WorldWideScience

Sample records for solid combustion systems

  1. The Evaluation of Solid Wastes Reduction with Combustion System in the Combustion Chamber

    International Nuclear Information System (INIS)

    Prayitno; Sukosrono

    2007-01-01

    The evaluation of solid wastes reduction with combustion system is used for weight reduction factor. The evaluation was done design system of combustion chamber furnace and the experiment was done by burning a certain weight of paper, cloth, plastic and rubber in the combustion chamber. The evaluation of paper wastes, the ratio of wastes (paper, cloth, plastic and rubber) against the factor of weight reduction (%) were investigated. The condition was dimension of combustion chamber furnace = 0.6 X 0.9 X 1.20 X 1 m with combustion chamber and gas chamber and reached at the wastes = 2.500 gram, oxygen pressure 0.5 Bar, wastes ratio : paper : cloth : plastic : rubber = 55 : 10 : 30 : 5, the reduction factor = 6.36 %. (author)

  2. Combustibility of tetraphenylborate solids

    International Nuclear Information System (INIS)

    Walker, D.D.

    1989-01-01

    Liquid slurries expected under normal in-tank processing (ITP) operations are not ignitible because of their high water content. However, deposits of dry solids from the slurries are combustible and produce dense, black smoke when burned. The dry solids burn similarly to Styrofoam and more easily than sawdust. It is the opinion of fire hazard experts that a benzene vapor deflagration could ignite the dry solids. A tetraphenylborate solids fire will rapidly plug the waste tank HEPA ventilation filters due to the nature of the smoke produced. To prevent ignition and combustion of these solids, the waste tanks have been equipped with a nitrogen inerting system

  3. Development of a high-pressure compaction system for non-combustible solid waste

    International Nuclear Information System (INIS)

    Yogo, S.; Hata, T.; Torita, K.; Yamamoto, K.; Karita, Y.

    1989-01-01

    In recent years, nuclear power plants in Japan have been in search of a means to reduce the volume of non-combustible solid wastes and therefore the application of a high-pressure compaction system has been in demand. Most non-combustible solid wastes have been packed in 200-litre drums for storage and the situation requires a high-pressure compaction system designed exclusively for 200-litre drums. The authors have developed a high-pressure compaction system which compresses 200-litre drums filled with non-combustible solid wastes and packs them into new woo-litre drums efficiently. This paper reports the outline of this high-pressure compaction system and the results of the full-scale verification tests

  4. Combustion means for solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Murase, D.

    1987-09-23

    A combustion device for solid fuel, suitable for coal, coke, charcoal, coal-dust briquettes etc., comprising:- a base stand with an opening therein, an imperforate heat resistant holding board locatable to close said opening; a combustion chamber standing on the base stand with the holding board forming the base of the combustion chamber; a wiper arm pivoted for horizontal wiping movement over the upper surface of the holding board; an inlet means at a lower edge of said chamber above the base stand, and/or in a surrounding wall of said chamber, whereby combustion air may enter as exhaust gases leave the combustion chamber; an exhaust pipe for the exhaust gases; generally tubular gas-flow heat-exchange ducting putting the combustion chamber and exhaust pipe into communication; and means capable of moving the holding board into and out of the opening for removal of ash or other residue. The invention can be used for a heating system in a house or in a greenhouse or for a boiler.

  5. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I

    2017-01-01

    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  6. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  7. Combustion of Solid Propellants (La Combustion des Propergols Solides)

    Science.gov (United States)

    1991-07-01

    the of ether and ethyl alcohol and removing objective of these lectures to give a this solvent. Instead of having a fibrous comprehensive understanding...do cetto esrne do Les propergols composites, A matrice confifrences une description tout A fait A polymarique charg~o pst, un oxydant at un jour des...rusa., De nouveaux souvant suppos6 qua la vitesa des gaz de oxydes de for ultrafirts mont aujourd’hui combustion est n~gligeable at qua d~velopps pour

  8. Emissions from residential combustion of different solid fuels. Roekgasemissioner vid anvaendning av olika fasta braenslen i smaaskaliga system

    Energy Technology Data Exchange (ETDEWEB)

    Rudling, L

    1983-01-01

    The emission from different types of solid fuels during combustion in residential furnaces and stoves has been investigated. The following fules were investigated: wood pellets, peat-bark pellets, wood chips, wood logs,wood-briquets, peat briquets, lignite briquets, fuel oil. Three different 20-25 kW boilers were used and one stove and one fire place. The flue gases were analysed for carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, particulates, tar and fluoranthen.

  9. Influence of the Structure of a Solid-Fuel Mixture on the Thermal Efficiency of the Combustion Chamber of an Engine System

    Science.gov (United States)

    Futko, S. I.; Koznacheev, I. A.; Ermolaeva, E. M.

    2014-11-01

    On the basis of thermodynamic calculations, the features of the combustion of a solid-fuel mixture based on the glycidyl azide polymer were investigated, the thermal cycle of the combustion chamber of a model engine system was analyzed, and the efficiency of this chamber was determined for a wide range of pressures in it and different ratios between the components of the combustible mixture. It was established that, when the pressure in the combustion chamber of an engine system increases, two maxima arise successively on the dependence of the thermal efficiency of the chamber on the weight fractions of the components of the combustible mixture and that the first maximum shifts to the side of smaller concentrations of the glycidyl azide polymer with increase in the pressure in the chamber; the position of the second maximum is independent of this pressure, coincides with the minimum on the dependence of the rate of combustion of the mixture, and corresponds to the point of its structural phase transition at which the mole fractions of the carbon and oxygen atoms in the mixture are equal. The results obtained were interpreted on the basis of the Le-Chatelier principle.

  10. Sulfur Release from Cement Raw Materials during Solid Fuel Combustion

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of solid fuels in the material inlet end of cement rotary kilns, local reducing conditions can occur and cause decomposition of sulfates from cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2 concentration, which may cause...... deposit formation in the kiln system. SO2 release from cement raw materials during combustion of solid fuels has been studied experimentally in a high temperature rotary drum. The fuels were tire rubber, pine wood, petcoke, sewage sludge, and polypropylene. The SO2 release from the raw materials...

  11. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements

    Science.gov (United States)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert

    2012-01-01

    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  12. Combustion chamber for solid and liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Vcelak, L.; Kocica, J.; Trnobransky, K.; Hrubes, J. (VSCHT, Prague (Czechoslovakia))

    1989-04-01

    Describes combustion chamber incorporated in a new boiler manufactured by Elitex of Kdyne to burn waste products and occasionally liquid and solid waste from neighboring industries. It can handle all kinds of solids (paper, plastics, textiles, rubber, household waste) and liquids (volatile and non-volatile, zinc, chromium, etc.) and uses coal as a fuel additive. Its heat output is 3 MW, it can burn 1220 kg/h of coal (without waste, calorific value 11.76 MJ/kg) or 500 kg/h of coal (as fuel additive, calorific value 11.76 MJ/kg) or 285 kg/h of solid waste (calorific value 20.8 MJ/kg). Efficiency is 75%, capacity is 103 m{sup 3} and flame temperature is 1,310 C. Individual components are designed for manufacture in small engineering workshops with basic equipment. A disk absorber with alkaline filling is fitted for removal of harmful substances arising when PVC or tires are combusted.

  13. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  14. Fluidised bed combustion system

    International Nuclear Information System (INIS)

    McKenzie, E.C.

    1976-01-01

    Fluidized bed combustion systems that facilitates the maintenance of the depth of the bed are described. A discharge pipe projects upwardly into the bed so that bed material can flow into its upper end and escape downwardly. The end of the pipe is surrounded by an enclosure and air is discharged into the enclosure so that material will enter the pipe from within the enclosure and have been cooled in the enclosure by the air discharged into it. The walls of the enclosure may themselves be cooled

  15. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  16. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  17. Combustion of large solid fuels in cement rotary kilns

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma

    (MBM), waste wood, sewage sludge, paper and plastics. The alternative fuel share of the total energy varies significantly from region to region, but the general trend is towards increased alternative fuel utilization. Solid alternative fuels typically have physical and chemical properties that differ...... from traditional solid fossil fuels. This creates a need for new combustion equipment or modification of existing kiln systems, because alternative fuels may influence process stability and product quality. Process stability is mainly influenced by exposing the raw material bed in the rotary kiln...... oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the material inlet end of rotary kilns due to the limited residence time. Several parameters control the rate of char oxidation: a) bulk oxygen concentration, b) mass transfer rate of oxygen to char particles...

  18. Experimental Studies on Combustion Characteristics of Mixed Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    Fan Jiang; Zhonggang Pan; Shi Liu; Haigang Wang

    2003-01-01

    In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper,thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3~3.5 rain to burn out in FB, but in thermogravimetric analyzer, the time is 20~25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures.Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures,there was interference among the components during fluidized bed combustion.

  19. Numerical investigation into premixed hydrogen combustion within two-stage porous media burner of 1 kW solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Yen Tzu-Hsiang; Chen Bao-Dong [Refining and Manufacturing Research Institute, CPC Corporation, Chia-Yi City 60036, Taiwan (China); Hong Wen-Tang; Tsai Yu-Ching; Wang Hung-Yu; Huang Cheng-Nan; Lee Chien-Hsiung [Institute of Nuclear Energy Research Atomic Energy Council, Taoyuan County 32546, Taiwan (China)

    2010-07-01

    Numerical simulations are performed to analyze the combustion of the anode off-gas / cathode off-gas mixture within the two-stage porous media burner of a 1 kW solid oxide fuel cell (SOFC) system. In performing the simulations, the anode gas is assumed to be hydrogen and the combustion of the gas mixture is modeled using a turbulent flow model. The validity of the numerical model is confirmed by comparing the simulation results for the flame barrier temperature and the porous media temperature with the corresponding experimental results. Simulations are then performed to investigate the effects of the hydrogen content and the burner geometry on the temperature distribution within the burner and the corresponding operational range. It is shown that the maximum flame temperature increases with an increasing hydrogen content. In addition, it is found that the burner has an operational range of 1.2--6.5 kW when assigned its default geometry settings (i.e. a length and diameter of 0.17 m and 0.06 m, respectively), but increases to 2--9 kW and 2.6--11.5 kW when the length and diameter are increased by a factor of 1.5, respectively. Finally, the operational range increases to 3.5--16.5 kW when both the diameter and the length of the burner are increased by a factor of 1.5.

  20. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  1. Scale Effects on Solid Rocket Combustion Instability Behaviour

    OpenAIRE

    David R. Greatrix

    2011-01-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combusti...

  2. Combining solid biomass combustion and stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Siemers, W.; Senkel, N. [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany)], e-mail: werner.siemers@cutec.de

    2012-11-01

    Decentralised electricity production in combination with and based on biomass still finds some difficulties in real applications. One concept favoured in a recent project is the connection of a wood chip furmace with a Stirling engine. Because the direct exposure of the Stirling head causes numerous problems, the solution is sought in designing an indirect heat transfer system. The main challenge is the temperature level, which should be reached for high electrical efficiencies. Temperatures above 1000 deg C at the biomass combustion side are needed for an efficient heat transfer at some 850 deg C at the Stirling engine in theory. Measurements on both installations have been conducted and analyzed. After this, the design phase is started. However, no final choice on the design has been taken.

  3. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Frostell, Bjoern [Royal Inst. of Technology, Stockholm (Sweden). Div. of Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Technology, Stockholm (Sweden). Div. of Chemical Technology

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second

  4. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    International Nuclear Information System (INIS)

    Assefa, Getachew; Frostell, Bjoern; Jaeraas, Sven; Kusar, Henrik

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second and third

  5. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.

    2013-01-01

    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  6. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  7. Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet

    Science.gov (United States)

    Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang

    2018-02-01

    Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.

  8. A mathematical model of combustion kinetics of municipal solid ...

    African Journals Online (AJOL)

    Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...

  9. Managing ash from the combustion of solid waste

    International Nuclear Information System (INIS)

    Hauser, R.

    1992-01-01

    This paper reports that with millions of tons of refuse being combusted each year, increasing concern over the environment impact of the residue produced has caused both regulators and the resource recovery industry to address the technical and regulatory issues relating to the safe handling and disposal of ash. The basic issue concerning solid waste combustion ash management in this country is how, based on past, recent, and ongoing scientific research, solid waste combustion ash should be handled. Typically, refuse contains approximately 20 to 25 percent residue, which is collected either on grates at the bottom of the combustion chamber or filtered from the exhaust gases by the air pollution control equipment. The fly ash component of the total residue stream is between 10 and 30 percent of the total residue while the bottom ash content ranges from 70 to 90 percent of the total weight, depending upon the air pollution control equipment utilized, especially acid gas scrubbing equipment

  10. Unburned carbon in combustion residues from mainly solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem H; Lind B; Lagerkvist A

    2012-02-15

    Unburned carbon in 21 combustion residues from solid biofuels is investigated using several methods of analysis (a.o. LOI and TOC), as well as micro-Raman spectroscopy. The results are used to discuss the distribution of unburned carbon in the residues from the different combustion plants and its nature (organic or elemental). The consequences of the elemental nature of carbon for environmental properties of the residue are noted

  11. Nonsteady Combustion Mechanisms of Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn

    1997-01-01

    .... The individual tasks which we are studying will pursue solid propellant decomposition under unsteady conditions, nonsteady aspects of gas phase flame structure measurements, numerical modeling...

  12. Pollutants generated by the combustion of solid biomass fuels

    CERN Document Server

    Jones, Jenny M; Ma, Lin; Williams, Alan; Pourkashanian, Mohamed

    2014-01-01

    This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy.This is followed by details of the methods used for characterisation of biomass and their classification.The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols

  13. Superheated fuel injection for combustion of liquid-solid slurries

    Science.gov (United States)

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  14. Quantification of fusion in ashes from solid fuel combustion

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug; Frandsen, Flemming; Dam-Johansen, Kim

    1999-01-01

    The fusion of ashes produced during solid fuel combustion greatly affects the tendency of these ashes to cause operational problems in utility boilers. In this paper, a new and quantitative laboratory method for assessing the fusion of ashes based on simultaneous thermal analysis, STA, is described...

  15. Effect of Chamber Pressurization Rate on Combustion and Propagation of Solid Propellant Cracks

    Science.gov (United States)

    Yuan, Wei-Lan; Wei, Shen; Yuan, Shu-Shen

    2002-01-01

    area of the propellant grain satisfies the designed value. But cracks in propellant grain can be generated during manufacture, storage, handing and so on. The cracks can provide additional surface area for combustion. The additional combustion may significantly deviate the performance of the rocket motor from the designed conditions, even lead to explosive catastrophe. Therefore a thorough study on the combustion, propagation and fracture of solid propellant cracks must be conducted. This paper takes an isolated propellant crack as the object and studies the effect of chamber pressurization rate on the combustion, propagation and fracture of the crack by experiment and theoretical calculation. deformable, the burning inside a solid propellant crack is a coupling of solid mechanics and combustion dynamics. In this paper, a theoretical model describing the combustion, propagation and fracture of the crack was formulated and solved numerically. The interaction of structural deformation and combustion process was included in the theoretical model. The conservation equations for compressible fluid flow, the equation of state for perfect gas, the heat conducting equation for the solid-phase, constitutive equation for propellant, J-integral fracture criterion and so on are used in the model. The convective burning inside the crack and the propagation and fracture of the crack were numerically studied by solving the set of nonlinear, inhomogeneous gas-phase governing equations and solid-phase equations. On the other hand, the combustion experiments for propellant specimens with a precut crack were conducted by RTR system. Predicted results are in good agreement with experimental data, which validates the reasonableness of the theoretical model. Both theoretical and experimental results indicate that the chamber pressurization rate has strong effects on the convective burning in the crack, crack fracture initiation and fracture pattern.

  16. Post-combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M.

    2009-01-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. 340 refs., 21 figs., 8 tabs.

  17. Mathematical model for solid fuel combustion in fluidized bed

    International Nuclear Information System (INIS)

    Kostikj, Zvonimir; Noshpal, Aleksandar

    1994-01-01

    A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)

  18. Scale effects on solid rocket combustion instability behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Ryerson University, Department of Aerospace Engineering, Toronto, Ontario (Canada)

    2011-07-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter) on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor's size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise. (author)

  19. Scale Effects on Solid Rocket Combustion Instability Behaviour

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2011-01-01

    Full Text Available The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor’s size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise.

  20. Workshop Report: Fundamental Reactions in Solid Propellant Combustion

    Science.gov (United States)

    1979-05-01

    combustion conditions. 6. What effect might a pressure-induced phase transition to a polymorph other than 6- HMX have on the pressure slope break during...pure HMX as well. Nevertheless, it is recommended that the high pressure polymorphs of HMX and RDX be determined. It was also felt that there...plateau burning phenomena E. Solid phase, surface, gas phase reactions F. Phase transitions : melting, vaporization, polymorphs G. Flame

  1. Study of combustion properties of a solid propellant by highly time-resolved passive FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhang, Lin; Li, Yan; Liu, Bingping; Wang, Junde [Laboratory of Advanced Spectroscopy, Nanjing University of Science and Technology, Nanjing 210014 (China)

    2006-10-15

    With a time resolution of 0.125 s and a spectral resolution of 4 cm{sup -1}, emission spectra of the combustion process of a solid propellant were recorded by highly time-resolved passive FTIR. Some gaseous combustion products, such as H{sub 2}O, CO, CO{sub 2}, NO and HCl, were distinguished by the characteristic emission band of each molecule. The equation for flame temperature calculation based on the diatomic molecule emission fine structure theory was improved through judicious utilization of the spectral running number 'm' which makes the temperature measurement simpler and faster. Some combustion information of the solid propellant had been given including the characteristic spectral profile, the distribution of the absolute spectral energy, the distribution of the combustion flame temperature, and the concentration distributions of HCl and NO versus burning time. The results will provide theoretical and experimental bases for improving the formula and raising combustion efficiency of solid propellant, and developing the design of rocket motor, infrared guidance and antiguidance systems. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Post combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M. [IEA Clean Coal Centre, London (United Kingdom)

    2009-04-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. The report is available from IEA Clean Coal Centre as report no. CCC/144. See Coal Abstracts entry April 2009 00406. 340 refs., 21 figs., 8 tabs.

  3. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Assessment of the content of arsenic in solid by-products from coal combustion

    Directory of Open Access Journals (Sweden)

    Wierońska Faustyna

    2017-01-01

    Full Text Available The coal combustion processes constitute one of the major sources of heavy metals emission into the atmosphere. From the point of view of the reduction of the emission of heavy metals and the selection of the correct exhaust gas treatment system, it is important to monitor the amount of trace elements in the solid fuels and in the solid by-products from coal combustion. One of these highly toxic elements is arsenic. The average content of arsenic in Polish hard coals and lignites is 0 ÷ 40 mg/kg [1] and 5 ÷ 15 mg/kg [2], respectively. The world average content of arsenic in hard coals and lignites, is equal to 9.0 ± 0.8 and 7.4 ± 1.4 mg/kg [3], respectively. During coal combustion processes, a significant amount of arsenic enters the atmosphere through gases and fly ashes. The proportions in which those two forms of arsenic occur in exhaust gases depend on the conditions of combustion processes [4]. The aim of the research was to determine the content of arsenic in coal blends and by-products of their combustion (slag, fly ash, gypsum, filter cakes. The determination of the arsenic quantity was performed using the Atomic Absorption Spectrometry with the electrothermal atomization.

  5. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  6. Modelling of a combustion process for the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Rohyiza Ba'an Sivapalan Kathiravale Mohamad Puad Abu Muhd Noor Muhd Yunus

    2005-01-01

    Municipal Solid Waste (MSW) in Malaysia is increasing rapidly with increase in the population and economic growth. Landfill capacity required to accommodate the generated waste is anticipated to exceed 20,000 tons per day by year 2020. The current management system of solely depending on landfill disposal is inadequate and calls for a more environmentally friendly management system, which include the prospects of an eco park. To understand the combustion process, the development of mathematical model based on waste characteristic is required. Hence this paper will present the mathematical model developed to predict the mass and heat balance for MSW combustion process. This results of this mathematical model will be compared against the actual combustion of MSW in Thermal Oxidation Plant, so that the accuracy of the developed model can be determined accordingly. (Author)

  7. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  8. Apparatus and method for solid fuel chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  9. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  10. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  11. Numerical Simulation of Solid Combustion with a Robust Conjugate-Gradient Solution for Pressure

    National Research Council Canada - National Science Library

    Wang, Yi-Zun

    2002-01-01

    A Bi-Conjugate Gradient method (Bi-CGSTAB) is studied and tested for solid combustion in which the gas and solid phases are coupled by a set of conditions describing mass, momentum and heat transport across the interface...

  12. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    Science.gov (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  13. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    Directory of Open Access Journals (Sweden)

    Oakey John

    2011-02-01

    Full Text Available Abstract Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling. It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  14. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste.

    Science.gov (United States)

    Laryea-Goldsmith, René; Oakey, John; Simms, Nigel J

    2011-02-01

    Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  15. Combustion Stability Assessments of the Black Brant Solid Rocket Motor

    Science.gov (United States)

    Fischbach, Sean

    2014-01-01

    The Black Brant variation of the Standard Brant developed in the 1960's has been a workhorse motor of the NASA Sounding Rocket Project Office (SRPO) since the 1970's. In March 2012, the Black Brant Mk1 used on mission 36.277 experienced combustion instability during a flight at White Sands Missile Range, the third event in the last four years, the first occurring in November, 2009, the second in April 2010. After the 2010 event the program has been increasing the motor's throat diameter post-delivery with the goal of lowering the chamber pressure and increasing the margin against combustion instability. During the most recent combustion instability event, the vibrations exceeded the qualification levels for the Flight Termination System. The present study utilizes data generated from T-burner testing of multiple Black Brant propellants at the Naval Air Warfare Center at China Lake, to improve the combustion stability predictions for the Black Brant Mk1 and to generate new predictions for the Mk2. Three unique one dimensional (1-D) stability models were generated, representing distinct Black Brant flights, two of which experienced instabilities. The individual models allowed for comparison of stability characteristics between various nozzle configurations. A long standing "rule of thumb" states that increased stability margin is gained by increasing the throat diameter. In contradiction to this experience based rule, the analysis shows that little or no margin is gained from a larger throat diameter. The present analysis demonstrates competing effects resulting from an increased throat diameter accompanying a large response function. As is expected, more acoustic energy was expelled through the nozzle, but conversely more acoustic energy was generated due to larger gas velocities near the propellant surfaces.

  16. Ignition and combustion phenomena on a moving grate: with application to the thermal conversion of biomass and municipal solid waste

    NARCIS (Netherlands)

    Blijderveen, M.

    2012-01-01

    Combustion can be defined as a fast oxidation process of a solid, gaseous or liquid fuel at elevated temperatures. In any combustion process, ignition plays an essential role. Not only to initiate the combustion process, but also to maintain it. Especially in solid fuel combustion on a grate, where

  17. Incineration facility for combustible solid and liquid radioactive wastes in IPEN-CNEN - Sao Paulo

    International Nuclear Information System (INIS)

    Krutman, I.; Grosche Filho, C.E.; Chandra, U.; Suarez, A.A.

    1987-01-01

    A system for incinerating the combustible solid and liquid radioactive wastes was developed in order to achieve higher mass and volume reduction of the wastes generated at IPEN-CNEN/SP or received from other institutions. The radioactive wastes for incineration are: animal carcasses, ion-exchange resins, contaminated lubricant oils, cellulosic materials, plastics, etc. The optimization of the process was achieved by considering the following factors: selection of better construction and insulating material; dimensions; modular design of combustion chambers to increase burning capacity in future; applicability for various types of wastes; choise of gas cleaning system. The off-gas system utilizes dry treatment. The operation is designed to function with a negative pressure. (Author) [pt

  18. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-11-01

    Full Text Available An experimental study on converting municipal solid waste (MSW into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine content in the exhaust gas and those left in the ash after the combustion process at a certain temperature. A series of thermogravimetric analyses were also conducted to compare the combustion characteristics of the products before and after the washing process. Due to the loss of ash and some volatile matter after washing process, there were increases in the fixed carbon content and the heating value of the product. Considering the possible chlorine emission, the washing process after the hydrothermal treatment should be necessary only if the furnace temperature is more than 800 °C.

  19. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  20. NATO Workshop on Soot in Combustion Systems

    CERN Document Server

    Prado, G

    1983-01-01

    Our interest in Mulhouse for carbon black and soot began some 30 years ago when J.B. Donnet developed the concept of surface chemistry of carbon and its involvement in interactions with gas, liquid and solid phases. In the late sixties, we began to study soot formation in pyrolytic systems and later on in flames. The idea of organ1z1ng a meeting on soot formation originated some four or five years ago, through discussions among Professor J.B. Howard, Dr. A. D'Alessio and ourselves. At that time the scientific community was becoming aware of the necessity to strictly control soot formation and emission. Being involved in the study of surface properties of carbon black as well as of formation of soot, we realized that the combustion community was not always fully aware of the progress made by the physical-chemists on carbon black. Reciprocally, the carbon specialists were often ignoring the research carried out on soot in flames. One objective of this workshop was to stimulate discussions between these two scie...

  1. Change in the electric potential of solid fuels on their combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Zakharov, A.G.; Plitsyn, V.T.

    1979-01-01

    Solid fuels of various degrees of graphitization (graphite, coke, hard coal, lignite) were used to study the changes in electric potential of samples during gasification and combustion in air. The potential shows three peaks during combustion, the third corresponding to ignition. Two peaks occur during the gasification process.

  2. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  3. Optimization of combustion process for radiation-treated solid fuels in dust state

    International Nuclear Information System (INIS)

    Askarova, A.S.; Bajdullaeva, G.E.

    1997-01-01

    Computation experiment on combustion of solid radiation-treated fuel in burning chamber of boiler at Pavlodar thermal electric plant is carried out. Velocity, temperature distribution and concentration of combustion products by height of chamber are received. Analysis of received results shows that radiation treatment of fuels exerts substantial effect on egress parameters of thermal electric plant. It is shown, that radiation treatment allows to improve effectiveness of boiler device and reduce of harmful substances discharge in atmosphere. Results of conducted numerical experiments allow to create complete methods of solid fuel combustion with high moisture and ashiness

  4. Fluidized bed combustion with the use of Greek solid fuels

    Directory of Open Access Journals (Sweden)

    Kakaras Emmanuel

    2003-01-01

    Full Text Available The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.

  5. Study of PAH emission from the solid fuels combustion in residential furnaces

    International Nuclear Information System (INIS)

    Kakareka, Sergey V.; Kukharchyk, Tamara I.; Khomich, Valery S.

    2005-01-01

    The procedure for and results of a test study of polycyclic aromatic hydrocarbon (PAH) emission from a few types of solid fuels combustion in residential furnaces of various designs typical for Belarus are discussed. Greatest levels of PAH emission were detected from domestic wastes and wood waste combustion. Lowest levels of PAH emission are from peat briquette combustion. It was found that PAH concentration in off-gases from firewood combustion also varies significantly depending on the type of wood: the highest values of PAH are typical for waste gases from birch firewood combustion in comparison with pine firewood combustion. Draft PAH emission factors are proposed with intended application for emission inventory of such installations

  6. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  7. Systems and methods of storing combustion waste products

    Science.gov (United States)

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  8. Structures of the particles of the condensed dispersed phase in solid fuel combustion products plasma

    International Nuclear Information System (INIS)

    Samaryan, A.A.; Chernyshev, A.V.; Nefedov, A.P.; Petrov, O.F.; Fortov, V.E.; Mikhailov, Yu.M.; Mintsev, V.B.

    2000-01-01

    The results of experimental investigations of a type of dusty plasma which has been least studied--the plasma of solid fuel combustion products--were presented. Experiments to determine the parameters of the plasma of the combustion products of synthetic solid fuels with various compositions together with simultaneous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase were performed. The measurements showed that the charge composition of the plasma of the solid fuels combustion products depends strongly on the easily ionized alkali-metal impurities which are always present in synthetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase in structures that form in a boundary region between the high-temperature and condensation zones was observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities

  9. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard

    2008-01-01

    with implementation of low-NOx combustion technologies. The present thesis concerns three areas of importance within this field: 1) testing of fly ash adsorption behavior; 2) the influence of fuel type and combustion conditions on the ash adsorption behaviour including full-scale experiments at the power plant...... has a low sensitivity toward small variations in AEA adsorption between different fly ashes and it requires further work before a finished procedure is accomplished. Finally, it was shown that changes in temperature affect both test methods. Pulverized fuel has been combusted in an entrained flow...... formation. It was found that the AEA adsorption of the fly ash was reduced up to five times compared to reference operation, when the plant was operated with minimum furnace air staging, three levels of burners instead of four and without recycled flue gas. The lower AEA requirements of the fly ash...

  10. Combustion of palm oil solid waste in fluidized bed combustor

    International Nuclear Information System (INIS)

    Abdullah, I.; Shamsuddin, A.H.; Sopian, K.

    2000-01-01

    Results of experimental investigations of fluidized bed combustion of palm oil wastes consisting of shell, fibre and empty fruit bunches high heating value of 17450 kJ/kg and low heating value of 14500 kJ/kg. The fluidized bed combuster used has a vessel size of 486 x 10 6 mm 3 , surface area of evaporation tubes and distribution air pipes of 500 mm 2 and 320 mm 2 respectively. It was found that a fuel feeding rate 160 kg/h is required to achieve a steam flow rate of 600 kg/h, with the combustion efficiency 96% and boiler efficiency of 72%, emission level of flue gas NO x at less than 180 ppm, SO 2 at less than 20 ppm are measured in the flue gas. (Author)

  11. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...

  12. Combustible and incombustible speciation of Cl and S in various components of municipal solid waste.

    Science.gov (United States)

    Watanabe, Nobuhisa; Yamamoto, Osamu; Sakai, Mamoru; Fukuyama, Johji

    2004-01-01

    Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.

  13. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  14. Unified approach to the study of solid fuel combustion characteristics at high airflow speeds

    Science.gov (United States)

    Vnuchkov, D. A.; Lukashevich, S. V.; Nalivaychenko, D. G.; Zvegintsev, V. I.

    2017-10-01

    The main objective of the research is the development of guidelines for a unified approach to testing the combustion of different solid fuels in gaseous oxidant high-speed flow, so that research outcomes could be presented in a standardized and cohesive form. All the experiments were performed on a special experimental installation designed for quantification of the burning characteristics of different fuels in a wide range of the airflow parameters at the same geometry of the combustion chamber.

  15. Numerical Evaluation of the Use of Aluminum Particles for Enhancing Solid Rocket Motor Combustion Stability

    OpenAIRE

    David Greatrix

    2015-01-01

    The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave ...

  16. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    OpenAIRE

    David R. Greatrix

    2009-01-01

    In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predi...

  17. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    , they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  18. Production methods for decreasing nitrous oxide effluents during solid fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    The atmosphere can be protected from toxic NO /SUB x/ effluents during fuel combustion in boilers by reducing the amount of NO /SUB x/ during combustion or by cleaning the smoky gases after they leave the boiler. The second method results from the need to process a large amount of smoky gases with a relatively low concentration of nitrous oxide which is chemically resistant and which is not highly soluble in water. The problem is complicated by the SO /SUB x/ , O/sub 2/ and solid particles in the smoky gaes. The method for cleaning smoky gases is complicated and requires mator capital investments and operating expenses. Laboratory tests in the F. E. Dzerzhinskiy Heat Engineering Institute showed that thermal NO /SUB x/ is formed at combustion temperatures above 1550/sup 0/C, and that the concentration of O/sub 2/ has a significant impact on NO /SUB x/ formation, while temperature has much less effect. On the basis of laboratory and industrial tests, the Institute recommended a method to reduce NO /SUB x/ effluents from large boilers: for Kansk-Achinski coals -- low-temperature combustion. The temperature in the combustion nucleus is maintained at 1290/sup 0/C by using a set of measures individual dust systems with direct intection, grinder-blowers, fuel drying and recirculation of about 20% of the smoky gases with the primary air, tangential direct flow burners in several rows along the top). The effectiveness of this system has been checked on a PK-10Sh boiler at the Krasnoyarsk Thermal Power Plant No. 1 and a BK3-210-140 boiler at the Vladivostok Thermal Power Plant No. 2. Further reduction of NO /SUB x/ (by about 20%) requires redistribution of the secondary air along the row of burners. These measures are suggested for use on the P-67 boiler of the 800 MW unit of the Berezovsk State Regional Power Station No. 1. A brief summary of the design and operating measures are provided.

  19. Combustion powered thermophotovoltaic emitter system

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, R.S. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  20. Multi-Point Combustion System: Final Report

    Science.gov (United States)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  1. Effect of fluidization number on the combustion of simulated municipal solid waste in a fluidized bed

    International Nuclear Information System (INIS)

    Anwar Johari; Mutahharah, M.M.; Abdul, A.; Salema, A.; Kalantarifard, A.; Rozainee, M.

    2010-01-01

    The effect of fluidization number on the combustion of simulated municipal solid was in a fluidized bed was investigated. Simulated municipal solid waste was used a sample and it was formulated from major waste composition found in Malaysia which comprised of food waste, paper, plastic and vegetable waste. Proximate and ultimate analyses of the simulated were conducted and results showed its composition was similar to the actual Malaysian municipal solid waste composition. Combustion study was carried out in a rectangular fluidized bed with sand of mean particle size of 0.34 mm as a fluidising medium. The range of fluidization numbers investigated was 3 to 11 U mf . The combustion was carried out at stoichiometric condition (Air Factor = 1). Results showed that the best fluidization number was in the range of 5 to 7 U mf with 5 U mf being the most optimum in which the bed temperature was sustained in a much longer period. (author)

  2. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  3. 14 CFR 25.833 - Combustion heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.833 Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  4. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  5. Development of a NO/x/-free combustion system

    Science.gov (United States)

    Sadakata, M.; Furusawa, T.; Kunii, D.; Imagawa, M.; Nawada, M.

    1980-04-01

    The development of a NO(x)-free combustion-heating system realizing both pollution control and energy savings is described. An experiment was carried out by using a small model plant. The system consists of a combustion furnace and a new-type multifunctional heat exchanger. The heat exchanger is a rotary continuous type designed for soot collection and for catalytic combustion of CO and H2 as well as for preheating combustion air.

  6. Municipal solid waste combustion: Fuel testing and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  7. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  8. Utilization of ash from municipal solid waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  9. Investigation of pressurized combustion and characterization of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M; Haemaelaeinen, J; Paakkinen, K [VTT Energy, Espoo (Finland); Joutsenoja, T [Tampere Univ. of Technology (Finland)

    1997-10-01

    The objective of the research of Technical Research Centre of Finland (VTT) was to produce results of the effects of pressure and other important parameters on the combustion of pulverized coals using both experimental and theoretical methods. The results can be utilized to model pressurized combustion and to plan pilot-scale reactors. The studied coals were Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelborn) hvb coal. In was originally planned to study also a char of one of these coals. However, anthracite was selected instead of char, because the theoretical studies predicted maximum pressure effect to be found for antracite-type coals (with low reactivity and low content of volatiles). The pulverized coal samples were combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions were controlled with a high precision. The studied particle size fractions were 100-125 Em and 140-180 Am for anthracite and 140-180 {mu}m for the other coals. The studied things were combustion rates and temperatures of burning particles. Two types of sets of experiments were carried out. In the first case, experimental planning was done and the results were handled with multivariable partial least squares (PLS) method. Gas temperature varied from 1073K to 1473K and pressure from 0.2 MPa to 0.8 MPa. The other variables were PO2 and PCO{sub 2}. Some of the experiments were carried out at conditions prevailing during flue gas recirculation (CO{sub 2} concentration was > 20 vol%). In the second case, oxygen concentration was kept constant ( 10 vol%) and pressure was varied from 0.2 MPa to 0.8 MPa with an interval of 0.1 MPa

  10. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  11. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  12. Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet

    Science.gov (United States)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-10-01

    This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.

  13. Staged fluidized-bed combustion and filter system

    International Nuclear Information System (INIS)

    Mei, J.S.; Halow, J.S.

    1994-01-01

    A staged fluidized-bed combustion and filter system are described for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste. 10 figures

  14. Preparation of molybdenum borides by combustion synthesis involving solid-phase displacement reactions

    International Nuclear Information System (INIS)

    Yeh, C.L.; Hsu, W.S.

    2008-01-01

    Preparation of molybdenum borides of five different phases in the Mo-B binary system (including Mo 2 B, MoB, MoB 2 , Mo 2 B 5 , and MoB 4 ) was performed by self-propagating high-temperature synthesis (SHS) with two kinds of the reactant samples. When elemental powder compacts with an exact stoichiometry corresponding to the boride phase were employed, self-sustaining reaction was only achieved in the sample with Mo:B = 1:1 and nearly single-phase MoB was yielded. Therefore, the other four boride compounds were prepared from the reactant compacts composed of MoO 3 , Mo, and B powders, within which the displacement reaction of MoO 3 with boron was involved in combustion synthesis. Experimental evidence shows that the extent of displacement reaction in the overall reaction has a significant impact on sustainability of the synthesis reaction, combustion temperature, reaction front velocity, and composition of the end product. An increase in the solid-phase displacement reaction taking place during the SHS process contributes more heat flux to the synthesis reaction, thus resulting in the increase of combustion temperature and enhancement of the reaction front velocity. Based upon the XRD analysis, formation of Mo 2 B, MoB 2 , and Mo 2 B 5 as the dominant boride phase in the end product was successful through the SHS reaction with powder compacts under appropriate stoichiometries between MoO 3 , Mo, and B. However, a poor conversion was observed in the synthesis of MoB 4 . The powder compact prepared for the production of MoB 4 yielded mostly Mo 2 B 5

  15. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  16. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  17. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  18. Size and velocity measurements in combustion systems

    International Nuclear Information System (INIS)

    Levy, Y.; Timnat, Y.M.

    1986-01-01

    Two-phase flow measurements for size and velocity determination in combustion systems are discussed: the pedestal technique and phase Doppler anemometry (PDA) are described in detail. The experimental apparatus for the pedestal method includes the optical laser-Doppler anemometry (LDA) package and the electronic data acquisition system. The latter comprises three channels for recording the Doppler frequency, and the pedestal amplitude as well as the validation pulse. Results of measurements performed in a dump combustor, into which kerosene droplets were injected, are presented. The principle of the PDA technique is explained and validation experiments, using latex particles, are reported. Finally the two methods are compared

  19. Stochastic disturbances and dynamics of thermal processes. With application to municipal solid waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Van Kessel, L.B.M.

    2003-06-11

    with the on-line calorific value sensor from chapter 2 and a validated dynamic model of the process is available, the theory from stochastic processes can be applied to MSWC. This new application field of stochastics is discussed in chapter 4. The results obtained in chapter 2 will be used in this analysis. Also new linear transfer functions for thermal processes will be given and applied to MSWC. Finally, applications of the new developed tools will be discussed. As already mentioned, the validation experiments lead to the conclusion that the dynamics of the combustion process can change when the primary air temperature changes. This was a new result, which has never been reported in literature before. For that reason during the research it was decided to start an extensive study into the influence of the primary air temperature on the combustion process. This has been performed by using laboratory experiments. In chapter 5 the results from this search will be presented. The existing theory for combustion of solid fuels is extended with a qualitative as well as a quantitative description of the influence of primary preheating. The new theory is used to explain observations from real plants and the results from system identification. Furthermore, the value of laboratory experiments to simulate the real combustion process on a grate is discussed.

  20. Heavy metal content of combustible municipal solid waste in Denmark.

    Science.gov (United States)

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  1. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  2. Reflight of the Solid Surface Combustion Experiment: Opposed-Flow Flame Spread Over Cylindrical Fuels

    Science.gov (United States)

    Bhattacharjee, Subrata; Altenkirch, Robert A.; Worley, Regis; Tang, Lin; Bundy, Matt; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The effort described here is a reflight of the Solid Surface Combustion Experiment (SSCE), with extension of the flight matrix first and then experiment modification. The objectives of the reflight are to extend the understanding of the interplay of the radiative processes that affect the flame spread mechanisms.

  3. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Hu, Shanchao; Ma, Xiaoqian; Lin, Yousheng; Yu, Zhaosheng; Fang, Shiwen

    2015-01-01

    Highlights: • Thermogravimetric analysis of paper mill sludge and municipal solid waste were studied. • The combustion of paper mill sludge could be improved by blending municipal solid waste. • There existed significant interaction during co-combustion of the blends. • The OFW and Starink methods were used to obtain the activation energy. • The average activation energy was the lowest by blending 20% municipal solid waste. - Abstract: The thermal characteristics and kinetics of paper mill sludge (PMS), municipal solid waste (MSW) and their blends in the combustion process were investigated in this study. The mass percentages of PMS in the blends were 10%, 30%, 50%, 70% and 90%, respectively. The experiments were carried out at different heating rates (10 °C/min, 20 °C/min and 30 °C/min) and the temperature ranged from room temperature to 1000 °C in a thermogravimetric simultaneous thermal analyzer. The results suggested that the ignition temperature and burnout temperature of MSW were lower than that of PMS, and the mass loss rate of MSW was larger especially at low temperatures. There were only two mass loss peaks in the differential thermogravimetry (DTG) curve, while three mass loss peaks were observed when the blending ratios of PMS were 30%, 50%, 70%. The value of the comprehensive combustion characteristic index of the blends indicated a good combustibility when the percentage of PMS (PPMS) in the blends was less than 30%. There existed certain interaction between the combustion process of PMS and MSW, especially at high temperature stage. Activation energy (E) value obtained by the Ozawa–Flynn–Wall (OFW) method and the Starink method were very consistent. When the mass percentage of PMS in the blends was 80%, the E average value attained the minimum

  4. Homogenization Issues in the Combustion of Heterogeneous Solid Propellants

    Science.gov (United States)

    Chen, M.; Buckmaster, J.; Jackson, T. L.; Massa, L.

    2002-01-01

    We examine random packs of discs or spheres, models for ammonium-perchlorate-in-binder propellants, and discuss their average properties. An analytical strategy is described for calculating the mean or effective heat conduction coefficient in terms of the heat conduction coefficients of the individual components, and the results are verified by comparison with those of direct numerical simulations (dns) for both 2-D (disc) and 3-D (sphere) packs across which a temperature difference is applied. Similarly, when the surface regression speed of each component is related to the surface temperature via a simple Arrhenius law, an analytical strategy is developed for calculating an effective Arrhenius law for the combination, and these results are verified using dns in which a uniform heat flux is applied to the pack surface, causing it to regress. These results are needed for homogenization strategies necessary for fully integrated 2-D or 3-D simulations of heterogeneous propellant combustion.

  5. Gasification versus combustion of solid wastes. Environmental aspects. Supplementary report

    International Nuclear Information System (INIS)

    Stenholm, M.; Dalager, S.; Kristensen, O.

    1994-04-01

    The report is supplementary to the main one of the same title and contains detailed descriptions of the plants for gasification and pyrolysis of biomass visited in Europe, Canada and USA in order to evaluate the technology development, especially with regard to the use of solid wastes as fuel. (AB)

  6. Effect of ammonium perchlorate grain sizes on the combustion of solid rocket propellant

    Energy Technology Data Exchange (ETDEWEB)

    Hegab, A.; Balabel, A. [Menoufia Univ., Menoufia (Egypt). Faculty of Engineering

    2007-07-01

    The combustion of heterogeneous solid rocket propellant consisting of ammonium perchlorate (AP) particles was discussed with reference to the chemical and physical complexity of the propellant and the microscopic scale of the combustion zone. This study considered the primary flame between the decomposition products of the binder and the AP oxidizer; the primary diffusion flame from the oxidizer; density and conductivity of the AP and binder; temperature-dependent gas-phase transport properties; and, an unsteady non-planer regression surface. Three different random packing disc models for the AP particles imbedded in a matrix of a hydroxyl terminated polybutadience (HTPB) fuel-binder were used as a base of the combustion code. The models have different AP grain sizes and distribution with the fuel binder. A 2D calculation was developed for the combustion of heterogeneous solid propellant, accounting for the gas phase physics, the solid phase physics and an unsteady non-planar description of the regressing propellant surface. The mathematical model described the unsteady burning of a heterogeneous propellant by simultaneously solving the combustion fields in the gas phase and the thermal field in the solid phase with appropriate jump condition across the gas/solid interface. The gas-phase kinetics was represented by a two-step reaction mechanism for the primary premixed flame and the primary diffusion flame between the decomposition products of the HTPB and the oxidizer. The essentially-non-oscillatory (ENO) scheme was used to describe the propagation of the unsteady non-planer regression surface. The results showed that AP particle size has a significant effect on the combustion surface deformation as well as on the burning rate. This study also determined the effect of various parameters on the surface propagation speed, flame structure, and the burning surface geometry. The speed by which the combustion surface recedes was found to depend on the exposed pressure

  7. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  8. State of art in incineration technology of radioactive combustible solid wastes

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1984-01-01

    The features of incineration treatment as the method of treating radioactive wastes are the effect of volume reduction and inorganic stabilization (change to ash). The process of incineration treatment is roughly divided into dry process and wet process. But that in practical use is dry incineration by excess air combustion or suppressed combustion. The important things in incineration techniques are the techniques of exhaust gas treatment as well as combustion techniques. In Europe and USA, incineration has been practiced in laboratories and reprocessing plants for low level combustible solids, but the example of application in nuclear power stations is few. In Japan, though the fundamental techniques are based on the introduction from Europe, the incineration treatment of combustible solids has been carried out in laboratories, reprocessing plants, nuclear fuel production facilities and also nuclear power stations. The techniques of solidifying ash by incineration and the techniques of incinerating spent ion exchange resin are actively developed, and the development of the treatment of radioactive wastes in the lump including incineration also is in progress. (Kako, I.)

  9. Ignition et oxydation des particules de combustible solide pulvérisé Ignition and Oxidation of Pulverized Solid Fuel

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    Full Text Available On présente dans cet article, en utilisant la méthode du ruban chauffé, une étude de la compétition entre (1 la dévolatilisation et l'oxydation consécutive des produits de pyrolyse et (2 l'ignition de la matrice solide et sa combustion rapide. La comparaison entre le moment de l'ignition et le début de la pyrolyse permet de déterminer en fonction de la température, de la taille des particules et de la concentration en oxygène, le domaine dans lequel l'ignition d'un combustible solide pyrolysable est du type whole coal ignition (c'est-à-dire lorsque l'ignition intervient avant que la pyrolyse devienne mesurable. Les résultats suggèrent que ce type d'ignition doit s'effectuer en règle générale dans les conditions de mise en oeuvre des combustibles solides pulvérisés dans les flammes industrielles. Dans le cas de l'ignition whole coal , la vitesse de combustion de la matrice solide est inhibée dans la période qui suit l'ignition. Cette inhibition est due d'une part à la difficulté pour l'oxygène de diffuser dans les pores pendant la sortie des produits de pyrolyse, et d'autre part à la consommation préférentielle de l'oxygène dans l'oxydation des produits de pyrolyse, principalement dans le cas où cette oxydation se développe sous forme de flamme. Ce n'est que lorsque la pyrolyse s'achève que la vitesse de combustion hétérogène peut atteindre sa valeur stationnaire normale, qui est alors pratiquement identique à celle du coke. Aux températures situées entre la température d'ignition du combustible solide et la température d'extinction du coke résiduel, la combustion est incomplète, une extinction intervenant à un degré de dévolatilisation d'autant plus grande que la température est élevée. Ce phénomène s'explique qualitativement par la théorie classique d'ignition thermique lorsqu'on l'applique au cas particulier des combustibles solides pyrolysables. Les températures d'ignition ainsi que les d

  10. Heat Transfer to a Thin Solid Combustible in Flame Spreading at Microgravity

    Science.gov (United States)

    Bhattacharjee, S.; Altenkirch, R. A.; Olson, S. L.; Sotos, R. G.

    1991-01-01

    The heat transfer rate to a thin solid combustible from an attached diffusion flame, spreading across the surface of the combustible in a quiescent, microgravity environment, was determined from measurements made in the drop tower facility at NASA-Lewis Research Center. With first-order Arrhenius pyrolysis kinetics, the solid-phase mass and energy equations along with the measured spread rate and surface temperature profiles were used to calculate the net heat flux to the surface. Results of the measurements are compared to the numerical solution of the complete set of coupled differential equations that describes the temperature, species, and velocity fields in the gas and solid phases. The theory and experiment agree on the major qualitative features of the heat transfer. Some fundamental differences are attributed to the neglect of radiation in the theoretical model.

  11. Enhancement of exergy efficiency in combustion systems using flameless mode

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Exergy efficiency in flameless combustion mode is 13% more than conventional combustion. • The maximum exergy efficiency in flameless combustion mode is achieved when oxidizer contains 10% oxygen. • Exergy destruction of flameless combustion is maximized when CO 2 is used for dilution of oxidizer. - Abstract: An exergitic-based analysis of methane (CH 4 ) conventional and flameless combustion in a lab-scale furnace is performed to determine the rate of pollutant formation and the effective potential of a given amount of fuel in the various combustion modes. The effects of inlet air temperature on exergy efficiency and pollutant formation of conventional combustion in various equivalence ratios are analyzed. The rate of exergy destruction in different conditions of flameless combustion (various equivalence ratios, oxygen concentration in the oxidizer and the effects of diluent) are computed using three-dimensional (3D) computational fluid dynamic (CFD). Fuel consumption reduction and exergy efficiency augmentation are the main positive consequences of using preheated air temperature in conventional combustion, however pollutants especially NO x formation increases dramatically. Low and moderate temperature inside the chamber conducts the flameless combustion system to low level pollutant formation. Fuel consumption and exergy destruction reduce drastically in flameless mode in comparison with conventional combustion. Exergy efficiency of conventional and flameless mode is 75% and 88% respectively in stoichiometric combustion. When CO 2 is used for dilution of oxidizer, chemical exergy increases due to high CO 2 concentration in the combustion products and exergy efficiency reduces around 2% compared to dilution with nitrogen (N 2 ). Since the rate of irreversibilities in combustion systems is very high in combined heat and power (CHP) generation and other industries, application of flameless combustion could be effective in terms of pollutant

  12. Combustion pressure-based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  13. Spectral modeling of radiation in combustion systems

    Science.gov (United States)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  14. Developments in, and environmental impacts of, electricity generation from municipal solid waste and landfill gas combustion

    International Nuclear Information System (INIS)

    Porteous, A.

    1993-01-01

    The 1991 NFFO allocations for renewable energy generation are reviewed with emphasis on electricity from municipal solid waste (MSW) and landfill gas (LFG) combustion tranches. The implications of materials recovery on the calorific value of MSW are considered, as are the environmental impacts of both MSW and LFG combustion with special reference to air pollutant emissions. The performance and economics of state of the art incineration and LFG power generating plants are examined. It is shown that energy recovery from these wastes can be both cost effective and environmentally desirable. (Author)

  15. Research on combustion instability and application to solid propellant rocket motors. II.

    Science.gov (United States)

    Culick, F. E. C.

    1972-01-01

    Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.

  16. Formation of Liquid Products at the Filtration Combustion of Solid Fuels

    Directory of Open Access Journals (Sweden)

    E. A. Salgansky

    2016-01-01

    Full Text Available Yields of liquid and gaseous products of the filtration combustion of cellulose, wood, peat, coal, and rubber have been investigated. Experiments have shown that the gasification of solid fuels in the regime with superadiabatic heating yields liquid hydrocarbons with quantity and quality, which are close to those produced using other methods, for example, by pyrolysis. But in this case no additional energy supply is needed to carry out the gasification process. The low calorific combustible gas, which forms in this process, contains a substantial quantity of carbon monoxide and hydrogen, which are components of syngas.

  17. Modeling JP-8 Fuel Effects on Diesel Combustion Systems

    National Research Council Canada - National Science Library

    Schihl, Peter; Hoogterp, Laura; Pangilinan, Harold; Schwarz, Ernest; Bryzik, Walter

    2006-01-01

    .... Since engine manufacturers rely solely on DF-2 for commercial vehicle applications most domestic industry, university, and national laboratory lead diesel engine combustion system research activities...

  18. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  19. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  20. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  1. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2009-03-01

    Full Text Available In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predicting negative and positive erosive burning, and transient, frequency-dependent combustion response, in conjunction with pressure-dependent and acceleration-dependent burning, is applied to the investigation of instability-related behaviour in a small cylindrical-grain motor. Pertinent key factors, like the initial pressure disturbance magnitude and the propellant's net surface heat release, are evaluated with respect to their influence on the production of instability symptoms. Two traditional suppression techniques, axial transitions in grain geometry and inert particle loading, are in turn evaluated with respect to suppressing these axial instability symptoms.

  2. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.

    Science.gov (United States)

    Frank, Alex; Castaldi, Marco J

    2014-08-01

    Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.

  3. Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation

    OpenAIRE

    Abanades García, Juan Carlos; Fernández García, José Ramón

    2014-01-01

    [EN] The present invention pertains to the field of the generation of energy from combustible gases, incorporating the capture of carbon dioxide for use or permanent storage and, specifically relates to cyclical methods of gas combustion with oxidized solids (chemical looping processes), in fixed bed, for solving the problem of controlling temperature in the combustion of gaseous fuels in fixed beds of metal oxides operating at high pressures, and also the associated installation.

  4. Morphology, composition, and mixing state of primary particles from combustion sources ? crop residue, wood, and solid waste

    OpenAIRE

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A. P.; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye

    2017-01-01

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combusti...

  5. Determination of sulfur in solids by constant current coulometric titration following combustion

    International Nuclear Information System (INIS)

    Monteiro, R.P.G.

    1986-01-01

    A method for determination of sulfur in solid materials by combustion in induction furnace, followed by constant current coulometric titration of the sulfur dioxide produced, is described. The method is applicable to samples with sulfur contents of 80 ppm to 20,000 ppm. Its feasibility was checked on the NBS and Leco steel samples. The results are in good agreement with the specified values. (author) [pt

  6. Non-radioactive verification test of ZRF25 radioactive combustible solid waste incinerator

    International Nuclear Information System (INIS)

    Wang Peiyi; Li Xiaohai; Yang Liguo

    2013-01-01

    This paper mainly introduces the construction and test run of ZRF25 radioactive combustible solid waste incinerator, by a series of simulating waste tests, such as 24 h test, 72 h test, 168 h test, making a conclusion that the incinerator runs reliably. In addition, all of the indexes (such as treatment capacity, volume reduction coefficient, clinker ignition loss of incineration ash) meet the requirements of contract and pollution discharging standards. (authors)

  7. Improvement in devices for carbonization at low temperature of solid combustibles

    Energy Technology Data Exchange (ETDEWEB)

    1947-07-07

    A complete device is described for the carbonization at low temperature of solid combustibles, characterized by the fact that the pyrogenation furnace proper is constructed in such a way as to permit pyrolysis by external heating in a thin layer with an ultra rapid evacuation of the gases and of the vapors of pyrolysis at the moment of their formation, and comprising means of mechaniccal agitation to promote the transmission of heat from the heating gases and the material to be pyrolized.

  8. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  9. Internet of Things Based Combustible Ice Safety Monitoring System Framework

    Science.gov (United States)

    Sun, Enji

    2017-05-01

    As the development of human society, more energy is requires to meet the need of human daily lives. New energies play a significant role in solving the problems of serious environmental pollution and resources exhaustion in the present world. Combustible ice is essentially frozen natural gas, which can literally be lit on fire bringing a whole new meaning to fire and ice with less pollutant. This paper analysed the advantages and risks on the uses of combustible ice. By compare to other kinds of alternative energies, the advantages of the uses of combustible ice were concluded. The combustible ice basic physical characters and safety risks were analysed. The developments troubles and key utilizations of combustible ice were predicted in the end. A real-time safety monitoring system framework based on the internet of things (IOT) was built to be applied in the future mining, which provide a brand new way to monitoring the combustible ice mining safety.

  10. Development of a computerized analysis for solid propellant combustion instability with turbulence

    Science.gov (United States)

    Chung, T. J.; Park, O. Y.

    1988-01-01

    A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed.

  11. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    Science.gov (United States)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  12. The effects of changing municipal solid waste characteristics on combustion fuel quality

    International Nuclear Information System (INIS)

    Artz, N.S.; Franklin, M.A.

    1991-01-01

    This paper discusses the quality of municipal solid waste (MSW) as a combustion fuel based on two aspects: heat of combustion and heavy metal content. Characterization of MSW by the material flows methodology now provides a historical data series on the composition of MSW for nearly 30 years (1960-1988). Over this period, there have been marked changes in MSW composition, with paper and plastics increasing in percentage while glass and metals have declined. This paper will illustrate the effects of this changing composition on heat of combustion. Using a computer model and standard heat of combustion values for the components of MSW, heating values of MSW (in Btu per pound) are calculated for the 30-year time period. Changes in heating values are highlighted and projections are made to year 2010. Recognizing the increasing importance of the recovery of materials from MSW for recycling, the paper illustrates the effects of removing varying quantities of recyclable materials (e.g., newspapers, corrugated boxes, plastic bottles, glass bottles, metals, yard wastes) on the heating value of the remaining MSW. The paper's final section summarizes recent studies performed for EPA and others on the presence of heavy metals (lead, cadmium, and mercury) in the products discarded in MSW. Again, time trends are used to demonstrate the changing presence of these metals

  13. Investigations of combustion process in combined cooker-boiler fired on solid fuels

    Directory of Open Access Journals (Sweden)

    Stojiljković Dragoslava D.

    2006-01-01

    Full Text Available The aim of the investigation was to make some reconstructions on the existing stove used for cooking and baking and to obtain the combined cooker-boiler which will fulfill the demands of European standard EN 12815. Implementation of modern scientific achievements in the field of combustion on stoves and furnaces fired on solid fuels was used. During the investigations four various constructions were made with different fresh air inlet and secondary air supply with the intention to obtain more complete combustion with increased efficiency and reduced CO emission. Three different fuels were used: firewood, coal, and wood briquette. A numerous parameters were measured: fuel weight changes during the combustion process, temperature of inlet and outlet water, flue gas composition (O2, CO, SO2, CO2, NOx, flue gas temperature, ash quantity etc. The result of the investigations is the stove with the efficiency of more than 75% - boiler Class 1 (according EN 12815 and CO emission of about 1% v/v. The results obtained during the measurements were used as parameters for modeling of combustion process. .

  14. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  15. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

    Science.gov (United States)

    2011-03-24

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc.), Collectible Concepts Group, Inc., Communitronics of... is a lack of current and accurate information concerning the securities of Clean Energy Combustion...

  16. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Fan, Yunlong; Yu, Zhaosheng; Fang, Shiwen; Lin, Yan; Lin, Yousheng; Liao, Yanfen; Ma, Xiaoqian

    2016-01-01

    Highlights: • Co-combustion of oil shale with municipal solid waste created significant changes. • Blending with municipal solid wastes could improve the combustion performance. • 10–30% of oil shale in the blends could be determined as the optimum ratio range. • Activation energy were calculated by the conversion rate and different proportion. - Abstract: The aim of this study is trying to reveal the thermal characteristics and kinetics of oil shale, municipal solid waste and their blends in the combustion process which are needed for efficient utilization. The combustion experiment is carried out in a thermogravimetric simultaneous thermal analyzer, where the temperature ranged from 110 °C to 900 °C at three different heating rates as 10 °C/min, 20 °C/min and 30 °C/min. Their kinetics were studied by Ozawa–Flynn–Wall and Friedmen methods. According to the data analysis, combustion characteristic index increased progressively with the increase of the proportion of municipal solid waste. And it’s suggested that there was certain interaction in the combustion process of oil shale and municipal solid waste. The average activation energy of the blends reached the minimum value, 177.7927 kJ/mol by Ozawa–Flynn–Wall method and 167.4234 kJ/mol by Friedmen method, when the proportion of MSW was 70%.

  17. Hadron–Quark Combustion as a Nonlinear, Dynamical System

    Directory of Open Access Journals (Sweden)

    Amir Ouyed

    2018-03-01

    Full Text Available The hadron–quark combustion front is a system that couples various processes, such as chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work has shown that this system is very nonlinear, and can be very sensitive to some of these processes. In these proceedings, we contextualize the hadron–quark combustion as a nonlinear system, subject to dramatic feedback triggered by leptonic weak decays and neutrino transport.

  18. Hadron–Quark Combustion as a Nonlinear, Dynamical System

    Science.gov (United States)

    Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth

    2018-03-01

    The hadron-quark combustion front is a system that couples various processes, such as chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work has shown that this system is very nonlinear, and can be very sensitive to some of these processes. In these proceedings, we contextualize the hadron-quark combustion as a nonlinear system, subject to dramatic feedback triggered by leptonic weak decays and neutrino transport.

  19. Combustion of Solid Fuel in a Vortex Furnace with Counter-swirling Flows

    Directory of Open Access Journals (Sweden)

    Redko A.A.

    2017-12-01

    Full Text Available The results of computer simulation of the processes of incineration of low-grade solid fuel-pulverized peat with a moisture content of 40%, an ash content of 6% are given. It has been determined the fields of distribution of temperature, velocity of gases and particles in the volume and at the outlet from the furnace. The three-dimensional temperature distribution in the combustion chamber indicates high-temperature combustion of peat particles at temperatures above 1700°C with liquid ash removal in the lower part of the furnace. It has been determined that when the furnace is cooled, it is not ensured combustion of the fuel completely. The value of the swirling flow rate at the outlet from the furnace (up to 370 m/s ensures the efficiency of separation of fuel particles, reducing heat losses from mechanical underburning. It is determined that the concentration of oxygen is close to zero over the entire height of the furnace, at an outlet from the furnace the oxygen concentration is 5...6%, since oxygen is supplied with excess (αв=1,2. The results of a numerical study showed that the diameter of peat particles affects the process of their combustion: coke particles with an initial diameter of 25 mkm to 250 mkm burn out by 96%. With an increase in particle diameter up to 1000 mkm, the degree of burn-out of coke decreases, but at the same time their removal decreases. It is shown that the furnace ensures the completeness of combustion of peat particles of peat 99.8%, volatiles is 100%.

  20. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is constrained by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing units more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spillage. Several test methods purportedly assess the potential for depressurization-induced backdrafting and spillage, but these tests are not robustly reliable and repeatable predictors of venting performance, in part because they do not fully capture weather effects on venting performance. The purpose of this literature review is to investigate combustion safety diagnostics in existing codes, standards, and guidelines related to combustion appliances. This review summarizes existing combustion safety test methods, evaluations of these test methods, and also discusses research related to wind effects and the simulation of vent system performance. Current codes and standards related to combustion appliance installation provide little information on assessing backdrafting or spillage potential. A substantial amount of research has been conducted to assess combustion appliance backdrafting and spillage test methods, but primarily focuses on comparing short-term (stress) induced tests and monitoring results. Monitoring, typically performed over one week, indicated that combinations of environmental and house operation characteristics most conducive to combustion spillage were rare. Research, to an extent, has assessed existing combustion safety diagnostics for house depressurization, but the objectives of the diagnostics, both stress and monitoring, are not clearly defined. More research is also needed to quantify the frequency of test “failure” occurrence throughout the building stock and assess the statistical effects of weather (especially wind) on house depressurization and in turn on combustion appliance venting

  1. Provisional 2008 assessment of solid mineral fuels; Bilan provisoire 2008 des combustibles mineraux solides

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    This article first comments data on solid mineral fuel consumption in France in 2008, i.e., the overall consumption, and the consumption by different sectors (energy production in coal plants, iron and steel industry, other industries, housing and office buildings). Then, it comments solid mineral fuel imports and their origins. It comments and explains the price evolution since 1999 (notably on the Antwerp-Rotterdam-Amsterdam market) in relationship with maritime transport price, availabilities and problems, and with the evolution of coal demand (notably in China) and oil prices. Finally, it briefly comments the French residual production and stocks.

  2. Investigation of a Boiler's Furnace Aerodynamics with a Vortex Solid Fuel Combustion Scheme on Physical and Mathematical Models

    Directory of Open Access Journals (Sweden)

    Prokhorov V.B.,

    2018-04-01

    Full Text Available The important problem of developing the low-cost technologies that will be able to provide a deep decrease in the concentration of nitrogen oxides while maintaining fuel burn-up efficiency is considered. This paper presents the results of the aerodynamics study of the furnace of boiler TPP-210A on the base of the physical and mathematical models in the case when boiler retrofitting from liquid to solid slag removal with two to three times reduction of nitrogen oxide emissions and replacing the vortex burners with direct-flow burners. The need for these studies is due to the fact that the direct-flow burners are "collective action" burners, and efficient fuel combustion can be provided only by the interaction of fuel jets, secondary and tertiary air jets in the furnace volume. The new scheme of air staged combustion in a system of vertical vortexes of opposite rotation with direct-flow burners and nozzles and direct injection of Kuznetsky lean coal dust was developed. In order to test the functional ability and efficiency of the proposed combustion scheme, studies on the physical model of the boiler furnace and the mathematical model of the experimental furnace bench for the case of an isothermal fluid flow were carried out. Comparison showed an acceptable degree of coincidence of these results. In all studied regimes, pronounced vortices remain in both the vertical and horizontal planes, that indicates a high degree of mass exchange between jets and combustion products and the furnace aerodynamics stability to changes in regime factors.

  3. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  4. Numerical Evaluation of the Use of Aluminum Particles for Enhancing Solid Rocket Motor Combustion Stability

    Directory of Open Access Journals (Sweden)

    David Greatrix

    2015-02-01

    Full Text Available The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave development in the motor chamber flow. With the focus of the present study placed on reactive particles, a numerical internal ballistic model incorporating relevant elements, such as a transient, frequency-dependent combustion response to axial pressure wave activity above the burning propellant surface, is applied to the investigation of using aluminum particles within the central internal flow (particles whose surfaces nominally regress with time, as a function of current particle size, as they move downstream as a means of suppressing instability-related symptoms in a cylindrical-grain motor. The results of this investigation reveal that the loading percentage and starting size of the aluminum particles have a significant influence on reducing the resulting transient pressure wave magnitude.

  5. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    Science.gov (United States)

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Technological methods of reducing the emissions of nitrogen oxides during the combustion of solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    For protecting the atmosphere from emissions of toxic NO /SUB x/ during combustion of fuel in boilers the amount of NO /SUB x/ can be reduced in the process of combustion, or the flue gases (FG) from the boiler can be cleaned. The latter method is bound up with the necessity for treatment of a large quantity of FG with a comparatively low concentration in them of nitrogen oxides, chemically stable and poorly soluble in water. The problem is complicated by the presence in the FG of SO /SUB x/, O/sub 2/, and solid particles. The method of purifying the FG is complicated and requires large capital investment and operating expenses. By laboratory studies in the All-Union Institute of Heat Engineering im. F.E. Dzerzhinskiy (VTI) it was established that thermal NO /SUB x/ is formed at a combustion temperature greater than or equal to 1550 /sup 0/C and that the 0/sub 2/ concentration and considerably less the temperature strongly affect NO /SUB x/ formation. On the basis of laboratory studies and industrial tests in the VTI, methods of reducing NO /SUB x/ emissions by large-scale boilers are recommended.

  7. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Science.gov (United States)

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  8. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  9. Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Stephen M. Neill

    2017-11-01

    Full Text Available Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D and three-dimensional (3-D scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.

  10. Natural gas reburning technology for NOx reduction from MSW combustion systems

    International Nuclear Information System (INIS)

    Penterson, C.A.; Abbasi, H.; Khinkis, M.J.; Wakamura, Y.; Linz, D.G.

    1990-01-01

    A technology for reducing emissions from municipal solid waste combustion systems through advanced combustion techniques is being developed. Pilot testing of natural gas reburning was first performed in the Institute of Gas Technology's pilot-scale furnace under conditions simulating the firing of 1.7 x 10 6 Btu/hr (0.5 MWth) of MSW. Pilot testing then continued in Riley Stoker Corporation's 3 x 10 6 Btu/hr (0.88 MWth), 7 ton/day, pilot-scale MSW combustor using actual MSW in both test series, injection of up to 15% (HHV basis) natural gas reduced NO, by 50--70% while maintaining or improving combustion efficiency as measured by CO and hydrocarbon emissions and temperature stability. This paper will review the test results and discuss the status of the full-scale field demonstration testing that is planned for 1990

  11. Unsteady Motions in Combustion Chambers for Propulsion Systems

    Science.gov (United States)

    2006-12-01

    active in wind musical instruments. In all such cases, °ow separation is involved, followed by instability of a shear layer and formation of vortices... musical instruments. The idea that vortices might be responsible for oscillations in a solid propellant rocket seems to have been proposed ¯rst by...Combustion Oscillation in a Ducted Premixed Flame," Inst. Mech. Engineers, Int. Conf. on Comb. in Eng., Oxford, pp. 85{94. Campos -Delgado, D.V., Scheuermans

  12. Advanced Integrated Fuel/Combustion Systems

    Science.gov (United States)

    2004-01-01

    ineffective in the T63, even at concentrations up to 40 times the recommended value. Additive companies were informed about the performance of their...M. (1996): NASA RP- 1385. • Toepke, S. (1999): Boeing Company , Personal Correspondence. • Ulrich, G.D. (1971): Comb. Sci. Tech., Vol. 4, pp. 47-58...temperature (K) THC = total hydrocarbons UNICORN = UNsteady Ignition and COmbustion with ReactioNs V = reactor volume (mL) WSR = well-stirred reactor

  13. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  14. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  15. Fundamental characterization of alternate fuel effects in continuous combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Blazowski, W.S.; Edelman, R.B.; Harsha, P.T.

    1978-09-11

    The overall objective of this contract is to assist in the development of fuel-flexible combustion systems for gas turbines as well as Rankine and Stirling cycle engines. The primary emphasis of the program is on liquid hydrocarbons produced from non-petroleum resouces. Fuel-flexible combustion systems will provide for more rapid transition of these alternate fuels into important future energy utilization centers (especially utility power generation with the combined cycle gas turbine). The specific technical objectives of the program are to develop an improved understanding of relationships between alternate fuel properties and continuous combustion system effects, and to provide analytical modeling/correlation capabilities to be used as design aids for development of fuel-tolerant combustion systems. Efforts this past year have been to evaluate experimental procedures for studying alternate fuel combustion effects and to determine current analytical capabilities for prediction of these effects. Jet Stirred Combustor studies during this period have produced new insights into soot formation in strongly backmixed systems and have provided much information for comparison with analytical predictions. The analytical effort included new applications of quasi-global modeling techniques as well as comparison of prediction with the experimental results generated.

  16. Study of new technique of solid combustible materials to determination of volatile elements by flame atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Campos, R.C. de.

    1988-01-01

    A new technique for direct trace element analysis of solid combustible materials is described. The samples (up to 10 mg) are weighed on a graphite platform wich is then placed in a quartz tube, at the focal point of three infrared lamps. When the lamps are turned on, the sample burns in a stream of air, and the resulting dry aerosol containing volatile elements such as Hg, Cd, Bi, Tl, Zn, Pb and Cu is carried into the mixing chamber and thence into the flame, where the atomic absorption measurement is carried out. This technique overcomes chemical sample preparation steps, avoiding contaminations of losses associated with these steps. A ''furnace in flame'' system where the aerosol is transported to a flame heated T-tube is also described. The influence of flame stoichiometry, observation height, platform material and air flux intensity was studied inorder to determine optimal analytical conditions. (author) [pt

  17. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    Science.gov (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  18. Investigation of combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine system

    International Nuclear Information System (INIS)

    Yin Juan; Weng Yiwu

    2011-01-01

    The goals of this research were to investigate the combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine. The characteristics of lean burn catalytic combustion were investigated by utilising 1D heterogeneous plug flow model which was validated by experiments. The effects of operating parameters on catalytic combustion were numerically analysed. The system models were built in ASPEN Plus and three independent design variables, i.e. compressor pressure ratio (PR), regenerator effectiveness (RE) and turbine inlet temperature (TIT) were selected to analyse the thermodynamic performance of the thermal cycle. The main results show that: simulations from 1D heterogeneous plug flow model can capture the trend of catalytic combustion and describe the behavior of the catalytic monolith in detail. Inlet temperature is the most significant parameter that impacts operation of the catalytic combustor. When TIT and RE are constant, the increase of PR results in lowering the inlet temperature of the catalytic combustor, which results in decreasing methane conversion. The peak thermal efficiency and the optimal PR at a constant TIT increase with the increase of TIT; and at the constant PR, the thermal efficiency increases with the increase of TIT. However, with lower TIT conditions, the optimal PR and the peak efficiency at a constant TIT of the LBCCGT cycle are relative low to that of the conventional cycle. When TIT and PR are constant, the decrease of RE may result in lower methane conversion. The influences of RE on the methane conversion and the thermal efficiency are more significant at higher PRs. The higher thermal efficiency for the lower RE is achieved at lower PR.

  19. N2O formation in combustion systems

    International Nuclear Information System (INIS)

    1989-11-01

    The objective of this project is to characterize N 2 O emissions from combustion sources emphasizing N 2 O emissions from post-combustion selective gas phase NO x reduction processes and reburning. The processes to be evaluated include ammonia, urea and cyanuric acid injection and reburning. The project includes pilot-scale testing at two facilities supported by chemical kinetic modeling. Testing will be performed on both a gas-fired plug flow combustor and a pulverized-coal fired combustor. Work performed to date has included the performance of the initial detailed chemical kinetics calculations. These calculations showed that both urea and cyanuric acid produce significant quantities of N 2 O, while NH 3 injection produced negligible amounts. These kinetics data support limited test results reported for cyanuric acid and ammonia injection. Laboratory work to evaluate the selective gas phase NO x reduction processes listed above will begin in the gas-fired facility early in CY 1990. Testing to evaluate reburning at the coal-fired facility is currently planned to be performed in parallel with the testing at the gas-fired facility. Following completion of that work, additional kinetics calculations will be performed

  20. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  1. System analysis of environmental impacts of the combustion of waste paper

    International Nuclear Information System (INIS)

    Palanterae, R.

    1996-01-01

    Combustion alternatives of different waste paper grades that are unsuitable or difficult to recycle were studied. Environmental impacts of alternative methods of waste paper treatment - combustion, dump disposal and use for fibre raw material - were studied with the aid of system analysis. Use of waste paper for energy production is usually recommended when there is oversupply of waste paper or it is unsuitable for recycled pulp. On the basis of certain studies it has also been suggested that it would be most profitable to use all waste paper as fuel. Refused tight paper rolls, baled brown paper and a mixture of adhesive paper and crushed building waste wood were chosen for waste paper in the combustion tests. The tests were run in the fluidised-bed combustion boiler of Maentaen Energia Oy. The mass flow of paper was about 3 t/h and its proportion of the fuel efficiency on average 20%. Prior to each paper combustion test, a blank trial was run with pure peat. The combustion tests indicated that flue gas emissions are not reduced by using paper instead of peat for energy production, but their composition is changed slightly. When the environmental effects of the use of waste paper for energy were compared with those of landfill dumping, the most significant difference was a reduction in greenhouse gases. The amount of methane emitted from the landfill will reduce. Differences in other emissions, e.g., in acidification due to SO 2 and NO 2 emissions, were rather small. The amount of solid waste was significantly lower in the combustion alternative. (38 refs.)

  2. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1994-01-01

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream

  3. Solid-state nuclear magnetic resonance studies of phosphorus and boron in coals and combustion residues

    Energy Technology Data Exchange (ETDEWEB)

    Burchill, P.; Howarth, O.W.; Richards, D.G.; Sword, B.J. (British Coal Corporation, Stoke Orchard (UK). Coal Research Establishment)

    1990-04-01

    Solid-state nuclear magnetic resonance spectroscopy with magic angle spinning (MAS-n.m.r.) was used to study the occurrence of phosphorus and boron in coal, and their fate on combustion. These elements are only minor components of coal, but may significantly influence the utilization properties. {sup 31} P MAS-n.m.r. spectroscopy has confirmed that phosphorus is present in coal predominantly as apatite. This mineral is thermally stable under oxidizing conditions, and survives largely unaltered in high temperature ashes. However, under the semi-reducing bed conditions of certain stoker-fired boilers, it may be decomposed, volatilizing the phosphorus. The {sup 31}P MAS-n.m.r. spectra of bonded deposits show phosphorus in a markedly different coordination environment to that in apatite, the chemical shift suggesting aluminium phosphate or boron phosphate. {sup 11}B MAS-n.m.r. spectra of coals exhibit resonances due to both trigonal and tetrahedrally coordinated boron. Trigonal boron is probably present as tourmaline, but the nature of the tetrahedral boron is less certain; it may be held in tetrahedral sites within certain clay minerals. In common with phosphorus, boron may be volatilized during combustion. The {sup 11}B MAS-n.m.r. spectra of bonded deposits show a tetrahedral resonance with a chemical shift quite consistent with that of boron phosphate. 39 refs., 9 figs., 5 tabs.

  4. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2006-12-31

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  5. Combustion of Solids in Microgravity: Results from the BASS-II Experiment

    Science.gov (United States)

    Ferkul, Paul V.; Bhattacharjee, Subrata; Fernandez-Pello, Carlos; Miller, Fletcher; Olson, Sandra L.; Takahashi, Fumiaki; T’ien, James S.

    2014-01-01

    The Burning and Suppression of Solids-II (BASS-II) experiment was performed on the International Space Station. Microgravity combustion tests burned thin and thick flat samples, acrylic slabs, spheres, and cylinders. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 53 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and oxygen concentration on flame appearance, growth, spread rate, and extinction were examined in both the opposed and concurrent flow configuration. The flames are quite sensitive to air flow speed in the range 0 to 5 cms. They can be sustained at very low flow speeds of less than 1 cms, when they become dim blue and stable. In this state they are not particularly dangerous from a fire safety perspective, but they can flare up quickly with a sudden increase in air flow speed. Including earlier BASS-I results, well over one hundred tests have been conducted of the various samples in the different geometries, flow speeds, and oxygen concentrations. There are several important implications related to fundamental combustion research as well as spacecraft fire safety. This work was supported by the NASA Space Life and Physical Sciences Research and Applications Division (SLPSRA).

  6. Trace elements in co-combustion of solid recovered fuel and coal

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming

    2013-01-01

    Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.......%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash...... was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~2.5 μm, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost...

  7. Investigation of a process for the pyrolysis of plutonium contaminated combustible solid waste

    International Nuclear Information System (INIS)

    Longstaff, B.; Cains, P.W.; Elliot, M.N.; Taylor, R.F.

    1981-01-01

    Pyrolysis offers an attractive first-stage alternative to incineration as a means of weight and volume reduction of solide combustible waste P.C.M, if it is required to recover plutonium from the final product. The avoidance of turbulent conditions associated with incineration should lead to less carry-over of particulates, and the lower operating temperature approximately 700 0 C should be most advantageous to the choice of constructional materials and to plant life. The char product from pyrolysis may be oxidised to a final ash at similarly acceptable low temperatures by passing air over a stirred bed of materials. The recently received draft designs for a cyclone after-burner (plus associated scrubbers and filters etc) offer an attractive method of dispensing of the volatile products of pyrolysis

  8. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  9. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Stephen [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding of how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.

  10. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    OpenAIRE

    S. Saha; D. Chakraborty

    2016-01-01

    Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations ...

  11. Radiative heat transfer in turbulent combustion systems theory and applications

    CERN Document Server

    Modest, Michael F

    2016-01-01

    This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

  12. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  13. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  14. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  15. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    Science.gov (United States)

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  17. Nitrous oxide from solid fuel combustion: contribution to national inventories in the UK, France and Germany

    International Nuclear Information System (INIS)

    Fynes, G.; Hughes, I.S.C.; Sage, P.W.

    1994-01-01

    Considerable uncertainties exist over the extent and timing of any potential climate change as a result of increases in the concentration of greenhouse gases in the atmosphere. These uncertainties result from inadequate knowledge and understanding of the natural mechanisms that control the chemistry, and hence lifetimes, of these gases in the atmosphere. An important aspect of the scientific investigation into potential climate change is the attempt to quantify the sources and sinks of the various greenhouse gases. This will enable the contribution of anthropogenic emissions to be placed in context with those from natural sources. The British Coal Corporation is co-ordinating a project funded by the EEC JOULE Programme to investigate the emissions of greenhouse gases from coal fired plant. This collaborative programme aims to establish the extent of greenhouse gas emissions, with particular emphasis on nitrous oxide (N 2 O) from a wide range of coal burning appliances. An important aspect of the programm is to identify potential greenhouse-related problems with emerging clean-coal technologies, as well as retrofit pollution abatement technology, attributable to modifications to the combustion process. For example, the environmental benefits of fluidised bed combustion in reducing emissions of acidic gases are well proven. However, the lower combustion temperatures in such systems have been shown to promote greater emissions of N 2 O. The information from the various emissions assessments will be combined with a survey of coal use in the UK and the rest of Europe to establish an inventory of greenhouse gas emissions. 5 refs., 3 tabs

  18. Occurrence of bromine in fluidised bed combustion of solid recovered fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vainikka, P.

    2011-12-15

    Corrosive ash species are the single most important factor limiting the electric efficiency of steam boiler plants fired with waste or biomass. Chlorine has been found to have a central role in the chemistry involved as it reduces the melting temperature of ash, forms corrosive vapour and gas species in the furnace and halogenated deposits on boiler heat transfer surfaces. In this context chlorine has been extensively researched. At the time of writing this thesis there was hardly any published data available on the occurrence of bromine (Br) in the aforementioned context. The objective of this work was to review the occurrence of bromine in solid fuels and characterise the behaviour of bromine in full-scale fluidised bed combustion. The review on the occurrence of bromine in solid fuels revealed that in anthropogenic wastes bromine is mainly found in connection to flame retarded substances. Several weight percentages of bromine can be found in plastics treated with brominated flame retardants (BFRs). Bromine is typically found some 100-200 mg kg-1 in mixed municipal solid wastes (MSW). Bromine may be enriched in fuels with high share of plastics, such as solid recovered fuel (SRF) or refuse derived fuel (RDF). Up to 2000 mg kg-1 was found as a monthly average in SRF, typical levels being 20-200 mg kg-1. Wastewater sludge from paper mills may contain bromine 20-100 mg kg-1 due the use of bromine based biocides. In other fuels bromine may be found in significant amounts in marine influenced coal deposits and peat as well as in biomass treated with brominated pesticides. In the experimental part SRF, spruce bark and wastewater sludge from a paper mill were co-fired in a full- scale bubbling fluidised bed (BFB) boiler, and the collected fuels, aerosols and waterwall deposits were analysed with the focus on the fate of bromine. Bromine was mainly found to form water soluble high vapour pressure alkali metal halides in the furnace - in the form of KBr(g) and NaBr(g) as

  19. A DMS kinetic study of the boron oxides vapor in the combustion front of SHS system Mo + B

    International Nuclear Information System (INIS)

    Kashireninov, O.E.; Yuranov, I.A.

    1994-01-01

    The distribution of the boron oxides vapor in the combustion wave of the SHS system Mo + B has been studied by the dynamic mass spectrometry technique (DMS) to test the thermodynamically based hypothesis for the key role of gas-phase transport in solid-state combustion. The molecular beam sampling of the gases over the burning tablet was performed by a stationary probe cone from the moving combustion wave. Ion currents of boron oxides were recorded at 10--20 ms intervals that afforded spatial resolution of 0.1--0.2 mm. It has been found that the distribution of the boron oxides vapor pressure along the combustion wave corresponds to the known zones of preheating, reaction, and postcombustion. The rapid increase of B 2 O 2 pressure takes place in the preheating zone as a result of the reaction B(s) + B 2 O 3 (g) = B 2 O 2 (g). Boron oxides are not observed over the reaction zone because of their complete decay in the reaction with Mo(s) to form molybdenum boride(s). The appearance The appearance of boron oxide vapors over the postcombustion zone is due to the evaporation of B 2 O 3 (l). The effective kinetic parameters are estimated from the data obtained. The results show that solid-state combustion of the Mo + B system proceeds predominantly through formation of gas-phase boron oxides

  20. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior

    International Nuclear Information System (INIS)

    He, Chao; Giannis, Apostolos; Wang, Jing-Yuan

    2013-01-01

    Highlights: • The hydrothermal carbonization of sewage sludge process is developed. • Hydrochars are solid fuels with less nitrogen and sulfur contents. • The first order combustion reaction of hydrochars is derived. • Main combustion decomposition of hydrochars is easier and more stable. • Formation pathways of hydrochars during hydrothermal carbonization are proposed. - Abstract: Conventional thermochemical treatment of sewage sludge (SS) is energy-intensive due to its high moisture content. To overcome this drawback, the hydrothermal carbonization (HTC) process was used to convert SS into clean solid fuel without prior drying. Different carbonization times were applied in order to produce hydrochars possessing better fuel properties. After the carbonization process, fuel characteristics and combustion behaviors of hydrochars were evaluated. Elemental analysis showed that 88% of carbon was recovered while 60% of nitrogen and sulfur was removed. Due to dehydration and decarboxylation reactions, hydrogen/carbon and oxygen/carbon atomic ratios reduced to 1.53 and 0.39, respectively. It was found that the fuel ratio increased to 0.18 by prolonging the carbonization process. Besides, longer carbonization time seemed to decrease oxygen containing functional groups while carbon aromaticity structure increased, thereby rendering hydrochars highly hydrophobic. The thermogravimetric analysis showed that the combustion decomposition was altered from a single stage for raw sludge to two stages for hydrochars. The combustion reaction was best fitted to the first order for both raw sludge and hydrochars. The combustion of hydrochars is expected to be easier and more stable than raw sludge because of lower activation energy and pre-exponential factor

  1. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  2. Leaching of coal solid waste; Lixiviacion de Residuos de Combustion de Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Combustion process to generate electrical energy in Thermal power Stations causes a big volume of solid wastes. Their store and removal has to be check for possible risks in the Environment. In this study, ashes and slags from eleven Spanish Thermal power Station has been selected. Physical chemical assays have been developed for determining twenty four parameters by; ionic chromatography, atomic absorption spectrophotometry liquid chromatography. (HPLC): UV and selective electrodes, selective electrodes espectrophotometry. Moreover, six biological tests have been realized: Bioluminescence with Photobacterium phosphoreum, Daphnia magna assay. Inhibition on Algae, Inhibition of respiration of Activated Sludges, Acute Toxicity on Fish and Earth-worm Toxicity tests. Samples treatment has been carrying out by two leaching methods: 1 o EP and DIN 38414-4 No toxic level has been found for physical-chemical parameters. The CE50 values of biological tests have allowed to stablish organisms sensibilities to waste samples, differences between ashes and slags and relationship between the carbon type and his effects on the biological organisms. (Author)

  3. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  4. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  5. Chemical Looping Combustion of Solid Fuels in a 10 kWth Unit Combustion de charge solide en boucle chimique dans une unité de 10 kWth

    Directory of Open Access Journals (Sweden)

    Berguerand N.

    2011-02-01

    Full Text Available The present study is based on previous results from batch experiments which were conducted in a 10 kWth chemical looping combustor for solid fuels using ilmenite, an iron titanium oxide, as the oxygen carrier with two solid fuels: a Mexican petroleum coke and a South African bituminous coal. These experiments involved testing at different fuel reactor temperatures, up to 1030°C, and different particle circulation rates between the air and fuel reactors. Previous results enabled modeling of the reactor system. In particular, it was possible to derive a correlation between measured operational data and actual circulation mass flow, as well as a model that describes the carbon capture efficiency as a function of the residence time and the char reactivity. Moreover, the kinetics of char conversion could be modeled and results showed good agreement with experimental values. The purpose of the present study was to complete these results by developing a model to predict the conversion of syngas with ilmenite in the fuel reactor. Here, kinetic data from investigations of ilmenite in TGA and batch fluidized bed reactors were used. Results were compared with the actual conversions during operation in this 10 kWth unit. Cette étude est basée sur des résultats antérieurs obtenus dans une unité de combustion de charges solides en boucle chimique d’une puissance de 10 kWth. Le transporteur d’oxygène utilisé est de l’ilménite, un minerai de fer et de titane, et les charges solides étudiées sont, d’une part, un coke de pétrole mexicain et, d’autre part, un charbon bitumineux sud africain. Les résultats expérimentaux ont été obtenus à des températures allant jusqu’à 1030°C avec différents débits de transporteur d’oxygène entre les réacteurs d’oxydation et de réduction. La modélisation de la combustion en boucle chimique de charges solides a déjà permis d’établir une corrélation entre le débit de circulation de

  6. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor- General combustion and ash behavior

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    .9 wt.%, 14.8 wt.% and 25 wt.%, respectively. The effect of additives was evaluated by maintaining the share of secondary fuel (mixture of SRF and additive) at 14.8 wt.%. The experimental results showed that the fuel burnout, NO and SO2 emission in co-combustion of coal and SRF were decreased...... with increasing share of SRF. The majority of the additives inhibited the burnout, except for NaCl which seemed to have a promoting effect. The impact of additives on NO emission was mostly insignificant, except for ammonium sulphate which greatly reduced the NO emission. For SO2 emission, it was found that all...

  7. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    Science.gov (United States)

    Wasielewski, Ryszard; Głód, Krzysztof; Telenga-Kopyczyńska, Jolanta

    2018-01-01

    The results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds) in refer to the legislative requirements (2 seconds) for the thermal conversion of waste.

  8. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    Directory of Open Access Journals (Sweden)

    Wasielewski Ryszard

    2018-01-01

    Full Text Available The results of industrial research on co-combustion of solid recovered fuel (SRF with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds in refer to the legislative requirements (2 seconds for the thermal conversion of waste.

  9. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  10. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  11. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  12. System and process for dissolution of solids

    Science.gov (United States)

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  13. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  14. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  15. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  16. Factors affecting the amounts of emissions arising from fluidized bed combustion of solid fuels

    International Nuclear Information System (INIS)

    Horbaj, P.

    1996-01-01

    The factors affecting the amounts of nitrogen oxides (NO x ) and sulfur oxides (SO x , i.e. SO 2 + SO 3 ) formed during fluidized bed combustion of fossil fuels are analyzed using both theoretical concepts and experimental data. The factors treated include temperature, excess air, fuel parameters, pressure, degree of combustion gas recycling, combustion distribution along the combustion chamber height, and sulfur trapping processes for NO x , and the Ca/S ratio, fluidized layer height and fluidization rate, granulometry and absorbent type, fluidized layer temperature, and pressure during combustion for SO x . It is concluded that fluidized bed boilers are promising power generating facilities, mitigating the environmental burden arising from fossil fuel combustion. (P.A.). 12 figs., 9 refs

  17. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  18. Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    The boiler of a premixed combustion system with EGR (exhaust gas recirculation) is investigated to explore the potential for increasing thermal efficiency and lowering pollutant emissions. To achieve this purpose, a thermodynamic analysis is performed to predict the effect of EGR on the thermodynamic efficiency for various equivalence ratios. Experiments of a preheated air condensing boiler with EGR were conducted to measure the changes in the thermal efficiency and the characteristics of the pollutant emission. Finally, a 1-D premixed code was calculated to understand the effect of the EGR method on the NO reduction mechanism. The results of the thermodynamic analysis show that the thermodynamic efficiency is not changed because the temperature and the amount of the exhaust gas are unchanged, even though the EGR method is implemented in the system. However, when the EGR method is used with an equivalence ratio near 1.00, it is experimentally verified that the thermal efficiency increases and the NO x concentration decreases. Based on the results from numerical calculations, it is shown that the NO production rates of N + O 2 ↔ NO + O and N + OH ↔ NO + H are remarkably changed due to the decrease in the flame temperature and the NO mole fraction is decreased. - Highlights: • Premixed combustion system with EGR is studied for a high efficiency and low NO x . • All research is performed with various EGR and equivalence ratios. • It verified that efficiency increases and the NO x emission decreases with EGR method. • NO production rates are remarkably changed by N + O 2 ↔ NO + O and N + OH ↔ NO + H with EGR

  19. Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines

    International Nuclear Information System (INIS)

    Su, LiWang; Li, XiangRong; Zhang, Zheng; Liu, FuShui

    2014-01-01

    Highlights: • A new combustion system named FSCS for DI diesel engines was proposed. • Fuel/air mixture formation was improved for the application of FSCS. • The FSCS showed a good performance on emission characteristics. - Abstract: To optimize the fuel/air mixture formation and improve the environmental effect of direct injection (DI) diesel engines, a new forced swirl combustion system (FSCS) was proposed concerned on unique design of the geometric shape of the combustion chamber. Numerical simulation was conducted to verify the combustion and emission characteristics of the engines with FSCS. The fuel/air diffusion, in-cylinder velocity distribution, turbulent kinetic energy and in-cylinder temperature distribution were analyzed and the results shown that the FSCS can increase the area of fuel/air diffusion and improve the combustion. The diesel engine with FSCS also shown excellent performance on emission. At full load condition, the soot emission was significantly reduced for the improved fuel/air mixture formation. There are slightly difference for the soot and NO emission between the FSCS and the traditional omega combustion system at lower load for the short penetration of the fuel spray

  20. Fuel injection system for internal combustion engines. Kraftstoffeinspritzsystem fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, U.

    1990-09-13

    A fuel injection system for an internal combustion engine is provided with a fuel supply line (13) and at least one electromagnetically actuated fuel injection valve (14) for apportioning a quantity of fuel for injection. A connection muzzle (24) coming from the valve body (23) juts into an opening (22) in the suction pipe (21) of the internal combustion engine. The end of the injection valve opposite the connecting muzzle (24) is connected with the fuel supply line via a fuel entry. The valve body (23) is enclosed by a casing (25) in order to provide the conditions required for a warm start. An annulus (31) extending over a large part of the axial length of the valve remains between the casing and the valve body (23). The annulus (31) communicates with the fuel flow through the fuel supply line (13) via an afflux and an efflux opening (32, 33) (Fig. 1).

  1. Experimental COPD induced by solid combustible burn smoke in rats: a study of the emphysematous changes of the pulmonary parenchyma.

    Science.gov (United States)

    Murărescu, Elena Doina; Eloae-Zugun, Fl; Mihailovici, Maria Sultana

    2008-01-01

    According to the GOLD 2006 definition, COPD is a preventable and treatable pathological situation characterized by the partially reversible airflow limitation determined by a variable proportion mixture of small airways disease (obliterative bronchiolitis) and parenchyma destruction (emphysema). A major impediment in the study of the COPD is represented by the fact the fundamental morphological changes that determine the major pulmonary dysfunction take place in the small, peripheral, airways, at the bronchiolo-alveolar attachments. That is why the experimental model of COPD developed progressively to the transgenic mouse. There are many experimental studies on the animal models that have obtained emphysema rapidly through intratraheal instillation of elastasis or bronchitis/bronchiolitis through intratraheal instillation of particles. It is accepted that the unnatural character of aggression, that does not permit the natural evolution of the inflammatory phenomenon, limits these models and tissue remodeling that take place in COPD patients. It is well known that cigarette smoking is a major cause of COPD. There have been reported some cases of COPD in never smoking patients exposed to air pollutants. We aimed to create an experimental model of COPD in rat through exposure to smoke resulted from solid combustibles burn for the same period and in the same conditions of cigarette smoke exposure and to compare the pulmonary morphological changes. Thirty Wistar rats were divided into three groups (n = 10): (1) the control group (C), (2) the cigarette smoke group (CS), and (3) the solid combustible smoke group (SCS). Apart from the control group, these were treated with solid combustibles smoke (SCS group) or cigarette smoke (CS group) for six months. Morphological and morphometry studies have been assessed. We have established a rat COPD model based on natural cigarette smoke exposure versus solid combustible burn resulted smoke, usable for a further approach in human

  2. Simulation technique on combustion of solid propellant; Kotai suishin`yaku nensho no simyureshon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Akihide.; Bazaki, Hakobu.; Douke, Kiyotaka. [Asahi Chemical Industry Corp., Tokyo (Japan). Oita Plant

    1999-04-30

    The burning area of propellant grain is one of the most important parameter in conducting of design on solid rocket performance. However, it has been difficult to calculate the burning area of propellant grain with precise and speed by geometrical way since most of propellant configuration have been adopted as complicated. In the present study, the simulation system was developed and produced, which was adapted `particle chasing method` to and made ot compute the burning area transition. Moreover, the reliability on computation by the system was check up on. It was found that the discrepancy of calculation between by the geometrical way and by the system was less than 1%. (author)

  3. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  4. In situ high-temperature gas sensors: continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process

    Directory of Open Access Journals (Sweden)

    H. Kohler

    2018-03-01

    Full Text Available The sensing characteristics and long-term stability of different kinds of CO ∕ HC gas sensors (non-Nernstian mixed potential type during in situ operation in flue gas from different types of low-power combustion systems (wood-log- and wood-chip-fuelled were investigated. The sensors showed representative but individual sensing behaviour with respect to characteristically varying flue gas composition over the combustion process. The long-term sensor signal stability evaluated by repeated exposure to CO ∕ H2 ∕ N2 ∕ synthetic air mixtures showed no sensitivity loss after operation in the flue gas. Particularly for one of the sensors (Heraeus GmbH, this high signal stability was observed in a field test experiment even during continuous operation in the flue gas of the wood-chip firing system over 4 months. Furthermore, it was experimentally shown that the signals of these CO ∕ HC sensing elements yield important additional information about the wood combustion process. This was demonstrated by the adaptation of an advanced combustion airstream control algorithm on a wood-log-fed fireplace and by the development of a combustion quality monitoring system for wood-chip-fed central heaters.

  5. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  6. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  7. Environmental performance of the Kvaerner BFB boilers for MSW combustion -- Analysis of gaseous emissions and solid residues

    International Nuclear Information System (INIS)

    Lundberg, M.; Hagman, U.; Andersson, B.A.; Olofsson, J.

    1997-01-01

    Kvaerner Pulping AB (formerly Kvaerner EnviroPower AB) has, due to the stringent demands on emissions performance, developed a state-of-the-art bubbling fluidized bed boiler (BFB) designed for waste fuel firing with very low emissions to the air. A complete evaluation of the environmental performance of the Kvaerner BFB technique for MSW combustion is now possible thanks to a thorough characterization study of the solid residues from the Lidkoeping plant. This paper gives an overall mapping of the emissions performance. Data from the operating plants on solid residue characteristics and leachability, heavy metal and dioxin emissions, nitrogen oxides, carbon monoxide, acid gases, and other emissions to air are presented. Comparisons are made with legislative limits and data from the mass burning technique. It is concluded that the emissions are low compared both with data from traditional mass burn incinerators and with legislative limits in the USA and Europe. Furthermore, the bottom and cyclone ash characteristics are shown not to cause any particular problem from an environmental point of view, and that the leachability is well below the existing legislative limits in Europe and the USA. The results show that fluidized bed combustion of municipal solid waste is a very competitive alternative to the traditional mass burning technique in every respect

  8. Energy efficiency analyses of active flow aftertreatment systems for lean burn internal combustion engines

    International Nuclear Information System (INIS)

    Zheng Ming; Reader, Graham T.

    2004-01-01

    The use of three way catalytic converters in stoichiometric burn reciprocating internal combustion engine systems has proved to be an effective and efficient method for reducing the level of criteria pollutants. However, such passive systems have not been as successful in emission amelioration when combined with lean burn engines. This is because of the thermochemical nature of the exhaust gases generated by such engines. The high content of exhaust oxygen largely negates the effectiveness of three way catalytic converters, and the comparatively low temperature of the combusted gases means that supplemental energy has to be added to these gases to enable the converter to function correctly. This requirement severely reduces the energy efficiency of conventional passive aftertreatment systems. However, initial empirical studies have indicated that a possible means of improving the performance of aftertreatment devices when used with lean burn engine systems is to use active flow control of the exhaust gases. These results are reported in this paper. This concept has been further investigated by developing an energy efficiency analysis that enables the effects on aftertreatment performance of different gas flow rates, flow reversal frequencies and monolith solid properties to be investigated. Simulation results indicate that through active thermal management, the supplemental energy consumption can be drastically reduced

  9. Anode protection system for shutdown of solid oxide fuel cell system

    Science.gov (United States)

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  10. How in-situ combustion process works in a fractured system : two-dimensional, core and block scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fadaei, H.; Renard, G. [Inst. Francais du Petrole, Lyon (France); Quintard, M.; Debenest, G. [L' Inst. de Mecanique des Fluides de Toulouse, Toulouse (France); Kamp, A.M. [Centre Huile Lourde Ouvert et Experimental CHLOE, Pau (France)

    2008-10-15

    Core and matrix block scale simulations of in situ combustion (ISC) processes in a fractured reservoir were conducted. ISC propagation conditions and oil recovery mechanisms were studied at core scale, while the 2-D behaviour of ISC was also studied at block-scale in order to determine dominant processes for combustion propagation and the characteristics of different steam fronts. The study examined 2-phase combustion in a porous medium containing a solid fuel as well as 2-D conventional dry combustion methods. The aim of the study was to predict ISC extinction and propagation conditions as well as to understand the mechanisms of oil recovery using ISC processes. The simulations were also used to develop up-scaling guidelines for fractured systems. Computations were performed using different oxygen diffusion and matrix permeability values. The effect of each production mechanism was studied separately. The multi-phase simulations showed that ISC in fractured reservoirs is feasible. The study showed that ISC propagation is dependent on the oxygen diffusion coefficient, while matrix permeability plays an important role in oil production. Oil production was governed by gravity drainage and thermal effects. Heat transfer due to the movement of combustion front velocity in the study was minor when compared to heat transfer by conduction and convection. It was concluded that upscaling methods must also consider the different zones distinguished for oil saturation and temperatures. 15 refs., 2 tabs., 15 figs.

  11. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  12. Ignition system for an internal combustion engine with rotary system

    Energy Technology Data Exchange (ETDEWEB)

    Hochstein, P A

    1977-05-18

    In the Wankel engine, the sparking plugs spark three times per rotation of the rotor and are never cooled by the incoming mixture. This constant high temperature environment necessitates the use of special sparking plugs. The covered top of the sparking plug is particularly liable to carbon deposits. This invention makes it possible to use sparking plugs on the rotor, without the disadvantages due to the use of high voltage. Further, the use of distributors or mechanical devices determining the ignition timing is no longer necessary. The fuel/air mixture is ignited in a combustion chamber, which is limited by first and second components moving relative to one another in repeated cycles. A generator device is fitted to the first components and an ignition device to the second components. The magnetic flux linking takes place in a predetermined area of the relative movement between the first and second components in a repeated cycle. An ignition signal is produced in the combustion chamber by the magnetic flux linking.

  13. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    In this research, a boiler in a premixed combustion system used to achieve exhaust gas recirculation was investigated as a way to achieve high thermal efficiencies and low pollutant emissions. The effects of various exhaust gas recirculation (EGR) ratios, equivalence ratios and boiler capacities on thermal efficiency, NO x and CO emissions and the flame behavior on the burner surface were examined both experimentally and numerically. The results of the experiments showed that when EGR was used, the NO x and CO concentrations decreased and the thermal efficiency increased. In the case of a 15% EGR ratio at an equivalence ratio of 0.90, NO x concentrations were found to be smaller than for the current operating condition of the boiler, and the thermal efficiency was approximately 4.7% higher. However, unlike NO x concentrations, although the EGR ratio was increased to 20% at an equivalence ratio of 0.90, the CO concentration was higher than in the current operating condition of the boiler. From the viewpoint of burner safety, the red glow on the burner surface was noticeably reduced when EGR was used. These results confirmed that the EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety. -- Highlights: ► The premixed boiler system applied EGR was investigated to achieve high thermal efficiencies and low pollutant emissions. ► Thermal efficiency and emission characteristics were examined with EGR ratios, equivalence ratios and boiler capacities. ► EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety.

  14. Device for flame combustion of liquid or solid samples in radioactive isotope trace indication

    International Nuclear Information System (INIS)

    Kaartinen, N.H.

    1979-01-01

    The plant or animal tissue containing T and/or 14 C isotope indicator is in a small ignition cage within the combustion chamber. The ignition cage consists of Nichrome which supports the ignition procedure. The combustion chamber is maintained at a temperature above the condensation temperature of the vapours escaping from the tissue (e.g. H 2 O). The thimble type ignition cage burns uniformly together with the sample. It is no longer necessary to make pellets of the sample. (DG) [de

  15. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  16. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  17. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  18. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2005-05-29

    We have made great progress in both developing solid state sensors for coal combustion control and understanding the mechanism by which they operate. We have fabricated and tested numerous sensors and identified the role electrode microstructure plays in sensor response. We have developed both p-type (La{sub 2}CuO{sub 4}) and n-type (WO{sub 3}) semiconducting NO{sub x} sensing electrodes. We have demonstrated their respective sensing behavior (sensitivities and cross-sensitivities), related this behavior to their gas adsorption/desorption behavior and catalytic activity, and in so doing verified that our proposed Differential Electrode Equilibria is a more comprehensive sensing mechanism. These investigations and their results are summarized below. The composition and microstructure of the sensing electrode is the key parameters that influence the sensing performance. We investigated the effect of electrode microstructure on the NO{sub x} sensitivity and response time using a La{sub 2}CuO{sub 4}-based potentiometric sensor. Temperature dependence, cross-sensitivity and selectivities of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. In order to optimize the sensor electrode microstructure, powders were prepared using four different powder synthesis routes, resulting in different particle size distributions and BET surface areas. Different sintering conditions were also applied. The microstructure of electrodes, synthesized with the same composition, has a dramatic effect on both sensitivity and response time of potentiometric NO sensors, showing that large surface areas generate a porous morphology with smaller

  19. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  20. Small scale combustion of solid biofuels; Smaaskalig foerbraenning av fasta biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The purpose of this assignment is to explore the need and the consequences of giving municipalities more power to intervene in the case of individual plants of local heating creates a nuisance in the surrounding areas as high emissions of hazardous air pollutants. The mission does not include an analysis of general instruments for small-scale combustion of biofuels

  1. Multiple fuel supply system for an internal combustion engine

    Science.gov (United States)

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  2. Washing of fly ash from combustion of municipal solid waste using water as leachant; Vattentvaett av flygaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Zhao, Dongmei

    2010-03-15

    Ashes from combustion of municipal solid waste contain a large amount of minerals, salts and other metal compounds that are more or less soluble in water. The metal salts are often enriched in the fly ash which leads to a classification of the ash as hazardous waste. This makes ash management complicated and costly. Many stabilisation methods for Municipal Solid Waste Incineration (MSWI) fly ash have been developed and most of them are based on a removal of chloride and sulfate in addition to a binding of metals in less soluble forms. The aim is to avoid the common situation that the ash does not comply to leaching limit values due to release of harmless salts. The aim of this project was to investigate if a simple washing with water can remove enough of the fly ash content of chloride and sulphate so that the ash can be landfilled in a simpler and less costly way than today. The project was focused on fly ashes from the MSWI units owned by Boraas Energi och Miljoe AB and Renova AB Goeteborg, i.e. a electro filter ash from grate fired boilers at Renova and a cyclone ash from a fluid bed boiler at Boraas. The results show that the main part of the chloride content of the ashes can be removed easily, but the washing with water is less effective in the removal of sulphate. A water-to-ash ratio of 1-2 l/kg removes about 100% of chloride but only 8-16% of the sulphate content. In many cases, the leachability of sulphate increases after the washing step. This is due to the rather complex sulphate chemistry with several possible reactions taking place in the ash-water system. For both the tested ashes the high level of chloride leaching is an important factor that prevents admittance on a landfill for hazardous waste without treatment.. The leaching of certain metals, such as Pb, is also high from both ashes but in the case of the Renova fly ash this is dealt with by treatment of the ash according to the Bamberg method. After a water washing with L/S 1-2 (L/kg dry ash

  3. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  4. Ash quality and environmental quality assurance system in co-combustion - Co-combustion of forest industry waste

    International Nuclear Information System (INIS)

    Laine-Ylijoki, J.; Wahlstroem, M.

    2000-01-01

    The environmental acceptability and possible utilization of co-combustion ashes will have a significant influence on the wider use of co-combustion in the future. At present the correlation between currently used fuels, their mixture ratios, and quality variations in ashes are not known, which complicates the assessment of possible utilization and environmental acceptability of co-combustion ashes. The composition of ashes has also been found to vary significantly. Effective utilization requires that process variations to alter ash composition and quality variations are known in advance. The aim of the research was to characterize the fly ash from co- combustion of peat, wood and biological paper mill sludge produced under different fuel loadings, especially with and without sludge addition, ant to identify critical parameters influencing on the ash composition. The variations in the leaching properties of ashes collected daily were followed up. The environmental acceptability of the ashes produced under different fuel loadings, especially their suitability for use in road constructions, were evaluated. The project included also the preparation of laboratory reference material from ash material. Guidelines were developed for sampling, sample preparation and analysis, and leaching tests. Furthermore, a quality control system, including sampling strategies, sample analysis and leaching testing, was established

  5. Recovery of plutonium from the combustion residues of alpha-bearing solid wastes

    International Nuclear Information System (INIS)

    Gompper, K.; Wieczorek, H.

    1991-01-01

    Experimental researches on plutonium dioxide dissolution in nitric acid in inactive and alpha-bearing wastes are presented in this report. After a review of the literature published on dissolution methods of PuO 2 combustion residues. Then results obtained in the ALONA plant on the dissolution of plutonium containing ashes in sulfuric acid and nitric acid are presented. Plutonium purification is studied. At last a simplified scheme of processing based on results obtained

  6. Studies on Decomposition and Combustion Mechanism of Solid Fuel Rich Propellants

    Science.gov (United States)

    2010-08-30

    thrust to cruise at supersonic speed. This was followed by the test of large diameter ramjet called burner test vehicle (BTV). Advanced low volume...propellant surface. Vernekar et al (43) found that in pressed AP-Al pellets , maximum burn rate is obtained at intermediate metal content. Jain et al...conjunction with high pressure window strand burner . They found that the propellant combustion was irregular and regression rate varied from 0.3 to 3

  7. Municipal solid waste management system: decision support through systems analysis

    OpenAIRE

    Pires, Ana Lúcia Lourenço

    2010-01-01

    Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, ...

  8. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture

    International Nuclear Information System (INIS)

    Chen, Shiyi; Lior, Noam; Xiang, Wenguo

    2015-01-01

    Highlights: • A novel power system integrating coal gasification with SOFC and chemical looping combustion. • The plant net power efficiency reaches 49.8% with complete CO 2 separation. • Energy and exergy analysis of the entire plant is conducted. • Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. • NiO oxygen carrier shows higher plant efficiency than using Fe 2 O 3 and CuO. - Abstract: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemical looping combustion (CLC) is a process for fuel conversion with inherent CO 2 separation, a novel combined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to investigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with ∼100% CO 2 capture for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor temperature = 950 °C, using NiO as the oxygen carrier in the CLC unit. (2) In this parameter neighborhood the fuel utilization factor, the SOFC temperature and SOFC pressure have small effects on the plant net power efficiency because changes in pressure and temperature that increase the power generation by the SOFC tend to decrease the power generation by the gas turbine and steam cycle, and v.v.; an advantage of this system characteristic is that it maintains a nearly constant power output even when the temperature and pressure vary. (3) The largest exergy loss is in the gasification process, followed by those in the CO 2 compression and the SOFC. (4) Compared with the CLC Fe 2 O 3 and CuO oxygen carriers, NiO results in higher plant net power efficiency. To the authors’ knowledge, this is the first

  9. Ultrasound assisted combustion synthesis of TiC in Al-Ti-C system.

    Science.gov (United States)

    Liu, Zhiwei; Rakita, Milan; Xu, Wilson; Wang, Xiaoming; Han, Qingyou

    2015-11-01

    This research investigated the effects of high-intensity ultrasound on the combustion synthesis of TiC particles in Al-Ti-C system. The process involved that high-intensity ultrasound was applied on the surface of a compacted Al-Ti-C pellet directly through a Nb probe during the thermal explosion reaction. By comparing with the sample without ultrasonic treatment, it was found that the thermal explosion reaction for synthesizing TiC phase could take place thoroughly in the ultrasonically treated sample. During the process of synthesizing TiC phase, the dissolution of solid graphite particles into the Al-Ti melt, as well as the nucleation and growth of TiC particles could be promoted effectively due to the effects of ultrasound, leading to an enhancement of the formation of TiC particles. Ultrasound assisted combustion synthesis as a simple and effective approach was proposed for synthesizing materials in this research. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. New Compressor Added to Glenn's 450- psig Combustion Air System

    Science.gov (United States)

    Swan, Jeffrey A.

    2000-01-01

    In September 1999, the Central Process Systems Engineering Branch and the Maintenance and the Central Process Systems Operations Branch, released for service a new high pressure compressor to supplement the 450-psig Combustion Air System at the NASA Glenn Research Center at Lewis Field. The new compressor, designated C-18, is located in Glenn s Central Air Equipment Building and is remotely operated from the Central Control Building. C-18 can provide 40 pounds per second (pps) of airflow at pressure to our research customers. This capability augments our existing system capacity (compressors C 4 at 38 pps and C-5 at 32 pps), which is generated from Glenn's Engine Research Building. The C-18 compressor was originally part of Glenn's 21-Inch Hypersonic Tunnel, which was transferred from the Jet Propulsion Laboratory to Glenn in the mid-1980's. With the investment of construction of facilities funding, the compressor was modified, new mechanical and electrical support equipment were purchased, and the unit was installed in the basement of the Central Air Equipment Building. After several weeks of checkout and troubleshooting, the new compressor was ready for long-term, reliable operations. With a total of 110 pps in airflow now available, Glenn is well positioned to support the high-pressure air test requirements of our research customers.

  11. Exploration of solids based on representation systems

    Directory of Open Access Journals (Sweden)

    Publio Suárez Sotomonte

    2011-01-01

    Full Text Available This article refers to some of the findings of a research project implemented as a teaching strategy to generate environments for the learning of platonic and archimedean solids, with a group of eighth grade students. This strategy was based on the meaningful learning approach and on the use of representation systems using the ontosemiotic approach in mathematical education, as a framework for the construction of mathematical concepts. This geometry teaching strategy adopts the stages of exploration, representation-modeling, formal construction and study of applications. It uses concrete, physical and tangible materials for origami, die making, and structures for the construction of threedimensional solids considered external tangible solid representation systems, as well as computer based educational tools to design dynamic geometry environments as intangible external representation systems.These strategies support both the imagination and internal systems of representation, fundamental to the comprehension of geometry concepts.

  12. A new transfer system for solid targets

    Science.gov (United States)

    Klug, J.; Buckley, K. R.; Zeisler, S. K.; Dodd, M.; Tsao, P.; Hoehr, C.; Economou, C.; Corsaut, J.; Appiah, J. P.; Kovacs, M. S.; Valliant, J. F.; Benard, F.; Ruth, T. J.; Schaffer, P.

    2012-12-01

    As part of a collaborative research project funded by Natural Resources Canada, TRIUMF has designed and manufactured solid target and solid target processing systems for the production of technetium-99m using small medical cyclotrons. The system described herein is capable of transporting the target from a hotcell, where the target is loaded and processed, to the cyclotron and back again. The versatility of the transfer system was demonstrated through the successful installation and operation on the ACSI TR 19 at the BC Cancer Agency, the GE PETtrace cyclotrons at Lawson Health Research (LHRI) and the Centre for Probe Development and Commercialization (CDPC).

  13. Behaviour, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, S.V.; Braekman-Danheux, C.; Laurent, P.; Thiemann, T.; Fontana, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Central Lab. of Mineralogy and Crystallography

    1999-08-01

    An investigation of refuse-derived char (RDC) generated by thermolysis of municipal solid waste (MSW) was undertaken to elucidate the behaviour of some toxic and potentially toxic trace elements (Cr, Cu, Mn, Ni, Pb, Sb and Zn) plus Fe during combustion of RDC. About 87% of Sb, 66% of Pb, 60% of Cu and significant parts of Fe{gt}Zn{gt}Ni{gt}Mn{gt}Cr from the RDC are volatile at 1200{degree}C, and their behaviour in the temperature interval 500-1200{degree}C is characterized. The use of sorbents (zeolite, kaolinite, montmorillonite, coals enriched in kaolinite and calcite, and lime plus portlandite) for capture, solidification and inertization of the most volatile elements during combustion of RDC is also described. Perspective sorbents and inertants for a retention of the most volatile Pb, Sb and Cu in RDC ash are kaolinite and montmorillonite or coals enriched in these minerals. In addition, when there is an effective RDC washing (dechlorination and desulphurization), the use of sorbents for capture of some metals could be reduced or even avoided. Recommendations are given for RDC utilization and improvisation of the collection, separation procedures and removal efficiency of some heavy-metal, chloride and sulphate compounds from MSW and RDC prior to their use. The results show that a long-term strategy based on detailed understanding of the source, formation, behaviour and fate of the elements and their modes of occurrence in MSW, RDC and combustion waste residues is required in order to validate a perspective waste pyrolytic processes development. 55 refs., 3 figs., 6 tabs.

  14. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  15. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.

    Science.gov (United States)

    Lu, Liang; Jin, Yuqi; Liu, Hongmei; Ma, Xiaojun; Yoshikawa, Kunio

    2014-01-01

    Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution. Copyright © 2013. Published by Elsevier Ltd.

  16. Effects of ashes in solid fuels on fuel particle charging during combustion in an air stream

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.G.; Fialkov, B.S.; Mel' nichuk, A.Yu.; Khvan, L.A.

    1982-09-01

    Black coal from the Karaganda basin is mixed with sodium chloride and graphite. Coal characteristics are given in a table (density, ashes, content of silica, aluminium oxides, iron oxides, calcium oxides, potassium oxides and magnesium oxides). Effects of ash fluctuations on electric potential of fuel particles during combustion are analyzed. Analyses show that with increasing ash content electric potential of fuel particles decreases and reaches the minimum when ash content ranges from 70 to 80 %. Particles with electric potential are generated during chemical processes between carbon and oxygen when coal is burned in an air stream. (5 refs.) (In Russian)

  17. EMISSIONS FROM CO-COMBUSTION OF COAL AND MUNICIPAL SOLID WASTE IN DOMESTIC CENTRAL HEATING BOILER

    Directory of Open Access Journals (Sweden)

    Ewelina Maria Cieślik

    2017-04-01

    The results were analyzed in terms of combustion efficiency, emissions of major pollutants (NOx, CO, SO2 and fly ash with adsorbed of PAHs on its surface. The average concentration of emitted particulate matter was 764 mg m-3, and CO - 1944, SO2 - 1256 NOx - 555 mg m-3 (STP, 3% O2, dry gas. The flue gases contain fly ash, with a significant carbon content EC (average 31% and a high proportion of PM10 and PM2.5 - respectively 100 and 75% by volume.

  18. 1993 baseline solid waste management system description

    International Nuclear Information System (INIS)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford's solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents

  19. Electricity generation from solid biomass via co-combustion with coal. Energy and emission balances from a German case study

    International Nuclear Information System (INIS)

    Hartmann, D.; Kaltschmitt, M.

    1999-01-01

    The environmental effects of electricity production from different biofuels by means of co-combustion with hard coal in existing coal fired power plants are analysed and compared to electricity production from hard coal alone based on Life Cycle Analysis (LCA). The use of straw and residual wood at a 10% blend with coal in an existing power plant in the southern part of Germany shows that all investigated environmental effects are significantly lower if biomass is used instead of coal. Thus based on the available and proven technology of co-combustion of hard coal and biomass in existing power plants a significant contribution could be made to a more environmentally sound energy system compared to using coal alone. (author)

  20. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  1. Gaussian process regression based optimal design of combustion systems using flame images

    International Nuclear Information System (INIS)

    Chen, Junghui; Chan, Lester Lik Teck; Cheng, Yi-Cheng

    2013-01-01

    Highlights: • The digital color images of flames are applied to combustion design. • The combustion with modeling stochastic nature is developed using GP. • GP based uncertainty design is made and evaluated through a real combustion system. - Abstract: With the advanced methods of digital image processing and optical sensing, it is possible to have continuous imaging carried out on-line in combustion processes. In this paper, a method that extracts characteristics from the flame images is presented to immediately predict the outlet content of the flue gas. First, from the large number of flame image data, principal component analysis is used to discover the principal components or combinational variables, which describe the important trends and variations in the operation data. Then stochastic modeling of the combustion process is done by a Gaussian process with the aim to capture the stochastic nature of the flame associated with the oxygen content. The designed oxygen combustion content considers the uncertainty presented in the combustion. A reference image can be designed for the actual combustion process to provide an easy and straightforward maintenance of the combustion process

  2. Dry additives-reduction catalysts for flue waste gases originating from the combustion of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Hard coal is the basic energy generating raw material in Poland. In 1990, 60% of electricity and thermal energy was totally obtained from it. It means that 100 million tons of coal were burned. The second position is held by lignite - generating 38% of electricity and heat (67.3 million tons). It is to be underlined that coal combustion is particularly noxious to the environment. The coal composition appreciably influences the volume of pollution emitted in the air. The contents of incombustible mineral parts - ashes - oscillates from 2 to 30%; only 0.02 comes from plants that had once originated coal and cannot be separated in any way. All the rest, viz. the so-called external mineral substance enters the fuel while being won. The most indesirable hard coal ingredient is sulfur whose level depends on coal sorts and its origin. The worse the fuel quality, the more sulfur it contains. In the utilization process of this fuel, its combustible part is burnt: therefore, sulfur dioxide is produced. At the present coal consumption, the SO{sub 2} emission reaches the level of 3.2 million per year. The intensifies the pressure on working out new coal utilization technologies, improving old and developing of pollution limiting methods. Research is also directed towards such an adaptation of technologies in order that individual users may also make use thereof (household furnaces) as their share in the pollution emission is considerable.

  3. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  4. Integration of solid oxide fuel cell (SOFC) and chemical looping combustion (CLC) for ultra-high efficiency power generation and CO2 production

    NARCIS (Netherlands)

    Spallina, Vincenzo; Nocerino, Pasquale; Romano, Matteo C.; van Sint Annaland, Martin; Campanari, Stefano; Gallucci, Fausto

    2018-01-01

    This work presents a thermodynamic analysis of the integration of solid oxide fuel cells (SOFCs) with chemical looping combustion (CLC) in natural gas power plants. The fundamental idea of the proposed process integration is to use a dual fluidized-bed CLC process to complete the oxidation of the

  5. Detection and control of combustion instability based on the concept of dynamical system theory

    Science.gov (United States)

    Gotoda, Hiroshi; Shinoda, Yuta; Kobayashi, Masaki; Okuno, Yuta; Tachibana, Shigeru

    2014-02-01

    We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

  6. Detection and control of combustion instability based on the concept of dynamical system theory.

    Science.gov (United States)

    Gotoda, Hiroshi; Shinoda, Yuta; Kobayashi, Masaki; Okuno, Yuta; Tachibana, Shigeru

    2014-02-01

    We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

  7. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    Science.gov (United States)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

    2014-11-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  8. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    International Nuclear Information System (INIS)

    Gill, W; Cruz-Cabrera, A A; Bystrom, E; Donaldson, A B; Haug, A; Sharp, L; Lim, J; Sivathanu, Y; Surmick, D M

    2014-01-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified

  9. New paradigm for simplified combustion modeling of energetic solids: Branched chain gas reaction

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, M.Q.; Ward, M.J. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States)

    1997-09-01

    Two combustion models with simple but rational chemistry are compared: the classical high gas activation energy (E{sub g}/RT {much_gt} 1) Denison-Baum-Williams (DBW) model, and a new low gas activation energy (E{sub g}/RT {much_lt} 1) model recently proposed by Ward, Son, and Brewster (WSB). Both models make the same simplifying assumptions of constant properties, Lewis number unity, single-step, second order gas phase reaction, and single-step, zero order, high activation energy condensed phase decomposition. The only difference is in the gas reaction activation energy E{sub g} which is asymptotically large for DBW and vanishingly small for WSB. For realistic parameters the DBW model predicts a nearly constant temperature sensitivity {sigma}{sub p} and a pressure exponent n approaching 1. The WSB model predicts generally observed values of n = 0.7 to 0.9 and {sigma}{sub p}(T{sub o},P) with the generally observed variations with temperature (increasing) and pressure (decreasing). The WSB temperature profile also matches measured profiles better. Comparisons with experimental data are made using HMX as an illustrative example (for which WSB predictions for {sigma}{sub p}(T{sub o},P) are currently more accurate than even complex chemistry models). WSB has also shown good agreement with NC/NG double base propellant and HNF, suggesting that at the simplest level of combustion modeling, a vanishingly small gas activation energy is more realistic than an asymptotically large one. The authors conclude from this that the important (regression rate determining) gas reaction zone near the surface has more the character of chain branching than thermal decomposition.

  10. Modelling of EAF off-gas post combustion in dedusting systems using CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Kirschen, M.; Pfeifer, H. [Inst. for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen, Aachen (Germany); Abel, M. [VAI-Fuchs GmbH, Willstaett (Germany)

    2003-04-01

    To comply with the increasingly strict environmental regulations, the poisonous off-gas species, e.g. carbon monoxide (CO), produced in the electric arc furnace (EAF) must be treated in the dedusting system. In this work, gas flow patterns of the off-gas post combustion in three different dedusting system units were simulated with a computational fluid dynamics (CFD) code: (1) post combustion in a horizontal off-gas duct, (2) post combustion in a water cooled post combustion chamber without additional energy supply (no gas or air/oxygen injectors) and (3) post combustion in a post combustion chamber with additional energy input (gas, air injectors and ignition burner, case study of VAI-Fuchs GmbH). All computational results are illustrated with gas velocity, temperature distribution and chemical species concentration fields for the above three cases. In case 1, the effect of different false air volume flow rates at the gap between EAF elbow and exhaust gas duct on the external post combustion of the off-gas was investigated. For case 2, the computed temperature and chemical composition (CO, CO{sub 2} and O{sub 2}) of the off-gas at the post chamber exit are in good agreement with additional measurements. Various operating conditions for case 3 have been studied, including different EAF off-gas temperatures and compositions, i. e. CO content, in order to optimize oxygen and burner gas flow rates. Residence time distributions in the external post combustion chambers have been calculated for cases 2 and 3. Derived temperature fields of the water cooled walls yield valuable information on thermally stressed parts of post combustion units. The results obtained in this work may also gain insight to future investigation of combustion of volatile organic components (VOC) or formation of nitrogen oxide (NO{sub x}) and permit the optimization of the operation and design of the off-gas dedusting system units. (orig.)

  11. Treatment of solid radioactive waste: Volume reduction of non-combustible waste

    International Nuclear Information System (INIS)

    Boehme, G.

    1982-01-01

    Press compaction is very common as for volume reduction of low level radioactive solid waste. In most cases a sorting step and if necessary a fragmenting step are desirable prior to the compaction process. Besides contamination-free loading and unloading techniques are important. Typical technical solutions for mixed solid waste handling and compacting equipment are shown and discussed by means of the lay-out drawings for a medium size radwaste compaction facility. A special technique can be applied if one has to compact active exhaust air filters in a hot cell. KfK has developed a remotely operated mobile equipment for this purpose. As for the nuclear fuel cycle considerable interest is existing in compacting spent fuel halls after fuel dissolution. In various European countries mechanical compaction and high temperature processes are therefore under development. These processes are described and the related equipment is discussed. (orig./RW)

  12. Irradiated ignition over solid materials in reduce pressure environment: Fire safety issue in man-made enclosure system

    Science.gov (United States)

    Nakamura, N.; Aoki, A.

    Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient

  13. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    International Nuclear Information System (INIS)

    Sun, Rui; Ismail, Tamer M.; Ren, Xiaohan; Abd El-Salam, M.

    2015-01-01

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW

  14. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Rui, E-mail: Sunsr@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China); Ismail, Tamer M., E-mail: temoil@aucegypt.edu [Department of Mechanical Engineering, Suez Canal University, Ismailia (Egypt); Ren, Xiaohan [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China); Abd El-Salam, M. [Department of Basic Science, Cairo University, Giza (Egypt)

    2015-05-15

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.

  15. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  16. Reference Concepts for a Space-Based Hydrogen-Oxygen Combustion, Turboalternator, Burst Power System

    National Research Council Canada - National Science Library

    Edenburn, Michael

    1990-01-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform...

  17. POSSIBLE ROLE OF INDOOR RADON REDUCTION SYSTEMS IN BACK-DRAFTING RESIDENTIAL COMBUSTION APPLIANCES

    Science.gov (United States)

    The article gives results of a computational sensitivity analysis conducted to identify conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might contribute to or create back-drafting of natural draft combustion appliances. Par...

  18. Hanford solid waste management system simulation

    International Nuclear Information System (INIS)

    Shaver, S.R.; Armacost, L.L.; Konynenbelt, H.S.; Wehrman, R.R.

    1994-12-01

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  19. Analyzing a low NO[sub x] concentric combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Eremeev, A.V.

    1992-05-01

    Discusses concentric combustion technology developed by Combustion Engineering, Inc. (USA) to reduce NO[sub x] emissions from pulverized coal-fired boilers. The major innovation consists in arranging existing independent secondary air burners into three pairs of concentric combustion burners. Using high-deflection angle concentric combustion burners, higher oxygen concentration near the boiler walls, reduced erosion and lower probability of slag deposition on the heat shield are achieved. The technology was tested at the 165 MW Valmont power plant and 350 MW Cherokee power plant. Reduction of 55.7% (to 0.294 kg/GJ) in NO[sub x] emissions with a boiler efficiency of 86.35% was achieved. Highest NO[sub x] reduction efficiency was observed at full load (highest tertiary air supply). Burner design, performance, relations of NO[sub x] emissions and tertiary air blast as well as fuel entrainment prior to and after upgrading are given. Methods of reducing slag deposition in boilers are considered. 2 refs.

  20. Numerical study of influence of biofuels on the combustion characteristics and performance of aircraft engine system

    International Nuclear Information System (INIS)

    Zhou, Li; Liu, Zeng-wen; Wang, Zhan-xue

    2015-01-01

    The atomization and combustion flowfield of the combustion chamber with swirl-nozzle were simulated using different biofuels; the thermodynamic cycle of the aircraft engine system were also analyzed, influences of biofuels on the combustion characteristics and performance of aircraft engine system were explored. Results show that viscosity and caloric value are key factors affecting the atomization and combustion characteristics of biofuels, and then dominate the distribution of the temperature and NO concentration. Due to the characteristic of low viscosity and low caloric value for biofuels adopted, the biofuels accumulate near the head of combustion chamber, and the corresponding NO emission is lower than that it has for conventional kerosene. When biofuels with low caloric value are used under the operation condition which is same as the condition for the conventional kerosene, lower turbine inlet temperature, lower thrust and higher specific fuel consumption would be achieved for the aircraft engine. - Highlights: • Influences of biofuels properties on combustion characteristic are explored. • Effects of biofuels on cycle parameters of aircraft engine are discussed. • Viscosity and caloric value are key factors affecting combustion of biofuels. • NO emission becomes lower when biofuels with low caloric value is adopted. • The performance of aircraft engine becomes worse for biofuels with low caloric value.

  1. Setting up experimental incineration system for low-level radioactive samples and combustion experiments

    International Nuclear Information System (INIS)

    Yumoto, Yasuhiro; Hanafusa, Tadashi; Nagamatsu, Tomohiro; Okada, Shigeru

    1997-01-01

    An incineration system was constructed which were composed of a combustion furnace (AP-150R), a cyclone dust collector, radioisotope trapping and measurement apparatus and a radioisotope storage room built in the first basement of the Radioisotope Center. Low level radioactive samples (LLRS) used for the combustion experiment were composed of combustible material or semi-combustible material containing 500 kBq of 99m TcO 4 or 23.25 kBq of 131 INa. The distribution of radioisotopes both in the inside and outside of combustion furnace were estimated. We measured radioactivity of a smoke duct gas in terminal exit of the exhaust port. In case of combustion of LLRS containing 99m TcO 4 or 131 INa, concentration of radioisotopes at the exhaust port showed less than legal concentration limit of these radioisotopes. In cases of combustion of LLRS containing 99m TcO 4 or 131 INa, decontamination factors of the incineration system were 120 and 1.1, respectively. (author)

  2. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  3. Combustion aerosols from co-firing of coal and solid recovered fuel in a 400 mw pf-fired power plant

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Wu, Hao; Jappe Frandsen, Flemming

    2010-01-01

    In this work, combustion aerosols (i.e. fine particles fired power plant was sampled with a low-pressure impactor, and analysed by transmission and scanning electron microscopy. The power plant was operated at both dedicated coal combustion conditions...... and under conditions with cofiring of up to 10% (thermal basis) of solid recovered fuel (SRF). The SRFs were characterized by high contents of Cl, Ca, Na and trace metals, while the coal had relatively higher S, Al, Fe and K content. The mass-based particle size distribution of the aerosols was found...... to be bi-modal, with an ultrafine (vaporization) mode centered around 0.1 μm, and a coarser (finefragmentation) mode above 2 μm. Co-firing of SRF tended to increase the formation of ultrafine particles as compared with dedicated coal combustion, while the coarse mode tended to decrease. The increased...

  4. Multisized Inert Particle Loading for Solid Rocket Axial Combustion Instability Suppression

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2012-01-01

    Full Text Available In the present investigation, various factors and trends, related to the usage of two or more sets of inert particles comprised of the same material (nominally aluminum but at different diameters for the suppression of axial shock wave development, are numerically predicted for a composite-propellant cylindrical-grain solid rocket motor. The limit pressure wave magnitudes at a later reference time in a given pulsed firing simulation run are collected for a series of runs at different particle sizes and loading distributions and mapped onto corresponding attenuation trend charts. The inert particles’ presence in the central core flow is demonstrated to be an effective means of instability symptom suppression, in correlating with past experimental successes in the usage of particles. However, the predicted results of this study suggest that one needs to be careful when selecting more than one size of particle for a given motor application.

  5. Device to lower NOx in a gas turbine engine combustion system

    Science.gov (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  6. Numerical and experimental investigation of the effect of geometry on combustion characteristics of solid-fuel ramjet

    Science.gov (United States)

    Gong, Lunkun; Chen, Xiong; Musa, Omer; Yang, Haitao; Zhou, Changsheng

    2017-12-01

    Numerical and experimental investigation on the solid-fuel ramjet was carried out to study the effect of geometry on combustion characteristics. The two-dimensional axisymmetric program developed in the present study adopted finite rate chemistry and second-order moment turbulence-chemistry models, together with k-ω shear stress transport (SST) turbulence model. Experimental data were obtained by burning cylindrical polyethylene using a connected pipe facility. The simulation results show that a fuel-rich zone near the solid fuel surface and an air-rich zone in the core exist in the chamber, and the chemical reactions occur mainly in the interface of this two regions; The physical reasons for the effect of geometry on regression rate is the variation of turbulent viscosity due to the geometry change. Port-to-inlet diameter ratio is the main parameter influencing the turbulent viscosity, and a linear relationship between port-to-inlet diameter and regression rate were obtained. The air mass flow rate and air-fuel ratio are the main influencing factors on ramjet performances. Based on the simulation results, the correlations between geometry and air-fuel ratio were obtained, and the effect of geometry on ramjet performances was analyzed according to the correlation. Three-dimensional regression rate contour obtained experimentally indicates that the regression rate which shows axisymmetric distribution due to the symmetry structure increases sharply, followed by slow decrease in axial direction. The radiation heat transfer in recirculation zone cannot be ignored. Compared with the experimental results, the deviations of calculated average regression rate and characteristic velocity are about 5%. Concerning the effect of geometry on air-fuel ratio, the deviations between experimental and theoretical results are less than 10%.

  7. A new classification system for biomass and waste materials for their use in combustion

    OpenAIRE

    Jenkinson, Philip

    2016-01-01

    The use of biomass derived solid fuels for electricity generation in combustion, gasification and pyrolysis plant has received increasing levels of interest for commercial operation in recent years. However, there are limited tools available which allow a prediction of the performance of these fuels during thermochemical transformation given an understanding of their original chemical structure. As such, this investigation has concentrated on the derivation of a simply utilised classificat...

  8. Hydrogen Generation, Combustibility and Mitigation in Nuclear Power Plant Systems

    International Nuclear Information System (INIS)

    Talha, K.A.; El-Sheikh, B.M.; Gad El-Mawla, A.S.

    2003-01-01

    The nuclear power plant is provided with features to insure safety. The engineered safety features (ESFs) are devoted to set operating conditions under accident conditions. If ESFs fail to apply in some accidents, this would lead to what called severe accidents, and core damage. In this case hydrogen will be generated from different sources particularly from metal-water reactions. Since the containment is the final barrier to protect the environment from the release of radioactive materials; its integrity should not be threatened. In recent years, hydrogen concentration represents a real problem if it exceeds the combustibility limits. This work is devoted to calculate the amount of hydrogen to be generated, indelicate its combustibility and how to inertize the containment using different gases to maintain its integrity and protect the environment from the release of radioactive materials

  9. Systems and methods for monitoring a solid-liquid interface

    Science.gov (United States)

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  10. System for combustion of sunflower shells in industrial steam generators

    International Nuclear Information System (INIS)

    Todoriev, Kh.

    2000-01-01

    The paper presents an economically efficient solution for reconstruction of steam generators with steam production over 5 t/h using foregoing cyclone chamber for sunflower shells combustion. For average fuel caloricity 9 445 ccal/kg and sunflower shells caloricity between 3 485 and 3 750 ccal/kg, the petroleum saving is 68.78% for an average boiler efficiency 4.6 t/h steam

  11. Design of a High Intensity Turbulent Combustion System

    Science.gov (United States)

    2015-05-01

    mixing of the reactants in chemical reactors, boilers , furnaces and mixing of fuel and air in engines take place in turbulent flow. One of the most...determining flame speed. When a tube containing combustible mixture, the flame speed is the propagation speed of the flame front towards the unburned...stress criteria is effective when the material is ductile in nature. This stress theory is developed from the 44 ’distortion energy failure theory

  12. Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China.

    Science.gov (United States)

    Gao, X; Yu, Q; Gu, Q; Chen, Y; Ding, K; Zhu, J; Chen, L

    2009-06-01

    In this study, we are trying to investigate the indoor air pollution and to estimate the residents' pollution exposure reduction of energy altering in rural Tibet. Daily PM(2.5) monitoring was conducted in indoor microenvironments like kitchen, living-room, bedroom, and yard in rural Tibet from December 2006 to March 2007. For kitchen air pollution, impact of two fuel types, methane and solid biomass fuels (SBFs), were compared. Questionnaire survey on the domestic energy pattern and residents' daily activity pattern was performed in Zha-nang County. Daily average PM(2.5) concentrations in kitchen, living-room, bedroom, and yard were 134.91 microg/m(3) (mean, n = 45, 95%CI 84.02, 185.80), 103.61 microg/m(3) (mean, n = 21, 95%CI 85.77, 121.45), 76.13 microg/m(3) (mean, n = 18, 95%CI 57.22, 95.04), and 78.33 microg/m(3) (mean, n = 34, 95%CI 60.00, 96.65) respectively. Using SBFs in kitchen resulted in higher indoor pollution than using methane. PM(2.5) concentrations in kitchen with dung cake, fuel wood and methane use were 117.41 microg/m(3) (mean, n = 18, 95%CI 71.03, 163.79), 271.11 microg/m(3) (mean, n = 12, 95%CI 104.74, 437.48), and 46.96 microg/m(3) (mean, n = 15, 95%CI 28.10, 65.82) respectively. Family income has significant influence on cooking energy choice, while the lack of commercial energy supply affects the energy choice for heating more. The effects of two countermeasures to improve indoor air quality were estimated in this research. One is to replace SBFs by clean energy like methane, the other is to separate the cooking place from other rooms and by applying these countermeasures, residents' exposure to particulate matters would reduce by 25-50% (methane) or 20-30% (separation) compared to the present situation. Indoor air pollution caused by solid biomass fuels is one of the most important burdens of disease in the developing countries, which attracts the attention of environment and public health researchers, as well as policy makers. This paper

  13. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    Science.gov (United States)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  14. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  15. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech

  16. Evaluation of cellular effects of fine particulate matter from combustion of solid fuels used for indoor heating on the Navajo Nation using a stratified oxidative stress response model

    Science.gov (United States)

    Li, Ning; Champion, Wyatt M.; Imam, Jemal; Sidhu, Damansher; Salazar, Joseph R.; Majestic, Brian J.; Montoya, Lupita D.

    2018-06-01

    Communities in the Navajo Nation face public health burdens caused in part by the combustion of wood and coal for indoor heating using stoves that are old or in disrepair. Wood and coal combustion emits particulate matter (PM) with aerodynamic diameter combustion-derived PM2.5 on Navajo Nation residents. This study tested the hypothesis that PM2.5 generated from solid fuel combustion in stoves commonly used by Navajo residents would induce stratified oxidative stress responses ranging from activation of antioxidant defense to inflammation and cell death in mouse macrophages (RAW 264.7). PM2.5 emitted from burning Ponderosa Pine (PP) and Utah Juniper (UJ) wood and Black Mesa (BM) and Fruitland (FR) coal in a stove representative of those widely used by Navajo residents were collected, and their aqueous suspensions used for cellular exposure. PM from combustion of wood had significantly more elemental carbon (EC) (15%) and soluble Ni (0.0029%) than the samples from coal combustion (EC: 3%; Ni: 0.0019%) and was also a stronger activator of antioxidant enzyme heme oxygenase-1 (11-fold increase vs. control) than that from coal (5-fold increase). Only PM from PP-wood (12-fold) and BM-coal (3-fold) increased the release of inflammatory cytokine tumor necrosis factor alpha. Among all samples, PP-wood consistently had the strongest oxidative stress and inflammatory effects. PM components, i.e. low-volatility organic carbon, EC, Cu, Ni and K were positively correlated with the cellular responses. Results showed that, at the concentrations tested, emissions from all fuels did not have significant cytotoxicity. These findings suggest that PM2.5 emitted from combustion of wood and coal commonly used by Navajo residents may negatively impact the health of this community.

  17. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    Science.gov (United States)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  18. Researches concerning the use of mixed Hydrogen in the combustion of dense biomass

    International Nuclear Information System (INIS)

    Negreanu, Gabriel-Paul; Mihaescu, Lucian; Pisa, Ionel; Berbece, Viorel; Lazaroiu, Gheorghe

    2014-01-01

    The paper deals with theoretical basis and experimental tests of mixed hydrogen diffusion in the dense system of biomass. Research regarding hydrogen diffusion in the porous system of biomass is part of wider research focusing on using hydrogen as an active medium for solid biomass combustion. In parallel with hydrogen diffusion in solid biomass, tests regarding biomass combustion previously subjected to a hydrogen flux will be carried out. Keywords: biomass, hydrogen diffusion, combustion, experimental tests

  19. An innovative system for supplying air and fuel mixture to a combustion chamber of an engine

    Science.gov (United States)

    Saikumar, G. R. Bharath

    2018-04-01

    Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.

  20. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2005-03-21

    Sensing properties of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. The relative responses of the La{sub 2}CuO{sub 4}-based sensor under varied concentrations of NO, NO{sub 2}, CO, CO{sub 2} and O{sub 2} were studied. The results showed a very high sensitivity to CO and NO{sub 2} at 450 C in 3% O{sub 2}, whereas the response to O{sub 2} and CO{sub 2} gases was negligible. The NO response at 400-500 C agreed with the NO adsorption behavior. The high NO{sub 2} sensitivity at 450 C was probably related to heterogeneous catalytic activity of La{sub 2}CuO{sub 4}. The adsorption of NO was not affected by the change of O{sub 2} concentration and thus the sensor showed selective detection of NO over O{sub 2}. However, the NO sensitivity was strongly influenced by the existence of CO, H{sub 2}O, NO{sub 2}, and CO{sub 2}, as the adsorption behavior of NO was influenced by these gases. The WO{sub 3}-based sensor was able to selectively detect NO in the presence of CO{sub 2} in 3% O{sub 2} and at 650 C. The NO sensitivity, however, was affected by the variation of the NO{sub 2}, CO, and H{sub 2}O concentration. No gas-solid reactions were observed using TPR in the NO containing gas mixture, indicating that the NO response was not obtained by the conventionally accepted mixed-potential mechanism. At the same condition the sensor had high sensitivity to {approx}10 ppm NO{sub 2} and selectivity in the presence of CO, CO{sub 2}, and H{sub 2}O, showing it to be applicable to the monitoring of NO{sub 2}. Significantly different sensing properties of NO in simulated exhaust gas suggested the occurrence of gas composition change

  1. Systems for production of polymer encapsuated solids

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, William L.; Aines, Roger D.; Baker, Sarah E.; Duoss, Eric B.; Maiti, Amitesh; Roberts, Jeffery J.; Spadaccini, Christopher M.; Stolaroff, Joshuah K.; Vericella, John J.; Lewis, Jennifer A.; Hardin, IV, James O.; Floyd, III, William C.

    2017-11-21

    Encapsulated solids are made by first encapsulating precursor materials in a polymer shell. The precursors are some combination of solids, liquids, gases, and/or gels. The precursors are then transformed into solids by emplacement of the capsule in an environment where gas or fluid transport into or out of the polymer shell causes transformation into solids.

  2. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shim-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexington

    1992-11-01

    This report contains the computer codes developed for the coal combustion project. In Subsection B.1 the FORTRAN code developed for the percolative fragmentation model (or the discrete model, since a char is expressed as a collection of discrete elements in a discrete space) is presented. In Subsection B.2 the code for the continuum model (thus named because mineral inclusions are distributed in a continuum space) is presented. A stereological model code developed to obtain the pore size distribution from a two-dimensional data is presented in Subsection B.3.

  3. Advanced Combustion Systems for Next Generation Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  4. Increased combustion stability in modulating biomass boilers for district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar; Hermansson, Roger (eds.) [Lulea Univ. of Technology (Sweden)

    2002-09-01

    One of the problems in small district heating systems is the large load variation that must be handled by the system. If the boiler is designed to cover the needs during the coldest day in winter time in northern Europe it would have to run at loads as low as 10% of full load during summer time, when heat is needed only for tap water production. Load variations in small networks are quite fast and earlier investigations have shown that existing biomass boilers give rise to large amounts of harmful emissions at fast load variations and at low loads. The problem has been addressed in different ways: Three new boiler concepts have been realized and tested: A prototype of a 500 kW boiler with partitioned primary combustion chamber and supplied with a water heat store. A 10 kW bench scale combustor and a 500 kW prototype boiler based on pulsating combustion. Bench scale boilers to test the influence from applied sound on emissions and a 150 kW prototype boiler with a two-stage secondary vortex combustion chamber. Development of control and regulating equipment: Glow Guard, a control system using infra-red sensors to detect glowing char on the grate, has been constructed and tested. A fast prediction model that can be used in control systems has been developed. Simulation of the combustion process: Code to simulate pyrolysis/gasification of fuel on the grate has been developed. Combustion of the gas phase inside the combustion chamber has been simulated. The two models have been combined to describe the combustion process inside the primary chamber of a prototype boiler. A fast simulation code based on statistical methods that can predict the environmental performance of boilers has been developed. One of the boiler concepts matches the desired load span from 10 to 100% of full load with emissions far below the set limits for CO and THC and close to the set limits for NO{sub x}. The other boilers had a bit more narrow load range, one with very low emissions except for NO

  5. Study of ignition, combustion, and production of harmful substances upon burning solid organic fuel at a test bench with a vortex chamber

    Science.gov (United States)

    Burdukov, A. P.; Chernetskiy, M. Yu.; Dekterev, A. A.; Anufriev, I. S.; Strizhak, P. A.; Greben'kov, P. Yu.

    2016-01-01

    Results of investigation of furnace processes upon burning of pulverized fuel at a test bench with a power of 5 MW are presented. The test bench consists of two stages with tangential air and pulverized coal feed, and it is equipped by a vibrocentrifugal mill and a disintegrator. Such milling devices have an intensive mechanical impact on solid organic fuel, which, in a number of cases, increases the reactivity of ground material. The processes of ignition and stable combustion of a mixture of gas coal and sludge (wastes of concentration plant), as well as Ekibastus coal, ground in the disintegrator, were studied at the test bench. The results of experimental burning demonstrated that preliminary fuel grinding in the disintegrator provides autothermal combustion mode even for hardly inflammable organic fuels. Experimental combustion of biomass, wheat straw with different lignin content (18, 30, 60%) after grinding in the disintegrator, was performed at the test bench in order to determine the possibility of supporting stable autothermal burning. Stable biofuel combustion mode without lighting by highly reactive fuel was achieved in the experiments. The influence of the additive GTS-Powder (L.O.M. Leaders Co., Ltd., Republic of Korea) in the solid and liquid state on reducing sulfur oxide production upon burning Mugun coal was studied. The results of experimental combustion testify that, for an additive concentration from 1 to 15% of the total mass of the burned mixture, the maximum SO2 concentration reduction in ejected gases was not more than 18% with respect to the amount for the case of burning pure coal.

  6. 78 FR 46940 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2013-08-02

    ...The U.S. Environmental Protection Agency (EPA or the Agency) invites comment on additional information obtained in conjunction with the proposed rule: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From Electric Utilities that was published in the Federal Register on June 21, 2010. This information is categorized as: additional data to supplement the Regulatory Impact Analysis and risk assessment, information on large scale fill, and data on the surface impoundment structural integrity assessments. EPA is also seeking comment on two issues associated with the requirements for coal combustion residual management units. The Agency is not reopening any other aspect of the proposal or underlying support documents, and will consider comments on any issues other than those raised in the NODA to be late comments and not part of the rulemaking record.

  7. Numerical model describing the heat transfer between combustion products and ventilation-system duct walls

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data

  8. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  9. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-04-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  10. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-02-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  11. Systematic design of an intra-cycle fueling control system for advanced diesel combustion concepts

    NARCIS (Netherlands)

    Kefalidis, L.

    2017-01-01

    This technical report presents a systematic approach for the design and development of an intra-cycle fueling control system for diesel combustion concepts. A high level system was developed and implemented on an experimental engine setup. Implementation and experimental validation are performed for

  12. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  13. The effect of sulfur on the inhibition of PCDD/F formation during co-combustion of coal and solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Palladas, A. [Laboratory of Environmental and Energy Processes, Thermi-Thessaloniki (Greece). Chemical Process Engineering Research Institute; Samaras, P. [TEI of Western Macedonia, Kozani (Greece). Dept. of Environmental Technology; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering

    2004-09-15

    Co-combustion of solid wastes with coal is a promising technique used to reduce landfilled wastes, utilizing waste the energy content. However, solid wastes often contain chlorine and other substances, which upon combustion may result in the production of extremely toxic compounds like polychlorinated dibenzo-p-dioxins and dibenzofurans. Various compounds have been proposed for their inhibition ability of PCDD/F formation, including sulphuric and nitrogen containing substances. Sulfur compounds may form some kind of complexes with metal species, reducing thus their ability for catalysing the PCDD/F formation pathways. Sulfur inhibitory capacity has been attributed to reaction with copper catalytic sites, altering their form and presumably their ability to produce Cl{sub 2} through the Deacon process reaction. Another second postulated role of sulfur is to undergo homogeneous reactions, converting the primary chlorinating agent, Cl{sub 2}, into a form (HCl) less likely to undergo aromatic substitution reactions forming PCDD/F precursors. The objectives of this work were the measurement of PCDD/F emissions during co-combustion of different fuel mixtures, and the study of the effect of sulfur addition to the fuel on PCDD/F formation.

  14. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System

    Directory of Open Access Journals (Sweden)

    Rafał Ślefarski

    2018-02-01

    Full Text Available Application of a pre-combustion chamber (PCC ignition system is one of the methods to improve combustion stability and reduce toxic compounds emission, especially NOx. Using PCC allows the operation of the engine at lean combustion conditions or the utilization of low calorific gaseous fuels such as syngas or biogas. The paper presents the results of an experimental study of the combustion process in two stroke, large bore, stationary gas engine GMVH 12 equipped with two spark plugs (2-SP and a PCC ignition system. The experimental research has been performed during the normal operation of the engine in an industrial compression station. It was observed that application of PCC provides less cycle-to-cycle combustion variation (more than 10% and nitric oxide and carbon monoxide emissions decreased to 60% and 26% respectively. The total hydrocarbon (THC emission rate is 25% higher for the engine equipped with PCC, which results in roughly two percent engine efficiency decrease. Another important criterion of engine retrofitting was the PCC location in the engine head. The experimental results show that improvement of engine operating parameters was recorded only for a configuration with one port offset by 45° from the axis of the main chamber. The study of the ignition delay angle and equivalence ratio in PCC did not demonstrate explicit influence on engine performance.

  15. Solid lipid nanoparticles: A drug carrier system

    Directory of Open Access Journals (Sweden)

    Rashmi R Kokardekar

    2011-01-01

    Full Text Available Solid lipid nanoparticles (SLN are a type of nanoparticles. They are submicron colloidal carriers which are composed of physiological lipids, dispersed in water or in aqueous surfactant solutions. SLN have wide range of advantages over other types of nanoparticles. These include availability of large-scale production methods and no signs of cytotoxicity, which are main hindrances in the application of other types of nanoparticles. Hot and cold homogenization techniques are mainly employed for its production. They are mainly evaluated on the basis of their drug release profile and particle internal structure. The products based on SLN are under development. They have a very wide range of applications in cosmetics and pharmaceuticals. They can be applied for any purpose, for which nanoparticles have a distinct advantage. Thus, SLN can be used extensively as an alternative to the existing drug carrier systems, providing more flexibility with respect to the area of applications and also aspects for commercialization.

  16. [Study on expert system of infrared spectral characteristic of combustible smoke agent].

    Science.gov (United States)

    Song, Dong-ming; Guan, Hua; Hou, Wei; Pan, Gong-pei

    2009-05-01

    The present paper studied the application of expert system in prediction of infrared spectral characteristic of combustible anti-infrared smoke agent. The construction of the expert system was founded, based on the theory of minimum free energy and infrared spectral addition. After the direction of smoke agent was input, the expert system could figure out the final combustion products. Then infrared spectrogram of smoke could also be simulated by adding the spectra of all of the combustion products. Meanwhile, the screening index of smoke was provided in the wave bands of 3-5 im and 8-14 microm. FTIR spectroscope was used to investigate the performance of one kind of HC smoke. The combustion products calculated by the expert system were coincident with the actual data, and the simulant infrared spectrum was also similar to the real one of the smoke. The screening index given by the system was consistent with the known facts. It was showed that a new approach was offered for the fast discrimination of varieties of directions of smoke agent.

  17. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali; Khalilpour, Rajab; Abbas, Ali; Lai, Zhiping

    2013-01-01

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  18. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali

    2013-08-05

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  19. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  20. Space Station Freedom combustion research

    Science.gov (United States)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  1. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    Science.gov (United States)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the

  2. CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system

    International Nuclear Information System (INIS)

    Harichandan, Atal Bihari; Shamim, Tariq

    2014-01-01

    Highlights: • Computational study of the fuel reactor of chemical looping combustion technology. • The results yield better understanding of the bubble hydrodynamics in fuel reactor. • Increasing the reactor bed length increases the conversion rate. • Small oxygen carrier particles improves the conversion rate. - Abstract: This study investigates the temporal development of bubble hydrodynamics in the fuel reactor of a hydrogen-fueled chemical looping combustion (CLC) system by using a computational model. The model also investigates the molar fraction of products in gas and solid phases. The study assists in developing a better understanding of the CLC process, which has many advantages such as being a potentially promising candidate for an efficient carbon dioxide capture technology. The study employs the kinetic theory of granular flow. The reactive fluid dynamic system of the fuel reactor is customized by incorporating the kinetics of an oxygen carrier reduction into a commercial computational fluid dynamics (CFD) code. An Eulerian multiphase treatment is used to describe the continuum two-fluid model for both gas and solid phases. CaSO 4 and H 2 are used as an oxygen carrier and a fuel, respectively. The computational results are validated with the experimental and numerical results available in the open literature. The CFD simulations are found to capture the features of the bubble formation, rise and burst in unsteady and quasi-steady states very well. The results show a significant increase in the conversion rate with higher dense bed height, lower bed width, higher free board height and smaller oxygen carrier particles which upsurge an overall performance of the CLC plant

  3. Pilot-scale incineration testing of an oxygen-enhanced combustion system

    International Nuclear Information System (INIS)

    Waterland, L.R.; Lee, J.W.; Staley, L.J.

    1989-01-01

    This paper discusses a series of demonstration tests of the American Combustion, Inc., Thermal Destruction System performed under the Superfund innovative technology evaluation (SITE) program. This oxygen-enhanced combustion system was retrofit to the pilot-scale rotary kiln incinerator at EPA's Combustion Research Facility. This system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a hazardous coal tar waste (decanter tank tar sludge form coking operations - K087). Comparative performance with conventional incinerator operation was tested. Test results show that compliance with the hazardous waste incinerator performance standards of 99.99 percent principal organic hazardous constituent (POHC) destruction and removal efficiency (DRE) and particulate emissions of less than 180 mg/dscm at 7 percent O 2 was achieved for all tests. The Pyretron oxygen-enhanced combustion system allowed in-compliance operation at double the mixed waste feedrate possible with conventional incineration, and with a 60 percent increase in charge weight than possible with conventional incineration

  4. PARTITIONING OF THE REFRACTORY METALS, NICKEL AND CHROMIUM, IN COMBUSTION SYSTEMS

    Science.gov (United States)

    The partitioning of nickel (Ni) and Chromium (Cr) in combustion systems was investigated theoretically and experimentally. In comparison to other volatile and semi-volatile metals, both Ni and Cr are usually considered to be refractory (non-volatile). Theoretical predictions ba...

  5. Combustion and gasification of solid biomass: energy solutions for the Amazon; Combustao e gasificacao de biomassa solida: solucoes energeticas para a Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Eduardo Jose Fagundes; Rendeiro, Goncalo; Nogueira, Manoel Fernandes Martins; Brasil, Augusto Cesar de Mendonca; Cruz, Daniel Onofre de Almeida; Guerra, Danielle Regina da Silva; Macedo, Emanuel Negrao; Ichihara, Jorge de Araujo

    2008-07-01

    For electrify isolated rural communities in the Amazon, the Ministerio de Minas e Energia - MME (Brazilian Mining and Energy Ministry), promoted under the 'Luz para todos' (Light for All) program, a series of activities aimed at the development and implementation of projects for small- scale power generation and training professionals, in the region, for the deployment of alternative energy solutions from renewable energy sources. Among these activities are the production of the collection 'Energy Solutions for the Amazon', consisting of five volumes. This is the fourth volume in the series that presents an overview of the combustion and gasification of solid biomass.

  6. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    Science.gov (United States)

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels

    International Nuclear Information System (INIS)

    Gnanapragasam, Nirmal V.; Reddy, Bale V.; Rosen, Marc A.

    2010-01-01

    A large-scale hydrogen production system is proposed using solid fuels and designed to increase the sustainability of alternative energy forms in Canada, and the technical and economic aspects of the system within the Canadian energy market are examined. The work investigates the feasibility and constraints in implementing such a system within the energy infrastructure of Canada. The proposed multi-conversion and single-function system produces hydrogen in large quantities using energy from solid fuels such as coal, tar sands, biomass, municipal solid waste (MSW) and agricultural/forest/industrial residue. The proposed system involves significant technology integration, with various energy conversion processes (such as gasification, chemical looping combustion, anaerobic digestion, combustion power cycles-electrolysis and solar-thermal converters) interconnected to increase the utilization of solid fuels as much as feasible within cost, environmental and other constraints. The analysis involves quantitative and qualitative assessments based on (i) energy resources availability and demand for hydrogen, (ii) commercial viability of primary energy conversion technologies, (iii) academia, industry and government participation, (iv) sustainability and (v) economics. An illustrative example provides an initial road map for implementing such a system. (author)

  8. Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications

    International Nuclear Information System (INIS)

    Gupta, Mayank; Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Syngas-fired combustor concept as hybrid heat source for solar thermal application. • Experimental characterization of catalytic combustor under fuel-rich conditions. • Stable operation, quick startup, and high turn-down ratio demonstrated. • Reacting flow CFD simulations of single channel of catalytic monolith. - Abstract: This paper describes the development and operation of a catalytic combustion system for use with syngas as an important component of a hybrid heating source for solar-thermal power generation. The reactor consists of a cylindrical ceramic monolith with porous alumina washcoat in which platinum is distributed as the catalyst. Two fuel-rich equivalence ratios were studied over a range of flow rates. The fuel-rich conditions permit low temperature combustion without the problem of hotspots likely to occur under fuel-lean conditions with hydrogen-containing fuels. Experimental data of temperature and species concentration at the exit of the reactor have been reported for a maximum fuel thermal input of 34 kW. The system exhibited quick start-up with a light-off time of around 60 s and a steady-state time of around 200 s as determined from the transient temperature profiles. The experimental results have also been complemented with detailed two-dimensional numerical simulations for improved understanding of the combustion characteristics in the reactor. The simulations suggest that the combustion system can be operated at a turn-down ratios far in excess of 1.67, which is the maximum value that has been investigated in the present setup. Stable operation, quick startup, and high turn-down ratio are some of the key features that enable the proposed combustion system to accommodate the transients in solar-thermal applications.

  9. The application of zonal trademark combustion monitoring and tuning system to coal boilers for efficiency improvement and emissions reduction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guang; Zhou, Wei; Widmer, Neil C.; Moyeda, David K. [GE Energy, Irvine, CA (United States)

    2013-07-01

    Coal-fired boilers equipped with Low NO{sub x} Burner (LNB) and Overfire Air (OFA) are challenged with maintaining good combustion conditions. In many cases, the significant increases in carbon monoxide (CO) and unburned carbon levels can be attributed to local poor combustion conditions as a result of poorly controlled fuel-air distribution within the furnace. The Zonal trademark combustion monitoring and tuning system developed by GE is available to detect and correct the furnace air-fuel distribution imbalance. The system monitors the boiler excess oxygen (O{sub 2}) and combustible gases, primarily carbon monoxide (CO), by using spatially distributed multipoint sensors located in the boiler's high temperature upper convective backpass region. At these locations, the furnace flow is still significantly stratified allowing tracing of poor combustion zones to specific burners and OFA ports. Using a model-based tuning system, operators can rapidly respond to poor combustion conditions by redistributing airflows to select burners and OFA ports. By improving combustion at every point within the furnace, the boiler can operate at reduced excess O{sub 2} and reduced furnace exit gas temperature (FEGT) while also reducing localized hot spots, corrosive gas conditions, slag formation, and carbon-in-ash. Benefits include improving efficiency, reducing NO{sub X} emissions, increasing output and maximizing availability. This chapter presents the results from implementing the Zonal combustion monitoring and tuning system on a 460 MW tangential-fired coal boiler in the Western United States.

  10. AUTOMATIC CONTROL SYSTEM FOR REGULATED HIGH TEMPERATURE MAIN COMBUSTION CHAMBER OF MANEUVERABLE AIRCRAFT MULTIMODE GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    T. V. Gras’Ko

    2014-01-01

    Full Text Available The paper describes choosing and substantiating the control laws, forming the appearance the automatic control system for regulated high temperature main combustion chamber of maneuverable aircraft multimode gas turbine engine aimed at sustainable and effective functioning of main combustion chamber within a broad operation range.

  11. evaluation of municipal solid waste management system

    African Journals Online (AJOL)

    eobe

    Keywords: solid waste, household, waste bin, willingness to pay, municipal. 1. INTRODUCTION .... significant differences between WTP and household ... Gender. Income of Household. Education Status. House Type. Household Size. Male.

  12. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  13. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    Science.gov (United States)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  14. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Clifford E. Smith; Steven M. Cannon; Virgil Adumitroaie; David L. Black; Karl V. Meredith

    2005-01-01

    In this project, an advanced computational software tool was developed for the design of low emission combustion systems required for Vision 21 clean energy plants. Vision 21 combustion systems, such as combustors for gas turbines, combustors for indirect fired cycles, furnaces and sequestrian-ready combustion systems, will require innovative low emission designs and low development costs if Vision 21 goals are to be realized. The simulation tool will greatly reduce the number of experimental tests; this is especially desirable for gas turbine combustor design since the cost of the high pressure testing is extremely costly. In addition, the software will stimulate new ideas, will provide the capability of assessing and adapting low-emission combustors to alternate fuels, and will greatly reduce the development time cycle of combustion systems. The revolutionary combustion simulation software is able to accurately simulate the highly transient nature of gaseous-fueled (e.g. natural gas, low BTU syngas, hydrogen, biogas etc.) turbulent combustion and assess innovative concepts needed for Vision 21 plants. In addition, the software is capable of analyzing liquid-fueled combustion systems since that capability was developed under a concurrent Air Force Small Business Innovative Research (SBIR) program. The complex physics of the reacting flow field are captured using 3D Large Eddy Simulation (LES) methods, in which large scale transient motion is resolved by time-accurate numerics, while the small scale motion is modeled using advanced subgrid turbulence and chemistry closures. In this way, LES combustion simulations can model many physical aspects that, until now, were impossible to predict with 3D steady-state Reynolds Averaged Navier-Stokes (RANS) analysis, i.e. very low NOx emissions, combustion instability (coupling of unsteady heat and acoustics), lean blowout, flashback, autoignition, etc. LES methods are becoming more and more practical by linking together tens

  15. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    International Nuclear Information System (INIS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-01-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo 1.5 Ti 1.5 Fe 9 O 19 ) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO 2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ µ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo 1.5 Ti 1.5 Fe 9 O 19 ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  16. Adaptive system of supplying lubricant to the internal combustion engine

    Science.gov (United States)

    Barylnikova, E. P.; Kulakov, A. T.; Kulakov, O. A.

    2017-09-01

    This paper assesses the impact of reducing the pressure in the lubrication system on the failures of the crankshaft bearings. The method of adapting lubricating system of the diesel engine as the wear in operation and depending on the operation modes.

  17. Exhaust gas purifying system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H; Saito, Z

    1976-10-07

    The exhaust gas purification system is a so-called three-way catalytic converter. It consists of an oxidation converter, a reduction converter, or a thermal converter. An exhaust sensor made up of an oxygen sensor, a carbon sensor, a carbon monoxide sensor, hydrocarbon sensor, or a nitrogen peroxide sensor, tests the composition of the exhaust and controls the air-fuel feed system in dependence of the exhaust mixture in such a manner that in the intake system an air-fuel mixture is taken in which the stoichiometric air-fuel relation is produced. Moreover, a thermostatically controlled air intake device is built into the fuel injection system which supplies the air of the fuel injection system with a relatively consistent temperature.

  18. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    International Nuclear Information System (INIS)

    Steve Cannon; Baifang Zuo; Virgil Adumitroaie; Keith McDaniel; Cliff Smith

    2002-01-01

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this fifth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was further tested in the LES code. The use of multiple trees and periodic tree dumping was investigated. Implementation of the Linear Eddy Model (LEM) for subgrid chemistry was finished for serial applications. Validation of the model on a backstep reacting case was performed. Initial calculations of the SimVal experiment were performed for various barrel lengths, equivalence ratio, combustor shapes, and turbulence models. The effects of these variables on combustion instability was studied. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. Next quarter, the 2nd consortium meeting will be held at CFDRC. LES software development and testing will continue. Alpha testing of the code will be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for chemical kinetics speed-up in CFD-ACE+, should be accomplished

  19. Modelling and simulation of wood chip combustion in a hot air generator system.

    Science.gov (United States)

    Rajika, J K A T; Narayana, Mahinsasa

    2016-01-01

    This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.

  20. Analysis of the Impact Caused by Coherent Structures in Swirling Flow Combustion Systems

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2012-04-01

    Full Text Available Amongst the technologies used in the energy and propulsion generation for the reduction of emissions, the use of swirling flows has demonstrated its high performance in anchoring the flame inside of the combustion systems. This, added to the use of premixing in the pre-chambers, has created one of the most innovative methods for the reduction of highly polluting particles such as NOx. However, the lack of understanding of these flows makes it necessary to increase the research on the topic in order to clarify themes as complex as the role of the coherent structures inside of the system. This paper explains some of the phenomena produced by some of the coherent structures observed in the system. The results showed the existence of complex Recirculation Zones (RZ, Precessing Vortex Core (PVC and Combustion Induced Vortex Breakdown (CIVB.

  1. Effects of setting new source performance standards for fluidized-bed combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    This study was undertaken for the US Environmental Protection Agency to examine the potential consequences of revisions in New Source Performance Standards (NSPS) on fluidized-bed combustor-based steam electric generators of greater than 250,000,000 Btu. A study of the appropriateness and differential effects of alternate regulatory approaches to the standards-setting process was made. Problems dealing with an emerging technology such as fluidized-bed combustion were emphasized. Finally, an examination was made of the potential benefits of fluidized-bed combustion (FBC) systems relative to conventional coal-fired systems equipped with scrubbers. Information is included on the relative advantages and disadvantages of utility-sized fluidized-bed combustors, the technical consequences of NSPS alternatives, policy implications concerning NSPS for steam-electric generators, and cost models for atmospheric and pressurized FBC systems. (LCL)

  2. Retene Emission from Residential Solid Fuels in China and Evaluation of Retene as a Unique Marker for Soft Wood Combustion

    Science.gov (United States)

    Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Yang, Yifeng; Wang, Wei; Wang, Xilong; Massey Simonich, Staci L.

    2012-01-01

    Retene (1-methyl-7-isopropylphenanthrene) is often used as a marker for softwood combustion and for polycyclic aromatic hydrocarbon (PAH) source apportionment. The emission factors of retene (EFRET) from 11 crop residues, 27 firewood and 5 coals were measured using traditional rural Chinese stoves. Retene was measured in combustion emissions from all of the residential fuels tested and EFRET varied significantly among the fuels due to the differences in fuel properties and combustion conditions. EFRET for pine (0.34±0.08 mg/kg) and larch (0.29±0.22 mg/kg) were significantly higher than those of other wood types, including fir and cypress (0.081±0.058 mg/kg). However, EFRET for crop residues varied from 0.048±0.008 to 0.37±0.14 mg/kg and were not significantly lower than those for softwood (0.074±0.026 to 0.34±0.08 mg/kg). The EFRET for coal were very high and ranged from 2.2±1.5 (anthracite briquette) to 187±113 mg/kg (raw bituminous chunk). EFRET was positively correlated with EFs of co-emitted particulate matter (EFPM) and phenanthrene (EFPHE) for crop residue and coal, but not for wood. In addition, the ratios of EFPHE/EFRET and EFPM/EFRET for coals were much lower than those for crop residues and wood. These data suggest that retene is not a unique PAH marker for softwood combustion and that coal combustion, in particular, should be taken into account when retene is used for PAH source apportionment. PMID:22452486

  3. Update on status of fluidized-bed combustion technology

    International Nuclear Information System (INIS)

    Stallings, J.; Boyd, T.; Brown, R.

    1992-01-01

    During the 1980s, fluidized-bed combustion technology has become the dominant technology for solid-fuel-fired power generation systems in the United States. Atmospheric fluidized beds as large as 160 MWe in capacity are now in operation, while pressurized systems reaching 80 MWe have started up in the last year. The commercial status, boiler performance, emissions, and future developments for both atmospheric and pressurized fluidized-bed combustion systems are discussed

  4. Study of reaction and heat release from solid combustion in strong magnetic field; Kyojiba wo riyoshita hikinshitsu kotai nensho shori no hanno to netsu no seigy ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K; Fujita, O; Iiya, M; Kudo, K [Hokkaido University, Sapporo (Japan)

    1997-02-01

    To establish the inhomogeneous solid combustion control technology, effects of the strong magnetic field on the solid combustion were examined. When applying the sufficiently strong magnetic field, it is possible to control the air flow in combustion field by utilizing the force applying to constituent oxygen with large susceptibility. Based on this possibility, combustion experiments of expanded polystyrene plates were conducted between the magnetic poles of electro-magnet having the maximum flux density of 1 T and the maximum magnetic field gradient of 0.5 T/cm. To observe the effects of magnetic field without the effects of natural convection, combustion experiments of acrylic sheets were conducted between the magnetic poles of electro-magnet having the maximum flux density of 0.6 T and the magnetic field gradient of about 0.1 T/cm under the microgravity conditions between 10{sup -4} and 10{sup -5}g using a microgravity test facility. Consequently, prospective combustion results could be obtained, in which the force of flame received from the magnetic field is almost equivalent to the buoyancy of flame. It was demonstrated that combustion can be controlled by the magnetic field. 1 ref., 3 figs., 1 tab.

  5. Combustion reaction of Ti–Al–C–N system

    Indian Academy of Sciences (India)

    Materials and Chemical Engineering School, Zhongyuan University of Technology, Zhengzhou 450007, Henan, ... compounds in Ti–Al–C–N system was discussed as follows. ... tion, we can observe the crack propagation in the micrograph.

  6. Modelling the effects of heat loss and fuel/air mixing on turbulent combustion in gas turbine combustion systems

    NARCIS (Netherlands)

    Gövert, S.

    2016-01-01

    The present study is concerned with the development and validation of a simulation framework for the accurate prediction of turbulent reacting flows at reduced computational costs. Therefore, a combustion model based on the tabulation of laminar premixed flamelets is employed. By compilation of

  7. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  8. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  9. Air to fuel ratio sensor for internal combustion engine control system; Nainen kikan no nensho seigyoyo kunen hi sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, M.; Kawai, T.; Yamada, T.; Nishio [NGK Spark Plug Co. Ltd., Aichi (Japan)

    1998-06-01

    Air to fuel ratio sensor is used for emission control system of three-way catalyst, and constitutes the important functional part of combustion control system. For further precise combustion control application, universal air to fuel ratio heated exhaust gas oxygen sensor (UEGO sensor) has been developed. This paper introduces heater control system for constant element temperature of UEGO sensor. By the heater wattage feedback control of sensing cell impedance, the change of sensor element temperature is decreased. 9 refs., 13 figs.

  10. Automatic Control and Data Acquisition System for Combustion Laboratory Applications.

    Science.gov (United States)

    1982-10-01

    O VPI Access~.ion FCr- 1473 2 UNCLASSIFIED Approved for public release; distribution unlimited JAutomatic Control and Data Acquisition System for...unit. The CPU/ROK board includes a 16 bit microprocessor chip which decodes and executes all in- structions, and controls all data transfers. The 12K...in the limited memory space of 32K of the HP-85 33 ACQDTA’ 1) Controls DevicesCRAIN ,2) Acquires Photodiods Output$ 3) Stores Data o Disc 1

  11. Study of highly efficient power generation system based on chemical-looping combustion; Chemical loop nenshoho ni yoru kokoritsu hatsuden system no kaihatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, S; Suzuki, T; Yamamoto, M [Tokyo Institute of Technology, Tokyo (Japan). Research Laboratory of Resources Utilization

    1997-02-01

    This paper describes the research and development of power generation system by means of chemical-looping combustion. For this system, fuel flows in a reduction reactor and air flows in an oxidation reactor. These two flows are separated. As a result, recovery of CO2 without energy consumption, drastic improvement of power generation efficiency, and suppression of NOx emission are expected. To realize the above, two promising candidates, NiCoO2/YSZ and NiO2/NiAl2O4, have been found as recycle solid particles between the both reactors. These have excellent oxidation/reduction cycle characteristics. By these particles as well as the existing particle, NiO/YSZ, practical application of the chemical-looping combustion is realized. Besides LNG, coal and hydrogen were considered as fuels. When using coal or hydrogen, it was found that temperature of the reduction reactor should be increased the same as that of the oxidation reactor. This is a different point from a case using LNG as a fuel. 5 refs., 2 figs.

  12. Waste heat recovery systems for internal combustion engines: classification and benefits

    OpenAIRE

    Marchenko, A.; Samoilenko, D.; Adel Hamzah, Ali; Adel Hamzah, Omar

    2014-01-01

    Recent trend about the best ways of using the deployable sources of energy in to useful work in order to reduce the rate of consumption of fossil fuel as well as pollution. Out of all the available sources, the internal combustion engines are the major consumer of fossil fuel around the globe. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste ...

  13. The combustion system of the MAN 20V35/44G gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Markus; Auer, Matthias; Stiesch, Gunnnar [MAN Diesel and Turbo SE, Augsburg (Germany)

    2013-05-15

    The new gas engine 20V35/44G by MAN Diesel and Turbo SE has a power output of 10.6 MW. The high effective efficiency level of 48.4 % as well as numerous technical innovations allow an environmentally-friendly, economical and reliable engine operation. Key to achieve this is the combustion system, which has been optimised during advanced engineering by means of modern simulation tools and extensive single-cylinder tests. (orig.)

  14. A review of active control approaches in stabilizing combustion systems in aerospace industry

    Science.gov (United States)

    Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin

    2018-02-01

    Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.

  15. Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  16. Flow regimes in vertical gas-solid contact systems

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Cankurt, N. T.; Geldart, D.; Liss, B.

    1976-01-01

    The flow characteristics in fluidized beds, i.e., gas-solid systems, was studied to determine the flow regimes, the interaction of gas and solid in the various flow regimes and the dependence of this interaction and of transition between flow regimes on the properties of the gas and solid, on the gas and solid flow rates, and on the containing vessel. Fluidized beds with both coarse and fine particles are considered. Test results using high speed photography to view the operation of a 2-dimensional bed are discussed. (LCL)

  17. The proposed combustion standards and DOE thermal treatment systems

    International Nuclear Information System (INIS)

    McFee, J.; Hinman, M.B.; Eaton, D.; NcNeel, K.

    1997-01-01

    Under the provisions of the Clean Air Act (CAA) concerning emission of hazardous air pollutants (HAPs), the Environmental Protection Agency (EPA) published the proposed Revised Standards for Hazardous Waste Combustors on April 19, 1996 (EPA, 1996). These standards would apply to the existing Department of Energy (DOE) radioactive and mixed waste incinerators, and may be applied to several developing alternatives to incineration. The DOE has reviewed the basis for these regulations and prepared extensive comments to present concerns about the bases and implications of the standards. DOE is now discussing compliance options with the EPA for regulation of radioactive and mixed waste thermal treatment systems

  18. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  19. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  20. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    International Nuclear Information System (INIS)

    Kolker, Allan; Senior, Constance L.; Quick, Jeffrey C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit

  1. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  2. System and method for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong H.; Johnson, Thomas Edward

    2015-11-20

    A system for reducing combustion dynamics and NO.sub.x in a combustor includes a tube bundle that extends radially across at least a portion of the combustor, wherein the tube bundle comprises an upstream surface axially separated from a downstream surface. A shroud circumferentially surrounds the upstream and downstream surfaces. A plurality of tubes extends through the tube bundle from the upstream surface through the downstream surface, wherein the downstream surface is stepped to produce tubes having different lengths through the tube bundle. A method for reducing combustion dynamics and NO.sub.x in a combustor includes flowing a working fluid through a plurality of tubes radially arranged between an upstream surface and a downstream surface of an end cap that extends radially across at least a portion of the combustor, wherein the downstream surface is stepped.

  3. Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR plants

    International Nuclear Information System (INIS)

    Simion, G.P.; VanHorn, R.L.; Smith, C.L.; Bickel, J.H.; Sattison, M.B.; Bulmahn, K.D.

    1993-06-01

    This report presents the evaluation of the potential safety concerns for pressurized water reactors (PWRs) identified in Generic Safety Issue 106, Piping and the Use of Highly Combustible Gases in Vital Areas. A Westinghouse four-loop PWR plant was analyzed for the risk due to the use of combustible gases (predominantly hydrogen) within the plant. The analysis evaluated an actual hydrogen distribution configuration and conducted several sensitivity studies to determine the potential variability among PWRs. The sensitivity studies were based on hydrogen and safety-related equipment configurations observed at other PWRs within the United States. Several options for improving the hydrogen distribution system design were identified and evaluated for their effect on risk and core damage frequency. A cost/benefit analysis was performed to determine whether alternatives considered were justifiable based on the safety improvement and economics of each possible improvement

  4. Design of the combustion system for the SGT5-8000H and first experiences in the Irsching power plant

    Energy Technology Data Exchange (ETDEWEB)

    Huth, Michael; Gruschka, Uwe; Janus, Bertram; Meisl, Juergen [Siemens AG, Energy Sector, Muelheim an der Ruhr (Germany); Wasif, Sam [Siemens Power Generation Inc., Energy Sector, Orlando, FL (United States)

    2009-07-01

    The lean premixed combustion system for the new SGT5-8000H 50Hz H-class engine was scaled from the smaller Siemens 60Hz F-class engine. The paper describes the combustion system in more details and the testing methodology including six sigma approaches. First experiences with SGT5-8000H Prototype-Engine in the Irsching power plant are summarised. (orig.)

  5. Assessment of solid waste management systems in Ibadan North ...

    African Journals Online (AJOL)

    Assessment of solid waste management systems in Ibadan North, Oyo State using geo-spatial ... Ethiopian Journal of Environmental Studies and Management ... Keywords: GIS, Median, Nearest Neighbour Analysis (NNA), Skip Bins ...

  6. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven Cannon; Clifford Smith

    2003-04-01

    Application and testing of the new combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this 10th quarterly report. CFD Research Corporation has developed the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, validation and testing of the combustion LES code was performed for the DOE-Simval combustor. Also, Beta testing by consortium members was performed for various burner and combustor configurations. In the two quarters ahead, CFDRC will validate the code on the new DOE SimVal experiments. Experimental data from DOE should be available in June 2003, though LES calculations are currently being performed. This will ensure a truly predictive test of the software. CFDRC will also provide help to the consortium members on running their cases, and incorporate improvements to the software suggested by the beta testers. The beta testers will compare their predictions with experimental measurements and other numerical calculations. At the end of this project (October, 2003), a final released version of the software will be available for licensing to the general public.

  7. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  8. Droplet evaporation and combustion in a liquid-gas multiphase system

    Science.gov (United States)

    Muradoglu, Metin; Irfan, Muhammad

    2017-11-01

    Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.

  9. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.

    Science.gov (United States)

    Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong

    2017-08-29

    The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.

  10. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Christelle, E-mail: christelle.herman@ulb.ac.b [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium); Leyssens, Tom [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, 1 Place Louis Pasteur, 1348 Louvain-La-Neuve (Belgium); Vermylen, Valerie [UCB Pharma, 60 Allee de la Recherche, 1070 Braine l' Alleud (Belgium); Halloin, Veronique; Haut, Benoit [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium)

    2011-05-15

    Research highlights: We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. The second method is an experimental study of the stability thermal range of each morph. We identify the nature of crystals in suspension at equilibrium through Raman analysis. The solid-solid transition temperature is found equal to 303.65 K {+-} 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T{sub tr}) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T{sub tr} as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T{sub tr} is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC while

  11. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    International Nuclear Information System (INIS)

    Herman, Christelle; Leyssens, Tom; Vermylen, Valerie; Halloin, Veronique; Haut, Benoit

    2011-01-01

    Research highlights: → We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. → The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. → The second method is an experimental study of the stability thermal range of each morph. → We identify the nature of crystals in suspension at equilibrium through Raman analysis. → The solid-solid transition temperature is found equal to 303.65 K ± 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T tr ) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T tr as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T tr is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC

  12. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  13. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  14. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  15. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    OpenAIRE

    Qiang Zhang; Wuqiang Long; Jiangping Tian; Yicong Wang; Xiangyu Meng

    2014-01-01

    In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI) for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature j...

  16. Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine

    Directory of Open Access Journals (Sweden)

    Ziolkowski Andrzej

    2017-01-01

    Full Text Available Increasing the combustion engine drive systems efficiency is currently being achieved by structural changes in internal combustion engines and its equipment, which are geared towards limiting mechanical, thermal and outlet losses. For this reason, downsizing. In addition to these changes, all manner of exhaust gas energy recovery systems are being investigated and implemented, including turbocompound, turbogenerators and thermoelectric generators. The article presents the author’s idea of a thermoelectric generator system of automotive applications ATEG (Automotive Thermoelectric Generator and the study of the recovery of exhaust gas energy stream. The ATEG consists of a heat exchanger, thermoelectric modules and a cooling system. In this solution, 24 commercial thermoelectric modules based on Bi2Te3 (bismuth telluride were used. Measurements were made at two engine test sites on which SI and CI engines were installed. The exhaust gas parameters (temperature and mass flow rate, fuel consumption and operating parameters of the ATEG – the intensity and the voltage generated by the thermoelectric modules and the temperature on the walls of the heat exchanger – were all measured in the experiments. Based on the obtained results, the exhaust gas energy flow and the power of the ATEG were determined as well as its effect on the diesel engine drive system efficiency.

  17. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  18. Experimental study of a staged combustion system for stationary gas turbine applications

    Science.gov (United States)

    Lamont, Warren G.

    Two optically accessible experimental test rigs were designed and constructed to investigate a staged or distributed combustion system for stationary gas turbine applications. The test rigs were fuelled with natural gas and featured two combustion zones: the main combustion zone (MCZ) and the secondary combustion zone (SCZ). The MCZ is a swirl stabilized dump combustor and the SCZ, which is axially downstream from the MCZ, is formed by a transverse jet injecting a premixed fuel/air mixture into the vitiated stream. After installing and commissioning the test rig, an emission survey was conducted to investigate the SCZ conditions, equivalence ratio and momentum ratio, that produce low NOx emissions and give a higher temperature rise before a simulated high pressure turbine than firing only the MCZ. The emission survey found several operating conditions that show the benefit of combustion staging. These beneficial conditions had an SCZ equivalence ratio between 0.41 and 1.12. The data from the emission survey was then used to create an artificial neural network (ANN). The ANN used a multi-layer feed-forward network architecture and was trained with experimental data using the backpropagation training algorithm. The ANN was then used to create performance maps and optimum operational regions were sought. Lastly, optical diagnostics were used to obtain information on the nature of the SCZ reactive jet. The diagnostics included high speed CH* chemiluminescence, OH planar laser induced fluorescence (PLIF) and dual-pump coherent anti-Stokes Raman scattering (CARS). The chemiluminescence and PLIF were used to qualitatively determine the size and shape of the transverse jet reaction zone. Dual-pump CARS was used to quantitatively determine the temperature and H2/N2 concentration ratio profile at the mid-plane of the transverse jet. Dual-pump CARS data was collected for four operating conditions but only one is presented in this dissertation. For the condition presented, the

  19. Feasibility study of a granular bed prefilter for purifying combustion gases from a solid radioactive waste incinerator

    International Nuclear Information System (INIS)

    Girod, M.

    1993-01-01

    The purpose of incineration is to minimize the volumes of radioactive waste to be stored. Cleaning combustion gases from these incinerators requires prefilters to protect the very high efficiency filters (known by the French acronym THE). These prefilters should make it possible to recover products such as plutonium while at the same time presenting a very limited source of secondary waste. This document sets out the feasibility study for a granular bed prefilter. This bed should be made of a material which is itself combustible so that it can be recycled in the incinerator to minimize production of secondary waste. During an initial stage, a design study of a demonstration device was carried out using a calculation code constructed on the basis of existing physical models, and which makes it possible to forecast the performance of the support. This theoretical approach has been correlated against experimental results from the validation test. During a second stage, the study dealt with the selection of the material from which the bed was made as well as quantification of the release of radiation during incineration of the plutonium contamined material. In this way, the very low transfer of radioactivity into the gaseous phase was demonstrated. Finally, during a third stage, a study of the change in efficiency and the loss of charge of a granular bed filter was carried out during industrial operation using an incinerator. In conclusion, it was demonstrated that the granular bed represents a viable solution for prefiltering at 200 deg C. Research might develop along a different path and involve using the granular bed as a high temperature filter at 500 to 600 deg C

  20. Solid waste management of Jakarta : Indonesia an environmental systems perspective

    OpenAIRE

    Trisyanti, Dini

    2004-01-01

    Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the city has faced serious threat of environmental deterioration andhealth hazard. It relies on one sanitary landfill only, whose capacity is currently beingexceeded, leading to excessive amounts of solid wastes left untreated in the city. An assessment with a system perspective was carried out, aiming to examine thecomplexity ...

  1. From orbital debris capture systems through internal combustion engines on Mars

    Science.gov (United States)

    1991-01-01

    The investigation and conceptualization of an orbital debris collector was the primary area of design. In addition, an alternate structural design for Space Station Freedom and systems supporting resource utilization at Mars and the moon were studied. Hardware for production of oxygen from simulate Mars atmosphere was modified to permit more reliable operation at low pressures (down to 10 mb). An internal combustion engine was altered to study how Mars atmosphere could be used as a diluent to control combustion temperatures and avoid excess Mars propellant production requirements that would result from either methane-rich or oxygen-rich, methane-oxygen combustion. An elastic loop traction system that could be used for lunar construction vehicles was refined to permit testing. A parabolic heat rejection radiator system was designed and built to determine whether it was capable of increasing heat rejection rates during lunar daytime operation. In addition, an alternate space station truss design, utilizing a pre-integrated concept, was studied and found to reduce estimate extravehicular activity (EVA) time and increase the structural integrity when compared to the original Warren truss concept. An orbital-debris-capturing spacecraft design which could be mated with the Orbital Maneuvering Vehicle was studied. The design identified Soviet C-1B boosters as the best targets of opportunity in Earth orbits between an altitude of 900 km and 1100 km and at an inclination of 82.9 deg. A dual robot pallet, which could be spun to match the tumbling rate of the C-1B booster, was developed as the conceptual design.

  2. Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines

    International Nuclear Information System (INIS)

    Wei, Shengli; Wang, Feihu; Leng, Xianyin; Liu, Xin; Ji, Kunpeng

    2013-01-01

    Highlights: • A new swirl chamber combustion system of DI diesel engines is proposed. • The appropriate vortex motion can reduce the wall concentration of mixture. • It has best emissions at swirl ratio of 0.8. • Before spray, the turbulent kinetic energy is primarily controlled by the squish. • After spray, the combustion swirl and reverse squish have a great impact on TKE. - Abstract: In order to improve the spray spatial distribution and promote the mixture quality, enhancing airflow movement in a combustion chamber, a new swirl chamber combustion system in direct injection (DI) diesel engines is proposed. The mixture formation and combustion progress in the cylinder are simulated and investigated at several different swirl ratios by using the AVL-FIRE code. The results show that in view of the fuel/air equivalence ratio distribution, the uniformity of mixture with swirl ratio of 0.2 is better. Before spray injection, the turbulent kinetic energy distribution is primarily controlled by the squish. After spray, the combustion swirl and reverse squish swirl have an effect on temperature distribution and turbulent kinetic energy (TKE) in the cylinder. The NO mass fraction is the lowest at swirl ratio of 0.8 and the highest at swirl ratio of 2.7, while Soot mass fraction is the lowest at swirl ratio of 0.2 and the highest at swirl ratio of 3.2. The appropriate swirl is benefit to improve combustion. To sum up, the emissions at swirl ratio of 0.8 has a better performance in the new combustion system

  3. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  4. Research of Data Acquisition and Analysis System for Internal Combustion Engine Based on DSP

    International Nuclear Information System (INIS)

    Gao, Y H; Tian, X L; Cheng, P; Chang, X; Dou, W J

    2006-01-01

    In the paper, the structure, working principle, functions and characteristics of an data acquisition and analysis system for internal combustion engines (I.C. engine) based on DSP is introduced. The DSP can not only acquire and analyze the data alone, also can work with the PC together to form data acquisition and analysis system with high speed and large memory. The system takes advantages of TMS320F2812's plenty of peripherals on chip, becomes small and easy for installation. USB technique is used to translate data between DSP and PC in high speed, so the system's real time processing is proved very much. It is proved that the designed system can acquire and analyze the steady and transient parameters of the I.C. engine very well

  5. New Turbo Compound Systems in Automotive Industry for Internal Combustion Engine to Recover Energy

    Science.gov (United States)

    Chiriac, R.; Chiru, A.; Condrea, O.

    2017-10-01

    The large amount of heat is scattered in the internal combustion engine through exhaust gas, coolant, convective and radiant heat transfer. Of all these residual heat sources, exhaust gases have the potential to recover using various modern heat recovery techniques. Waste heat recovery from an engine could directly reduce fuel consumption, increase available electrical power and improve overall system efficiency and if it would be used a turbochargers that can also produce energy. This solution is called turbo aggregation and has other ways to develop it in other areas of research like the electrical field. [1-3

  6. In situ synthesis and formation mechanism of ZrC and ZrB2 by combustion synthesis from the Co-Zr-B4C system

    Directory of Open Access Journals (Sweden)

    Mengxian Zhang

    2015-09-01

    Full Text Available ZrC-ZrB2-based composites were prepared by combustion synthesis (CS reaction from 10 wt.% to 50 wt.% Co-Zr-B4C powder mixtures. With increasing Co contents, the particle sizes of near-spherical ZrC and platelet-like ZrB2 decreased from 1 μm to 0.5 μm and from 5 μm to 2 μm, respectively. In addition, the formation mechanism of ZrC and ZrB2 was explored by the phase transition and microstructure evolution on the combustion wave quenched sample in combination with differential scanning calorimeter analysis. The results showed that the production of ZrC was ascribed to the solid-solid reaction between Zr and C and the precipitation from the Co-Zr-B-C melt, while ZrB2 was prepared from the saturated liquid. The low B concentration in the Co-Zr-B-C liquid and high cooling rate during the CS process led to the presence of Co2B and ZrCo3B2 in the composites. The addition of Co in the Co-Zr-B4C system not only prevented ZrC and ZrB2 particulates from growing, but also promoted the occurrence of ZrC-ZrB2-forming reaction.

  7. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  8. Review of the investigation of mixture formation and combustion process using rapid compression machine and direct visualization system

    Science.gov (United States)

    Jaat, M.; Khalid, Amir; Manshoor, B.; Ramsy, Him

    2013-12-01

    This paper reviews of some applications of optical visualization systems to compute the fuel-air mixing process during early stage of mixture formation in Diesel Combustion Engines. A number of studies have contributed to the understanding of fuel air mixing in DI diesel engine. This review has shown that the mixture formation process affects initial flame development. The review also found that injection pressure has a great effect on the mixture formation then the flame development and combustion characteristics. The method of the simulation of real phenomenon of diesel combustion with optical access rapid compression machine is also reviewed and experimental results are presented. The application of these methods to the investigation of diesel sprays highlights mechanisms which govern propagation and distribution of the formation of a combustible fuel-air mixture. A summary of the implementation of constant volume chamber and optical visualization system are shown in the accompanying tables and figures. The visualization of the formation process of diesel spray and its combustion in the diesel combustion chamber of diesel engine has been recognized as one of the best ways to understand the characteristics of the mixture formation.

  9. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  10. Majorana modes in solid state systems and its dynamics

    Science.gov (United States)

    Zhang, Qi; Wu, Biao

    2018-04-01

    We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.

  11. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  12. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2011-10-12

    ...This Notice announces and invites comment on additional information obtained by the Environmental Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From Electric Utilities that was published in the Federal Register on June 21, 2010 (75 FR 35127). This information is generally categorized as: Chemical constituent data from coal combustion residuals (CCRs); Facility and waste management unit data; Information on additional alleged damage cases; Adequacy of State programs; and Beneficial Use. In addition, EPA is considering a variety of possible approaches to update and enhance the risk assessment and the regulatory impact analysis (RIA) supporting the development of the final rule. EPA is specifically soliciting comments on the validity and propriety of the use of all new information, data, and potential analyses being noticed today. The Agency is only requesting comment on the information either specifically identified in this Notice or located in the docket for this Notice and is not reopening any other aspect of the proposal or the underlying support documents that were previously available for comment. Comments submitted on any issues other than those specifically identified in this Notice will be considered ``late comments,'' and EPA will not respond to such comments, nor will they be considered part of the rulemaking record.

  13. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  14. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Steven M. Masutani

    2001-08-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  15. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  16. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    International Nuclear Information System (INIS)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO(sub 2) from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO(sub 2) sequestration. University of Hawaii initiated effort on system optimization of the CO(sub 2) sequestration system

  17. Solid fuel feed system for a fluidized bed

    Science.gov (United States)

    Jones, Brian C.

    1982-01-01

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  18. Development and Study of Electrochemical Promotion Systems for CO2 Capture and Valorization in Combustion Gases. PROMOCAP Project Final Report

    International Nuclear Information System (INIS)

    Ruiz, E.; Cillero, D.; Martinez, P. J.; Morales, A.; San Vicente, G.; Diego, G. de; Sanchez, J. M.

    2014-01-01

    The ultimate goal of the project PROMOCAP was the development and study of electrochemical promotion systems for the capture and valorization of CO 2 in combustion flue gases. To achieve this objective, electrocatalysts consisting of tubes or monoliths of solid electrolyte (K-βAl 2 O 3 or YSZ), coated by the corresponding active metal (Pt, Pd, Ni, Cu, Fe-TiO 2 , Pt-Ru - C, Pt-C, etc.), were prepared using both conventional (painting) and improved (dip-coating, electroless or spray-coating) procedures. Both physico-chemical and volt amperometric characterization of the electrocatalysts was carried out both as prepared and after use in electro promoted CO 2 capture and valorization processes (study of chemisorption, reaction, inhibition, deactivation phenomena, etc.). Pilot plant studies were carried out under realistic conditions for identifying the best electro catalyst and the operating conditions more suitable for CO 2 electro promoted capture and valorization. Finally, the electrocatalysts identified as the most promising for electro promoted CO 2 capture (Pt/K-βAl 2 O 3 ) and valorization (Cu/K-βAl 2 O 3 ) were prepared using the developed optimized procedures and their behavior over multiple cycles of electro promoted CO 2 capture and in long term operation against electro promoted CO 2 hydrogenation, respectively, was studied under real or realistic conditions. (Author)

  19. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  20. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  1. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  2. An introduction to system reliability for solid-state lighting

    NARCIS (Netherlands)

    Driel, W.D. van; Evertz, F.E.; Zaal, J.J.M.; Morales Nápoles, O.; Yuan, C.A.

    2013-01-01

    Solid-State Lighting (SSL) applications are slowly but gradually pervading into our daily life. An SSL system is composed of an light-emitting diode (LED) engine with a microelectronic driver(s) in a housing that also supplies the optic design. Knowledge of system-level reliability is crucial for

  3. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  4. Model predictive control as a tool for improving the process operation of MSW combustion plants

    International Nuclear Information System (INIS)

    Leskens, M.; Kessel, L.B.M. van; Bosgra, O.H.

    2005-01-01

    In this paper a feasibility study is presented on the application of the advanced control strategy called model predictive control (MPC) as a tool for obtaining improved process operation performance for municipal solid waste (MSW) combustion plants. The paper starts with a discussion of the operational objectives and control of such plants, from which a motivation follows for applying MPC to them. This is followed by a discussion on the basic idea behind this advanced control strategy. After that, an MPC-based combustion control system is proposed aimed at tackling a typical MSW combustion control problem and, using this proposed control system, an assessment is made of the improvement in performance that an MPC-based MSW combustion control system can provide in comparison to conventional MSW combustion control systems. This assessment is based on simulations using an experimentally obtained process and disturbance model of a real-life large-scale MSW combustion plant

  5. New solids control system reduced oil on cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, T.P. [Oiltools Europe Ltd., Aberdeen (United Kingdom)

    1996-04-08

    A new solids control system, consisting of four new shakers and a dryer in parallel all discharging into another dryer, significantly reduced the oil on the cuttings in a nine-well offshore drilling program. Cleaned, slurrified cuttings were then discharged overboard. In November 1994, Oiltools (Europe) Ltd. received contracts to upgrade the solids control systems on Sedco Forex`s Sedco 711 and Sovereign Explorer semisubmersible drilling vessels. Sedco Forex required systems that would meet the reduced oil-on-cuttings (OOC) disposal limit of less than 80 g/kg set by the operator, while staying efficient and economical to operate and maintain. In addition, all solids were required to be slurrified for pumping overboard to ensure dispersal away from the subsea center. This article highlights the equipment used and the savings realized on the Sovereign Explorer after the first three wells of a nine-well program.

  6. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  7. Solid-methane moderator systems at KENS

    International Nuclear Information System (INIS)

    Furusaka, M.

    1997-09-01

    An overview of the target-moderator-reflector assembly (TMRA) systems at the Neutron Science Laboratory (KENS) at the High Energy Accelerator Research Organization (KEK) is described together with the historical changes. Because of the optimized design of TMRA, the neutron-generation efficiency is very high. The characteristics of the cold moderator system, such as the absolute intensity, spectrum and radiation damage to it, are also described. There are a number of new neutron-scattering instruments which are being viewed at the moderator. A brief description of the proposed TMRA for our future project is also given. (auth)

  8. Design and Implementation of a Data Acquisition System for Combustion Tests

    Directory of Open Access Journals (Sweden)

    María Teresa Miranda

    2017-05-01

    Full Text Available In recent years, the biomass market has constantly increased. The pellet manufacture industry has started looking for new products, such as wastes from forest, agriculture, and agroindustrial residues, among others, with the potential to be used as biofuels. However, some of these wastes have some characteristics that make both the combustion process and operating and maintenance conditions of thermal equipment difficult. Thus, further research to optimize the performance and ensure the compliance of the maximum atmospheric levels is needed. In order to carry out these studies, the design and implementation of a supervision, control, and data acquisition system for a domestic pellet boiler was carried out, which makes obtaining further information about the performance of non-conventional biofuels possible. Thus, these biofuels, coming from different sources, underwent different working regimes, facilitating the understanding of the results and the correction of limiting elements. The results from initial tests were reliable and precise, coinciding with the check readings that were done with a thermometer and a combustion gas analyser. Under these conditions, the system designed constitutes a fundamental tool to examine thermal processes with alternative biofuels, with the objective of making the most of different biomass wastes as renewable energy sources.

  9. Design and Implementation of the Control System of an Internal Combustion Engine Test Unit

    Directory of Open Access Journals (Sweden)

    Tufan Koç

    2014-02-01

    Full Text Available Accurate tests and performance analysis of engines are required to minimize measurement errors and so the use of the advanced test equipment is imperative. In other words, the reliable test results depend on the measurement of many parameters and recording the experimental data accurately which is depended on engine test unit. This study aims to design the control system of an internal combustion engine test unit. In the study, the performance parameters of an available internal combustion engine have been transferred to computer in real time. A data acquisition (DAQ card has been used to transfer the experimental data to the computer. Also, a user interface has been developed for performing the necessary procedures by using LabVIEW. The dynamometer load, the fuel consumption, and the desired speed can easily be adjusted precisely by using DAQ card and the user interface during the engine test. Load, fuel consumption, and temperature values (the engine inlet-outlet, exhaust inlet-outlet, oil, and environment can be seen on the interface and also these values can be recorded to the computer. It is expected that developed system will contribute both to the education of students and to the researchers’ studies and so it will eliminate a major lack.

  10. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  11. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    International Nuclear Information System (INIS)

    Steven Cannon; Baifang Zuo; Virgil Adumitroaie; Keith McDaniel; Clifford Smith

    2002-01-01

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applications and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished

  12. Prototype testing and analysis of a novel internal combustion linear generator integrated power system

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhaoping; Chang, Siqin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2010-04-15

    A novel four-stroke free-piston engine equipped with a linear electric generator (namely internal combustion linear generator integrated power system) is proposed in this paper to achieve efficient energy conversion from fuel to electricity. Unique features of the novel power system are presented and their effects on the continuous running are discussed, along with potential advantages and disadvantages compared to conventional engines. A single cylinder, gasoline and spark ignition prototype is fabricated with reference to the geometric and control parameters of an existing conventional four-stroke engine. Stable running of the prototype is realized, and a 2.2 kW average output power with the generating efficiency of 32% has been obtained up to now. The feasibility and performance of the proposed design are verified. Detailed testing results from the continuous running prototype are analyzed in this paper for giving insight into the performance and dynamic behaviors of the novel power system. (author)

  13. Tomography system for measurement of gas properties in combustion flow field

    Directory of Open Access Journals (Sweden)

    Junling SONG

    2017-10-01

    Full Text Available This paper describes a self-designed fiber-coupled tomography system and its application in combustion diagnostics. The tomographic technique, which combines tunable diode laser spectroscopy and algebraic reconstruction technique, enables the simultaneous reconstruction of temperature and gas concentration with both spatial and temporal resolutions. The system measures a maximum diameter of 35 cm in a circular area with a minimum spatial resolution of 1 mm × 1 mm and temporal response of up to 1 kHz. Simulations validate the effects of the beam arrangement and discrete grid on reconstruction accuracy, and give the optimal beam arrangements. Experiments are made to demonstrate the tomography method, and systems are constructed in laboratory and on engineering test benches.

  14. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    International Nuclear Information System (INIS)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  15. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  16. Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.

    1994-06-01

    This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

  17. Catalytic and Gas-Solid Reactions Involving HCN over Limestone

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik; Dam-Johansen, Kim

    1997-01-01

    In coal-fired combustion systems solid calcium species may be present as ash components or limestone added to the combustion chamber. In this study heterogeneous reactions involving HCN over seven different limestones were investigated in a laboratory fixed-bed quartz reactor at 873-1,173 K...

  18. Comparative Risk Analysis for Metropolitan Solid Waste Management Systems

    Science.gov (United States)

    Chang, Ni-Bin; Wang, S. F.

    1996-01-01

    Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.

  19. A solid oxide fuel cell system for buildings

    International Nuclear Information System (INIS)

    Zink, Florian; Lu, Yixin; Schaefer, Laura

    2007-01-01

    This paper examines an integrated solid oxide fuel cell (SOFC) absorption heating and cooling system used for buildings. The integrated system can provide heating/cooling and/or hot water for buildings while consuming natural gas. The aim of this study is to give an overall description of the system. The possibility of such an integrated system is discussed and the configuration of the system is described. A system model is presented, and a specific case study of the system, which consists of a pre-commercial SOFC system and a commercial LiBr absorption system, is performed. In the case study, the detailed configuration of an integrated system is given, and the heat and mass balance and system performance are obtained through numerical calculation. Based on the case study, some considerations with respect to system component selection, system configuration and design are discussed. Additionally, the economic and environmental issues of this specific system are evaluated briefly. The results show that the combined system demonstrates great advantages in both technical and environmental aspects. With the present development trends in solid oxide fuel cells and the commercial status of absorption heating and cooling systems, it is very likely that such a combined system will become increasingly feasible within the following decade

  20. Potential of reversible solid oxide cells as electricity storage system

    OpenAIRE

    Di Giorgio, Paolo; Desideri, Umberto

    2016-01-01

    Electrical energy storage (EES) systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES), and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC) working in both ...

  1. Improving the performance of solid oxide fuel cell systems

    OpenAIRE

    Halinen, Matias

    2015-01-01

    Solid oxide fuel cell (SOFC) systems can provide power production at a high electrical efficiency and with very low emissions. Furthermore, they retain their high electrical efficiency over a wide range of output power and offer good fuel flexibility, which makes them well suited for a range of applications. Currently SOFC systems are under investigation by researchers as well as being developed by industrial manufacturers. The first commercial SOFC systems have been on the market for some...

  2. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2017-09-29

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent

  3. Elemental and organic carbon in flue gas particles of various wood combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaegauf, C.; Schmid, M.; Guentert, P.

    2005-12-15

    The airborne particulate matter (PM) in the environment is of ever increasing concern to authorities and the public. The major fractions of particles in wood combustion processes are in the size less than 1 micron, typically in the range of 30 to 300 nm. Of specific interest is the content of the elemental carbon (EC) and organic carbon (OC) in the particles since these substances are known for its particular potential as carcinogens. Various wood combustion systems have been analysed (wood chip boiler, pellet boiler, wood log boiler, wood stove and open fire). The sampling of the particles was done by mean of a multi-stage particle sizing sampler cascade impactor. The impactor classifies the particles collected according to their size. The 7 stages classify the particles between 0.4 and 9 microns aerodynamic diameter. The analytical method for determining the content of EC and OC in the particles is based on coulometry. The coulometer measures the conductivity of CO{sub 2} released by oxidation of EC in the samples at 650 {sup o}C. The OC content is determined by pyrolysis of the particle samples in helium atmosphere.

  4. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  5. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. C.L. Senior

    2001-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period from 1 October to 31 December 2000. During this period planning of chemostat experiments at Aquasearch was initiated. These experiments will be used to select microalgae for the photobioreactor demonstrations. An initial survey of techniques for removing CO{sub 2} from coal-fired flue gas was begun. Chemical adsorption using MEA is the most mature technology and looks to be the most economically viable in the near future.

  6. Monitoring of diesel engine combustions based on the acoustic source characterisation of the exhaust system

    Science.gov (United States)

    Jiang, J.; Gu, F.; Gennish, R.; Moore, D. J.; Harris, G.; Ball, A. D.

    2008-08-01

    Acoustic methods are among the most useful techniques for monitoring the condition of machines. However, the influence of background noise is a major issue in implementing this method. This paper introduces an effective monitoring approach to diesel engine combustion based on acoustic one-port source theory and exhaust acoustic measurements. It has been found that the strength, in terms of pressure, of the engine acoustic source is able to provide a more accurate representation of the engine combustion because it is obtained by minimising the reflection effects in the exhaust system. A multi-load acoustic method was then developed to determine the pressure signal when a four-cylinder diesel engine was tested with faults in the fuel injector and exhaust valve. From the experimental results, it is shown that a two-load acoustic method is sufficient to permit the detection and diagnosis of abnormalities in the pressure signal, caused by the faults. This then provides a novel and yet reliable method to achieve condition monitoring of diesel engines even if they operate in high noise environments such as standby power stations and vessel chambers.

  7. Development of a Dual-Pump CARS System for Measurements in a Supersonic Combusting Free Jet

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul

    2012-01-01

    This work describes the development of a dual-pump CARS system for simultaneous measurements of temperature and absolute mole fraction of N2, O2 and H2 in a laboratory scale supersonic combusting free jet. Changes to the experimental set-up and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperature above 800 K, errors in absolute mole fraction are within 1.5, 0.5, and 1% of the total composition for N2, O2 and H2, respectively. Estimated standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5 and 1.7% of the total composition for O2, and between 1.5 and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction. Results obtained in the jet with and without combustion are illustrated, and the capabilities and limitations of the dual-pump CARS instrument discussed.

  8. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    Energy Technology Data Exchange (ETDEWEB)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  9. Solid expandable systems put deepwater targets within reach

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Roca, Eduardo [Enventure Global Technology L.L.C., Houston, TX (United States). Latin America; Fristch, Jerry [Enventure Global Technology L.L.C., Houston, TX (United States)

    2008-07-01

    Enabling technologies that take drilling operations to deeper objectives have made a significant impact on the practicality of many projects, especially deep water offshore targets. Increasing vertical depth and lateral reach requires adequate hole size to attain the desired objectives of the well bore. Solid expandable technology can maintain and retain hole size to address both the physical limitations and the economic feasibility of deep water operations. With each and every casing point, the potential for adequate hole size at total depth (TD) decreases. Solid expandable open hole liners and single-diameter systems reduce and eliminate, respectively, the well bore tapering that dictates hole size at TD and subsequent completion size. Successful mitigation of this tapering, whether through the entire well bore or through select zones, enables operators to gain access to previously unreachable reserves. Solid expandable systems have proven to be reliable and effective with over 1,000 installations in a myriad of conditions and environments worldwide. To date, over 115 of those applications have been in deep water environments. The current operating envelope for solid expandable systems include the deepest installation at {approx}28,750 ft (8,763 m) and the longest at 6,867 ft (2,083 m) in water depth over 3,150 ft (960 m). This record-length application consisted of an open hole liner installed and expanded in a single run. This paper will discuss the effectiveness of solid expandable systems in deep water operations and how the technology brings value to offshore projects especially when planned into the initial design. Case histories will be used to further illustrate the features, advantages, and benefits of expandable technology. In addition, this paper will examine the state of the solid expandable technology and its continuing evolution to provide even more drilling solutions. (author)

  10. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    Science.gov (United States)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  11. System and method for conditioning intake air to an internal combustion engine

    Science.gov (United States)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  12. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  13. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Forster, G A [Lancaster Environmental Foundation, PA (United States)

    1995-01-01

    This report summarized the Lancaster county Solid Waste Management Authorities`s (LCSWMA)landfill reclamation activities, ongoing since 1991. All aspects have been analyzed from the manpower and equipment requirements at the landfill to the operational impacts felt at the LCSWMA Resource Recovery Facility (RRF) where the material is delivered for processing. Characteristics of the reclaimed refuse and soil recovered from trommeling operations are discussed as are results of air monitoring performed at the landfill excavation site and the RRF. The report also discusses the energy value of the reclaimed material and compares this value with those obtained for significantly older reclaimed waste streams. The effects of waste age on the air emissions and ash residue quality at the RRF are also provided. The report concludes by summarizing the project benefits and provides recommendations for other landfill reclamation operations and areas requiring further research.

  14. Volume reduction by the incineration of the combustible radioactive solid samples from radioisotope usage at the utilization facility. Estimation of the distribution of low energy β-emitter using the imaging plate

    International Nuclear Information System (INIS)

    Yumoto, Yasuhiro; Hanafusa, Tadashi; Nagamatsu, Tomohiro; Okada, Shigeru

    1999-01-01

    We want to establish a system of volume reduction by the incineration of the combustible radioactive solid wastes from radioisotope usage at the utilization facility. We have been performing experiments using an experimental incineration system to examine the distribution of radionuclides during incineration and to collect basic data. To reproduce the realistic conditions of incineration of low-level radioactive wastes in an experimental system, we adopted new incineration methods in this study. Low level radioactive samples (LLRS) were set up in a mesh container of stainless steel and incinerated at high temperature (over 800 degC) generated by two sets of high calorie gas burners. Low energy β-emitters 35 S, 45 Ca, 33 P, and a high energy β-emitter 32 P were used for the experiment. Their translocation percentages in exhaust air and dust were estimated using the Imaging Plate. Distribution of radionuclides during the incineration was similar to that estimated by conventional methods by our study or to that reported in incineration of liquid scintillation cocktail waste. We concluded that the use of the Imaging Plates is a simple and reliable method for estimation of the distribution of low energy β-emitters in incineration gas and ash. (author)

  15. A simple and automated sample preparation system for subsequent halogens determination: Combustion followed by pyrohydrolysis.

    Science.gov (United States)

    Pereira, L S F; Pedrotti, M F; Vecchia, P Dalla; Pereira, J S F; Flores, E M M

    2018-06-20

    A simple and automated system based on combustion followed by a pyrohydrolysis reaction was proposed for further halogens determination. This system was applied for digestion of soils containing high (90%) and also low (10%) organic matter content for further halogens determination. The following parameters were evaluated: sample mass, use of microcrystalline cellulose and heating time. For analytes absorption, a diluted alkaline solution (6 mL of 25 mmol L -1  NH 4 OH) was used in all experiments. Up to 400 mg of soil with high organic matter content and 100 mg of soil with low organic matter content (mixed with 400 mg of cellulose) could be completely digested using the proposed system. Quantitative results for all halogens were obtained using less than 12 min of sample preparation step (about 1.8 min for sample combustion and 10 min for pyrohydrolysis). The accuracy was evaluated using a certified reference material of coal and spiked samples. No statistical difference was observed between the certified values and results obtained by the proposed method. Additionally, the recoveries obtained using spiked samples were in the range of 98-103% with relative standard deviation values lower than 5%. The limits of quantification obtained for F, Cl, Br and I for soil with high (400 mg of soil) and low (100 mg of soil) organic matter were in the range of 0.01-2 μg g -1 and 0.07-59 μg g -1 , respectively. The proposed system was considered as a simple and suitable alternative for soils digestion for further halogens determination by ion chromatography and inductively coupled plasma mass spectrometry techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Evaluation of Municipal Solid Waste Management System and ...

    African Journals Online (AJOL)

    This paper reports the evaluation of households' usage of the current solid waste management system (SWMS) within the city of Ilorin, central Nigeria and investigates the determinants of household's willingness-to-Pay (WTP) for its improvement. Data was collected with the aid of a structured questionnaire administered to ...

  17. A multi-function low solide angle system

    International Nuclear Information System (INIS)

    Yan Sujuan; Yao Linong

    2001-01-01

    A multi-function low solid angle system for direct and indirect measurement of radioactivity or emission rate of most α, β and EC emitting nuclides are described in this paper. The measurement result of 241 Am and 90 Sr- 90 Y are given

  18. Automatic diagnosis and control of distributed solid state lighting systems

    NARCIS (Netherlands)

    Dong, J.; van Driel, W.D.; Zhang, G.Q.

    2011-01-01

    This paper describes a new design concept of automatically diagnosing and compensating LED degradations in distributed solid state lighting (SSL) systems. A failed LED may significantly reduce the overall illumination level, and destroy the uniform illumination distribution achieved by a nominal

  19. The Use of Silver Solid Amalgam Electrodes for Voltammetric and Amperometric Determination of Nitrated Polyaromatic Compounds Used as Markers of Incomplete Combustion

    Directory of Open Access Journals (Sweden)

    Oksana Yosypchuk

    2012-01-01

    Full Text Available Genotoxic nitrated polycyclic aromatic hydrocarbons (NPAHs are formed during incomplete combustion processes by reaction of polycyclic aromatic hydrocarbons (PAHs with atmospheric nitrogen oxides. 1-Nitropyrene, 2-nitrofluorene, and 3-nitrofluoranthene as the dominating substances are used as markers of NPAHs formation by these processes. In the presented study, voltammetric properties and quantification of these compounds and of 5-nitroquinoline (as a representative of environmentally important genotoxic heterocyclic compounds have been investigated using a mercury meniscus modified silver solid amalgam electrode (m-AgSAE, which represent a nontoxic alternative to traditional mercury electrodes. Linear calibration curves over three orders of magnitude and limits of determination mostly in the 10−7 mol L−1 concentration range were obtained using direct current and differential pulse voltammetry. Further, satisfactory HPLC separation of studied analytes in fifteen minutes was achieved using 0.01 mol L−1 phosphate buffer, pH 7.0 : methanol (15 : 85, v/v mobile phase, and C18 reversed stationary phase. Limits of detection of around 1 · 10−5 mol L−1 were achieved using amperometric detection at m-AgSAE in wall-jet arrangement for all studied analytes. Practical applicability of this technique was demonstrated on the determination of 1-nitropyrene, 2-nitrofluorene, 3-nitrofluoranthene, and 5-nitroquinoline in drinking water after their preliminary separation and preconcentration using solid phase extraction with the limits of detection around 1 · 10−6 mol L−1.

  20. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  1. Sustainable solid waste management a systems engineering approach

    CERN Document Server

    Chang, N

    2015-01-01

    Interactions between human activities and the environment are complicated and often difficult to quantify. In many occasions, judging where the optimal balance should lie among environmental protection, social well-being, economic growth, and technological progress is complex. The use of a systems engineering approach will fill in the gap contributing to how we understand the intricacy by a holistic way and how we generate better sustainable solid waste management practices. This book aims to advance interdisciplinary understanding of intertwined facets between policy and technology relevant to solid waste management issues interrelated to climate change, land use, economic growth, environmental pollution, industrial ecology, and population dynamics.

  2. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  3. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  4. Methods and systems to thermally protect fuel nozzles in combustion systems

    Science.gov (United States)

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  5. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    Science.gov (United States)

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  6. System catalytic neutralization control of combustion engines waste gases in mining technologies

    Science.gov (United States)

    Korshunov, G. I.; Solnitsev, R. I.

    2017-10-01

    The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.

  7. Integrated technologies for solid waste bin monitoring system.

    Science.gov (United States)

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  8. Burning Questions in Gravity-Dependent Combustion Science

    Science.gov (United States)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  9. Hot spot detection system for vanes or blades of a combustion turbine

    Science.gov (United States)

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  10. Reducing residential solid fuel combustion through electrified space heating leads to substantial air quality, health and climate benefits in China's Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.

    2017-12-01

    public health benefits of using electrified space heating. In particular, we find air source heat pumps could bring more climate and health benefits than direct resistance heaters. Our results also support policies to integrate renewable energy sources with the reduction of solid fuel combustion for residential space heating.

  11. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari

    2013-12-01

    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  12. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior

    DEFF Research Database (Denmark)

    Kleinhans, Ulrich; Wieland, Christoph; Frandsen, Flemming J.

    2018-01-01

    . The impaction of solid, molten or partially molten particles on surfaces is dependent on the particle and surface characteristics. For instance, a particulate deposit might capture incoming particles or be removed due to erosion, while a molten layer will collect all impacting particles, no matter...... if they are sticky or not. The main properties affecting the particle stickiness are the viscosity and surface tension for silicate-rich ashes. On the contrary, the stickiness of salt-rich ashes – typical for herbaceous biomass and wood- or waste-based fuels – is often described using the liquid melt fraction......, their required parameters are discussed and typical particle and surface properties found in combustion systems, are summarized. Eight different sticking criteria are implemented in a computational fluid dynamics code and computations are compared against measurements from an entrained flow reactor. Uniform...

  13. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  14. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    International Nuclear Information System (INIS)

    MAY, D.L.

    2000-01-01

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced

  15. Solid state low power pulsed NMR spectrometer system

    International Nuclear Information System (INIS)

    Nadkarni, S.S.; Parthasarathy, T.G.; Menon, M.P.S.; Hannurkar, P.R.

    1981-01-01

    A pulsed nuclear magnetic resonance spectrometer system is described for relaxation time studies on solid and liquid samples. The spectrometer design is fully solid state and a special microcomputer interface is incorporated for automatic evaluation of the relaxation times. The prototype system has been designed to operate at 9 MHz, but the modular concept used in the construction permits operation at any frequency in the range 5-10 MHz. The system has a recovery time of 15 micro seconds at 9 MHz. The range of measurement for the spin-lattice relaxation time is 0.1 millisecond to 1000 seconds; for spin-spin relaxation time, the range is 14μ seconds to 100 milliseconds. (author)

  16. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  17. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    MAY, D.L.

    2000-03-22

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced.

  18. A plasma melting system for solid radioactive waste

    International Nuclear Information System (INIS)

    Higashi, Yasuo; Sugimoto, Masahiko; Fujitomi, Masashi; Noura, Tsuyoshi

    2003-01-01

    Kobe Steel has developed a plasma melting system for the volume reduction and stabilization of solid radioactive wastes such as concrete, insulation, filters, glass, sand etc. The main features of the system are as follows. (1) Non-transfer air plasma torches: 1.3 MW x 2 (2) Treatment capacity: 2 tons/batch (3) Waste feed: 200 liter drums (4) Tapping method: furnace tilting (5) Molten slag cooling: in the system's chambers. In this paper, an outline of the system and its first-run performance results are described. (author)

  19. A Reduced Order Model for the Design of Oxy-Coal Combustion Systems

    Directory of Open Access Journals (Sweden)

    Steven L. Rowan

    2015-01-01

    Full Text Available Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG consisting of mainly carbon dioxide (CO2. As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.

  20. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  1. Solid state amorphisation in binary systems prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Bonyuet, D.; D'Angelo, L.; Villalba, R.

    2009-01-01

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  2. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  3. Plasma assisted combustion of parafin mixture

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya.; Martysh, E.V.; Lisitchenko, T.E.; Vergun, O.Yu.; Orlovska, S.G.

    2013-01-01

    In this work the results of solid paraffin combustion with the aid of the plasma of transverse and rotational gliding arc studies are represented. The question of the additional activation of paraffin based solid fuels is examined. The mixture of n-paraffin and stearin in the solid state as the model of the solid paraffin based fuel is used. The plasma assisted combustion of this model is experimentally investigated. The voltage-current characteristics of discharge at the different regimes are measured. The population temperatures of excited rotational levels are determined. The flame temperature during the combustion of solid paraffin containing mixture is calculated

  4. Spontaneous Raman Scattering Diagnostics: Applications in Practical Combustion Systems. Chapter 5

    Science.gov (United States)

    Kojima, Jun; Viet-Nguyen, Quang; Lackner, Maximilian (Editor); Winter, Franz (Editor); Agarwal, Avinash (Editor)

    2010-01-01

    In this chapter, the recent advancements and practical aspects of laser SRS diagnostics have been reviewed wi til regards to applications in practical combustion systems. Clearly, SRS represents a theoretically and experimentally mature diagnostic technology that has become an essential tool for multiscalar measurements in turbulent combustion at elevated pressures. Today, time-, space-, spectrally, and even polarization-resolved S RS diagnostics is at hand, with aid from recent innovations in theoretical and technological developments on electro-optical or electromechanical devices. Whilst a linear increase in SRS signals can be expected in high-pressure systems (this is perhaps one of the most important advantages for using SRS in high-pressure systems), there are practical (often severe) restrictions associated with pressurized vessels, due mainly to the limited degree of optical access. This narrows ti,e available choice of diagnostics that can be employed at any given time. Point-wise SRS diagnostics provides the highest accuracy on the chemical species and temperature measurements, and will continue to remain a vital approach for the study in such harsh environments. The practical design considerations and hands-on set-up guide for SRS diagnostics provided in this chapter are rarely presented elsewhere. Although the second-harmonic Nd:YAG pulsed laser (532 nm), combined with pulse-stretching optics or the recently introduced White Cell-based laser, seems to be the most favored excitation source of choice by the research community, UV excitation will undoubtedly continue to be used on many occasions, and especially in sooting flames. Detection methods may be divided into ICCD-based nanosecond-gate detection or a rotary-chopper electromechanical shutter-based CCD array detection, and the levels of background flame emission in individual cases would determine this critical design choice. Here, a process of Raman signal calibration based on ti,e crosstalk matrix

  5. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  6. Optical system for CO and NO gas detection in the exhaust manifold of combustion engines

    International Nuclear Information System (INIS)

    Mello, M.; De Vittorio, M.; Passaseo, A.; Lomascolo, M.; De Risi, A.

    2007-01-01

    The experimental characterization of an innovative optical system for detection of carbon monoxide (CO) and nitride oxide (NO) in the exhaust manifold of otto and diesel engines is reported. A photodetector based on gallium nitride (GaN) and an UV light source are integrated in a chamber of analysis and form the detection system. The UV light source, consisting of a spark produced by an arc discharge, induces electronic transitions in the gas molecules flowing between the light source and the GaN photodetector. The transitions modify the fraction of light in the UV spectral region which is detected by the GaN photodetector, as a function of the species concentration. By means of its structural properties, gallium nitride (GaN) allows to operate at high temperature and high speed and to work in situ in the exhaust manifold of combustion engines at temperatures as high as 600 o C, at which the deposited organic residuals on the detector can be oxidized. This assures a clear surface necessary for a real time optical measurement of the species concentration to be used for a closed loop control of the fuel injection process. The system was applied to the detection of CO and NO with concentration between 0% and 2% in a buffer of pure nitrogen gas, showing an increase in the measured photocurrent as a function of the above gases

  7. Multi-User Hardware Solutions to Combustion Science ISS Research

    Science.gov (United States)

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time

  8. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  9. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  10. Design of the steam generator in an energy conversion system based on the aluminum combustion with water

    International Nuclear Information System (INIS)

    Mercati, Stefano; Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio

    2012-01-01

    Highlights: ► Development of a numerical approach for the analysis of a co-generation system based on the aluminum water reaction. ► Construction of system operating maps for estimating the system behavior. ► Comparison of two different designs of the steam generator for the system. ► Definition of the operating range where each configuration provides the best performance. -- Abstract: The paper shows the preliminary design of the superheated steam generator to be used in a novel hydrogen production and energy conversion system based on the combustion of aluminum particles with water. The system is aimed at producing hydrogen and pressurized superheated steam, using the heat released by the Al–H 2 O reaction. The interest on this type of technology arises because of the possibility of obtaining hydrogen with very low pollutant and greenhouse gas emissions, compared to the traditional hydrogen production systems, such as the steam reforming from methane. The analysis of the combustion chamber and the heat recovery system is carried out by means of a lumped and distributed parameter numerical approach. The multi phase and gas mixture theoretical principles are used both to characterize the mass flow rate and the heat release in the combustion chamber and within the heat exchangers in order to relate the steam generator performance to the system operating parameters. Finally, the influence of the steam generator performance on the whole energy conversion system behavior is addressed, with particular care to the evaluation of the total power and efficiency variation with the combustion parameters.

  11. The possible role of indoor radon reduction systems in back-drafting residential combustion appliances

    International Nuclear Information System (INIS)

    Henschel, D.B.

    1997-01-01

    A computational sensitivity analysis was conducted to identify the conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might most likely exacerbate or create back-drafting of natural-draft combustion appliances. Parameters varied included: house size; normalized leakage area; exhaust rate of exhaust appliances other than the ASD system; and the amount of house air exhausted by the ASD system. Even with a reasonably conservative set of assumptions, it is predicted that ASD systems should not exacerbate or create back- drafting in most of the U.S. housing stock. Only at normalized leakage areas lower than 3 to 4 cm 2 commercial at 4 Pa) per m 2 of floor area should ASD contribute to back-drafting, even in small houses at high ASD exhaust rates (compared to a mean of over 10 cm 2 /m 2 determined from data on over 12,000 U.S. houses). But on the other hand, even with a more forgiving set of assumptions, it is predicted that ASD systems could contribute to back-drafting in some fraction of the housing stock -houses tighter than about 1 to 2 cm 2 /m 2 - even in large houses at minimal ASD exhaust rates. It is not possible to use parameters such as house size or ASD system flow rate to estimate reliably the risk that an ASD system might contribute to back-drafting in a given house. Spillage/back-draft testing would be needed for essentially all installations. (au) 18 refs

  12. Preliminary assessment of the health and environmental impacts of fluidized-bed combustion of coal as applied to electrical utility systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-01

    The objective of this study was to assess the health and environmental impacts of fluidized-bed combustion of coal (FBC), specifically as applied to base-load generation of electrical energy by utilities. The public health impacts of Fluidized-Bed Combustion (FBC) plants are expected to be quite similar to those for Low Sulfur Coal (LSC) and Flue Gas Desulfurization (FGD) plants because all appear to be able to meet Federal emission standards; however, there are emissions not covered by standards. Hydrocarbon emissions are higher and trace element emissions are lower for FBC than for conventional technologies. For FBC, based on an analytical model and a single emission data point, the polycyclic organic material decreases the anticipated lifespan of the highly exposed public very slightly. Added health protection due to lower trace element emissions is not known. Although there is a large quantity of solid wastes from the generating plant, the environmental impact of the FBC technology due to solid residue appears lower than for FGD, where sludge management requires larger land areas and presents problems due to the environmentally noxious calcium sulfite in the waste. Fixing the sludge may become a requirement that increases the cost of wet-limestone FGD but makes that system more acceptable. The potential for aquatic or terrestrial impacts from hydrocarbon emissions is low. If application of AFBC technology increases the use of local high-sulfur coals to the detriment of western low-sulfur coal, a sociological benefit could accrue to the FBC (or FGD) technology, because impacts caused by western boom towns would decrease. The infrastructure of areas that mine high-sulfur coal in the Midwest are better equipped to handle increased mining than the West.

  13. DRUCKFLAMM - Investigation on combustion and hot gas cleanup in pulverized coal combustion systems. Final report; DRUCKFLAMM - Untersuchungen zur Verbrennung und Heissgasreinigung bei der Druckkohlenstaubfeuerung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Benoehr, A.; Schuermann, H.; Stroehle, J.; Klaiber, C.; Kuhn, R.; Maier, J.; Schnell, U.; Unterberger, S.

    2001-07-01

    The ambitions of making energy supply more efficient and less polluting brought forth the development of coal based combined cycle power plants allowing considerable increases in net efficiencies. One of the regarded firing concepts for a coal based combined cycle power plant is represented by the pressurised pulverised coal combustion process which has the highest efficiency potential compared with the other coal based concepts. The fundamental purpose of the project was to gain firm knowledge concerning firing behaviour of coal in a pressurised pulverised coal combustion system. Detailed investigations were carried out in a pressurised entrained flow reactor taking into account fuel conversion and particle behaviour, pollutant formation and material behaviour under conditions of a pressurised pulverised coal firing. During the project's investigations several different measurement techniques were tested and partially also acquired (e.g. a two-colour-pyrometry system to measure simultaneous particle surface temperature and particle diameter of burning fuel particles). Calculation models under pressurised conditions for pressure vessel simulation and better scale-up were developed synchronously with the experimental investigations. The results gained using the pressurised entrained flow reactor show that many combustion mechanisms are influenced by increased pressure, for instance the fuel conversion is intensified and at the same time pollutant emissions decreased. The material investigations show that the ceramic materials used due to the very high combustion temperatures are very sensitive versus slagging and fast temperature changes, therefore further development requirements are needed to fully realise the high durability of ceramics in the pressurised furnace. Concerning the improvement of existing models for furnace simulation under pressurised conditions, a good resemblance can be observed when considering the actual measurement results from the test

  14. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Synthesis and characterization of solid solutions in ABCO 4 system

    Science.gov (United States)

    Novoselov, A.; Zimina, G.; Komissarova, L.; Pajaczkowska, A.

    2006-01-01

    Formation of continuous solid solutions with a tetragonal structure of K 2NiF 4-type was investigated by direct solid-state synthesis, carbonate precipitations, the freeze-drying method and the Czochralski crystal growth technique. In the systems of SrLaAlO 4-CaLaAlO 4, SrNdAlO 4-CaNdAlO 4, SrPrAlO 4-CaPrAlO 4, SrLaAlO 4-SrLaGaO 4 and SrLaAlO 4-SrLaFeO 4 solid solutions are formed in the whole concentration range (0.0⩽ x⩽1.0) and in the systems of SrLaAlO 4-SrLaMnO 4 and SrLaAlO 4-SrLaCrO 4 in the limited compositional interval of (0.0⩽ x⩽0.20) and (0.0⩽ x⩽0.25), respectively, with composition dependency of lattice constants following Vegard's law.

  16. Numerical investigations of cooling holes system role in the protection of the walls of a gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ben Sik Ali, Ahlem; Kriaa, Wassim; Mhiri, Hatem [Ecole Nationale D' Ingenieurs de Monastir, Unite de Thermique et Thermodynamique des Procedes industriels, Monastir (Tunisia); Bournot, Philippe [IUSTI, UMR CNRS 6595, Marseille (France)

    2012-05-15

    Numerical simulations in a gas turbine Swirl stabilized combustor were conducted to investigate the effectiveness of a cooling system in the protection of combustor walls. The studied combustion chamber has a high degree of geometrical complexity related to the injection system as well as the cooling system based on a big distribution of small holes (about 3,390 holes) bored on the flame tube walls. Two cases were considered respectively the flame tube without and with its cooling system. The calculations were carried out using the industrial CFD code FLUENT 6.2. The various simulations made it possible to highlight the role of cooling holes in the protection of the flame tube walls against the high temperatures of the combustion products. In fact, the comparison between the results of the two studied cases demonstrated that the walls temperature can be reduced by about 800 C by the mean of cooling holes technique. (orig.)

  17. Optimized formulation of solid self-microemulsifying sirolimus delivery systems

    Directory of Open Access Journals (Sweden)

    Cho W

    2013-04-01

    Full Text Available Wonkyung Cho,1,2 Min-Soo Kim,3 Jeong-Soo Kim,2 Junsung Park,1,2 Hee Jun Park,1,2 Kwang-Ho Cha,1,2 Jeong-Sook Park,2 Sung-Joo Hwang1,4 1Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; 2College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea; 3Department of Pharmaceutical Engineering, Inje University, Gimhae, Republic of Korea; 4College of Pharmacy, Yonsei University, Incheon, Republic of Korea Background: The aim of this study was to develop an optimized solid self-microemulsifying drug delivery system (SMEDDS formulation for sirolimus to enhance its solubility, stability, and bioavailability. Methods: Excipients used for enhancing the solubility and stability of sirolimus were screened. A phase-separation test, visual observation for emulsifying efficiency, and droplet size analysis were performed. Ternary phase diagrams were constructed to optimize the liquid SMEDDS formulation. The selected liquid SMEDDS formulations were prepared into solid form. The dissolution profiles and pharmacokinetic profiles in rats were analyzed. Results: In the results of the oil and cosolvent screening studies, Capryol™ Propylene glycol monocaprylate (PGMC and glycofurol exhibited the highest solubility of all oils and cosolvents, respectively. In the surfactant screening test, D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS was determined to be the most effective stabilizer of sirolimus in pH 1.2 simulated gastric fluids. The optimal formulation determined by the construction of ternary phase diagrams was the T32 (Capryol™ PGMC:glycofurol:vitamin E TPGS = 30:30:40 weight ratio formulation with a mean droplet size of 108.2 ± 11.4 nm. The solid SMEDDS formulations were prepared with Sucroester 15 and mannitol. The droplet size of the reconstituted solid SMEDDS showed no significant difference compared with the liquid SMEDDS. In the dissolution study, the release amounts of

  18. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  19. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  20. Converting existing Internal Combustion Generator (ICG) systems into HESs in standalone applications

    International Nuclear Information System (INIS)

    Perera, A.T.D.; Attalage, R.A.; Perera, K.K.C.K.; Dassanayake, V.P.C.

    2013-01-01

    Graphical abstract: - Highlights: • Obtained Pareto fronts of LEC, power supply reliability (PSR) and ICC/GHG emission. • Pareto surface was observed for smaller ICGs when considering LEC–PSR–GHG. • Shape of the LEC–PSR–ICC Pareto front gradually changes with ICG capacity. • Importance of multi-criterion decision-making after multi objective optimization. - Abstract: Expanding existing Internal Combustion Generator (ICG) systems by combining renewable energy sources is getting popular due to global concern on emission of green house gases (GHG) and increasing fossil fuel costs. Life cycle cost, initial capital cost (ICC), power supply reliability of the system, and GHG emission by ICG are factors to be considered in this process. Pareto front of Levelized Energy Cost (LEC)–Unmet Load Fraction (ULF)–GHG emission was taken in this study for four different expansion scenarios. Furthermore, Pareto front of ICC–LE–ULF was taken for three different expansion scenarios in order to analyze the impact of renewable energy integration. The results clearly depict that characteristics of the Pareto front varies with the scale of expansion and objectives taken for the optimization. A detailed analysis was conducted for a scale up problem with a 4 kVA ICG by using the Pareto fronts obtained

  1. Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat

    International Nuclear Information System (INIS)

    Khaliq, A.; Kaushik, S.C.

    2004-01-01

    This communication presents thermodynamic methodology for the performance evaluation of combustion gas turbine cogeneration system with reheat. The energetic and exergetic efficiencies have been defined. The effects of process steam pressure and pinch point temperature used in the design of heat recovery steam generator, and reheat on energetic and exergetic efficiencies have been investigated. From the results obtained in graphs it is observed that the power to heat ratio increases with an increase in pinch point, but the first-law efficiency and second-law efficiency decreases with an increase in pinch point. The power to heat ratio and second-law efficiency increases significantly with increase in process steam pressure, but the first-law efficiency decreases with the same. Results also show that inclusion of reheat, provide significant improvement in electrical power output, process heat production, fuel-utilization (energetic) efficiency and second-law (exergetic) efficiency. This methodology may be quite useful in the selection and comparison of combined energy production systems from thermodynamic performance point of view

  2. Engineered Sulfur‐Resistant Catalyst System with an Assisted Regeneration Strategy for Lean‐Burn Methane Combustion

    Science.gov (United States)

    Kallinen, Kauko; Maunula, Teuvo; Suvanto, Mika

    2018-01-01

    Abstract Catalytic combustion of methane, the main component of natural gas, is a challenge under lean‐burn conditions and at low temperatures owing to sulfur poisoning of the Pd‐rich catalyst. This paper introduces a more sulfur‐resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production. PMID:29780434

  3. Systems approaches to integrated solid waste management in developing countries

    International Nuclear Information System (INIS)

    Marshall, Rachael E.; Farahbakhsh, Khosrow

    2013-01-01

    Highlights: ► Five drivers led developed countries to current solid waste management paradigm. ► Many unique factors challenge developing country solid waste management. ► Limited transferability of developed country approaches to developing countries. ► High uncertainties and decision stakes call for post-normal approaches. ► Systems thinking needed for multi-scale, self-organizing eco-social waste systems. - Abstract: Solid waste management (SWM) has become an issue of increasing global concern as urban populations continue to rise and consumption patterns change. The health and environmental implications associated with SWM are mounting in urgency, particularly in the context of developing countries. While systems analyses largely targeting well-defined, engineered systems have been used to help SWM agencies in industrialized countries since the 1960s, collection and removal dominate the SWM sector in developing countries. This review contrasts the history and current paradigms of SWM practices and policies in industrialized countries with the current challenges and complexities faced in developing country SWM. In industrialized countries, public health, environment, resource scarcity, climate change, and public awareness and participation have acted as SWM drivers towards the current paradigm of integrated SWM. However, urbanization, inequality, and economic growth; cultural and socio-economic aspects; policy, governance, and institutional issues; and international influences have complicated SWM in developing countries. This has limited the applicability of approaches that were successful along the SWM development trajectories of industrialized countries. This review demonstrates the importance of founding new SWM approaches for developing country contexts in post-normal science and complex, adaptive systems thinking

  4. Systems approaches to integrated solid waste management in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Rachael E., E-mail: rmarsh01@uoguelph.ca [School of Engineering, University of Guelph, Albert A. Thornbrough Building, Guelph, ON, Canada N1G 2W1 (Canada); Farahbakhsh, Khosrow, E-mail: khosrowf@uoguelph.ca [School of Engineering, University of Guelph, Albert A. Thornbrough Building, Guelph, ON, Canada N1G 2W1 (Canada)

    2013-04-15

    Highlights: ► Five drivers led developed countries to current solid waste management paradigm. ► Many unique factors challenge developing country solid waste management. ► Limited transferability of developed country approaches to developing countries. ► High uncertainties and decision stakes call for post-normal approaches. ► Systems thinking needed for multi-scale, self-organizing eco-social waste systems. - Abstract: Solid waste management (SWM) has become an issue of increasing global concern as urban populations continue to rise and consumption patterns change. The health and environmental implications associated with SWM are mounting in urgency, particularly in the context of developing countries. While systems analyses largely targeting well-defined, engineered systems have been used to help SWM agencies in industrialized countries since the 1960s, collection and removal dominate the SWM sector in developing countries. This review contrasts the history and current paradigms of SWM practices and policies in industrialized countries with the current challenges and complexities faced in developing country SWM. In industrialized countries, public health, environment, resource scarcity, climate change, and public awareness and participation have acted as SWM drivers towards the current paradigm of integrated SWM. However, urbanization, inequality, and economic growth; cultural and socio-economic aspects; policy, governance, and institutional issues; and international influences have complicated SWM in developing countries. This has limited the applicability of approaches that were successful along the SWM development trajectories of industrialized countries. This review demonstrates the importance of founding new SWM approaches for developing country contexts in post-normal science and complex, adaptive systems thinking.

  5. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  6. Hyperspectral imaging applied to complex particulate solids systems

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia

    2008-04-01

    HyperSpectral Imaging (HSI) is based on the utilization of an integrated hardware and software (HW&SW) platform embedding conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Although HSI was originally developed for remote sensing, it has recently emerged as a powerful process analytical tool, for non-destructive analysis, in many research and industrial sectors. The possibility to apply on-line HSI based techniques in order to identify and quantify specific particulate solid systems characteristics is presented and critically evaluated. The originally developed HSI based logics can be profitably applied in order to develop fast, reliable and lowcost strategies for: i) quality control of particulate products that must comply with specific chemical, physical and biological constraints, ii) performance evaluation of manufacturing strategies related to processing chains and/or realtime tuning of operative variables and iii) classification-sorting actions addressed to recognize and separate different particulate solid products. Case studies, related to recent advances in the application of HSI to different industrial sectors, as agriculture, food, pharmaceuticals, solid waste handling and recycling, etc. and addressed to specific goals as contaminant detection, defect identification, constituent analysis and quality evaluation are described, according to authors' originally developed application.

  7. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel; Simulation de la combustion en boucle chimique d'une charge gazeuse dans un lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Mahalatkar, K.; Kuhlman, J. [West Virginia University, Dept. of Mechanical and Aerospace Engineering, Morgantown, WV, 26506 (United States); Mahalatkar, K. [ANSYS Inc., 3647 Collins Ferry Road Suite A, Morgantown, WV, 26505 (United States); Kuhlman, J.; Huckaby, E.D.; O' Brien, T. [National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV, 26507 (United States)

    2011-03-15

    Numerical studies using Computational Fluid Dynamics (CFD) have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185). There have been extensive experimental studies in Chemical Looping Combustion (CLC), however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particle-particle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. (authors)

  8. Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation

    International Nuclear Information System (INIS)

    Benajes, Jesus; Novella, Ricardo; Pastor, Jose Manuel; Hernández-López, Alberto; Hasegawa, Manabu; Tsuji, Naohide; Emi, Masahiko; Uehara, Isshoh; Martorell, Jordi; Alonso, Marcos

    2016-01-01

    Highlights: • A DOE-based optimization of the combustion system of a CI engine has been performed. • Improving efficiency controlling emissions needs optimizing bowl design and settings. • Swirl-supported with re-entrant bowl combustion system is required after optimizing. • Computationally optimized combustion system has been validated by engine tests. - Abstract: The research in the field of internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO_2 emissions, while fulfilling the increasingly stringent pollutant emissions regulations. In this framework, this research work focuses on describing a methodology for optimizing the combustion system of Compression Ignition (CI) engines, by combining Computational Fluid Dynamics (CFD) modeling, and the statistical Design of Experiments (DOE) technique known as Response Surface Method (RSM). As a key aspect, in addition to the definition of the optimum set of values for the input parameters, this methodology is extremely useful to gain knowledge on the cause/effect relationships between the input and output parameters under investigation. This methodology is applied in two sequential studies to the optimization of the combustion system of a 4-cylinder 4-stroke Medium Duty Direct Injection (DI) CI engine, minimizing the fuel consumption while fulfilling the emission limits in terms of NO_x and soot. The first study targeted four optimization parameters related to the engine hardware including piston bowl geometry, injector nozzle configuration and mean swirl number (MSN) induced by the intake manifold design. After the analysis of the results, the second study extended to six parameters, limiting the optimization of the engine hardware to the bowl geometry, but including the key air management and injection settings. For both studies, the simulation plans were defined following a Central Composite Design (CCD), providing 25 and 77 simulations respectively. The results

  9. Innovative Calibration Method for System Level Simulation Models of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Ivo Prah

    2016-09-01

    Full Text Available The paper outlines a procedure for the computer-controlled calibration of the combined zero-dimensional (0D and one-dimensional (1D thermodynamic simulation model of a turbocharged internal combustion engine (ICE. The main purpose of the calibration is to determine input parameters of the simulation model in such a way as to achieve the smallest difference between the results of the measurements and the results of the numerical simulations with minimum consumption of the computing time. An innovative calibration methodology is based on a novel interaction between optimization methods and physically based methods of the selected ICE sub-systems. Therein physically based methods were used for steering the division of the integral ICE to several sub-models and for determining parameters of selected components considering their governing equations. Innovative multistage interaction between optimization methods and physically based methods allows, unlike the use of well-established methods that rely only on the optimization techniques, for successful calibration of a large number of input parameters with low time consumption. Therefore, the proposed method is suitable for efficient calibration of simulation models of advanced ICEs.

  10. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    Science.gov (United States)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  11. Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines

    International Nuclear Information System (INIS)

    Zhu, Sipeng; Deng, Kangyao; Qu, Shuan

    2014-01-01

    In this paper, an in-cylinder waste heat recovery system especially for turbocharged engines is proposed to improve the thermal efficiencies of internal combustion engines. Simplified recovery processes can be described as follows: superheated steam generated by engine waste heat is injected into the pipe before the turbine to increase the boost pressure of the fresh air; intake valve close timing is adjusted to control the amount of fresh air as the original level, and thus the higher pressure charged air expands in the intake stroke and transfers the pressure energy directly to the crankshaft. In this way, the increased turbine output by the pre-turbine steam injection is finally recovered in the cylinder, which is different from the traditional Rankine cycle. The whole energy transfer processes are studied with thermodynamic analyses and numerical simulations. The results show that the mass flow rate of the injected steam has the biggest influence on the energy transfer processes followed by the temperature of the injected steam. With this in-cylinder waste heat recovery system, the fuel economy of a selected turbocharged diesel engine can be improved by 3.2% at the rated operating point when the injected mass flow ratio is set to be 0.1. - Highlights: • An in-cylinder waste heat recovery system is proposed. • Effects of injected parameters are studied with energy and exergy balance theories. • Variations of operating points on the compressor map are studied in detail. • The fuel economy is improved by 3.2% at the rated operating point

  12. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  13. Galileo spacecraft solid-state imaging system view of Antarctica

    Science.gov (United States)

    1990-01-01

    Galileo spacecraft solid-state imaging system view of Antarctica was taken during its first encounter with the Earth. This color picture of Antarctica is part of a mosaic of pictures covering the entire polar continent showing the Ross Ice Shelf and its border with the sea and mountains poking through the ice near the McMurdo Station. From top to bottom, the frame looks across about half of Antarctica. View provided by the Jet Propulsion Laboratory (JPL) with alternate number P-37297.

  14. Solid Propulsion Systems, Subsystems, and Components Service Life Extension

    Science.gov (United States)

    Hundley, Nedra H.; Jones, Connor

    2011-01-01

    The service life extension of solid propulsion systems, subsystems, and components will be discussed based on the service life extension of the Space Transportation System Reusable Solid Rocket Motor (RSRM) and Booster Separation Motors (BSM). The RSRM is certified for an age life of five years. In the aftermath of the Columbia accident there were a number of motors that were approaching the end of their five year service life certification. The RSRM Project initiated an assessment to determine if the service life of these motors could be extended. With the advent of the Constellation Program, a flight test was proposed that would utilize one of the RSRMs which had been returned from the launch site due to the expiration of its five year service life certification and twelve surplus Chemical Systems Division BSMs which had exceeded their eight year service life. The RSRM age life tracking philosophy which establishes when the clock starts for age life tracking will be described. The role of the following activities in service life extension will be discussed: subscale testing, accelerated aging, dissecting full scale aged hardware, static testing full scale aged motors, data mining industry data, and using the fleet leader approach. The service life certification and extension of the BSMs will also be presented.

  15. Maturation of Structural Health Management Systems for Solid Rocket Motors

    Science.gov (United States)

    Quing, Xinlin; Beard, Shawn; Zhang, Chang

    2011-01-01

    Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.

  16. LCA comparison of container systems in municipal solid waste management

    International Nuclear Information System (INIS)

    Rives, Jesus; Rieradevall, Joan; Gabarrell, Xavier

    2010-01-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  17. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    Science.gov (United States)

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  18. State of the art and the future fuel portfolio of fluidized bed combustion systems; Status und kuenftiges Brennstoffportfolio bei Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Szentannai, Pal; Friebert, Arpad; Winter, Franz [Technische Univ. Wien (Austria). Inst. fuer Verfahrens-, Umwelttechnik und technische Biowissenschaften

    2008-07-01

    Coal, biomass and substitute fuels energetically can be used efficiently and with low pollution in fluidized bed plants. In comparison to biomass there are significant differences between the circulating and stationary fluidized bed technology. The stationary fluidised bed is fed predominantly with biomasses and residual substances. Coal usually is the basis fuel in the circulating fluidised bed. Biomass and residual substances frequently are course-fired. The state of the art is the employment of a broad fuel mixture in small and large fluidized-bed combustion systems. Future developments present an increased use of sewage sludge, fluidized bed combustion systems with wood as a basis fuel, utilization of household waste and the gas production.

  19. SOLID FUEL OF HYDROCARBON, WOOD AND AGRICULTURAL WASTE FOR LOCAL HEAT SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2017-01-01

    Full Text Available In Belarus oil refining and oil producing industries are paid close attention. On the background of the active maintaining the level of oil processing and volume of oil extraction in our country and in the countries of the Eurasian Economic Union there is a steady formation of hydrocarbon-containing waste; therefore recycling of the latter is an urgent task to improve the competitiveness of production. The most cost-effective way of using hydrocarbon waste is the conversion of it into power resources. In this case it is possible to obtain significant power-saving and economic effect of the combined use of a hydrocarbon, wood, agricultural and other combustible waste, meanwhile improving the ecological situation at the sites of waste storage and creating a solid fuel with the necessary energy and specified physical-and-chemical properties. A comprehensive solution of a recycling problem makes it possible to use as energy resources a lot of waste that has not found application in other technologies, to produce alternative multi-component fuel which structure meets environmental and energy requirement for local heating systems. In addition, the implementation of such technology will make it possible to reduce power consumption of enterprises of various kinds that consume fuel and will also increase the share of local fuels in the energy balance of a particular region.

  20. Thermocouples used in emission systems of internal combustion engines; Thermoelemente fuer den Einsatz in Abgassystemen von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Augustin, Silke; Froehlich, Thomas; Mammen, Helge [Technische Univ. Illmenau (Germany). Inst. fuer Prozessmess- und Sensortechnik; Ament, Christoph; Guether, Thomas [Technische Univ. Illmenau (Germany). Inst. fuer Automatisierungs- und Systemtechnik

    2012-11-01

    Thermocouples used in exhaust systems of combustion engines are exposed to high temperature gradients and temperature leaps ({Delta}T > 900 K), high flow speeds and pressure. When constructing these thermocouples, a compromise is needed between the resulting high demands on the mechanical-thermal stability, accuracy and the fast response time demanded by the servo-control of the motors. Additionally, a numerical correction of the measured signal may contribute to an improved sensor dynamics. (orig.)

  1. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine

    International Nuclear Information System (INIS)

    Niu, Zhiqiang; Diao, Hai; Yu, Shuhai; Jiao, Kui; Du, Qing; Shu, Gequn

    2014-01-01

    Highlights: • A 3-D model for exhaust-based thermoelectric waste heat recovery is developed. • Various heat, mass and electric transfer characteristics are elucidated. • Channel size needs to be moderate to balance heat transfer and pressure drop. • Bafflers need to be placed at all locations near all TEG modules. • Baffler angle needs to be sufficiently large, especially for downstream locations. - Abstract: Thermoelectric generator (TEG) has attracted considerable attention for the waste heat recovery of internal combustion engine. In this study, a 3-D numerical model for engine exhaust-based thermoelectric generator (ETEG) system is developed. By considering the detailed geometry of thermoelectric generator (TEG) and exhaust channel, the various transport phenomena are investigated, and design optimization suggestions are given. It is found that the exhaust channel size needs to be moderate to balance the heat transfer to TEG modules and pressure drop along channel. Increasing the number of exhaust channels may improve the performance, however, since more space and TEG modules are needed, the system size and cost need to be considered as well. Although only placing bafflers at the channel inlet could increase the heat transfer coefficient for the whole channel, the near wall temperature downstream might decrease significantly, leading to performance degradation of the TEG modules downstream. To ensure effective utilization of hot exhaust gas, the baffler angle needs to be sufficiently large, especially for the downstream locations. Since larger baffler angles increase the pressure drop significantly, it is suggested that variable baffler angles, with the angle increasing along the flow direction, might be a middle course for balancing the heat transfer and pressure drop. A single ETEG design may not be suitable to all the engine operating conditions, and making the number of exhaust channels and baffler angle adjustable according to different engine

  2. Controlled release systems containing solid dispersions: strategies and mechanisms.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Park, Jun Bom; Lee, Beom-Jin

    2011-10-01

    In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.

  3. On the use of semiempirical models of (solid + supercritical fluid) systems to determine solid sublimation properties

    International Nuclear Information System (INIS)

    Tabernero, Antonio; Martin del Valle, Eva M.; Galan, Miguel A.

    2011-01-01

    Research highlights: → We propose a method to determine sublimation properties of solids. → Low deviations were produced calculating sublimation enthalpies and pressures. → It is a required step to determine the vaporization enthalpy of the solid. → It is possible to determine solid properties using semiempirical models solid-SCF. - Abstract: Experimental solubility data of solid-supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle's equation to model equilibria data solid-supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid-supercritical fluids and solid-solvent-supercritical fluids with the Peng-Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid-supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO 2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.

  4. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  5. Fuels and Combustion | Transportation Research | NREL

    Science.gov (United States)

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  6. High speed real-time wavefront processing system for a solid-state laser system

    Science.gov (United States)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  7. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  8. Potential of Reversible Solid Oxide Cells as Electricity Storage System

    Directory of Open Access Journals (Sweden)

    Paolo Di Giorgio

    2016-08-01

    Full Text Available Electrical energy storage (EES systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES, and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC working in both fuel cell and electrolysis modes could be a cost effective and highly efficient EES, but are not yet ready for the market. In fact, using the system in fuel cell mode produces high temperature heat that can be recovered during electrolysis, when a heat source is necessary. Before ReSOCs can be used as EES systems, many problems have to be solved. This paper presents a new ReSOC concept, where the thermal energy produced during fuel cell mode is stored as sensible or latent heat, respectively, in a high density and high specific heat material and in a phase change material (PCM and used during electrolysis operation. The study of two different storage concepts is performed using a lumped parameters ReSOC stack model coupled with a suitable balance of plant. The optimal roundtrip efficiency calculated for both of the configurations studied is not far from 70% and results from a trade-off between the stack roundtrip efficiency and the energy consumed by the auxiliary power systems.

  9. Identification of prenatal toxic components of complex PAH mixtures derived from fossil fuel combustion employing rodent embryo culture systems

    International Nuclear Information System (INIS)

    Irvin, T.R.; Akgerman, A.

    1991-01-01

    Many adverse health effects caused by combustion-generated toxins have been recognized for some time. Acute pulmonary toxicity among urban populations has been repeatedly recorded during periods of high smoke, soot, and organo-particulate pollution. The combustion of coals and petroleum-derived fuels results in emission of particulate and organic vapor-phase components to the atmosphere. Isolation of these particle-absorbed compounds and subsequent toxicological testing has further indicated the importance of chronic, low-level exposure to airborne combustion-generated toxins in the etiology of many forms of human cancer; particulate phases of these emissions have been found to contain polycyclic aromatic hydrocarbons and heterocyclic organic compounds, absorbed onto the particle matrix, which possess potent carcinogenic and mutagenic properties. In this paper, the authors define a postimplantation rat embryo culture system constructed to identify prenatal toxic components of complex polycyclic aromatic hydrocarbon soots. Employing this culture system, we also describe its application to identify prenatal toxic components of diesel soot particulates

  10. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-11-07

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  11. Aberrations and focusability in large solid-state-laser systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1981-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  12. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  13. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    showed an ultrafine mode centered at approximately 0.1 μm. Compared with coal combustion, co-combustion of coal and SRF increased the formation of submicron particles, especially ultrafine particles below 0.2 μm. The morphology of the particles indicated that supermicron particles were primarily formed...... by the melting of minerals. The ultrafine particles were generated through nucleation and coagulation of vaporized inorganic species, while for the particles in between supermicron and ultrafine particles, condensation of vaporized species or aggregation of nucleates on the existing spherical submicron particles...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  14. Transistorized ignition system for internal combustion engines, in particular for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mieras, L F; Skay, F

    1977-05-12

    The invention concerns an ignition system for motor vehicles with solid state control of the power transistor switching the primary current of the ignition coil. A pulse generator driven by the engine is used for this, whose voltage pulses control the switching on of the power transistor and increase in a certain ratio to the engine speed. This ensures that the closing angle, i.e. the mechanical angle of rotation which the machine passes through while loading the ignition coil with mechanical energy, is automatically changed so that for low speeds it is just sufficient for certain ignition, but increases with increasing speed, so that the required ignition energy is always available. At low speeds one avoids charging current flowing through the primary winding of the ignition coil for longer than necessary and thus wasting electrical energy.

  15. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  16. Material balance of two sewage sludge incineration systems; Methods and results - disposal of solid residues. Stoffflussanalyse bei zwei Klaerschlammverbrennungsanlagen; Methodik und Ergebnisse - Entsorgung der festen Rueckstaende

    Energy Technology Data Exchange (ETDEWEB)

    Staeubli, B. (Abt. Abfallwirtschaft des Amtes fuer Gewaesserschutz und Wasserbau des Kantons Zuerich (Switzerland)); Keller, C. (Elektrowatt Ingenieurunternehmung AG, Zurich (Switzerland))

    1993-02-01

    Material balances were analyzed in two Swiss sewage sludge combustion plants. The methodology is described. Aspects of the standards set for waste management in Switzerland are described. The two incinerations are described. The volumes and compositions of the sewage sludges and all gaseous, liquid, and solid products are gone into. The possibilities of recycling and dumping of combustion products are reviewed in consideration of the volumes and compositions of combustion products. The text is supplemented by tables and flowsheets. (orig.)

  17. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  18. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir; Jabbour, Ghassan

    2013-01-01

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  19. Use of combustible wastes as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Salamov, A.A.

    1983-01-01

    Achievements of science and technology in creating and using units for combustion of wastes with recovery of heat of the escaping gases has been systematized and generalized. Scales and outlooks are examined for the use of general, industrial and agricultural waste as fuel, composition of the waste, questions of planning and operating units for combustion of solid refuse, settling of waste water and industrial and agricultural waste. Questions are covered for preparing them for combustion use in special units with recovery of heat and at ES, aspects of environmental protection during combustion of waste, cost indicators of the employed methods of recovering the combustible waste.

  20. SPATIAL MODELING OF SOLID-STATE REGULAR POLYHEDRA (SOLIDS OF PLATON IN AUTOCAD SYSTEM

    Directory of Open Access Journals (Sweden)

    P. V. Bezditko

    2009-03-01

    Full Text Available This article describes the technology of modeling regular polyhedra by graphic methods. The authors came to the conclusion that in order to create solid models of regular polyhedra the method of extrusion is best to use.