS)

    Boyd, W. A.; Mayhue, L. T.; Penkrot, V. S.; Zhang, B.

    2009-01-01

    The WhiteStar project has undertaken the development of the next generation core analysis and monitoring system for Westinghouse Electric Company. This on-going project focuses on the development of the ANC core simulator, BEACON core monitoring system and NEXUS nuclear data generation system. This system contains many functional upgrades to the ANC core simulator and BEACON core monitoring products as well as the release of the NEXUS family of codes. The NEXUS family of codes is an automated once-through cross section generation system designed for use in both PWR and BWR applications. ANC is a multi-dimensional nodal code for all nuclear core design calculations at a given condition. ANC predicts core reactivity, assembly power, rod power, detector thimble flux, and other relevant core characteristics. BEACON is an advanced core monitoring and support system which uses existing instrumentation data in conjunction with an analytical methodology for on-line generation and evaluation of 3D core power distributions. This new system is needed to design and monitor the Westinghouse AP1000 PWR. This paper describes provides an overview of the software system, software development methodologies used as well some initial results. (authors)

  18. Possibility of combining nuclear level pumping in plasma with lasing in solid

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2002-01-01

    Nuclear isomers can be used for the storage and release of 'clean' nuclear energy, and the visible schemes are discussed. Resonance between the atomic and nuclear transitions may be manifested in a form of the hybridization of atomic-nuclear excitation at the appropriate case. The nuclear levels - candidates for triggering via atomic transitions are described. A variety of the ionization states and atomic-shell configurations arises in hot plasma generated by the short powerful pulse of laser light. The nonradiative conversion of the ionization energy within atom can be suppressed in the hot-plasma surroundings. Time-scales of different processes in nuclear, atomic and condensed-matter subsystems are compared. The processes of fast ionization in solid, X-ray radiance in plasma, sample melting and recrystallisation may precede nuclear fluorescence. Time-scale shorter 0.1 ns makes this sequence promising for the group excitation of short-lived modes in nuclear subsystem

  19. Validation of the Nuclear Design Method for MOX Fuel Loaded LWR Cores

    International Nuclear Information System (INIS)

    Saji, E.; Inoue, Y.; Mori, M.; Ushio, T.

    2001-01-01

    The actual batch loading of mixed-oxide (MOX) fuel in light water reactors (LWRs) is now ready to start in Japan. One of the efforts that have been devoted to realizing this batch loading has been validation of the nuclear design methods calculating the MOX-fuel-loaded LWR core characteristics. This paper summarizes the validation work for the applicability of the CASMO-4/SIMULATE-3 in-core fuel management code system to MOX-fuel-loaded LWR cores. This code system is widely used by a number of electric power companies for the core management of their commercial LWRs. The validation work was performed for both boiling water reactor (BWR) and pressurized water reactor (PWR) applications. Each validation consists of two parts: analyses of critical experiments and core tracking calculations of operating plants. For the critical experiments, we have chosen a series of experiments known as the VENUS International Program (VIP), which was performed at the SCK/CEN MOL laboratory in Belgium. VIP consists of both BWR and PWR fuel assembly configurations. As for the core tracking calculations, the operating data of MOX-fuel-loaded BWR and PWR cores in Europe have been utilized

  20. Conversion of the core of the TRIGA Mark III reactor at the Mexican Nuclear Centre

    International Nuclear Information System (INIS)

    Moran Lopez, J.M.; Lucatero, M.A.; Reyes Andrade, B.; Rivero Gutierrez, T.; Sainz Mejia, E.

    1990-01-01

    It was decided to convert the core of the TRIGA MARK III reactor at the Mexican Nuclear Centre run by the National Nuclear Institute because of problems detected during the operation, such as a lack of excess reactivity for operation at nominal power over long periods and difficulties in the maintenance and calibration of the control panel. In order to compensate for the lack of excess reactivity the fuel elements taken to the highest burnup were replaced by fresh elements acquired for this purpose. The latter, however, had a different enrichment, and this necessitated a detailed analysis of the neutronic and thermohydraulic behaviour of the reactor with a view to determining a mixed core configuration which would meet safe operation requirements. In conducting the thermohydraulic analysis, a natural convection coolant flow model was developed to determine coolant velocity and pressure drop patterns within the core. The heat transfer equations were solved and it was found that the hottest fuel element did not attain critical heat flux conditions. In loading this core it was also necessary to analyse procedures and to consider the possible effects of reaching criticality with fuel elements having different enrichments. The loading procedure is described, as is the measurement system and the results obtained. In order to resolve the calibration and maintenance problems, a new, more advanced control panel was designed with conventional and nuclear detection systems and modern components

  1. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing.

    Science.gov (United States)

    Song, Zhewei; Du, Hai; Zhang, Yan; Xu, Yan

    2017-01-01

    Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces , and Zygosaccharomyces ) and lactic acid bacteria (genus Lactobacillus ) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into

  2. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing

    Directory of Open Access Journals (Sweden)

    Zhewei Song

    2017-07-01

    Full Text Available Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces, and Zygosaccharomyces and lactic acid bacteria (genus Lactobacillus classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol to acid (lactic acid and acetic acid in Chinese Maotai-flavor liquor production. Our findings provide

  3. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  4. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  5. Primary processes initiated by nuclear transformations in solids

    International Nuclear Information System (INIS)

    Sano, Hirotoshi

    1975-01-01

    Primary processes of hot atom production initiated by nuclear transformation were discussed from past studies using Moessbauer spectroscopy. Many insulators (dielectric substances) showed various effect, such as abnormaly oxdized condition, following nuclear disintegration within the time duration of the life of Moessbauer nuclear excited state. Supposing these hot atom processes belonged to radiochemical processes, radiochemical characteristics of a certain chemical substance could be clarified by placing Moessbauer nuclide in the neighbourhood of the chemical substance to be studied. Chemical effects of disintegrated atom in the first and second composition, chemical substances produced in the surroundings of disintegrated atom, and environmental disturbance of disintegrated atom were studied and discussed. (Tsukamoto, Y.)

  6. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  7. Sensitivity of control times in function of core parameters and oscillations control in thermal nuclear systems

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Galvao, O.B.; Oyama, K.

    1981-03-01

    Sensitivity of control times to variation of a thermal reactor core parameters is defined by suitable changes in the power coefficient, core size and fuel enrichment. A control strategy is developed based on control theory concepts and on considerations of the physics of the problem. Digital diffusion theory simulation is described which tends to verify the control concepts considered, face dumped oscillations introduced in one thermal nuclear power system. The effectivity of the control actions, in terms of eliminating oscillations, provided guidelines for the working-group engaged in the analysis of the control rods and its optimal performance. (Author) [pt

  8. Examination of offsite radiological emergency measures for nuclear reactor accidents involving core melt

    International Nuclear Information System (INIS)

    Aldrich, D.C.; McGrath, P.E.; Rasmussen, N.C.

    1978-06-01

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment failure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects

  9. Fundamental design bases for independent core cooling in Swedish nuclear power reactors

    International Nuclear Information System (INIS)

    Jelinek, Tomas

    2015-01-01

    New regulations on design and construction of nuclear power plants came into force in 2005. The need of an independent core cooling system and if the regulations should include such a requirement was discussed. The Swedish Radiation Safety authority (SSM) decided to not include such a requirement because of open questions about the water balance and started to investigate the consequences of an independent core cooling system. The investigation is now finished and SSM is also looking at the lessons learned from the accident in Fukushima 2011. One of the most important measures in the Swedish national action plan is the implementation of an independent core cooling function for all Swedish power plants. SSM has investigated the basic design criteria for such a function where some important questions are the level of defence in depth and the acceptance criteria. There is also a question about independence between the levels of defence in depth that SSM have included in the criteria. Another issue that has to be taken into account is the complexity of the system and the need of automation where independence and simplicity are very strong criteria. In the beginning of 2014 a memorandum was finalized regarding fundamental design bases for independent core cooling in Swedish nuclear power reactors. A decision based on this memorandum with an implementation plan will be made in the first half of 2014. Sweden is also investigating the possibility to have armed personnel on site, which is not allowed currently. The result from the investigation will have impact on the possibility to use mobile equipment and the level of protection of permanent equipment. In this paper, SSM will present the memorandum for design bases for independent core cooling in Swedish nuclear power reactors that was finalized in March 20147 that also describe SSM's position regarding independence and automation of the independent core cooling function. This memorandum describes the Swedish

  10. Automated in-core image generation from video to aid visual inspection of nuclear power plant cores

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul, E-mail: paul.murray@strath.ac.uk [Department of Electronic and Electrical Engineering, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD (United Kingdom); West, Graeme; Marshall, Stephen; McArthur, Stephen [Dept. Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW (United Kingdom)

    2016-04-15

    Highlights: • A method is presented which improves visual inspection of reactor cores. • Significant time savings are made to activities on the critical outage path. • New information is extracted from existing data sources without additional overhead. • Examples from industrial case studies across the UK fleet of AGR stations. - Abstract: Inspection and monitoring of key components of nuclear power plant reactors is an essential activity for understanding the current health of the power plant and ensuring that they continue to remain safe to operate. As the power plants age, and the components degrade from their initial start-of-life conditions, the requirement for more and more detailed inspection and monitoring information increases. Deployment of new monitoring and inspection equipment on existing operational plant is complex and expensive, as the effect of introducing new sensing and imaging equipment to the existing operational functions needs to be fully understood. Where existing sources of data can be leveraged, the need for new equipment development and installation can be offset by the development of advanced data processing techniques. This paper introduces a novel technique for creating full 360° panoramic images of the inside surface of fuel channels from in-core inspection footage. Through the development of this technique, a number of technical challenges associated with the constraints of using existing equipment have been addressed. These include: the inability to calibrate the camera specifically for image stitching; dealing with additional data not relevant to the panorama construction; dealing with noisy images; and generalising the approach to work with two different capture devices deployed at seven different Advanced Gas Cooled Reactor nuclear power plants. The resulting data processing system is currently under formal assessment with a view to replacing the existing manual assembly of in-core defect montages. Deployment of the

  11. The generation characteristics of solid radioactive wastes in the KEPCO nuclear power plants

    International Nuclear Information System (INIS)

    Shon, Soon Hwan; Kang, Duck Won; Kim, Hee Keun

    1991-01-01

    Solid radwastes generation trend and characteristics were discussed for nuclear power plants in KEPCO. Each plant has a specific tendency of solid radwastes generation due to the plant characteristics. The total volume of solid radwastes generated from nine power plants was accumulated in 23,012 drums by the end of 1989. The average annual volume per unit was about 670 drums. The solid radwaste mostly consisted of solidified concentrates and contaminated trash. The contaminated trash has been the major portion of the solid radwastes since 1982. The volume of the contaminated trash was dependent on the availability factor and period of overhaul. Therefore, the contaminated trash was considered to be a prime target for the solid radwastes minimization plan

  12. Development of conceptual nuclear design of 10MWt research reactor core

    International Nuclear Information System (INIS)

    Kim, M. H.; Lim, J. Y.; Win, Naing; Park, J. M.

    2008-03-01

    KAERI has been devoted to develop export-oriented research reactors for a growing world-wide demand of new research reactor construction. Their ambition is that design of Korean research reactor must be competitive in commercial and technological based on the experience of the HANARO core design concept with thermal power of 30MW. They are developing a new research reactor named Advanced HANARO research Reactor (AHR) with thermal power of 20 MW. KAERI has export records of nuclear technology. In 1954-1967 two series of pool type research reactors based on the Russian design, VVR type and IRT type, have been constructed and commissioned in some countries as well as Russia. Nowadays Russian design is introducing again for export to developing countries such as Union of Myanmar. Therefore the objective of this research is that to build and innovative 10 MW research reactor core design based on the concept of HANARO core design to be competitive with Russian research reactor core design. system tool of HELIOS was used at the first stage in both cases which are research reactor using tubular type fuel assemblies and that reactor using pin type fuel assemblies. The reference core design of first kind of research reactor includes one in-core irradiation site at the core center. The neutron flux evaluations for core as well as reflector region were done through logical consistency of neutron flux distributions for individual assemblies. In order to find the optimum design, the parametric studies were carried out for assembly pitch, active fuel length, number of fuel ring in each assembly and so on. Design result shows the feasibility to have high neutron flux at in-core irradiation site. The second kind of research reactor is used the same kind of assemblies as HANARO and hence there is no optimization about basic design parameters. That core has only difference composition of assemblies and smaller specific power than HANARO. Since it is a reference core at first stage

  13. In-core assembly configuration having a dual-wall pressure boundary for nuclear reactor

    International Nuclear Information System (INIS)

    Todt, W.H. Sr.; Playfoot, K.C.

    1988-01-01

    This patent describes an in-core detector assembly of the type having an in-core part and an out-of-core part and having an elongated outer hollow housing tube with a wall thickness, an inner hollow calibration tube with a wall thickness and disposed concentrically within the outer tube to define an annular space therewith, and a plurality of discrete, circular, rod-like elements extending through the annular space, the improvement comprising: the elements having outer diameters and being of a number to substantially occupy the entire annular space of both the incore and out-of-core parts without significant voids between elements; each of the elements including at least an outer sheath and interior highly compacted mineral insulation for the entire length of the element; a first number of the elements also including center lead means connected to condition responsive element means in the in-core part of the length of the assembly and a second, remaining number of the elements being non-operating elements. The wall thickness of the housing tube and the wall thickness of the calibration tube, taken together with the diameter of the elements, provide a thickness dimension adequate to meet code primary pressure requirements for normal nuclear reactor in-core conditions, while the wall thickness of the calibration tube alone provides a thickness dimension less than adequate to meet such requirements

  14. Axial power distribution calculation using a neural network in the nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. H.; Cha, K. H.; Lee, S. H. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper is concerned with an algorithm based on neural networks to calculate the axial power distribution using excore detector signals in the nuclear reactor core. The fundamental basis of the algorithm is that the detector response can be fairly accurately estimated using computational codes. In other words, the training set, which represents relationship between detector signals and axial power distributions, for the neural network can be obtained through calculations instead of measurements. Application of the new method to the Yonggwang nuclear power plant unit 3 (YGN-3) shows that it is superior to the current algorithm in place. 7 refs., 4 figs. (Author)

  15. Axial power distribution calculation using a neural network in the nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y H; Cha, K H; Lee, S H [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper is concerned with an algorithm based on neural networks to calculate the axial power distribution using excore detector signals in the nuclear reactor core. The fundamental basis of the algorithm is that the detector response can be fairly accurately estimated using computational codes. In other words, the training set, which represents relationship between detector signals and axial power distributions, for the neural network can be obtained through calculations instead of measurements. Application of the new method to the Yonggwang nuclear power plant unit 3 (YGN-3) shows that it is superior to the current algorithm in place. 7 refs., 4 figs. (Author)

  16. Design and test of the borosilicate glass burnable poison rod for Qinshan nuclear power plant core

    International Nuclear Information System (INIS)

    Huang Jinhua; Sun Hanhong

    1988-08-01

    Material for the burnable poison of Qinshan Nuclear Power Plant core is GG-17 borosilicate glass. The chemical composition and physico-chemical properties of GG-17 is very close to Pyrex-7740 glass used by Westinghouse. It is expected from the results of the experiments that the borosilicate glass burnable poison rod can be successfully used in Qinshan Nuclear Power Plant due to good physical, mechanical, corrosion-resistant and irradiaton properties for both GG-17 glass and cold-worked stainless steel cladding. Change of material for burnable poison from boron-bearing stainless steel to borosilicate glass will bring about much more economic benefit to Qinshan Naclear Power Plant

  17. An assessment of coupling algorithms for nuclear reactor core physics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Steven, E-mail: hamiltonsp@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Berrill, Mark, E-mail: berrillma@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Clarno, Kevin, E-mail: clarnokt@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Pawlowski, Roger, E-mail: rppawlo@sandia.gov [Sandia National Laboratories, MS 0316, P.O. Box 5800, Albuquerque, NM 87185 (United States); Toth, Alex, E-mail: artoth@ncsu.edu [North Carolina State University, Department of Mathematics, Box 8205, Raleigh, NC 27695 (United States); Kelley, C.T., E-mail: tim_kelley@ncsu.edu [North Carolina State University, Department of Mathematics, Box 8205, Raleigh, NC 27695 (United States); Evans, Thomas, E-mail: evanstm@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

    2016-04-15

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

  18. A new equation of state Based on Nuclear Statistical Equilibrium for Core-Collapse Simulations

    Science.gov (United States)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-09-01

    We calculate a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  19. Comparative assessment of out-of-core nuclear thermionic power systems

    International Nuclear Information System (INIS)

    Estabrook, W.C.; Koenig, D.R.; Prickett, W.Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds. (Author)

  20. Co-ordinated research programme on the use of nuclear and nuclear-related techniques in the study of environmental pollution associated with solid wastes

    International Nuclear Information System (INIS)

    1988-01-01

    A co-ordinated research programme on the use of nuclear and nuclear-related techniques in the study of environmental pollution associated with solid wastes was started by the Agency in December 1987 and now comprises nineteen participants from seventeen countries. Topics of interest in this programme include studies of atmospheric aerosols, coal fly ash, incinerator ash, sewage sludge and a variety of other environmental specimens contaminated with solid wastes. The analytical techniques being used in this programme include neutron activation analysis (NAA), particle induced X-ray emission (PIXE) and energy-dispersive X-ray fluorescence (ED-XRF). This report summarizes the discussions that took place during the first research co-ordination meeting. Working papers presented by the participants are included as annexes. The main outcome of the meeting was agreement to include a ''core'' programme comprising studies of (1) aerosols collected from areas of low and high pollution, (2) coal fly ash composition, and (3) leaching of toxic elements from coal fly ash

  1. Gaseous core nuclear-driven engines featuring a self-shutoff mechanism to provide nuclear safety

    International Nuclear Information System (INIS)

    Heidrich, J.; Pettibone, J.; Chow, Tze-Show; Condit, R.; Zimmerman, G.

    1991-11-01

    Nuclear driven engines are described that could be run in either pulsed or steady state modes. In the pulsed mode nuclear energy is released by fissioning of uranium or plutonium in a supercritical assembly of fuel and working gas. In a steady state mode a fuel-gas mixture is injected into a magnetic nozzle where it is compressed into a critical state and produces energy. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff or control of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled up from about 100 MW e

  2. Optimization analysis of the nuclear fuel cycle transition to the last core

    International Nuclear Information System (INIS)

    Rebollo, L.; Blanco, J.

    2001-01-01

    The Zorita NPP was the first Spanish commercial nuclear reactor connected to the grid. It is a 160 MW one loop PWR, Westinghouse design, owned by UFG, in operation since 1968. The configuration of the reactor core is based on 69 fuel elements type 14 x 14, the standard reload of the present equilibrium cycle being based on 16 fuel elements with 3.6% enrichment in 235 U. In order to properly plan the nuclear fuel management of the transition cycles to its end of life, presently foreseen by 2008, an based on the non-reprocessing option required by the policy of the Spanish Administration, a technical-economical optimization analysis has been performed. As a result, a fuel management strategy has been defined looking for getting simultaneously the minimum integral fuel cost of the transition from the present equilibrium cycle to the last core, as well as the minimum residual worth of the fuel remaining in the core after the final outage. Based on the ''lessons learned'' derived from the study, the time margin for the decision making has been determined, and a planning of the nuclear fuel supply for the transition reloads, specifying both the number of fuel elements and their enrichment in 235 U, as been prepared. Finally, based on the calculated economical worth of the partially burned fuel of the last core, after the end of its operation cycle, a financial cover for yearly compensation from now on of the foreseen final lost has been elaborated. Most of the conceptual conclusions obtained are applicable to the other commercial nuclear reactors in operation owned by UFG, so that they are understood to be of general interest and broad application to commercial PWR. (author)

  3. Scale model study of the seismic response of a nuclear reactor core

    International Nuclear Information System (INIS)

    Dove, R.C.; Dunwoody, W.E.; Rhorer, R.L.

    1983-01-01

    The use of scale models to study the dynamics of a system of graphite core blocks used in certain nuclear reactor designs is described. Scaling laws, material selecton, model instrumentation to measure collision forces, and the response of several models to simulated seismic excitation are covered. The effects of Coulomb friction between the blocks and the clearance gaps between the blocks on the system response to seismic excitation are emphasized

  4. About the application of MCNP4 code in nuclear reactor core design calculations

    International Nuclear Information System (INIS)

    Svarny, J.

    2000-01-01

    This paper provides short review about application of MCNP code for reactor physics calculations performed in SKODA JS. Problems of criticality safety analysis of spent fuel systems for storage and transport of spent fuel are discussed and relevant applications are presented. Application of standard Monte Carlo code for accelerator driven system for LWR waste destruction is shown and conclusions are reviewed. Specific heterogeneous effects in neutron balance of WWER nuclear cores are solved for adjusting standard design codes. (Authors)

  5. In core reload design for cycle 4 of Daya Bay nuclear power station both units

    International Nuclear Information System (INIS)

    Zhang Zongyao; Liu Xudong; Xian Chunyu; Li Dongsheng; Zhang Hong; Liu Changwen; Rui Min; Wang Yingming; Zhao Ke; Zhang Hong; Xiao Min

    1998-01-01

    The basic principles and the contents of the reload design for Daya Bay nuclear power station are briefly introduced. The in core reload design results, and the comparison between the calculated values and the measured values of both units the fourth cycle are also given. The reload design results of the two units satisfy all the economic requirements and safety criteria. The experimented results shown that the predicated values are tally good with all the measurement values

  6. Measurements of the HEU and LEU in-core spectra at the Ford Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wehe, D K [Oak Ridge National Laboratory, Oak Ridge, TN (United States); King, J S; Lee, J C; Martin, W R [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States)

    1985-07-01

    The Ford Nuclear Reactor (FNR) at the University of Michigan has been serving as the test site for a low-enriched uranium (LEU) fuel whole-core demonstration. As part of the experimental program, the differential neutron spectrum has been measured in a high-enriched uranium (HEU) core and an LEU core. The HEU and LEU spectra were determined by unfolding the measured activities of foils that were irradiated in the reactor. When the HEU and LEU spectra are compared from meV to 10 MeV, significant differences between the two spectra are apparent below 10 eV. These are probably caused by the additional {sup 238}U resonance absorption in the LEU fuel. No measurable difference occurs in the shape of the spectra above MeV. (author)

  7. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    Science.gov (United States)

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  8. Nuclear analysis and performance of the Light Water Breeder Reactor (LWBR) core power operation at Shippingport

    International Nuclear Information System (INIS)

    Hecker, H.C.

    1984-04-01

    This report presents the nuclear analysis and discusses the performance of the LWBR core at Shippingport during power operation from initial startup through end-of-life at 28,730 EFPH. Core follow depletion calculations confirmed that the reactivity bias and power distributions were well within the uncertainty allowances used in the design and safety analysis of LWBR. The magnitude of the core follow reactivity bias has shown that the calculational models used can predict the behavior of U 233 -Th systems with closely spaced fuel rod lattices and movable fuel. In addition, the calculated final fissile loading is sufficiently greater than the initial fissile inventory that the measurements to be performed for proof-of-breeding evaluations are expected to confirm that breeding has occurred

  9. Comment on the in-core measurement in the WWER nuclear power plant

    International Nuclear Information System (INIS)

    Krett, V.; Dach, K.; Erben, O.

    1985-01-01

    The activity of the Nuclear Research Institute (NRI) Rez in the field of in-core measurement sensors is described in the paper. The results of comparison and calibration experiments realized on the WWR-S research reactor at the NRI are presented. Measurements with fission calorimeters and SPN detectors carried out in the framework of diagnostic fuel assembly program of WWER NPP reactors are described. Noise measurements with detectors of in-core instrumentation of diagnostic fuel assemblies are also mentioned. Comparison experiments on the WWER-440 NPP reactor are described and the method of function verification of neutron sensors of the in-core control system of these reactors is given. (author)

  10. 3D Core Model for simulation of nuclear power plants: Simulation requirements, model features, and validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1999-01-01

    In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)

  11. Immobilization of wet solid wastes at nuclear power plants

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.

    1977-01-01

    Wet solid wastes are classified into four basic types: spent resins, filter sludges, evaporator concentrates, and miscellaneous liquids. Although the immobilization of wet solid wastes is primarily concerned with the incorporation of the waste with a solidification agent, there are a number of other discrete operations or subsystems involved in the treatment of these wastes that may affect the immobilized waste product. The immobilization process may be broken down into five basic operations: waste collection, waste pretreatment, solidification agent handling, mixing/packaging, and waste package handling. The properties of the waste forms that are ultimately shipped from the reactor site are primarily influenced by the methods utilized during the waste collection, waste pretreatment and mixing/packaging operations. The mixing/packaging (solidification) operation is perhaps the most important stage of the immobilization process. The basic solidification agent types are: absorbants, hydraulic cement, urea-formaldehyde, bitumen, and other polymer systems

  12. Nuclear solid-state research at the FR2

    International Nuclear Information System (INIS)

    Heger, G.; Weitzel, H.

    1979-12-01

    This volume reports on the scientific investigations carried out by external users of the FR 2 research reactor between mid-1978 and mid-1979. Subjects of investigation were the structure of crystalline materials, problems of hydrogen bonds, electron density distributions and structural phase transitions. Plastic phases and supenion conductors, in particular, were studied at high temperatures. Apart from investigations of magnetic structures of solid, particular emphasis is laid on the critical phenomena during magnetic phase transitions. (GSCH) [de

  13. Disposal of solid radioactive waste of nuclear power plant

    International Nuclear Information System (INIS)

    YU Shichen.

    1986-01-01

    The contaminations of marine enviroment by the disposal of radwastes should not been expected, then ocean disposal has been stoped in some countries, and land disposal of solid radwastes should been a better method for mankind and environment protection. Ground burial near the surface is currently considered to be feasible. Storage in spent pit or in plant area also should been adapted in several countries

  14. Nuclear solid state research at the FR2

    International Nuclear Information System (INIS)

    Heger, G.; Weitzel, H.

    1978-11-01

    This report covers the work done by the external user groups at the FR2 reactor in the field state research. Only papers are included which were produced during the period from January 1, 1977 to Juli 31, 1978. The research reports are arranged according to the different institutes. There are enclosed studies of the structures of crystalline materials, molten and quenched amorphous alloys, and of the magetic ordering in solids. Reports concerning properties of radiation damaged metals are also incorporated. (orig.) [de

  15. Compact sodium cooled nuclear power plant with fast core (KNK II- Karlsruhe), Safety Report

    International Nuclear Information System (INIS)

    1977-09-01

    After the operation of the KNK plant with a thermal core (KNK I), the installation of a fast core (KNK II) had been realized. The planning of the core and the necessary reconstruction work was done by INTERATOM. Owner and customer was the Nuclear Research Center Karlsruhe (KfK), while the operating company was the Kernkraftwerk-Betriebsgesellschaft mbH (KBG) Karlsruhe. The main goals of the KNK II project and its special experimental test program were to gather experience for the construction, the licensing and operation of future larger plants, to develop and to test fuel and absorber assemblies and to further develop the sodium technology and the associated components. The present safety report consists of three parts. Part 1 contains the description of the nuclear plant. Hereby, the reactor and its components, the handling facilities, the instrumentation with the plant protection, the design of the plant including the reactor core and the nominal operation processes are described. Part 2 contains the safety related investigation and measures. This concerns the reactivity accidents, local cooling perturbations, radiological consequences with the surveillance measures and the justification of the choice of structural materials. Part three finally is the appendix with the figures, showing the different buildings, the reactor and its components, the heat transfer systems and the different auxiliary facilities [de

  16. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandro S., E-mail: alexandrossilva@ifba.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil); Mazaira, Leorlen Y.R., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Dominguez, Dany S.; Hernandez, Carlos R.G., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Programa de Pos-Graduacao em Modelagem Computacional; Lira, Carlos A.B.O., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  17. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    International Nuclear Information System (INIS)

    Silva, Alexandro S.; Mazaira, Leorlen Y.R.; Dominguez, Dany S.; Hernandez, Carlos R.G.

    2015-01-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  18. On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: emananga@gradcenter.cuny.edu [Harvard Medical School and Massachusetts General Hospital, Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging Physics, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Charpentier, Thibault, E-mail: thibault.charpentier@cea.fr [Commissariat à l’Energie Atomique, IRAMIS, Service interdisciplinaire sur les systèmes moléculaires et matériaux, CEA/CNRS UMR 3299, 91191, Gif-sur-Yvette (France)

    2016-01-22

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Floquet–Magnus expansion that is helpful to describe the time evolution of the spin system at all times in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics, based on promising and useful theory of Floquet–Magnus expansion. This theory provides procedures to control and describe the spin dynamics in solid-state NMR. Major applications of the Floquet–Magnus expansion are illustrated by simple solid-state NMR and physical applications such as in nuclear, atomic, molecular physics, and quantum mechanics, NMR, quantum field theory and high energy physics, electromagnetism, optics, general relativity, search of periodic orbits, and geometric control of mechanical systems. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics. This review article also discusses future potential theoretical directions in solid-state NMR.

  19. The Impact of the Nuclear Equation of State in Core Collapse Supernovae

    Science.gov (United States)

    Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration

    2005-12-01

    One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725

  20. Integrated solidity test measurement of the airtight compartment system at the Paks nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Osztheimer, M.; Taubner, R.; Techy, Zs. (Villamosenergiaipari Kutato Intezet, Budapest (Hungary))

    1983-01-01

    A brief report on the purpose of the integrated solidity test measurements of the airtight compartment system of the Paks nuclear power plant and on the applied measuring principles is given. The measuring system and the selected measuring methods are evaluated. The characteristic features of the airtight system of the Paks nuclear power plant's 1st block and their effects on the measurement are mentioned.

  1. Comparison of serpent and triton generated FEW group constants for APR1400 nuclear reactor core

    International Nuclear Information System (INIS)

    Elsawi, Mohamed A.; Alnoamani, Zainab

    2015-01-01

    The accuracy of full-core reactor power calculations using diffusion codes is strongly dependent on the quality of the homogenized cross sections and other few-group constants generated by lattice codes. For many years, deterministic lattice codes have been used to generate these constants using different techniques: the discrete ordinates, collision probability or the method of characteristics, just to name a few. These codes, however, show some limitations, for example, on complex geometries or near heavy absorbers as in modern pressurized water reactor (PWR) designs like the Korean Advanced Power Reactor 1400 (APR1400) core. The use of continuous-energy Monte Carlo (MC) codes to produce nuclear constants can be seen as an attractive option when dealing with fuel or reactor types that lie beyond the capabilities of conventional deterministic lattice transport codes. In this paper, the few-group constants generated by two of the state-of-the-art reactor physics codes, SERPENT and SCALE/TRITON, will be critically studied and their reliability for being used in subsequent diffusion calculations will be evaluated. SERPENT is a 3D, continuous-energy, Monte Carlo reactor physics code which has a built-in burn-up calculation capability. It has been developed at the Technical Research Center of Finland (VTT) since 2004. SCALE/TRITON, on the other hand, is a control module developed within the framework of SCALE package that enables performing deterministic 2-D transport calculations on nuclear reactor core lattices. The approach followed in this paper is as follows. First, the few-group nuclear constants for the APR1400 reactor core were generated using SERPENT (version 2.1.22) and NEWT (in SCALE version 6.1.2) codes. For both codes, the critical spectrum, calculated using the B1 method, was used as a weighting function. Second, 2-D diffusion calculations were performed using the US NRC core simulator PARCS employing the two few-group constant sets generated in the first

  2. Quantification of cost of margin associated with in-core nuclear fuel management for a PWR

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1989-01-01

    The problem of in-core nuclear fuel management optimization is discussed. The problem is to determine the location of core material, such as the fuel and burnable poisons, so as to minimize (maximize) a stated objective within engineering constraints. Typical objectives include maximization of cycle energy production or discharged fuel exposure, and minimization of power peaking factor or reactor vessel fluence. Constraints include discharge burnup limits and one or more of the possible objectives if not selected as the objective. The optimization problem can be characterized as a large combinatorial problem with nonlinear objective function and constraints, which are likely to be active. The authors have elected to employ the integer Monte Carlo programming method to address this optimization problem because of the just-noted problem characteristics. To evaluate the core physics characteristics as a function of fuel loading pattern, second-order accurate perturbation theory is employed with successive application to improve estimates of the optimum loading pattern. No constraints on fuel movement other than requiring quarter-core symmetry were imposed. In this paper the authors employed this methodology to address a related problem. The problem being addressed can be stated as What is the cost associated with margin? Specifically, they wish to assign some financial value in terms of increased levelized fuel cycle cost associated with an increase in core margin of some type, such as power peaking factor

  3. Burst shield for a pressurized nuclear-reactor core and method of operating same

    International Nuclear Information System (INIS)

    Beine, B.; Schilling, F.

    1976-01-01

    A pressurized nuclear-reactor core stands on a base up from which extends a cylindrical side wall formed of a plurality of hollow iron castings held together by circumferential and longitudinal prestressed elements. A cylindrical space between this shield and the core serves for inspection of the core and is normally filled with cast-iron segmental slabs so that if the core bursts pieces thrown out do not acquire any dangerous kinetic energy before engaging the burst shield. The top of the shield is removably secured to the side so that it can be moved out of the way periodically for removal of the filler slabs and inspection of the core. An anchor on the upper end of each longitudinal prestressing element bears against a sleeve pressing against the uppermost side element, and a nut engageable with this anchor is engageable down over the top to hold it in place, removal of this nut leaving the element prestressed in the side wall. 11 claims, 16 drawing figures

  4. Studies on neutron detection with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Khouri, M.C.; Vilela, E.C.; Andrade, C. de.

    1993-03-01

    The detection of thermal and fast neutrons was studied. For thermal neutrons, alpha sensitive plastic was used in order to register the products of nuclear reactions taking place in boron and /or lithium converters. Fast neutrons produce recoil tracks within the detector. In the present case, CR-39 and Makrofol E were used. Chemical and electrochemical etching processes were used for thermal and fast neutron detectors, respectively. (F.E.). 6 refs, 4 figs, 6 tabs

  5. Charged particle spectroscopy with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Hunyadi, I.; Somogyi, G.

    1984-01-01

    Some of earlier and recent methods for differentiation of charged particles according to their energy, based on the use of polymeric etch-track detectors (CN, CA, PC and CR-39) are outlined. The principle of three track methods suitable for nuclear spectroscopy is discussed. These are based on the analysis of the diameter, surface size and shape of etch-track 'cones' produced by charged particles in polymers, after using shorter or longer chemical etching processes. Examples are presented from the results of the last decade in ATOMKI, Debrecen, Hungary, concerning the application of nuclear track spectroscopy to different low-energy nuclear reaction studies, angular distribution and excitation function measurements. These involve the study of (d,α) reaction on sup(14)N, sup(19)F and sup(27)Al nuclei, (sup(3)He,α) reactions on sup(15)N, (p,α) reaction on sup(27)Al and the process sup(12)C(sup(12)C, sup(8)Be)sup(16)O. (author)

  6. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    Science.gov (United States)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  7. Rubrene: The interplay between intramolecular and intermolecular interactions determines the planarization of its tetracene core in the solid state

    KAUST Repository

    Sutton, Christopher

    2015-06-15

    Rubrene is one of the most studied molecular semiconductors; its chemical structure consists of a tetracene backbone with four phenyl rings appended to the two central fused rings. Derivatization of these phenyl rings can lead to two very different solid-state molecular conformations and packings: One in which the tetracene core is planar and there exists substantive overlap among neighboring π-conjugated backbones; and another where the tetracene core is twisted and the overlap of neighboring π-conjugated backbones is completely disrupted. State-of-the-art electronic-structure calculations show for all isolated rubrene derivatives that the twisted conformation is more favorable (by -1.7 to -4.1 kcal mol-1), which is a consequence of energetically unfavorable exchange-repulsion interactions among the phenyl side groups. Calculations based on available crystallographic structures reveal that planar conformations of the tetracene core in the solid state result from intermolecular interactions that can be tuned through well-chosen functionalization of the phenyl side groups, and lead to improved intermolecular electronic couplings. Understanding the interplay of these intramolecular and intermolecular interactions provides insight into how to chemically modify rubrene and similar molecular semiconductors to improve the intrinsic materials electronic properties.

  8. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Joseph Robert [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  9. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  10. A Novel Method To On-Line Monitor Reactor Nuclear Power And In-Core Thermal Environments

    International Nuclear Information System (INIS)

    Liu, Hanying; Miller, Don W.; Li, Dongxu; Radcliff, Thomas D.

    2002-01-01

    For current nuclear power plants, nuclear power can not be directly measured and in-core fuel thermal environments can not be monitored due to the unavailability of an appropriate measurement technology and the inaccessibility of the fuel. If the nuclear deposited power and the in-core thermal conditions (i.e. fuel or coolant temperature and heat transfer coefficient) can be monitored in-situ, then it would play a valuable and critical role in increasing nuclear power, predicting abnormal reactor operation, improving core physical models and reducing core thermal margin so as to implement higher fuel burn-up. Furthermore, the management of core thermal margin and fuel operation may be easier during reactor operation, post-accident or spent fuel storage. On the other hand, for some advanced Generation IV reactors, the sealed and long-lived reactor core design challenges traditional measurement techniques while conventional ex-core detectors and current in-core detectors can not monitor details of the in-core fuel conditions. A method is introduced in this paper that responds to the challenge to measure nuclear power and to monitor the in-core thermal environments, for example, local fuel pin or coolant heat convection coefficient and temperature. In summary, the method, which has been designed for online in-core measurement and surveillance, will be beneficial to advanced plant safety, efficiency and economics by decreasing thermal margin or increasing nuclear power. The method was originally developed for a constant temperature power sensor (CTPS). The CTPS is undergoing design and development for an advanced reactor core to measure in-core nuclear power in measurement mode and to monitor thermal environments in compensation mode. The sensor dynamics was analyzed in compensation mode to determine the environmental temperature and the heat transfer coefficient. Previous research demonstrated that a first order dynamic model is not sufficient to simulate sensor

  11. Microanalysis of solid surfaces by nuclear reactions and elastic scattering

    International Nuclear Information System (INIS)

    Agius, B.

    1975-01-01

    The principles involved in the use of monokinetic light ions beams, of about 1MeV, to the study of surface phenomena are presented. Two complementary techniques are described: the use of elastic scattering, which allows the analysis of impurity elements heavier than the substrate components and the use of nuclear reactions specific of light elements. Typical sensitivities are of the order of 10 11 at/cm 2 in good cases. The depth resolution varies, according to the cases, from about a hundred angstroems to a few thousand angstroems [fr

  12. Hydrothermal reactions of nuclear waste solids . A preliminary study

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Turcotte, R.P.

    1978-09-01

    A simulated high-level waste glass, Supercalcine, and some common ceramic and metallic solids were exposed to hydrothermal conditions at 250 and 350 0 C for time periods ranging from three days to three weeks. Most of the experiments were done in salt brine, but the glass study did include deionized water tests so that the influence of salt could be better understood. Under the extreme hydrothermal conditions of these tests, all of the materials examined underwent measurable changes. The glass is converted to a mixture of crystalline phases, depending upon conditions, giving NaFeSi 2 O 6 as the primary alteration product. The rate of alteration is higher in deionized water than in salt brine; however, under equivalent test conditions, 66% of the Cs originally in the glass is released to the salt brine, while only 6% is released to deionized water. Rb and Mo are the only other fission product elements significantly leached from the glass. Evidence is presented which shows that sintered Supercalcine undergoes chemical changes in salt brine that are qualitatively similar to those experienced by glass samples. High concentrations of Cs enter the aqueous phase, and Sn and Mo are mobilized. Scouting tests were made with a variety of materials including commercial glasses, granite, UO 2 , Al 2 O 3 , steel, and waste glasses. Weight losses under hydrothermal conditions are in a relatively narrow band, with glass and ceramic materials showing 3 to 20 times greater weight losses than 304L stainless steel in the 250 0 C test used. The conclusion from these studies is that virtually all solid materials show hydrothermal reactivity at temperatures between 250 and 350 0 C, and that these extreme conditions are not desirable

  13. The past and future roles of solid state nuclear tracks detectors

    International Nuclear Information System (INIS)

    Fleischer, R.L.

    1976-01-01

    Nuclear tracks in solids can be revealed by a variety of techniques, the simplest and most widely used of which is that of preferential chemical attack. Particle track etching has been used in a diversity of fields, both scientific and applied. This report first reviews the applications and then hazards some predictions for the future. (orig.) [de

  14. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  15. Isotopic and spin-nuclear effects in solid hydrogens (Review Article)

    Science.gov (United States)

    Freiman, Yuri A.; Crespo, Yanier

    2017-12-01

    The multiple isotopic family of hydrogens (H2, HD, D2, HT, DT, T2) due to large differences in the de Boer quantum parameter and inertia moments displays a diversity of pronounced quantum isotopic solid-state effects. The homonuclear members of this family (H2, D2, T2) due to the permutation symmetry are subjects of the constraints of quantum mechanics which link the possible rotational states of these molecules to their total nuclear spin giving rise to the existence of two spin-nuclear modifications, ortho- and parahydrogens, possessing substantially different properties. Consequently, hydrogen solids present an unique opportunity for studying both isotope and spin-nuclear effects. The rotational spectra of heteronuclear hydrogens (HD, HT, DT) are free from limitations imposed by the permutation symmetry. As a result, the ground state of these species in solid state is virtually degenerate. The most dramatic consequence of this fact is an effect similar to the Pomeranchuk effect in 3He which in the case of the solid heteronuclear hydrogens manifests itself as the reentrant broken symmetry phase transitions. In this review article we discuss thermodynamic and kinetic effects pertaining to different isotopic and spin-nuclear species, as well as problems that still remain to be solved.

  16. Thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    International Nuclear Information System (INIS)

    Silva, Alexandro S.; Dominguez, Dany S.; Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G.; Lira, Carlos Alberto Brayner de Oliveira

    2015-01-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  17. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  18. Application of the nuclear gages in dynamic sedimentology for the solid transport study

    International Nuclear Information System (INIS)

    Lamdasni, Y.

    1994-02-01

    The problems caused by the solid particle transport in rivers, dams, harbors, estuaries and in navigation channels have considerable economical consequences. The technical difficulties met when trying to limit or manage these problems are very important because of lack of knowledge. The nuclear gages and the radioactive tracers can be the measurement and monitoring means which, associated to the conventional techniques, permit to develop strongly the knowledge in the solid transport field. This report gives the modes of solid transport and the problems caused by these transports and exposes the physical properties of the fine sediments and their behavior under the hydrodynamic effects. In the same way, it deals with the theory of the nuclear gages, often applied in dynamic sedimentology and gives some examples of their applications. 29 refs., 35 figs., 5 tabs. (F.M.)

  19. A parallel solution-adaptive scheme for predicting multi-phase core flows in solid propellant rocket motors

    International Nuclear Information System (INIS)

    Sachdev, J.S.; Groth, C.P.T.; Gottlieb, J.J.

    2003-01-01

    The development of a parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations for multi-phase (gas-particle) core flows in solid propellant rocket motors (SRM). An Eulerian formulation is used to described the coupled motion between the gas and particle phases. A cell-centred upwind finite-volume discretization and the use of limited solution reconstruction, Riemann solver based flux functions for the gas and particle phases, and explicit multi-stage time-stepping allows for high solution accuracy and computational robustness. A Riemann problem is formulated for prescribing boundary data at the burning surface. Efficient and scalable parallel implementations are achieved with domain decomposition on distributed memory multiprocessor architectures. Numerical results are described to demonstrate the capabilities of the approach for predicting SRM core flows. (author)

  20. Ex-vessel molten core debris interactions at CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M J; Oyinloye, J O; Chambers, I [Electrowatt Consulting Engineers and Scientists, Warrington, Cheshire (United Kingdom); Scott, C K [Atlantic Nuclear Services, Fredericton, NB (Canada); Omar, A M [Atomic Energy Control Board, Ottawa, ON (Canada)

    1991-12-31

    Currently, the Atomic Energy Control Board (AECB) of Canada is sponsoring a project with a long term objective of obtaining an evaluation, independent of the industry, of the consequences to the public and the environment of postulated severe accidents at a Canadian nuclear power plant. Phase 1 of this project is a scoping study conducted to establish the relative consequences of a number of postulated event sequences. The studies in this paper model a multi-unit CANDU reactor at which pre-defined initiating events and their consequences could lead to severe core damage and relocation of the core debris onto the floor of the concrete reactor vault. Depending on the accident sequence assumptions made, an overlying pool of water may or may not be present. The US-NRC computer code CORCON Mod 2.0 was used to calculate the behaviour of the core material interacting with the concrete. The code calculates the decomposition of concrete by the molten core, and also the gases produced, which are released into the containment. The challenges to containment integrity are described, from the viewpoint of foundation decomposition and failure due to overpressure. The containment thermal-hydraulic behaviour is examined using an in-house computer code (CREM) written for this purpose. It is found that the containment envelope, in the absence of mitigating operator actions or design safety features, even for a case involving early core disassembly with the vacuum building unavailable, is unlikely to be failed within the 48 hours time frame examined. The paper identifies several areas for improvement in the models for future studies of core-concrete interactions for CANDU reactor plants. (author). 8 refs., 1 tab., 5 figs.

  1. Ex-vessel molten core debris interactions at CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Lewis, M.J.; Oyinloye, J.O.; Chambers, I.; Scott, C.K.; Omar, A.M.

    1990-01-01

    Currently, the Atomic Energy Control Board (AECB) of Canada is sponsoring a project with a long term objective of obtaining an evaluation, independent of the industry, of the consequences to the public and the environment of postulated severe accidents at a Canadian nuclear power plant. Phase 1 of this project is a scoping study conducted to establish the relative consequences of a number of postulated event sequences. The studies in this paper model a multi-unit CANDU reactor at which pre-defined initiating events and their consequences could lead to severe core damage and relocation of the core debris onto the floor of the concrete reactor vault. Depending on the accident sequence assumptions made, an overlying pool of water may or may not be present. The US-NRC computer code CORCON Mod 2.0 was used to calculate the behaviour of the core material interacting with the concrete. The code calculates the decomposition of concrete by the molten core, and also the gases produced, which are released into the containment. The challenges to containment integrity are described, from the viewpoint of foundation decomposition and failure due to overpressure. The containment thermal-hydraulic behaviour is examined using an in-house computer code (CREM) written for this purpose. It is found that the containment envelope, in the absence of mitigating operator actions or design safety features, even for a case involving early core disassembly with the vacuum building unavailable, is unlikely to be failed within the 48 hours time frame examined. The paper identifies several areas for improvement in the models for future studies of core-concrete interactions for CANDU reactor plants. (author). 8 refs., 1 tab., 5 figs

  2. In core instrumentation for online nuclear heating measurements of material testing reactor

    International Nuclear Information System (INIS)

    Reynard, C.; Andre, J.; Brun, J.; Carette, M.; Janulyte, A.; Merroun, O.; Zerega, Y.; Lyoussi, A.; Bignan, G.; Chauvin, J-P.; Fourmentel, D.; Glayse, W.; Gonnier, C.; Guimbal, P.; Iracane, D.; Villard, J.-F.

    2010-01-01

    The present work focuses on nuclear heating. This work belongs to a new advanced research program called IN-CORE which means 'Instrumentation for Nuclear radiations and Calorimetry Online in REactor' between the LCP (University of Provence-CNRS) and the CEA (French Atomic Energy Commission) - Jules Horowitz Reactor (JHR) program. This program started in September 2009 and is dedicated to the conception and the design of an innovative mobile experimental device coupling several sensors and ray detectors for on line measurements of relevant physical parameters (photonic heating, neutronic flux ...) and for an accurate parametric mapping of experimental channels in the JHR Core. The work presented below is the first step of this program and concerns a brief state of the art related to measurement methods of nuclear heating phenomena in research reactor in general and MTR in particular. A special care is given to gamma heating measurements. A first part deals with numerical codes and models. The second one presents instrumentation divided into various kinds of sensor such as calorimeter measurements and gamma ionization chamber measurements. Their basic principles, characteristics such as metrological parameters, operating mode, disadvantages/advantages, ... are discussed. (author)

  3. A genetic algorithm solution for combinatorial problems - the nuclear core reload example

    Energy Technology Data Exchange (ETDEWEB)

    Schirru, R.; Silva, F.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Pereira, C.M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Chapot, J.L.C. [FURNAS, Rio de Janeiro, RJ (Brazil)

    1997-12-01

    This paper presents a solution to Traveling Salesman Problem based upon genetic algorithms (GA), using the classic crossover, but avoiding the feasibility problem in offspring individuals, allowing the natural evolution of the GA without introduction of heuristics in the genetic crossover operator. The genetic model presented, that we call the List Model (LM) is based on the encoding and decoding genotype in the way to always generate a phenotype that has a valid structure, over which will be applied the fitness, represented by the total distance. The main purpose of this work was to develop the basis for a new genetic model to be used in the reload of nuclear core of a PWR. In a generic way, this problem can be interpreted as a a search of the optimal combination of N different fuel elements in N nuclear core `holes`, where each combination or load pattern, determines the neutron flux shape and its associate peak factor. The goal is to find out the load pattern that minimizes the peak factor and consequently maximize the useful life of the nuclear fuel. The GA with the List Model was applied to the Angra-1 PWR reload problem and the results are remarkably better than the ones used in the last fuel cycle. (author). 12 refs., 3 figs., 2 tabs.

  4. Science and technology with nuclear tracks in solids

    CERN Document Server

    Buford-Price, P

    2005-01-01

    Fission track dating has greatly expanded its usefulness to geology over the last 40 years. It is central to thermochronology—the use of shortened fission tracks to decipher the thermal history, movement, and provenance of rocks. When combined with other indicators, such as zircon color and (U–Th)/He, a range of temperatures from C to C can be studied. Combining fission track analysis with cosmogenic nuclide decay rates, one can study landscape development and denudation of passive margins. Technological applications have expanded from biological filters, radon mapping, and dosimetry to the use of ion track microtechnology in microlithography, micromachining by ion track etching, microscopic field emission tips, magnetic nanowires as magnetoresistive sensors, microfluidic devices, physiology of ion channels in single cells, and so on. In nuclear and particle physics, relatively insensitive glass detectors have been almost single-handedly responsible for our knowledge of cluster radioactivity, and plastic ...

  5. Fluorine nuclear magnetic resonance study of enrichment effects in gaseous, liquid and solid uranium hexafluoride

    International Nuclear Information System (INIS)

    Ursu, I.; Demco, D.E.; Simplaceanu, V.; Valcu, N.

    1977-01-01

    The nuclear magnetic resonance method is able to provide information concerning the isotopic content of 235 U in UF 6 by means of measuring the nuclear magnetic transverse relaxation time (T,L2) of 19 F nuclei in liquid UF 6 . In this work, the sources of errors in the T 2 measurements have been analysed and methods for reducing them are dicussed. Typical errors in T 2 determinations are below 2%. The enrichment estimations made by using the linear calibration curves had a deviation of less than 2% with some exceptions. It was found that the chemical impurities may significantly affect the enrichment estimations. 19 F NMR spectra of liquid and gaseous UF 6 at low pressures did not reveal any structure or enrichment effect. The longitudinal nuclear magnetic relaxation of 19 F nuclei in low pressure, gaseous and solid UF 6 showed no enrichment dependence, nor the dipolar relaxation time in solid UF 6 did. (author)

  6. High resolution spectroscopy in solids by nuclear magnetic resonance; Espectroscopia de alta resolucao em solidos por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bonagamba, T J

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120{sup 0} C to +160{sup 0} C, and is fully controlled by a Macintosh IIci microcomputer. (author).

  7. Fiber up-tapering and down-tapering for low-loss coupling between anti-resonant hollow-core fiber and solid-core fiber

    Science.gov (United States)

    Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming

    2017-10-01

    In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.

  8. Review of the Shoreham Nuclear Power Station Probabilistic Risk Assessment: internal events and core damage frequency

    International Nuclear Information System (INIS)

    Ilberg, D.; Shiu, K.; Hanan, N.; Anavim, E.

    1985-11-01

    A review of the Probabilistic Risk Assessment of the Shoreham Nuclear Power Station was conducted with the broad objective of evaluating its risks in relation to those identified in the Reactor Safety Study (WASH-1400). The scope of the review was limited to the ''front end'' part, i.e., to the evaluation of the frequencies of states in which core damage may occur. Furthermore, the review considered only internally generated accidents, consistent with the scope of the PRA. The review included an assessment of the assumptions and methods used in the Shoreham study. It also encompassed a reevaluation of the main results within the scope and general methodological framework of the Shoreham PRA, including both qualitative and quantitative analyses of accident initiators, data bases, and accident sequences which result in initiation of core damage. Specific comparisons are given between the Shoreham study, the results of the present review, and the WASH-1400 BWR, for the core damage frequency. The effect of modeling uncertainties was considered by a limited sensitivity study so as to show how the results would change if other assumptions were made. This review provides an independently assessed point value estimate of core damage frequency and describes the major contributors, by frontline systems and by accident sequences. 17 figs., 81 tabs

  9. Out-of-core nuclear fuel cycle optimization utilizing an engineering workstation

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Comes, S.A.

    1986-01-01

    Within the past several years, rapid advances in computer technology have resulted in substantial increases in their performance. The net effect is that problems that could previously only be executed on mainframe computers can now be executed on micro- and minicomputers. The authors are interested in developing an engineering workstation for nuclear fuel management applications. An engineering workstation is defined as a microcomputer with enhanced graphics and communication capabilities. Current fuel management applications range from using workstations as front-end/back-end processors for mainframe computers to completing fuel management scoping calculations. More recently, interest in using workstations for final in-core design calculations has appeared. The authors have used the VAX 11/750 minicomputer, which is not truly an engineering workstation but has comparable performance, to complete both in-core and out-of-core fuel management scoping studies. In this paper, the authors concentrate on our out-of-core research. While much previous work in this area has dealt with decisions concerned with equilibrium cycles, the current project addresses the more realistic situation of nonequilibrium cycles

  10. Solid oxide fuel cell having monolithic cross flow core and manifolding

    International Nuclear Information System (INIS)

    Poeppel, R.B.; Dusek, J.T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another

  11. Spent nuclear fuel application of CORE reg-sign systems engineering software

    International Nuclear Information System (INIS)

    Grimm, R.J.

    1996-01-01

    The Department of Energy (DOE) has adopted a systems engineering approach for the successful completion of the Spent Nuclear Fuel (SNF) Program mission. The DOE has utilized systems engineering principles to develop the SNF Program guidance documents and has held several systems engineering workshops to develop the functional hierarchies of both the programmatic and technical side of the SNF Program. The sheer size and complexity of the SNF Program, however, has led to problems that the Westinghouse Savannah River Company (WSRC) is working to manage through the use of systems engineering software. WSRC began using CORE reg-sign, an off-the-shelf PC based software package, to assist the DOE in management of the SNF program. This paper details the successful use of the CORE reg-sign systems engineering software to date and the proposed future activities

  12. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    International Nuclear Information System (INIS)

    Prabhu Gaunkar, N.; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-01-01

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors

  13. A nuclear heuristic for application to metaheuristics in-core fuel management optimization

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura, E-mail: ameneses@lmp.ufrj.b [COPPE/Federal University of Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program; Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, TI (Switzerland); Gambardella, Luca Maria, E-mail: luca@idsia.c [Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, TI (Switzerland); Schirru, Roberto, E-mail: schirru@lmp.ufrj.b [COPPE/Federal University of Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program

    2009-07-01

    The In-Core Fuel Management Optimization (ICFMO) is a well-known problem of nuclear engineering whose features are complexity, high number of feasible solutions, and a complex evaluation process with high computational cost, thus it is prohibitive to have a great number of evaluations during an optimization process. Heuristics are criteria or principles for deciding which among several alternative courses of action are more effective with respect to some goal. In this paper, we propose a new approach for the use of relational heuristics for the search in the ICFMO. The Heuristic is based on the reactivity of the fuel assemblies and their position into the reactor core. It was applied to random search, resulting in less computational effort concerning the number of evaluations of loading patterns during the search. The experiments demonstrate that it is possible to achieve results comparable to results in the literature, for future application to metaheuristics in the ICFMO. (author)

  14. Spent nuclear fuel application of CORE reg-sign systems engineering software

    International Nuclear Information System (INIS)

    Grimm, R.J.

    1996-01-01

    The DOE has adopted a systems engineering approach for the successful completion of the Spent Nuclear Fuel (SNF) Program mission. The DOE has utilized systems engineering principles to develop the SNF program guidance documents and has held several systems engineering workshops to develop the functional hierarchies of both the programmatic and technical side of the SNF program. The sheer size and complexity of the SNF program has led to problems that the Westinghouse Savannah River Company (WSRC) is working to manage through the use of systems engineering software. WSRC began using CORE reg-sign, an off the shelf PC based software package, to assist DOE in management of the SNF program. This paper details the successful use of the CORE reg-sign systems engineering software to date and the proposed future activities

  15. Control and balance of nuclear matters used for core fabrication of Super Phenix

    International Nuclear Information System (INIS)

    Beche, M.; Guillet, H.; Heyraud, H.; Levrard, J.; Pajot, J.

    1987-05-01

    The fabrication of the core of the fast breeder reactor set up at Creys Malville ended in March 1984. It started in 1978 and it required, for the fabrication of the 410 assemblies, the utilization of 7438 kg of plutonium. To satisfy national and international regulations, DPFER/SFER has used a methodology to follow and to control the movements of the nuclear materials. These controls are achieved by physical methods, chemical methods and empiric methods. Euratom has conducted a succession of inspections during the 5.5 years of that campaign. The inventory difference, in the fabrication of that core, represents about 0.1% of the total mass of the plutonium handled [fr

  16. A nuclear heuristic for application to metaheuristics in-core fuel management optimization

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Gambardella, Luca Maria; Schirru, Roberto

    2009-01-01

    The In-Core Fuel Management Optimization (ICFMO) is a well-known problem of nuclear engineering whose features are complexity, high number of feasible solutions, and a complex evaluation process with high computational cost, thus it is prohibitive to have a great number of evaluations during an optimization process. Heuristics are criteria or principles for deciding which among several alternative courses of action are more effective with respect to some goal. In this paper, we propose a new approach for the use of relational heuristics for the search in the ICFMO. The Heuristic is based on the reactivity of the fuel assemblies and their position into the reactor core. It was applied to random search, resulting in less computational effort concerning the number of evaluations of loading patterns during the search. The experiments demonstrate that it is possible to achieve results comparable to results in the literature, for future application to metaheuristics in the ICFMO. (author)

  17. Impact of correlations between core configurations for the evaluation of nuclear data uncertainty propagation for reactivity

    International Nuclear Information System (INIS)

    Frosio, T.; Bonaccorsi, T.; Blaise, P.

    2017-01-01

    The precise estimation of Pearson correlations, also called 'representativity' coefficients, between core configurations is a fundamental quantity for properly assessing the nuclear data (ND) uncertainties propagation on integral parameters such as k-eff, power distributions, or reactivity coefficients. In this paper, a traditional adjoint method is used to propagate ND uncertainty on reactivity and reactivity coefficients and estimate correlations between different states of the core. We show that neglecting those correlations induces a loss of information in the final uncertainty. We also show that using approximate values of Pearson does not lead to an important error of the model. This calculation is made for reactivity at the beginning of life and can be extended to other parameters during depletion calculations. (authors)

  18. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  19. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given

  20. The effect of uncertainties in nuclear reactor plant-specific failure data on core damage frequency

    International Nuclear Information System (INIS)

    Martz, H.F.

    1995-05-01

    It is sometimes the case in PRA applications that reported plant-specific failure data are, in fact, only estimates which are uncertain. Even for detailed plant-specific data, the reported exposure time or number of demands is often only an estimate of the actual exposure time or number of demands. Likewise the reported number of failure events or incidents is sometimes also uncertain because incident or malfunction reports may be ambiguous. In this report we determine the corresponding uncertainty in core damage frequency which can b attributed to such uncertainties in plant-specific data using a simple but typical nuclear power reactor example

  1. Interaction between core analysis methodology and nuclear design: some PWR examples

    International Nuclear Information System (INIS)

    Rothleder, B.M.; Eich, W.J.

    1982-01-01

    The interaction between core analysis methodology and nuclear design is exemplified by PSEUDAX, a major improvement related to the Advanced Recycle methodology program (ARMP) computer code system, still undergoing development by the Electric Power Research Institute. The mechanism of this interaction is explored by relating several specific nulcear design changes to the demands placed by these changes on the ARMP system, and by examining the meeting of these demands, first within the standard ARMP methodology and then through augmentation of the standard methodology by development of PSEUDAX

  2. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  3. Analysis of the documents about the core envelopment of nuclear reactor at the Laguna Verde U-1 power plant

    International Nuclear Information System (INIS)

    Zamora R, L.; Medina F, A.

    1999-01-01

    The degradation of internal components at BWR type reactors is an important subject to consider in the performance availability of the power plant. The Wuergassen nuclear reactor license was confiscated due to the presence of cracking in the core envelopment. In consequence it is necessary carrying out a detailed study with the purpose to avoid these problems in the future. This report presents a review and analysis of documents and technical information referring to the core envelopment of a BWR/5/6 and the Laguna Verde Unit 1 nuclear reactor in Mexico. In this document are presented design data, documents about fabrication processes, and manufacturing of core envelopment. (Author)

  4. Application of solid state nuclear track detectors in radiation protection

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.; Mishra, U.C.

    1989-01-01

    This article reviews the current status of the application of nuclear track detectors with emphasis on recent developments in the field of radiation protection. Track etch detectors have been used for the measurements of low level radiation in the environment, fast neutron and radon daughter inhalation dose. Recent developments in the field of dosimetry seem to be promising. In fast neutron dosimetry, track etch detectors can be used without inclusion of fissile materials by using the electrochemical etching technique. These detectors can provide important information in the energy range upto 250 keV. Survey of this range of energy with TLD is difficult because they are extremely energy dependent and over-respond to low energy neutrons. Measurement of radon using track detectors can help to lower the cost of the radon dosimeters. Certain detectors are sensitive to alpha particles from radon and their progeny. Higher sensitivity permits their use in a passive type of personnel dosimeter, which does not require the troublesome aspects of air sampling for the collection of radon daughter samples. (author), 38 refs., 8 tabs., 12 figs

  5. Annual Report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1978-01-01

    In 1977, 12 UD Pelletron tandem accelerator has been operated by the University's researchers and engineers. Except for the tank opening for regular inspection we met twice the troubles which forced to change the accelerating tube. The experiences teach us that it needs about 20 days to finish the conditioning after changing the accelerating tube. A sputter ion source of new version is now being installed on the top floor. Two devices for the detection of X-rays were tested. An apparatus for bombardment of samples in air for biological and medical sciences has been successfully used. The subjects of researches on nuclear physics cover the light-ion reactions, heavy-ion reactions and nuclear spectroscopy. A special emphasis has been put on the measurements on vector- and tensor-analyzing powers in the light-ion reactions, because of a higher efficiency of the polarized ion source. Elaborate works on the heavy-ion reactions including the angular correlation patterns and excitation functions have been made in parallel. Papers of these works are now being prepared, a few having been published already. Moreover, in the University of Tsukuba, a new research system, called Special Research Project on Nuclear and Solid State Sciences Using Accelerated Beams (Nuclear and Solid State Research Project) started in 1978 and will continue for five years. In this research project, researchers from various Institutes in the University of Tsukuba, as well as visiting researchers from other institutions in Japan and from abroad, participate. Using a variety of accelerated beams, i.e. of heavy, light and polarized beams, this research project aims mainly at the high excitation, short life, transient and inhomogeneous states both in nuclear and extra-nuclear world. It covers both fundamental research in nuclear, atomic and solid state sciences as well as their application in various fields. (J.P.N.)

  6. A nuclear reactor core fuel reload optimization using Artificial-Ant-Colony Connective Networks; Recarga de reatores nucleares utilizando redes conectivas de colonias de formigas artificiais

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alan M.M. de; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: alan@lmp.ufrj.br; schirru@lmp.ufrj.br

    2005-07-01

    A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly pattern that maximizes the number of full operational days. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is introduced to solve the nuclear reactor core fuel reload optimization problem. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)

  7. Carbon and deuterium nuclear magnetic resonance in solids

    Energy Technology Data Exchange (ETDEWEB)

    Shattuck, Thomas Wayne [Univ. of California, Berkeley, CA (United States)

    1976-07-01

    In Chapter I we present the results on a study of cross polarization dynamics, between protons and carbon-13 in adamantane, by the direct observation of the dilute, carbon-13, spins. These dynamics are an important consideration in the efficiency of proton enhancement double-resonance techniques and they also provide good experimental models for statistical theories of cross relaxation. In order to test these theories we present a comparison of the experimental and theoretical proton dipolar fluctuation correlation time τc, which is experimentally 110 ± 15 μsec and theoretically 122 μsec for adamantane. These double resonance considerations provide the background for extensions to deuterium and double quantum effects discussed in Chapter II. In Chapter II an approach to high resolution nmr of deuterium in solids is described. The m = 1 → -1 transition is excited by a double quantum process and the decay of coherence Q(τ) is monitored. Fourier transformation yields a deuterium spectrum devoid of quadrupole splittings and broadening. If the deuterium nuclei are dilute and the protons are spin decoupled, the double-quantum spectrum is a high resolution one and yields information on the deuterium chemical shifts Δω. The relationship Q(τ) ~ cos 2Δωτ is checked and the technique is applied to a single crystal of oxalic acid dihydrate enriched to ~ 10% in deuterium. The carboxyl and the water deuterium shifts are indeed resolved and the anisotropy of the carboxyl shielding tensor is estimated to be Δσ = 32 ± 3 ppm. A complete theoretical analysis is presented. The extension of cross relaxation techniques, both direct and indirect, to proton-deuterium double resonance is also described. The m = 1 → -1 double quantum transition and the m = ± 1 → 0 single quantum transitions may all be polarized and we present the derivation of the Hartmann-Hahn cross polarization conditions for each case. In addition the dynamics of the double quantum process

  8. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

    Directory of Open Access Journals (Sweden)

    Gholam Reza Ansarifar

    2015-12-01

    Full Text Available One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC, which is a robust nonlinear controller, is presented. SMC is a means to control pressurized water nuclear reactor (PWR power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

  9. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: esm041@mail.harvard.edu

    2016-01-18

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  10. Volume reduction technology development for solid wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, Kune Woo; Song, Kee Chan; Choi, Wang Kyu; Kim, Young Min

    1998-07-01

    A great deal of solid wastes, which have various physical, chemical, and radiological characteristics, are generated from the nuclear fuel cycle facility as well as radioactive gaseous and liquid wastes. The treatment of the large quantity of solid wastes from the nuclear fuel cycle have great technical, economical and social effects on the domestic policy decision on the nuclear fuel cycle, such as operation and maintenance of the facility, waste disposal, etc. Cement immobilization, super compaction, and electrochemical dissolution were selected as the volume reduction technologies for solid wastes, which will generated from the domestic nuclear fuel cycle facility in the future. And the assessment of annual arisings and the preliminary conceptual design of volume reduction processes were followed. Electrochemical decontamination of α-radionuclides from the spent fuel hulls were experimentally investigated, and showed the successful results. However, β/γ radioactivity did not reduce to the level below which hulls can be classified as the low-level radioactive waste and sent to the disposal site for the shallow land burial. The effects of the various process variables in the electrochemical decontamination were experimentally analysed on the process. (author). 32 refs., 32 tabs., 52 figs

  11. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    International Nuclear Information System (INIS)

    Mananga, Eugene Stephane

    2016-01-01

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  12. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    International Nuclear Information System (INIS)

    Friess, Friederike Renate

    2017-01-01

    According to a many publications and discussions, fast reactors hold promises to improve safety, non-proliferation, economic aspects, and reduce the nuclear waste problems. Consequently, several reactor designs advocated by the Generation IV Forum are fast reactors. In reality, however, after decades of research and development and billions of dollars investment worldwide, there are only two fast breeders currently operational on a commercial basis: the Russian reactors BN-600 and BN-800. Energy generation alone is apparently not a sufficient selling point for fast breeder reactors. Therefore, other possible applications for fast nuclear reactors are advocated. Three relevant examples are investigated in this thesis. The first one is the disposition of excess weapon-grade plutonium. Unlike for high enriched uranium that can be downblended for use in light water reactors, there exists no scientifically accepted solution for the disposition of weapon-grade plutonium. One option is the use in fast reactors that are operated for energy production. In the course of burn-up, the plutonium is irradiated which intends to fulfill two objectives: the resulting isotopic composition of the plutonium is less suitable for nuclear weapons, while at the same time the build-up of fission products results in a radiation barrier. Appropriate reprocessing technology is in order to extract the plutonium from the spent fuel. The second application is the use as so-called nuclear batteries, a special type of small modular reactors (SMRs). Nuclear batteries offer very long core lifetimes and have a very small energy output of sometimes only 10 MWe. They can supposedly be placed (almost) everywhere and supply energy without the need for refueling or shuffling of fuel elements for long periods. Since their cores remain sealed for several decades, nuclear batteries are claimed to have a higher proliferation resistance. The small output and the reduced maintenance and operating requirements

  13. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike Renate

    2017-07-12

    According to a many publications and discussions, fast reactors hold promises to improve safety, non-proliferation, economic aspects, and reduce the nuclear waste problems. Consequently, several reactor designs advocated by the Generation IV Forum are fast reactors. In reality, however, after decades of research and development and billions of dollars investment worldwide, there are only two fast breeders currently operational on a commercial basis: the Russian reactors BN-600 and BN-800. Energy generation alone is apparently not a sufficient selling point for fast breeder reactors. Therefore, other possible applications for fast nuclear reactors are advocated. Three relevant examples are investigated in this thesis. The first one is the disposition of excess weapon-grade plutonium. Unlike for high enriched uranium that can be downblended for use in light water reactors, there exists no scientifically accepted solution for the disposition of weapon-grade plutonium. One option is the use in fast reactors that are operated for energy production. In the course of burn-up, the plutonium is irradiated which intends to fulfill two objectives: the resulting isotopic composition of the plutonium is less suitable for nuclear weapons, while at the same time the build-up of fission products results in a radiation barrier. Appropriate reprocessing technology is in order to extract the plutonium from the spent fuel. The second application is the use as so-called nuclear batteries, a special type of small modular reactors (SMRs). Nuclear batteries offer very long core lifetimes and have a very small energy output of sometimes only 10 MWe. They can supposedly be placed (almost) everywhere and supply energy without the need for refueling or shuffling of fuel elements for long periods. Since their cores remain sealed for several decades, nuclear batteries are claimed to have a higher proliferation resistance. The small output and the reduced maintenance and operating requirements

  14. Nuclear physical express analysis of solid fuel sulphur content

    International Nuclear Information System (INIS)

    Pak, Yu.; Ponomaryova, M

    2005-01-01

    Full text: Sulphur content is an important qualitative coal parameter. The problem of coal sulphur content determining remains one of the most important both in Kazakhstan and in other coal-mining countries. The traditional method of sampling, the final stage of which is chemical analysis of coal for sulphur, is characterized by high labour intensity and low productivity. That's why it is ineffective for mass express analytical quality control and technological schemes of coal processing control. In this connection it is very urgent to develop a method of coal sulphur content on the base of a series nuclear-geophysical equipment with an isotope source of primary radiation, allowing to increase analysis representativity and maximally take into account coal real composition inconstancy. To solve the problem set it is necessary to study the main laws of X-ray-radiometric method applied to the coal quality analysis for working out instrumental methods of speed determining of coal sulphur content with satisfactory accuracy for technological tasks, to determine laws of changing the flows of characteristic X-ray and scattered radiation from coal sulphur content of various real composition and to optimize methodical and hardware parameters, providing minimal error of sulphur content control. On the base of studying laws of real composition coal components and their interconnections with sulphur content there has been substantiated the expediency of using hardware functions of calcium and iron to control coal sulphur contents; there has been suggested a model to estimate the methodical error of coal sulphur content determining on the base of the data about sensitivity to sulphur and effecting factors using ultimate methods of coal components substitution methods allowing to optimize sulphur control parameters; there has been worked out an algorithm of X-ray-radiometric control of sulphur content based on the sequential radiating the analyzed coal with gamma-radiation of

  15. Effects of nuclear data library on BFS and ZPPR fast reactor core analysis results. Pt. 1. ZPPR analysis results

    International Nuclear Information System (INIS)

    Mantourov, Guennadi

    2001-05-01

    This work was fulfilled in the frame of JNC-IPPE Collaboration on Experimental Investigation of Excess of Weapon Pu Disposition in BN-600 Reactor Using BFS-2 Facility. The data processing system CONSYST/ABBN coupled with ABBN-93 nuclear data library was used in analysis of BFS and ZPPR fast reactor cores applying JNC core calculation code CITATION. FFCP cell code was used for taking into account the spatial cell heterogeneity and resonance effects based on the first flight collision probability method and subgroup approach. Especially a converting program was written to transmit the prepared effective cross sections to JNC standard PDS files. Then the CITATION code was applied for 3-D XYZ neutronics calculations of BFS and ZPPR JUPITER experiments series cores. The effects of nuclear data library have been studied by comparing the former results based on JENDL-3.2 nuclear data library. The comparison results using IPPE and JNC nuclear data libraries for k-effective parameter for ZPPR-9, ZPPR-13A and ZPPR-17A cores are presented. The calculated correction factor in all cases was less than 1.0%. So the uncertainty in C value caused by possible errors in calculation of these corrections is expected to be less than 0.3% in case of ZPPR-13A and ZPPR-17A cores, and rather less for ZPPR-9 core. The main result of this study is that the effect of applying ABBN-93 nuclear data in JNC calculation route revealed a large enough discrepancy in k-eff for ZPPR-9 (about 0.6%) and ZPPR-17A (about 0.5%) cores. For BFS-62-1 and BFS-62-2 cores such analysis is in progress. Stretch cell models for both BFS cores were formed and cell calculations using FFCP code have started. Some results of cell calculations are presented. (author)

  16. Development of a parallel genetic algorithm using MPI and its application in a nuclear reactor core. Design optimization

    International Nuclear Information System (INIS)

    Waintraub, Marcel; Pereira, Claudio M.N.A.; Baptista, Rafael P.

    2005-01-01

    This work presents the development of a distributed parallel genetic algorithm applied to a nuclear reactor core design optimization. In the implementation of the parallelism, a 'Message Passing Interface' (MPI) library, standard for parallel computation in distributed memory platforms, has been used. Another important characteristic of MPI is its portability for various architectures. The main objectives of this paper are: validation of the results obtained by the application of this algorithm in a nuclear reactor core optimization problem, through comparisons with previous results presented by Pereira et al.; and performance test of the Brazilian Nuclear Engineering Institute (IEN) cluster in reactors physics optimization problems. The experiments demonstrated that the developed parallel genetic algorithm using the MPI library presented significant gains in the obtained results and an accentuated reduction of the processing time. Such results ratify the use of the parallel genetic algorithms for the solution of nuclear reactor core optimization problems. (author)

  17. Solid and liquid radioactive waste management of the Nuclear Technology Development Center (CDTN) - NUCLEBRAS

    International Nuclear Information System (INIS)

    Guzella, M.F.R.; Miaw, S.T.W.; Mourao, R.P.; Prado, M.A.S. do; Reis, L.C.A.; Santos, P.O.; Silva, E.M.P.

    1986-01-01

    Low level liquid and solid wastes are produced in several laboratories of the NUCLEAR TECHNOLOGY DEVELOPMENT CENTER (CDTN)-NUCLEBRAS. In the last years, the intensification of technical activities at the Center has increased the radioactive waste volumes. Therefore, the implementation of a Radioactive Waste Management Program has begun. This Program includes the systematic of activities from the waste collection to the transportation for the final disposal. The liquid and solid waste are collected separately in proper containers and stored for later treatment according to the processes available or under development at the Center. (Author) [pt

  18. Solid and liquid radioactive waste management of the Nuclear Technology Development Center (CDTN)- Nuclebras

    International Nuclear Information System (INIS)

    Guzella, M.F.R.; Mourao, R.P.; Reis, L.C.A.; Silva, E.M.P.; Miaw, S.T.W.; Prado, M.A.S.; Santos, P.O.

    1986-01-01

    Low level liquid and solid wastes are produced in several laboratories of the NUCLEAR TECHNOLOGY DEVELOPMENT CENTER (CDTN) - NUCLEBRAS. In the last years, the intensification of technical activities at the Center has increased the radioactive waste volumes. Therefore, the implementation of a Radioactive Waste Management Program has begun. This Program includes the systematic of activities from the waste collection to the transportation for the final disposal. The liquid and solid waste are collected separately in proper containers and stored for later treatment according to the processes available or under development at the Center. (Author) [pt

  19. Solid and gaseous inclusions in the EDML deep ice core: origins and implications for the physical properties of polar ice

    Science.gov (United States)

    Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.

    2010-12-01

    The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.

  20. Relationship between atomically related core levels and ground state properties of solids: first-principles calculations

    Czech Academy of Sciences Publication Activity Database

    Vackář, Jiří; Šipr, Ondřej; Šimůnek, Antonín

    2008-01-01

    Roč. 77, č. 4 (2008), 045112/1-045112/6 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100514; GA AV ČR(CZ) IAA100100637 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : core levels * ab-initio calculations * electronic states * ground state properties Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008

  1. The Use of Hidden Markov Models for Anomaly Detection in Nuclear Core Condition Monitoring

    Science.gov (United States)

    Stephen, Bruce; West, Graeme M.; Galloway, Stuart; McArthur, Stephen D. J.; McDonald, James R.; Towle, Dave

    2009-04-01

    Unplanned outages can be especially costly for generation companies operating nuclear facilities. Early detection of deviations from expected performance through condition monitoring can allow a more proactive and managed approach to dealing with ageing plant. This paper proposes an anomaly detection framework incorporating the use of the Hidden Markov Model (HMM) to support the analysis of nuclear reactor core condition monitoring data. Fuel Grab Load Trace (FGLT) data gathered within the UK during routine refueling operations has been seen to provide information relating to the condition of the graphite bricks that comprise the core. Although manual analysis of this data is time consuming and requires considerable expertise, this paper demonstrates how techniques such as the HMM can provide analysis support by providing a benchmark model of expected behavior against which future refueling events may be compared. The presence of anomalous behavior in candidate traces is inferred through the underlying statistical foundation of the HMM which gives an observation likelihood averaged along the length of the input sequence. Using this likelihood measure, the engineer can be alerted to anomalous behaviour, indicating data which might require further detailed examination. It is proposed that this data analysis technique is used in conjunction with other intelligent analysis techniques currently employed to analyse FGLT to provide a greater confidence measure in detecting anomalous behaviour from FGLT data.

  2. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki [Department of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Department of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan) and Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2012-11-12

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to {approx} 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  3. Roles of nuclear weak rates on the evolution of degenerate cores in stars

    Directory of Open Access Journals (Sweden)

    Suzuki Toshio

    2017-01-01

    Full Text Available Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.

  4. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    International Nuclear Information System (INIS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-01-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ∼ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  5. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    Science.gov (United States)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  6. The Great Deluge Algorithm applied to a nuclear reactor core design optimization problem

    International Nuclear Information System (INIS)

    Sacco, Wagner F.; Oliveira, Cassiano R.E. de

    2005-01-01

    The Great Deluge Algorithm (GDA) is a local search algorithm introduced by Dueck. It is an analogy with a flood: the 'water level' rises continuously and the proposed solution must lie above the 'surface' in order to survive. The crucial parameter is the 'rain speed', which controls convergence of the algorithm similarly to Simulated Annealing's annealing schedule. This algorithm is applied to the reactor core design optimization problem, which consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. This problem was previously attacked by the canonical genetic algorithm (GA) and by a Niching Genetic Algorithm (NGA). NGAs were designed to force the genetic algorithm to maintain a heterogeneous population throughout the evolutionary process, avoiding the phenomenon known as genetic drift, where all the individuals converge to a single solution. The results obtained by the Great Deluge Algorithm are compared to those obtained by both algorithms mentioned above. The three algorithms are submitted to the same computational effort and GDA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. One of the great advantages of this algorithm over the GA is that it does not require special operators for discrete optimization. (author)

  7. Diffusion induced nuclear reactions in metals: a possible source of heat in the core

    International Nuclear Information System (INIS)

    Hamza, V.M.; Iyer, S.S.S.

    1989-01-01

    It has recently been proposed that diffusion of light nuclei in metals can give rise to unusual electrical charge distributions in their lattice structures, inducing thereby certain nuclear reactions that are otherwise uncommon. In the light of these results we advance the hypothesis that such nuclear reactions take place in the metal rich core of the earth, based on following observations: 1 - The solubility of hydrogen in metals is relatively high compared to that in silicates. 2 - Studies of rare gas samples in intraplate volcanos and diamonds show that 3 He/ He ratio increases with depth in the mantle. 3 - There are indications that He is positively correlated with enrichment of metals in lavas. We propose that hydrogen incorporated into metallic phases at the time of planetary accretion was carried to the core by downward migration of metal rich melts during the early states of proto-earth. Preliminary estimates suggest that cold fusion reactions can give rise to an average rate of heat generation of 8.2x10 12 W and may thus serve as a supplementary source of energy for the geomagnetic dynamo. (author)

  8. The gravitational attraction algorithm: a new metaheuristic applied to a nuclear reactor core design optimization problem

    International Nuclear Information System (INIS)

    Sacco, Wagner F.; Oliveira, Cassiano R.E. de

    2005-01-01

    A new metaheuristic called 'Gravitational Attraction Algorithm' (GAA) is introduced in this article. It is an analogy with the gravitational force field, where a body attracts another proportionally to both masses and inversely to their distances. The GAA is a populational algorithm where, first of all, the solutions are clustered using the Fuzzy Clustering Means (FCM) algorithm. Following that, the gravitational forces of the individuals in relation to each cluster are evaluated and this individual or solution is displaced to the cluster with the greatest attractive force. Once it is inside this cluster, the solution receives small stochastic variations, performing a local exploration. Then the solutions are crossed over and the process starts all over again. The parameters required by the GAA are the 'diversity factor', which is used to create a random diversity in a fashion similar to genetic algorithm's mutation, and the number of clusters for the FCM. GAA is applied to the reactor core design optimization problem which consists in adjusting several reactor cell parameters in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering operational restrictions. This problem was previously attacked using the canonical genetic algorithm (GA) and a Niching Genetic Algorithm (NGA). The new metaheuristic is then compared to those two algorithms. The three algorithms are submitted to the same computational effort and GAA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. (author)

  9. Possible generation of heat from nuclear fusion in Earth's inner core.

    Science.gov (United States)

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2 D +  2 D +  2 D → 2 1 H +  4 He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10 12  J/m 3 , based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  10. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1991-01-01

    This patent describes a nuclear reactor core. It comprises a first group of fuel rods containing fissionable material and being free of burnable absorber material; and a second group of fuel rods containing fissionable material and first and second burnable absorber material; the first burnable absorber material being a boron-bearing material which does not contain erbium and the second burnable absorber material being an erbium material; the first and second burnable absorber materials being in the form of an outer coating on the fissionable material, the outer coating being composed of an inner layer of one of the boron-bearing material which does not contain erbium and the erbium material and an outer layer of the other of the boron-bearing material which does not contain erbium and the erbium material

  11. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    International Nuclear Information System (INIS)

    Mitchell, Jonathan; Fordham, Edmund J.

    2014-01-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general

  12. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  13. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  14. 3D thermal-hydraulic analysis on core of PWR nuclear power station

    International Nuclear Information System (INIS)

    Yao Zhaohui; Wang Xuefang; Shen Mengyu

    1997-01-01

    Thermal hydraulic analysis of core is of great importance in reactor safety analysis. A computer code, thermal hydraulic analysis porous medium analysis (THAPMA), has been developed to simulate the flow and heat transfer characteristics of reactor components. It has been proved reliable by several numerical tests. In the THAPMA code, a new difference scheme and solution method have been studied in developing the computer software. For the difference scheme, a second order accurate, high resolution scheme, called WSUC scheme, has been proposed. This scheme is total variation bounded and unconditionally stable in convective numeral stability. Numerical tests show that the WSUC is better in accuracy and resolution than the 1-st order upwind, 2-nd order upwind, SOUCUP by Zhu and Rodi. In solution method, a modified PISO algorithm is used, which is not only simpler but also more accurate and more rapid in convergence than the original PISO algorithm. Moreover, the modified PISO algorithm can effectively solve steady and transient state problem. Besides, with the THAPMA code, the flow and heat transfer phenomena in reactor core have been numerically simulated in the light of the design condition of Qinshan PWR nuclear power station (the second-term project). The simulation results supply a theoretical basis for the core design

  15. Molten Core - Concrete interactions in nuclear accidents. Theory and design of an experimental facility

    International Nuclear Information System (INIS)

    Sevon, T.

    2005-11-01

    In a hypothetical severe accident in a nuclear power plant, the molten core of the reactor may flow onto the concrete floor of containment building. This would cause a molten core . concrete interaction (MCCI), in which the heat transfer from the hot melt to the concrete would cause melting of the concrete. In assessing the safety of nuclear reactors, it is important to know the consequences of such an interaction. As background to the subject, this publication includes a description of the core melt stabilization concept of the European Pressurized water Reactor (EPR), which is being built in Olkiluoto in Finland. The publication includes a description of the basic theory of the interaction and the process of spalling or cracking of concrete when it is heated rapidly. A literature survey and some calculations of the physical properties of concrete and corium. concrete mixtures at high temperatures have been conducted. In addition, an equation is derived for conservative calculation of the maximum possible concrete ablation depth. The publication also includes a literature survey of experimental research on the subject of the MCCI and discussion of the results and deficiencies of the experiments. The main result of this work is the general design of an experimental facility to examine the interaction of molten metals and concrete. The main objective of the experiments is to assess the probability of spalling, or cracking, of concrete under pouring of molten material. A program of five experiments has been designed, and pre-test calculations of the experiments have been conducted with MELCOR 1.8.5 accident analysis program and conservative analytic calculations. (orig.)

  16. Introduction of virtual detectors for core monitoring system of korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Eun, Ki Lee.; Yong, Hee Kim.; Jybe, Ho Cha.; Moon, Ghu Park.

    2000-01-01

    A novel algorithm known as the virtual detector method (VDM) is introduced to reconstruct the axial power shape (APS) for the on-line core monitoring system of the Korean Standard Nuclear Power Plant (KSNP). A pure statistical method (SM) is also introduced and the results are compared with the currently implemented five-mode Fourier fitting method (FFM). VDM adopts nine virtual detector informations coupled with a regression model based on the Alternating Conditional Expectation (ACE) algorithm. VDM uses Fourier fitting with the information of nine virtual detectors expanded from the currently implemented FFM, which uses five-level detector information. By introducing virtual detectors, we can increase the number of axial detectors, and thus expect the computational errors of APS to be reduced. The two methods (SM and VDM) are applied to in-core mapping data from six cycles of Yong Gwang nuclear power plant Units 3 and 4. For ∼ 3500 cases of APSs extracted from a cycle of operation which is simulated by a three-dimensional nodal code, the accuracy of the three methods (SM, VDM, FFM) is compared. The average root mean square (RMS) error and average of axial peaking error of SM and VDM resulted in reduction of more than 50 % and 70 %, respectively, relative to FFM. VDM and SM also show more realistic axial profiles and predict more accurate axial peaking than FFM. These improvements can contribute to a larger thermal margin. SM shows the most accurate results for all cases. VDM can almost obtain the same results as SM, and using far fewer computation steps. VDM can be a useful tool for precisely reconstructing axial power shapes in a core monitoring system. (authors)

  17. Nuclear microanalysis of 16O and 18O in near-surface regions of solids. Applications

    International Nuclear Information System (INIS)

    Amsel, G.

    The best suited nuclear technique for 18 O analysis is the direct observation of nuclear reactions. Here, instead of measuring an induced radioactivity, one observes the particles emitted as a result of the O 18 (p,α)N 15 reaction. The α particles which are produced may be detected with surface barrier semiconductor detectors; they present unit detection efficiency and allow one to realize large solid angles of detection, while their energy resolution is excellent. For getting O 18 /O 16 ratios, 16 O must also be measured. This is achieved in a similar way, using the O 16 (d,p) 17 O reaction [fr

  18. Study on some characteristics of the polycarbonate Durolon used as a solid state nuclear track detector

    International Nuclear Information System (INIS)

    Sciani, V.; Pugliesi, R.; Moraes, M.A.P.V. de; Menezes, M.O. de; Miranda, A.

    1994-01-01

    Some characteristics of the polycarbonate Durolon as a solid state nuclear track detector were investigated. These were determined by means of irradiations performed at the IEA-R1 Nuclear Research Reactor of the IPEN-CNEN/SP. The results were compared with those obtained for Makrofol-E at the same conditions. Although Durolon is grooved, it presents a track registration efficiency and a light transmission of about 30% and 2,4 greater than the former, respectively. (author). 7 refs, 4 figs, 2 tabs

  19. Effects of nuclear data library on BFS and ZPPR fast reactor core analysis results. Pt. 2. BFS-62 analysis results

    International Nuclear Information System (INIS)

    Mantourov, Guennadi

    2001-11-01

    This work was fulfilled in the frame of JNC-IPPE Collaboration on Experimental Investigation of Excess Weapon Pu Disposition in BN-600 Reactor Using BFS-2 Facility. Data processing system CONSYST/ABBN coupled with ABBN-93 nuclear data library was used in analysis of BFS-62 and ZPPR JUPIER series fast reactor cores, applying JNC core calculation code CITATION-FBR. FFCP cell code was used for taking into account the spatial cell heterogeneity and resonance effects based on the First Flight Collision Probability method and subgroup approach. Especially, two converting programs were written to transmit the prepared effective cross sections to JNC standard PDS files to let then the CITATION code be applied for 3-D HEXZ neutronics calculations of the investigated cores. The effects of nuclear data library have been studied by comparing the results calculated using ABBN-93 nuclear data library with the former ones obtained in JNC based on JENDL-3.2 nuclear data library. The comparison results using IPPE and JNC nuclear data libraries for k-effective parameter for 4 BFS-62 cores as well as for 3 ZPPR JUPITER experiment series cores ZPPR-9, ZPPR-13A and ZPPR-17A are presented. The comparison results for reaction rates distributions for 2 BFS-62 uranium loaded cores are included too. The calculated correction factors applied in all cases were less than 1.0%. The estimated uncertainty in k-effective C values caused by possible errors in calculation of the applied corrections is about 0.3% in case of BFS-62 and ZPPR MOX cores, and is about 0.2% for BFS-62 uranium-loaded cores. The main result of this study is that the effect of applying ABBN-93 nuclear data in JNC's calculation route for k-effective results is about 0.3% for ZPPR and BFS-62 cores with plutonium. As for BFS uranium-loaded cores (BFS-62-1 and BFS-62-2) the nuclear data library effect is about 0.1%. Next the sensitivity analysis was applied. It shown that the main contributors to the nuclear data library effect

  20. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  1. Uranium analysis by neutron induced fissionography method using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Akyuez, T.; Tretyakova, S. P.; Guezel, T.; Akyuz, S.

    1999-01-01

    In this study total twenty samples (eight reference materials and twelve sediment samples) were analysed for their uranium content which is in the range of 1-17 μg/g, by neutron induced fissionography (NIF) method using solid state nuclear track detectors (SSNTDs) in comparison with the results of neutron activation analysis (NAA), delayed neutron counting (DNC) technique or fluorometric method. It is found that NIF method using SSNTDs is very sensitive for analysis of uranium

  2. Uranium analysis by neutron induced fissionography method using solid state nuclear track detectors

    CERN Document Server

    Akyuez, T; Guezel, T; Akyuz, S

    1999-01-01

    In this study total twenty samples (eight reference materials and twelve sediment samples) were analysed for their uranium content which is in the range of 1-17 mu g/g, by neutron induced fissionography (NIF) method using solid state nuclear track detectors (SSNTDs) in comparison with the results of neutron activation analysis (NAA), delayed neutron counting (DNC) technique or fluorometric method. It is found that NIF method using SSNTDs is very sensitive for analysis of uranium.

  3. The calibration of the solid state nuclear track detector LR 115 for radon measurements

    CERN Document Server

    Gericke, C; Jönsson, G; Freyer, K; Treutler, H C; Enge, W

    1999-01-01

    An experimental calibration of indoor room and outdoor soil detector devices which are based on LR 115 as sensitive element has taken place at the Swedish Radiation Protection Institute in Stockholm (Sweden) in 1994 and 1996, at the Physikalisch-Technischen Bundesanstalt in Braunschweig (Germany) in 1997 and at the Umweltforschungszentrum Leipzig-Halle (Germany) in 1997. Special properties of the used solid state nuclear track detector (SSNTD) material LR 115 have been measured to define the application of the experimental calibration.

  4. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Jonathan [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  5. Television-aided thermographic investigations in nuclear and solid state research

    International Nuclear Information System (INIS)

    Buettig, H.; Wollschlaeger, K.

    1983-01-01

    After a brief review of the physical and hardware fundamentals of televison-aided thermographic investigations, two practical examples of nuclear and solid state research work are presented. The problems discussed concern studies of the relative density distribution in beams of particles (ions, electrons, neutral atoms) or of visible radiation on the one hand, and the optimization of operating conditions in heavy-current implantations (ion implantation in Si at ion beam currents up to 60 μA) on the other hand

  6. Third-generation site characterization: Cryogenic core collection, nuclear magnetic resonance, and electrical resistivity

    Science.gov (United States)

    Kiaalhosseini, Saeed

    In modern contaminant hydrology, management of contaminated sites requires a holistic characterization of subsurface conditions. Delineation of contaminant distribution in all phases (i.e., aqueous, non-aqueous liquid, sorbed, and gas), as well as associated biogeochemical processes in a complex heterogeneous subsurface, is central to selecting effective remedies. Arguably, a factor contributing to the lack of success of managing contaminated sites effectively has been the limitations of site characterization methods that rely on monitoring wells and grab sediment samples. The overarching objective of this research is to advance a set of third-generation (3G) site characterization methods to overcome shortcomings of current site characterization techniques. 3G methods include 1) cryogenic core collection (C3) from unconsolidated geological subsurface to improve recovery of sediments and preserving key attributes, 2) high-throughput analysis (HTA) of frozen core in the laboratory to provide high-resolution, depth discrete data of subsurface conditions and processes, 3) resolution of non-aqueous phase liquid (NAPL) distribution within the porous media using a nuclear magnetic resonance (NMR) method, and 4) application of a complex resistivity method to track NAPL depletion in shallow geological formation over time. A series of controlled experiments were conducted to develop the C 3 tools and methods. The critical aspects of C3 are downhole circulation of liquid nitrogen via a cooling system, the strategic use of thermal insulation to focus cooling into the core, and the use of back pressure to optimize cooling. The C3 methods were applied at two contaminated sites: 1) F.E. Warren (FEW) Air Force Base near Cheyenne, WY and 2) a former refinery in the western U.S. The results indicated that the rate of core collection using the C3 methods is on the order of 30 foot/day. The C3 methods also improve core recovery and limits potential biases associated with flowing sands

  7. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  8. Characterization of the polymer Durolon as a solid state nuclear track detector

    International Nuclear Information System (INIS)

    Pugliesi, Fabio

    2008-01-01

    The polymer Durolon has been characterized as a solid state nuclear track detector. In these detectors a track, resulting from the damages in its molecular structure, induced by a heavy charged particle, is the testimony of the passage of the particle through the polymer. In order to characterize the Durolon the track diameter, track production rate, light transmission through the polymer and the critical angle of incidence of the particle have been studied. The main objective of such studies was to provide the necessary subsidies to understand the information registered. The damages have been induced by alpha particles from the nuclear reaction 10 B(n,α) 7 Li, by irradiating a boron screen in a thermal neutron field from an experimental facility installed in the beam-hole 08 of the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The study of the parameters have been performed by using a digital system developed in the present work. Its use has provided a higher quality and quickness regarding data acquisition and data analysis as well as the opportunity to quantify several other parameters regarding the imaging formation theory in solid state nuclear track detectors. The characteristics of the Durolon have been compared with the ones of two other detectors Makrofol-E and Makrofol-DE and have demonstrated its potentiality to use. (author)

  9. Utilization of cross-section covariance data in FBR core nuclear design and cross-section adjustment

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1994-01-01

    In the core design of large fast breeder reactors (FBRs), it is essentially important to improve the prediction accuracy of nuclear characteristics from the viewpoint of both reducing cost and insuring reliability of the plant. The cross-section errors, that is, covariance data are one of the most dominant sources for the prediction uncertainty of the core parameters, therefore, quantitative evaluation of covariance data is indispensable for FBR core design. The first objective of the present paper is to introduce how the cross-section covariance data are utilized in the FBR core nuclear design works. The second is to delineate the cross-section adjustment study and its application to an FBR design, because this improved design method markedly enhances the needs and importance of the cross-section covariance data. (author)

  10. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Park, Hae Kyun; Kim, Sang Nyung

    2013-01-01

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was conservatively calculated

  11. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was

  12. Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers

    International Nuclear Information System (INIS)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Xin; Liu, Yichun

    2015-01-01

    Highlights: • Three-dimensional PAN@PANI nanofiberous networks as freestanding electrodes. • The novel architecture exhibits high specific capacitance of 577 F/g. • Influence of acid doping and mass loading of PANI on electrochemical properties. • Capacitor: an energy density of 12.6 Wh/kg at the power density of 2.3 kW/kg. • Excellent cycling stability: 98% capacitance retention after 1000 cycles - Abstract: Three-dimensional porous polyacrylonitrile/polyaniline core-shell (PAN@PANI) nanofibers are fabricated by electrospinning technique combining in situ chemical polymerization of aniline monomers. The obtained PAN@PANI nanofibers possess unique continuous and homogeneous core-shell nanostructures and high mass loading of PANI (∼60 wt%) as active materials, which have greatly improved the electrochemical performance with a specific capacitance up to 577 F/g at a scan rate of 5 mV/s. Moreover, the porous networks of randomly arrayed PAN@PANI nanofibers provide binder-free and freestanding electrodes for flexible solid-state supercapacitors. The obtained devices based on PAN@PANI networks present excellent electrochemical properties with an energy density of 12.6 Wh/kg at a power density of 2.3 kW/kg and good cycling stability with retaining more than 98% of the initial capacitance after 1000 charge/discharge cycles, showing the possibility for practical applications in flexible electronics

  13. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    International Nuclear Information System (INIS)

    Guo, X.; Wehrmeyer, J.A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-var-epsilon model, RNG k-var-epsilon model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained. copyright 1997 American Institute of Physics

  14. FLICA-4 (version 1). A computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.; Caruge, D.; Gramont, T. de; Toumi, I.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code, developed at the French Atomic Energy Commission (CEA) for three-dimensional steady-state or transient two-phase flow, and aimed at design and safety thermal analysis of nuclear reactor cores. It is available for various UNIX workstations and CRAY computers under UNICOS.It is based on four balance equations which include three balance equations for the mixture and a mass balance equation for the less concentrated phase which allows for the calculation of non equilibrium flows such as sub-cooled boiling and superheated steam. A drift velocity model takes into account the velocity unbalance between phases. The equations are solved using a finite volume numerical scheme. Typical running time, specific features (coupling with other codes) and auxiliary programs are presented. 1 tab., 9 refs

  15. Reproducing cultural identity in negotiating nuclear power: the Union of Concerned Scientists and emergency core cooling

    International Nuclear Information System (INIS)

    Downey, G.L.

    1988-01-01

    This paper advances the concept of 'cultural identity' to account for the nexus between structure and practice in technological negotiations. It describes how the formation of the Union of Concerned Scientists (UCS), and that group's subsequent discourse and nonverbal actions, both reproduced the established identities of group members and contributed to negotiations that reconstituted those identities. In particular, UCS claims about emergency core-cooling systems in nuclear plants were congruent with the combination of a shared ideology, the social interests of Massachusetts Institute of Technology faculty, and established principles of engineering design. The cultural analysis of identity reproduction shows the opposition between cognitive and social phenomena to be a significant distinction framing action in Western culture. The analysis also suggests that new attention be given to the relationship between the constitutive and reproductive functions of discourse and nonverbal action. (author)

  16. How did Fukushima-Dai-ichi core meltdown change the probability of nuclear accidents?

    International Nuclear Information System (INIS)

    Escobar Rangel, Lina; Leveque, Francois

    2012-10-01

    How to predict the probability of a nuclear accident using past observations? What increase in probability the Fukushima Dai-ichi event does entail? Many models and approaches can be used to answer these questions. Poisson regression as well as Bayesian updating are good candidates. However, they fail to address these issues properly because the independence assumption in which they are based on is violated. We propose a Poisson Exponentially Weighted Moving Average (PEWMA) based in a state-space time series approach to overcome this critical drawback. We find an increase in the risk of a core meltdown accident for the next year in the world by a factor of ten owing to the new major accident that took place in Japan in 2011. (authors)

  17. Reproducing cultural identity in negotiating nuclear power: the Union of Concerned Scientists and emergency core cooling

    Energy Technology Data Exchange (ETDEWEB)

    Downey, G L

    1988-05-01

    This paper advances the concept of 'cultural identity' to account for the nexus between structure and practice in technological negotiations. It describes how the formation of the Union of Concerned Scientists (UCS), and that group's subsequent discourse and nonverbal actions, both reproduced the established identities of group members and contributed to negotiations that reconstituted those identities. In particular, UCS claims about emergency core-cooling systems in nuclear plants were congruent with the combination of a shared ideology, the social interests of Massachusetts Institute of Technology faculty, and established principles of engineering design. The cultural analysis of identity reproduction shows the opposition between cognitive and social phenomena to be a significant distinction framing action in Western culture. The analysis also suggests that new attention be given to the relationship between the constitutive and reproductive functions of discourse and nonverbal action.

  18. Solid radioactive waste: evaluation of residual activity in nuclear medicine services

    International Nuclear Information System (INIS)

    Alabarse, Frederico G.; Xavier, Ana M.; Magalhaes, Maisa H.; Guerrero, Jesus S.P.

    2009-01-01

    An experimental programme to estimate, with a better degree of accuracy, the activity that remains adsorbed in flasks and syringes used in Nuclear Medicine Services for the administration of radionuclides to patients submitted to diagnostic or therapy is been conducted under the coordination of the Radioactive Waste Division of the Brazilian Nuclear Energy Commission, CNEN. The adopted recommendation in Brazil to allow an expedite solid waste management in nuclear medicine facilities, up to the present, is to consider that 2% of the initial activity remains adsorbed in the solid waste, which easily allows the calculation of the storage time to achieve regulatory clearance levels by decay. This research evaluates 17 different kinds of radiopharmaceuticals and three radioisotopes: 99m Tc, 67 Ga and 201 Tl. Results obtained by means of a weighting method to estimate the residual mass in flasks show that the ratio of the mass of the liquid that remains in the solid waste to the mass of the empty flask is constant. This suggests that the residual activity depends on the initial activity concentration of radiopharmaceutical contained in each flask, as assumed by the regulatory body. Additionally, results obtained by determining the remaining activity in flasks, shortly after the injection of its radionuclide contents in patients, indicate that an average value for the residual activity of the order of 10% of the initial activity contained in the flasks or syringes should be adopted to determine the decay storage time before the release of solid waste in the urban conventional land fill disposal system. The 'rule of thumb' of 10 half-lives for storage before clearance is also discussed in the present work. (author)

  19. Evaluation of residual activity of solid waste generated in nuclear medicine services of Porto Alegre - Brazil

    International Nuclear Information System (INIS)

    Xavier, Ana M.; Alabarse, Frederico Gil; Magalhaes, Maisa Haiidamus; Guerrero, Jesus Salvador Perez

    2008-01-01

    An experimental programme to estimate, with a better degree of accuracy, the activity that remains adsorbed in flasks and syringes used in Nuclear Medicine Services for the administration of radionuclides to patients submitted to diagnostic or therapy was conducted under the coordination of the Radioactive Waste Division of the Brazilian Nuclear Energy Commission. The adopted recommendation in Brazil to allow an expedite solid waste management in nuclear medicine facilities, up to the present, is to consider that 2% of the initial activity remains adsorbed in the solid waste, which easily allows the calculation of the storage time to achieve regulatory clearance levels by decay. This research evaluates 17 different kinds of radio pharmaceuticals and three radioisotopes: 99m Tc, 67 Ga and 201 Tl. Results obtained by means of a weighting method to estimate the residual mass in flasks show that the ratio of the mass of the liquid that remains in the solid waste to the mass of the empty flask is constant. This suggests that the residual activity depends on the initial activity concentration of radiopharmaceutical contained in each flask, as assumed by the regulatory body. Additionally, results obtained by determining the remaining activity in flasks, shortly after the injection of its radionuclides contents in patients, indicate that an average value for the residual activity of the order of 10% of the initial activity contained in the flasks or syringes can be adopted instead of the previously assumed 2%. It is suggested that the more conservative average value obtained in the present work for the activity that remains in flasks and syringes, that is, 10% of the initial activity, could be adopted to determine the decay storage time before the release of solid waste in the urban conventional land fill disposal system. (author)

  20. Evolution of microstructure in zirconium alloy core components of nuclear reactors during service

    International Nuclear Information System (INIS)

    Griffiths, M.; Coleman, C.E.; Holt, R.A.; Sagat, S.; Urbanic, V.F.; Chow, C.K.

    1993-03-01

    X-ray diffraction and analytical electron microscopy have been used to characterise microstructural and microchemical changes produced by neutron irradiation of Zr-2.5Nb, Zircaloy-2 and Zircaloy-4 nuclear reactor core components. In many cases there is a clear relationship between the radiation damage microstructure and the physical properties of in-service core components. For example, the difference in delayed hydride cracking velocity between the inlet and outlet ends of Zr-2.5Nb pressure tubes in pressurised heavy water reactors can be directly correlated with variations in a-dislocation density and β-Zr phase decomposition. For the same tubes, the variation of fracture toughness has the same fluence dependence as dislocation loop density and improvements in corrosion behaviour can be linked with decreases in the Nb concentration in the α-Zr matrix due to Nb precipitation during irradiation. For pressurised water reactors and boiling water reactors the onset of 'breakaway' growth in Zircaloy-4 guide tubes can be directly correlated with the appearance of basal plane dislocation loops in the microstructure. (author). 37 refs., 28 figs., 4 tabs

  1. Hualong One's nuclear reactor core design and relative safety issues research

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H., E-mail: yuhong_xing@126.com [Nuclear Power Inst. of China, Design and Research Sub-Inst., Chengdu, Sichuan (China)

    2015-07-01

    'Full text:' Hualong One, a third generation 1000MWe-class pressurized water reactor, is developed by China National Nuclear Cooperation (CNNC), based on the self-reliant technologies and experiences from China 40 years designing, construction, operation and maintenance of NPPs. In China, it has been approved to construct at Fuqing 5&6 and Fangchenggang 3&4. The Hualong One adopts advanced design features to dramatically enhance plant safety, economic efficiency and convenience of operation and maintenance. It consists of three loops with nominal thermal power output 3060 MWt and a 60-year design life. Its reactor core has 177 fuel assemblies, 18 month refueling interval (after initial cycle), and more than 15% thermal margin. It adopts low leakage loading pattern which can achieve better economy of the neutron, higher reactivity and lower radiation damage of pressure vessel. For the safety design, incorporating the feedback of Fukushima accident, the Hualong One has a combination of active and passive safety systems, a single station layout, double containment structure, and comprehensive implementation of defence-in-depth design principles. The new design features has been successfully evaluated to ensure that they enhance the performance and safety of Hualong One. Several experimental activates have been conducted, such as cavity injection and cooling system testing, passive containment heat removal system testing, and passive residual heat removal system of secondary side testing. The future improvements of Hualong reactor will focus on better economic core design and more reliable safety system. (author)

  2. Evaluation of the need for stochastic optimization of out-of-core nuclear fuel management decisions

    International Nuclear Information System (INIS)

    Thomas, R.L. Jr.

    1989-01-01

    Work has been completed on utilizing mathematical optimization techniques to optimize out-of-core nuclear fuel management decisions. The objective of such optimization is to minimize the levelized fuel cycle cost over some planning horizon. Typical decision variables include feed enrichments and number of assemblies, burnable poison requirements, and burned fuel to reinsert for every cycle in the planning horizon. Engineering constraints imposed consist of such items as discharge burnup limits, maximum enrichment limit, and target cycle energy productions. Earlier the authors reported on the development of the OCEON code, which employs the integer Monte Carlo Programming method as the mathematical optimization method. The discharge burnpups, and feed enrichment and burnable poison requirements are evaluated, initially employing a linear reactivity core physics model and refined using a coarse mesh nodal model. The economic evaluation is completed using a modification of the CINCAS methodology. Interest now is to assess the need for stochastic optimization, which will account for cost components and cycle energy production uncertainties. The implication of the present studies is that stochastic optimization in regard to cost component uncertainties need not be completed since deterministic optimization will identify nearly the same family of near-optimum cycling schemes

  3. Development of advanced nuclear core analysis system applicable to various reactor types

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, aiming at development of an advanced detailed analysis system applicable to nuclear core performance analysis of various fast reactors currently considered, the concept of cross section library set was examined and the specification of library set was determined. That is to say, referring the world most advanced reactor physics analysis system ERANOS (European Reactor Analysis Optimized System) and the result of preceding research 'preparation of next generation cross section library', 900 energy groups structure, concrete cross section data to be included and the format of cross section library were defined. And we performed elaborate work revising the group cross section production system which was prepared in the preceding research. After that the revision work was completed, to confirm the capability of revised cross section production system, we produced a prototype 450 groups cross section library. And we carried out a series of bench mark tests including analysis of small fast reactors utilizing this prototype cross section library and confirmed that the prototype cross section library has sufficient accuracy for predicting core performance. Furthermore, we estimated the computer resource information such as memory size, hard disk capacity and calculation time, etc. necessary for producing 900 groups detailed cross section library. In addition, we identified problems to be solved for developing a cell calculation code installed in our detailed analysis system. (author)

  4. Evolution of microstructure in zirconium alloy core components of nuclear reactors during service

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M; Coleman, C E; Holt, R A; Sagat, S; Urbanic, V F [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Chow, C K [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Nuclear Research Establishment

    1993-03-01

    X-ray diffraction and analytical electron microscopy have been used to characterise microstructural and microchemical changes produced by neutron irradiation of Zr-2.5Nb, Zircaloy-2 and Zircaloy-4 nuclear reactor core components. In many cases there is a clear relationship between the radiation damage microstructure and the physical properties of in-service core components. For example, the difference in delayed hydride cracking velocity between the inlet and outlet ends of Zr-2.5Nb pressure tubes in pressurised heavy water reactors can be directly correlated with variations in a-dislocation density and {beta}-Zr phase decomposition. For the same tubes, the variation of fracture toughness has the same fluence dependence as dislocation loop density and improvements in corrosion behaviour can be linked with decreases in the Nb concentration in the {alpha}-Zr matrix due to Nb precipitation during irradiation. For pressurised water reactors and boiling water reactors the onset of `breakaway` growth in Zircaloy-4 guide tubes can be directly correlated with the appearance of basal plane dislocation loops in the microstructure. (author). 37 refs., 28 figs., 4 tabs.

  5. Assessment of water hammer effects on boiling water nuclear reactor core dynamics

    Directory of Open Access Journals (Sweden)

    Bousbia-Salah Anis

    2007-01-01

    Full Text Available Complex phenomena, as water hammer transients, occurring in nuclear power plants are still not very well investigated by the current best estimate computational tools. Within this frame work, a rapid positive reactivity addition into the core generated by a water hammer transient is considered. The numerical simulation of such phenomena was carried out using the coupled RELAP5/PARCS code. An over all data comparison shows good agreement between the calculated and measured core pressure wave trends. However, the predicted power response during the excursion phase did not correctly match the experimental tendency. Because of this, sensitivity studies have been carried out in order to identify the most influential parameters that govern the dynamics of the power excursion. After investigating the pressure wave amplitude and the void feed back responses, it was found that the disagreement between the calculated and measured data occurs mainly due to the RELAP5 low void condensation rate which seems to be questionable during rapid transients. .

  6. Development of advanced nuclear core analysis system applicable to various reactor types (II)

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2003-03-01

    A 900 group cross section library based on the specification determined last year was produced for 27 nuclei of the fast reactor benchmark problem evaluated in nuclear data file JENDL-3.2. In addition, the new SLAROM code, which has been developed as an advanced detail analysis system, was revised so as to make cell calculations effectively with the above 900 group library. Furthermore, new functions were added to the SLAROM so that the SLAROM evaluates assembly parameters using effective cross sections derived by the SLAROM and produces any condensed effective cross section set for core performance analysis. With the 900 group cross section library and the revised SALROM, three cell calculations for fast and medium neutron speed reactors having different neutron spectrum were performed, and the results were compared with those calculated by the continuos energy Monte Carlo code MVP. By the comparisons, it is concluded that the newly revised SLAROM and a 900 group cross section library give accuracy comparable to MVP for predicting core performances. (author)

  7. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  8. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  9. Development of a standard data base for FBR core nuclear design. 10. Reevaluation of atomic number density of JOYO Mk-II core

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazuyuki; Sato, Wakaei [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Ishikawa, Makoto; Arii, Yoshio [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-07-01

    The material composition of JOYO Mk-II core components in its initial core was reevaluated as a part of the effort for developing a standard data base for FBR core nuclear design. The special feature of the reevaluation is to treat the decay of Pu-241 isotope, so that the atomic number densities of Pu-241 and Am-241 in fuel assemblies can be exactly evaluated on the initial critical date, Nov. 22nd, 1982. Further, the atomic number densities of other core components were also evaluated to improve the analytical accuracy. Those include the control rods which were not so strictly evaluated in the past, and the dummy fuels and the neutron sources which were not treated in the analytical model so far. The results of the present reevaluation were as follows: (1) The changes of atomic number densities of the major nuclides such as Pu-239, U-235 and U-238 were about {+-}0.2 to 0.3%. On the other hand, the number density of Pu-241, which was the motivation of the present work, was reduced by 12%. From the fact, the number densities in the past analysis might be based on the isotope measurement of the manufacturing point of time without considering the decay of Pu-241. (2) As the other core components, the number densities of control rods and outer reflector-type A were largely improved. (author)

  10. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  11. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  12. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  13. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    Science.gov (United States)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  14. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  15. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  16. CORE DESIGNS OF ABWR FOR PROPOSED OF THE FIRST NUCLEAR POWER PLANT IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Yohannes Sardjono

    2015-04-01

    Full Text Available Indonesia as an archipelago has been experiencing high growth industry and energy demand due to high population growth, dynamic economic activities. The total population is around 230 million people and 75 % to the total population is living in Java. The introduction of Nuclear Power Plant on Java Bali electricity grid will be possible in 2022 for 2 GWe, using proven technology reactor like ABWR or others light water reactor with nominal power 1000 MWe. In this case, the rated thermal power for the equilibrium cycles is 3926 MWt, the cycle length is 18 month and overall capacity factor is 87 %. The designs were performed for an 872-fuel bundles ABWR core using GE-11 fuel type in an 9×9 fuel rod arrays with 2 Large Central Water Rods (LCWR. The calculations were divided into two steps; the first is to generate bundle library and the other is to make the thermal and reactivity limits satisfied for the core designs. Toshiba General Electric Bundle lattice Analysis (TGBLA and PANACEA computer codes were used as designs tools. TGBLA is a General Electric proprietary computer code which is used to generate bundle lattice library for fuel designs. PANACEA is General Electric proprietary computer code which is used as thermal hydraulic and neutronic coupled BWR core simulator. This result of core designs describes reactivity and thermal margins i.e.; Maximum Linear Heat Generation rate (MLHGR is lower than 14.4 kW/ft, Minimum Critical Power Ratio (MCPR is upper than 1.25, Hot Excess Reactivity (HOTXS is upper than 1 %Dk at BOC and 0.8 %Dk at 200 MWD/ST and Cold Shutdown Margin Reactivity (CSDM is upper than 1 %Dk. It is concluded that the equilibrium core design using GE-11 fuel bundle type satisfies the core design objectives for the proposed of the firs Indonesia ABWR Nuclear Power Plant. Keywords: The first NPP in Indonesia, ABWR-1000 MWe, and core designs.   Indonesia adalah sebagai negara kepulauan yang laju pertumbuhan industri, energi, penduduk

  17. Sustainable solid-state strategy to hierarchical core-shell structured Fe 3 O 4 @graphene towards a safer and green sodium ion full battery

    KAUST Repository

    Ding, Xiang; Huang, Xiaobing; Jin, Junling; Ming, Hai; Wang, Limin; Ming, Jun

    2017-01-01

    A sustainable solid-state strategy of SPEX milling is developed to coat metal oxide (e.g., Fe3O4) with tunable layers of graphene, and a new hierarchical core-shell structured Fe3O4@graphene composite is constructed. The presented green process can

  18. Design of 50 MWe HTR-PBMR reactor core and nuclear power plant fuel using SRAC2006 programme

    International Nuclear Information System (INIS)

    Bima Caraka Putra; Yosaphat Sumardi; Yohannes Sardjono

    2014-01-01

    This research aims to assess the design of core and fuel of nuclear power plant type High Temperature Reactor-Pebble Bed Modular Reactor 50 MWe from the Beginning of Life (BOL) to Ending of life (EOL) with eight years operating life. The parameters that need to be analyzed in this research are the temperature distribution inside the core, quantity enrichment of U 235 , fuel composition, criticality, and temperature reactivity coefficient of the core. The research was conducted with a data set of core design parameters such as nuclides density, core and fuel dimensions, and the axial temperature distribution inside the core. Using SRAC2006 program package, the effective multiplication factor (k eff ) values obtained from the input data that has been prepared. The results show the value of the criticality of core is proportional to the addition of U 235 enrichment. The optimum enrichment obtained at 10.125% without the use of burnable poison with an excess reactivity of 3.1 2% at BOL. The addition Gd 2O3 obtained an optimum value of 12 ppm burnable poison with an excess reactivity 0.38 %. The use of Er 2O3 with an optimum value 290 ppm has an excess reactivity 1.24 % at BOL. The core temperature reactivity coefficient with and without the use of burnable poison has a negative values that indicates the nature of its inherent safety. (author)

  19. Verification Results of Safety-grade Optical Modem for Core Protection Calculator (CPC) in Korea Standard Nuclear Power Plant (KSNP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jangyeol; Son, Kwangseop; Lee, Youngjun; Cheon, Sewoo; Cha, Kyoungho; Lee, Jangsoo; Kwon, Keechoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    We confirmed that the coverage criteria for a safety-grade optical modem of a Core Protection Calculator is satisfactory using a traceability analysis matrix between high-level requirements and lower-level system test case data set. This paper describes the test environment, test components and items, a traceability analysis, and system tests as a result of system verification and validation based on Software Requirement Specifications (SRS) for a safety-grade optical modem of a Core Protection Calculator (CPC) in a Korea Standard Nuclear Power Plant (KSNP), and Software Design Specifications (SDS) for a safety-grade optical modem of a CPC in a KSNP. All tests were performed according to the test plan and test procedures. Functional testing, performance testing, event testing, and scenario based testing for a safety-grade optical modem of a Core Protection Calculator in a Korea Standard Nuclear Power Plant as a thirty-party verifier were successfully performed.

  20. Development of a multi-objective PBIL evolutionary algorithm applied to a nuclear reactor core reload optimization problem

    International Nuclear Information System (INIS)

    Machado, Marcelo D.; Dchirru, Roberto

    2005-01-01

    The nuclear reactor core reload optimization problem consists in finding a pattern of partially burned-up and fresh fuels that optimizes the plant's next operation cycle. This optimization problem has been traditionally solved using an expert's knowledge, but recently artificial intelligence techniques have also been applied successfully. The artificial intelligence optimization techniques generally have a single objective. However, most real-world engineering problems, including nuclear core reload optimization, have more than one objective (multi-objective) and these objectives are usually conflicting. The aim of this work is to develop a tool to solve multi-objective problems based on the Population-Based Incremental Learning (PBIL) algorithm. The new tool is applied to solve the Angra 1 PWR core reload optimization problem with the purpose of creating a Pareto surface, so that a pattern selected from this surface can be applied for the plant's next operation cycle. (author)

  1. Fast neutron dosimetry by means of different solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    1977-01-01

    The comparative study of three different types of fast neutron dosimeters based on solid state nuclear track detectors is presented; the dosimeters studied were: - microscopic soda glass in contact with 232 Th; - polycarbonate Makrofol E; and - cellulose nitrate Kodak LR 115. All detectors were evaluated by visual counting in a microscope. The authors have studied such properties as the background, angular as well as energetical dependences of detectors. The results obtained show that all studied detectors are suitable for fast neutron dosimetry; their application depends however on the concrete experimental conditions (neutron spectrum, fluence etc.). Both advantages and disadvantages of each of them are presented. (Auth.)

  2. Application of solid state nuclear track detectors in measurement of natural alpha- radioactivity in environment

    Energy Technology Data Exchange (ETDEWEB)

    Maged, A F; El-Behay, A Z; Borham, E [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The use of solid state nuclear track detectors (SSNTDs) is one of the most convenient techniques to assess the average radiation levels of alpha activities in the environment. This technique has been used to assess radon gas and its daughters in buildings. Exposed SSNTD films are chemically etched in an alkali solution and alpha tracks are evaluated by using the image analyzer system. The detailed procedure for this study and the etched films for conversion of alpha track density to radon concentration in Bq m{sup -}3 are given and discussed in the text.1 fig., 3 tabs.

  3. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  4. Searches for the electron electric dipole moment and nuclear anapole moments in solids

    International Nuclear Information System (INIS)

    Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.

    2004-01-01

    Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results

  5. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1979-01-01

    During the academic year of 1978 to 1979, the 12 UD pelletron tandem accelerator has operated successfully. Ion species used were polarized p, polarized d, α(from the polarized ion source), p, d, 16 O and 18 O (from the direct extraction ion source), and C, O, Cu and Au (from the sputtering ion source). Improvements were made in the detector and data acquisition system. The data handling system 'SHINE' was completed and is in full operation. Research works are reported in individual summaries under the following chapters: accelerator and beam transport system, general equipments nuclear physics, atomic and solid-state physics, and biological and medical science and others. (Mori, K.)

  6. Radon diffusion in polymer vessels using CR-39 solid state nuclear track detector

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Andre Cavalcanti; Menezes, Maria Angela de B.C.; Rocha, Zildete; Pereira, Marcio Tadeu, E-mail: andreccarneiro@gmail.com, E-mail: menezes@cdtn.br, E-mail: zildete@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Santos, Talita de Oliveira; Lara, Evelise Gomes; Braga, Mario Roberto Martins S.S., E-mail: mariomartins@gmail.com, E-mail: evelise.lara@gmail.com, E-mail: talitaolsantos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2015-07-01

    At CDTN/CNEN, the method to determine {sup 226}Ra in several matrices by gamma spectrometry is already established; however, the method should be improved. This paper is about the first step of this improvement. Several polymer vessels were studied verifying the effect of radiolysis on the walls of the vessel. A test about the diffusion of {sup 222}Rn through the walls was carried out using the CR-39 solid state nuclear track detector. The results pointed out that the vessel made up by acrylic material is the best candidate to replace the vessel actually used. (author)

  7. U.S. Nuclear Regulatory Commission bases for control of solid materials

    International Nuclear Information System (INIS)

    Meck, R.A.; Cardille, F.P.; Feldman, C.; Gnugnoli, G.N.; Huffert, A.M.; Klementowicz, S.P.

    2002-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is considering whether to proceed with rulemaking on the control of solid materials with very low levels of associated radioactivity. The current implementation of clearance by NRC licensees is the context for the decision. Inputs to the decision include information gathering efforts of the Commission in the areas of public workshops, dose assessments and inventories, the recommendations of the National Academies' National Research Council (NAs) on regulatory alternatives, and participation in international efforts by the International Atomic Energy Agency (IAEA). (author)

  8. Simulation and Automation of Microwave Frequency Control in Dynamic Nuclear Polarization for Solid Polarized Targets

    Science.gov (United States)

    Perera, Gonaduwage; Johnson, Ian; Keller, Dustin

    2017-09-01

    Dynamic Nuclear Polarization (DNP) is used in most of the solid polarized target scattering experiments. Those target materials must be irradiated using microwaves at a frequency determined by the difference in the nuclear Larmor and electron paramagnetic resonance (EPR) frequencies. But the resonance frequency changes with time as a result of radiation damage. Hence the microwave frequency should be adjusted accordingly. Manually adjusting the frequency can be difficult, and improper adjustments negatively impact the polarization. In order to overcome these difficulties, two controllers were developed which automate the process of seeking and maintaining the optimal frequency: one being a standalone controller for a traditional DC motor and the other a LabVIEW VI for a stepper motor configuration. Further a Monte-Carlo simulation was developed which can accurately model the polarization over time as a function of microwave frequency. In this talk, analysis of the simulated data and recent improvements to the automated system will be presented. DOE.

  9. The former tests realized to a personal neutron dosemeter based on solid nuclear tracks detector

    International Nuclear Information System (INIS)

    Camacho, M.E.; Tavera, L.; Balcazar, M.

    1997-01-01

    Due to the increase in the use of neutron radiation a personal neutron dosemeter based on solid nuclear tracks detector (DSTN) was designed and constructed. The personal dosemeter design consists of three arrangements. The first one consists of a plastic nuclear tracks detector (LR115 or CR39) in contact with a LiF pellet. The second one is the same that above but it placed among two cadmium pellets and, the third one is formed by the alone detector without converter neither neutron absorber. The three arrangements are placed inside a plastic porta detector hermetically closed to avoid the bottom produced by environmental radon whichever both detectors (LR115 and CR39) are sensitive. In this work the former tests realized to that dosemeter are presented. (Author)

  10. Decontamination process applied to radioactive solid wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Franco, Milton B.; Kastner, Geraldo F.; Monteiro, Roberto Pellacani G.

    2009-01-01

    The process of decontamination is an important step in the economic operation of nuclear facilities. A large number of protective clothing, metallic parts and equipment get contaminated during the handling of radioactive materials in laboratory, plants and reactors. Safe and economic operation of these nuclear facilities will have a bearing on the extent to which these materials are reclaimed by the process of decontamination. The most common radioactive contaminants are fission products, corrosion products, uranium and thorium. The principles involved in decontamination are the same as those for an industrial cleaning process. However, the main difference is in the degree of cleaning required and at times special techniques have to be employed for removing even trace quantities of radioactive materials. This paper relate decontaminations experiences using acids and acids mixtures (HCl, HF, HNO 3 , KMnO 4 , C 2 H 2 O 4 , HBF 4 ) in several kinds of radioactive solid wastes from nuclear power plants. The result solutions were monitored by nuclear analytical techniques, in order to contribute for radiochemical characterization of these wastes. (author)

  11. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate.

    Science.gov (United States)

    Krzystyniak, Maciej; Drużbicki, Kacper; Fernandez-Alonso, Felix

    2015-12-14

    High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material.

  12. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1983-01-01

    A heterogeneous gas core nuclear reactor is disclosed comprising a core barrel provided interiorly with an array of moderator-containing tubes and being otherwise filled with a fissile and/or fertile gaseous fuel medium. The fuel medium may be flowed through the chamber and through an external circuit in which heat is extracted. The moderator may be a fluid which is flowed through the tubes and through an external circuit in which heat is extracted. The moderator may be a solid which may be cooled by a fluid flowing within the tubes and through an external heat extraction circuit. The core barrel is surrounded by moderator/coolant material. Fissionable blanket material may be disposed inwardly or outwardly of the core barrel

  13. In-medium no-core shell model for ab initio nuclear structure calculations

    International Nuclear Information System (INIS)

    Gebrerufael, Eskendr

    2017-01-01

    In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG), to define a novel many-body approach for the comprehensive description of ground and excited states of closed- and open-shell medium-mass nuclei. Building on the key advantages of the two methods - the decoupling of excitations at the many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to medium-light nuclei - their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. The efficiency and rapid model-space convergence of the new approach make it ideally suited for ab initio studies of ground and low-lying excited states of nuclei up to the medium-mass regime. Interactions constructed within the framework of chiral effective field theory provide an excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in quantum chromodynamics, they overcome the lack of predictive power of phenomenological potentials. The hard core of these interactions causes strong short-range correlations, which we soften by using the similarity-renormalization-group transformation that accelerates the model-space convergence of many-body calculations. Three-nucleon effects, which are mandatory for the correct description of bulk properties of nuclei, are included in our calculations by using the normal-ordered two-body approximation, which has been shown to be sufficient to capture the main effects of the three-nucleon interaction. Using these interactions, we analyze energies of ground and excited states in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. Furthermore, we study the Hoyle state in 12 C - a three-alpha cluster state that cannot be converged in standard NCSM

  14. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  15. Bis-gadolinium complexes for solid effect and cross effect dynamic nuclear polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Monu; Corzilius, Bjoern [Goethe-Universitaet Frankfurt am Main, Institut fuer Physikalische und Theoretische Chemie, Institut fuer Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ) (Germany); Qi, Mian; Godt, Adelheid [Fakultaet fuer Chemie und Centrum fuer Molekulare Materialien (CM2), Universitaet Bielefeld (Germany)

    2017-04-03

    High-spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid-state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd-chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar-coupled electron spins. Their well-defined Gd..Gd distances in the range of 1.2-3.4 nm allowed us to elucidate the Gd..Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd..Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for {sup 1}H, {sup 13}C, and {sup 15}N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high-spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high-spin PAs for specific applications of DNP. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Survey and evaluation of handling and disposing of solid low-level nuclear fuel cycle wastes

    International Nuclear Information System (INIS)

    Mullarkey, T.B.; Jentz, T.L.; Connelly, J.M.; Kane, J.P.

    1976-10-01

    The report identifies the types and quantities of low-level solid radwaste for each portion of the nuclear fuel cycle, based on operating experiences at existing sites and design information for future installations. These facts are used to evaluate reference 1000 MWe reactor plants in terms of solid radwaste generation. The effect of waste volumes on disposal methods and land usage has also been determined, based on projections of nuclear power growth through the year 2000. The relative advantages of volume reduction alternatives are included. Major conclusions are drawn concerning available land burial space, light water reactors and fuel fabrication and reprocessing facilities. Study was conducted under the direction of an industry task force and the National Environmental Studies Project, a technical program of the Atomic Industrial Forum. Data was obtained from questionnaires sent to 8 fuel fabrication facilities, 39 reactor sites and 6 commercial waste disposal sites. Additional data were gathered from interviews with architect engineering firms, site visits, contacts with regulatory agencies and published literature

  17. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1981-01-01

    During the academic year 1980 - 1981, the 12 UD Pelletron tandem accelerator in UTTAC has experienced several troubles. The accelerator tank had to be opened six times including the scheduled overhaul. Due to these troubles, both the beam time and the chain operation time were reduced by 20% as compared with the preceding year. However, the beam pulsing system was completed, and pulsed beam has been in use. The polarized ion source and the sputter ion source have worked well. A heavy ion booster with interdigital H-structure was designed, and has been under construction. Special efforts have been exerted on the detectors and detector systems. The examples of the achievements mainly associated with the Nuclear and Solid State Research Project are enumerated as follows. The complete experiment on d-p system provided the data on nuclear three body problem. The information about the mechanism of two-nucleon transfer reaction (p,t) was obtained. The mechanisms of (p,p) and (p,d) reactions were clarified. The experiment on the measurement of the magnetic moment of β-emitting products with polarized beam began. The properties of very highly excited states were clarified by the study of heavy ion-induced reactions. A new model for heavy ion fusion reaction was proposed. The mechanism of inner shell ionization was clarified by passing heavy ions through solids. (Kako, I.)

  18. Technical aspects in the obtention of tissue autoradiography using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Saint Martin, Gisela; Bernaola, Omar A.; Pozzi, Emiliano; Thorp, Silvia; Cabrini, Romulo L.; Tomasi, V.H.

    2007-01-01

    The autoradiography images produced in solid state nuclear track detectors by heavy ions originated in tissue provide relevant information about the spatial biodistribution of heavy particle emitters. Some preliminary aspects of the autoradiography technique are evaluated by two experiments which are in progress, using Lexan and CR 39 foils as solid state nuclear track detectors. In the first case, a tissue sample from rat kidney intoxicated with UO 2 (NO 3 ) 2 was embedded in paraffin and put in contact with a 1 mm thick CR 39 foil. After a two months exposure the foil was chemically developed resulting in scarce tracks. A satisfactory image cannot be obtained in these conditions. More prolonged exposure time is needed to obtain better images of such samples. The second experience consisted in the irradiation of fresh kidney tissue slices from healthy rats in contact with 250 μm thick Lexan foils, in a thermal neutrons flux. The irradiation was performed at the RA-3 facility of the Ezeiza Atomic Center (CAE). The contribution to image produced by tracks of particles due to reactions between neutrons and tissue elements (i.e. 14 N) was evaluated. The etching conditions should be modified in order to desensitize the detector material. (author) [es

  19. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  20. FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties

  1. A hybrid niched-island genetic algorithm applied to a nuclear core optimization problem

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.

    2005-01-01

    Diversity maintenance is a key-feature in most genetic-based optimization processes. The quest for such characteristic, has been motivating improvements in the original genetic algorithm (GA). The use of multiple populations (called islands) has demonstrating to increase diversity, delaying the genetic drift. Island Genetic Algorithms (IGA) lead to better results, however, the drift is only delayed, but not avoided. An important advantage of this approach is the simplicity and efficiency for parallel processing. Diversity can also be improved by the use of niching techniques. Niched Genetic Algorithms (NGA) are able to avoid the genetic drift, by containing evolution in niches of a single-population GA, however computational cost is increased. In this work it is investigated the use of a hybrid Niched-Island Genetic Algorithm (NIGA) in a nuclear core optimization problem found in literature. Computational experiments demonstrate that it is possible to take advantage of both, performance enhancement due to the parallelism and drift avoidance due to the use of niches. Comparative results shown that the proposed NIGA demonstrated to be more efficient and robust than an IGA and a NGA for solving the proposed optimization problem. (author)

  2. A compact copper nuclear demagnetization cryostat and a search for superfluidity in solid 4He

    International Nuclear Information System (INIS)

    Haar, P.G. van de.

    1991-01-01

    The subject of this thesis is the theoretical and experimental study of matter at low temperatures, and the development of techniques to reach and measure these temperatures. A copper nuclear demagnetization cryostat was developed in order to reach low temperatures. This system distinguishes itself from other cryostats by its compact construction. The lowest temperature recorded by a pulsed Pt-NMR thermometer was 115 μK. This system was used to search for superfluidity in solid 4 He. Due to the large zero-point motion of the atoms, 4He remains liquid down to zero temperature; a pressure of 25.3 bar is needed to force the atoms in a lattice. Even in solid state, the 4 He atoms remain very mobile, changing lattice sites at a frequency of approximately 10 7 Hz. It is possible that solid 4 He contains vacancies at zero temperature. These zero point vacancies are expected to behave like a gas of bosons, and should Bose-condense at some temperature. From experiments the upper limit to the vacancy concentration is set of 4·10-5. (author). 217 refs.; 46 figs.; 2 tabs

  3. Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Tomczuk, Z.; Ackerman, J.P.; Wolson, R.D.; Miller, W.E.

    1992-01-01

    A unique pyrochemical process developed for the separation of metallic nuclear fuel from fission products by electrotransport through molten LiCl-KCl eutectic salt to solid and liquid metal cathodes. The process allow for recovery and reuse of essentially all of the actinides in spent fuel from the integral fast reactor (IFR) and disposal of wastes in satisfactory forms. Electrotransport is used to minimize reagent consumption and, consequently, waste volume. In particular, electrotransport to solid cathodes is used for recovery of an essentially pure uranium product in the presence of other actinides; removal of pure uranium is used to adjust the electrolyte composition in preparation for recovery of a plutonium-rich mixture with uranium in liquid cadmium cathodes. This paper presents experiments that delineate the behavior of key actinide and rare-earth elements during electrotransport to a solid electrode over a useful range of PuCl 3 /UCl 3 ratios in the electrolyte, a thermodynamic basis for that behavior, and a comparison of the observed behavior with that calculated from a thermodynamic model. This work clearly established that recovery of nearly pure uranium can be a key step in the overall pyrochemical-fuel-processing strategy for the IFR

  4. Localisation and identification of radioactive particles in solid samples by means of a nuclear track technique

    International Nuclear Information System (INIS)

    Boehnke, Antje; Treutler, Hanns-Christian; Freyer, Klaus; Schubert, Michael; Holger Weiss

    2005-01-01

    This study is aimed to develop a generally applicable methodology of investigation that can be used for the localisation of single alpha-active particles in solid samples, such as industrial dust or natural soils, sediments and rocks by autoradiography using solid-state nuclear track detectors. The developed technique allows the detection of local enrichments of alpha-emitters in any solid material. The results of such an investigation are of interest from technical, biological and environmental points of view. The idea behind the methodology is to locate the position of alpha-active spots in a sample by attaching the track detector to the sample in a defined manner, thoroughly described in the paper. The located alpha-active particles are subsequently analysed by an electron microscope and an electron microprobe. An example of the application of this methodology is also given. An ultra-fine -grained ore-processing residue, which causes serious environmental pollution in the respective mining district and thus limits possible land use and affects quality of life in the area, was examined using the described technique. The investigation revealed considerable amounts of alpha-active particles in this material

  5. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué, Kamal H.

    2010-02-01

    We report the first solid-state 27Al NMR study of three aluminum phthalocyanine dyes: aluminum phthalocyanine chloride, AlPcCl (1); aluminum-1,8,15,22-tetrakis(phenylthio)-29H,31H-phthalocyanine chloride, AlPc(SPh)4Cl (2); and aluminum-2,3-naphthalocyanine chloride, AlNcCl (3). Each of these compounds contains Al3+ ions coordinating to four nitrogen atoms and a chlorine atom. Solid-state 27Al NMR spectra, including multiple-quantum magic-angle spinning (MQMAS) spectra and quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) spectra of stationary powdered samples have been acquired at multiple high magnetic field strengths (11.7, 14.1, and 21.1 T) to determine their composition and number of aluminum sites, which were analyzed to extract detailed information on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry parameters (η) ranging from 0.10 to 0.50, and compared well with the results of quantum chemical calculations of these tensors. We also report the largest 27Al chemical shielding anisotropy (CSA), with a span of 120 ± 10 ppm, observed directly in a solid material. The combination of MQMAS and computational predictions are used to interpret the presence of multiple aluminum sites in two of the three samples.

  6. An intelligent nuclear reactor core controller for load following operations, using recurrent neural networks and fuzzy systems

    International Nuclear Information System (INIS)

    Boroushaki, M.; Ghofrani, M.B.; Lucas, C.; Yazdanpanah, M.J.

    2003-01-01

    In the last decade, the intelligent control community has paid great attention to the topic of intelligent control systems for nuclear plants (core, steam generator...). Papers mostly used approximate and simple mathematical SISO (single-input-single-output) model of nuclear plants for testing and/or tuning of the control systems. They also tried to generalize theses models to a real MIMO (multi-input-multi-output) plant, while nuclear plants are typically of complex nonlinear and multivariable nature with high interactions between their state variables and therefore, many of these proposed intelligent control systems are not appropriate for real cases. In this paper, we designed an on-line intelligent core controller for load following operations, based on a heuristic control algorithm, using a valid and updatable recurrent neural network (RNN). We have used an accurate 3-dimensional core calculation code to represent the real plant and to train the RNN. The results of simulation show that this intelligent controller can control the reactor core during load following operations, using optimum control rod groups manoeuvre and variable overlapping strategy. This methodology represents a simple and reliable procedure for controlling other complex nonlinear MIMO plants, and may improve the responses, comparing to other control systems

  7. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    Science.gov (United States)

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  8. Methodology for Identification of the Coolant Thermalhydraulic Regimes in the Core of Nuclear Reactors

    International Nuclear Information System (INIS)

    Sharaevsky, L.G.; Sharaevskaya, E.I.; Domashev, E.D.; Arkhypov, A.P.; Kolochko, V.N.

    2002-01-01

    The paper deals with one of the acute for the nuclear energy problem of accident regimes of NPPs recognition diagnostics using noise signal diagnostics methodology. The methodology intends transformation of the random noise signals of the main technological parameters at the exit of a nuclear facility (neutron flow, dynamic pressure etc.) which contain the important information about the technical status of the equipment. The effective algorithms for identification of random processes wore developed. After proper transformation its were considered as multidimensional random vectors. Automatic classification of these vectors in the developed algorithms is realized on the basis of the probability function in particular Bayes classifier and decision functions. Till now there no mathematical models for thermalhydraulic regimes of fuel assemblies recognition on the acoustic and neutron noises parameters in the core of nuclear facilities. The two mathematical models for analysis of the random processes submitted to the automatic classification is proposed, i.e. statistical (using Bayes classifier of acoustic spectral density diagnosis signals) and geometrical (on the basis of formation in the featured space of dividing hyper-plane). The theoretical basis of the bubble boiling regimes in the fuel assemblies is formulated as identification of these regimes on the basis of random parameters of auto spectral density of acoustic noise (ASD) measured in the fuel assemblies (dynamic pressure in the upper plenum in the paper). The elaborated algorithms allow recognize realistic status of the fuel assemblies. For verification of the proposed mathematical models the analysis of experimental measurements was carried out. The research of the boiling onset and definition of the local values of the flow parameters in the seven-beam fuel assembly (length of 1.3 m, diameter of 6 mm) have shown the correct identification of the bubble boiling regimes. The experimental measurements on

  9. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    International Nuclear Information System (INIS)

    Furusawa, S; Togashi, H; Nagakura, H; Sumiyoshi, K; Yamada, S; Suzuki, H; Takano, M

    2017-01-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which

  10. A core concept for the self-consistent nuclear energy system based on the promising future technology

    International Nuclear Information System (INIS)

    Arie, K.; Suzuki, M.; Kawashima, M.; Igashira, M.; Shimizu, A.; Fujii-e, Y.

    1995-01-01

    Feasibility of FP burning while maintaining fuel breeding capability for the Self-Consistent Nuclear Energy System is evaluated through neutron balance and a fast reactor core. It is shown that all radioactive FPs produced by itself can be burnt by a fast reactor while maintaining breeding capability, assuming separation of radioactive FP and stable FP isotopes. Assuming that the recovery system of fuel and FPs to be burnt is based on a pyro-chemical process, the major long-lived FPs of I, Pd, Tc, Sn, Se can be burnt with keeping breeding capability by suitability arranging materials in the fast reactor core. (Author)

  11. Proceedings of the twentieth national conference on solid state nuclear track detectors and their applications: abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    Solid State Nuclear Track Detectors (SSNTDs) - A class of passive detectors, developed by R.L. Fleischer, P.B. Price and R.M. Walker in the early 1960s have found numerous applications in various fields of science and technology. SSNTDs have been recognized as very potential and effective tools in exploring various areas of research. The intrinsic features of SSNTDs like low cost , availability, versatility and their remarkable stability have contributed to applications in a wide range of fields opening up new vistas which were practically unthinkable and unbelievable about a decade or two ago. Apart from the direct applications of far reaching consequences in nuclear physics, other areas as diverse as bio-medical sciences, cosmic rays and space physics, environmental research, geochronology and geophysics, materials sciences, lunar science, meteorites and tektites; microanalysis, mine safety, nuclear technology, uranium prospecting and most recently nano/micro technology etc., have been greatly influenced by SSNTDs. They have a very important role to play in radiation measurement, micro technology and dosimetry and thus are potential enough in spreading awareness about the radiation environment and its impact on the general public and the academic peers. In order to disseminate the knowledge generated in this fast growing field, there is a need to bring material science and radiation community on a common platform and discuss various operational and radiation protection aspects. Papers relevant to INIS are indexed separately

  12. Nuclear techniques and the disposal of non-radioactive solid wastes

    International Nuclear Information System (INIS)

    Landsberger, S.; Buchholz, B.

    1993-01-01

    One of the most vital and persistent public health challenges facing local, state, and national governments is the disposal of solid waste produced from industrial, utility, and municipal sources. There is a growing interest in the monitoring, control, and safe disposal of the chemical constituents arising from these sources. For instance, it is now well known that the release of by products from coal-fired power plants - namely airborne particulates, bottom ash, and fly ash - can have adverse effects on air and water quality. It is therefore important that reliable chemical analytical techniques are readily available to assess the impact of widespread disposal practices of organic and inorganic chemicals. The use of nuclear and nuclear-related analytical techniques - such as neutron activation analysis, energy dispersive x-ray fluorescence and particle induced X-ray emission - have become widespread in major areas of science and technology. These methods and techniques have important applications in such work since they can be used for both the determination of specific individual pollutants (e.g. toxic heavy metals) and multi-elemental analyses for source identification and apportionment purposes. Other nuclear techniques, such as isotope tracers, have also had wide acceptance in characterizing diffusion patterns for metals in soil and aqueous environments and water pollution flows. 1 graph., 1 tab

  13. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  14. Solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery mine, near Edgemont, South Dakota

    Science.gov (United States)

    Johnson, Raymond H.; Diehl, Sharon F.; Benzel, William M.

    2013-01-01

    This report releases solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery site near Edgemont, South Dakota. These cores were collected by Powertech Uranium Corporation, and material not used for their analyses were given to the U.S. Geological Survey for additional sampling and analyses. These additional analyses included total carbon and sulfur, whole rock acid digestion for major and trace elements, 234U/238U activity ratios, X-ray diffraction, thin sections, scanning electron microscopy analyses, and cathodoluminescence. This report provides the methods and data results from these analyses along with a short summary of observations.

  15. WO{sub 3-x}/MoO{sub 3-x} core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xu; Ding, Tianpeng; Yuan, Longyan; Shen, Yongqi; Zhong, Qize; Zhang, Xianghui; Cao, Yuanzhi; Hu, Bin; Zhou, Jun [Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan (China); Zhai, Teng; Tong, Yexiang [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou (China); Gong, Li; Chen, Jian [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2012-11-15

    Flexible all-solid-state asymmetric supercapacitors (ASCs) are fabricated from a novel anode - WO{sub 3-x}/MoO{sub 3-x} core/shell nanowires on carbon fabric - and a polyaniline cathode (figure). In addition to the high electrochemical performance of the devices, other characteristics, such as low toxicity, flexibility, environmental compatibility, light weight, and low requirements for packaging, make the all-solid-state ASCs potential candidates for applications in energy storage, flexible electronics, and other consumer electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Studies and applications of nuclear tracks in solids in basic science and technology in Pakistan

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, I.E.; Khan, E.U.

    2008-01-01

    The solid state nuclear track detection (SSNTD) technique is now a well-established tool for the detection of charged particles with stopping power greater than a certain threshold value. Being a passive detection system, it existed in the form of primordial crystals and hence qualified to be regarded as the 'oldest' member of the nuclear detection systems. Since the advent of its laboratory use in 1958, the technique was adopted by different laboratories at different times all over the world. Pakistan is one of the countries that established an SSNTD-laboratory in the earliest developmental stage of the technique. Consequently, significant contributions were made by a small but energetic group of scientists toward the methodology of the technique as well as its applications in diverse areas such as nuclear physics, cosmology, material science, geology, geophysics, bio-medical physics and environmental science. In this article we will attempt to present a brief summary of the important advances made in the development of this technique and its innovative applications by Pakistani researchers in various fields of science and technology. As elsewhere in the world, the technique is not ubiquitous in all nuclear research laboratories in Pakistan because of the well-known limitations of the detection system. However, the number of workers involved in research studies has been growing over the years. These included both the fresh researchers as well as those who shifted from other research interests. This has resulted in a healthy reinforcement of the manpower engaged in SSNTD-based research work. After a selective presentation of the on-going investigations based on the use of SSNTDs in Pakistan, some comments are made for the possible future directions of progress. To put the Pakistani experience in international perspective, it is emphasized that the unique features of SSNTDs are facing serious challenges from rapid advances in high precision electronic detectors. The

  17. Observation of the state of the nuclear reactor core by means of non-linear observation algorithms

    International Nuclear Information System (INIS)

    Maciel Palacio, F.E.; Espana, M.D.

    1990-01-01

    A combined, variable-adaptive structure, non-linear observer was designed in order to observe the state of the nuclear reactor core, based on the Absolute Stability Theory. The observer was proved under noise and modelling error conditions. Successful results were obtained in the observation of the states in both cases, showing clear improvement in the observation due to the application of adaptive and variable structure ideas. (Author) [es

  18. In-reactor testing of the closed cycle gas core reactor---the nuclear light bulb concept

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Slutz, S.A.; Harms, G.A.; Latham, T.S.; Roman, W.C.; Rodgers, R.J.

    1993-01-01

    The Nuclear Light Bulb (NLB) concept is an advanced closed cycle space propulsion rocket engine design that offers unprecidented performance characteristics in terms of specific impulse (>1800 s) and thrust (>445 kN). The NLB is a gas-core nuclear reactor making use of thermal radiation from a high temperature U-plasma core to heat the hydrogen propellant to very high temperatures (∼4000 K). The following paper describes analyses performed in support of the design of in-reactor tests that are planned to be performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories in order to demonstrate the technical feasibility of this advanced concept. The tests will examine the stability of a hydrodynamically confined fissioning U-plasma under steady and transient conditions. Testing will also involve study of propellant heating by thermal radiation from the plasma and materials performance in the nuclear environment of the NLB. The analyses presented here include neutronic performance studies and U-plasma radiation heat-transport studies of small vortex-confined fissioning U-plasma experiments that are irradiated in the ACRR. These analyses indicate that high U-plasma temperatures (4000 to 9000 K) can be sustained in the ACRR for periods of time on the order of 5 to 20 s. These testing conditions are well suited to examine the stability and performance requirements necessary to demonstrate the feasibility of this concept

  19. Charged projectile spectrometry using solid-state nuclear track detector of the PM-355 type

    Directory of Open Access Journals (Sweden)

    Malinowska Aneta

    2015-09-01

    Full Text Available To use effectively any radiation detector in high-temperature plasma experiments, it must have a lot of benefits and fulfill a number of requirements. The most important are: a high energy resolution, linearity over a wide range of recorded particle energy, high detection efficiency for these particles, a long lifetime and resistance to harsh conditions existing in plasma experiments and so on. Solid-state nuclear track detectors have been used in our laboratory in plasma experiments for many years, but recently we have made an attempt to use these detectors in spectroscopic measurements performed on some plasma facilities. This paper presents a method that we used to elaborate etched track diameters to evaluate the incident projectile energy magnitude. The method is based on the data obtained from a semiautomatic track scanning system that selects tracks according to two parameters, track diameter and its mean gray level.

  20. Development of neutron personnel monitoring system based on CR-39 solid state nuclear track detector

    International Nuclear Information System (INIS)

    Massand, O.P.; Kundu, H.K.; Marathe, P.K.; Supe, S.J.

    1990-01-01

    Personnel neutron monitoring aims at providing a method to evaluate the magnitude of the detrimental effects on the personnel exposed to neutrons. Neutron monitoring is done for a small though growing number of personnel working with neutrons in a wide range of situations. Over the years, many solid state nuclear track detectors (SSNTD) have been tried for neutron personnel monitoring. CR-39 SSNTD is a proton sensitive polymer and offers a lot of promise for neutron personnel monitoring due to its high sensitivity and lower energy threshold for neutron detection. This report presents the mechanism of track formation in this polymer, the development of this neutron personnel monitoring system in our laboratory, its various characteristics and its promise as a routine personnel neutron monitor. (author). 1 tab., 7 figs

  1. Evaluation study between the chemical and electrochemical etching for solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Ramos, S.; Espinosa, G.; Golzarri, J.I.

    1991-01-01

    Since there are several methods of etching in the solid state nuclear track detectors (SSNTD) it is necessary to know which gives the best results for a specific problem. The purpose of this work is to analyze and compare both the chemical etching and the electrochemical etching. The SSNTD has a preferential response to certain kinds of particles and energies, according to the material used as detector. On the other hand the efficiency is a function of the incidence angle of the radiation and some other parameters such as temperature, concentration and type of solvent used in the etching process, and the method used for the etching. Therefore, it is necessary to extend as much as possible our knowledge of such parameters in order to choose the more efficient one for a specific problem

  2. Applications of CR-39 solid state nuclear track detector to ion beam diagnosis

    International Nuclear Information System (INIS)

    Kanasaki, Masato; Hattori, Atsuto; Oda, Keiji; Yamauchi, Tomoya; Fukuda, Yuji; Sakaki, Hironao; Nishiuchi, Mamiko; Kondo, Kiminori; Kurashima, Satoshi; Kamiya, Tomihiro

    2012-01-01

    CR-39 solid state nuclear track detector, which was developed for optical lens, has been applied for various field such as radon surveys, measurement of galactic cosmic ray, cell irradiation experiment and so on. The CR-39 detectors have the great advantages of being insensitive to high energy photons and electrons and capable of detecting only ions in the mixed fields such as laser driven relativistic plasmas. Though there are some analytical methods of CR-39 to diagnose ion beam, unfortunately, only few researchers in the field of plasma know the methods. This article looks at how to use CR-39 detectors and introduce the accomplishment of the joint study JAEA and Kobe Univ. for application of CR-39 detectors to ion beam diagnosis. (author)

  3. Ventilation rate in equilibrium factor measurements with solid state nuclear track detectors (SSNTD)

    International Nuclear Information System (INIS)

    Gil, L.R.; Leitao, R.M.S.; Marques, A.; Rivera, A.

    1994-08-01

    Ventilation rate values are calculated from track density measurements in solid state nuclear track detectors (SSNTD), both when ventilation is the main cause of radioactive disequilibrium in radon progeny and when it shares importance with other agents. The method consists in exposing a SSNTD of high intrinsic efficiency (CR-39) in filtered and unfiltered conditions and, in addition, covered with a thin Aluminium foil, to stop alpha particles from 218 Po and 222 Rn. No calibrations are required but, when necessary, independent measurements of the loss rates of radioactivity to aerosol and to walls have to perform. Ventilation rates depend upon geometry detection efficiencies for alpha particles, here obtained by Monte Carlo simulation, taking into account the space distribution of emission positions. This may lead to sizeable corrections in ventilation and equilibrium factor values. Since geometric detection efficiencies depend upon alpha-particle ranges in air, the influences of barometric variables are also discussed. (author). 7 refs

  4. Description of Allied-General Nuclear Services on-site solid waste storage concepts

    International Nuclear Information System (INIS)

    Sumner, W.B.; Thomas, L.L.

    1979-01-01

    AGNS will divide the majority of the contaminated solid waste generated during reprocessing of commercial spent nuclear reactor fuels into three categories: spent fuel cladding hulls, high-level general process trash (HLGPT) and low-level general process trash (LLGPT). The LLGPT will be stored in cargo containers identical to those used for road, rail, and sea transport. As these cargo containers are filled, they will be covered with earth for protection from natural phenomenon. The cargo containers will be sufficiently monitored to allow detection and recovery of any radionuclides before they reach the environment. The hulls and HLGPT will be stored in caissons within separate engineered soil berms. The caissons will be lined and capped to provide sufficient protection from natural phenomenon. The berms will include impervious clay layers at the bottom to prevent the downward movement of radionuclides and will be provided with sufficient monitoring to allow detection and recovery of radioactivity before it reaches the environment

  5. Theory of nuclear reactions with participation of slow charged particles in solids

    International Nuclear Information System (INIS)

    Barts, B.I.; Barts, D.B.; Grinenko, A.A.

    1992-01-01

    In the last two years, there has been a sharp increase of interest in various aspects of the interaction of nuclear particles in solids. This is due, above all, to the sensational reports of the possibility that deuteron fusion reactions take place at normal temperatures. At the present time, it is clear that, among the various factors, an important role for the understanding of this remarkable phenomenon is played by crystal fields that significantly change the tail of the Coulomb barrier and, thus, its penetrability. Here, in connection with the problem of the cold fusion of deuterons, an analysis is made of the influence of screening of the deuteron charges by electrons of the crystal on the penetrability of the Coulomb barrier. A study is made of the reaction-enhancement method in the case when the deuterons move in the general crystal potential well near one of the minima of the crystal potential

  6. Measurement of indoor radon levels in Erbil capital by using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Mansour, H.H.; Khdar, S. per; Abdulla, H.Y.; Muhamad, N.Q.; Othman, M.M.; Qader, S.

    2005-01-01

    Radon alpha activity concentration has been measured in 28 homes in the Erbil Capital-Iraqi Kurdistan region during the autumn season by using time-integrated passive radon dosimeters containing CR-39 solid state nuclear track detectors 'SSNTDs'. The radon activity concentrations in these homes range from (10.33-90.34) Bqm -3 with an average of 44+/-23Bqm -3 . The average absorption effective dose equivalent for a person living in homes for which the investigation were done was found to be 1.3+/-0.65mSvy -1 , obtained by using an equilibrium factor of 0.5 and an occupancy factor of 0.8. The average lung cancer cases per year per 10 6 person was found to be 23+/-12

  7. Detection of fission fragments using thick samples in contact with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1987-01-01

    Whenever use is made of thick samples in contact with solid state nuclear track detectors for determining fission yields, one of the fundamental problems is the evaluation of the effective number of target nuclei which contributes to the fraction of the number of fission events that will be recorded. The evaluation of the effective number of target nuclei which contributes to recorded events is based on the effective thickness of the sample. A method for evaluating effective thickness of thick samples for binary fission modes, is presented. A cross section equation which takes into account all the necessary corrections due to fragment attenuation effects by a thick target for calculation induced fission yields, was obtained. (Author) [pt

  8. The measurement of radon and thoron by solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Khan, H.A.; Akhwand, R.A.; Bukhari, K.M.; Saddarudin, A.

    1976-01-01

    Experiments have been conducted to study a) the development and annealing properties of the latent damage trails produced by radon/thoron alpha particles in plastic Solid State Nuclear Track Detectors (SSNTDs), and b) the diffusion properties of radon and thoron in various media by using SSNTDs. The information thus obtained has been employed for a) the optimization of the conditions for the construction of radon/thoron dosimeters for uranium/thorium mines, and b) the use of SSNTDs for the prospection and estimation of uranium and thorium. The results indicate that these gases can diffuse even through rocks, and cellulose nitrate detectors, LR-115 and CA80-15, can be profitably employed in dosimetry, prospection, and for the discrimination between uranium and thorium deposits. (orig.) [de

  9. Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials

    International Nuclear Information System (INIS)

    Heckmann, J.; Meyer, W.; Radtke, E.; Reicherz, G.; Goertz, S.

    2006-01-01

    ESR spectroscopy is an important tool in polarized solid target material research, since it allows us to study the paramagnetic centers, which are used for the dynamic nuclear polarization (DNP). The polarization behavior of the different target materials is strongly affected by the properties of these centers, which are added to the diamagnetic materials by chemical doping or irradiation. In particular, the ESR linewidth of the paramagnetic centers is a very important parameter, especially concerning the deuterated target materials. In this paper, the results of the first precise ESR measurements of the deuterated target materials at a DNP-relevant magnetic field of 2.5 T are presented. Moreover, these results allowed us to experimentally study the correlation between ESR linewidth and maximum deuteron polarization, as given by the spin-temperature theory

  10. Industrial Complex for Solid Radwaste Management at Chernobyle Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahner, S.; Fomin, V. V.

    2002-02-26

    In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) will be built under the EC TACIS Program in the vicinity of ChNPP. The paper will present the proposed concepts and their integration into existing buildings and installations. Further, the paper will consider the safety cases, as well as the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper will provide information on the status of the interim design and the effects of value engineering on the output of basic design phase. The paper therefor summarizes the design results of the involved design engineers of the Design and Process Providers BNFL (LOT 1), RWE NUKEM GmbH (LOT 2 and General) and INITEC (LOT 3).

  11. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    International Nuclear Information System (INIS)

    Staderini, E.M.; Castellano, A.

    1986-01-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2 . On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation. (orig.)

  12. The main rules regarding the management of solid waste and liquid effluent contaminated during use at nuclear medicine departments

    International Nuclear Information System (INIS)

    Boudouin, E.

    2011-01-01

    This article describes the key requirements applicable to the management of contaminated medical waste and effluent from hospitals and health care centres, and more especially from nuclear medicine departments that use radionuclides for the purposes of diagnosis (in vivo or in vitro) or in patient treatment. It also presents the key management regulations, making a distinction between contaminated solid waste and contaminated liquid waste from such nuclear medicine departments. (author)

  13. Conductive core of radiation-resistant high-pressure electric bushing, especially for nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Zajic, V

    1981-09-01

    A radiation-resistant high-pressure electric bushing was developed featuring a conductive core consisting of a hollow moulding. At the point of attachment to the bushing insulator the core moulding is widened, thus forming a ring support of a diameter larger by at least 10% than the diameter of the conductive core cylindrical section. On the outer side of the pressure body the core cavity is narrowed and tightly closed with the conductor. On the side facing the medium of higher pressure, the conductive core is provided with a thread. Core manufacture and connection of the conductor to the bushing is very simple. The bushing can be used for an environment with pressures exceeding 10 MPa.

  14. Conductive core of radiation-resistant high-pressure electric bushing, especially for nuclear technology

    International Nuclear Information System (INIS)

    Zajic, V.

    1981-01-01

    A radiation-resistant high-pressure electric bushing was developed featuring a conductive core consisting of a hollow moulding. At the point of attachment to the bushing insulator the core moulding is widened, thus forming a ring support of a diameter larger by at least 10% than the diameter of the conductive core cylindrical section. On the outer side of the pressure body the core cavity is narrowed and tightly closed with the conductor. On the side facing the medium of higher pressure, the conductive core is provided with a thread. Core manufacture and connection of the conductor to the bushing is very simple. The bushing can be used for an environment with pressures exceeding 10 MPa. (J.B.)

  15. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zueqian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  16. Nuclear and thermal analyses of supercritical-water-cooled solid breeder blanket for fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Yoshihiko; Sato, Satoshi; Enoeda, Mikio; Hatano, Toshihisa; Kikuchi, Shigeto; Kuroda, Toshimasa; Kosaku, Yasuo; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-11-01

    Within a design study of a fusion DEMO reactor aiming at demonstrating technologies of fusion power plant, supercritical water is applied as a coolant of solid breeder blanket to attain high thermal efficiency. The blanket has multi-layer composed of solid breeder pebbles (Li{sub 2}O) and neutron multiplier pebbles (Be) which are radially separated by cooling panels. The first wall and the breeding region are cooled by supercritical water below and above the pseudo-critical temperature, respectively. Temperature distribution and tritium breeding ratio (TBR) have been estimated by one-dimensional nuclear and thermal calculations. The local TBR as high as 1.47 has been obtained after optimization of temperature distribution in the breeder region under the following conditions: neutron wall loading of 5 MW/m{sup 2}, {sup 6}Li enrichment of 30% and coolant temperature at inlet of breeder region of 380degC. In the case of the higher coolant temperature 430degC of the breeder region the local TBR was reduced to be 1.40. This means that the net TBR higher than 1.0 could be expected with the supercritical-water-cooled blanket, whose temperature distribution in the breeder region would be optimized by following the coolant temperature, and where a coverage of the breeder region is assumed to be 70%. (author)

  17. Physical changes associated with gamma doses of PM-555 solid-state nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.

    2004-01-01

    The effect of gamma irradiation on the electrical, molecular and structural properties of copolymers of methacrylic esters and olefins, PM-555 solid-state nuclear track detector was investigated. DC conductivity measurements were studied in the temperature range 293-417 K using solid-state samples of the PM-555 polymer. These samples were irradiated with gamma doses in the range 5-63 kGy. Furthermore, the activation energy was measured, at various temperatures, as a function of the gamma dose. It was found that many changes in electrical resistance of PM-555 polymer could be produced by gamma irradiation via the degradation mechanism. Also, the gamma dose gives an advantage for the increasing correlation between the DC conductivity and the number and mobility of the charge carriers created by the ionizing effect of gamma radiation. Moreover, solutions of different loadings (0.2%, 0.4%, 0.6% and 0.8%) were prepared from the irradiated and non irradiated sheets using pure chloroform as a solvent. The effect of both temperature and gamma dose on the intrinsic viscosity of the liquid samples, as a measure of the mean molecular mass of the PM-555 polymer, were studied. In addition, structural and optical property studies using X-ray diffraction and refractive index measurements were performed on all irradiated and non irradiated PM-555 samples. The results indicate that both the degree of ordering or disordering and the anisotropic character of the PM-555 polymer are dependent on the gamma dose

  18. Karlsruhe Nuclear Research Center, Institute of Nuclear Solid State Physics. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute for Nuclear Solids Physics carried out about 90% of its work in the year of the report, 1993, on the main point of superconductivity. The work on high temperature superconductors on a cuprate basis was continued on a large scale. The availability of better samples (eg: non-twinned single crystals) make it possible to clear up a series of important detailed questions regarding the structure, grid dynamics and electronic structure. The activities closely related to applications of superconducting films were concentrated on the growth of a-axis and c-axis orientated films on technically relevant substrates (above all on sapphire, including suitable buffer layers and the examination of these films regarding their high frequency behaviour. Considerable progress was achieved in the manufacture of wafers coated on both sides. The work on Fullerene (carbon molecules C 60 , C 70 etc) and Fullerene compounds was continued. The Institute quickly succeeded not only in preparing these systems, but also in making a considerable contribution to a physical understanding of them. Among the Institute's activities, which are not directly connected to superconductivity (about 10%), one should mention above all, the experimental and theoretical work on the physics of surfaces and boundary surfaces, on polymer physics and on the physics of mesoscopic systems. (orig.) [de

  19. Radiation risk models for all solid cancers other than those types of cancer requiring individual assessments after a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Linda [Federal Office for Radiation Protection, Department ' ' Radiation Protection and Health' ' , Oberschleissheim (Germany); University of Zurich, Medical Physics Group, Institute of Physics, Zurich (Switzerland); Zhang, Wei [Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxford (United Kingdom)

    2016-03-15

    In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated ''No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data''. Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome ''all solid cancer'', it is shown here that sex modification is not statistically significant for the outcome ''all solid cancer other than thyroid and breast cancer''. It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and

  20. Radiation risk models for all solid cancers other than those types of cancer requiring individual assessments after a nuclear accident

    International Nuclear Information System (INIS)

    Walsh, Linda; Zhang, Wei

    2016-01-01

    In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated ''No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data''. Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome ''all solid cancer'', it is shown here that sex modification is not statistically significant for the outcome ''all solid cancer other than thyroid and breast cancer''. It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and thyroid cancers are factored out. Some other notable model

  1. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1992-01-01

    This patent describes a burnable absorber coated nuclear fuel. It comprises a nuclear fuel substrate containing a fissionable material; and an outer burnable absorber coating applied on an outer surface of the substrate; the outer absorber coating being composed of an inner layer of a boron-bearing material except for erbium boride and an outer layer of an erbium material

  2. Mapping of uranium and thorium in radioactive rocks using nuclear track solid detectors

    International Nuclear Information System (INIS)

    Bouch, C.M.

    1982-01-01

    α-Autoradiography and studies of induced fission in a research nuclear reactor (IEA-R1, IPEN, Sao Paulo) were done, employing Solid-State Nuclear Track detectors, in order to study the distribution of α-emitters, U and Th in rocks. Polished sections of rocks were prepared and photographed. Etching conditions were studied in order to adapt the detectors to the studies of microdistribution and macrodistribution of tracks. Polycarbonate foils (Bayer, Makrofol) were chosen as fission-fragments detectors and the technique of fission induced with reactor neutrons to obtain the distribution of U and Th were studied. Uranium and thorium standards evaporated on the surface of the detectors, as well as thorite and uraninite grains, were irradiated in order to measure the integrated flux of neutrons, the effective cross sections for fission with reactor neutrons for 232 Th(0,05b) and 238 U(0,30b) and to study the contribution of 238 U fission in thorium mapping. A technique for determination of uranium and thorium in minerals was studied and applied to Mica, for which were determined the contents of 4,2 ppb U e 58 ppb Th. (Author) [pt

  3. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  4. Solid state nuclear track detection: a useful geological/geophysical tool

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, A.A.

    1994-01-01

    Solid State Nuclear Track Detection (SSNTD) is a relatively new nuclear particle detection technique. Since its inception, it has found useful application in almost every branch of science. This paper gives a very brief review of the role it has played in solving some geological/geophysical problems. Since the technique has been found useful in a wide spectrum of geological/geophysical applications, it was simply not possible to discuss all of these in this paper due to severe space restrictions. However, an attempt has been made to discuss the salient features of some of the most prominent applications in the geological and geophysical sciences. The paper has been divided into two parts. Firstly, applications based on radon measurements by SSNTDs have been described. These include: Uranium/thorium and mineral exploration, search for geothermal energy sources, study of volcanic processes, location of geological faults and earthquake prediction, for example. Secondly, applications based on the study of spontaneous fission tracks in geological samples have been described briefly. The second group of applications includes: fission track dating (FTD) of geological samples, FTD in the study of emplacement times, provenance studies, and thermal histories of minerals. Necessary references have been provided for detailed studies of (a) the applications cited in this paper, and (b) other important geological/geophysical applications, which unfortunately could not be covered in the present paper. (author)

  5. ORIGEN2.1 Cycle Specific Calculation of Krsko Nuclear Power Plant Decay Heat and Core Inventory

    International Nuclear Information System (INIS)

    Vukovic, J.; Grgic, D.; Konjarek, D.

    2010-01-01

    This paper presents ORIGEN2.1 computer code calculation of Krsko Nuclear Power Plant core for Cycle 24. The isotopic inventory, core activity and decay heat are calculated in one run for the entire core using explicit depletion and decay of each fuel assembly. Separate pre-ori application which was developed is utilized to prepare corresponding ORIGEN2.1 inputs. This application uses information on core loading pattern to determine fuel assembly specific depletion history using 3D burnup which is obtained from related PARCS computer code calculation. That way both detailed single assembly calculations as well as whole core inventory calculations are possible. Because of the immense output of the ORIGEN2.1, another application called post-ori is used to retrieve and plot any calculated property on the basis of nuclide, element, summary isotope or group of elements for activation products, actinides and fission products segments. As one additional possibility, with the post-ori application it is able to calculate radiotoxicity from calculated ORIGEN2.1 inventory. The results which are obtained using the calculation model of ORIGEN2.1 computer code are successfully compared against corresponding ORIGEN-S computer code results.(author).

  6. Apparatus for leaching core material from clad nuclear fuel pin segments

    International Nuclear Information System (INIS)

    Yarbro, O.O.

    1980-01-01

    This invention relates to improved apparatus for countercurrently contacting liquids and solids to dissolve, or leach, a selected component of the solids while minimizing back-mixing of the liquid phase. The apparatus includes an elongated drum which is rotatable about its longitudinal axis in either direction and is partitioned radially into a solids-inlet/liquid-outlet compartment at one end, a solids-outlet/liquid-inlet compartment at its other end, and leaching compartments therebetween. The drum is designed to operate with its acid-inlet end elevated and with the longitudinal axis of the drum at an angle in the range of from about 3* to 14* to the horizontal. Each leaching compartment contains a chute assembly for advancing solids into the next compartment in the direction of solids flow when the drum is rotated in a selected direction. The chute assembly includes a solids-transfer baffle and a chute in the form of a slotted, skewed, conical frustum portion. When the drum is rotated in the direction opposite to that effecting solids transfer, the solids-transfer baffles continually separate and re -mix the solids and liquids in their respective compartments. The partitions defining the leaching compartments are formed with corresponding outer, annular, imperforate regions, each region extending inwardly from the partition rim to an annular array of perforations concentric with the rim. In each leaching compartment, the spacing between the rim and the perforations determines the depth of liquid at the liquid-outlet end of the compartment. The liquid input to the drum assembly flows continuously through the compartments, preventing back-mixing due to density differences, whereas backflow due to waves generated by the solids-transfer baffles is virtually eliminated because of the tilted orientation of the drum assembly

  7. Experiences in the management of plutonium-containing solid-wastes at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Baehr, W.; Hild, W.; Scheffler, K.

    1974-10-01

    Solid-plutonium-containing wastes from a fuel production plant, a reprocessing plant and several research laboratories are treated at the decontamination department of the Karlsruhe Nuclear Research Center for disposal in the Asse salt mine. Conditioning as well as future aspects in α-waste management are the subject of this Paper. (orig.) [de

  8. Preparation of cellulose nitrate films using a spinning disc for solid state nuclear track detection (SSNTD) applications

    International Nuclear Information System (INIS)

    Raghunath, B.; Iyer, M.R.; Samant, S.D.

    1995-01-01

    Solid state nuclear track detectors (SSNTD) are widely used in the detection and measurement of ionizing particles. Cellulose nitrate (CN) films are commonly used as SSNTD for the measurement of radon/thoron gases and their decay products. A simple method for making uniform thin CN films of various thickness has been developed. Performance of these films is compared with commercially available film. (Author)

  9. Preparation of cellulose nitrate films using a spinning disc for solid state nuclear track detection (SSNTD) applications

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B.; Iyer, M.R. [Bhabha Atomic Research Centre, Bombay (India); Samant, S.D. [Bombay Univ. (India). Dept. of Chemical Technology

    1995-01-01

    Solid state nuclear track detectors (SSNTD) are widely used in the detection and measurement of ionizing particles. Cellulose nitrate (CN) films are commonly used as SSNTD for the measurement of radon/thoron gases and their decay products. A simple method for making uniform thin CN films of various thickness has been developed. Performance of these films is compared with commercially available film. (Author).

  10. Effective height of the core of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam); Martin, D P; Yip, F G [High Institute of Nuclear Sciences and Technology (Cuba)

    1994-10-01

    Measurements of thermal neutron relative distributions in axial direction at different positions in the reactor core and for various control rod configurations have been carried out, and axial buckling and effective height of the core deduced. (author). 4 refs., 3 figs., 1 tab.

  11. Planning of the development of the MMIS core technology based on nuclear-IT convergence

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Kim, Chang Hwoi; Hwang, In Koo [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    - Drive nuclear-IT convergence technologies such as middleware applied new concept nuclear instrumentation and control architecture, automated operation of future nuclear power plant, virtual reality/augmented reality, design and verification technology of a nuclear power plant main control room, software dependability, and cyber security technology - Write state-of-the-art report for the nuclear instrumentation and control based on IT convergence - A prototype which implemented related equipment and software subject to nuclear reactor operator that reside in the main control room (Reactor Operator, RO) order to a on-site operator (Local Operator, LO) and confirm the task performance matches the RO's intention - 'IT Convergence intelligent instrumentation and control technology' project planning for the Fourth Nuclear Power Research and Development in the long-term plan.

  12. Planning of the development of the MMIS core technology based on nuclear-IT convergence

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Kim, Chang Hwoi; Hwang, In Koo

    2012-01-01

    - Drive nuclear-IT convergence technologies such as middleware applied new concept nuclear instrumentation and control architecture, automated operation of future nuclear power plant, virtual reality/augmented reality, design and verification technology of a nuclear power plant main control room, software dependability, and cyber security technology - Write state-of-the-art report for the nuclear instrumentation and control based on IT convergence - A prototype which implemented related equipment and software subject to nuclear reactor operator that reside in the main control room (Reactor Operator, RO) order to a on-site operator (Local Operator, LO) and confirm the task performance matches the RO's intention - 'IT Convergence intelligent instrumentation and control technology' project planning for the Fourth Nuclear Power Research and Development in the long-term plan

  13. Utilization of local area network technology and decentralized structure for nuclear reactor core temperature monitoring

    International Nuclear Information System (INIS)

    Casella, M.; Peirano, F.

    1986-01-01

    The present system concerns Superphenix type reactors. It is a new version of system for monitoring the reactor core temperatures. It has been designed to minimize the cost and the wiring complexity because of the large number of channels (800). For this, equipments are arranged on the roof slab of the reactor with a single link to the control room; from which the name Integrated Treatment of Core Temperatures: TITC 1500 and the natural choice of a distributed system. This system monitors permanently the thermal state of the core a Superphenix type reactor. This monitoring system aims at detecting anomalies of core temperature rise, releasing automatic shutdown (safety), and providing to the monitoring systems not concerned safety the information concerning the core [fr

  14. KfK, Institute for Nuclear Solid-State Physics. Report of results on research and development work 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The Institute for Nuclear Solid-State Physics pursues at time mainly basis-oriented work in the fields of superconductivity and the boundary-surface and microstructure research. The experimental and theoretical works aim to a better understanding of the microscopical and macroscopical properties of certain solids. At time superconductors with high transition point, highly correlated electron systems, conducting polymers, and amorphous substances are studied especially intensively. Technologically relevant materials have in the comparative case preference. Beside the experimental methods of nuclear solid-state physics (neutron scattering, Moessbauer spectroscopy, ion-implantation technology, irradiation and analysis with fast ions) the institute disposes of further highly specificated techniques, like electron-energy-loss-spectroscopy, special material preparation, X-ray diffractometry, and two UHV facilities for the study of the first surface respectively near-surface regions with thermal helium atoms as well as with fast ions. (orig./HSI) [de

  15. Theoretical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core

    International Nuclear Information System (INIS)

    Arutunjan, R.V.; Bolshov, L.A.; Vitukov, V.V.; Goloviznin, V.M.; Dykhne, A.M.; Kiselev, V.P.; Klementova, S.V.; Krayushkin, I.E.; Moskovchenko, A.V.; Pismennii, V.D.; Popkov, A.G.; Chernov, S.Y.; Chudanov, V.V.; Khoruzhii, O.V.; Yudin, A.I.

    1990-01-01

    Migration of fuel fragments and core fission products during severe accidents on nuclear plants is studied analytically and numerically. The problems of heat transfer and migration of volume heat sources in construction materials and underlying soils are considered

  16. Nuclear data for fission reactor core design and safety analysis: Requirements and status of accuracy of nuclear data

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1984-01-01

    The types of nuclear data required for fission reactor design and safety analysis, and the ways in which the data are represented and approximated for use in reactor calculations, are summarised first. The relative importance of different items of nuclear data in the prediction of reactor parameters is described and ways of investigating the accuracy of these data by evaluating related integral measurements are discussed. The use of sensitivity analysis, together with estimates of the uncertainties in nuclear data and relevant integral measurements, in assessing the accuracy of prediction of reactor parameters is described. The inverse procedure for deciding nuclear data requirements from the target accuracies for prediction of reactor parameters follows on from this. The need for assessments of the uncertainties in nuclear data evaluations and the form of the uncertainty information is discussed. The status of the accuracies of predictions and nuclear data requirements are then summarised. The reactor parameters considered include: (a) Criticality conditions, conversion and burn-up effects. (b) Energy production and deposition, decay heating, irradiation damage, dosimetry and induced radioactivity. (c) Kinetics characteristics and control, including temperature, power and coolant density coefficients, delayed neutrons and control absorbers. (author)

  17. Evaluation of nuclear power plant component failure probability and core damage probability using simplified PSA model

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2000-01-01

    It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)

  18. Thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach; Simulacao termohidraulica do nucleo do reator nuclear HTR-10 com o uso da abordagem realistica CFD

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandro S.; Dominguez, Dany S., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil); Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba); Lira, Carlos Alberto Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  19. Advanced Small-Safe Long-Life Lead Cooled Reactor Cores for Future Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyeong; Hong, Ser Gi [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    One of the reasons for use of the lead or lead-bismuth alloy coolants is the high boiling temperature that avoids the possibility of coolant voiding. Also, these coolants are compatible with air, steam, and water. Therefore, intermediate coolant loop is not required as in the sodium cooled reactors 3. Lead is considered to be more attractive coolant than lead-bismuth alloy because of its higher availability, lower price, and much lower amount of polonium activity by factor of 104 relatively to lead. On the other hand, lead has higher melting temperature of 601K than that of lead-bismuth (398K), which narrows the operating temperature range and also leads to the possibility of freezing and blockage in fresh cores. Neutronically, the lead and lead-bismuth have very similar characteristics to each other. The lead-alloy coolants have lower moderating power and higher scattering without increasing moderation for neutrons below 0.5MeV, which reduces the leakage of the neutrons through the core and provides an excellent reflecting capability for neutrons. Due to the above features of lead or lead-alloy coolants, there have been lots of studies on the small lead cooled core designs. In this paper, small-safe long-life lead cooled reactor cores having high discharge burnup are designed and neutronically analyzed.. The cores considered in this work rates 110MWt (36.7MWe). In this work, the long-life with high discharge burnup was achieved by using thorium or depleted uranium blanket loaded in the central region of the core. Also, we considered a reference core having no blanket for the comparison. This paper provides the detailed neutronic analyses for these small long-life cores and the detailed analyses of the reactivity coefficients and the composition changes in blankets. The results of the core design and analyses show that our small long-life cores can be operated without refueling over their long-lives longer than 45EFPYs (Effective Full Power Year). In this work

  20. Is the nutation of the solid inner core responsible for the 24-year libration of the pole

    International Nuclear Information System (INIS)

    Kakuta, Chuichi; Okamoto, Isao; Sasao, Tetsuo

    1975-01-01

    BUSSE's (1970) theory of the dynamical coupling between the rigid inner core and mantle of the Earth through the pressure reactions in the fluid outer core is examined. It is confirmed that the rigid inner core has the eigenfrequency, (1-rhosub(t)/rhosub(r))esub(r)Ω 0 , of nutation (Ω 0 : the mean rotation rate of the Earth, esub(r): ellipticity of the rigid inner core, and rhosub(t), rhosub(r): the densities of the fluid outer and rigid inner cores, respectively), but it is concluded to be extremely difficult to interpret the 24-yr libration of the pole suggested by MARKOWITZ (1960, 1968) in terms of the nutation with this frequency. (auth.)

  1. JSPS-CAS Core University Program seminar on summary of 10-year collaborations in plasma and nuclear fusion research area

    International Nuclear Information System (INIS)

    Toi, Kazuo; Wang Kongjia

    2011-07-01

    The JSPS-CAS Core University Program (CUP) seminar on “Summary of 10-year Collaborations in Plasma and Nuclear Fusion Research Area” was held from March 9 to March 11, 2011 in the Okinawa Prefectural Art Museum, Naha city, Okinawa, Japan. The collaboration program on plasma and nuclear fusion started from 2001 under the auspices of Japanese Society of Promotion of Science (JSPS) and Chinese Academy of Sciences (CAS). This year is the last year of the CUP. This seminar was organized in the framework of the CUP. In the seminar, 29 oral talks were presented, having 14 Chinese and 30 Japanese participants. These presentations covered key topics related to the collaboration categories: (1) improvement of core plasma properties, (2) basic research on fusion reactor technologies, and (3) theory and numerical simulation. This seminar aims at summarizing the results obtained through the collaborations for 10 years, and discussing future prospects of China-Japan collaboration in plasma and nuclear fusion research areas. (author)

  2. Development of Pipeline Database and CAD Model for Selection of Core Security Zone in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Seong Soo; Kwon, Tae Gyun; Baek, Hun Hyun; Kwon, Min Jin

    2008-07-01

    The objective of the project is to develop the pipeline database which can be used for selection of core security zones considering safety significance of pipes and to develop CAD model for 3-dimensional visualization of core security zones, for the purpose of minimizing damage and loss, enforcing security and protection on important facilities, and improving plant design preparing against emergency situations such as physical terrors in nuclear power plants. In this study, the pipeline database is developed for selection of core security zones considering safety significance of safety class 1 and 2 pipes. The database includes the information on 'pipe-room information-surrogate component' mapping, initiating events which may occur and accident mitigation functions which may be damaged by the pipe failure, and the drawing information related to 2,270 pipe segments of 30 systems. For the 3-dimensional visualization of core security zones, the CAD models on the containment building and the auxiliary building are developed using 3-D MAX tool and the demo program which can visualize the direct-X model converted from the 3-D MAX model is also developed. In addition to this, the coordinate information of all the buildings and their rooms is generated using AUTO CAD tool in order to be used as an input for 3-dimensional browsing of the VIP program

  3. An option for the Brazilian nuclear project: necessity of fast breeder reactors and core design for an experimental fast reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.

    1983-01-01

    In order to assure the continued utilization of fission energy, development of fast breeder reactors (FBRs) is a necessity. Binary fueled LMFBRs are proposed as the best type for future Brazilian nuclear systems. The inherent safety characteristics are superior to current FBRs and an efficient utilization of the abundant thorium is possible. A first step and a basic tool for the development of FBR technologies is the construction and operation of an experimental fast reactor (EFR). A series of core designs for a 90 MW EFR is studied and possible options and the magnitudes of principal parameters are identified. Flexible modifications of the core and sufficiently high fast fluxes for fuel and materials irradiations appear possible. (Author) [pt

  4. TMI-2 [Three Mile Island Nuclear Power Station] fuel canister and core sample handling equipment used in INEL hot cells

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Shurtliff, W.T.; Lynch, R.J.; Croft, K.M.; Whitmill, L.J.; Allen, S.M.

    1987-01-01

    This paper describes the specialized remote handling equipment developed and used at the Idaho National Engineering Laboratory (INEL) to handle samples obtained from the core of the damaged Unit 2 reactor at Three Mile Island Nuclear Power Station (TM-2). Samples of the core were removed, placed in TMI-2 fuel canisters, and transported to the INEL. Those samples will be examined as part of the analysis of the TMI-2 accident. The equipment described herein was designed for removing sample materials from the fuel canisters, assisting with initial examination, and processing samples in preparation for detailed examinations. The more complex equipment used microprocessor remote controls with electric motor drives providing the required force and motion capabilities. The remaining components were unpowered and manipulator assisted

  5. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    Science.gov (United States)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  6. The development of emergency core cooling systems in the PWR, BWR, and HWR Candu type of nuclear power plants

    International Nuclear Information System (INIS)

    Mursid Djokolelono.

    1976-01-01

    Emergency core cooling systems in the PWR, BWR, and HWR-Candu type of nuclear power plant are reviewed. In PWR and BWR the emergency cooling can be catagorized as active high pressure, active low pressure, and a passive one. The PWR uses components of the shutdown cooling system: whereas the BWR uses components of pressure suppression contaiment. HWR Candu also uses the shutdown cooling system similar to the PWR except some details coming out from moderator coolant separation and expensive cost of heavy water. (author)

  7. The domestic development of rhodium self-powered detector used in the core of Qinshan third nuclear power plant

    International Nuclear Information System (INIS)

    Xiong Weihua; Zhang Zhenhua; Yu Yijun; Zhang Yun; Wu Jun; Deng Peng

    2009-01-01

    This article introduced Qinshan third nuclear power plant's Vanadium detector's principle of work, the domestically development's earlier period preparation, the craft processing process, the domestically sample's experiment as well as the sample in core demonstration test. Elaborated process of manufacture's quality control request and the essential craft, and the factory manufacture experiment situation, and to the installation and trial run process, the modification factor and the test result has carried on the introduction and the analysis. (authors)

  8. Piecewise linear approximation: application to control rod step counting in a nuclear reactor core and image contours characterization

    International Nuclear Information System (INIS)

    Kaoutar, M.

    1986-09-01

    After a survey of main algorithms for piecewise linear approximation, a new method is suggested. It consists of two stages: a sequential detection stage and an optimization stage, which derives from general dynamic clustering principle. It is applied to control rod step counting in a nuclear reactor core and images contours characterization. Another version of our method is presented. Its originality cames from the variability of the line segments number during iterations. A comparative study is made by comparing the results of the proposed method with of another methods already existing thereby it attests the efficiency and reliability of our method [fr

  9. MONJU experimental data analysis and its feasibility evaluation to build up the standard data base for large FBR nuclear core design

    International Nuclear Information System (INIS)

    Sugino, K.; Iwai, T.

    2006-01-01

    MONJU experimental data analysis was performed by using the detailed calculation scheme for fast reactor cores developed in Japan. Subsequently, feasibility of the MONJU integral data was evaluated by the cross-section adjustment technique for the use of FBR nuclear core design. It is concluded that the MONJU integral data is quite valuable for building up the standard data base for large FBR nuclear core design. In addition, it is found that the application of the updated data base has a possibility to considerably improve the prediction accuracy of neutronic parameters for MONJU. (authors)

  10. Treatment of core components from nuclear power plants with PWR and BWR reactors - 16043

    International Nuclear Information System (INIS)

    Viermann, Joerg; Friske, Andreas; Radzuweit, Joerg

    2009-01-01

    During operation of a Nuclear Power Plant components inside the RPV get irradiated. Irradiation has an effect on physical properties of these components. Some components have to be replaced after certain neutron doses or respectively after a certain operating time of the plant. Such components are for instance water channels and control rods from Boiling Water Reactors (BWR) or control elements, poisoning elements and flow restrictors from Pressurized Water Reactors (PWR). Most of these components are stored in the fuel pool for a certain time after replacement. Then they have to be packaged for further treatment or for disposal. More than 25 years ago GNS developed a system for disposal of irradiated core components which was based on a waste container suitable for transport, storage and disposal of Intermediate Level Waste (ILW), the so-called MOSAIK R cask. The MOSAIK R family of casks is subject of a separate presentation at the ICEM 09 conference. Besides the MOSAIK R cask the treatment system developed by GNS comprised underwater shears to cut the components to size as well as different types of equipment to handle the components, the shears and the MOSAIK R casks in the fuel pool. Over a decade of experience it showed that this system although effective needed improvement for BWR plants where many water channels and control rods had to be replaced after a certain operating time. Because of the large numbers of components the time period needed to cut the components in the pool had a too big influence on other operational work like rearranging of fuel assemblies in the pool. The system was therefore further developed and again a suitable cask was the heart of the solution. GNS developed the type MOSAIK R 80 T, a cask that is capable to ship the unsegmented components with a length of approx. 4.5 m from the Power plants to an external treatment centre. This treatment centre consisting of a hot cell installation with a scrap shear, super-compactor and a heavy

  11. Application of MSHIM core control strategy for westinghouse AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Onoue, Masaaki; Kawanishi, Tomohiro; Carlson, William R.; Morita, Toshio

    2003-01-01

    Westinghouse has developed a new core control strategy, in which two independently moving Rod Cluster Control Assembly (RCCA) groups are utilized for core control; one group for reactivity/temperature control, the other for axial power distribution (Axial Offset) control. This control procedure eliminates the need for Chemical Shim adjustments during power maneuvers, such as load follow, and is designated MSHIM (Mechanical Shim). This core control strategy is utilized in the AP1000. In the AP1000, it is possible to perform MSHIM load follow maneuvers for up to 95% of cycle life without changing the soluble boron concentration in the moderator. This core control strategy has been evaluated, via computer simulations, to provide appropriate margins to core and fuel design limits during normal operation maneuvers (including load follow operations) and also during anticipated Condition II accident transients. The primary benefits of MSHIM as a control strategy are as follows; Power change operation can be totally automated due to the elimination of boron concentration adjustments. Full load follow capability is achievable for up to more than 95% of cycle life. Load follow operations performed solely by mechanical devices results in a significant reduction in the boron system requirements and a significant reduction in daily effluent to be processed. (author)

  12. Strategic plan for the development of core technologies for the Korean advanced nuclear power reactor for export

    International Nuclear Information System (INIS)

    Moon, Joo Hyun; Cho, Young Ho

    2010-01-01

    With the soaring oil price and worsening global warming, nuclear power has attracted considerable attention on a global scale and a new large market of nuclear power plants (NPPs) is expected. The Korean government aims to export up to 10 NPPs by 2012, based on the successful export of 2 NPPs to the UAE in 2009. It is also going to develop a follow-up model of the Advanced Power Reactor (APR) 1400, and join the world's NPP market under the banner of Korea's original reactor type. For this, it promulgated the strategic plan, NuTech 2012, a technology development plan intended for the early acquisition of core technologies for the Korean advanced NPP design and domestic production of the main components in NPP. This paper introduces the strategic plan of NuTech 2012. (orig.)

  13. Preliminary Thermo-hydraulic Core Design Analysis of Korea Advanced Nuclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Lee, Jeong Ik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Nclear rockets improve the propellant efficiency more than twice compared to CRs and thus significantly reduce the propellant requirement. The superior efficiency of nuclear rockets is due to the combination of the huge energy density and a single low molecular weight propellant utilization. Nuclear Thermal Rockets (NTRs) are particularly suitable for manned missions to Mars because it satisfies a relatively high thrust as well as a high propellant efficiency. NTRs use thermal energy released from a nuclear fission reactor to heat a single low molecular weight propellant, i. e., Hydrogen (H{sub 2}) and then exhausted the extremely heated propellant through a thermodynamic nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub sp}) which represents the ratio of the thrust over the rate of propellant consumption. The difference of I{sub sp} makes over three times propellant savings of NTRs for a manned Mars mission compared to CRs. NTRs can also be configured to operate bimodally by converting the surplus nuclear energy to auxiliary electric power required for the operation of a spacecraft. Moreover, the concept and technology of NTRs are very simple, already proven, and safe. Thus, NTRs can be applied to various space missions such as solar system exploration, International Space Station (ISS) transport support, Near Earth Objects (NEOs) interception, etc. Nuclear propulsion is the most promising and viable option to achieve challenging deep space missions. Particularly, the attractions of a NTR include excellent thrust and propellant efficiency, bimodal capability, proven technology, and safe and reliable performance. The ROK has also begun the research for space nuclear systems as a volunteer of the international space race and a major world nuclear energy country. KANUTER is one of the advanced NTR engines currently under development at KAIST. This bimodal engine is operated in two modes of propulsion with 100 MW

  14. Nuclear geophysical methods for exploration of wells in fields of solid mineral deposits

    International Nuclear Information System (INIS)

    Fel'dman, I.I.; Blyumentsev, A.M.; Karnikolo, V.F.; Zheltikov, A.N.

    1974-01-01

    Chromite and sulphur deposits have been used to illustrate the necessity and desirabilty of applying a combination of nuclear-geophysics logging methods and correlations between individual rock and ore components for localization and evaluation of ore bodies in borehole sections. On chromite deposits the combination includes neutron-capture spectrometric gamma-logging, epithermal neutron-neutron logging, selective gamma-gamma logging and gamma-gamma density logging. Neutron-capture spectrometric gamma-logging ensures an unambiguous localization of ores in borehole sections; epithermal neutron-neutron logging enables ores to be separated by the degree of dissemination; selective gamma-gamma logging is used to determine the content of Cr 2 O 3 and gamma-gamma density logging determines the volume weight. In addition a close correlation between Cr 2 O 3 and SiO 2 contents allows the silica content to be estimated. Application of a three-channel apparatus of the RSK-3 type ensures that all the measurements are made in two descent-ascension operations. The implementation of the combination described has ensured transition to drilling with a reduced selection of core samples. On sulphur deposits of carbonate type the combination includes epithermal neutron-neutron logging, gamma-gamma density logging and neutron-capture spectrometric gamma-logging

  15. Space nuclear power and man's extraterrestrial civilization

    International Nuclear Information System (INIS)

    Angelo, J.J.; Buden, D.

    1983-01-01

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered

  16. Calibration of a solid state nuclear track detector for the measurements of volumic activity of Radon

    International Nuclear Information System (INIS)

    HAKAM, O.K.; LFERDE, M.; BERRADA, M.

    1994-01-01

    Time - integrated measurements of environmental radiation activity are commonly carried out using solid state nuclear track detectors ( SSNTD ). These detectors should be calibrated of volumic activity of radon. This paper reports the results of experiments conducted to calibrate cellulose nitrate films LR - 115 type II used for measurements of volumic activity of radon in indoor air in dwellings and enclosed work areas in Morocco. Calibration measurements were made in laboratory using a calibration chamber and a radon source. The calibration chamber is a cylindric box ( 2613,6 cm sup 3)which we have manufactured of aluminium. The radon source is a natural sample rich of aluminium (17,29 + 0 ,12) Bq/g. The films are placed in detector holder with membrane and exposed inside the calibration chamber to varying concentrations of radon. Following the exposure, the films were chemically etched in sodium hydroxide (2,5 N) at 60 C for 120 minutes. The number of registered alpha particle tracks were counted with an optical microscope. In the used etching conditions, the removed mean thickness is in the order of 6 micro m. Therefore, we have normalized the track density to this value . We obtained a calibration factor of 0, 58 tracks . cm sup -2/ K Bq . h . m sup -3 . 1 tab.; 1 fig.; 2 refs. (author)

  17. Estimation of radon progeny equilibrium factors and their uncertainty bounds using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Eappen, K.P.; Mayya, Y.S.; Patnaik, R.L.; Kushwaha, H.S.

    2006-01-01

    For the assessment of inhalation doses due to radon and its progeny to uranium mine workers, it is necessary to have information on the time integrated gas concentrations and equilibrium factors. Passive single cup dosimeters using solid state nuclear track detectors (SSNTD) are best suited for this purpose. These generally contain two SSNTDs, one placed inside the cup to measure only the radon gas concentration and other outside the cup for recording tracks due to both radon gas and the progeny species. However, since one obtains only two numbers by this method whereas information on four quantities is required for an unambiguous estimation of dose, there is a need for developing an optimal methodology for extracting information on the equilibrium factors. Several techniques proposed earlier have essentially been based on deterministic approaches, which do not fully take into account all the possible uncertainties in the environmental parameters. Keeping this in view, a simple 'mean of bounds' methodology is proposed to extract equilibrium factors based on their absolute bounds and the associated uncertainties as obtained from general arguments of radon progeny disequilibrium. This may be considered as reasonable estimates of the equilibrium factors in the absence of a knowledge of fluctuation in the environmental variables. The results are compared with those from direct measurements both in the laboratory and in real field situations. In view of the good agreement found between these, it is proposed that the simple mean of bounds estimate may be useful for practical applications in inhalation dosimetry of mine workers

  18. Solid-state nuclear magnetic resonance studies of phosphorus and boron in coals and combustion residues

    Energy Technology Data Exchange (ETDEWEB)

    Burchill, P.; Howarth, O.W.; Richards, D.G.; Sword, B.J. (British Coal Corporation, Stoke Orchard (UK). Coal Research Establishment)

    1990-04-01

    Solid-state nuclear magnetic resonance spectroscopy with magic angle spinning (MAS-n.m.r.) was used to study the occurrence of phosphorus and boron in coal, and their fate on combustion. These elements are only minor components of coal, but may significantly influence the utilization properties. {sup 31} P MAS-n.m.r. spectroscopy has confirmed that phosphorus is present in coal predominantly as apatite. This mineral is thermally stable under oxidizing conditions, and survives largely unaltered in high temperature ashes. However, under the semi-reducing bed conditions of certain stoker-fired boilers, it may be decomposed, volatilizing the phosphorus. The {sup 31}P MAS-n.m.r. spectra of bonded deposits show phosphorus in a markedly different coordination environment to that in apatite, the chemical shift suggesting aluminium phosphate or boron phosphate. {sup 11}B MAS-n.m.r. spectra of coals exhibit resonances due to both trigonal and tetrahedrally coordinated boron. Trigonal boron is probably present as tourmaline, but the nature of the tetrahedral boron is less certain; it may be held in tetrahedral sites within certain clay minerals. In common with phosphorus, boron may be volatilized during combustion. The {sup 11}B MAS-n.m.r. spectra of bonded deposits show a tetrahedral resonance with a chemical shift quite consistent with that of boron phosphate. 39 refs., 9 figs., 5 tabs.

  19. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1980-01-01

    This is the fifth annual report of the Tandem Accelerator Center, as well as the third of the Nuclear and Solid State Research Project at the University of Tsukuba. It contains the short descriptions of the activities during the period from April, 1979, to March, 1980. The 12 UD Pelletron has worked well and was utilized over 2900 hours as the time of beam on targets. The performance of the polarized ion source has been quite good, and it produced the beams of polarized protons and deuterons as well as of alpha particles. The sputter ion source (TUNIS) replaced the direct extraction duoplasmatron in most cases, and it produced the beams of isotopes of O, F, Si, Cl, Ni, Cu, etc., without gas injection. The construction of the second measuring room has been completed, and four beam courses are equipped with a general purpose scattering chamber, the devices for perturbed angular correlation, inner and outer shell ionization, and biological studies. The beam pulsing system was installed on the accelerator, and will be in operation soon. Further efforts have been made to develop detection and data processing systems. The examples of the recent researches mainly under the program of the NSSRP in various fields are enumerated. The exchange and collaboration with other institutions were active. (Kako, I.)

  20. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1982-01-01

    After the satisfactory and busy operation of the 12 UD tandem accelerator for five years, the accelerating tubes showed the symptom of deterioration mainly due to stain, so that a few tubes were changed. In spite of this trouble, the operation over 3000 hours was maintained. The development of peripheral apparatus around the tandem accelerator and detectors was made. Above all, a beam pulsing system was successfully installed. The experimental works on nuclear physics were directed to the studies on polarization phenomena and heavy ion-induced reactions. The importance of the two-step process in the reaction mechanism was established. As the remarkable theoretical progress, a self-consistent collective coordinate method for the large amplitude collective motion was successfully developed, and the boson expansion theory was refined. The yield of X-ray and radiative electron capture and the equilibrium charge state in the collision of heavy ions were studied in detail. By the back scattering of 18 MeV alpha particles channeled in solid state, the shift of resonant peak energy was clearly observed, thus the influence of lattice effect in crystals was shown. (Kako, I.)