WorldWideScience

Sample records for solexa sequencing platform

  1. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  2. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome

    Directory of Open Access Journals (Sweden)

    Scoté-Blachon Céline

    2008-09-01

    Full Text Available Abstract Background "Open" transcriptome analysis methods allow to study gene expression without a priori knowledge of the transcript sequences. As of now, SAGE (Serial Analysis of Gene Expression, LongSAGE and MPSS (Massively Parallel Signature Sequencing are the mostly used methods for "open" transcriptome analysis. Both LongSAGE and MPSS rely on the isolation of 21 pb tag sequences from each transcript. In contrast to LongSAGE, the high throughput sequencing method used in MPSS enables the rapid sequencing of very large libraries containing several millions of tags, allowing deep transcriptome analysis. However, a bias in the complexity of the transcriptome representation obtained by MPSS was recently uncovered. Results In order to make a deep analysis of mouse hypothalamus transcriptome avoiding the limitation introduced by MPSS, we combined LongSAGE with the Solexa sequencing technology and obtained a library of more than 11 millions of tags. We then compared it to a LongSAGE library of mouse hypothalamus sequenced with the Sanger method. Conclusion We found that Solexa sequencing technology combined with LongSAGE is perfectly suited for deep transcriptome analysis. In contrast to MPSS, it gives a complex representation of transcriptome as reliable as a LongSAGE library sequenced by the Sanger method.

  3. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing.

    Science.gov (United States)

    Yuan, Chao; Wang, Xiaolong; Geng, Rongqing; He, Xiaolin; Qu, Lei; Chen, Yulin

    2013-07-28

    MicroRNAs (miRNAs) are a large family of endogenous, non-coding RNAs, about 22 nucleotides long, which regulate gene expression through sequence-specific base pairing with target mRNAs. Extensive studies have shown that miRNA expression in the skin changes remarkably during distinct stages of the hair cycle in humans, mice, goats and sheep. In this study, the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen and telogen) in a fibre-producing goat breed. In total, 63,109,004 raw reads were obtained by Solexa sequencing and 61,125,752 clean reads remained for the small RNA digitalisation analysis. This resulted in the identification of 399 conserved miRNAs; among these, 326 miRNAs were expressed in all three follicular cycling stages, whereas 3, 12 and 11 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. We also identified 172 potential novel miRNAs by Mireap, 36 miRNAs were expressed in all three cycling stages, whereas 23, 29 and 44 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. The expression level of five arbitrarily selected miRNAs was analyzed by quantitative PCR, and the results indicated that the expression patterns were consistent with the Solexa sequencing results. Gene Ontology and KEGG pathway analyses indicated that five major biological pathways (Metabolic pathways, Pathways in cancer, MAPK signalling pathway, Endocytosis and Focal adhesion) accounted for 23.08% of target genes among 278 biological functions, indicating that these pathways are likely to play significant roles during hair cycling. During all hair cycle stages of cashmere goats, a large number of conserved and novel miRNAs were identified through a high-throughput sequencing approach. This study enriches the Capra hircus miRNA databases and provides a comprehensive miRNA transcriptome profile in the skin of goats during the hair follicle cycle.

  4. Digital PCR provides sensitive and absolute calibration for high throughput sequencing

    Directory of Open Access Journals (Sweden)

    Fan H Christina

    2009-03-01

    Full Text Available Abstract Background Next-generation DNA sequencing on the 454, Solexa, and SOLiD platforms requires absolute calibration of the number of molecules to be sequenced. This requirement has two unfavorable consequences. First, large amounts of sample-typically micrograms-are needed for library preparation, thereby limiting the scope of samples which can be sequenced. For many applications, including metagenomics and the sequencing of ancient, forensic, and clinical samples, the quantity of input DNA can be critically limiting. Second, each library requires a titration sequencing run, thereby increasing the cost and lowering the throughput of sequencing. Results We demonstrate the use of digital PCR to accurately quantify 454 and Solexa sequencing libraries, enabling the preparation of sequencing libraries from nanogram quantities of input material while eliminating costly and time-consuming titration runs of the sequencer. We successfully sequenced low-nanogram scale bacterial and mammalian DNA samples on the 454 FLX and Solexa DNA sequencing platforms. This study is the first to definitively demonstrate the successful sequencing of picogram quantities of input DNA on the 454 platform, reducing the sample requirement more than 1000-fold without pre-amplification and the associated bias and reduction in library depth. Conclusion The digital PCR assay allows absolute quantification of sequencing libraries, eliminates uncertainties associated with the construction and application of standard curves to PCR-based quantification, and with a coefficient of variation close to 10%, is sufficiently precise to enable direct sequencing without titration runs.

  5. Using quality scores and longer reads improves accuracy of Solexa read mapping

    Directory of Open Access Journals (Sweden)

    Xuan Zhenyu

    2008-02-01

    Full Text Available Abstract Background Second-generation sequencing has the potential to revolutionize genomics and impact all areas of biomedical science. New technologies will make re-sequencing widely available for such applications as identifying genome variations or interrogating the oligonucleotide content of a large sample (e.g. ChIP-sequencing. The increase in speed, sensitivity and availability of sequencing technology brings demand for advances in computational technology to perform associated analysis tasks. The Solexa/Illumina 1G sequencer can produce tens of millions of reads, ranging in length from ~25–50 nt, in a single experiment. Accurately mapping the reads back to a reference genome is a critical task in almost all applications. Two sources of information that are often ignored when mapping reads from the Solexa technology are the 3' ends of longer reads, which contain a much higher frequency of sequencing errors, and the base-call quality scores. Results To investigate whether these sources of information can be used to improve accuracy when mapping reads, we developed the RMAP tool, which can map reads having a wide range of lengths and allows base-call quality scores to determine which positions in each read are more important when mapping. We applied RMAP to analyze data re-sequenced from two human BAC regions for varying read lengths, and varying criteria for use of quality scores. RMAP is freely available for downloading at http://rulai.cshl.edu/rmap/. Conclusion Our results indicate that significant gains in Solexa read mapping performance can be achieved by considering the information in 3' ends of longer reads, and appropriately using the base-call quality scores. The RMAP tool we have developed will enable researchers to effectively exploit this information in targeted re-sequencing projects.

  6. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets.

    Science.gov (United States)

    Hosseini, Parsa; Tremblay, Arianne; Matthews, Benjamin F; Alkharouf, Nadim W

    2010-07-02

    The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data

  7. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Kang Kang

    Full Text Available microRNAs (miRNAs are non-coding small RNAs (sRNAs capable of negatively regulating gene expression. Recently, microRNA-like small RNAs (milRNAs were discovered in several filamentous fungi but not yet in Trichoderma reesei, an industrial filamentous fungus that can secrete abundant hydrolases. To explore the presence of milRNA in T. reesei and evaluate their expression under induction of cellulose, two T. reesei sRNA libraries of cellulose induction (IN and non-induction (CON were generated and sequenced using Solexa sequencing technology. A total of 726 and 631 sRNAs were obtained from the IN and CON samples, respectively. Global expression analysis showed an extensively differential expression of sRNAs in T. reesei under the two conditions. Thirteen predicted milRNAs were identified in T. reesei based on the short hairpin structure analysis. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. Computational analysis predicted a number of potential targets relating to many processes including regulation of enzyme expression. The presence and differential expression of T. reesei milRNAs imply that milRNA might play a role in T. reesei growth and cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.

  8. Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available The domestic pig (Sus scrofa, an important species in animal production industry, is a right model for studying adipogenesis and fat deposition. In order to expand the repertoire of porcine miRNAs and further explore potential regulatory miRNAs which have influence on adipogenesis, high-throughput Solexa sequencing approach was adopted to identify miRNAs in backfat of Large White (lean type pig and Meishan pigs (Chinese indigenous fatty pig. We identified 215 unique miRNAs comprising 75 known pre-miRNAs, of which 49 miRNA*s were first identified in our study, 73 miRNAs were overlapped in both libraries, and 140 were novelly predicted miRNAs, and 215 unique miRNAs were collectively corresponding to 235 independent genomic loci. Furthermore, we analyzed the sequence variations, seed edits and phylogenetic development of the miRNAs. 17 miRNAs were widely conserved from vertebrates to invertebrates, suggesting that these miRNAs may serve as potential evolutional biomarkers. 9 conserved miRNAs with significantly differential expressions were determined. The expression of miR-215, miR-135, miR-224 and miR-146b was higher in Large White pigs, opposite to the patterns shown by miR-1a, miR-133a, miR-122, miR-204 and miR-183. Almost all novel miRNAs could be considered pig-specific except ssc-miR-1343, miR-2320, miR-2326, miR-2411 and miR-2483 which had homologs in Bos taurus, among which ssc-miR-1343, miR-2320, miR-2411 and miR-2483 were validated in backfat tissue by stem-loop qPCR. Our results displayed a high level of concordance between the qPCR and Solexa sequencing method in 9 of 10 miRNAs comparisons except for miR-1a. Moreover, we found 2 miRNAs, miR-135 and miR-183, may exert impacts on porcine backfat development through WNT signaling pathway. In conclusion, our research develops porcine miRNAs and should be beneficial to study the adipogenesis and fat deposition of different pig breeds based on miRNAs.

  9. Sequencing of BAC pools by different next generation sequencing platforms and strategies

    Directory of Open Access Journals (Sweden)

    Scholz Uwe

    2011-10-01

    Full Text Available Abstract Background Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs improve the assemblies by scaffolding and whether barcoding of BACs is dispensable. Results Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library. Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%. Conclusion Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.

  10. Special Issue: Next Generation DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Paul Richardson

    2010-10-01

    Full Text Available Next Generation Sequencing (NGS refers to technologies that do not rely on traditional dideoxy-nucleotide (Sanger sequencing where labeled DNA fragments are physically resolved by electrophoresis. These new technologies rely on different strategies, but essentially all of them make use of real-time data collection of a base level incorporation event across a massive number of reactions (on the order of millions versus 96 for capillary electrophoresis for instance. The major commercial NGS platforms available to researchers are the 454 Genome Sequencer (Roche, Illumina (formerly Solexa Genome analyzer, the SOLiD system (Applied Biosystems/Life Technologies and the Heliscope (Helicos Corporation. The techniques and different strategies utilized by these platforms are reviewed in a number of the papers in this special issue. These technologies are enabling new applications that take advantage of the massive data produced by this next generation of sequencing instruments. [...

  11. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies.

    Directory of Open Access Journals (Sweden)

    Anjana Srivatsan

    2008-08-01

    Full Text Available Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms.

  12. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats

    Directory of Open Access Journals (Sweden)

    Graner Andreas

    2008-10-01

    Full Text Available Abstract Background Barley has one of the largest and most complex genomes of all economically important food crops. The rise of new short read sequencing technologies such as Illumina/Solexa permits such large genomes to be effectively sampled at relatively low cost. Based on the corresponding sequence reads a Mathematically Defined Repeat (MDR index can be generated to map repetitive regions in genomic sequences. Results We have generated 574 Mbp of Illumina/Solexa sequences from barley total genomic DNA, representing about 10% of a genome equivalent. From these sequences we generated an MDR index which was then used to identify and mark repetitive regions in the barley genome. Comparison of the MDR plots with expert repeat annotation drawing on the information already available for known repetitive elements revealed a significant correspondence between the two methods. MDR-based annotation allowed for the identification of dozens of novel repeat sequences, though, which were not recognised by hand-annotation. The MDR data was also used to identify gene-containing regions by masking of repetitive sequences in eight de-novo sequenced bacterial artificial chromosome (BAC clones. For half of the identified candidate gene islands indeed gene sequences could be identified. MDR data were only of limited use, when mapped on genomic sequences from the closely related species Triticum monococcum as only a fraction of the repetitive sequences was recognised. Conclusion An MDR index for barley, which was obtained by whole-genome Illumina/Solexa sequencing, proved as efficient in repeat identification as manual expert annotation. Circumventing the labour-intensive step of producing a specific repeat library for expert annotation, an MDR index provides an elegant and efficient resource for the identification of repetitive and low-copy (i.e. potentially gene-containing sequences regions in uncharacterised genomic sequences. The restriction that a particular

  13. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  14. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing

    Directory of Open Access Journals (Sweden)

    Yu GongXin

    2010-10-01

    Full Text Available Abstract Background Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis. Results For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly sequenced genomes (using massive short-read sequencing and their isogenic reference (using simulated data. As proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS. Conclusion GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time

  15. DSAP: deep-sequencing small RNA analysis pipeline.

    Science.gov (United States)

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  16. Solexa sequencing and custom microRNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis.

    Science.gov (United States)

    Ju, Zhihua; Jiang, Qiang; Liu, Gang; Wang, Xiuge; Luo, Guojing; Zhang, Yan; Zhang, Jibin; Zhong, Jifeng; Huang, Jinming

    2018-02-01

    Identification of microRNAs (miRNAs), target genes and regulatory networks associated with innate immune and inflammatory responses and tissue damage is essential to elucidate the molecular and genetic mechanisms for resistance to mastitis. In this study, a combination of Solexa sequencing and custom miRNA chip approaches was used to profile the expression of miRNAs in bovine mammary gland at the late stage of natural infection with Staphylococcus aureus, a widespread mastitis pathogen. We found 383 loci corresponding to 277 known and 49 putative novel miRNAs, two potential mitrons and 266 differentially expressed miRNAs in the healthy and mastitic cows' mammary glands. Several interaction networks and regulators involved in mastitis susceptibility, such as ALCAM, COL1A1, APOP4, ITIH4, CRP and fibrinogen alpha (FGA), were highlighted. Significant down-regulation and location of bta-miR-26a, which targets FGA in the mastitic mammary glands, were validated using quantitative real-time PCR, in situ hybridization and dual-luciferase reporter assays. We propose that the observed miRNA variations in mammary glands of mastitic cows are related to the maintenance of immune and defense responses, cell proliferation and apoptosis, and tissue injury and healing during the late stage of infection. Furthermore, the effect of bta-miR-26a in mastitis, mediated at least in part by enhancing FGA expression, involves host defense, inflammation and tissue damage. © 2018 Stichting International Foundation for Animal Genetics.

  17. Comparison of two Next Generation sequencing platforms for full genome sequencing of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Höper, Dirk

    2013-01-01

    to the consensus sequence. Additionally, we got an average sequence depth for the genome of 4000 for the Iontorrent PGM and 400 for the FLX platform making the mapping suitable for single nucleotide variant (SNV) detection. The analysis revealed a single non-silent SNV A10665G leading to the amino acid change D......Next Generation Sequencing (NGS) is becoming more adopted into viral research and will be the preferred technology in the years to come. We have recently sequenced several strains of Classical Swine Fever Virus (CSFV) by NGS on both Genome Sequencer FLX (GS FLX) and Iontorrent PGM platforms...

  18. A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE.

    Directory of Open Access Journals (Sweden)

    Kevin P Keegan

    Full Text Available We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation, to assess sequencing quality (alternatively referred to as "noise" or "error" within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred. Here, DRISEE is applied to (non amplicon data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs, a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms.

  19. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley.

    Directory of Open Access Journals (Sweden)

    Martin Mascher

    Full Text Available The rapid development of next-generation sequencing platforms has enabled the use of sequencing for routine genotyping across a range of genetics studies and breeding applications. Genotyping-by-sequencing (GBS, a low-cost, reduced representation sequencing method, is becoming a common approach for whole-genome marker profiling in many species. With quickly developing sequencing technologies, adapting current GBS methodologies to new platforms will leverage these advancements for future studies. To test new semiconductor sequencing platforms for GBS, we genotyped a barley recombinant inbred line (RIL population. Based on a previous GBS approach, we designed bar code and adapter sets for the Ion Torrent platforms. Four sets of 24-plex libraries were constructed consisting of 94 RILs and the two parents and sequenced on two Ion platforms. In parallel, a 96-plex library of the same RILs was sequenced on the Illumina HiSeq 2000. We applied two different computational pipelines to analyze sequencing data; the reference-independent TASSEL pipeline and a reference-based pipeline using SAMtools. Sequence contigs positioned on the integrated physical and genetic map were used for read mapping and variant calling. We found high agreement in genotype calls between the different platforms and high concordance between genetic and reference-based marker order. There was, however, paucity in the number of SNP that were jointly discovered by the different pipelines indicating a strong effect of alignment and filtering parameters on SNP discovery. We show the utility of the current barley genome assembly as a framework for developing very low-cost genetic maps, facilitating high resolution genetic mapping and negating the need for developing de novo genetic maps for future studies in barley. Through demonstration of GBS on semiconductor sequencing platforms, we conclude that the GBS approach is amenable to a range of platforms and can easily be modified as new

  20. Identification and differential expression of microRNAs in ovaries of laying and Broody geese (Anser cygnoides by Solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Qi Xu

    Full Text Available BACKGROUND: Recent functional studies have demonstrated that the microRNAs (miRNAs play critical roles in ovarian gonadal development, steroidogenesis, apoptosis, and ovulation in mammals. However, little is known about the involvement of miRNAs in the ovarian function of fowl. The goose (Anas cygnoides is a commercially important food that is cultivated widely in China but the goose industry has been hampered by high broodiness and poor egg laying performance, which are influenced by ovarian function. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the miRNA transcriptomes of ovaries from laying and broody geese were profiled using Solexa deep sequencing and bioinformatics was used to determine differential expression of the miRNAs. As a result, 11,350,396 and 9,890,887 clean reads were obtained in laying and broodiness goose, respectively, and 1,328 conserved known miRNAs and 22 novel potential miRNA candidates were identified. A total of 353 conserved microRNAs were significantly differentially expressed between laying and broody ovaries. Compared with miRNA expression in the laying ovary, 127 miRNAs were up-regulated and 126 miRNAs were down-regulated in the ovary of broody birds. A subset of the differentially expressed miRNAs (G-miR-320, G-miR-202, G-miR-146, and G-miR-143* were validated using real-time quantitative PCR. In addition, 130,458 annotated mRNA transcripts were identified as putative target genes. Gene ontology annotation and KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the differentially expressed miRNAs are involved in ovarian function, including hormone secretion, reproduction processes and so on. CONCLUSIONS: The present study provides the first global miRNA transcriptome data in A. cygnoides and identifies novel and known miRNAs that are differentially expressed between the ovaries of laying and broody geese. These findings contribute to our understanding of the functional involvement of mi

  1. Comparative performance of the BGISEQ-500 versus Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing

    DEFF Research Database (Denmark)

    Mak, Sarah Siu Tze Mak; Gopalakrishnan, Shyam Sunder; Carøe, Christian

    2017-01-01

    on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform, on DNA extracted from eight historic and ancient dog and wolf samples. Results: The data generated was largely comparable between sequencing platforms...... difference was also observed in the mitochondrial DNA percentages recovered (p = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from three of the samples with overall very low levels of endogenous DNA. Conclusions......: Although we acknowledge our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent valid and potentially valuable alternative platform for palaeogenomic data generation, that is worthy of future exploration by those interested...

  2. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Science.gov (United States)

    Archer, John; Weber, Jan; Henry, Kenneth; Winner, Dane; Gibson, Richard; Lee, Lawrence; Paxinos, Ellen; Arts, Eric J; Robertson, David L; Mimms, Larry; Quiñones-Mateu, Miguel E

    2012-01-01

    HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  3. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Directory of Open Access Journals (Sweden)

    John Archer

    Full Text Available HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5 viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences and genotypic (e.g., population sequencing linked to bioinformatic algorithms assays are the most widely used. Although several next-generation sequencing (NGS platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences, Illumina®, and Ion Torrent™ (Life Technologies. Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used, compared to Trofile (80% and population sequencing (70%. In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  4. MiSeq: A Next Generation Sequencing Platform for Genomic Analysis.

    Science.gov (United States)

    Ravi, Rupesh Kanchi; Walton, Kendra; Khosroheidari, Mahdieh

    2018-01-01

    MiSeq, Illumina's integrated next generation sequencing instrument, uses reversible-terminator sequencing-by-synthesis technology to provide end-to-end sequencing solutions. The MiSeq instrument is one of the smallest benchtop sequencers that can perform onboard cluster generation, amplification, genomic DNA sequencing, and data analysis, including base calling, alignment and variant calling, in a single run. It performs both single- and paired-end runs with adjustable read lengths from 1 × 36 base pairs to 2 × 300 base pairs. A single run can produce output data of up to 15 Gb in as little as 4 h of runtime and can output up to 25 M single reads and 50 M paired-end reads. Thus, MiSeq provides an ideal platform for rapid turnaround time. MiSeq is also a cost-effective tool for various analyses focused on targeted gene sequencing (amplicon sequencing and target enrichment), metagenomics, and gene expression studies. For these reasons, MiSeq has become one of the most widely used next generation sequencing platforms. Here, we provide a protocol to prepare libraries for sequencing using the MiSeq instrument and basic guidelines for analysis of output data from the MiSeq sequencing run.

  5. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers

    Directory of Open Access Journals (Sweden)

    Quail Michael A

    2012-07-01

    Full Text Available Abstract Background Next generation sequencing (NGS technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent’s PGM, Pacific Biosciences’ RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Results Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. Conclusions All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.

  6. Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.

    Science.gov (United States)

    Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing

    2015-08-05

    To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the

  7. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform.

    Science.gov (United States)

    Schirmer, Melanie; Ijaz, Umer Z; D'Amore, Rosalinda; Hall, Neil; Sloan, William T; Quince, Christopher

    2015-03-31

    With read lengths of currently up to 2 × 300 bp, high throughput and low sequencing costs Illumina's MiSeq is becoming one of the most utilized sequencing platforms worldwide. The platform is manageable and affordable even for smaller labs. This enables quick turnaround on a broad range of applications such as targeted gene sequencing, metagenomics, small genome sequencing and clinical molecular diagnostics. However, Illumina error profiles are still poorly understood and programs are therefore not designed for the idiosyncrasies of Illumina data. A better knowledge of the error patterns is essential for sequence analysis and vital if we are to draw valid conclusions. Studying true genetic variation in a population sample is fundamental for understanding diseases, evolution and origin. We conducted a large study on the error patterns for the MiSeq based on 16S rRNA amplicon sequencing data. We tested state-of-the-art library preparation methods for amplicon sequencing and showed that the library preparation method and the choice of primers are the most significant sources of bias and cause distinct error patterns. Furthermore we tested the efficiency of various error correction strategies and identified quality trimming (Sickle) combined with error correction (BayesHammer) followed by read overlapping (PANDAseq) as the most successful approach, reducing substitution error rates on average by 93%. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang

    Full Text Available The advent of next-generation sequencing technologies is accompanied with the development of many whole-genome sequence assembly methods and software, especially for de novo fragment assembly. Due to the poor knowledge about the applicability and performance of these software tools, choosing a befitting assembler becomes a tough task. Here, we provide the information of adaptivity for each program, then above all, compare the performance of eight distinct tools against eight groups of simulated datasets from Solexa sequencing platform. Considering the computational time, maximum random access memory (RAM occupancy, assembly accuracy and integrity, our study indicate that string-based assemblers, overlap-layout-consensus (OLC assemblers are well-suited for very short reads and longer reads of small genomes respectively. For large datasets of more than hundred millions of short reads, De Bruijn graph-based assemblers would be more appropriate. In terms of software implementation, string-based assemblers are superior to graph-based ones, of which SOAPdenovo is complex for the creation of configuration file. Our comparison study will assist researchers in selecting a well-suited assembler and offer essential information for the improvement of existing assemblers or the developing of novel assemblers.

  9. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis.

    Science.gov (United States)

    Nowrousian, Minou; Stajich, Jason E; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D; Pöggeler, Stefanie; Read, Nick D; Seiler, Stephan; Smith, Kristina M; Zickler, Denise; Kück, Ulrich; Freitag, Michael

    2010-04-08

    Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for

  10. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis.

    Directory of Open Access Journals (Sweden)

    Minou Nowrousian

    2010-04-01

    Full Text Available Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data

  11. Analysis of high-depth sequence data for studying viral diversity: a comparison of next generation sequencing platforms using Segminator II

    Directory of Open Access Journals (Sweden)

    Archer John

    2012-03-01

    Full Text Available Abstract Background Next generation sequencing provides detailed insight into the variation present within viral populations, introducing the possibility of treatment strategies that are both reactive and predictive. Current software tools, however, need to be scaled up to accommodate for high-depth viral data sets, which are often temporally or spatially linked. In addition, due to the development of novel sequencing platforms and chemistries, each with implicit strengths and weaknesses, it will be helpful for researchers to be able to routinely compare and combine data sets from different platforms/chemistries. In particular, error associated with a specific sequencing process must be quantified so that true biological variation may be identified. Results Segminator II was developed to allow for the efficient comparison of data sets derived from different sources. We demonstrate its usage by comparing large data sets from 12 influenza H1N1 samples sequenced on both the 454 Life Sciences and Illumina platforms, permitting quantification of platform error. For mismatches median error rates at 0.10 and 0.12%, respectively, suggested that both platforms performed similarly. For insertions and deletions median error rates within the 454 data (at 0.3 and 0.2%, respectively were significantly higher than those within the Illumina data (0.004 and 0.006%, respectively. In agreement with previous observations these higher rates were strongly associated with homopolymeric stretches on the 454 platform. Outside of such regions both platforms had similar indel error profiles. Additionally, we apply our software to the identification of low frequency variants. Conclusion We have demonstrated, using Segminator II, that it is possible to distinguish platform specific error from biological variation using data derived from two different platforms. We have used this approach to quantify the amount of error present within the 454 and Illumina platforms in

  12. Large-Scale Isolation of Microsatellites from Chinese Mitten Crab Eriocheir sinensis via a Solexa Genomic Survey

    Directory of Open Access Journals (Sweden)

    Qun Wang

    2012-12-01

    Full Text Available Microsatellites are simple sequence repeats with a high degree of polymorphism in the genome; they are used as DNA markers in many molecular genetic studies. Using traditional methods such as the magnetic beads enrichment method, only a few microsatellite markers have been isolated from the Chinese mitten crab Eriocheir sinensis, as the crab genome sequence information is unavailable. Here, we have identified a large number of microsatellites from the Chinese mitten crab by taking advantage of Solexa genomic surveying. A total of 141,737 SSR (simple sequence repeats motifs were identified via analysis of 883 Mb of the crab genomic DNA information, including mono-, di-, tri-, tetra-, penta- and hexa-nucleotide repeat motifs. The number of di-nucleotide repeat motifs was 82,979, making this the most abundant type of repeat motif (58.54%; the second most abundant were the tri-nucleotide repeats (42,657, 30.11%. Among di-nucleotide repeats, the most frequent repeats were AC motifs, accounting for 67.55% of the total number. AGG motifs were the most frequent (59.32% of the tri-nucleotide motifs. A total of 15,125 microsatellite loci had a flanking sequence suitable for setting the primer of a polymerase chain reaction (PCR. To verify the identified SSRs, a subset of 100 primer pairs was randomly selected for PCR. Eighty two primer sets (82% produced strong PCR products matching expected sizes, and 78% were polymorphic. In an analysis of 30 wild individuals from the Yangtze River with 20 primer sets, the number of alleles per locus ranged from 2–14 and the mean allelic richness was 7.4. No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent. The Hardy-Weinberg equilibrium test showed significant deviation in four of the 20 microsatellite loci after sequential Bonferroni corrections. This method is cost- and time-effective in comparison to traditional approaches for the isolation of microsatellites.

  13. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    KAUST Repository

    Hunt, Paul; Martinelli, Axel; Modrzynska, Katarzyna; Borges, Sofia; Creasey, Alison; Rodrigues, Louise; Beraldi, Dario; Loewe, Laurence; Fawcett, Richard; Kumar, Sujai; Thomson, Marian; Trivedi, Urmi; Otto, Thomas D; Pain, Arnab; Blaxter, Mark; Cravo, Pedro

    2010-01-01

    was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (IlluminaSolexa) defined the point mutations, insertions, deletions and copy-number variations arising

  14. Recognition of depositional sequences and stacking patterns, Late Devonian (Frasnian) carbonate platforms, Alberta basin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.H.; Reeckmann, S.A.; Sarg, J.F.; Greenlee, S.M.

    1987-05-01

    Six depositional sequences bounded by regional unconformities or their correlative equivalents (sequence boundaries) have been recognized in Late Devonian (Frasnian) carbonate platforms in the Alberta basin. These sequences consist of a predictable vertical succession of smaller scale shoaling-upward cycles (parasequences). Parasequences are arranged in retrogradational, aggradational, and progradational stacking patterns that can be modeled as a sediment response to relative changes in sea level. Sequence boundaries are recognized by onlap onto underlying shelf or shelf margin strata. This onlap includes shelf margin wedges and deep marine onlap. In outcrop sections shelf margin wedges exhibit an abrupt juxtaposition of shallow water facies over deeper water deposits with no gradational facies changes at the boundaries. High on the platform, subaerial exposure fabrics may be present. The shelf margin wedges are interpreted to have formed during lowstands in sea level and typically exhibit an aggradational stacking pattern. On the platform, two types of sequences are recognized. A type 1 cycle occurs where the sequence boundary is overlain by a flooding surface and subsequent parasequences exhibit retrogradational stacking. In a type 2 cycle the sequence boundary is overlain by an aggradational package of shallow water parasequences, followed by a retrogradational package. These two types of sequences can be modeled using a sinusoidal eustatic sea level curve superimposed on thermo-tectonic subsidence.

  15. Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms.

    Science.gov (United States)

    Recknagel, Hans; Jacobs, Arne; Herzyk, Pawel; Elmer, Kathryn R

    2015-11-01

    Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction site associated DNA sequencing (RAD sequencing or RADseq) has become an established method for SNP genotyping on Illumina sequencing platforms. Here, we developed a protocol and adapters for double-digest RAD sequencing for Ion Torrent (Life Technologies; Ion Proton, Ion PGM) semiconductor sequencing. We sequenced thirteen genomic libraries of three different nonmodel vertebrate species on Ion Proton with PI chips: Arctic charr Salvelinus alpinus, European whitefish Coregonus lavaretus and common lizard Zootoca vivipara. This resulted in ~962 million single-end reads overall and a mean of ~74 million reads per library. We filtered the genomic data using Stacks, a bioinformatic tool to process RAD sequencing data. On average, we obtained ~11,000 polymorphic loci per library of 6-30 individuals. We validate our new method by technical and biological replication, by reconstructing phylogenetic relationships, and using a hybrid genetic cross to track genomic variants. Finally, we discuss the differences between using the different sequencing platforms in the context of RAD sequencing, assessing possible advantages and disadvantages. We show that our protocol can be used for Ion semiconductor sequencing platforms for the rapid and cost-effective generation of variable and reproducible genetic markers. © 2015 John Wiley & Sons Ltd.

  16. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    Science.gov (United States)

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  17. UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences.

    Science.gov (United States)

    Du, Pu-Feng; Zhao, Wei; Miao, Yang-Yang; Wei, Le-Yi; Wang, Likun

    2017-11-14

    With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.

  18. Charcot-Marie-Tooth disease: The development of a diagnostic platform using next generation sequencing

    DEFF Research Database (Denmark)

    Christensen, Rikke; Væth, Signe; Thorsen, Kasper

    , Sanger sequencing of 4 genes have led to a diagnosis in approximately 30% of the patients. Aims: 1) Development of a targeted NGS platform containing 63 genes that currently are found to be associated with CMT. 2) Analysis of the increased diagnostic yield using this platform to analyze 200 CMT samples...... previously analyzed using Sanger sequencing without identification of a disease causing mutation. Materials and Methods: Libraries for 200 patient samples obtained for CMT diagnostics were prepared using Illumina Truseq and target enrichment using SeqCap EZ Choise Library (Nimblegen). The libraries were...

  19. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    Science.gov (United States)

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  20. Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing.

    Science.gov (United States)

    Wang, Zheng Jia; Huang, Jian Qin; Huang, You Jun; Li, Zheng; Zheng, Bing Song

    2012-08-01

    Hickory (Carya cathayensis Sarg.) is an economically important woody plant in China, but its long juvenile phase delays yield. MicroRNAs (miRNAs) are critical regulators of genes and important for normal plant development and physiology, including flower development. We used Solexa technology to sequence two small RNA libraries from two floral differentiation stages in hickory to identify miRNAs related to flower development. We identified 39 conserved miRNA sequences from 114 loci belonging to 23 families as well as two novel and ten potential novel miRNAs belonging to nine families. Moreover, 35 conserved miRNA*s and two novel miRNA*s were detected. Twenty miRNA sequences from 49 loci belonging to 11 families were differentially expressed; all were up-regulated at the later stage of flower development in hickory. Quantitative real-time PCR of 12 conserved miRNA sequences, five novel miRNA families, and two novel miRNA*s validated that all were expressed during hickory flower development, and the expression patterns were similar to those detected with Solexa sequencing. Finally, a total of 146 targets of the novel and conserved miRNAs were predicted. This study identified a diverse set of miRNAs that were closely related to hickory flower development and that could help in plant floral induction.

  1. Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family α-amylase inhibitors.

    Science.gov (United States)

    Guo, X; Geng, P; Bai, F; Bai, G; Sun, T; Li, X; Shi, L; Zhong, Q

    2012-08-01

    The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α-amylase inhibitors, and then to reveal the putative acarviostatin-related gene cluster and the biosynthetic pathway. The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct-cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00-7-P, and the extracellular assemblies lead to diverse acarviostatin end products. The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct-cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  2. Next-generation sequencing library preparation method for identification of RNA viruses on the Ion Torrent Sequencing Platform.

    Science.gov (United States)

    Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng

    2018-05-09

    Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.

  3. Quality control of next-generation sequencing library through an integrative digital microfluidic platform.

    Science.gov (United States)

    Thaitrong, Numrin; Kim, Hanyoup; Renzi, Ronald F; Bartsch, Michael S; Meagher, Robert J; Patel, Kamlesh D

    2012-12-01

    We have developed an automated quality control (QC) platform for next-generation sequencing (NGS) library characterization by integrating a droplet-based digital microfluidic (DMF) system with a capillary-based reagent delivery unit and a quantitative CE module. Using an in-plane capillary-DMF interface, a prepared sample droplet was actuated into position between the ground electrode and the inlet of the separation capillary to complete the circuit for an electrokinetic injection. Using a DNA ladder as an internal standard, the CE module with a compact LIF detector was capable of detecting dsDNA in the range of 5-100 pg/μL, suitable for the amount of DNA required by the Illumina Genome Analyzer sequencing platform. This DMF-CE platform consumes tenfold less sample volume than the current Agilent BioAnalyzer QC technique, preserving precious sample while providing necessary sensitivity and accuracy for optimal sequencing performance. The ability of this microfluidic system to validate NGS library preparation was demonstrated by examining the effects of limited-cycle PCR amplification on the size distribution and the yield of Illumina-compatible libraries, demonstrating that as few as ten cycles of PCR bias the size distribution of the library toward undesirable larger fragments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization and Development of EST-SSRs by Deep Transcriptome Sequencing in Chinese Cabbage (Brassica rapa L. ssp. pekinensis

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2015-01-01

    Full Text Available Simple sequence repeats (SSRs are among the most important markers for population analysis and have been widely used in plant genetic mapping and molecular breeding. Expressed sequence tag-SSR (EST-SSR markers, located in the coding regions, are potentially more efficient for QTL mapping, gene targeting, and marker-assisted breeding. In this study, we investigated 51,694 nonredundant unigenes, assembled from clean reads from deep transcriptome sequencing with a Solexa/Illumina platform, for identification and development of EST-SSRs in Chinese cabbage. In total, 10,420 EST-SSRs with over 12 bp were identified and characterized, among which 2744 EST-SSRs are new and 2317 are known ones showing polymorphism with previously reported SSRs. A total of 7877 PCR primer pairs for 1561 EST-SSR loci were designed, and primer pairs for twenty-four EST-SSRs were selected for primer evaluation. In nineteen EST-SSR loci (79.2%, amplicons were successfully generated with high quality. Seventeen (89.5% showed polymorphism in twenty-four cultivars of Chinese cabbage. The polymorphic alleles of each polymorphic locus were sequenced, and the results showed that most polymorphisms were due to variations of SSR repeat motifs. The EST-SSRs identified and characterized in this study have important implications for developing new tools for genetics and molecular breeding in Chinese cabbage.

  5. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  6. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments

    Directory of Open Access Journals (Sweden)

    Jyh-Da Wei

    2017-08-01

    Full Text Available High-end graphics processing units (GPUs, such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1, which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs. Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform. Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.

  7. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments.

    Science.gov (United States)

    Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu

    2017-01-01

    High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.

  8. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Science.gov (United States)

    Yu, Chuanfei; Li, Yang; Holmes, Andrew; Szafranski, Karol; Faulkes, Chris G; Coen, Clive W; Buffenstein, Rochelle; Platzer, Matthias; de Magalhães, João Pedro; Church, George M

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  9. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Directory of Open Access Journals (Sweden)

    Chuanfei Yu

    Full Text Available The naked mole-rat (Heterocephalus glaber is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam, a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m, and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  10. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    Science.gov (United States)

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Model-based quality assessment and base-calling for second-generation sequencing data.

    Science.gov (United States)

    Bravo, Héctor Corrada; Irizarry, Rafael A

    2010-09-01

    Second-generation sequencing (sec-gen) technology can sequence millions of short fragments of DNA in parallel, making it capable of assembling complex genomes for a small fraction of the price and time of previous technologies. In fact, a recently formed international consortium, the 1000 Genomes Project, plans to fully sequence the genomes of approximately 1200 people. The prospect of comparative analysis at the sequence level of a large number of samples across multiple populations may be achieved within the next five years. These data present unprecedented challenges in statistical analysis. For instance, analysis operates on millions of short nucleotide sequences, or reads-strings of A,C,G, or T's, between 30 and 100 characters long-which are the result of complex processing of noisy continuous fluorescence intensity measurements known as base-calling. The complexity of the base-calling discretization process results in reads of widely varying quality within and across sequence samples. This variation in processing quality results in infrequent but systematic errors that we have found to mislead downstream analysis of the discretized sequence read data. For instance, a central goal of the 1000 Genomes Project is to quantify across-sample variation at the single nucleotide level. At this resolution, small error rates in sequencing prove significant, especially for rare variants. Sec-gen sequencing is a relatively new technology for which potential biases and sources of obscuring variation are not yet fully understood. Therefore, modeling and quantifying the uncertainty inherent in the generation of sequence reads is of utmost importance. In this article, we present a simple model to capture uncertainty arising in the base-calling procedure of the Illumina/Solexa GA platform. Model parameters have a straightforward interpretation in terms of the chemistry of base-calling allowing for informative and easily interpretable metrics that capture the variability in

  12. A microfluidic DNA library preparation platform for next-generation sequencing.

    Science.gov (United States)

    Kim, Hanyoup; Jebrail, Mais J; Sinha, Anupama; Bent, Zachary W; Solberg, Owen D; Williams, Kelly P; Langevin, Stanley A; Renzi, Ronald F; Van De Vreugde, James L; Meagher, Robert J; Schoeniger, Joseph S; Lane, Todd W; Branda, Steven S; Bartsch, Michael S; Patel, Kamlesh D

    2013-01-01

    Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  13. A microfluidic DNA library preparation platform for next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Hanyoup Kim

    Full Text Available Next-generation sequencing (NGS is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM. The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  14. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  15. CPSS: a computational platform for the analysis of small RNA deep sequencing data.

    Science.gov (United States)

    Zhang, Yuanwei; Xu, Bo; Yang, Yifan; Ban, Rongjun; Zhang, Huan; Jiang, Xiaohua; Cooke, Howard J; Xue, Yu; Shi, Qinghua

    2012-07-15

    Next generation sequencing (NGS) techniques have been widely used to document the small ribonucleic acids (RNAs) implicated in a variety of biological, physiological and pathological processes. An integrated computational tool is needed for handling and analysing the enormous datasets from small RNA deep sequencing approach. Herein, we present a novel web server, CPSS (a computational platform for the analysis of small RNA deep sequencing data), designed to completely annotate and functionally analyse microRNAs (miRNAs) from NGS data on one platform with a single data submission. Small RNA NGS data can be submitted to this server with analysis results being returned in two parts: (i) annotation analysis, which provides the most comprehensive analysis for small RNA transcriptome, including length distribution and genome mapping of sequencing reads, small RNA quantification, prediction of novel miRNAs, identification of differentially expressed miRNAs, piwi-interacting RNAs and other non-coding small RNAs between paired samples and detection of miRNA editing and modifications and (ii) functional analysis, including prediction of miRNA targeted genes by multiple tools, enrichment of gene ontology terms, signalling pathway involvement and protein-protein interaction analysis for the predicted genes. CPSS, a ready-to-use web server that integrates most functions of currently available bioinformatics tools, provides all the information wanted by the majority of users from small RNA deep sequencing datasets. CPSS is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/db/cpss/index.html or http://mcg.ustc.edu.cn/sdap1/cpss/index.html.

  16. Next-Generation Sequencing Platforms

    Science.gov (United States)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  17. MicroRNA of the fifth-instar posterior silk gland of silkworm identified by Solexa sequencing

    Directory of Open Access Journals (Sweden)

    Jisheng Li

    2014-12-01

    Full Text Available No special studies have been focused on the microRNA (miRNA in the fifth-instar posterior silk gland of Bombyx mori. Here, using next-generation sequencing, we acquired 93.2 million processed reads from 10 small RNA libraries. In this paper, we tried to thoroughly describe how our dataset generated from deep sequencing which was recently published in BMC genomics. Results showed that our findings are largely enriched silkworm miRNA depository and may benefit us to reveal the miRNA functions in the process of silk production.

  18. Management of High-Throughput DNA Sequencing Projects: Alpheus.

    Science.gov (United States)

    Miller, Neil A; Kingsmore, Stephen F; Farmer, Andrew; Langley, Raymond J; Mudge, Joann; Crow, John A; Gonzalez, Alvaro J; Schilkey, Faye D; Kim, Ryan J; van Velkinburgh, Jennifer; May, Gregory D; Black, C Forrest; Myers, M Kathy; Utsey, John P; Frost, Nicholas S; Sugarbaker, David J; Bueno, Raphael; Gullans, Stephen R; Baxter, Susan M; Day, Steve W; Retzel, Ernest F

    2008-12-26

    High-throughput DNA sequencing has enabled systems biology to begin to address areas in health, agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is an analysis pipeline, database and visualization software for use with massively parallel DNA sequencing technologies that feature multi-gigabase throughput characterized by relatively short reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied Biosystem's SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s), detection of variants and enumeration of sequence abundance, including expression levels in transcriptome sequence. Alpheus is able to detect several types of variants, including non-synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions (indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant type in order to minimize false positives while maximizing the identification of true positives. Alpheus also enables comparisons of genes with variants between cases and controls or bulk segregant pools. Sequence-based differential expression comparisons can be developed, with data export to SAS JMP Genomics for statistical analysis.

  19. Efficient DNA fingerprinting based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform.

    Science.gov (United States)

    Monden, Yuki; Yamamoto, Ayaka; Shindo, Akiko; Tahara, Makoto

    2014-10-01

    In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Evaluation of a target region capture sequencing platform using monogenic diabetes as a study-model

    DEFF Research Database (Denmark)

    Gao, Rui; Liu, Yanxia; Gjesing, Anette Marianne Prior

    2014-01-01

    Monogenic diabetes is a genetic disease often caused by mutations in genes involved in beta-cell function. Correct sub-categorization of the disease is a prerequisite for appropriate treatment and genetic counseling. Target-region capture sequencing is a combination of genomic region enrichment...... and next generation sequencing which might be used as an efficient way to diagnose various genetic disorders. We aimed to develop a target-region capture sequencing platform to screen 117 selected candidate genes involved in metabolism for mutations and to evaluate its performance using monogenic diabetes...

  1. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    Directory of Open Access Journals (Sweden)

    Zhi Xu

    Full Text Available Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7% in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  2. A comparison of rumen microbial profiles in dairy cows as retrieved by 454 Roche and Ion Torrent (PGM sequencing platforms

    Directory of Open Access Journals (Sweden)

    Nagaraju Indugu

    2016-02-01

    Full Text Available Next generation sequencing (NGS technology is a widely accepted tool used by microbial ecologists to explore complex microbial communities in different ecosystems. As new NGS platforms continue to become available, it becomes imperative to compare data obtained from different platforms and analyze their effect on microbial community structure. In the present study, we compared sequencing data from both the 454 and Ion Torrent (PGM platforms on the same DNA samples obtained from the rumen of dairy cows during their transition period. Despite the substantial difference in the number of reads, error rate and length of reads among both platforms, we identified similar community composition between the two data sets. Procrustes analysis revealed similar correlations (M2 = 0.319; P = 0.001 in the microbial community composition between the two platforms. Both platforms revealed the abundance of the same bacterial phyla which were Bacteroidetes and Firmicutes; however, PGM recovered an additional four phyla. Comparisons made at the genus level by each platforms revealed differences in only a few genera such as Prevotella, Ruminococcus, Succiniclasticum and Treponema (p < 0.05; chi square test. Collectively, we conclude that the output generated from PGM and 454 yielded concurrent results, provided stringent bioinformatics pipelines are employed.

  3. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus).

    Science.gov (United States)

    Yusuf, Noor Hydayaty Md; Ong, Wen Dee; Redwan, Raimi Mohamed; Latip, Mariam Abd; Kumar, S Vijay

    2015-10-15

    MicroRNAs (miRNAs) are a class of small, endogenous non-coding RNAs that negatively regulate gene expression, resulting in the silencing of target mRNA transcripts through mRNA cleavage or translational inhibition. MiRNAs play significant roles in various biological and physiological processes in plants. However, the miRNA-mediated gene regulatory network in pineapple, the model tropical non-climacteric fruit, remains largely unexplored. Here, we report a complete list of pineapple mature miRNAs obtained from high-throughput small RNA sequencing and precursor miRNAs (pre-miRNAs) obtained from ESTs. Two small RNA libraries were constructed from pineapple fruits and leaves, respectively, using Illumina's Solexa technology. Sequence similarity analysis using miRBase revealed 579,179 reads homologous to 153 miRNAs from 41 miRNA families. In addition, a pineapple fruit transcriptome library consisting of approximately 30,000 EST contigs constructed using Solexa sequencing was used for the discovery of pre-miRNAs. In all, four pre-miRNAs were identified (MIR156, MIR399, MIR444 and MIR2673). Furthermore, the same pineapple transcriptome was used to dissect the function of the miRNAs in pineapple by predicting their putative targets in conjunction with their regulatory networks. In total, 23 metabolic pathways were found to be regulated by miRNAs in pineapple. The use of high-throughput sequencing in pineapples to unveil the presence of miRNAs and their regulatory pathways provides insight into the repertoire of miRNA regulation used exclusively in this non-climacteric model plant. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Bellod Cisneros, Jose Luis

    2016-01-01

    and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services...... and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services...

  5. Evaluation of exome variants using the Ion Proton Platform to sequence error-prone regions.

    Science.gov (United States)

    Seo, Heewon; Park, Yoomi; Min, Byung Joo; Seo, Myung Eui; Kim, Ju Han

    2017-01-01

    The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7%) of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit) exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.

  6. Evaluation of exome variants using the Ion Proton Platform to sequence error-prone regions.

    Directory of Open Access Journals (Sweden)

    Heewon Seo

    Full Text Available The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7% of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.

  7. Deep sequencing-based transcriptome analysis of chicken spleen in response to avian pathogenic Escherichia coli (APEC infection.

    Directory of Open Access Journals (Sweden)

    Qinghua Nie

    Full Text Available Avian pathogenic Escherichia coli (APEC leads to economic losses in poultry production and is also a threat to human health. The goal of this study was to characterize the chicken spleen transcriptome and to identify candidate genes for response and resistance to APEC infection using Solexa sequencing. We obtained 14422935, 14104324, and 14954692 Solexa read pairs for non-challenged (NC, challenged-mild pathology (MD, and challenged-severe pathology (SV, respectively. A total of 148197 contigs and 98461 unigenes were assembled, of which 134949 contigs and 91890 unigenes match the chicken genome. In total, 12272 annotated unigenes take part in biological processes (11664, cellular components (11927, and molecular functions (11963. Summing three specific contrasts, 13650 significantly differentially expressed unigenes were found in NC Vs. MD (6844, NC Vs. SV (7764, and MD Vs. SV (2320. Some unigenes (e.g. CD148, CD45 and LCK were involved in crucial pathways, such as the T cell receptor (TCR signaling pathway and microbial metabolism in diverse environments. This study facilitates understanding of the genetic architecture of the chicken spleen transcriptome, and has identified candidate genes for host response to APEC infection.

  8. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform.

    Directory of Open Access Journals (Sweden)

    Hideyuki Tamaki

    Full Text Available BACKGROUND: 16S rRNA gene pyrosequencing approach has revolutionized studies in microbial ecology. While primer selection and short read length can affect the resulting microbial community profile, little is known about the influence of pyrosequencing methods on the sequencing throughput and the outcome of microbial community analyses. The aim of this study is to compare differences in output, ease, and cost among three different amplicon pyrosequencing methods for the Roche/454 Titanium platform METHODOLOGY/PRINCIPAL FINDINGS: The following three pyrosequencing methods for 16S rRNA genes were selected in this study: Method-1 (standard method is the recommended method for bi-directional sequencing using the LIB-A kit; Method-2 is a new option designed in this study for unidirectional sequencing with the LIB-A kit; and Method-3 uses the LIB-L kit for unidirectional sequencing. In our comparison among these three methods using 10 different environmental samples, Method-2 and Method-3 produced 1.5-1.6 times more useable reads than the standard method (Method-1, after quality-based trimming, and did not compromise the outcome of microbial community analyses. Specifically, Method-3 is the most cost-effective unidirectional amplicon sequencing method as it provided the most reads and required the least effort in consumables management. CONCLUSIONS: Our findings clearly demonstrated that alternative pyrosequencing methods for 16S rRNA genes could drastically affect sequencing output (e.g. number of reads before and after trimming but have little effect on the outcomes of microbial community analysis. This finding is important for both researchers and sequencing facilities utilizing 16S rRNA gene pyrosequencing for microbial ecological studies.

  9. Metre-scale cyclicity in Middle Eocene platform carbonates in northern Egypt: Implications for facies development and sequence stratigraphy

    Science.gov (United States)

    Tawfik, Mohamed; El-Sorogy, Abdelbaset; Moussa, Mahmoud

    2016-07-01

    The shallow-water carbonates of the Middle Eocene in northern Egypt represent a Tethyan reef-rimmed carbonate platform with bedded inner-platform facies. Based on extensive micro- and biofacies documentation, five lithofacies associations were defined and their respective depositional environments were interpreted. Investigated sections were subdivided into three third-order sequences, named S1, S2 and S3. Sequence S1 is interpreted to correspond to the Lutetian, S2 corresponds to the Late Lutetian and Early Bartonian, and S3 represents the Late Bartonian. Each of the three sequences was further subdivided into fourth-order cycle sets and fifth-order cycles. The complete hierarchy of cycles can be correlated along 190 km across the study area, and highlighting a general "layer-cake" stratigraphic architecture. The documentation of the studied outcrops may contribute to the better regional understanding of the Middle Eocene formations in northern Egypt and to Tethyan pericratonic carbonate models in general.

  10. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform.

    Science.gov (United States)

    Wen, Chongqing; Wu, Liyou; Qin, Yujia; Van Nostrand, Joy D; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong

    2017-01-01

    Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, pdeep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates

  11. Controls on facies and sequence stratigraphy of an upper Miocene carbonate ramp and platform, Melilla basin, NE Morocco

    Science.gov (United States)

    Cunningham, K.J.; Collins, Luke S.

    2002-01-01

    Upwelling of cool seawater, paleoceanographic circulation, paleoclimate, local tectonics and relative sea-level change controlled the lithofacies and sequence stratigraphy of a carbonate ramp and overlying platform that are part of a temporally well constrained carbonate complex in the Melilla basin, northeastern Morocco. At Melilla, from oldest to youngest, a third-order depositional sequence within the carbonate complex contains (1) a retrogradational, transgressive, warm temperate-type rhodalgal ramp; (2) an early highstand, progradational, bioclastic platform composed mainly of a temperate-type, bivalve-rich molechfor facies; and (3) late highstand, progradational to downstepping, subtropical/tropical-type chlorozoan fringing Porites reefs. The change from rhodalgal ramp to molechfor platform occurred at 7.0??0.14 Ma near the Tortonian/Messinian boundary. During a late stage in the development of the bioclastic platform a transition from temperate-type molechfor facies to subtropical/tropical-type chlorozoan facies occurred and is bracketed by chron 3An.2n (??? 6.3-6.6 Ma). Comparison to a well-dated carbonate complex in southeastern Spain at Cabo de Gata suggests that upwelling of cool seawater influenced production of temperate-type limestone within the ramp and platform at Melilla during postulated late Tortonian-early Messinian subtropical/tropical paleoclimatic conditions in the western Paleo-Mediterranean region. The upwelling of cool seawater across the bioclastic platform at Melilla could be related to the beginning of 'siphoning' of deep, cold Atlantic waters into the Paleo-Mediterranean Sea at 7.17 Ma. The facies change within the bioclastic platform from molechfor to chlorozoan facies may be coincident with a reduction of the siphoning of Atlantic waters and the end of upwelling at Melilla during chron 3An.2n. The ramp contains one retrogradational parasequence and the bioclastic platform three progradational parasequences. Minor erosional surfaces

  12. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  13. Deep-sequencing protocols influence the results obtained in small-RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Joern Toedling

    Full Text Available Second-generation sequencing is a powerful method for identifying and quantifying small-RNA components of cells. However, little attention has been paid to the effects of the choice of sequencing platform and library preparation protocol on the results obtained. We present a thorough comparison of small-RNA sequencing libraries generated from the same embryonic stem cell lines, using different sequencing platforms, which represent the three major second-generation sequencing technologies, and protocols. We have analysed and compared the expression of microRNAs, as well as populations of small RNAs derived from repetitive elements. Despite the fact that different libraries display a good correlation between sequencing platforms, qualitative and quantitative variations in the results were found, depending on the protocol used. Thus, when comparing libraries from different biological samples, it is strongly recommended to use the same sequencing platform and protocol in order to ensure the biological relevance of the comparisons.

  14. Simultaneous and complete genome sequencing of influenza A and B with high coverage by Illumina MiSeq Platform.

    Science.gov (United States)

    Rutvisuttinunt, Wiriya; Chinnawirotpisan, Piyawan; Simasathien, Sriluck; Shrestha, Sanjaya K; Yoon, In-Kyu; Klungthong, Chonticha; Fernandez, Stefan

    2013-11-01

    Active global surveillance and characterization of influenza viruses are essential for better preparation against possible pandemic events. Obtaining comprehensive information about the influenza genome can improve our understanding of the evolution of influenza viruses and emergence of new strains, and improve the accuracy when designing preventive vaccines. This study investigated the use of deep sequencing by the next-generation sequencing (NGS) Illumina MiSeq Platform to obtain complete genome sequence information from influenza virus isolates. The influenza virus isolates were cultured from 6 respiratory acute clinical specimens collected in Thailand and Nepal. DNA libraries obtained from each viral isolate were mixed and all were sequenced simultaneously. Total information of 2.6 Gbases was obtained from a 455±14 K/mm2 density with 95.76% (8,571,655/8,950,724 clusters) of the clusters passing quality control (QC) filters. Approximately 93.7% of all sequences from Read1 and 83.5% from Read2 contained high quality sequences that were ≥Q30, a base calling QC score standard. Alignments analysis identified three seasonal influenza A H3N2 strains, one 2009 pandemic influenza A H1N1 strain and two influenza B strains. The nearly entire genomes of all six virus isolates yielded equal or greater than 600-fold sequence coverage depth. MiSeq Platform identified seasonal influenza A H3N2, 2009 pandemic influenza A H1N1and influenza B in the DNA library mixtures efficiently. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The feasibility study of non-invasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform.

    Directory of Open Access Journals (Sweden)

    Young Joo Jeon

    Full Text Available OBJECTIVE: Recent non-invasive prenatal testing (NIPT technologies are based on next-generation sequencing (NGS. NGS allows rapid and effective clinical diagnoses to be determined with two common sequencing systems: Illumina and Ion Torrent platforms. The majority of NIPT technology is associated with Illumina platform. We investigated whether fetal trisomy 18 and 21 were sensitively and specifically detectable by semiconductor sequencer: Ion Proton. METHODS: From March 2012 to October 2013, we enrolled 155 pregnant women with fetuses who were diagnosed as high risk of fetal defects at Xiamen Maternal & Child Health Care Hospital (Xiamen, Fujian, China. Adapter-ligated DNA libraries were analyzed by the Ion Proton™ System (Life Technologies, Grand Island, NY, USA with an average 0.3× sequencing coverage per nucleotide. Average total raw reads per sample was 6.5 million and mean rate of uniquely mapped reads was 59.0%. The results of this study were derived from BWA mapping. Z-score was used for fetal trisomy 18 and 21 detection. RESULTS: Interactive dot diagrams showed the minimal z-score values to discriminate negative versus positive cases of fetal trisomy 18 and 21. For fetal trisomy 18, the minimal z-score value of 2.459 showed 100% positive predictive and negative predictive values. The minimal z-score of 2.566 was used to classify negative versus positive cases of fetal trisomy 21. CONCLUSION: These results provide the evidence that fetal trisomy 18 and 21 detection can be performed with semiconductor sequencer. Our data also suggest that a prospective study should be performed with a larger cohort of clinically diverse obstetrics patients.

  16. MEGGASENSE - The Metagenome/Genome Annotated Sequence Natural Language Search Engine: A Platform for 
the Construction of Sequence Data Warehouses.

    Science.gov (United States)

    Gacesa, Ranko; Zucko, Jurica; Petursdottir, Solveig K; Gudmundsdottir, Elisabet Eik; Fridjonsson, Olafur H; Diminic, Janko; Long, Paul F; Cullum, John; Hranueli, Daslav; Hreggvidsson, Gudmundur O; Starcevic, Antonio

    2017-06-01

    The MEGGASENSE platform constructs relational databases of DNA or protein sequences. The default functional analysis uses 14 106 hidden Markov model (HMM) profiles based on sequences in the KEGG database. The Solr search engine allows sophisticated queries and a BLAST search function is also incorporated. These standard capabilities were used to generate the SCATT database from the predicted proteome of Streptomyces cattleya . The implementation of a specialised metagenome database (AMYLOMICS) for bioprospecting of carbohydrate-modifying enzymes is described. In addition to standard assembly of reads, a novel 'functional' assembly was developed, in which screening of reads with the HMM profiles occurs before the assembly. The AMYLOMICS database incorporates additional HMM profiles for carbohydrate-modifying enzymes and it is illustrated how the combination of HMM and BLAST analyses helps identify interesting genes. A variety of different proteome and metagenome databases have been generated by MEGGASENSE.

  17. SeqHound: biological sequence and structure database as a platform for bioinformatics research

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2002-10-01

    Full Text Available Abstract Background SeqHound has been developed as an integrated biological sequence, taxonomy, annotation and 3-D structure database system. It provides a high-performance server platform for bioinformatics research in a locally-hosted environment. Results SeqHound is based on the National Center for Biotechnology Information data model and programming tools. It offers daily updated contents of all Entrez sequence databases in addition to 3-D structural data and information about sequence redundancies, sequence neighbours, taxonomy, complete genomes, functional annotation including Gene Ontology terms and literature links to PubMed. SeqHound is accessible via a web server through a Perl, C or C++ remote API or an optimized local API. It provides functionality necessary to retrieve specialized subsets of sequences, structures and structural domains. Sequences may be retrieved in FASTA, GenBank, ASN.1 and XML formats. Structures are available in ASN.1, XML and PDB formats. Emphasis has been placed on complete genomes, taxonomy, domain and functional annotation as well as 3-D structural functionality in the API, while fielded text indexing functionality remains under development. SeqHound also offers a streamlined WWW interface for simple web-user queries. Conclusions The system has proven useful in several published bioinformatics projects such as the BIND database and offers a cost-effective infrastructure for research. SeqHound will continue to develop and be provided as a service of the Blueprint Initiative at the Samuel Lunenfeld Research Institute. The source code and examples are available under the terms of the GNU public license at the Sourceforge site http://sourceforge.net/projects/slritools/ in the SLRI Toolkit.

  18. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.

    Directory of Open Access Journals (Sweden)

    Xianwen Ren

    Full Text Available Next generation sequencing (NGS technologies have greatly changed the landscape of transcriptomic studies of non-model organisms. Since there is no reference genome available, de novo assembly methods play key roles in the analysis of these data sets. Because of the huge amount of data generated by NGS technologies for each run, many assemblers, e.g., ABySS, Velvet and Trinity, are developed based on a de Bruijn graph due to its time- and space-efficiency. However, most of these assemblers were developed initially for the Illumina/Solexa platform. The performance of these assemblers on 454 transcriptomic data is unknown. In this study, we evaluated and compared the relative performance of these de Bruijn graph based assemblers on both simulated and real 454 transcriptomic data. The results suggest that Trinity, the Illumina/Solexa-specialized transcriptomic assembler, performs the best among the multiple de Bruijn graph assemblers, comparable to or even outperforming the standard 454 assembler Newbler which is based on the overlap-layout-consensus algorithm. Our evaluation is expected to provide helpful guidance for researchers to choose assemblers when analyzing 454 transcriptomic data.

  19. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo: genome assembly and analysis.

    Directory of Open Access Journals (Sweden)

    Rami A Dalloul

    2010-09-01

    Full Text Available A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo. Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest.

  20. Long Read Alignment with Parallel MapReduce Cloud Platform

    Directory of Open Access Journals (Sweden)

    Ahmed Abdulhakim Al-Absi

    2015-01-01

    Full Text Available Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner’s Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.

  1. Long Read Alignment with Parallel MapReduce Cloud Platform

    Science.gov (United States)

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887

  2. A Comparison and Integration of MiSeq and MinION Platforms for Sequencing Single Source and Mixed Mitochondrial Genomes.

    Directory of Open Access Journals (Sweden)

    Michael R Lindberg

    Full Text Available Single source and multiple donor (mixed samples of human mitochondrial DNA were analyzed and compared using the MinION and the MiSeq platforms. A generalized variant detection strategy was employed to provide a cursory framework for evaluating the reliability and accuracy of mitochondrial sequences produced by the MinION. The feasibility of long-read phasing was investigated to establish its efficacy in quantitatively distinguishing and deconvolving individuals in a mixture. Finally, a proof-of-concept was demonstrated by integrating both platforms in a hybrid assembly that leverages solely mixture data to accurately reconstruct full mitochondrial genomes.

  3. Rapid Multiplex Small DNA Sequencing on the MinION Nanopore Sequencing Platform

    Directory of Open Access Journals (Sweden)

    Shan Wei

    2018-05-01

    Full Text Available Real-time sequencing of short DNA reads has a wide variety of clinical and research applications including screening for mutations, target sequences and aneuploidy. We recently demonstrated that MinION, a nanopore-based DNA sequencing device the size of a USB drive, could be used for short-read DNA sequencing. In this study, an ultra-rapid multiplex library preparation and sequencing method for the MinION is presented and applied to accurately test normal diploid and aneuploidy samples’ genomic DNA in under three hours, including library preparation and sequencing. This novel method shows great promise as a clinical diagnostic test for applications requiring rapid short-read DNA sequencing.

  4. Platforms.

    Science.gov (United States)

    Josko, Deborah

    2014-01-01

    The advent of DNA sequencing technologies and the various applications that can be performed will have a dramatic effect on medicine and healthcare in the near future. There are several DNA sequencing platforms available on the market for research and clinical use. Based on the medical laboratory scientist or researcher's needs and taking into consideration laboratory space and budget, one can chose which platform will be beneficial to their institution and their patient population. Although some of the instrument costs seem high, diagnosing a patient quickly and accurately will save hospitals money with fewer hospital stays and targeted treatment based on an individual's genetic make-up. By determining the type of disease an individual has, based on the mutations present or having the ability to prescribe the appropriate antimicrobials based on the knowledge of the organism's resistance patterns, the clinician will be better able to treat and diagnose a patient which ultimately will improve patient outcomes and prognosis.

  5. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.

    Science.gov (United States)

    Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao

    2012-03-01

    High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aïch-Majoura region (Central Tunisia)

    Science.gov (United States)

    Azaïez, Hajer; Bédir, Mourad; Tanfous, Dorra; Soussi, Mohamed

    2007-05-01

    In central Tunisia, Lower Cretaceous deposits represent carbonate and sandstone reservoir series that correspond to proven oil fields. The main problems for hydrocarbon exploration of these levels are their basin tectonic configuration and their sequence distribution in addition to the source rock availability. The Central Atlas of Tunisia is characterized by deep seated faults directed northeast-southwest, northwest-southeast and north-south. These faults limit inherited tectonic blocks and show intruded Triassic salt domes. Lower Cretaceous series outcropping in the region along the anticline flanks present platform deposits. The seismic interpretation has followed the Exxon methodologies in the 26th A.A.P.G. Memoir. The defined Lower Cretaceous seismic units were calibrated with petroleum well data and tied to stratigraphic sequences established by outcrop studies. This allows the subsurface identification of subsiding zones and thus sequence deposit distribution. Seismic mapping of these units boundary shows a structuring from a platform to basin blocks zones and helps to understand the hydrocarbon reservoir systems-tract and horizon distribution around these domains.

  7. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers.

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    Full Text Available Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM. Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage

  8. Next-generation sequencing-based transcriptome analysis of Helicoverpa armigera Larvae immune-primed with Photorhabdus luminescens TT01.

    Directory of Open Access Journals (Sweden)

    Zengyang Zhao

    Full Text Available Although invertebrates are incapable of adaptive immunity, immunal reactions which are functionally similar to the adaptive immunity of vertebrates have been described in many studies of invertebrates including insects. The phenomenon was termed immune priming. In order to understand the molecular mechanism of immune priming, we employed Illumina/Solexa platform to investigate the transcriptional changes of the hemocytes and fat body of Helicoverpa armigera larvae immune-primed with the pathogenic bacteria Photorhabdus luminescens TT01. A total of 43.6 and 65.1 million clean reads with 4.4 and 6.5 gigabase sequence data were obtained from the TT01 (the immune-primed and PBS (non-primed cDNA libraries and assembled into 35,707 all-unigenes (non-redundant transcripts, which has a length varied from 201 to 16,947 bp and a N50 length of 1,997 bp. For 35,707 all-unigenes, 20,438 were functionally annotated and 2,494 were differentially expressed after immune priming. The differentially expressed genes (DEGs are mainly related to immunity, detoxification, development and metabolism of the host insect. Analysis on the annotated immune related DEGs supported a hypothesis that we proposed previously: the immune priming phenomenon observed in H. armigera larvae was achieved by regulation of key innate immune elements. The transcriptome profiling data sets (especially the sequences of 1,022 unannotated DEGs and the clues (such as those on immune-related signal and regulatory pathways obtained from this study will facilitate immune-related novel gene discovery and provide valuable information for further exploring the molecular mechanism of immune priming of invertebrates. All these will increase our understanding of invertebrate immunity which may provide new approaches to control insect pests or prevent epidemic of infectious diseases in economic invertebrates in the future.

  9. Sequence Read Archive (SRA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Sequence Read Archive (SRA) stores raw sequencing data from the next generation of sequencing platforms including Roche 454 GS System®, Illumina Genome...

  10. Detection of Inter-lineage Natural Recombination in Avian Paramyxovirus Serotype 1 using Simplified Deep Sequencing Platform

    Directory of Open Access Journals (Sweden)

    Dilan Amila Satharasinghe

    2016-11-01

    Full Text Available Newcastle disease virus (NDV is a prototype member of avian paramyxovirus serotype 1 (APMV-1, which causes severe and contagious disease in the commercial poultry and wild birds. Despite extensive vaccination programs and other control measures, the disease remains endemic around the globe especially in Asia, Africa, and the Middle East. Being a single serotype, genotype II based vaccines remained most acceptable means of immunization. However, the evidence is emerging on failures of vaccines mainly due to evolving nature of the virus and higher genetic gaps between vaccine and field strains of APMV-1. Most of the epidemiological and genetic characterizations of APMVs are based on conventional methods, which are prone to mask the diverse population of viruses in complex samples. In this study, we report the application of a simple, robust, and less resource-demanding methodology for the whole genome sequencing of NDV, using next-generation sequencing on the Illumina MiSeq platform. Using this platform, we sequenced full genomes of five virulent Malaysian NDV strains collected during 2004-2013. All isolates clustered within highly prevalent lineage 5 (specifically in lineage 5a; however, a significantly greater genetic divergence was observed in isolates collected from 2004 to 2011. Interestingly, genetic characterization of one isolate collected in 2013 (IBS025/13 shown natural recombination between lineage 2 and lineage 5. In the event of recombination, the isolate (IBS025/13 carried nucleocapsid protein consist of 55-1801 nucleotides (nts and near-complete phosphoprotein (1804-3254 nts genes of lineage 2 whereas surface glycoproteins (fusion, hemagglutinin-neuraminidase and large polymerase of lineage 5. Additionally, the recombinant virus has a genome size of 15,186 nts which is characteristics for the old genotypes I to IV isolated from 1930 to 1960. Taken together, we report the occurrence of a natural recombination in circulating strains

  11. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform.

    Science.gov (United States)

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding). Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants). Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol) that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer's, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively, we discuss how

  12. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform.

    Directory of Open Access Journals (Sweden)

    Abhishek Mitra

    Full Text Available Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding. Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants. Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer's, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively

  13. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.

    Science.gov (United States)

    de Muinck, Eric J; Trosvik, Pål; Gilfillan, Gregor D; Hov, Johannes R; Sundaram, Arvind Y M

    2017-07-06

    Advances in sequencing technologies and bioinformatics have made the analysis of microbial communities almost routine. Nonetheless, the need remains to improve on the techniques used for gathering such data, including increasing throughput while lowering cost and benchmarking the techniques so that potential sources of bias can be better characterized. We present a triple-index amplicon sequencing strategy to sequence large numbers of samples at significantly lower c ost and in a shorter timeframe compared to existing methods. The design employs a two-stage PCR protocol, incorpo rating three barcodes to each sample, with the possibility to add a fourth-index. It also includes heterogeneity spacers to overcome low complexity issues faced when sequencing amplicons on Illumina platforms. The library preparation method was extensively benchmarked through analysis of a mock community in order to assess biases introduced by sample indexing, number of PCR cycles, and template concentration. We further evaluated the method through re-sequencing of a standardized environmental sample. Finally, we evaluated our protocol on a set of fecal samples from a small cohort of healthy adults, demonstrating good performance in a realistic experimental setting. Between-sample variation was mainly related to batch effects, such as DNA extraction, while sample indexing was also a significant source of bias. PCR cycle number strongly influenced chimera formation and affected relative abundance estimates of species with high GC content. Libraries were sequenced using the Illumina HiSeq and MiSeq platforms to demonstrate that this protocol is highly scalable to sequence thousands of samples at a very low cost. Here, we provide the most comprehensive study of performance and bias inherent to a 16S rRNA gene amplicon sequencing method to date. Triple-indexing greatly reduces the number of long custom DNA oligos required for library preparation, while the inclusion of variable length

  14. MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing.

    Science.gov (United States)

    Yan, Biao; Wang, Zhen-Hua; Zhu, Chang-Dong; Guo, Jin-Tao; Zhao, Jin-Liang

    2014-08-01

    The Nile tilapia (Oreochromis niloticus; Cichlidae) is an economically important species in aquaculture and occupies a prominent position in the aquaculture industry. MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression involved in diverse biological and metabolic processes. To increase the repertoire of miRNAs characterized in tilapia, we used the Illumina/Solexa sequencing technology to sequence a small RNA library using pooled RNA sample isolated from the different developmental stages of tilapia. Bioinformatic analyses suggest that 197 conserved and 27 novel miRNAs are expressed in tilapia. Sequence alignments indicate that all tested miRNAs and miRNAs* are highly conserved across many species. In addition, we characterized the tissue expression patterns of five miRNAs using real-time quantitative PCR. We found that miR-1/206, miR-7/9, and miR-122 is abundantly expressed in muscle, brain, and liver, respectively, implying a potential role in the regulation of tissue differentiation or the maintenance of tissue identity. Overall, our results expand the number of tilapia miRNAs, and the discovery of miRNAs in tilapia genome contributes to a better understanding the role of miRNAs in regulating diverse biological processes.

  15. TranslatomeDB: a comprehensive database and cloud-based analysis platform for translatome sequencing data.

    Science.gov (United States)

    Liu, Wanting; Xiang, Lunping; Zheng, Tingkai; Jin, Jingjie; Zhang, Gong

    2018-01-04

    Translation is a key regulatory step, linking transcriptome and proteome. Two major methods of translatome investigations are RNC-seq (sequencing of translating mRNA) and Ribo-seq (ribosome profiling). To facilitate the investigation of translation, we built a comprehensive database TranslatomeDB (http://www.translatomedb.net/) which provides collection and integrated analysis of published and user-generated translatome sequencing data. The current version includes 2453 Ribo-seq, 10 RNC-seq and their 1394 corresponding mRNA-seq datasets in 13 species. The database emphasizes the analysis functions in addition to the dataset collections. Differential gene expression (DGE) analysis can be performed between any two datasets of same species and type, both on transcriptome and translatome levels. The translation indices translation ratios, elongation velocity index and translational efficiency can be calculated to quantitatively evaluate translational initiation efficiency and elongation velocity, respectively. All datasets were analyzed using a unified, robust, accurate and experimentally-verifiable pipeline based on the FANSe3 mapping algorithm and edgeR for DGE analyzes. TranslatomeDB also allows users to upload their own datasets and utilize the identical unified pipeline to analyze their data. We believe that our TranslatomeDB is a comprehensive platform and knowledgebase on translatome and proteome research, releasing the biologists from complex searching, analyzing and comparing huge sequencing data without needing local computational power. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Environmental microbiology through the lens of high-throughput DNA sequencing: synopsis of current platforms and bioinformatics approaches.

    Science.gov (United States)

    Logares, Ramiro; Haverkamp, Thomas H A; Kumar, Surendra; Lanzén, Anders; Nederbragt, Alexander J; Quince, Christopher; Kauserud, Håvard

    2012-10-01

    The incursion of High-Throughput Sequencing (HTS) in environmental microbiology brings unique opportunities and challenges. HTS now allows a high-resolution exploration of the vast taxonomic and metabolic diversity present in the microbial world, which can provide an exceptional insight on global ecosystem functioning, ecological processes and evolution. This exploration has also economic potential, as we will have access to the evolutionary innovation present in microbial metabolisms, which could be used for biotechnological development. HTS is also challenging the research community, and the current bottleneck is present in the data analysis side. At the moment, researchers are in a sequence data deluge, with sequencing throughput advancing faster than the computer power needed for data analysis. However, new tools and approaches are being developed constantly and the whole process could be depicted as a fast co-evolution between sequencing technology, informatics and microbiologists. In this work, we examine the most popular and recently commercialized HTS platforms as well as bioinformatics methods for data handling and analysis used in microbial metagenomics. This non-exhaustive review is intended to serve as a broad state-of-the-art guide to researchers expanding into this rapidly evolving field. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform.

    Science.gov (United States)

    Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee

    2011-11-01

    Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.

  18. Swab-to-Sequence: Real-time Data Analysis Platform for the Biomolecule Sequencer

    Data.gov (United States)

    National Aeronautics and Space Administration — DNA was successfully sequenced on the ISS in 2016, but the DNA sequenced was prepared on the ground. With FY’16 IRAD funds, the same team developed a...

  19. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... platform for screening for a protease inhibitor....

  20. Regulation of gene expression in neuronal tissue by RNA interference and editing

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard

    No tissue in the mammalian organism is more complex than the brain. This complexity is in part the result of precise timing and interplay of a large number mechanisms modulating gene expression post-transcriptionally. Fine-tuning mechanisms such as A-to-I editing of RNA transcripts and regulation...... mediated by microRNAs are crucial for the correct function of the mammalian brain. We are addressing A-to-I editing and regulation by microRNAs with spatio-temporal resolution in the embryonic porcine brain by Solexa sequencing of microRNAs and 454 sequencing of edited neuronal messenger RNAs, resulting...... in detailed data of both of these fine-tuning mechanisms in the embryonic development of the pig. Editing levels of transcripts examined are generally seen to increase through development, in agreement with editing of specific microRNA also examined in the Solexa sequencing study. Three studies examining...

  1. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration

    Science.gov (United States)

    2013-01-01

    Background Salamanders are unique among vertebrates in their ability to completely regenerate amputated limbs through the mediation of blastema cells located at the stump ends. This regeneration is nerve-dependent because blastema formation and regeneration does not occur after limb denervation. To obtain the genomic information of blastema tissues, de novo transcriptomes from both blastema tissues and denervated stump ends of Ambystoma mexicanum (axolotls) 14 days post-amputation were sequenced and compared using Solexa DNA sequencing. Results The sequencing done for this study produced 40,688,892 reads that were assembled into 307,345 transcribed sequences. The N50 of transcribed sequence length was 562 bases. A similarity search with known proteins identified 39,200 different genes to be expressed during limb regeneration with a cut-off E-value exceeding 10-5. We annotated assembled sequences by using gene descriptions, gene ontology, and clusters of orthologous group terms. Targeted searches using these annotations showed that the majority of the genes were in the categories of essential metabolic pathways, transcription factors and conserved signaling pathways, and novel candidate genes for regenerative processes. We discovered and confirmed numerous sequences of the candidate genes by using quantitative polymerase chain reaction and in situ hybridization. Conclusion The results of this study demonstrate that de novo transcriptome sequencing allows gene expression analysis in a species lacking genome information and provides the most comprehensive mRNA sequence resources for axolotls. The characterization of the axolotl transcriptome can help elucidate the molecular mechanisms underlying blastema formation during limb regeneration. PMID:23815514

  2. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  3. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Science.gov (United States)

    Greub, Gilbert; Kebbi-Beghdadi, Carole; Bertelli, Claire; Collyn, François; Riederer, Beat M; Yersin, Camille; Croxatto, Antony; Raoult, Didier

    2009-12-23

    With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  4. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    Science.gov (United States)

    Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo

    2017-01-01

    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.

  5. A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions.

    Science.gov (United States)

    Schlecht, Ulrich; Liu, Zhimin; Blundell, Jamie R; St Onge, Robert P; Levy, Sasha F

    2017-05-25

    Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.

  6. Detection of Inter-Lineage Natural Recombination in Avian Paramyxovirus Serotype 1 Using Simplified Deep Sequencing Platform.

    Science.gov (United States)

    Satharasinghe, Dilan A; Murulitharan, Kavitha; Tan, Sheau W; Yeap, Swee K; Munir, Muhammad; Ideris, Aini; Omar, Abdul R

    2016-01-01

    Newcastle disease virus (NDV) is a prototype member of avian paramyxovirus serotype 1 (APMV-1), which causes severe and contagious disease in the commercial poultry and wild birds. Despite extensive vaccination programs and other control measures, the disease remains endemic around the globe especially in Asia, Africa, and the Middle East. Being a single serotype, genotype II based vaccines remained most acceptable means of immunization. However, the evidence is emerging on failures of vaccines mainly due to evolving nature of the virus and higher genetic gaps between vaccine and field strains of APMV-1. Most of the epidemiological and genetic characterizations of APMVs are based on conventional methods, which are prone to mask the diverse population of viruses in complex samples. In this study, we report the application of a simple, robust, and less resource-demanding methodology for the whole genome sequencing of NDV, using next-generation sequencing (NGS) on the Illumina MiSeq platform. Using this platform, we sequenced full genomes of five virulent Malaysian NDV strains collected during 2004-2013. All isolates clustered within highly prevalent lineage 5 (specifically in lineage 5a); however, a significantly greater genetic divergence was observed in isolates collected from 2004 to 2011. Interestingly, genetic characterization of one isolate collected in 2013 (IBS025/13) shown natural recombination between lineage 2 and lineage 5. In the event of recombination, the isolate (IBS025/13) carried nucleocapsid protein consist of 55-1801 nucleotides (nts) and near-complete phosphoprotein (1804-3254 nts) genes of lineage 2 whereas surface glycoproteins (fusion, hemagglutinin-neuraminidase) and large polymerase of lineage 5. Additionally, the recombinant virus has a genome size of 15,186 nts which is characteristics for the old genotypes I-IV isolated from 1930 to 1960. Taken together, we report the occurrence of a natural recombination in circulating strains of NDV in

  7. Wireless sensor platform

    Science.gov (United States)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  8. Off-platform Silurian sequences in the Ambler River quadrangle: A section in Geologic studies in Alaska by the U.S. Geological Survey during 1987

    Science.gov (United States)

    Dumoulin, Julie A.; Harris, Anita G.

    1988-01-01

    Lithofacies changes in coeval upper Paleozoic rocks have been used to unravel the tectonic history of northern Alaska (for example, Mayfield and others, 1983). Conodont biostratigraphy and detailed petrologic studies are now revealing facies differences in lower Paleozoic rocks that can also be used to constrain their tectono-sedimentary framework (Dumoulin and Harris, 1987). A basic element of basin analysis is the discrimination of shallow-water shelf and platform sequences from deeper water slope and basinal deposits. This report documents several new localities of deeper water, off-platform Silurian deposits in the Ambler River quadrangle and briefly outlines some of their paleogeographic implications.

  9. Developing a framework to assess the cost-effectiveness of COMPARE -A global platform for the exchange of sequence-based pathogen data

    DEFF Research Database (Denmark)

    Alleweldt, F.; Kara, Sami; Osinski, A.

    2017-01-01

    Analysing the genomic data of pathogens with the help of next-generation sequencing (NGS) is an increasingly important part of disease outbreak investigations and helps guide responses. While this technology has already been successfully employed to elucidate and control disease outbreaks, wider...... implementation of NGS also depends on its cost-effectiveness. COMPARE - short for 'Collaborative Management Platform for detection and Analyses of (Re-) emerging and foodborne outbreaks' - is a major project, funded by the European Union, to develop a global platform for sharing and analysing NGS data...... and thereby improve the rapid identification, containment and mitigation of emerging infectious diseases and foodborne outbreaks. This article introduces the project and presents the results of a review of the literature, composed of previous relevant cost-benefit and cost-effectiveness analyses. The authors...

  10. Validation of Ion TorrentTM Inherited Disease Panel with the PGMTM Sequencing Platform for Rapid and Comprehensive Mutation Detection

    Directory of Open Access Journals (Sweden)

    Abeer E. Mustafa

    2018-05-01

    Full Text Available Quick and accurate molecular testing is necessary for the better management of many inherited diseases. Recent technological advances in various next generation sequencing (NGS platforms, such as target panel-based sequencing, has enabled comprehensive, quick, and precise interrogation of many genetic variations. As a result, these technologies have become a valuable tool for gene discovery and for clinical diagnostics. The AmpliSeq Inherited Disease Panel (IDP consists of 328 genes underlying more than 700 inherited diseases. Here, we aimed to assess the performance of the IDP as a sensitive and rapid comprehensive gene panel testing. A total of 88 patients with inherited diseases and causal mutations that were previously identified by Sanger sequencing were randomly selected for assessing the performance of the IDP. The IDP successfully detected 93.1% of the mutations in our validation cohort, achieving high overall gene coverage (98%. The sensitivity for detecting single nucleotide variants (SNVs and short Indels was 97.3% and 69.2%, respectively. IDP, when coupled with Ion Torrent Personal Genome Machine (PGM, delivers comprehensive and rapid sequencing for genes that are responsible for various inherited diseases. Our validation results suggest the suitability of this panel for use as a first-line screening test after applying the necessary clinical validation.

  11. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Directory of Open Access Journals (Sweden)

    Gilbert Greub

    Full Text Available BACKGROUND: With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. METHODS/PRINCIPAL FINDINGS: We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. CONCLUSIONS/SIGNIFICANCE: This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  12. Web Platform vs In-Person Genetic Counselor for Return of Carrier Results From Exome Sequencing: A Randomized Clinical Trial.

    Science.gov (United States)

    Biesecker, Barbara B; Lewis, Katie L; Umstead, Kendall L; Johnston, Jennifer J; Turbitt, Erin; Fishler, Kristen P; Patton, John H; Miller, Ilana M; Heidlebaugh, Alexis R; Biesecker, Leslie G

    2018-03-01

    A critical bottleneck in clinical genomics is the mismatch between large volumes of results and the availability of knowledgeable professionals to return them. To test whether a web-based platform is noninferior to a genetic counselor for educating patients about their carrier results from exome sequencing. A randomized noninferiority trial conducted in a longitudinal sequencing cohort at the National Institutes of Health from February 5, 2014, to December 16, 2016, was used to compare the web-based platform with a genetic counselor. Among the 571 eligible participants, 1 to 7 heterozygous variants were identified in genes that cause a phenotype that is recessively inherited. Surveys were administered after cohort enrollment, immediately following trial education, and 1 month and 6 months later to primarily healthy postreproductive participants who expressed interest in learning their carrier results. Both intention-to-treat and per-protocol analyses were applied. A web-based platform that integrated education on carrier results with personal test results was designed to directly parallel disclosure education by a genetic counselor. The sessions took a mean (SD) time of 21 (10.6), and 27 (9.3) minutes, respectively. The primary outcomes and noninferiority margins (δNI) were knowledge (0 to 8, δNI = -1), test-specific distress (0 to 30, δNI = +1), and decisional conflict (15 to 75, δNI = +6). After 462 participants (80.9%) provided consent and were randomized, all but 3 participants (n = 459) completed surveys following education and counseling; 398 (86.1%) completed 1-month surveys and 392 (84.8%) completed 6-month surveys. Participants were predominantly well-educated, non-Hispanic white, married parents; mean (SD) age was 63 (63.1) years and 246 (53.6%) were men. The web platform was noninferior to the genetic counselor on outcomes assessed at 1 and 6 months: knowledge (mean group difference, -0.18; lower limit of 97.5% CI, -0.63;

  13. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Leekitcharoenphon, Pimlapas; Aarestrup, Frank Møller

    2014-01-01

    technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial...

  14. Identification and characterization of novel serum microRNA candidates from deep sequencing in cervical cancer patients.

    Science.gov (United States)

    Juan, Li; Tong, Hong-li; Zhang, Pengjun; Guo, Guanghong; Wang, Zi; Wen, Xinyu; Dong, Zhennan; Tian, Ya-ping

    2014-09-03

    Small non-coding microRNAs (miRNAs) are involved in cancer development and progression, and serum profiles of cervical cancer patients may be useful for identifying novel miRNAs. We performed deep sequencing on serum pools of cervical cancer patients and healthy controls with 3 replicates and constructed a small RNA library. We used MIREAP to predict novel miRNAs and identified 2 putative novel miRNAs between serum pools of cervical cancer patients and healthy controls after filtering out pseudo-pre-miRNAs using Triplet-SVM analysis. The 2 putative novel miRNAs were validated by real time PCR and were significantly decreased in cervical cancer patients compared with healthy controls. One novel miRNA had an area under curve (AUC) of 0.921 (95% CI: 0.883, 0.959) with a sensitivity of 85.7% and a specificity of 88.2% when discriminating between cervical cancer patients and healthy controls. Our results suggest that characterizing serum profiles of cervical cancers by Solexa sequencing may be a good method for identifying novel miRNAs and that the validated novel miRNAs described here may be cervical cancer-associated biomarkers.

  15. Simple diazonium chemistry to develop specific gene sensing platforms.

    Science.gov (United States)

    Revenga-Parra, M; García-Mendiola, T; González-Costas, J; González-Romero, E; Marín, A García; Pau, J L; Pariente, F; Lorenzo, E

    2014-02-27

    A simple strategy for covalent immobilizing DNA sequences, based on the formation of stable diazonized conducting platforms, is described. The electrochemical reduction of 4-nitrobenzenediazonium salt onto screen-printed carbon electrodes (SPCE) in aqueous media gives rise to terminal grafted amino groups. The presence of primary aromatic amines allows the formation of diazonium cations capable to react with the amines present at the DNA capture probe. As a comparison a second strategy based on the binding of aminated DNA capture probes to the developed diazonized conducting platforms through a crosslinking agent was also employed. The resulting DNA sensing platforms were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and spectroscopic ellipsometry. The hybridization event with the complementary sequence was detected using hexaamineruthenium (III) chloride as electrochemical indicator. Finally, they were applied to the analysis of a 145-bp sequence from the human gene MRP3, reaching a detection limit of 210 pg μL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Identification and characterization of novel and differentially expressed microRNAs in peripheral blood from healthy and mastitis Holstein cattle by deep sequencing.

    Science.gov (United States)

    Li, Zhixiong; Wang, Hongliang; Chen, Ling; Wang, Lijun; Liu, Xiaolin; Ru, Caixia; Song, Ailong

    2014-02-01

    MicroRNA (miRNA) mediates post-transcriptional gene regulation and plays an important role in regulating the development of immune cells and in modulating innate and adaptive immune responses in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in peripheral blood from healthy and mastitis Holstein cattle by Solexa sequencing and bioinformatics. In total, 608 precursor hairpins (pre-miRNAs) encoding for 753 mature miRNAs were detected. Statistically, 173 unique miRNAs (of 753, 22.98%) were identified that had significant differential expression between healthy and mastitis Holstein cattle (P mastitis Holstein cattle, which provide important information on mastitis in miRNAs expression. Diverse miRNAs may play an important role in the treatment of mastitis in Holstein cattle. © 2013 Stichting International Foundation for Animal Genetics.

  17. Genome Sequence of Australian Indigenous Wine Yeast Torulaspora delbrueckii COFT1 Using Nanopore Sequencing.

    Science.gov (United States)

    Tondini, Federico; Jiranek, Vladimir; Grbin, Paul R; Onetto, Cristobal A

    2018-04-26

    Here, we report the first sequenced genome of an indigenous Australian wine isolate of Torulaspora delbrueckii using the Oxford Nanopore MinION and Illumina HiSeq sequencing platforms. The genome size is 9.4 Mb and contains 4,831 genes. Copyright © 2018 Tondini et al.

  18. Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Guzman, Frank; Almerão, Mauricio P; Körbes, Ana P; Loss-Morais, Guilherme; Margis, Rogerio

    2012-01-01

    microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae species. Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing 45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. This study is the first large scale identification of miRNAs and their potential targets from a species of the Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.

  19. Scientific Foundation of the Engineering Platform

    DEFF Research Database (Denmark)

    Falster, Peter; Franksen, Ole Immanuel

    1996-01-01

    of array theory developed by dr. Trenchard More. In order to check the definition sequence we made a comparison to APL2, Iverson's J language, functional programming languages and Backus' FP. The establishment of the set of primitives is considered as an engineering design project. The result......The primary aim of the definition sequence is to establish the mathematical platform for software development in particular with a view towards array-based logic. The secondary aim is to establish an approach for teaching array theory. The definition sequence has been developed in the spirit...

  20. Performance of next-generation sequencing on small tumor specimens and/or low tumor content samples using a commercially available platform.

    Directory of Open Access Journals (Sweden)

    Scott Morris

    Full Text Available Next generation sequencing tests (NGS are usually performed on relatively small core biopsy or fine needle aspiration (FNA samples. Data is limited on what amount of tumor by volume or minimum number of FNA passes are needed to yield sufficient material for running NGS. We sought to identify the amount of tumor for running the PCDx NGS platform.2,723 consecutive tumor tissues of all cancer types were queried and reviewed for inclusion. Information on tumor volume, success of performing NGS, and results of NGS were compiled. Assessment of sequence analysis, mutation calling and sensitivity, quality control, drug associations, and data aggregation and analysis were performed.6.4% of samples were rejected from all testing due to insufficient tumor quantity. The number of genes with insufficient sensitivity make definitive mutation calls increased as the percentage of tumor decreased, reaching statistical significance below 5% tumor content. The number of drug associations also decreased with a lower percentage of tumor, but this difference only became significant between 1-3%. The number of drug associations did decrease with smaller tissue size as expected. Neither specimen size or percentage of tumor affected the ability to pass mRNA quality control. A tumor area of 10 mm2 provides a good margin of error for specimens to yield adequate drug association results.Specimen suitability remains a major obstacle to clinical NGS testing. We determined that PCR-based library creation methods allow the use of smaller specimens, and those with a lower percentage of tumor cells to be run on the PCDx NGS platform.

  1. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata

    Directory of Open Access Journals (Sweden)

    Yu Huaping

    2010-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants. Results In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (Citrus trifoliata which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from C. trifoliata flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in C. trifoliata. Conclusion Deep sequencing of short RNAs from C. trifoliata flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in C. trifoliata. These results show that regulatory miRNAs exist in agronomically important trifoliate orange

  2. Updating the Micro-Tom TILLING platform.

    Science.gov (United States)

    Okabe, Yoshihiro; Ariizumi, Tohru; Ezura, Hiroshi

    2013-03-01

    The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.

  3. MycoCAP - Mycobacterium Comparative Analysis Platform.

    Science.gov (United States)

    Choo, Siew Woh; Ang, Mia Yang; Dutta, Avirup; Tan, Shi Yang; Siow, Cheuk Chuen; Heydari, Hamed; Mutha, Naresh V R; Wee, Wei Yee; Wong, Guat Jah

    2015-12-15

    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.

  4. Cyclic platform dolomites and platform-to-basin transition of Jefferson Formation (Frasnian), southwest Montana and east-central Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Dorobek, S.L.

    1987-08-01

    The Jefferson Formation (Frasnian) in southwestern Montana consists of cyclic sequences of shallow marine platformal dolomites that grade westward into slope/basinal facies in east-central Idaho. Regional sedimentologic characteristics of slope facies in Idaho indicate that the Jefferson platform resembled a distally steepened ramp. Slope facies consist of slope laminites with local small scale slumps and slope breccias. Shallow water platform-derived clasts are lacking in the slope breccias. Individual shallowing upward platform cycles are 25 m to < 1 m thick and consists of, in descending order: local solution-collapse breccia caps; cryptalgal dolomudstone; rare ooid dolograinstone; thin-bedded Amphipora dolowackestone; coarsely crystalline dolostones with abundant lenticular to domal stromatoporoids; and basal thin-bedded, fine-grained, shale dolostones with closely spaced hard-grounds that grade upward into burrow-homogenized, irregularly bedded dolostones.

  5. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian [Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan (China); Luo, Mao [Drug Discovery Research Center of Luzhou Medical College, Luzhou, Sichuan (China); Zhu, Ye; He, Ying; Wang, Qin [Department of Pharmacy of Luzhou Medical College, Luzhou, Sichuan (China); Zhang, Chun, E-mail: zc83good@126.com [Department of Pharmacy of Luzhou Medical College, Luzhou, Sichuan (China)

    2015-03-27

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries of untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR.

  6. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    International Nuclear Information System (INIS)

    Gao, Jian; Luo, Mao; Zhu, Ye; He, Ying; Wang, Qin; Zhang, Chun

    2015-01-01

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries of untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR

  7. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis

    Directory of Open Access Journals (Sweden)

    Song Cai

    2011-07-01

    Full Text Available Abstract Background Siraitia grosvenorii (Luohanguo is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. Results In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9% unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450 and ninety UDP-glucosyltransferase (UDPG unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. Conclusion A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying

  8. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  9. HLA typing: Conventional techniques v.next-generation sequencing

    African Journals Online (AJOL)

    The existing techniques have contributed significantly to our current knowledge of allelic diversity. At present, sequence-based typing (SBT) methods, in particular next-generation sequencing. (NGS), provide the highest possible resolution. NGS platforms were initially only used for genomic sequencing, but also showed.

  10. Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique.

    Directory of Open Access Journals (Sweden)

    Chaozheng Li

    Full Text Available BACKGROUND: Pacific white shrimp (Litopenaeus vannamei, the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. METHODOLOGY/PRINCIPAL FINDINGS: This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG categories, 8171 unigenes were assigned into 51 Gene ontology (GO functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. CONCLUSIONS/SIGNIFICANCE: The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei.

  11. FASTQSim: platform-independent data characterization and in silico read generation for NGS datasets.

    Science.gov (United States)

    Shcherbina, Anna

    2014-08-15

    High-throughput next generation sequencing technologies have enabled rapid characterization of clinical and environmental samples. Consequently, the largest bottleneck to actionable data has become sample processing and bioinformatics analysis, creating a need for accurate and rapid algorithms to process genetic data. Perfectly characterized in silico datasets are a useful tool for evaluating the performance of such algorithms. Background contaminating organisms are observed in sequenced mixtures of organisms. In silico samples provide exact truth. To create the best value for evaluating algorithms, in silico data should mimic actual sequencer data as closely as possible. FASTQSim is a tool that provides the dual functionality of NGS dataset characterization and metagenomic data generation. FASTQSim is sequencing platform-independent, and computes distributions of read length, quality scores, indel rates, single point mutation rates, indel size, and similar statistics for any sequencing platform. To create training or testing datasets, FASTQSim has the ability to convert target sequences into in silico reads with specific error profiles obtained in the characterization step. FASTQSim enables users to assess the quality of NGS datasets. The tool provides information about read length, read quality, repetitive and non-repetitive indel profiles, and single base pair substitutions. FASTQSim allows the user to simulate individual read datasets that can be used as standardized test scenarios for planning sequencing projects or for benchmarking metagenomic software. In this regard, in silico datasets generated with the FASTQsim tool hold several advantages over natural datasets: they are sequencing platform independent, extremely well characterized, and less expensive to generate. Such datasets are valuable in a number of applications, including the training of assemblers for multiple platforms, benchmarking bioinformatics algorithm performance, and creating challenge

  12. Basin analysis in the Southern Tethyan margin: Facies sequences, stratal pattern and subsidence history highlight extension-to-inversion processes in the Cretaceous Panormide carbonate platform (NW Sicily)

    Science.gov (United States)

    Basilone, Luca; Sulli, Attilio

    2018-01-01

    In the Mediterranean, the South-Tethys paleomargin experienced polyphased tectonic episodes and paleoenvironmental perturbations during Mesozoic time. The Cretaceous shallow-water carbonate successions of the Panormide platform, outcropping in the northern edge of the Palermo Mountains (NW Sicily), were studied by integrating facies and stratal pattern with backstripping analysis to recognize the tectonics vs. carbonate sedimentation interaction. The features of the Requienid limestone, including geometric configuration, facies sequence, lithological changes and significance of the top-unconformity, highlight that at the end of the Lower Cretaceous the carbonate platform was tectonically dismembered in various rotating fault-blocks. The variable trends of the subsidence curves testify to different responses, both uplift and downthrow, of various platform-blocks impacted by extensional tectonics. Physical stratigraphic and facies analysis of the Rudistid limestone highlight that during the Upper Cretaceous the previously carbonate platform faulted-blocks were subjected to vertical movements in the direction opposite to the displacement produced by the extensional tectonics, indicating a positive tectonic inversion. Comparisons with other sectors of the Southern Tethyan and Adria paleomargins indicate that during the Cretaceous these areas underwent the same extensional and compressional stages occurring in the Panormide carbonate platform, suggesting a regional scale significance, in time and kinematics, for these tectonic events.

  13. Application of Next-generation Sequencing in Clinical Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Morteza Seifi

    2017-05-01

    Full Text Available ABSTRACT Next-generation sequencing (NGS is the catch all terms that used to explain several different modern sequencing technologies which let us to sequence nucleic acids much more rapidly and cheaply than the formerly used Sanger sequencing, and as such have revolutionized the study of molecular biology and genomics with excellent resolution and accuracy. Over the past years, many academic companies and institutions have continued technological advances to expand NGS applications from research to the clinic. In this review, the performance and technical features of current NGS platforms were described. Furthermore, advances in the applying of NGS technologies towards the progress of clinical molecular diagnostics were emphasized. General advantages and disadvantages of each sequencing system are summarized and compared to guide the selection of NGS platforms for specific research aims.

  14. Next-Generation Sequencing in the Mycology Lab.

    Science.gov (United States)

    Zoll, Jan; Snelders, Eveline; Verweij, Paul E; Melchers, Willem J G

    New state-of-the-art techniques in sequencing offer valuable tools in both detection of mycobiota and in understanding of the molecular mechanisms of resistance against antifungal compounds and virulence. Introduction of new sequencing platform with enhanced capacity and a reduction in costs for sequence analysis provides a potential powerful tool in mycological diagnosis and research. In this review, we summarize the applications of next-generation sequencing techniques in mycology.

  15. "First generation" automated DNA sequencing technology.

    Science.gov (United States)

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  16. Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Boran Altincicek

    Full Text Available Beetles (Coleoptera are the most diverse animal group on earth and interact with numerous symbiotic or pathogenic microbes in their environments. The red flour beetle Tribolium castaneum is a genetically tractable model beetle species and its whole genome sequence has recently been determined. To advance our understanding of the molecular basis of beetle immunity here we analyzed the whole transcriptome of T. castaneum by high-throughput next generation sequencing technology. Here, we demonstrate that the Illumina/Solexa sequencing approach of cDNA samples from T. castaneum including over 9.7 million reads with 72 base pairs (bp length (approximately 700 million bp sequence information with about 30× transcriptome coverage confirms the expression of most predicted genes and enabled subsequent qualitative and quantitative transcriptome analysis. This approach recapitulates our recent quantitative real-time PCR studies of immune-challenged and naïve T. castaneum beetles, validating our approach. Furthermore, this sequencing analysis resulted in the identification of 73 differentially expressed genes upon immune-challenge with statistical significance by comparing expression data to calculated values derived by fitting to generalized linear models. We identified up regulation of diverse immune-related genes (e.g. Toll receptor, serine proteinases, DOPA decarboxylase and thaumatin and of numerous genes encoding proteins with yet unknown functions. Of note, septic-injury resulted also in the elevated expression of genes encoding heat-shock proteins or cytochrome P450s supporting the view that there is crosstalk between immune and stress responses in T. castaneum. The present study provides a first comprehensive overview of septic-injury responsive genes in T. castaneum beetles. Identified genes advance our understanding of T. castaneum specific gene expression alteration upon immune-challenge in particular and may help to understand beetle immunity

  17. A parallel reconfigurable platform for efficient sequence alignment ...

    African Journals Online (AJOL)

    Bioinformatics is one of the emerging trends in today's world. The major part of bioinformatics is dealing with DNA. Analysis of DNA requires more memory and high efficient computations to produce accurate outputs. Researchers use various bioinformatics algorithms for sequencing and pattern detection techniques, but still ...

  18. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing

    DEFF Research Database (Denmark)

    Binladen, Jonas; Gilbert, M Thomas P; Bollback, Jonathan P

    2007-01-01

    BACKGROUND: The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform) has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR) reactions and subsequent sequencing runs have been unable to combine...... primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution...

  19. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise; Avila Arcos, Maria del Carmen; Rockenbauer, Eszter

    2011-01-01

    repeat units. These methods do not allow for the full resolution of STR base composition that sequencing approaches could provide. Here we present an STR profiling method based on the use of the Roche Genome Sequencer (GS) FLX to simultaneously sequence multiple core STR loci. Using this method...

  20. SOAP

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Kristiansen, Karsten

    2008-01-01

    MOTIVATION: We have developed a program SOAP for efficient gapped and ungapped alignment of short oligonucleotides onto reference sequences. The program is designed to handle the huge amounts of short reads generated by parallel sequencing using the new generation Illumina-Solexa sequencing...... technology. SOAP is compatible with numerous applications, including single-read or pair-end resequencing, small RNA discovery, and mRNA tag sequence mapping. SOAP is a command-driven program, which supports multithreaded parallel computing, and has a batch module for multiple query sets. AVAILABILITY: http://soap.......genomics.org.cn CONTACT: soap@genomics.org.cn ....

  1. Accurate clinical genetic testing for autoinflammatory diseases using the next-generation sequencing platform MiSeq.

    Science.gov (United States)

    Nakayama, Manabu; Oda, Hirotsugu; Nakagawa, Kenji; Yasumi, Takahiro; Kawai, Tomoki; Izawa, Kazushi; Nishikomori, Ryuta; Heike, Toshio; Ohara, Osamu

    2017-03-01

    Autoinflammatory diseases occupy one of a group of primary immunodeficiency diseases that are generally thought to be caused by mutation of genes responsible for innate immunity, rather than by acquired immunity. Mutations related to autoinflammatory diseases occur in 12 genes. For example, low-level somatic mosaic NLRP3 mutations underlie chronic infantile neurologic, cutaneous, articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID). In current clinical practice, clinical genetic testing plays an important role in providing patients with quick, definite diagnoses. To increase the availability of such testing, low-cost high-throughput gene-analysis systems are required, ones that not only have the sensitivity to detect even low-level somatic mosaic mutations, but also can operate simply in a clinical setting. To this end, we developed a simple method that employs two-step tailed PCR and an NGS system, MiSeq platform, to detect mutations in all coding exons of the 12 genes responsible for autoinflammatory diseases. Using this amplicon sequencing system, we amplified a total of 234 amplicons derived from the 12 genes with multiplex PCR. This was done simultaneously and in one test tube. Each sample was distinguished by an index sequence of second PCR primers following PCR amplification. With our procedure and tips for reducing PCR amplification bias, we were able to analyze 12 genes from 25 clinical samples in one MiSeq run. Moreover, with the certified primers designed by our short program-which detects and avoids common SNPs in gene-specific PCR primers-we used this system for routine genetic testing. Our optimized procedure uses a simple protocol, which can easily be followed by virtually any office medical staff. Because of the small PCR amplification bias, we can analyze simultaneously several clinical DNA samples with low cost and can obtain sufficient read numbers to detect a low level of somatic mosaic mutations.

  2. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Jackson Stuart

    2010-04-01

    Full Text Available Abstract Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value, and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  3. IDEPI: rapid prediction of HIV-1 antibody epitopes and other phenotypic features from sequence data using a flexible machine learning platform.

    Directory of Open Access Journals (Sweden)

    N Lance Hepler

    2014-09-01

    Full Text Available Since its identification in 1983, HIV-1 has been the focus of a research effort unprecedented in scope and difficulty, whose ultimate goals--a cure and a vaccine--remain elusive. One of the fundamental challenges in accomplishing these goals is the tremendous genetic variability of the virus, with some genes differing at as many as 40% of nucleotide positions among circulating strains. Because of this, the genetic bases of many viral phenotypes, most notably the susceptibility to neutralization by a particular antibody, are difficult to identify computationally. Drawing upon open-source general-purpose machine learning algorithms and libraries, we have developed a software package IDEPI (IDentify EPItopes for learning genotype-to-phenotype predictive models from sequences with known phenotypes. IDEPI can apply learned models to classify sequences of unknown phenotypes, and also identify specific sequence features which contribute to a particular phenotype. We demonstrate that IDEPI achieves performance similar to or better than that of previously published approaches on four well-studied problems: finding the epitopes of broadly neutralizing antibodies (bNab, determining coreceptor tropism of the virus, identifying compartment-specific genetic signatures of the virus, and deducing drug-resistance associated mutations. The cross-platform Python source code (released under the GPL 3.0 license, documentation, issue tracking, and a pre-configured virtual machine for IDEPI can be found at https://github.com/veg/idepi.

  4. Comparison of performance of three commercial platforms for warfarin sensitivity genotyping.

    Science.gov (United States)

    Babic, Nikolina; Haverfield, Eden V; Burrus, Julie A; Lozada, Anthony; Das, Soma; Yeo, Kiang-Teck J

    2009-08-01

    We performed a 3-way comparison on the Osmetech eSensor, AutoGenomics INFINITI, and a real-time PCR method (Paragonx reagents/Stratagene RT-PCR platform) for their FDA-cleared warfarin panels, and additional polymorphisms (CYP2C9*5, *6, and 11 and extended VKORC1 panels) where available. One hundred de-identified DNA samples were used in this IRB-approved study. Accuracy was determined by comparison of genotyping results across three platforms. Any discrepancy was resolved by bi-directional sequencing. The CYP4F2 on Osmetech was validated by bi-directional sequencing. Accuracies for CYP2C9*2 and *3 were 100% for all 3 platforms. VKORC1 3673 genotyping accuracies were 100% on eSensor and 97% on Infiniti. CYP2C9*5, *6 and *11 showed 100% concordance between eSensor and Infiniti. VKORC1 6484 and 9041 variants compared between ParagonDx and Infiniti analyzer were 100% (6484) and 99% (9041) concordant. CYP4F2 was 100% concordant with sequencing results. The time required to generate the results from automated DNA extraction-to-result was approximately 8h on Infiniti, and 4h on eSensor and ParagonDx, respectively. Overall, we observed excellent CYP2C9*2 and *3 genotyping accuracy for all three platforms. For VKORC1 3673 genotyping, eSensor demonstrated a slightly higher accuracy than the Infiniti, and CYP4F2 on Osmetech was 100% accurate.

  5. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA–microRNA regulatory network in nasopharyngeal carcinoma model systems

    Directory of Open Access Journals (Sweden)

    Carol Ying-Ying Szeto

    2014-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein–Barr virus (EBV-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA–mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL, single nucleotide variant (SNV, and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies.

  6. Offshore Platform Hydrocarbon Risk Assessment – OPHRA: Feasibility

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Kozine, Igor; Markert, Frank

    This report describes the feasibility demonstration of a new method to perform risk assessments for offshore platforms. This method simulates the following phenomena as concurrent sequences of events using the Arena® Discrete Event Simulation (DES) software (version 14.50.00): • Release, ignition...

  7. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    Science.gov (United States)

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  8. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  9. Transcriptome sequencing of the Microarray Quality Control (MAQC RNA reference samples using next generation sequencing

    Directory of Open Access Journals (Sweden)

    Thierry-Mieg Danielle

    2009-06-01

    Full Text Available Abstract Background Transcriptome sequencing using next-generation sequencing platforms will soon be competing with DNA microarray technologies for global gene expression analysis. As a preliminary evaluation of these promising technologies, we performed deep sequencing of cDNA synthesized from the Microarray Quality Control (MAQC reference RNA samples using Roche's 454 Genome Sequencer FLX. Results We generated more that 3.6 million sequence reads of average length 250 bp for the MAQC A and B samples and introduced a data analysis pipeline for translating cDNA read counts into gene expression levels. Using BLAST, 90% of the reads mapped to the human genome and 64% of the reads mapped to the RefSeq database of well annotated genes with e-values ≤ 10-20. We measured gene expression levels in the A and B samples by counting the numbers of reads that mapped to individual RefSeq genes in multiple sequencing runs to evaluate the MAQC quality metrics for reproducibility, sensitivity, specificity, and accuracy and compared the results with DNA microarrays and Quantitative RT-PCR (QRTPCR from the MAQC studies. In addition, 88% of the reads were successfully aligned directly to the human genome using the AceView alignment programs with an average 90% sequence similarity to identify 137,899 unique exon junctions, including 22,193 new exon junctions not yet contained in the RefSeq database. Conclusion Using the MAQC metrics for evaluating the performance of gene expression platforms, the ExpressSeq results for gene expression levels showed excellent reproducibility, sensitivity, and specificity that improved systematically with increasing shotgun sequencing depth, and quantitative accuracy that was comparable to DNA microarrays and QRTPCR. In addition, a careful mapping of the reads to the genome using the AceView alignment programs shed new light on the complexity of the human transcriptome including the discovery of thousands of new splice variants.

  10. Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE tumor tissues for copy-number- and mutation-analysis.

    Directory of Open Access Journals (Sweden)

    Michal R Schweiger

    Full Text Available BACKGROUND: Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage. We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples. CONCLUSIONS/SIGNIFICANCE: The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which

  11. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    Directory of Open Access Journals (Sweden)

    Yang Huaan

    2012-07-01

    Full Text Available Abstract Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM, and are now replacing the markers previously developed by a traditional DNA

  12. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics

    Directory of Open Access Journals (Sweden)

    Richard Mark Leggett

    2013-12-01

    Full Text Available The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC. Unlike other sequencing centres that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is fortunate to have access to a diverse range of sequencing and analysis platforms, and we are at the forefront of investigations into library quality and sequence data assessment. We have developed and implemented a number of algorithms, tools, pipelines and packages to ascertain, store, and expose quality metrics across a number of next-generation sequencing platforms, allowing rapid and in-depth cross-platform QC bioinformatics. In this review, we describe these tools as a vehicle for data-driven informatics, offering the potential to provide richer context for downstream analysis and to inform experimental design.

  13. An optimized protocol for generation and analysis of Ion Proton sequencing reads for RNA-Seq.

    Science.gov (United States)

    Yuan, Yongxian; Xu, Huaiqian; Leung, Ross Ka-Kit

    2016-05-26

    Previous studies compared running cost, time and other performance measures of popular sequencing platforms. However, comprehensive assessment of library construction and analysis protocols for Proton sequencing platform remains unexplored. Unlike Illumina sequencing platforms, Proton reads are heterogeneous in length and quality. When sequencing data from different platforms are combined, this can result in reads with various read length. Whether the performance of the commonly used software for handling such kind of data is satisfactory is unknown. By using universal human reference RNA as the initial material, RNaseIII and chemical fragmentation methods in library construction showed similar result in gene and junction discovery number and expression level estimated accuracy. In contrast, sequencing quality, read length and the choice of software affected mapping rate to a much larger extent. Unspliced aligner TMAP attained the highest mapping rate (97.27 % to genome, 86.46 % to transcriptome), though 47.83 % of mapped reads were clipped. Long reads could paradoxically reduce mapping in junctions. With reference annotation guide, the mapping rate of TopHat2 significantly increased from 75.79 to 92.09 %, especially for long (>150 bp) reads. Sailfish, a k-mer based gene expression quantifier attained highly consistent results with that of TaqMan array and highest sensitivity. We provided for the first time, the reference statistics of library preparation methods, gene detection and quantification and junction discovery for RNA-Seq by the Ion Proton platform. Chemical fragmentation performed equally well with the enzyme-based one. The optimal Ion Proton sequencing options and analysis software have been evaluated.

  14. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses.

    Science.gov (United States)

    Vetrovský, Tomáš; Baldrian, Petr; Morais, Daniel; Berger, Bonnie

    2018-02-14

    Modern molecular methods have increased our ability to describe microbial communities. Along with the advances brought by new sequencing technologies, we now require intensive computational resources to make sense of the large numbers of sequences continuously produced. The software developed by the scientific community to address this demand, although very useful, require experience of the command-line environment, extensive training and have steep learning curves, limiting their use. We created SEED 2, a graphical user interface for handling high-throughput amplicon-sequencing data under Windows operating systems. SEED 2 is the only sequence visualizer that empowers users with tools to handle amplicon-sequencing data of microbial community markers. It is suitable for any marker genes sequences obtained through Illumina, IonTorrent or Sanger sequencing. SEED 2 allows the user to process raw sequencing data, identify specific taxa, produce of OTU-tables, create sequence alignments and construct phylogenetic trees. Standard dual core laptops with 8 GB of RAM can handle ca. 8 million of Illumina PE 300 bp sequences, ca. 4GB of data. SEED 2 was implemented in Object Pascal and uses internal functions and external software for amplicon data processing. SEED 2 is a freeware software, available at http://www.biomed.cas.cz/mbu/lbwrf/seed/ as a self-contained file, including all the dependencies, and does not require installation. Supplementary data contain a comprehensive list of supported functions. daniel.morais@biomed.cas.cz. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.

  15. Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers.

    Directory of Open Access Journals (Sweden)

    Xinzhong Li

    Full Text Available Molecular genetic testing is recommended for diagnosis of inherited cardiac disease, to guide prognosis and treatment, but access is often limited by cost and availability. Recently introduced high-throughput bench-top DNA sequencing platforms have the potential to overcome these limitations.We evaluated two next-generation sequencing (NGS platforms for molecular diagnostics. The protein-coding regions of six genes associated with inherited arrhythmia syndromes were amplified from 15 human samples using parallelised multiplex PCR (Access Array, Fluidigm, and sequenced on the MiSeq (Illumina and Ion Torrent PGM (Life Technologies. Overall, 97.9% of the target was sequenced adequately for variant calling on the MiSeq, and 96.8% on the Ion Torrent PGM. Regions missed tended to be of high GC-content, and most were problematic for both platforms. Variant calling was assessed using 107 variants detected using Sanger sequencing: within adequately sequenced regions, variant calling on both platforms was highly accurate (Sensitivity: MiSeq 100%, PGM 99.1%. Positive predictive value: MiSeq 95.9%, PGM 95.5%. At the time of the study the Ion Torrent PGM had a lower capital cost and individual runs were cheaper and faster. The MiSeq had a higher capacity (requiring fewer runs, with reduced hands-on time and simpler laboratory workflows. Both provide significant cost and time savings over conventional methods, even allowing for adjunct Sanger sequencing to validate findings and sequence exons missed by NGS.MiSeq and Ion Torrent PGM both provide accurate variant detection as part of a PCR-based molecular diagnostic workflow, and provide alternative platforms for molecular diagnosis of inherited cardiac conditions. Though there were performance differences at this throughput, platforms differed primarily in terms of cost, scalability, protocol stability and ease of use. Compared with current molecular genetic diagnostic tests for inherited cardiac arrhythmias

  16. Accurate clinical genetic testing for autoinflammatory diseases using the next-generation sequencing platform MiSeq

    Directory of Open Access Journals (Sweden)

    Manabu Nakayama

    2017-03-01

    Full Text Available Autoinflammatory diseases occupy one of a group of primary immunodeficiency diseases that are generally thought to be caused by mutation of genes responsible for innate immunity, rather than by acquired immunity. Mutations related to autoinflammatory diseases occur in 12 genes. For example, low-level somatic mosaic NLRP3 mutations underlie chronic infantile neurologic, cutaneous, articular syndrome (CINCA, also known as neonatal-onset multisystem inflammatory disease (NOMID. In current clinical practice, clinical genetic testing plays an important role in providing patients with quick, definite diagnoses. To increase the availability of such testing, low-cost high-throughput gene-analysis systems are required, ones that not only have the sensitivity to detect even low-level somatic mosaic mutations, but also can operate simply in a clinical setting. To this end, we developed a simple method that employs two-step tailed PCR and an NGS system, MiSeq platform, to detect mutations in all coding exons of the 12 genes responsible for autoinflammatory diseases. Using this amplicon sequencing system, we amplified a total of 234 amplicons derived from the 12 genes with multiplex PCR. This was done simultaneously and in one test tube. Each sample was distinguished by an index sequence of second PCR primers following PCR amplification. With our procedure and tips for reducing PCR amplification bias, we were able to analyze 12 genes from 25 clinical samples in one MiSeq run. Moreover, with the certified primers designed by our short program—which detects and avoids common SNPs in gene-specific PCR primers—we used this system for routine genetic testing. Our optimized procedure uses a simple protocol, which can easily be followed by virtually any office medical staff. Because of the small PCR amplification bias, we can analyze simultaneously several clinical DNA samples with low cost and can obtain sufficient read numbers to detect a low level of

  17. Galaxy LIMS for next-generation sequencing

    NARCIS (Netherlands)

    Scholtalbers, J.; Rossler, J.; Sorn, P.; Graaf, J. de; Boisguerin, V.; Castle, J.; Sahin, U.

    2013-01-01

    SUMMARY: We have developed a laboratory information management system (LIMS) for a next-generation sequencing (NGS) laboratory within the existing Galaxy platform. The system provides lab technicians standard and customizable sample information forms, barcoded submission forms, tracking of input

  18. Sequence protein identification by randomized sequence database and transcriptome mass spectrometry (SPIDER-TMS): from manual to automatic application of a 'de novo sequencing' approach.

    Science.gov (United States)

    Pascale, Raffaella; Grossi, Gerarda; Cruciani, Gabriele; Mecca, Giansalvatore; Santoro, Donatello; Sarli Calace, Renzo; Falabella, Patrizia; Bianco, Giuliana

    Sequence protein identification by a randomized sequence database and transcriptome mass spectrometry software package has been developed at the University of Basilicata in Potenza (Italy) and designed to facilitate the determination of the amino acid sequence of a peptide as well as an unequivocal identification of proteins in a high-throughput manner with enormous advantages of time, economical resource and expertise. The software package is a valid tool for the automation of a de novo sequencing approach, overcoming the main limits and a versatile platform useful in the proteomic field for an unequivocal identification of proteins, starting from tandem mass spectrometry data. The strength of this software is that it is a user-friendly and non-statistical approach, so protein identification can be considered unambiguous.

  19. Next-Generation Sequencing Workflow for NSCLC Critical Samples Using a Targeted Sequencing Approach by Ion Torrent PGM™ Platform.

    Science.gov (United States)

    Vanni, Irene; Coco, Simona; Truini, Anna; Rusmini, Marta; Dal Bello, Maria Giovanna; Alama, Angela; Banelli, Barbara; Mora, Marco; Rijavec, Erika; Barletta, Giulia; Genova, Carlo; Biello, Federica; Maggioni, Claudia; Grossi, Francesco

    2015-12-03

    Next-generation sequencing (NGS) is a cost-effective technology capable of screening several genes simultaneously; however, its application in a clinical context requires an established workflow to acquire reliable sequencing results. Here, we report an optimized NGS workflow analyzing 22 lung cancer-related genes to sequence critical samples such as DNA from formalin-fixed paraffin-embedded (FFPE) blocks and circulating free DNA (cfDNA). Snap frozen and matched FFPE gDNA from 12 non-small cell lung cancer (NSCLC) patients, whose gDNA fragmentation status was previously evaluated using a multiplex PCR-based quality control, were successfully sequenced with Ion Torrent PGM™. The robust bioinformatic pipeline allowed us to correctly call both Single Nucleotide Variants (SNVs) and indels with a detection limit of 5%, achieving 100% specificity and 96% sensitivity. This workflow was also validated in 13 FFPE NSCLC biopsies. Furthermore, a specific protocol for low input gDNA capable of producing good sequencing data with high coverage, high uniformity, and a low error rate was also optimized. In conclusion, we demonstrate the feasibility of obtaining gDNA from FFPE samples suitable for NGS by performing appropriate quality controls. The optimized workflow, capable of screening low input gDNA, highlights NGS as a potential tool in the detection, disease monitoring, and treatment of NSCLC.

  20. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli

    2012-12-01

    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  1. miRSeqNovel

    DEFF Research Database (Denmark)

    Qian, Kui; Auvinen, Eeva; Greco, Dario

    2012-01-01

    We present miRSeqNovel, an R based workflow for miRNA sequencing data analysis. miRSeqNovel can process both colorspace (SOLiD) and basespace (Illumina/Solexa) data by different mapping algorithms. It finds differentially expressed miRNAs and gives conservative prediction of novel miRNA candidates...... with customized parameters. miRSeqNovel is freely available at http://sourceforge.net/projects/mirseq/files....

  2. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus)

    Science.gov (United States)

    Wu, Zhenyang; Fu, Yuhua; Cao, Jianhua; Yu, Mei; Tang, Xiaohui; Zhao, Shuhong

    2014-01-01

    MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats. PMID:24879525

  3. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus

    Directory of Open Access Journals (Sweden)

    Zhenyang Wu

    2014-05-01

    Full Text Available MicroRNAs (miRNAs play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%. MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats.

  4. Evaluation of second-generation sequencing of 19 dilated cardiomyopathy genes for clinical applications.

    Science.gov (United States)

    Gowrisankar, Sivakumar; Lerner-Ellis, Jordan P; Cox, Stephanie; White, Emily T; Manion, Megan; LeVan, Kevin; Liu, Jonathan; Farwell, Lisa M; Iartchouk, Oleg; Rehm, Heidi L; Funke, Birgit H

    2010-11-01

    Medical sequencing for diseases with locus and allelic heterogeneities has been limited by the high cost and low throughput of traditional sequencing technologies. "Second-generation" sequencing (SGS) technologies allow the parallel processing of a large number of genes and, therefore, offer great promise for medical sequencing; however, their use in clinical laboratories is still in its infancy. Our laboratory offers clinical resequencing for dilated cardiomyopathy (DCM) using an array-based platform that interrogates 19 of more than 30 genes known to cause DCM. We explored both the feasibility and cost effectiveness of using PCR amplification followed by SGS technology for sequencing these 19 genes in a set of five samples enriched for known sequence alterations (109 unique substitutions and 27 insertions and deletions). While the analytical sensitivity for substitutions was comparable to that of the DCM array (98%), SGS technology performed better than the DCM array for insertions and deletions (90.6% versus 58%). Overall, SGS performed substantially better than did the current array-based testing platform; however, the operational cost and projected turnaround time do not meet our current standards. Therefore, efficient capture methods and/or sample pooling strategies that shorten the turnaround time and decrease reagent and labor costs are needed before implementing this platform into routine clinical applications.

  5. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  6. Exploring the potential of second-generation sequencing in diverse biological contexts

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise

    Second generation sequencing (SGS) has revolutionized the study of DNA, allowing massive parallel sequencing of nucleic acids with unprecedented depths of coverage. The research undertaken in this thesis occurred in parallel with the increased accessibility of SGS platforms for routine genetic...

  7. High performance technique for database applicationsusing a hybrid GPU/CPU platform

    KAUST Repository

    Zidan, Mohammed A.

    2012-07-28

    Many database applications, such as sequence comparing, sequence searching, and sequence matching, etc, process large database sequences. we introduce a novel and efficient technique to improve the performance of database applica- tions by using a Hybrid GPU/CPU platform. In particular, our technique solves the problem of the low efficiency result- ing from running short-length sequences in a database on a GPU. To verify our technique, we applied it to the widely used Smith-Waterman algorithm. The experimental results show that our Hybrid GPU/CPU technique improves the average performance by a factor of 2.2, and improves the peak performance by a factor of 2.8 when compared to earlier implementations. Copyright © 2011 by ASME.

  8. Next-generation phylogeography: a targeted approach for multilocus sequencing of non-model organisms.

    Directory of Open Access Journals (Sweden)

    Jonathan B Puritz

    Full Text Available The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers.

  9. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Qingling Yang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are the class of small endogenous RNAs that play an important regulatory role in cells by negatively affecting gene expression at transcriptional and post-transcriptional levels. There have been extensive studies aiming to discover miRNAs and to analyze their functions in the cells from a variety of species. However, there are no published studies of miRNA profiles in human testis using next generation sequencing (NGS technology. RESULTS: We employed Solexa sequencing technology to profile miRNAs in normal human testis. Total 770 known and 5 novel human miRNAs, and 20121 piRNAs were detected, indicating that the human testis has a complex population of small RNAs. The expression of 15 known and 5 novel detected miRNAs was validated by qRT-PCR. We have also predicted the potential target genes of the abundant known and novel miRNAs, and subjected them to GO and pathway analysis, revealing the involvement of miRNAs in many important biological phenomenon including meiosis and p53-related pathways that are implicated in the regulation of spermatogenesis. CONCLUSIONS: This study reports the first genome-wide miRNA profiles in human testis using a NGS approach. The presence of large number of miRNAs and the nature of their target genes suggested that miRNAs play important roles in spermatogenesis. Here we provide a useful resource for further elucidation of the regulatory role of miRNAs and piRNAs in the spermatogenesis. It may also facilitate the development of prophylactic strategies for male infertility.

  10. True single-molecule DNA sequencing of a pleistocene horse bone

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Ginolhac, Aurélien; Raghavan, Maanasa

    2011-01-01

    -preserved Pleistocene horse bone using the Helicos HeliScope and Illumina GAIIx platforms, respectively. We find that the percentage of endogenous DNA sequences derived from the horse is higher among the Helicos data than Illumina data. This result indicates that the molecular biology tools used to generate sequencing...

  11. Peripheral blood transcriptome sequencing reveals rejection-relevant genes in long-term heart transplantation.

    Science.gov (United States)

    Chen, Yan; Zhang, Haibo; Xiao, Xue; Jia, Yixin; Wu, Weili; Liu, Licheng; Jiang, Jun; Zhu, Baoli; Meng, Xu; Chen, Weijun

    2013-10-03

    Peripheral blood-based gene expression patterns have been investigated as biomarkers to monitor the immune system and rule out rejection after heart transplantation. Recent advances in the high-throughput deep sequencing (HTS) technologies provide new leads in transcriptome analysis. By performing Solexa/Illumina's digital gene expression (DGE) profiling, we analyzed gene expression profiles of PBMCs from 6 quiescent (grade 0) and 6 rejection (grade 2R&3R) heart transplant recipients at more than 6 months after transplantation. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) was carried out in an independent validation cohort of 47 individuals from three rejection groups (ISHLT, grade 0,1R, 2R&3R). Through DGE sequencing and qPCR validation, 10 genes were identified as informative genes for detection of cardiac transplant rejection. A further clustering analysis showed that the 10 genes were not only effective for distinguishing patients with acute cardiac allograft rejection, but also informative for discriminating patients with renal allograft rejection based on both blood and biopsy samples. Moreover, PPI network analysis revealed that the 10 genes were connected to each other within a short interaction distance. We proposed a 10-gene signature for heart transplant patients at high-risk of developing severe rejection, which was found to be effective as well in other organ transplant. Moreover, we supposed that these genes function systematically as biomarkers in long-time allograft rejection. Further validation in broad transplant population would be required before the non-invasive biomarkers can be generally utilized to predict the risk of transplant rejection. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.

    Science.gov (United States)

    Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter

    2018-01-01

    Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.

  13. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample.

    Science.gov (United States)

    Luo, Chengwei; Tsementzi, Despina; Kyrpides, Nikos; Read, Timothy; Konstantinidis, Konstantinos T

    2012-01-01

    Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R(2)>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.

  14. Identification and Characterization of MicroRNAs in Small Brown Planthopper (Laodephax striatellus) by Next-Generation Sequencing

    Science.gov (United States)

    Lou, Yonggen; Cheng, Jia'an; Zhang, Hengmu; Xu, Jian-Hong

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level and are thought to play critical roles in many metabolic activities in eukaryotes. The small brown planthopper (Laodephax striatellus Fallén), one of the most destructive agricultural pests, causes great damage to crops including rice, wheat, and maize. However, information about the genome of L. striatellus is limited. In this study, a small RNA library was constructed from a mixed L. striatellus population and sequenced by Solexa sequencing technology. A total of 501 mature miRNAs were identified, including 227 conserved and 274 novel miRNAs belonging to 125 and 250 families, respectively. Sixty-nine conserved miRNAs that are included in 38 families are predicted to have an RNA secondary structure typically found in miRNAs. Many miRNAs were validated by stem-loop RT-PCR. Comparison with the miRNAs in 84 animal species from miRBase showed that the conserved miRNA families we identified are highly conserved in the Arthropoda phylum. Furthermore, miRanda predicted 2701 target genes for 378 miRNAs, which could be categorized into 52 functional groups annotated by gene ontology. The function of miRNA target genes was found to be very similar between conserved and novel miRNAs. This study of miRNAs in L. striatellus will provide new information and enhance the understanding of the role of miRNAs in the regulation of L. striatellus metabolism and development. PMID:25057821

  15. Identification and characterization of microRNAs in small brown planthopper (Laodephax striatellus by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Guoyan Zhou

    Full Text Available MicroRNAs (miRNAs are endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level and are thought to play critical roles in many metabolic activities in eukaryotes. The small brown planthopper (Laodephax striatellus Fallén, one of the most destructive agricultural pests, causes great damage to crops including rice, wheat, and maize. However, information about the genome of L. striatellus is limited. In this study, a small RNA library was constructed from a mixed L. striatellus population and sequenced by Solexa sequencing technology. A total of 501 mature miRNAs were identified, including 227 conserved and 274 novel miRNAs belonging to 125 and 250 families, respectively. Sixty-nine conserved miRNAs that are included in 38 families are predicted to have an RNA secondary structure typically found in miRNAs. Many miRNAs were validated by stem-loop RT-PCR. Comparison with the miRNAs in 84 animal species from miRBase showed that the conserved miRNA families we identified are highly conserved in the Arthropoda phylum. Furthermore, miRanda predicted 2701 target genes for 378 miRNAs, which could be categorized into 52 functional groups annotated by gene ontology. The function of miRNA target genes was found to be very similar between conserved and novel miRNAs. This study of miRNAs in L. striatellus will provide new information and enhance the understanding of the role of miRNAs in the regulation of L. striatellus metabolism and development.

  16. High performance technique for database applicationsusing a hybrid GPU/CPU platform

    KAUST Repository

    Zidan, Mohammed A.; Bonny, Talal; Salama, Khaled N.

    2012-01-01

    Hybrid GPU/CPU platform. In particular, our technique solves the problem of the low efficiency result- ing from running short-length sequences in a database on a GPU. To verify our technique, we applied it to the widely used Smith-Waterman algorithm

  17. Genome cluster database. A sequence family analysis platform for Arabidopsis and rice.

    Science.gov (United States)

    Horan, Kevin; Lauricha, Josh; Bailey-Serres, Julia; Raikhel, Natasha; Girke, Thomas

    2005-05-01

    The genome-wide protein sequences from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) spp. japonica were clustered into families using sequence similarity and domain-based clustering. The two fundamentally different methods resulted in separate cluster sets with complementary properties to compensate the limitations for accurate family analysis. Functional names for the identified families were assigned with an efficient computational approach that uses the description of the most common molecular function gene ontology node within each cluster. Subsequently, multiple alignments and phylogenetic trees were calculated for the assembled families. All clustering results and their underlying sequences were organized in the Web-accessible Genome Cluster Database (http://bioinfo.ucr.edu/projects/GCD) with rich interactive and user-friendly sequence family mining tools to facilitate the analysis of any given family of interest for the plant science community. An automated clustering pipeline ensures current information for future updates in the annotations of the two genomes and clustering improvements. The analysis allowed the first systematic identification of family and singlet proteins present in both organisms as well as those restricted to one of them. In addition, the established Web resources for mining these data provide a road map for future studies of the composition and structure of protein families between the two species.

  18. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample.

    Directory of Open Access Journals (Sweden)

    Chengwei Luo

    Full Text Available Next-generation sequencing (NGS is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage correlated highly between the two platforms (R(2>0.9. Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.

  19. Next-generation sequencing-based user-friendly platforms for drug-resistant tuberculosis diagnosis: A promise for the near future

    Directory of Open Access Journals (Sweden)

    David L Dolinger

    2016-01-01

    Full Text Available Since 2002, there has been a gradual worldwide 1.3% annual decrease in the incidence of tuberculosis (TB. This is an encouraging statistic; however, it will not achieve the World Health Organization's goal of eliminating TB by 2050, and it is being compounded by the persistent global incidence of drug-resistant tuberculosis (DR-TB acquired by transmission and by treatment pressure. One key to effectively control tuberculosis and the spread of multiresistant strains is accurate information pertaining to drug resistance and susceptibility. Next-generation sequencing (NGS has the potential to effectively change global health and the management of TB. Industry has focused primarily on using NGS for oncology diagnostics and human genomics, but the area in which NGS can rapidly impact health care is in the area of infectious disease diagnostics in low- and middle-income countries. To date, there has been a failure as a community to capitalize on the potential of NGS, especially at the reference laboratory level where it can provide actionable information pertaining to treatment options for patients. The rapid evolution of knowledge about the genetic foundations of tuberculosis drug resistance makes sequencing a versatile technology platform for providing rapid, accurate, and actionable results for treating this disease. No “plug-and-play” and “end-to-end” NGS solutions exist that provide clinically relevant sequence data from the Mycobacterium tuberculosis complex genome from primary clinical samples (e.g., sputum in high-burden country reference laboratories, which is where they are most needed. However, such a system-based solution is underdeveloped by Foundation for Innovative Diagnostics (FIND, in collaboration with partners from academia, nongovernmental organizations, and industry. The solution is modular and is designed and developed to perform targeted amplicon sequencing directly from a patient's primary sputum sample. This solution

  20. Identification of Serum microRNA Biomarkers for Tuberculosis Using RNA-seq

    OpenAIRE

    Zhang, Hongtai; Sun, Zhaogang; Wei, Wenjing; Liu, Zhonghui; Fleming, Joy; Zhang, Shuai; Lin, Nan; Wang, Ming; Chen, Maoshan; Xu, Yuhui; Zhou, Jie; Li, Chuanyou; Bi, Lijun; Zhou, Guangming

    2014-01-01

    Tuberculosis (TB) remains a significant human health issue. More effective biomarkers for use in tuberculosis prevention, diagnosis, and treatment, including markers that can discriminate between healthy individuals and those with latent infection, are urgently needed. To identify a set of such markers, we used Solexa sequencing to examine microRNA expression in the serum of patients with active disease, healthy individuals with latent TB, and those with or without prior BCG inoculation. We i...

  1. DELIMINATE--a fast and efficient method for loss-less compression of genomic sequences: sequence analysis.

    Science.gov (United States)

    Mohammed, Monzoorul Haque; Dutta, Anirban; Bose, Tungadri; Chadaram, Sudha; Mande, Sharmila S

    2012-10-01

    An unprecedented quantity of genome sequence data is currently being generated using next-generation sequencing platforms. This has necessitated the development of novel bioinformatics approaches and algorithms that not only facilitate a meaningful analysis of these data but also aid in efficient compression, storage, retrieval and transmission of huge volumes of the generated data. We present a novel compression algorithm (DELIMINATE) that can rapidly compress genomic sequence data in a loss-less fashion. Validation results indicate relatively higher compression efficiency of DELIMINATE when compared with popular general purpose compression algorithms, namely, gzip, bzip2 and lzma. Linux, Windows and Mac implementations (both 32 and 64-bit) of DELIMINATE are freely available for download at: http://metagenomics.atc.tcs.com/compression/DELIMINATE. sharmila@atc.tcs.com Supplementary data are available at Bioinformatics online.

  2. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations.

    Science.gov (United States)

    Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis

    2016-08-24

    To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.

  3. High-Throughput Sequencing Reveals Hypothalamic MicroRNAs as Novel Partners Involved in Timing the Rapid Development of Chicken (Gallus gallus) Gonads.

    Science.gov (United States)

    Han, Wei; Zou, Jianmin; Wang, Kehua; Su, Yijun; Zhu, Yunfen; Song, Chi; Li, Guohui; Qu, Liang; Zhang, Huiyong; Liu, Honglin

    2015-01-01

    Onset of the rapid gonad growth is a milestone in sexual development that comprises many genes and regulatory factors. The observations in model organisms and mammals including humans have shown a potential link between miRNAs and development timing. To determine whether miRNAs play roles in this process in the chicken (Gallus gallus), the Solexa deep sequencing was performed to analyze the profiles of miRNA expression in the hypothalamus of hens from two different pubertal stages, before onset of the rapid gonad development (BO) and after onset of the rapid gonad development (AO). 374 conserved and 46 novel miRNAs were identified as hypothalamus-expressed miRNAs in the chicken. 144 conserved miRNAs were showed to be differentially expressed (reads > 10, P time quantitative RT-PCR (qRT-PCR) method. 2013 putative genes were predicted as the targets of the 15 most differentially expressed miRNAs (fold-change > 4.0, P times by the miRNAs. qRT-PCR revealed the basic transcription levels of these clock genes were much higher (P development of chicken gonads. Considering the characteristics of miRNA functional conservation, the results will contribute to the research on puberty onset in humans.

  4. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers

    DEFF Research Database (Denmark)

    Varshney, Rajeev K.; Chen, Wenbin; Li, Yupeng

    2012-01-01

    Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences...

  5. Genetic Constructor: An Online DNA Design Platform.

    Science.gov (United States)

    Bates, Maxwell; Lachoff, Joe; Meech, Duncan; Zulkower, Valentin; Moisy, Anaïs; Luo, Yisha; Tekotte, Hille; Franziska Scheitz, Cornelia Johanna; Khilari, Rupal; Mazzoldi, Florencio; Chandran, Deepak; Groban, Eli

    2017-12-15

    Genetic Constructor is a cloud Computer Aided Design (CAD) application developed to support synthetic biologists from design intent through DNA fabrication and experiment iteration. The platform allows users to design, manage, and navigate complex DNA constructs and libraries, using a new visual language that focuses on functional parts abstracted from sequence. Features like combinatorial libraries and automated primer design allow the user to separate design from construction by focusing on functional intent, and design constraints aid iterative refinement of designs. A plugin architecture enables contributions from scientists and coders to leverage existing powerful software and connect to DNA foundries. The software is easily accessible and platform agnostic, free for academics, and available in an open-source community edition. Genetic Constructor seeks to democratize DNA design, manufacture, and access to tools and services from the synthetic biology community.

  6. Approaches for in silico finishing of microbial genome sequences

    Directory of Open Access Journals (Sweden)

    Frederico Schmitt Kremer

    Full Text Available Abstract The introduction of next-generation sequencing (NGS had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as “drafts”, incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases tools that are available to facilitate genome finishing.

  7. Approaches for in silico finishing of microbial genome sequences.

    Science.gov (United States)

    Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva

    The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as "drafts", incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing.

  8. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  9. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    KAUST Repository

    Hunt, Paul

    2010-09-16

    Background: Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.Results: A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (IlluminaSolexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.Conclusions: This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. 2010 Hunt et al; licensee BioMed Central Ltd.

  10. pyPaSWAS : Python-based multi-core CPU and GPU sequence alignment

    NARCIS (Netherlands)

    Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter

    2018-01-01

    BACKGROUND: Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of

  11. A not-so-short description of the PERFECT platform

    International Nuclear Information System (INIS)

    Bugat, S.; Zeghadi, A.; Adjanor, G.

    2010-01-01

    This article describes the building of the so-called 'PERFECT platform', which main issue was to allow the development of the PERFECT end-products dedicated to the prediction of the degradation of material properties due to irradiation. First, the general principles used to build the platform are detailed. Such principles guided the choices of preferential development language, architecture, and operating system. The architecture of the platform is then described. It allows an easy development of the end-products, and a 'black-box' integration of the codes developed during the project. Each end-product can be seen as a sequence of modules, each module representing a physical phenomenon in time and space. The platform is very flexible, so that different methodologies can be tested and compared inside an end-product. The second part is devoted to the description of a classical PERFECT study, defined thanks to the graphical user interface developed in the project. Focus is made in particular on how a selection of modules is done, how the input data can be entered, and how the study execution is fully controlled by the user. A final description of the post-processing facilities on the results is exposed.

  12. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    Science.gov (United States)

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  13. Preparation of highly multiplexed small RNA sequencing libraries.

    Science.gov (United States)

    Persson, Helena; Søkilde, Rolf; Pirona, Anna Chiara; Rovira, Carlos

    2017-08-01

    MicroRNAs (miRNAs) are ~22-nucleotide-long small non-coding RNAs that regulate the expression of protein-coding genes by base pairing to partially complementary target sites, preferentially located in the 3´ untranslated region (UTR) of target mRNAs. The expression and function of miRNAs have been extensively studied in human disease, as well as the possibility of using these molecules as biomarkers for prognostication and treatment guidance. To identify and validate miRNAs as biomarkers, their expression must be screened in large collections of patient samples. Here, we develop a scalable protocol for the rapid and economical preparation of a large number of small RNA sequencing libraries using dual indexing for multiplexing. Combined with the use of off-the-shelf reagents, more samples can be sequenced simultaneously on large-scale sequencing platforms at a considerably lower cost per sample. Sample preparation is simplified by pooling libraries prior to gel purification, which allows for the selection of a narrow size range while minimizing sample variation. A comparison with publicly available data from benchmarking of miRNA analysis platforms showed that this method captures absolute and differential expression as effectively as commercially available alternatives.

  14. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    Science.gov (United States)

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  15. Inaugural Genomics Automation Congress and the coming deluge of sequencing data.

    Science.gov (United States)

    Creighton, Chad J

    2010-10-01

    Presentations at Select Biosciences's first 'Genomics Automation Congress' (Boston, MA, USA) in 2010 focused on next-generation sequencing and the platforms and methodology around them. The meeting provided an overview of sequencing technologies, both new and emerging. Speakers shared their recent work on applying sequencing to profile cells for various levels of biomolecular complexity, including DNA sequences, DNA copy, DNA methylation, mRNA and microRNA. With sequencing time and costs continuing to drop dramatically, a virtual explosion of very large sequencing datasets is at hand, which will probably present challenges and opportunities for high-level data analysis and interpretation, as well as for information technology infrastructure.

  16. Digital-Control-Based Approximation of Optimal Wave Disturbances Attenuation for Nonlinear Offshore Platforms

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Zhong

    2017-12-01

    Full Text Available The irregular wave disturbance attenuation problem for jacket-type offshore platforms involving the nonlinear characteristics is studied. The main contribution is that a digital-control-based approximation of optimal wave disturbances attenuation controller (AOWDAC is proposed based on iteration control theory, which consists of a feedback item of offshore state, a feedforward item of wave force and a nonlinear compensated component with iterative sequences. More specifically, by discussing the discrete model of nonlinear offshore platform subject to wave forces generated from the Joint North Sea Wave Project (JONSWAP wave spectrum and linearized wave theory, the original wave disturbances attenuation problem is formulated as the nonlinear two-point-boundary-value (TPBV problem. By introducing two vector sequences of system states and nonlinear compensated item, the solution of introduced nonlinear TPBV problem is obtained. Then, a numerical algorithm is designed to realize the feasibility of AOWDAC based on the deviation of performance index between the adjacent iteration processes. Finally, applied the proposed AOWDAC to a jacket-type offshore platform in Bohai Bay, the vibration amplitudes of the displacement and the velocity, and the required energy consumption can be reduced significantly.

  17. Expression of Genes Related to Phenylpropanoid Biosynthesis in Different Organs of Ixeris dentata var. albiflora.

    Science.gov (United States)

    Lee, Sang-Hoon; Park, Yun-Ji; Park, Sang Un; Lee, Sang-Won; Kim, Seong-Cheol; Jung, Chan-Sik; Jang, Jae-Ki; Hur, Yoonkang; Kim, Yeon Bok

    2017-05-30

    Members of the genus Ixeris have long been used in traditional medicines as stomachics, sedatives, and diuretics. Phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate: coenzyme-A (CoA) ligase (4CL), chalcone synthase (CHS), and dihydroflavonol 4-reductase (DFR) are important enzymes in the phenylpropanoid pathway. In this study, we analyzed seven genes from Ixeris dentata var. albiflora that are involved in phenylpropanoid biosynthesis, using an Illumina/Solexa HiSeq 2000 platform. The amino acid sequence alignments for IdPAL s, IdC4H, Id4CL s, IdCHS , and IdDFR showed high identity to sequences from other plants. We also investigated transcript levels using quantitative real-time PCR, and analyzed the accumulation of phenylpropanoids in different organs of I. dentata var. albiflora using high-performance liquid chromatography. The transcript levels of IdC4H, Id4CL1 , IdCHS , and IdDFR were highest in the leaf. The catechin, chlorogenic acid, ferulic acid, and quercetin contents were also highest in the leaf. We suggest that expression of IdC4H, Id4CL1 , IdCHS , and IdDFR is associated with the accumulation of phenylpropanoids. Our results may provide baseline information for elucidating the mechanism of phenylpropanoid biosynthesis in different organs of I. dentata var. albiflora .

  18. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO.

    Science.gov (United States)

    Fraiture, Marie-Alice; Saltykova, Assia; Hoffman, Stefan; Winand, Raf; Deforce, Dieter; Vanneste, Kevin; De Keersmaecker, Sigrid C J; Roosens, Nancy H C

    2018-05-21

    In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.

  19. Alternative SNP detection platforms, HRM and biosensors, for varietal identification in Vitis vinifera L. using F3H and LDOX genes.

    Science.gov (United States)

    Gomes, Sónia; Castro, Cláudia; Barrias, Sara; Pereira, Leonor; Jorge, Pedro; Fernandes, José R; Martins-Lopes, Paula

    2018-04-11

    The wine sector requires quick and reliable methods for Vitis vinifera L. varietal identification. The number of V. vinifera varieties is estimated in about 5,000 worldwide. Single Nucleotide Polymorphisms (SNPs) represent the most basic and abundant form of genetic sequence variation, being adequate for varietal discrimination. The aim of this work was to develop DNA-based assays suitable to detect SNP variation in V. vinifera, allowing varietal discrimination. Genotyping by sequencing allowed the detection of eleven SNPs on two genes of the anthocyanin pathway, the flavanone 3-hydroxylase (F3H, EC: 1.14.11.9), and the leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19; synonym anthocyanidin synthase, ANS) in twenty V. vinifera varieties. Three High Resolution Melting (HRM) assays were designed based on the sequencing information, discriminating five of the 20 varieties: Alicante Bouschet, Donzelinho Tinto, Merlot, Moscatel Galego and Tinta Roriz. Sanger sequencing of the HRM assay products confirmed the HRM profiles. Three probes, with different lengths and sequences, were used as bio-recognition elements in an optical biosensor platform based on a long period grating (LPG) fiber optic sensor. The label free platform detected a difference of a single SNP using genomic DNA samples. The two different platforms were successfully applied for grapevine varietal identification.

  20. Payment Platform

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Damsgaard, Jan

    2012-01-01

    thoroughly and substitute current payment standards in the decades to come. This paper portrays how digital payment platforms evolve in socio-technical niches and how various technological platforms aim for institutional attention in their attempt to challenge earlier platforms and standards. The paper...... applies a co-evolutionary multilevel perspective to model the interplay and processes between technology and society wherein digital payment platforms potentially will substitute other payment platforms just like the credit card negated the check. On this basis this paper formulate a multilevel conceptual...

  1. Methods for open innovation on a genome-design platform associating scientific, commercial, and educational communities in synthetic biology.

    Science.gov (United States)

    Toyoda, Tetsuro

    2011-01-01

    Synthetic biology requires both engineering efficiency and compliance with safety guidelines and ethics. Focusing on the rational construction of biological systems based on engineering principles, synthetic biology depends on a genome-design platform to explore the combinations of multiple biological components or BIO bricks for quickly producing innovative devices. This chapter explains the differences among various platform models and details a methodology for promoting open innovation within the scope of the statutory exemption of patent laws. The detailed platform adopts a centralized evaluation model (CEM), computer-aided design (CAD) bricks, and a freemium model. It is also important for the platform to support the legal aspects of copyrights as well as patent and safety guidelines because intellectual work including DNA sequences designed rationally by human intelligence is basically copyrightable. An informational platform with high traceability, transparency, auditability, and security is required for copyright proof, safety compliance, and incentive management for open innovation in synthetic biology. GenoCon, which we have organized and explained here, is a competition-styled, open-innovation method involving worldwide participants from scientific, commercial, and educational communities that aims to improve the designs of genomic sequences that confer a desired function on an organism. Using only a Web browser, a participating contributor proposes a design expressed with CAD bricks that generate a relevant DNA sequence, which is then experimentally and intensively evaluated by the GenoCon organizers. The CAD bricks that comprise programs and databases as a Semantic Web are developed, executed, shared, reused, and well stocked on the secure Semantic Web platform called the Scientists' Networking System or SciNetS/SciNeS, based on which a CEM research center for synthetic biology and open innovation should be established. Copyright © 2011 Elsevier Inc

  2. Next-Generation Sequencing in Clinical Molecular Diagnostics of Cancer: Advantages and Challenges

    Directory of Open Access Journals (Sweden)

    Rajyalakshmi Luthra

    2015-10-01

    Full Text Available The application of next-generation sequencing (NGS to characterize cancer genomes has resulted in the discovery of numerous genetic markers. Consequently, the number of markers that warrant routine screening in molecular diagnostic laboratories, often from limited tumor material, has increased. This increased demand has been difficult to manage by traditional low- and/or medium-throughput sequencing platforms. Massively parallel sequencing capabilities of NGS provide a much-needed alternative for mutation screening in multiple genes with a single low investment of DNA. However, implementation of NGS technologies, most of which are for research use only (RUO, in a diagnostic laboratory, needs extensive validation in order to establish Clinical Laboratory Improvement Amendments (CLIA and College of American Pathologists (CAP-compliant performance characteristics. Here, we have reviewed approaches for validation of NGS technology for routine screening of tumors. We discuss the criteria for selecting gene markers to include in the NGS panel and the deciding factors for selecting target capture approaches and sequencing platforms. We also discuss challenges in result reporting, storage and retrieval of the voluminous sequencing data and the future potential of clinical NGS.

  3. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics.

    Directory of Open Access Journals (Sweden)

    Lincoln D Stein

    2003-11-01

    Full Text Available The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp and C. elegans (100.3 Mbp genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C

  4. Design features of offshore oil production platforms influence their susceptibility to biocorrosion.

    Science.gov (United States)

    Duncan, Kathleen E; Davidova, Irene A; Nunn, Heather S; Stamps, Blake W; Stevenson, Bradley S; Souquet, Pierre J; Suflita, Joseph M

    2017-08-01

    Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35 S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.

  5. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    Science.gov (United States)

    2011-01-01

    Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105

  6. Development of a cloud-based Bioinformatics Training Platform.

    Science.gov (United States)

    Revote, Jerico; Watson-Haigh, Nathan S; Quenette, Steve; Bethwaite, Blair; McGrath, Annette; Shang, Catherine A

    2017-05-01

    The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP. © The Author 2016. Published by Oxford University Press.

  7. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  8. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    Science.gov (United States)

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  9. Birth and demise of a Middle Jurassic isolated shallow-marine carbonate platform on a tilted fault block: Example from the Southern Iberian continental palaeomargin

    Science.gov (United States)

    Navarro, V.; Ruiz-Ortiz, P. A.; Molina, J. M.

    2012-08-01

    Subbetic Middle Jurassic oolitic limestones of the Jabalcuz Formation crop out in San Cristóbal hill, near Jaén city (Andalucía, Spain), between hemipelagic limestone and marl successions. The Jabalcuz limestones range in facies from calcareous breccias and micritic limestones to white cross-bedded oolitic limestones. Recent erosion has exhumed a Jurassic isolated shallow-water carbonate platform on the San Cristóbal hill. This shallow platform developed on a tilted fault block. An almost continuous, laterally extensive outcrop reveals tectono-sedimentary features distinctive of block-tilting in the different margins of the fault block. The studied sections represent various palaeogeographic positions in the ancient shallow-water carbonate platform and basin transition. This exceptional outcrop allows to decipher the triggering mechanisms of the birth, evolution, and drowning of this Jurassic isolated shallow-water carbonate platform. Two shallowing-upward depositional sequences separated by flooding surfaces can be distinguished on two different sides of the fault block. In the southeastern part of the outcrop, proximal sections grade vertically from distal talus fault breccias, with bivalve and serpulid buildup intercalations, to white cross-bedded oolitic limestones defining the lowermost depositional sequence. Upwards, overlying a flooding surface, the second sequence with oolitic limestones prograding over micritic deposits is recorded. In the southwest, oolitic, peloidal, and more distal micritic facies alternate, with notable southeastern progradation of oolitic facies in the upper part of the section, which represents the upper depositional sequence. The top of this second depositional sequence is another flooding surface recorded by the sedimentation of marls with radiolarians from the overlying formation. In the northwestern outcrops, the two depositional sequences are also almost completely preserved and can be differentiated. A 100 m

  10. A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology.

    Science.gov (United States)

    Ustek, Duran; Sirma, Sema; Gumus, Ergun; Arikan, Muzaffer; Cakiris, Aris; Abaci, Neslihan; Mathew, Jaicy; Emrence, Zeliha; Azakli, Hulya; Cosan, Fulya; Cakar, Atilla; Parlak, Mahmut; Kursun, Olcay

    2012-10-01

    One application of next-generation sequencing (NGS) is the targeted resequencing of interested genes which has not been used in viral integration site analysis of gene therapy applications. Here, we combined targeted sequence capture array and next generation sequencing to address the whole genome profiling of viral integration sites. Human 293T and K562 cells were transduced with a HIV-1 derived vector. A custom made DNA probe sets targeted pLVTHM vector used to capture lentiviral vector/human genome junctions. The captured DNA was sequenced using GS FLX platform. Seven thousand four hundred and eighty four human genome sequences flanking the long terminal repeats (LTR) of pLVTHM fragment sequences matched with an identity of at least 98% and minimum 50 bp criteria in both cells. In total, 203 unique integration sites were identified. The integrations in both cell lines were totally distant from the CpG islands and from the transcription start sites and preferentially located in introns. A comparison between the two cell lines showed that the lentiviral-transduced DNA does not have the same preferred regions in the two different cell lines. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Product Platform Performance

    DEFF Research Database (Denmark)

    Munk, Lone

    The aim of this research is to improve understanding of platform-based product development by studying platform performance in relation to internal effects in companies. Platform-based product development makes it possible to deliver product variety and at the same time reduce the needed resources...... engaging in platform-based product development. Similarly platform assessment criteria lack empirical verification regarding relevance and sufficiency. The thesis focuses on • the process of identifying and estimating internal effects, • verification of performance of product platforms, (i...... experienced representatives from the different life systems phase systems of the platform products. The effects are estimated and modeled within different scenarios, taking into account financial and real option aspects. The model illustrates and supports estimation and quantification of internal platform...

  12. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers

    Directory of Open Access Journals (Sweden)

    Phillip R. Myer

    2016-09-01

    Full Text Available Amplicon sequencing utilizing next-generation platforms has significantly transformed how research is conducted, specifically microbial ecology. However, primer and sequencing platform biases can confound or change the way scientists interpret these data. The Pacific Biosciences RSII instrument may also preferentially load smaller fragments, which may also be a function of PCR product exhaustion during sequencing. To further examine theses biases, data is provided from 16S rRNA rumen community analyses. Specifically, data from the relative phylum-level abundances for the ruminal bacterial community are provided to determine between-sample variability. Direct sequencing of metagenomic DNA was conducted to circumvent primer-associated biases in 16S rRNA reads and rarefaction curves were generated to demonstrate adequate coverage of each amplicon. PCR products were also subjected to reduced amplification and pooling to reduce the likelihood of PCR product exhaustion during sequencing on the Pacific Biosciences platform. The taxonomic profiles for the relative phylum-level and genus-level abundance of rumen microbiota as a function of PCR pooling for sequencing on the Pacific Biosciences RSII platform were provided. For more information, see “Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers” P.R. Myer, M. Kim, H.C. Freetly, T.P.L. Smith (2016 [1]. Keywords: 16S rRNA gene, MiSeq, Pacific Biosciences, Rumen microbiome

  13. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    Directory of Open Access Journals (Sweden)

    Xiang Li-xin

    2010-08-01

    Full Text Available Abstract Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host

  14. The Platformization of the Web: Making Web Data Platform Ready

    NARCIS (Netherlands)

    Helmond, A.

    2015-01-01

    In this article, I inquire into Facebook’s development as a platform by situating it within the transformation of social network sites into social media platforms. I explore this shift with a historical perspective on, what I refer to as, platformization, or the rise of the platform as the dominant

  15. EST-PAC a web package for EST annotation and protein sequence prediction

    Directory of Open Access Journals (Sweden)

    Strahm Yvan

    2006-10-01

    Full Text Available Abstract With the decreasing cost of DNA sequencing technology and the vast diversity of biological resources, researchers increasingly face the basic challenge of annotating a larger number of expressed sequences tags (EST from a variety of species. This typically consists of a series of repetitive tasks, which should be automated and easy to use. The results of these annotation tasks need to be stored and organized in a consistent way. All these operations should be self-installing, platform independent, easy to customize and amenable to using distributed bioinformatics resources available on the Internet. In order to address these issues, we present EST-PAC a web oriented multi-platform software package for expressed sequences tag (EST annotation. EST-PAC provides a solution for the administration of EST and protein sequence annotations accessible through a web interface. Three aspects of EST annotation are automated: 1 searching local or remote biological databases for sequence similarities using Blast services, 2 predicting protein coding sequence from EST data and, 3 annotating predicted protein sequences with functional domain predictions. In practice, EST-PAC integrates the BLASTALL suite, EST-Scan2 and HMMER in a relational database system accessible through a simple web interface. EST-PAC also takes advantage of the relational database to allow consistent storage, powerful queries of results and, management of the annotation process. The system allows users to customize annotation strategies and provides an open-source data-management environment for research and education in bioinformatics.

  16. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  17. Transcriptome sequencing and De Novo analysis of Youngia japonica using the illumina platform.

    Directory of Open Access Journals (Sweden)

    Yulan Peng

    Full Text Available Youngia japonica, a weed species distributed worldwide, has been widely used in traditional Chinese medicine. It is an ideal plant for studying the evolution of Asteraceae plants because of its short life history and abundant source. However, little is known about its evolution and genetic diversity. In this study, de novo transcriptome sequencing was conducted for the first time for the comprehensive analysis of the genetic diversity of Y. japonica. The Y. japonica transcriptome was sequenced using Illumina paired-end sequencing technology. We produced 21,847,909 high-quality reads for Y. japonica and assembled them into contigs. A total of 51,850 unigenes were identified, among which 46,087 were annotated in the NCBI non-redundant protein database and 41,752 were annotated in the Swiss-Prot database. We mapped 9,125 unigenes onto 163 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. In addition, 3,648 simple sequence repeats (SSRs were detected. Our data provide the most comprehensive transcriptome resource currently available for Y. japonica. C4 photosynthesis unigenes were found in the biological process of Y. japonica. There were 5596 unigenes related to defense response and 1344 ungienes related to signal transduction mechanisms (10.95%. These data provide insights into the genetic diversity of Y. japonica. Numerous SSRs contributed to the development of novel markers. These data may serve as a new valuable resource for genomic studies on Youngia and, more generally, Cichoraceae.

  18. CBESW: sequence alignment on the Playstation 3.

    Science.gov (United States)

    Wirawan, Adrianto; Kwoh, Chee Keong; Hieu, Nim Tri; Schmidt, Bertil

    2008-09-17

    The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm. For large datasets, our implementation on the PlayStation 3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS. The results from our experiments demonstrate that the PlayStation 3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications.

  19. Platform dependence of inference on gene-wise and gene-set involvement in human lung development

    Directory of Open Access Journals (Sweden)

    Kho Alvin T

    2009-06-01

    Full Text Available Abstract Background With the recent development of microarray technologies, the comparability of gene expression data obtained from different platforms poses an important problem. We evaluated two widely used platforms, Affymetrix U133 Plus 2.0 and the Illumina HumanRef-8 v2 Expression Bead Chips, for comparability in a biological system in which changes may be subtle, namely fetal lung tissue as a function of gestational age. Results We performed the comparison via sequence-based probe matching between the two platforms. "Significance grouping" was defined as a measure of comparability. Using both expression correlation and significance grouping as measures of comparability, we demonstrated that despite overall cross-platform differences at the single gene level, increased correlation between the two platforms was found in genes with higher expression level, higher probe overlap, and lower p-value. We also demonstrated that biological function as determined via KEGG pathways or GO categories is more consistent across platforms than single gene analysis. Conclusion We conclude that while the comparability of the platforms at the single gene level may be increased by increasing sample size, they are highly comparable ontologically even for subtle differences in a relatively small sample size. Biologically relevant inference should therefore be reproducible across laboratories using different platforms.

  20. Near-complete genome sequencing of swine vesicular disease virus using the Roche GS FLX sequencing platform

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel; Bruhn, Christian Anders Wathne; Samaniego Castruita, Jose Alfredo

    2014-01-01

    Swine vesicular disease virus (SVDV) is an enterovirus that is both genetically and antigenically closely related to human coxsackievirus B5 within the Picornaviridae family. SVDV is the causative agent of a highly contagious (though rarely fatal) vesicular disease in pigs. We report a rapid method...... with significant genetic distances within the same species of viruses. All reference mappings used an iterative method to avoid bias. Further verification was achieved through phylogenetic analysis against published SVDV genomes and additional Enterovirus B sequences. This approach allows high confidence...

  1. Yeast identification by sequencing, biochemical kits, MALDI-TOF MS and rep-PCR DNA fingerprinting.

    Science.gov (United States)

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Chan, Jasper F W; Lau, Susanna K P; Kong, Fanrong; Xu, Yingchun; Woo, Patrick C Y

    2017-12-08

    No study has comprehensively evaluated the performance of 28S nrDNA and ITS sequencing, commercial biochemical test kits, MALDI-TOF MS platforms, and the emerging rep-PCR DNA fingerprinting technology using a cohort of yeast strains collected from a clinical microbiology laboratory. In this study, using 71 clinically important yeast isolates (excluding Candida albicans) collected from a single centre, we determined the concordance of 28S nrDNA and ITS sequencing and evaluated the performance of two commercial test kits, two MALDI-TOF MS platforms, and rep-PCR DNA fingerprinting. 28S nrDNA and ITS sequencing showed complete agreement on the identities of the 71 isolates. Using sequencing results as the standard, 78.9% and 71.8% isolates were correctly identified using the API 20C AUX and Vitek 2 YST ID Card systems, respectively; and 90.1% and 80.3% isolates were correctly identified using the Bruker and Vitek MALDI-TOF MS platforms, respectively. Of the 18 strains belonging to the Candida parapsilosis species complex tested by DiversiLab automated rep-PCR DNA fingerprinting, all were identified only as Candida parapsilosis with similarities ≥93.2%, indicating the misidentification of Candida metapsilosis and Candida orthopsilosis. However, hierarchical cluster analysis of the rep-PCR DNA fingerprints of these three species within this species complex formed three different discrete clusters, indicating that this technology can potentially differentiate the three species. To achieve higher accuracies of identification, the databases of commercial biochemical test kits, MALDI-TOF MS platforms, and DiversiLab automated rep-PCR DNA fingerprinting needs further enrichment, particularly for uncommonly encountered yeast species. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The HMMER Web Server for Protein Sequence Similarity Search.

    Science.gov (United States)

    Prakash, Ananth; Jeffryes, Matt; Bateman, Alex; Finn, Robert D

    2017-12-08

    Protein sequence similarity search is one of the most commonly used bioinformatics methods for identifying evolutionarily related proteins. In general, sequences that are evolutionarily related share some degree of similarity, and sequence-search algorithms use this principle to identify homologs. The requirement for a fast and sensitive sequence search method led to the development of the HMMER software, which in the latest version (v3.1) uses a combination of sophisticated acceleration heuristics and mathematical and computational optimizations to enable the use of profile hidden Markov models (HMMs) for sequence analysis. The HMMER Web server provides a common platform by linking the HMMER algorithms to databases, thereby enabling the search for homologs, as well as providing sequence and functional annotation by linking external databases. This unit describes three basic protocols and two alternate protocols that explain how to use the HMMER Web server using various input formats and user defined parameters. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Cross-Platform Technologies

    Directory of Open Access Journals (Sweden)

    Maria Cristina ENACHE

    2017-04-01

    Full Text Available Cross-platform - a concept becoming increasingly used in recent years especially in the development of mobile apps, but this consistently over time and in the development of conventional desktop applications. The notion of cross-platform software (multi-platform or platform-independent refers to a software application that can run on more than one operating system or computing architecture. Thus, a cross-platform application can operate independent of software or hardware platform on which it is execute. As a generic definition presents a wide range of meanings for purposes of this paper we individualize this definition as follows: we will reduce the horizon of meaning and we use functionally following definition: a cross-platform application is a software application that can run on more than one operating system (desktop or mobile identical or in a similar way.

  4. Platform Performance and Challenges - using Platforms in Lego Company

    DEFF Research Database (Denmark)

    Munk, Lone; Mortensen, Niels Henrik

    2009-01-01

    needs focus on the incentive of using the platform. This problem lacks attention in literature, as well as industry, where assessment criteria do not cover this aspect. Therefore, we recommend including user incentive in platform assessment criteria to these challenges. Concrete solution elements...... ensuring user incentive in platforms is an object for future research...

  5. Implementing EW Receivers Based on Large Point Reconfigured FFT on FPGA Platforms

    Directory of Open Access Journals (Sweden)

    He Chen

    2011-12-01

    Full Text Available This paper presents design and implementation of digital receiver based on large point fast Fourier transform (FFT suitable for electronic warfare (EW applications. When implementing the FFT algorithm on field-programmable gate array (FPGA platforms, the primary goal is to maximize throughput and minimize area. This algorithm adopts two-dimension, parallel and pipeline stream mode and implements the reconfiguration of FFT's points. Moreover, a double-sequence-separation FFT algorithm has been implemented in order to achieve faster real time processing in broadband digital receivers. The performance of the hardware implementation on the FPGA platforms of broadband digital receivers has been analyzed in depth. It reaches the requirement of high-speed digital signal processing, and reveals the designing this kind of digital signal processing systems on FPGA platforms. Keywords: digital receivers, field programmable gate array (FPGA, fast Fourier transform (FFT, large point reconfigured, signal processing system.

  6. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method

    Directory of Open Access Journals (Sweden)

    Bingfu Guo

    2016-07-01

    Full Text Available Molecular characterization of sequences flanking exogenous fragment insertions is essential for safety assessment and labeling of genetically modified organisms (GMO. In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS method. About 21 Gb sequence data (~21× coverage for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundary of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of the genomic insertion site of the G2-EPSPS and GAT transgenes will facilitate the use of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS is a cost-effective and rapid method of identifying sites of T-DNA insertions and flanking sequences in soybean.

  7. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.

    Science.gov (United States)

    Brown, Bonnie L; Watson, Mick; Minot, Samuel S; Rivera, Maria C; Franklin, Rima B

    2017-03-01

    Environmental metagenomic analysis is typically accomplished by assigning taxonomy and/or function from whole genome sequencing or 16S amplicon sequences. Both of these approaches are limited, however, by read length, among other technical and biological factors. A nanopore-based sequencing platform, MinION™, produces reads that are ≥1 × 104 bp in length, potentially providing for more precise assignment, thereby alleviating some of the limitations inherent in determining metagenome composition from short reads. We tested the ability of sequence data produced by MinION (R7.3 flow cells) to correctly assign taxonomy in single bacterial species runs and in three types of low-complexity synthetic communities: a mixture of DNA using equal mass from four species, a community with one relatively rare (1%) and three abundant (33% each) components, and a mixture of genomic DNA from 20 bacterial strains of staggered representation. Taxonomic composition of the low-complexity communities was assessed by analyzing the MinION sequence data with three different bioinformatic approaches: Kraken, MG-RAST, and One Codex. Results: Long read sequences generated from libraries prepared from single strains using the version 5 kit and chemistry, run on the original MinION device, yielded as few as 224 to as many as 3497 bidirectional high-quality (2D) reads with an average overall study length of 6000 bp. For the single-strain analyses, assignment of reads to the correct genus by different methods ranged from 53.1% to 99.5%, assignment to the correct species ranged from 23.9% to 99.5%, and the majority of misassigned reads were to closely related organisms. A synthetic metagenome sequenced with the same setup yielded 714 high quality 2D reads of approximately 5500 bp that were up to 98% correctly assigned to the species level. Synthetic metagenome MinION libraries generated using version 6 kit and chemistry yielded from 899 to 3497 2D reads with lengths averaging 5700 bp with up

  8. Platform Constellations

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    This research paper presents an initial attempt to introduce and explain the emergence of new phenomenon, which we refer to as platform constellations. Functioning as highly modular systems, the platform constellations are collections of highly connected platforms which co-exist in parallel and a......’ acquisition and users’ engagement rates as well as unlock new sources of value creation and diversify revenue streams....

  9. Incipiently drowned platform deposit in cyclic Ordovician shelf sequence: Lower Ordovician Chepultepec Formation, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Bova, J.A.; Read, J.F.

    1983-03-01

    The Chepultepec interval, 145 to 260 m (476 to 853 ft) thick, in Virginia contains the Lower Member up to 150 m (492 ft) thick, and the Upper Member, up to 85 m (279 ft) thick, of peritidal cyclic limestone and dolomite, and a Middle Member, up to 110 m (360 ft) thick, of subtidal limestone and bioherms, passing northwestward into cyclic facies. Calculated long term subsidence rates were 4 to 5 cm/1000 yr (mature passive margin rates), shelf gradients were 6 cm/km, and average duration of cycles was 140,00 years. Peritidal cyclic sequences are upward shallowing sequences of pellet-skeletal limestone, thrombolites, rippled calcisiltites and intraclast grainstone, and laminite caps. They formed by rapid transgression with apparent submergence increments averaging approximately 2 m (6.5 ft) in Lower Member and 3.5 m (11.4 ft), Upper Member. Deposition during Middle Member time was dominated by skeletal limestone-mudstone, calcisiltite with storm generated fining-upward sequences, and burrow-mixed units that were formed near fair-weather wave base, along with thrombolite bioherms. Locally, there are upward shallowing sequences, of basal wackestone/mudstone to calcisiltite to bioherm complexes (locally with erosional scalloped tops). Following each submergence, carbonate sedimentation was able to build to sea level prior to renewed submergence. Large submergence events caused tidal flats to be shifted far to the west, and they were unable to prograde out onto the open shelf because of insufficient time before subsidence was renewed, and because the open shelf setting inhibited tidal flat deposition. The Middle Member represents an incipiently drowned sequence that developed by repeated submergence events.

  10. Sequencing at sea: challenges and experiences in Ion Torrent PGM sequencing during the 2013 Southern Line Islands Research Expedition

    Directory of Open Access Journals (Sweden)

    Yan Wei Lim

    2014-08-01

    Full Text Available Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines.

  11. Fish the ChIPs: a pipeline for automated genomic annotation of ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Minucci Saverio

    2011-10-01

    Full Text Available Abstract Background High-throughput sequencing is generating massive amounts of data at a pace that largely exceeds the throughput of data analysis routines. Here we introduce Fish the ChIPs (FC, a computational pipeline aimed at a broad public of users and designed to perform complete ChIP-Seq data analysis of an unlimited number of samples, thus increasing throughput, reproducibility and saving time. Results Starting from short read sequences, FC performs the following steps: 1 quality controls, 2 alignment to a reference genome, 3 peak calling, 4 genomic annotation, 5 generation of raw signal tracks for visualization on the UCSC and IGV genome browsers. FC exploits some of the fastest and most effective tools today available. Installation on a Mac platform requires very basic computational skills while configuration and usage are supported by a user-friendly graphic user interface. Alternatively, FC can be compiled from the source code on any Unix machine and then run with the possibility of customizing each single parameter through a simple configuration text file that can be generated using a dedicated user-friendly web-form. Considering the execution time, FC can be run on a desktop machine, even though the use of a computer cluster is recommended for analyses of large batches of data. FC is perfectly suited to work with data coming from Illumina Solexa Genome Analyzers or ABI SOLiD and its usage can potentially be extended to any sequencing platform. Conclusions Compared to existing tools, FC has two main advantages that make it suitable for a broad range of users. First of all, it can be installed and run by wet biologists on a Mac machine. Besides it can handle an unlimited number of samples, being convenient for large analyses. In this context, computational biologists can increase reproducibility of their ChIP-Seq data analyses while saving time for downstream analyses. Reviewers This article was reviewed by Gavin Huttley, George

  12. Continuous Platform Development

    DEFF Research Database (Denmark)

    Nielsen, Ole Fiil

    low risks and investments but also with relatively fuzzy results. When looking for new platform projects, it is important to make sure that the company and market is ready for the introduction of platforms, and to make sure that people from marketing and sales, product development, and downstream......, but continuous product family evolution challenges this strategy. The concept of continuous platform development is based on the fact that platform development should not be a one-time experience but rather an ongoing process of developing new platforms and updating existing ones, so that product family...

  13. sRNAnalyzer-a flexible and customizable small RNA sequencing data analysis pipeline.

    Science.gov (United States)

    Wu, Xiaogang; Kim, Taek-Kyun; Baxter, David; Scherler, Kelsey; Gordon, Aaron; Fong, Olivia; Etheridge, Alton; Galas, David J; Wang, Kai

    2017-12-01

    Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline-sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. sRNAnalyzer—a flexible and customizable small RNA sequencing data analysis pipeline

    Science.gov (United States)

    Kim, Taek-Kyun; Baxter, David; Scherler, Kelsey; Gordon, Aaron; Fong, Olivia; Etheridge, Alton; Galas, David J.

    2017-01-01

    Abstract Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline—sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/. PMID:29069500

  15. Recent advances in nanopore-based nucleic acid analysis and sequencing

    International Nuclear Information System (INIS)

    Shi, Jidong; Fang, Ying; Hou, Junfeng

    2016-01-01

    Nanopore-based sequencing platforms are transforming the field of genomic science. This review (containing 116 references) highlights some recent progress on nanopore-based nucleic acid analysis and sequencing. These studies are classified into three categories, biological, solid-state, and hybrid nanopores, according to their nanoporous materials. We begin with a brief description of the translocation-based detection mechanism of nanopores. Next, specific examples are given in nanopore-based nucleic acid analysis and sequencing, with an emphasis on identifying strategies that can improve the resolution of nanopores. This review concludes with a discussion of future research directions that will advance the practical applications of nanopore technology. (author)

  16. Whole-Genome Sequencing of Lactobacillus salivarius Strains BCRC 14759 and BCRC 12574.

    Science.gov (United States)

    Chiu, Shih-Hau; Chen, Chien-Chi; Wang, Li-Ting; Huang, Lina

    2017-11-22

    Lactobacillus salivarius BCRC 14759 has been identified as a high-exopolysaccharide-producing strain with potential as a probiotic or fermented dairy product. Here, we report the genome sequences of L. salivarius BCRC 14759 and the comparable strain BCRC 12574, isolated from human saliva. The PacBio RSII sequencing platform was used to obtain high-quality assemblies for characterization of this probiotic candidate. Copyright © 2017 Chiu et al.

  17. Platform comparison for evaluation of ALK protein immunohistochemical expression, genomic copy number and hotspot mutation status in neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Benedict Yan

    Full Text Available ALK is an established causative oncogenic driver in neuroblastoma, and is likely to emerge as a routine biomarker in neuroblastoma diagnostics. At present, the optimal strategy for clinical diagnostic evaluation of ALK protein, genomic and hotspot mutation status is not well-studied. We evaluated ALK immunohistochemical (IHC protein expression using three different antibodies (ALK1, 5A4 and D5F3 clones, ALK genomic status using single-color chromogenic in situ hybridization (CISH, and ALK hotspot mutation status using conventional Sanger sequencing and a next-generation sequencing platform (Ion Torrent Personal Genome Machine (IT-PGM, in archival formalin-fixed, paraffin-embedded neuroblastoma samples. We found a significant difference in IHC results using the three different antibodies, with the highest percentage of positive cases seen on D5F3 immunohistochemistry. Correlation with ALK genomic and hotspot mutational status revealed that the majority of D5F3 ALK-positive cases did not possess either ALK genomic amplification or hotspot mutations. Comparison of sequencing platforms showed a perfect correlation between conventional Sanger and IT-PGM sequencing. Our findings suggest that D5F3 immunohistochemistry, single-color CISH and IT-PGM sequencing are suitable assays for evaluation of ALK status in future neuroblastoma clinical trials.

  18. Bioinformatics for Next Generation Sequencing Data

    Directory of Open Access Journals (Sweden)

    Alberto Magi

    2010-09-01

    Full Text Available The emergence of next-generation sequencing (NGS platforms imposes increasing demands on statistical methods and bioinformatic tools for the analysis and the management of the huge amounts of data generated by these technologies. Even at the early stages of their commercial availability, a large number of softwares already exist for analyzing NGS data. These tools can be fit into many general categories including alignment of sequence reads to a reference, base-calling and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection and genome browsing. This manuscript aims to guide readers in the choice of the available computational tools that can be used to face the several steps of the data analysis workflow.

  19. Illumina MiSeq Sequencing for Preliminary Analysis of Microbiome Causing Primary Endodontic Infections in Egypt

    Directory of Open Access Journals (Sweden)

    Sally Ali Tawfik

    2018-01-01

    Full Text Available The use of high throughput next generation technologies has allowed more comprehensive analysis than traditional Sanger sequencing. The specific aim of this study was to investigate the microbial diversity of primary endodontic infections using Illumina MiSeq sequencing platform in Egyptian patients. Samples were collected from 19 patients in Suez Canal University Hospital (Endodontic Department using sterile # 15K file and paper points. DNA was extracted using Mo Bio power soil DNA isolation extraction kit followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized on the basis of the V3 and V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. MOTHUR software was used in sequence filtration and analysis of sequenced data. A total of 1858 operational taxonomic units at 97% similarity were assigned to 26 phyla, 245 families, and 705 genera. Four main phyla Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes were predominant in all samples. At genus level, Prevotella, Bacillus, Porphyromonas, Streptococcus, and Bacteroides were the most abundant. Illumina MiSeq platform sequencing can be used to investigate oral microbiome composition of endodontic infections. Elucidating the ecology of endodontic infections is a necessary step in developing effective intracanal antimicrobials.

  20. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Science.gov (United States)

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  1. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Directory of Open Access Journals (Sweden)

    Nathan D. Olson

    2015-03-01

    Full Text Available This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1 identity of biologically conserved position, (2 ratio of 16S rRNA gene copies featuring identified variants, and (3 the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  2. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua.

    Science.gov (United States)

    Li, Hang; Jiang, Weihua; Zhang, Zan; Xing, Yanru; Li, Fei

    2013-01-01

    The beet armyworm, Spodoptera exigua (Hübner), is a serious pest worldwide that causes significant losses in crops. Unfortunately, genetic resources for the beet armyworm is extremely scarce. To improve these resources we sequenced the transcriptome of S. exigua representing all stages including eggs, 1(st) to 5(th) instar larvae, pupae, male and female adults using the Illumina Solexa platform. We assembled the transcriptome with Trinity that yielded 31,414 contigs. Of these contigs, 18,592 were annotated as protein coding genes by Blast searches against the NCBI nr database. It has been shown that knockdown of important insect genes by dsRNAs or siRNAs is a feasible mechanism to control insect pests. The first key step towards developing an efficient RNAi-mediated pest control technique is to find suitable target genes. To screen for effective target genes in the beet armyworm, we selected nine candidate genes. The sequences of these genes were amplified using the RACE strategy. Then, siRNAs were designed and chemically synthesized. We injected 2 µl siRNA (2 µg/µl) into the 4(th) instar larvae to knock down the respective target genes. The mRNA abundance of target genes decreased to different levels (∼20-94.3%) after injection of siRNAs. Knockdown of eight genes including chitinase7, PGCP, chitinase1, ATPase, tubulin1, arf2, tubulin2 and arf1 caused a significantly high level of mortality compared to the negative control (Ppest control.

  3. Depositional History and Sequence Stratigraphy of the Middle Ordovician Yeongheung Formation (Yeongweol Group), Taebaeksan Basin, mid-east Korea

    Science.gov (United States)

    Kwon, Yoo Jin; Kwon, Yi Kyun

    2017-04-01

    The Middle Ordovician Yeongheung Formation consists of numerous meter-scale, shallowing-upward cycles which were deposited on a shallow-marine carbonate platform. Many diagnostic sedimentary textures and structures such as supratidal laminite, tepee structure, and solution-collapsed breccia are observed, which enable to infer the dry climate and high salinity conditions during deposition of the formation. In order to understand its depositional history, this study focuses on vertical and spatial stacking patterns of the second- to third-order sequences through the detailed outcrop description and geologic mapping. A total 19 lithofacies have been recognized, which can be grouped into 5 facies associations (FAs): FA1 (Supratidal flat), FA2 (Supratidal or dolomitization of peritidal facies), FA3 (Intertidal flat), FA4 (Shallow subtidal to peritidal platform), FA5 (Shallow subtidal shoal). Global mega-sequence boundary (Sauk-Tippecanoe) occurs in solution-collapsed breccia zone in the lower part of the formation. Correlation of the shallowing-upward cycle stacking pattern across the study area defines 6 transgressive-regressive depositional sequences. Each depositional sequences comprises a package of vertical and spatial staking of shallow subtidal cycles in the lower part and peritidal cycles in the upper part of the formation. According to sequence stratigraphic interpretation, the reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. Based on the absence of siliciclastic sequence such as the Jigunsan Formation and the lithologic & stratigraphic differences, however, the Yeongweol and Taebaek groups might not belong to a single depositional system within the North China platform. The Yeongweol Group can be divided by the four subunits into their unique lithologic successions and geographic distributions. The Eastern subunit of the Yeongweol Group is composed dominantly of carbonate rocks with a high

  4. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing.

    Science.gov (United States)

    Zhang, Ning; Yang, Jiangwei; Wang, Zemin; Wen, Yikai; Wang, Jie; He, Wenhui; Liu, Bailin; Si, Huaijun; Wang, Di

    2014-01-01

    MicroRNAs (miRNAs) are a group of small, non-coding RNAs that play important roles in plant growth, development and stress response. There have been an increasing number of investigations aimed at discovering miRNAs and analyzing their functions in model plants (such as Arabidopsis thaliana and rice). In this research, we constructed small RNA libraries from both polyethylene glycol (PEG 6,000) treated and control potato samples, and a large number of known and novel miRNAs were identified. Differential expression analysis showed that 100 of the known miRNAs were down-regulated and 99 were up-regulated as a result of PEG stress, while 119 of the novel miRNAs were up-regulated and 151 were down-regulated. Based on target prediction, annotation and expression analysis of the miRNAs and their putative target genes, 4 miRNAs were identified as regulating drought-related genes (miR811, miR814, miR835, miR4398). Their target genes were MYB transcription factor (CV431094), hydroxyproline-rich glycoprotein (TC225721), quaporin (TC223412) and WRKY transcription factor (TC199112), respectively. Relative expression trends of those miRNAs were the same as that predicted by Solexa sequencing and they showed a negative correlation with the expression of the target genes. The results provide molecular evidence for the possible involvement of miRNAs in the process of drought response and/or tolerance in the potato plant.

  5. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets

    OpenAIRE

    Breese, Marcus R.; Liu, Yunlong

    2013-01-01

    Summary: NGSUtils is a suite of software tools for manipulating data common to next-generation sequencing experiments, such as FASTQ, BED and BAM format files. These tools provide a stable and modular platform for data management and analysis.

  6. A programmable method for massively parallel targeted sequencing

    Science.gov (United States)

    Hopmans, Erik S.; Natsoulis, Georges; Bell, John M.; Grimes, Susan M.; Sieh, Weiva; Ji, Hanlee P.

    2014-01-01

    We have developed a targeted resequencing approach referred to as Oligonucleotide-Selective Sequencing. In this study, we report a series of significant improvements and novel applications of this method whereby the surface of a sequencing flow cell is modified in situ to capture specific genomic regions of interest from a sample and then sequenced. These improvements include a fully automated targeted sequencing platform through the use of a standard Illumina cBot fluidics station. Targeting optimization increased the yield of total on-target sequencing data 2-fold compared to the previous iteration, while simultaneously increasing the percentage of reads that could be mapped to the human genome. The described assays cover up to 1421 genes with a total coverage of 5.5 Megabases (Mb). We demonstrate a 10-fold abundance uniformity of greater than 90% in 1 log distance from the median and a targeting rate of up to 95%. We also sequenced continuous genomic loci up to 1.5 Mb while simultaneously genotyping SNPs and genes. Variants with low minor allele fraction were sensitively detected at levels of 5%. Finally, we determined the exact breakpoint sequence of cancer rearrangements. Overall, this approach has high performance for selective sequencing of genome targets, configuration flexibility and variant calling accuracy. PMID:24782526

  7. CBESW: Sequence Alignment on the Playstation 3

    Directory of Open Access Journals (Sweden)

    Hieu Nim

    2008-09-01

    Full Text Available Abstract Background The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation® 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm. Results For large datasets, our implementation on the PlayStation® 3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS. Conclusion The results from our experiments demonstrate that the PlayStation® 3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications.

  8. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2005-05-01

    Full Text Available Abstract Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH. One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.

  9. Next-generation sequencing offers new insights into DNA degradation

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Orlando, Ludovic Antoine Alexandre; Willerslev, Eske

    2012-01-01

    The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation...... rates that previously were obtained only from extrapolations of results from in vitro kinetic experiments performed over short timescales. For example, recent next-generation sequencing of ancient DNA reveals purine bases as one of the main targets of postmortem hydrolytic damage, through base...... elimination and strand breakage. It also shows substantially increased rates of DNA base-loss at guanosine. In this review, we argue that the latter results from an electron resonance structure unique to guanosine rather than adenosine having an extra resonance structure over guanosine as previously suggested....

  10. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences-Influence of DNA Sequence and Topology.

    Science.gov (United States)

    Rackwitz, Jenny; Bald, Ilko

    2018-03-26

    During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and Alberta, Canada

    Science.gov (United States)

    da Silva, Anne-Christine; Potma, Ken; Weissenberger, John A. W.; Whalen, Michael T.; Humblet, Marc; Mabille, Cédric; Boulvain, Frédéric

    2009-02-01

    Magnetic susceptibility (MS) measurements on carbonate rocks are considered as a proxy for impurities delivered to the carbonate environments. In the absence of strong climatic or tectonic variations, bulk MS values have been linked to sea level variations, because sea-level fall increases clastic supply and therefore increases in magnetic mineral deposition. In this paper we explore the relationship between the average magnitude of bulk MS, with shallowing-up sequences and facies evolution in different Devonian carbonate complexes. Similarities and differences between these parameters have been scrutinized in carbonate attached platform and detached platforms (mounds and/or atolls) from Belgium and Canada. In the carbonate attached platforms from Belgium and Canada, the MS patterns are directly related to depositional environment. Mean MS values increase from the most distal towards the most proximal facies and towards the top of the majority of fourth-order shallowing-up sequences. These trends are in agreement with theoretical background (MS increases with regression). In the Belgian detached platform, the average MS pattern generally shows an opposite behaviour to that observed in the attached carbonate platforms. Average MS decreases towards the most proximal facies and towards the top of a majority of the fourth-order shallowing-up sequences. This behaviour can be explained by the influence of sedimentary rate and water agitation during deposition. A high sedimentary rate will dilute the magnetic minerals in the atoll facies and the high water agitation during deposition may be expected to have prevented the deposition of the magnetic grains. So, the combination of these two effects will result in the observed low values in the atoll crown and lagoonal facies. In the Canadian detached platform, MS is mainly negative. This means that the limestones are very pure. The technique does not appear to be appropriate in these rocks. The variations of average MS

  12. A novel molecular diagnostics platform for somatic and germline precision oncology.

    Science.gov (United States)

    Cabanillas, Rubén; Diñeiro, Marta; Castillo, David; Pruneda, Patricia C; Penas, Cristina; Cifuentes, Guadalupe A; de Vicente, Álvaro; Durán, Noelia S; Álvarez, Rebeca; Ordóñez, Gonzalo R; Cadiñanos, Juan

    2017-07-01

    Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2 ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. With an adequate methodology, it is possible to

  13. Mobile platform security

    CERN Document Server

    Asokan, N; Dmitrienko, Alexandra

    2013-01-01

    Recently, mobile security has garnered considerable interest in both the research community and industry due to the popularity of smartphones. The current smartphone platforms are open systems that allow application development, also for malicious parties. To protect the mobile device, its user, and other mobile ecosystem stakeholders such as network operators, application execution is controlled by a platform security architecture. This book explores how such mobile platform security architectures work. We present a generic model for mobile platform security architectures: the model illustrat

  14. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results.

    Science.gov (United States)

    He, Ji; Dai, Xinbin; Zhao, Xuechun

    2007-02-09

    BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform

  15. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results

    Directory of Open Access Journals (Sweden)

    Zhao Xuechun

    2007-02-01

    Full Text Available Abstract Background BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Results Personal BLAST Navigator (PLAN is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1 query and target sequence database management, (2 automated high-throughput BLAST searching, (3 indexing and searching of results, (4 filtering results online, (5 managing results of personal interest in favorite categories, (6 automated sequence annotation (such as NCBI NR and ontology-based annotation. PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. Conclusion PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results

  16. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    Science.gov (United States)

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  17. Comparison of two approaches for the classification of 16S rRNA gene sequences.

    Science.gov (United States)

    Chatellier, Sonia; Mugnier, Nathalie; Allard, Françoise; Bonnaud, Bertrand; Collin, Valérie; van Belkum, Alex; Veyrieras, Jean-Baptiste; Emler, Stefan

    2014-10-01

    The use of 16S rRNA gene sequences for microbial identification in clinical microbiology is accepted widely, and requires databases and algorithms. We compared a new research database containing curated 16S rRNA gene sequences in combination with the lca (lowest common ancestor) algorithm (RDB-LCA) to a commercially available 16S rDNA Centroid approach. We used 1025 bacterial isolates characterized by biochemistry, matrix-assisted laser desorption/ionization time-of-flight MS and 16S rDNA sequencing. Nearly 80 % of isolates were identified unambiguously at the species level by both classification platforms used. The remaining isolates were mostly identified correctly at the genus level due to the limited resolution of 16S rDNA sequencing. Discrepancies between both 16S rDNA platforms were due to differences in database content and the algorithm used, and could amount to up to 10.5 %. Up to 1.4 % of the analyses were found to be inconclusive. It is important to realize that despite the overall good performance of the pipelines for analysis, some inconclusive results remain that require additional in-depth analysis performed using supplementary methods. © 2014 The Authors.

  18. PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data.

    Science.gov (United States)

    Anslan, Sten; Bahram, Mohammad; Hiiesalu, Indrek; Tedersoo, Leho

    2017-11-01

    High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable. © 2017 John Wiley & Sons Ltd.

  19. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform.

    Directory of Open Access Journals (Sweden)

    Graham F Hatfull

    2006-06-01

    Full Text Available Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774 of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three-encoding tape-measure proteins, lysins, and minor tail proteins-are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15% have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education.

  20. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    Science.gov (United States)

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions

  1. Platform-based production development

    DEFF Research Database (Denmark)

    Bossen, Jacob; Brunoe, Thomas Ditlev; Nielsen, Kjeld

    2015-01-01

    Platforms as a means for applying modular thinking in product development is relatively well studied, but platforms in the production system has until now not been given much attention. With the emerging concept of platform-based co-development the importance of production platforms is though...

  2. Googling DNA sequences on the World Wide Web.

    Science.gov (United States)

    Hajibabaei, Mehrdad; Singer, Gregory A C

    2009-11-10

    New web-based technologies provide an excellent opportunity for sharing and accessing information and using web as a platform for interaction and collaboration. Although several specialized tools are available for analyzing DNA sequence information, conventional web-based tools have not been utilized for bioinformatics applications. We have developed a novel algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by using popular web-based methods such as Google. We developed an alignment independent character based algorithm based on dividing a sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by conventional search tools such as freely available Google Desktop Search. We implemented our algorithm in two exemplar packages. We developed pre and post-processing software to provide customized input and output services, respectively. Our analysis of all publicly available DNA barcode sequences shows a high accuracy as well as rapid results. Our method makes use of conventional web-based technologies for specialized genetic data. It provides a robust and efficient solution for sequence search on the web. The integration of our search method for large-scale sequence libraries such as DNA barcodes provides an excellent web-based tool for accessing this information and linking it to other available categories of information on the web.

  3. Omnidirectional holonomic platforms

    International Nuclear Information System (INIS)

    Pin, F.G.; Killough, S.M.

    1994-01-01

    This paper presents the concepts for a new family of wheeled platforms which feature full omnidirectionality with simultaneous and independently controlled rotational and translational motion capabilities. The authors first present the orthogonal-wheels concept and the two major wheel assemblies on which these platforms are based. They then describe how a combination of these assemblies with appropriate control can be used to generate an omnidirectional capability for mobile robot platforms. The design and control of two prototype platforms are then presented and their respective characteristics with respect to rotational and translational motion control are discussed

  4. Platform decommissioning costs

    International Nuclear Information System (INIS)

    Rodger, David

    1998-01-01

    There are over 6500 platforms worldwide contributing to the offshore oil and gas production industry. In the North Sea there are around 500 platforms in place. There are many factors to be considered in planning for platform decommissioning and the evaluation of options for removal and disposal. The environmental impact, technical feasibility, safety and cost factors all have to be considered. This presentation considers what information is available about the overall decommissioning costs for the North Sea and the costs of different removal and disposal options for individual platforms. 2 figs., 1 tab

  5. Whole-genome comparison of two Campylobacter jejuni isolates of the same sequence type reveals multiple loci of different ancestral lineage.

    Directory of Open Access Journals (Sweden)

    Patrick J Biggs

    Full Text Available Campylobacter jejuni ST-474 is the most important human enteric pathogen in New Zealand, and yet this genotype is rarely found elsewhere in the world. Insight into the evolution of this organism was gained by a whole genome comparison of two ST-474, flaA SVR-14 isolates and other available C. jejuni isolates and genomes. The two isolates were collected from different sources, human (H22082 and retail poultry (P110b, at the same time and from the same geographical location. Solexa sequencing of each isolate resulted in ~1.659 Mb (H22082 and ~1.656 Mb (P110b of assembled sequences within 28 (H22082 and 29 (P110b contigs. We analysed 1502 genes for which we had sequences within both ST-474 isolates and within at least one of 11 C. jejuni reference genomes. Although 94.5% of genes were identical between the two ST-474 isolates, we identified 83 genes that differed by at least one nucleotide, including 55 genes with non-synonymous substitutions. These covered 101 kb and contained 672 point differences. We inferred that 22 (3.3% of these differences were due to mutation and 650 (96.7% were imported via recombination. Our analysis estimated 38 recombinant breakpoints within these 83 genes, which correspond to recombination events affecting at least 19 loci regions and gives a tract length estimate of ~2 kb. This includes a ~12 kb region displaying non-homologous recombination in one of the ST-474 genomes, with the insertion of two genes, including ykgC, a putative oxidoreductase, and a conserved hypothetical protein of unknown function. Furthermore, our analysis indicates that the source of this recombined DNA is more likely to have come from C. jejuni strains that are more closely related to ST-474. This suggests that the rates of recombination and mutation are similar in order of magnitude, but that recombination has been much more important for generating divergence between the two ST-474 isolates.

  6. Transcriptome-Wide Profiling and Expression Analysis of Diploid and Autotetraploid Paulownia tomentosa × Paulownia fortunei under Drought Stress

    Science.gov (United States)

    Xu, Enkai; Fan, Guoqiang; Niu, Suyan; Zhao, Zhenli; Deng, Minjie; Dong, Yanpeng

    2014-01-01

    Paulownia is a fast-growing deciduous hardwood species native to China, which has high ecological and economic value. In an earlier study, we reported ploidy-dependent differences in Paulownia drought tolerance by the microscopic observations of the leaves. Autotetraploid Paulownia has a higher resistance to drought stress than their diploid relatives. In order to obtain genetic information on molecular mechanisms responses of Paulownia plants to drought, Illumina/Solexa Genome sequencing platform was used to de novo assemble the transcriptomes of leaves from diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei seedlings (PTF2 and PTF4 respectively) grown under control conditions and under drought stress and obtained 98,671 nonredundant unigenes. A comparative transcriptome analysis revealed that hundreds of unigenes were predicted to be involved mainly in ROS-scavenging system, amino acid and carbohydrate metabolism, plant hormone biosynthesis and signal transduction, while these unigenes exhibited differential transcript alteration of the two accessions. This study provides a comprehensive map of how P. tomentosa × P. fortunei responds to drought stress at physiological and molecular levels, which may help in understanding the mechanisms involve in water-deficit response and will be useful for further study of drought tolerance in woody plants. PMID:25405758

  7. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  8. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko; Tanaka, Tsuyoshi; Ohyanagi, Hajime; Hsing, Yue-Ie C.; Itoh, Takeshi

    2018-01-01

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  9. Product Platform Replacements

    DEFF Research Database (Denmark)

    Sköld, Martin; Karlsson, Christer

    2012-01-01

    . To shed light on this unexplored and growing managerial concern, the purpose of this explorative study is to identify operational challenges to management when product platforms are replaced. Design/methodology/approach – The study uses a longitudinal field-study approach. Two companies, Gamma and Omega...... replacement was chosen in each company. Findings – The study shows that platform replacements primarily challenge managers' existing knowledge about platform architectures. A distinction can be made between “width” and “height” in platform replacements, and it is crucial that managers observe this in order...... to challenge their existing knowledge about platform architectures. Issues on technologies, architectures, components and processes as well as on segments, applications and functions are identified. Practical implications – Practical implications are summarized and discussed in relation to a framework...

  10. Integration of the TNXYZ computer program inside the platform Salome

    International Nuclear Information System (INIS)

    Chaparro V, F. J.

    2014-01-01

    The present work shows the procedure carried out to integrate the code TNXYZ as a calculation tool at the graphical simulation platform Salome. The TNXYZ code propose a numerical solution of the neutron transport equation, in several groups of energy, steady-state and three-dimensional geometry. In order to discretized the variables of the transport equation, the code uses the method of discrete ordinates for the angular variable, and a nodal method for the spatial dependence. The Salome platform is a graphical environment designed for building, editing and simulating mechanical models mainly focused on the industry and unlike other software, in order to form a complete scheme of pre and post processing of information, to integrate and control an external source code. Before the integration the in the Salome platform TNXYZ code was upgraded. TNXYZ was programmed in the 90s using Fortran 77 compiler; for this reason the code was adapted to the characteristics of the current Fortran compilers; in addition, with the intention of extracting partial results over the process sequence, the original structure of the program underwent a modularization process, i.e. the main program was divided into sections where the code performs major operations. This procedure is controlled by the information module (YACS) on Salome platform, and it could be useful for a subsequent coupling with thermal-hydraulics codes. Finally, with the help of the Monte Carlo code Serpent several study cases were defined in order to check the process of integration; the verification process consisted in performing a comparison of the results obtained with the code executed as stand-alone and after modernized, integrated and controlled by the Salome platform. (Author)

  11. Open discovery: An integrated live Linux platform of Bioinformatics tools.

    Science.gov (United States)

    Vetrivel, Umashankar; Pilla, Kalabharath

    2008-01-01

    Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery - a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in.

  12. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation.

    Science.gov (United States)

    Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C

    2012-01-01

    The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  13. Multicenter validation of cancer gene panel-based next-generation sequencing for translational research and molecular diagnostics.

    Science.gov (United States)

    Hirsch, B; Endris, V; Lassmann, S; Weichert, W; Pfarr, N; Schirmacher, P; Kovaleva, V; Werner, M; Bonzheim, I; Fend, F; Sperveslage, J; Kaulich, K; Zacher, A; Reifenberger, G; Köhrer, K; Stepanow, S; Lerke, S; Mayr, T; Aust, D E; Baretton, G; Weidner, S; Jung, A; Kirchner, T; Hansmann, M L; Burbat, L; von der Wall, E; Dietel, M; Hummel, M

    2018-04-01

    The simultaneous detection of multiple somatic mutations in the context of molecular diagnostics of cancer is frequently performed by means of amplicon-based targeted next-generation sequencing (NGS). However, only few studies are available comparing multicenter testing of different NGS platforms and gene panels. Therefore, seven partner sites of the German Cancer Consortium (DKTK) performed a multicenter interlaboratory trial for targeted NGS using the same formalin-fixed, paraffin-embedded (FFPE) specimen of molecularly pre-characterized tumors (n = 15; each n = 5 cases of Breast, Lung, and Colon carcinoma) and a colorectal cancer cell line DNA dilution series. Detailed information regarding pre-characterized mutations was not disclosed to the partners. Commercially available and custom-designed cancer gene panels were used for library preparation and subsequent sequencing on several devices of two NGS different platforms. For every case, centrally extracted DNA and FFPE tissue sections for local processing were delivered to each partner site to be sequenced with the commercial gene panel and local bioinformatics. For cancer-specific panel-based sequencing, only centrally extracted DNA was analyzed at seven sequencing sites. Subsequently, local data were compiled and bioinformatics was performed centrally. We were able to demonstrate that all pre-characterized mutations were re-identified correctly, irrespective of NGS platform or gene panel used. However, locally processed FFPE tissue sections disclosed that the DNA extraction method can affect the detection of mutations with a trend in favor of magnetic bead-based DNA extraction methods. In conclusion, targeted NGS is a very robust method for simultaneous detection of various mutations in FFPE tissue specimens if certain pre-analytical conditions are carefully considered.

  14. Product Platform Modeling

    DEFF Research Database (Denmark)

    Pedersen, Rasmus

    for customisation of products. In many companies these changes in the business environment have created a controversy between the need for a wide variety of products offered to the marketplace and a desire to reduce variation within the company in order to increase efficiency. Many companies use the concept...... other. These groups can be varied and combined to form different product variants without increasing the internal variety in the company. Based on the Theory of Domains, the concept of encapsulation in the organ domain is introduced, and organs are formulated as platform elements. Included......This PhD thesis has the title Product Platform Modelling. The thesis is about product platforms and visual product platform modelling. Product platforms have gained an increasing attention in industry and academia in the past decade. The reasons are many, yet the increasing globalisation...

  15. Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries

    Science.gov (United States)

    Chatterjee, Aniruddha; Rodger, Euan J.; Stockwell, Peter A.; Weeks, Robert J.; Morison, Ian M.

    2012-01-01

    Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background. PMID:23193365

  16. SeqAnt: A web service to rapidly identify and annotate DNA sequence variations

    Directory of Open Access Journals (Sweden)

    Patel Viren

    2010-09-01

    Full Text Available Abstract Background The enormous throughput and low cost of second-generation sequencing platforms now allow research and clinical geneticists to routinely perform single experiments that identify tens of thousands to millions of variant sites. Existing methods to annotate variant sites using information from publicly available databases via web browsers are too slow to be useful for the large sequencing datasets being routinely generated by geneticists. Because sequence annotation of variant sites is required before functional characterization can proceed, the lack of a high-throughput pipeline to efficiently annotate variant sites can act as a significant bottleneck in genetics research. Results SeqAnt (Sequence Annotator is an open source web service and software package that rapidly annotates DNA sequence variants and identifies recessive or compound heterozygous loci in human, mouse, fly, and worm genome sequencing experiments. Variants are characterized with respect to their functional type, frequency, and evolutionary conservation. Annotated variants can be viewed on a web browser, downloaded in a tab-delimited text file, or directly uploaded in a BED format to the UCSC genome browser. To demonstrate the speed of SeqAnt, we annotated a series of publicly available datasets that ranged in size from 37 to 3,439,107 variant sites. The total time to completely annotate these data completely ranged from 0.17 seconds to 28 minutes 49.8 seconds. Conclusion SeqAnt is an open source web service and software package that overcomes a critical bottleneck facing research and clinical geneticists using second-generation sequencing platforms. SeqAnt will prove especially useful for those investigators who lack dedicated bioinformatics personnel or infrastructure in their laboratories.

  17. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus).

    Science.gov (United States)

    Han, Wei; Zhu, Yunfen; Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P 1.0, P puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans.

  18. Introducing Platform Interactions Model for Studying Multi-Sided Platforms

    DEFF Research Database (Denmark)

    Staykova, Kalina; Damsgaard, Jan

    2018-01-01

    Multi-Sided Platforms (MSPs) function as socio-technical entities that facilitate direct interactions between various affiliated to them constituencies through developing and managing IT architecture. In this paper, we aim to explain the nature of the platform interactions as key characteristic o...

  19. The ESA Geohazard Exploitation Platform

    Science.gov (United States)

    Bally, Philippe; Laur, Henri; Mathieu, Pierre-Philippe; Pinto, Salvatore

    2015-04-01

    Earthquakes represent one of the world's most significant hazards in terms both of loss of life and damages. In the first decade of the 21st century, earthquakes accounted for 60 percent of fatalities from natural disasters, according to the United Nations International Strategy for Disaster Reduction (UNISDR). To support mitigation activities designed to assess and reduce risks and improve response in emergency situations, satellite EO can be used to provide a broad range of geo-information services. This includes for instance crustal block boundary mapping to better characterize active faults, strain rate mapping to assess how rapidly faults are deforming, soil vulnerability mapping to help estimate how the soil is behaving in reaction to seismic phenomena, geo-information to assess the extent and intensity of the earthquake impact on man-made structures and formulate assumptions on the evolution of the seismic sequence, i.e. where local aftershocks or future main shocks (on nearby faults) are most likely to occur. In May 2012, the European Space Agency and the GEO Secretariat convened the International Forum on Satellite EO for Geohazards now known as the Santorini Conference. The event was the continuation of a series of international workshops such as those organized by the Geohazards Theme of the Integrated Global Observing Strategy Partnership. In Santorini the seismic community has set out a vision of the EO contribution to an operational global seismic risk program, which lead to the Geohazard Supersites and Natural Laboratories (GSNL) initiative. The initial contribution of ESA to suuport the GSNL was the first Supersites Exploitation Platform (SSEP) system in the framework of Grid Processing On Demand (GPOD), now followed by the Geohazard Exploitation Platform (GEP). In this presentation, we will describe the contribution of the GEP for exploiting satellite EO for geohazard risk assessment. It is supporting the GEO Supersites and has been further

  20. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    Science.gov (United States)

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  1. Next-Generation Sequencing of Antibody Display Repertoires

    Directory of Open Access Journals (Sweden)

    Romain Rouet

    2018-02-01

    Full Text Available In vitro selection technology has transformed the development of therapeutic monoclonal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity binders can be selected from diverse repertoires. Here, we review strategies for the next-generation sequencing (NGS of phage- and other antibody-display libraries, as well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation.

  2. Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™

    DEFF Research Database (Denmark)

    Fordyce, Sarah L; Mogensen, Helle Smidt; Børsting, Claus

    2015-01-01

    Second-generation sequencing (SGS) using Roche/454 and Illumina platforms has proved capable of sequencing the majority of the key forensic genetic STR systems. Given that Roche has announced that the 454 platforms will no longer be supported from 2015, focus should now be shifted to competing SGS...... platforms, such as the MiSeq (Illumina) and the Ion Personal Genome Machine (Ion PGM™; Thermo Fisher). There are currently several challenges faced with amplicon-based SGS STR typing in forensic genetics, including current lengths of amplicons for CE-typing and lack of uniform data analysis between......) analysis of sensitivity; (3) typing of mixtures; and (4) typing of biological crime case samples. Full profiles and concordant results between replicate SGS runs and CE-typing were observed for all control samples. Full profiles were seen with DNA input down to 50pg, with the exception of a single locus...

  3. Analysis of the transcriptome of blowfly Chrysomya megacephala (Fabricius) larvae in responses to different edible oils.

    Science.gov (United States)

    Zhang, Min; Yu, Hao; Yang, Yanyan; Song, Chao; Hu, Xinjun; Zhang, Guren

    2013-01-01

    Chrysomya megacephala (Fabricius), a prevalent necrophagous blowfly that is easily mass reared, is noted for being a mechanical vector of pathogenic microorganisms, a pollinator of numerous crops, and a resource insect in forensic investigation in the postmortem interval. In the present study, in order to comprehensively understand the physiological and biochemical functions of C. megacephala, we performed RNA-sequencing and digital gene expression (DGE) profiling using Solexa/Illumina sequencing technology. A total of 39,098,662 clean reads were assembled into 27,588 unigenes with a mean length of 768 nt. All unigenes were searched against the Nt database, Nr database, Swiss-Prot, Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genome (KEGG) with the BLASTn or BLASTx algorithm (E-valueinsect.

  4. Designing Interactions in Tourism Mediascape: Identification of Patterns for Mobile 2.0 Platform

    DEFF Research Database (Denmark)

    Tussyadiah, Iis; Fesenmaier, Daniel R.; Yoo, Youngjin

    2008-01-01

    This study uses pattern language theory in order to identify patterns of tourists’ interactions within their social networks while they are experiencing tourism destinations. The patterns were conceptualized from sequences of tourists’ stories and observers’ field notes through narrative analysis....... The identified patterns were then organized into a typical scenario of tourism experiences. The Mobile 2.0 platform is then characterized as an interactive mediascape that mediates tourists in situ.......This study uses pattern language theory in order to identify patterns of tourists’ interactions within their social networks while they are experiencing tourism destinations. The patterns were conceptualized from sequences of tourists’ stories and observers’ field notes through narrative analysis...

  5. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Salomon, Jesper; Søkilde, Rolf

    2009-01-01

    Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two...... technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate...... better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification....

  6. Design and control of integrated chromatography column sequences.

    Science.gov (United States)

    Andersson, Niklas; Löfgren, Anton; Olofsson, Marianne; Sellberg, Anton; Nilsson, Bernt; Tiainen, Peter

    2017-07-01

    To increase the productivity in biopharmaceutical production, a natural step is to introduce integrated continuous biomanufacturing which leads to fewer buffer and storage tanks, smaller sizes of integrated unit operations, and full automation of the operation. The main contribution of this work is to illustrate a methodology for design and control of a downstream process based on integrated column sequences. For small scale production, for example, pre-clinical studies, integrated column sequences can be implemented on a single chromatography system. This makes for a very efficient drug development platform. The proposed methodology is composed of four steps and is governed by a set of tools, that is presented, that makes the transition from batch separations to a complete integrated separation sequence as easy as possible. This methodology, its associated tools and the physical implementation is presented and illustrated on a case study where the target protein is separated from impurities through an integrated four column sequence. This article shows that the design and control of an integrated column sequence was successfully implemented for a tertiary protein separation problem. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:923-930, 2017. © 2017 American Institute of Chemical Engineers.

  7. Geoseq: a tool for dissecting deep-sequencing datasets

    Directory of Open Access Journals (Sweden)

    Homann Robert

    2010-10-01

    Full Text Available Abstract Background Datasets generated on deep-sequencing platforms have been deposited in various public repositories such as the Gene Expression Omnibus (GEO, Sequence Read Archive (SRA hosted by the NCBI, or the DNA Data Bank of Japan (ddbj. Despite being rich data sources, they have not been used much due to the difficulty in locating and analyzing datasets of interest. Results Geoseq http://geoseq.mssm.edu provides a new method of analyzing short reads from deep sequencing experiments. Instead of mapping the reads to reference genomes or sequences, Geoseq maps a reference sequence against the sequencing data. It is web-based, and holds pre-computed data from public libraries. The analysis reduces the input sequence to tiles and measures the coverage of each tile in a sequence library through the use of suffix arrays. The user can upload custom target sequences or use gene/miRNA names for the search and get back results as plots and spreadsheet files. Geoseq organizes the public sequencing data using a controlled vocabulary, allowing identification of relevant libraries by organism, tissue and type of experiment. Conclusions Analysis of small sets of sequences against deep-sequencing datasets, as well as identification of public datasets of interest, is simplified by Geoseq. We applied Geoseq to, a identify differential isoform expression in mRNA-seq datasets, b identify miRNAs (microRNAs in libraries, and identify mature and star sequences in miRNAS and c to identify potentially mis-annotated miRNAs. The ease of using Geoseq for these analyses suggests its utility and uniqueness as an analysis tool.

  8. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Jonas Binladen

    2007-02-01

    Full Text Available The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR reactions and subsequent sequencing runs have been unable to combine template DNA from multiple individuals, as homologous sequences cannot be subsequently assigned to their original sources.We use conventional PCR with 5'-nucleotide tagged primers to generate homologous DNA amplification products from multiple specimens, followed by sequencing through the high-throughput Genome Sequence 20 DNA Sequencing System (GS20, Roche/454 Life Sciences. Each DNA sequence is subsequently traced back to its individual source through 5'tag-analysis.We demonstrate that this new approach enables the assignment of virtually all the generated DNA sequences to the correct source once sequencing anomalies are accounted for (miss-assignment rate<0.4%. Therefore, the method enables accurate sequencing and assignment of homologous DNA sequences from multiple sources in single high-throughput GS20 run. We observe a bias in the distribution of the differently tagged primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution of the sequences as sorted by the second nucleotide of the dinucleotide tags. As the results are based on a single GS20 run, the general applicability of the approach requires confirmation. However, our experiments demonstrate that 5'primer tagging is a useful method in which the sequencing power of the GS20 can be applied to PCR-based assays of multiple homologous PCR products. The new approach will be of value to a broad range of research areas, such as those of comparative genomics, complete mitochondrial

  9. Standardization and quality management in next-generation sequencing.

    Science.gov (United States)

    Endrullat, Christoph; Glökler, Jörn; Franke, Philipp; Frohme, Marcus

    2016-09-01

    DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data.

  10. Tutoring math platform accessible for visually impaired people.

    Science.gov (United States)

    Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland

    2018-04-01

    There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genome Sequence of the Freshwater Yangtze Finless Porpoise.

    Science.gov (United States)

    Yuan, Yuan; Zhang, Peijun; Wang, Kun; Liu, Mingzhong; Li, Jing; Zheng, Jingsong; Wang, Ding; Xu, Wenjie; Lin, Mingli; Dong, Lijun; Zhu, Chenglong; Qiu, Qiang; Li, Songhai

    2018-04-16

    The Yangtze finless porpoise ( Neophocaena asiaeorientalis ssp. asiaeorientalis ) is a subspecies of the narrow-ridged finless porpoise ( N. asiaeorientalis ). In total, 714.28 gigabases (Gb) of raw reads were generated by whole-genome sequencing of the Yangtze finless porpoise, using an Illumina HiSeq 2000 platform. After filtering the low-quality and duplicated reads, we assembled a draft genome of 2.22 Gb, with contig N50 and scaffold N50 values of 46.69 kilobases (kb) and 1.71 megabases (Mb), respectively. We identified 887.63 Mb of repetitive sequences and predicted 18,479 protein-coding genes in the assembled genome. The phylogenetic tree showed a relationship between the Yangtze finless porpoise and the Yangtze River dolphin, which diverged approximately 20.84 million years ago. In comparisons with the genomes of 10 other mammals, we detected 44 species-specific gene families, 164 expanded gene families, and 313 positively selected genes in the Yangtze finless porpoise genome. The assembled genome sequence and underlying sequence data are available at the National Center for Biotechnology Information under BioProject accession number PRJNA433603.

  12. Whole-genome sequence of Clostridium lituseburense L74, isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus

    OpenAIRE

    Lee, Yookyung; Lim, Sooyeon; Rhee, Moon-Soo; Chang, Dong-Ho; Kim, Byoung-Chan

    2016-01-01

    Clostridium lituseburense L74 was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus collected in Yeong-dong, Chuncheongbuk-do, South Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession NZ_LITJ00000000. Keywords: Insect, Larval gut, Whole genome shot-gun sequencing

  13. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data

    Science.gov (United States)

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  14. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data.

    Science.gov (United States)

    Miller, Mark P; Knaus, Brian J; Mullins, Thomas D; Haig, Susan M

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25 bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  15. dictyExpress: a web-based platform for sequence data management and analytics in Dictyostelium and beyond.

    Science.gov (United States)

    Stajdohar, Miha; Rosengarten, Rafael D; Kokosar, Janez; Jeran, Luka; Blenkus, Domen; Shaulsky, Gad; Zupan, Blaz

    2017-06-02

    Dictyostelium discoideum, a soil-dwelling social amoeba, is a model for the study of numerous biological processes. Research in the field has benefited mightily from the adoption of next-generation sequencing for genomics and transcriptomics. Dictyostelium biologists now face the widespread challenges of analyzing and exploring high dimensional data sets to generate hypotheses and discovering novel insights. We present dictyExpress (2.0), a web application designed for exploratory analysis of gene expression data, as well as data from related experiments such as Chromatin Immunoprecipitation sequencing (ChIP-Seq). The application features visualization modules that include time course expression profiles, clustering, gene ontology enrichment analysis, differential expression analysis and comparison of experiments. All visualizations are interactive and interconnected, such that the selection of genes in one module propagates instantly to visualizations in other modules. dictyExpress currently stores the data from over 800 Dictyostelium experiments and is embedded within a general-purpose software framework for management of next-generation sequencing data. dictyExpress allows users to explore their data in a broader context by reciprocal linking with dictyBase-a repository of Dictyostelium genomic data. In addition, we introduce a companion application called GenBoard, an intuitive graphic user interface for data management and bioinformatics analysis. dictyExpress and GenBoard enable broad adoption of next generation sequencing based inquiries by the Dictyostelium research community. Labs without the means to undertake deep sequencing projects can mine the data available to the public. The entire information flow, from raw sequence data to hypothesis testing, can be accomplished in an efficient workspace. The software framework is generalizable and represents a useful approach for any research community. To encourage more wide usage, the backend is open

  16. Pulseq-Graphical Programming Interface: Open source visual environment for prototyping pulse sequences and integrated magnetic resonance imaging algorithm development.

    Science.gov (United States)

    Ravi, Keerthi Sravan; Potdar, Sneha; Poojar, Pavan; Reddy, Ashok Kumar; Kroboth, Stefan; Nielsen, Jon-Fredrik; Zaitsev, Maxim; Venkatesan, Ramesh; Geethanath, Sairam

    2018-03-11

    To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. ASAP: Amplification, sequencing & annotation of plastomes

    Directory of Open Access Journals (Sweden)

    Folta Kevin M

    2005-12-01

    comparative genomics studies. Conclusion This simple, inexpensive method now allows immediate access to plastid sequence, increasing experimental throughput and serving generally as a universal platform for plastid genome characterization. The method applies well to whole genome studies and speeds assessment of variability across species, making it a useful tool in plastid structural genomics.

  18. A middleware-based platform for the integration of bioinformatic services

    Directory of Open Access Journals (Sweden)

    Guzmán Llambías

    2015-08-01

    Full Text Available Performing Bioinformatic´s experiments involve an intensive access to distributed services and information resources through Internet. Although existing tools facilitate the implementation of workflow-oriented applications, they lack of capabilities to integrate services beyond low-scale applications, particularly integrating services with heterogeneous interaction patterns and in a larger scale. This is particularly required to enable a large-scale distributed processing of biological data generated by massive sequencing technologies. On the other hand, such integration mechanisms are provided by middleware products like Enterprise Service Buses (ESB, which enable to integrate distributed systems following a Service Oriented Architecture. This paper proposes an integration platform, based on enterprise middleware, to integrate Bioinformatics services. It presents a multi-level reference architecture and focuses on ESB-based mechanisms to provide asynchronous communications, event-based interactions and data transformation capabilities. The paper presents a formal specification of the platform using the Event-B model.

  19. ADMS Evaluation Platform

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-23

    Deploying an ADMS or looking to optimize its value? NREL offers a low-cost, low-risk evaluation platform for assessing ADMS performance. The National Renewable Energy Laboratory (NREL) has developed a vendor-neutral advanced distribution management system (ADMS) evaluation platform and is expanding its capabilities. The platform uses actual grid-scale hardware, large-scale distribution system models, and advanced visualization to simulate realworld conditions for the most accurate ADMS evaluation and experimentation.

  20. The 40Ar-39Ar dating of the metasomatites in the deep-fault zones of margin suture system of Siberian platform

    International Nuclear Information System (INIS)

    Savel'eva, V.B.; Travin, A.V.; Zyryanov, A.S.

    2003-01-01

    For clarifying the time sequence of metasomatites formation of diverse geochemical types in deep-fault zones of margin suture system of Siberian platform the 40 Ar- 39 Ar-isotope dating of their rock-forming minerals was performed. It was ascertained that formation of major metasomatic formations in the Baikal and Sayan branches of the margin suture system of Siberian platform was asynchronous, the time lag being in excess of 100 bl. years [ru

  1. MicroScope: a platform for microbial genome annotation and comparative genomics.

    Science.gov (United States)

    Vallenet, D; Engelen, S; Mornico, D; Cruveiller, S; Fleury, L; Lajus, A; Rouy, Z; Roche, D; Salvignol, G; Scarpelli, C; Médigue, C

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of

  2. Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes

    Science.gov (United States)

    Bruskiewich, Richard; Burris, Jason N.; Carrigan, Charlotte T.; Chase, Mark W.; Clarke, Neil D.; Covshoff, Sarah; dePamphilis, Claude W.; Edger, Patrick P.; Goh, Falicia; Graham, Sean; Greiner, Stephan; Hibberd, Julian M.; Jordon-Thaden, Ingrid; Kutchan, Toni M.; Leebens-Mack, James; Melkonian, Michael; Miles, Nicholas; Myburg, Henrietta; Patterson, Jordan; Pires, J. Chris; Ralph, Paula; Rolf, Megan; Sage, Rowan F.; Soltis, Douglas; Soltis, Pamela; Stevenson, Dennis; Stewart, C. Neal; Surek, Barbara; Thomsen, Christina J. M.; Villarreal, Juan Carlos; Wu, Xiaolei; Zhang, Yong; Deyholos, Michael K.; Wong, Gane Ka-Shu

    2012-01-01

    Next-generation sequencing plays a central role in the characterization and quantification of transcriptomes. Although numerous metrics are purported to quantify the quality of RNA, there have been no large-scale empirical evaluations of the major determinants of sequencing success. We used a combination of existing and newly developed methods to isolate total RNA from 1115 samples from 695 plant species in 324 families, which represents >900 million years of phylogenetic diversity from green algae through flowering plants, including many plants of economic importance. We then sequenced 629 of these samples on Illumina GAIIx and HiSeq platforms and performed a large comparative analysis to identify predictors of RNA quality and the diversity of putative genes (scaffolds) expressed within samples. Tissue types (e.g., leaf vs. flower) varied in RNA quality, sequencing depth and the number of scaffolds. Tissue age also influenced RNA quality but not the number of scaffolds ≥1000 bp. Overall, 36% of the variation in the number of scaffolds was explained by metrics of RNA integrity (RIN score), RNA purity (OD 260/230), sequencing platform (GAIIx vs HiSeq) and the amount of total RNA used for sequencing. However, our results show that the most commonly used measures of RNA quality (e.g., RIN) are weak predictors of the number of scaffolds because Illumina sequencing is robust to variation in RNA quality. These results provide novel insight into the methods that are most important in isolating high quality RNA for sequencing and assembling plant transcriptomes. The methods and recommendations provided here could increase the efficiency and decrease the cost of RNA sequencing for individual labs and genome centers. PMID:23185583

  3. Whole-genome sequence of Clostridium lituseburense L74, isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus

    Directory of Open Access Journals (Sweden)

    Yookyung Lee

    2016-03-01

    Full Text Available Clostridium lituseburense L74 was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus collected in Yeong-dong, Chuncheongbuk-do, South Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession NZ_LITJ00000000. Keywords: Insect, Larval gut, Whole genome shot-gun sequencing

  4. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics.

    Science.gov (United States)

    Timmermans, M J T N; Dodsworth, S; Culverwell, C L; Bocak, L; Ahrens, D; Littlewood, D T J; Pons, J; Vogler, A P

    2010-11-01

    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags ('barcodes'). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three 'bait' sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species 'barcodes' that currently use the cox1 gene only.

  5. Seqcrawler: biological data indexing and browsing platform.

    Science.gov (United States)

    Sallou, Olivier; Bretaudeau, Anthony; Roult, Aurelien

    2012-07-24

    Seqcrawler takes its roots in software like SRS or Lucegene. It provides an indexing platform to ease the search of data and meta-data in biological banks and it can scale to face the current flow of data. While many biological bank search tools are available on the Internet, mainly provided by large organizations to search their data, there is a lack of free and open source solutions to browse one's own set of data with a flexible query system and able to scale from a single computer to a cloud system. A personal index platform will help labs and bioinformaticians to search their meta-data but also to build a larger information system with custom subsets of data. The software is scalable from a single computer to a cloud-based infrastructure. It has been successfully tested in a private cloud with 3 index shards (pieces of index) hosting ~400 millions of sequence information (whole GenBank, UniProt, PDB and others) for a total size of 600 GB in a fault tolerant architecture (high-availability). It has also been successfully integrated with software to add extra meta-data from blast results to enhance users' result analysis. Seqcrawler provides a complete open source search and store solution for labs or platforms needing to manage large amount of data/meta-data with a flexible and customizable web interface. All components (search engine, visualization and data storage), though independent, share a common and coherent data system that can be queried with a simple HTTP interface. The solution scales easily and can also provide a high availability infrastructure.

  6. Seqcrawler: biological data indexing and browsing platform

    Directory of Open Access Journals (Sweden)

    Sallou Olivier

    2012-07-01

    Full Text Available Abstract Background Seqcrawler takes its roots in software like SRS or Lucegene. It provides an indexing platform to ease the search of data and meta-data in biological banks and it can scale to face the current flow of data. While many biological bank search tools are available on the Internet, mainly provided by large organizations to search their data, there is a lack of free and open source solutions to browse one’s own set of data with a flexible query system and able to scale from a single computer to a cloud system. A personal index platform will help labs and bioinformaticians to search their meta-data but also to build a larger information system with custom subsets of data. Results The software is scalable from a single computer to a cloud-based infrastructure. It has been successfully tested in a private cloud with 3 index shards (pieces of index hosting ~400 millions of sequence information (whole GenBank, UniProt, PDB and others for a total size of 600 GB in a fault tolerant architecture (high-availability. It has also been successfully integrated with software to add extra meta-data from blast results to enhance users’ result analysis. Conclusions Seqcrawler provides a complete open source search and store solution for labs or platforms needing to manage large amount of data/meta-data with a flexible and customizable web interface. All components (search engine, visualization and data storage, though independent, share a common and coherent data system that can be queried with a simple HTTP interface. The solution scales easily and can also provide a high availability infrastructure.

  7. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics.

    Science.gov (United States)

    Wang, Chen; Han, Jian; Liu, Chonghuai; Kibet, Korir Nicholas; Kayesh, Emrul; Shangguan, Lingfei; Li, Xiaoying; Fang, Jinggui

    2012-03-29

    MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved mi

  8. Identification of microRNAs from Amur grape (vitis amurensis Rupr. by deep sequencing and analysis of microRNA variations with bioinformatics

    Directory of Open Access Journals (Sweden)

    Wang Chen

    2012-03-01

    Full Text Available Abstract Background MicroRNA (miRNA is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr. is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Conclusions Deep sequencing of short RNAs from Amur grape flowers and berries identified 72

  9. CAFE: aCcelerated Alignment-FrEe sequence analysis.

    Science.gov (United States)

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu

    2017-07-03

    Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Genome sequence data from 17 accessions of Ensete ventricosum, a staple food crop for millions in Ethiopia

    Directory of Open Access Journals (Sweden)

    Zerihun Yemataw

    2018-06-01

    Full Text Available We present raw sequence reads and genome assemblies derived from 17 accessions of the Ethiopian orphan crop plant enset (Ensete ventricosum (Welw. Cheesman using the Illumina HiSeq and MiSeq platforms. Also presented is a catalogue of single-nucleotide polymorphisms inferred from the sequence data at an average density of approximately one per kilobase of genomic DNA.

  11. Data Platforms and Cities

    DEFF Research Database (Denmark)

    Blok, Anders; Courmont, Antoine; Hoyng, Rolien

    2017-01-01

    This section offers a series of joint reflections on (open) data platform from a variety of cases, from cycling, traffic and mapping to activism, environment and data brokering. Data platforms play a key role in contemporary urban governance. Linked to open data initiatives, such platforms are of...

  12. Mobile Platforms and Development Environments

    CERN Document Server

    Helal, Sumi; Li, Wengdong

    2012-01-01

    Mobile platform development has lately become a technological war zone with extremely dynamic and fluid movement, especially in the smart phone and tablet market space. This Synthesis lecture is a guide to the latest developments of the key mobile platforms that are shaping the mobile platform industry. The book covers the three currently dominant native platforms -- iOS, Android and Windows Phone -- along with the device-agnostic HTML5 mobile web platform. The lecture also covers location-based services (LBS) which can be considered as a platform in its own right. The lecture utilizes a sampl

  13. A Systems Approach towards an Intelligent and Self-Controlling Platform for Integrated Continuous Reaction Sequences**

    Science.gov (United States)

    Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V

    2015-01-01

    Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747

  14. ITS Platform North Denmark

    DEFF Research Database (Denmark)

    Lahrmann, Harry; Agerholm, Niels; Juhl, Jens

    2012-01-01

    This paper presents the project entitled “ITS Platform North Denmark” which is used as a test platform for Intelligent Transportation System (ITS) solutions. The platform consists of a newly developed GNSS/GPRS On Board Unit (OBU) to be installed in 500 cars, a backend server and a specially...

  15. Platform development supportedby gaming

    DEFF Research Database (Denmark)

    Mikkola, Juliana Hsuan; Hansen, Poul H. Kyvsgård

    2007-01-01

    The challenge of implementing industrial platforms in practice can be described as a configuration problem caused by high number of variables, which often have contradictory influences on the total performance of the firm. Consequently, the specific platform decisions become extremely complex......, possibly increasing the strategic risks for the firm. This paper reports preliminary findings on platform management process at LEGO, a Danish toy company.  Specifically, we report the process of applying games combined with simulations and workshops in the platform development. We also propose a framework...

  16. DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra.

    Science.gov (United States)

    Muth, Thilo; Weilnböck, Lisa; Rapp, Erdmann; Huber, Christian G; Martens, Lennart; Vaudel, Marc; Barsnes, Harald

    2014-02-07

    De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com .

  17. SSR_pipeline--computer software for the identification of microsatellite sequences from paired-end Illumina high-throughput DNA sequence data

    Science.gov (United States)

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (SSRs; for example, microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains three analysis modules along with a fourth control module that can be used to automate analyses of large volumes of data. The modules are used to (1) identify the subset of paired-end sequences that pass quality standards, (2) align paired-end reads into a single composite DNA sequence, and (3) identify sequences that possess microsatellites conforming to user specified parameters. Each of the three separate analysis modules also can be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc). All modules are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, Windows). The program suite relies on a compiled Python extension module to perform paired-end alignments. Instructions for compiling the extension from source code are provided in the documentation. Users who do not have Python installed on their computers or who do not have the ability to compile software also may choose to download packaged executable files. These files include all Python scripts, a copy of the compiled extension module, and a minimal installation of Python in a single binary executable. See program documentation for more information.

  18. Agaricus bisporus genome sequence: a commentary.

    Science.gov (United States)

    Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S

    2013-06-01

    The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and β-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Targeted sequencing of large genomic regions with CATCH-Seq.

    Directory of Open Access Journals (Sweden)

    Kenneth Day

    Full Text Available Current target enrichment systems for large-scale next-generation sequencing typically require synthetic oligonucleotides used as capture reagents to isolate sequences of interest. The majority of target enrichment reagents are focused on gene coding regions or promoters en masse. Here we introduce development of a customizable targeted capture system using biotinylated RNA probe baits transcribed from sheared bacterial artificial chromosome clone templates that enables capture of large, contiguous blocks of the genome for sequencing applications. This clone adapted template capture hybridization sequencing (CATCH-Seq procedure can be used to capture both coding and non-coding regions of a gene, and resolve the boundaries of copy number variations within a genomic target site. Furthermore, libraries constructed with methylated adapters prior to solution hybridization also enable targeted bisulfite sequencing. We applied CATCH-Seq to diverse targets ranging in size from 125 kb to 3.5 Mb. Our approach provides a simple and cost effective alternative to other capture platforms because of template-based, enzymatic probe synthesis and the lack of oligonucleotide design costs. Given its similarity in procedure, CATCH-Seq can also be performed in parallel with commercial systems.

  20. NeSSM: a Next-generation Sequencing Simulator for Metagenomics.

    Directory of Open Access Journals (Sweden)

    Ben Jia

    Full Text Available BACKGROUND: Metagenomics can reveal the vast majority of microbes that have been missed by traditional cultivation-based methods. Due to its extremely wide range of application areas, fast metagenome sequencing simulation systems with high fidelity are in great demand to facilitate the development and comparison of metagenomics analysis tools. RESULTS: We present here a customizable metagenome simulation system: NeSSM (Next-generation Sequencing Simulator for Metagenomics. Combining complete genomes currently available, a community composition table, and sequencing parameters, it can simulate metagenome sequencing better than existing systems. Sequencing error models based on the explicit distribution of errors at each base and sequencing coverage bias are incorporated in the simulation. In order to improve the fidelity of simulation, tools are provided by NeSSM to estimate the sequencing error models, sequencing coverage bias and the community composition directly from existing metagenome sequencing data. Currently, NeSSM supports single-end and pair-end sequencing for both 454 and Illumina platforms. In addition, a GPU (graphics processing units version of NeSSM is also developed to accelerate the simulation. By comparing the simulated sequencing data from NeSSM with experimental metagenome sequencing data, we have demonstrated that NeSSM performs better in many aspects than existing popular metagenome simulators, such as MetaSim, GemSIM and Grinder. The GPU version of NeSSM is more than one-order of magnitude faster than MetaSim. CONCLUSIONS: NeSSM is a fast simulation system for high-throughput metagenome sequencing. It can be helpful to develop tools and evaluate strategies for metagenomics analysis and it's freely available for academic users at http://cbb.sjtu.edu.cn/~ccwei/pub/software/NeSSM.php.

  1. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Qi-Xing Huang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are considered to be very important in regulating the growth, development, behavior and stress response in animals and plants in post-transcriptional gene regulation. Pinewood nematode, Bursaphelenchus xylophilus, is an important invasive plant parasitic nematode in Asia. To have a comprehensive knowledge about miRNAs of the nematode is necessary for further in-depth study on roles of miRNAs in the ecological adaptation of the invasive species. METHODS AND FINDINGS: Five small RNA libraries were constructed and sequenced by Illumina/Solexa deep-sequencing technology. A total of 810 miRNA candidates (49 conserved and 761 novel were predicted by a computational pipeline, of which 57 miRNAs (20 conserved and 37 novel encoded by 53 miRNA precursors were identified by experimental methods. Ten novel miRNAs were considered to be species-specific miRNAs of B. xylophilus. Comparison of expression profiles of miRNAs in the five small RNA libraries showed that many miRNAs exhibited obviously different expression levels in the third-stage dispersal juvenile and at a cold-stressed status. Most of the miRNAs exhibited obviously down-regulated expression in the dispersal stage. But differences among the three geographic libraries were not prominent. A total of 979 genes were predicted to be targets of these authentic miRNAs. Among them, seven heat shock protein genes were targeted by 14 miRNAs, and six FMRFamide-like neuropeptides genes were targeted by 17 miRNAs. A real-time quantitative polymerase chain reaction was used to quantify the mRNA expression levels of target genes. CONCLUSIONS: Basing on the fact that a negative correlation existed between the expression profiles of miRNAs and the mRNA expression profiles of their target genes (hsp, flp by comparing those of the nematodes at a cold stressed status and a normal status, we suggested that miRNAs might participate in ecological adaptation and behavior regulation of the

  2. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  3. Facies analysis and paleoenvironmental reconstruction of Upper Cretaceous sequences in the eastern Para-Tethys Basin, NW Iran

    Energy Technology Data Exchange (ETDEWEB)

    Omidvar, M.; Safari, A.; Vaziri-Moghaddam, H.; Ghalavand, H.

    2016-07-01

    Upper Cretaceous mixed carbonate-siliciclastic sequences are among the most important targets for hydrocarbon exploration in the Moghan area, located in the eastern Para-Tethys Basin. Despite of their significance, little is known about their facies characteristics and depositional environments. Detailed facies analysis and paleoenvironmental reconstruction of these sequences have been carried out in eight surface sections. Accordingly, four siliciclastic facies, eight carbonate facies and one volcanic facies have been recognized. Detailed facies descriptions and interpretations, together with the results of facies frequency analysis, standard facies models and Upper Cretaceous depositional models of Para-Tethys Basin, have been integrated and a non-rimmed carbonate platform is presented. This platform was affected by siliciclastic influx, in the form of coastal fan delta and submarine fans in the shallow- to deep-marine parts, respectively. This model is interpreted to be shallower in the central and northeastern parts of the Moghan area. Toward the southeast and southwest, this shallow platform turns into deep marine settings along steep slopes without remarkable marginal barriers. (Author)

  4. Disentangling the control of tectonics, eustasy, trophic conditions and climate on shallow-marine carbonate production during the Aalenian-Oxfordian interval: From the western France platform to the western Tethyan domain

    Science.gov (United States)

    Andrieu, Simon; Brigaud, Benjamin; Barbarand, Jocelyn; Lasseur, Eric; Saucède, Thomas

    2016-11-01

    The objective of this work is to improve our understanding of the processes controlling changes in the architecture and facies of intracontinental carbonate platforms. We examined the facies and sequence stratigraphy of Aalenian to Oxfordian limestones of western France. Seventy-seven outcrop sections were studied and thirty-one sedimentary facies identified in five depositional environments ranging from lower offshore to backshore. Platform evolution was reconstructed along a 500 km cross-section. Twenty-two depositional sequences were identified on the entire western France platform and correlated with European third-order sequences at the biozone level, demonstrating that eustasy was the major factor controlling the cyclic trend of accommodation. The tectonic subsidence rate was computed from accommodation measurements from the Aalenian to the Oxfordian in key localities. Tectonism controlled the sedimentation rate and platform architecture at a longer time scale. Tectonic subsidence triggered the demise of carbonate production at the Bathonian/Callovian boundary while the uplift made possible the recovery of carbonate platform from Caen to Le Mans during the mid Oxfordian. Topography of the Paleozoic basement mainly controlled lateral variations of paleodepth within the western France platform until the mid Bathonian. A synthesis of carbonate production in the western Tethyan domain at that time was conducted. Stages of high carbonate production during the Bajocian/Bathonian and the middle to late Oxfordian are synchronous with low δ13C, high eccentricity intervals, and rather dry climate promoting (1) evaporation and carbonate supersaturation, and (2) oligotrophic conditions. Periods of low carbonate production during the Aalenian and from the middle Callovian to early Oxfordian correlate with high δ13C and low eccentricity intervals, characterized by wet climate and less oligotrophic conditions. Such conditions tend to diminish growth potential of carbonate

  5. Comparison of Ion Personal Genome Machine Platforms for the Detection of Variants in BRCA1 and BRCA2.

    Science.gov (United States)

    Hwang, Sang Mee; Lee, Ki Chan; Lee, Min Seob; Park, Kyoung Un

    2018-01-01

    Transition to next generation sequencing (NGS) for BRCA1 / BRCA2 analysis in clinical laboratories is ongoing but different platforms and/or data analysis pipelines give different results resulting in difficulties in implementation. We have evaluated the Ion Personal Genome Machine (PGM) Platforms (Ion PGM, Ion PGM Dx, Thermo Fisher Scientific) for the analysis of BRCA1 /2. The results of Ion PGM with OTG-snpcaller, a pipeline based on Torrent mapping alignment program and Genome Analysis Toolkit, from 75 clinical samples and 14 reference DNA samples were compared with Sanger sequencing for BRCA1 / BRCA2 . Ten clinical samples and 14 reference DNA samples were additionally sequenced by Ion PGM Dx with Torrent Suite. Fifty types of variants including 18 pathogenic or variants of unknown significance were identified from 75 clinical samples and known variants of the reference samples were confirmed by Sanger sequencing and/or NGS. One false-negative results were present for Ion PGM/OTG-snpcaller for an indel variant misidentified as a single nucleotide variant. However, eight discordant results were present for Ion PGM Dx/Torrent Suite with both false-positive and -negative results. A 40-bp deletion, a 4-bp deletion and a 1-bp deletion variant was not called and a false-positive deletion was identified. Four other variants were misidentified as another variant. Ion PGM/OTG-snpcaller showed acceptable performance with good concordance with Sanger sequencing. However, Ion PGM Dx/Torrent Suite showed many discrepant results not suitable for use in a clinical laboratory, requiring further optimization of the data analysis for calling variants.

  6. Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs.

    Directory of Open Access Journals (Sweden)

    Xinhua Hou

    Full Text Available MicroRNAs (miRNAs are short, single-stranded non-coding RNAs that repress their target genes by binding their 3' UTRs. These RNAs play critical roles in myogenesis. To gain knowledge about miRNAs involved in the regulation of myogenesis, porcine longissimus muscles were collected from 18 developmental stages (33-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, 100- and 105-day post-gestation fetuses, 0 and 10-day postnatal piglets and adult pigs to identify miRNAs using Solexa sequencing technology. We detected 197 known miRNAs and 78 novel miRNAs according to comparison with known miRNAs in the miRBase (release 17.0 database. Moreover, variations in sequence length and single nucleotide polymorphisms were also observed in 110 known miRNAs. Expression analysis of the 11 most abundant miRNAs were conducted using quantitative PCR (qPCR in eleven tissues (longissimus muscles, leg muscles, heart, liver, spleen, lung, kidney, stomach, small intestine and colon, and the results revealed that ssc-miR-378, ssc-miR-1 and ssc-miR-206 were abundantly expressed in skeletal muscles. During skeletal muscle development, the expression level of ssc-miR-378 was low at 33 days post-coitus (dpc, increased at 65 and 90 dpc, peaked at postnatal day 0, and finally declined and maintained a comparatively stable level. This expression profile suggested that ssc-miR-378 was a new candidate miRNA for myogenesis and participated in skeletal muscle development in pigs. Target prediction and KEGG pathway analysis suggested that bone morphogenetic protein 2 (BMP2 and mitogen-activated protein kinase 1 (MAPK1, both of which were relevant to proliferation and differentiation, might be the potential targets of miR-378. Luciferase activities of report vectors containing the 3'UTR of porcine BMP2 or MAPK1 were downregulated by miR-378, which suggested that miR-378 probably regulated myogenesis though the regulation of these two genes.

  7. A Platform for the Implementation of Adaptive On-line Courses: Description and Teachers’ Point of View

    Directory of Open Access Journals (Sweden)

    Julián Moreno Cadavid

    2014-10-01

    Full Text Available Adaptation is a desirable feature in on-line courses which allows for the consideration of students particular characteristics and needs. However, it is not common for teachers to embrace technologies related to this feature. This phenomenon may be mainly attributed to: a unawareness of appropriate authoring tools, and/or b resistance to their use. Regarding this panorama, this research has two purposes. The first purpose is to present a web platform to create adaptive on-line courses that considers three adaptive functionalities: curriculum sequencing, content presentation and assessment. The second purpose is to present a validation for such platform with real users, more specifically, 51 teachers of K-12. The obtained results show that even if there was general distrust while using the platform, there was also a overall interest in rely on a tool that grants teachers in providing an individualized learning experience.

  8. Whole-genome sequence of Clostridium lituseburense L74, isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus.

    Science.gov (United States)

    Lee, Yookyung; Lim, Sooyeon; Rhee, Moon-Soo; Chang, Dong-Ho; Kim, Byoung-Chan

    2016-03-01

    Clostridium lituseburense L74 was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus collected in Yeong-dong, Chuncheongbuk-do, South Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession NZ_LITJ00000000.

  9. Platform Expansion Design as Strategic Choice

    DEFF Research Database (Denmark)

    Staykova, Kalina S.; Damsgaard, Jan

    2016-01-01

    In this paper, we address how the strategic choice of platform expansion design impacts the subse-quent platform strategy. We identify two distinct approaches to platform expansion – platform bun-dling and platform constellations, which currently co-exist. The purpose of this paper is to outline...

  10. A Typology of Multi-sided Platforms

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2015-01-01

    In this paper we address how the composition of a platform impacts the platform’s business model. By platform’s business model we mean platform features, platform architecture and platform governance. To this end, we construct the Platform Business Model Framework. We apply the framework to three...

  11. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B.; Gentry, Terry J. [Texas A and M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Forrest, Andrea K.; Holtzapple, Mark T. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Wilkinson, Heather H.; Ebbole, Daniel J. [Texas A and M Univ., College Station, TX (United States). Dept. of Plant Pathology and Microbiology; Malfatti, Stephanie A.; Tringe, Susannah G. [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2010-09-15

    The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 C) and thermophilic (55 C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and {gamma}-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. (orig.)

  12. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B; Gentry, Terry J [Texas A and M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Forrest, Andrea K; Holtzapple, Mark T [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Wilkinson, Heather H; Ebbole, Daniel J [Texas A and M Univ., College Station, TX (United States). Dept. of Plant Pathology and Microbiology; Malfatti, Stephanie A; Tringe, Susannah G [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2010-09-15

    The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 C) and thermophilic (55 C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and {gamma}-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. (orig.)

  13. SCALCE: boosting sequence compression algorithms using locally consistent encoding.

    Science.gov (United States)

    Hach, Faraz; Numanagic, Ibrahim; Alkan, Can; Sahinalp, S Cenk

    2012-12-01

    The high throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for the computational infrastructure. Data management, storage and analysis have become major logistical obstacles for those adopting the new platforms. The requirement for large investment for this purpose almost signalled the end of the Sequence Read Archive hosted at the National Center for Biotechnology Information (NCBI), which holds most of the sequence data generated world wide. Currently, most HTS data are compressed through general purpose algorithms such as gzip. These algorithms are not designed for compressing data generated by the HTS platforms; for example, they do not take advantage of the specific nature of genomic sequence data, that is, limited alphabet size and high similarity among reads. Fast and efficient compression algorithms designed specifically for HTS data should be able to address some of the issues in data management, storage and communication. Such algorithms would also help with analysis provided they offer additional capabilities such as random access to any read and indexing for efficient sequence similarity search. Here we present SCALCE, a 'boosting' scheme based on Locally Consistent Parsing technique, which reorganizes the reads in a way that results in a higher compression speed and compression rate, independent of the compression algorithm in use and without using a reference genome. Our tests indicate that SCALCE can improve the compression rate achieved through gzip by a factor of 4.19-when the goal is to compress the reads alone. In fact, on SCALCE reordered reads, gzip running time can improve by a factor of 15.06 on a standard PC with a single core and 6 GB memory. Interestingly even the running time of SCALCE + gzip improves that of gzip alone by a factor of 2.09. When compared with the recently published BEETL, which aims to sort the (inverted) reads in lexicographic order for improving bzip2, SCALCE + gzip

  14. Dynamic Gaming Platform (DGP)

    Science.gov (United States)

    2009-04-01

    GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence

  15. EURESCOM Services Platform

    NARCIS (Netherlands)

    Nieuwenhuis, Lambertus Johannes Maria; van Halteren, Aart

    1999-01-01

    This paper presents the results of the EURESCOM Project 715. In February 1999, a large team of researchers from six European public network operators completed a two year period of cooperative experiments on a TINA-based environment, called the EURESCOM Services Platform (ESP). This platform

  16. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  17. Use of Four Next-Generation Sequencing Platforms to Determine HIV-1 Coreceptor Tropism

    Czech Academy of Sciences Publication Activity Database

    Archer, J.; Weber, Jan; Henry, K.; Winner, D.; Gibson, R.; Lee, L.; Paxinos, E.; Arts, E. J.; Robertson, D. L.; Mimms, L.; Quinones-Mateu, M. E.

    2012-01-01

    Roč. 7, č. 11 (2012), e49602/1-e49602/17 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LK11207 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV-1 tropism * V3 region * deep sequencing Subject RIV: EE - Microbiology, Virology Impact factor: 3.730, year: 2012 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0049602

  18. A Multi-Science Data Analysis Platform and the GeneROOT Use Case

    CERN Multimedia

    CERN. Geneva; Rademakers, Fons

    2017-01-01

    This talk will cover two areas of current research in the context of knowledge sharing between CERN openlab and the life science communities. The first area covers the development and prototyping of a multi-science data analysis platform build up around CERN developed technologies like, Zenodo, REANA and CVMFS. When finished this platform will support a complete data analysis life-cycle from data discovery, to data access, to data processing to end-user data analysis. The second area covers a specific use case, where HEP specific software like ROOT is used to store and process genomics data sequences. There are a number of handcrafted genomics data formats being used, like FASTQ, SAM, BAM, CRAM, etc. They range from pure ASCII to compressed binary formats. We will compare the features of these formats with the generic capabilities of ROOT’s TTree containers. Also we will show performance numbers of typical analysis scenarios.

  19. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    Directory of Open Access Journals (Sweden)

    Annika Brinkmann

    2017-11-01

    Full Text Available We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS-based identification of viral hemorrhagic fever (VHF agents and assess the feasibility of this approach in diagnostics.An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients.The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours.Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  20. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    Science.gov (United States)

    Brinkmann, Annika; Ergünay, Koray; Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina; Nitsche, Andreas

    2017-11-01

    We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  1. Towards a Disruptive Digital Platform Model

    DEFF Research Database (Denmark)

    Kazan, Erol

    that digital platforms leverage on three strategic design elements (i.e., business, architecture, and technology design) to create supportive conditions for facilitating disruption. To shed light on disruptive digital platforms, I opted for payment platforms as my empirical context and unit of analysis......Digital platforms are layered modular information technology architectures that support disruption. Digital platforms are particularly disruptive, as they facilitate the quick release of digital innovations that may replace established innovations. Yet, despite their support for disruption, we have...... not fully understood how such digital platforms can be strategically designed and configured to facilitate disruption. To that end, this thesis endeavors to unravel disruptive digital platforms from the supply perspective that are grounded on strategic digital platform design elements. I suggest...

  2. Groundwater Assessment Platform

    OpenAIRE

    Podgorski, Joel; Berg, Michael

    2018-01-01

    The Groundwater Assessment Platform is a free, interactive online GIS platform for the mapping, sharing and statistical modeling of groundwater quality data. The modeling allows users to take advantage of publicly available global datasets of various environmental parameters to produce prediction maps of their contaminant of interest.

  3. Validation of rice genome sequence by optical mapping

    Directory of Open Access Journals (Sweden)

    Pape Louise

    2007-08-01

    Full Text Available Abstract Background Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for accurate finishing of sequence build data. Results To facilitate ongoing sequencing finishing and validation efforts, we have constructed a whole-genome SwaI optical restriction map of the rice genome. The physical map consists of 14 contigs, covering 12 chromosomes, with a total genome size of 382.17 Mb; this value is about 11% smaller than original estimates. 9 of the 14 optical map contigs are without gaps, covering chromosomes 1, 2, 3, 4, 5, 7, 8 10, and 12 in their entirety – including centromeres and telomeres. Alignments between optical and in silico restriction maps constructed from IRGSP (International Rice Genome Sequencing Project and TIGR (The Institute for Genomic Research genome sequence sources are comprehensive and informative, evidenced by map coverage across virtually all published gaps, discovery of new ones, and characterization of sequence misassemblies; all totalling ~14 Mb. Furthermore, since optical maps are ordered restriction maps, identified discordances are pinpointed on a reliable physical scaffold providing an independent resource for closure of gaps and rectification of misassemblies. Conclusion Analysis of sequence and optical mapping data effectively validates genome sequence assemblies constructed from large, repeat-rich genomes. Given this conclusion we envision new applications of such single molecule analysis that will merge advantages offered by high-resolution optical maps with inexpensive, but short sequence reads generated by emerging sequencing platforms. Lastly, map construction techniques presented here points the way to new types of comparative genome analysis that would focus on discernment of

  4. Preparing for a Product Platform

    DEFF Research Database (Denmark)

    Fiil-Nielsen, Ole; Munk, Lone; Mortensen, Niels Henrik

    2005-01-01

    on commonalities and similarities in the product family, and variance should be based on customer demands. To relate these terms and to improve the basis on which decisions are made, we need a way of visualizing the hierarchy of the product family as well as the commonality and variance. This visualization method...... of the platform or ensuring that the platform can meet future demands will be very useful in the preparation process of a platform synthesis as well as in the updating or reengineering of an existing product development platform.......Experience in the industry as well as recent related scientific publications show the benefits of product development platforms. Companies use platforms to develop not a single but multiple products (i.e. a product family) simultaneously. When these product development projects are coordinated...

  5. Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

    Science.gov (United States)

    Clarke, Wayne E.; Parkin, Isobel A.; Gajardo, Humberto A.; Gerhardt, Daniel J.; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G.; Snowdon, Rod J.; Federico, Maria L.; Iniguez-Luy, Federico L.

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species. PMID:24312619

  6. IVAG: An Integrative Visualization Application for Various Types of Genomic Data Based on R-Shiny and the Docker Platform.

    Science.gov (United States)

    Lee, Tae-Rim; Ahn, Jin Mo; Kim, Gyuhee; Kim, Sangsoo

    2017-12-01

    Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.

  7. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    Science.gov (United States)

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the

  8. The Logic of Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    Digital platforms are disruptive IT artifacts, because they facilitate the quick release of innovative platform derivatives from third parties (e.g., apps). This study endeavours to unravel the disruptive potential, caused by distinct designs and configurations of digital platforms on market...... environments. We postulate that the disruptive potential of digital platforms is determined by the degree of alignment among the business, technology and platform profiles. Furthermore, we argue that the design and configuration of the aforementioned three elements dictates the extent to which open innovation...... is permitted. To shed light on the disruptive potential of digital platforms, we opted for payment platforms as our unit of analysis. Through interviews with experts and payment providers, we seek to gain an in-depth appreciation of how contemporary digital payment platforms are designed and configured...

  9. Transactional Network Platform: Applications

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Lutes, Robert G.; Ngo, Hung; Underhill, Ronald M.

    2013-10-31

    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energy’s (DOE’s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop air conditioners and heat pump units (RTUs) and the electric grid using applications or "agents" that reside on the platform, on the equipment, on a local building controller or in the Cloud. The transactional network project is a multi-lab effort with Oakridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) also contributing to the effort. PNNL coordinated the project and also was responsible for the development of the transactional network (TN) platform and three different applications associated with RTUs. This document describes two applications or "agents" in details, and also summarizes the platform. The TN platform details are described in another companion document.

  10. Draft Genome Sequence of the Phytopathogenic Fungus Ganoderma boninense, the Causal Agent of Basal Stem Rot Disease on Oil Palm.

    Science.gov (United States)

    Utomo, Condro; Tanjung, Zulfikar Achmad; Aditama, Redi; Buana, Rika Fithri Nurani; Pratomo, Antonius Dony Madu; Tryono, Reno; Liwang, Tony

    2018-04-26

    Ganoderma boninense is the dominant fungal pathogen of basal stem rot (BSR) disease on Elaeis guineensis We sequenced the nuclear genome of mycelia using both Illumina and Pacific Biosciences platforms for assembly of scaffolds. The draft genome comprised 79.24 Mb, 495 scaffolds, and 26,226 predicted coding sequences. Copyright © 2018 Utomo et al.

  11. Transcriptional profiling of endocrine cerebro-osteodysplasia using microarray and next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Piya Lahiry

    Full Text Available BACKGROUND: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-generation sequencing can offer a richer and more comprehensive picture. METHODOLOGY/PRINCIPAL FINDINGS: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-generation mRNA sequencing (mRNA-seq of skin fibroblasts from ECO-affected subjects. We then validated a subset of differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain reaction (qRT-PCR. Finally, we used gene ontology (GO to identify critical pathways and processes that were abnormal according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially expressed genes with much better correlation to qRT-PCR results than the microarray (r² = 0.794 and 0.137, respectively. Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways. CONCLUSIONS/SIGNIFICANCE: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the microarray. The two platforms generated different but complementary hypotheses for further evaluation.

  12. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics.

    Science.gov (United States)

    Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko

    2017-07-12

    Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.

  13. Vertical Relationships within Platform Marketplaces

    Directory of Open Access Journals (Sweden)

    Mark J. Tremblay

    2016-07-01

    Full Text Available In two-sided markets a platform allows consumers and sellers to interact by creating sub-markets within the platform marketplace. For example, Amazon has sub-markets for all of the different product categories available on its site, and smartphones have sub-markets for different types of applications (gaming apps, weather apps, map apps, ridesharing apps, etc.. The network benefits between consumers and sellers depend on the mode of competition within the sub-markets: more competition between sellers lowers product prices, increases the surplus consumers receive from a sub-market, and makes platform membership more desirable for consumers. However, more competition also lowers profits for a seller which makes platform membership less desirable for a seller and reduces seller entry and the number of sub-markets available on the platform marketplace. This dynamic between seller competition within a sub-market and agents’ network benefits leads to platform pricing strategies, participation decisions by consumers and sellers, and welfare results that depend on the mode of competition. Thus, the sub-market structure is important when investigating platform marketplaces.

  14. The vacuum platform

    Science.gov (United States)

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  15. E-learning platform for automated testing of electronic circuits using signature analysis method

    Science.gov (United States)

    Gherghina, Cǎtǎlina; Bacivarov, Angelica; Bacivarov, Ioan C.; Petricǎ, Gabriel

    2016-12-01

    Dependability of electronic circuits can be ensured only through testing of circuit modules. This is done by generating test vectors and their application to the circuit. Testability should be viewed as a concerted effort to ensure maximum efficiency throughout the product life cycle, from conception and design stage, through production to repairs during products operating. In this paper, is presented the platform developed by authors for training for testability in electronics, in general and in using signature analysis method, in particular. The platform allows highlighting the two approaches in the field namely analog and digital signature of circuits. As a part of this e-learning platform, it has been developed a database for signatures of different electronic components meant to put into the spotlight different techniques implying fault detection, and from this there were also self-repairing techniques of the systems with this kind of components. An approach for realizing self-testing circuits based on MATLAB environment and using signature analysis method is proposed. This paper analyses the benefits of signature analysis method and simulates signature analyzer performance based on the use of pseudo-random sequences, too.

  16. An Intelligent Automation Platform for Rapid Bioprocess Design.

    Science.gov (United States)

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.

  17. An Intelligent Automation Platform for Rapid Bioprocess Design

    Science.gov (United States)

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  18. Efficient alignment of pyrosequencing reads for re-sequencing applications

    Directory of Open Access Journals (Sweden)

    Russo Luis MS

    2011-05-01

    Full Text Available Abstract Background Over the past few years, new massively parallel DNA sequencing technologies have emerged. These platforms generate massive amounts of data per run, greatly reducing the cost of DNA sequencing. However, these techniques also raise important computational difficulties mostly due to the huge volume of data produced, but also because of some of their specific characteristics such as read length and sequencing errors. Among the most critical problems is that of efficiently and accurately mapping reads to a reference genome in the context of re-sequencing projects. Results We present an efficient method for the local alignment of pyrosequencing reads produced by the GS FLX (454 system against a reference sequence. Our approach explores the characteristics of the data in these re-sequencing applications and uses state of the art indexing techniques combined with a flexible seed-based approach, leading to a fast and accurate algorithm which needs very little user parameterization. An evaluation performed using real and simulated data shows that our proposed method outperforms a number of mainstream tools on the quantity and quality of successful alignments, as well as on the execution time. Conclusions The proposed methodology was implemented in a software tool called TAPyR--Tool for the Alignment of Pyrosequencing Reads--which is publicly available from http://www.tapyr.net.

  19. Tectonic resemblance of the Indian Platform, Pakistan with the Moesian Platform, Romania and strategy for exploration of hydrocarbons

    International Nuclear Information System (INIS)

    Memon, A.D.

    1994-01-01

    There is a remarkable tectonic resemblance between the indian Platform (Pakistan) and the Moesian Platform (Romania). As viewed in global tectonic perspective Moeslan and Indian Plates have played important role in Alpine Himalayan Orogeny; Moesian and Indian Platforms are extension of these respective plates. Characteristics features of both the platforms are block faulting which has effected not only the general tectonic framework but has also played important role in oil accumulation. Main producing rocks in the Moesian platform are Jurassic sandstones and cretaceous limestones while in the indian platform cretaceous sandstones are important reservoirs. The average geothermal gradient in the indian platform is 2.45 C/100m with the higher gradients in the central gas producing region. Geothermal gradients in the Moesian platform have an average value of 3 C/100m with higher gradients in the northern in the northern part. Some of the producing structures in both the platforms are remarkably similar, traps associated with normal faults are very important. Extensive exploration carried in the Moesian Platform makes it very important oil producing region of Romania. After the discovery of oil lower Sindh, serious exploration is being carried in the Indian platform. The paper deals with the similarities between these two important platforms. In the light of the studies of the Moesian platform, strategies or exploration of oil and gas in the Indian Platform are suggested. (author)

  20. Utilizing platforms in industrialized construction

    DEFF Research Database (Denmark)

    Bonev, Martin; Wörösch, Michael; Hvam, Lars

    2015-01-01

    platform strategies, this researchhighlights key aspects of adapting platform-based developed theory to industrialised construction.Building projects use different layers of product, process and logistics platforms to form the right cost– value ratio for the target market application, while modelling...

  1. Stratospheric Platforms for Monitoring Purposes

    International Nuclear Information System (INIS)

    Konigorski, D.; Gratzel, U.; Obersteiner, M.; Schneidereit, M.

    2010-01-01

    Stratospheric platforms are emerging systems based on challenging technology. Goal is to create a platform, payload, and mission design which is able to complement satellite services on a local scale. Applications are close to traditional satellite business in telecommunication, navigation, science, and earth observation and include for example mobile telecommunications, navigation augmentation, atmospheric research, or border control. Stratospheric platforms could potentially support monitoring activities related to safeguards, e.g. by imagery of surfaces, operational conditions of nuclear facilities, and search for undeclared nuclear activities. Stratospheric platforms are intended to be flown in an altitude band between 16 and 30 km, above 16-20 km to take advantage of usually lower winds facilitating station keeping, below 30 km to limit the challenges to achieve a reasonable payload at acceptable platform sizes. Stratospheric platforms could substitute satellites which are expensive and lack upgrade capabilities for new equipment. Furthermore they have practically an unlimited time over an area of interest. It is intended to keep the platforms operational and maintenance free on a 24/7 basis with an average deployment time of 3 years. Geostationary satellites lack resolution. Potential customers like Armed Forces, National Agencies and commercial customers have indicated interest in the use of stratospheric platforms. Governmental entities are looking for cheaper alternatives to communications and surveillance satellites and stratospheric platforms could offer the following potential advantages: Lower operational cost than satellite or UAV (Unmanned Aerial Vehicles) constellation (fleet required); Faster deployment than satellite constellation; Repositioning capability and ability to loiter as required; Persistent long-term real-time services over a fairly large regional spot; Surge capability: Able to extend capability (either monitoring or communications

  2. Adoption of Mobile Payment Platforms

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    Numerous mobile payment solutions, which rely on new disruptive technologies, have been launched on the payment market in recent years. But despite the growing number of mobile payment apps, very few solutions have turned to be successful as the majority of them fail to gain a critical mass...... of users. In this paper, we investigate successful platform adoption strategies by using the Reach and Range Framework for Multi-Sided Platforms as a strategic tool to which mobile payment providers can adhere in order to tackle some of the main challenges they face throughout the evolution...... of their platforms. The analysis indicates that successful mobile payment solutions tend to be launched as one-sided platforms and then gradually be expanded into being two-sided. Our study showcases that the success of mobile payment platforms lies with the ability of the platform to balance the reach (number...

  3. The Dynamics of Digital Platform Innovation

    DEFF Research Database (Denmark)

    Eaton, Ben

    2016-01-01

    Curated platforms provide an architectural basis for third parties to develop platform complements and for platform owners to control their implementation as a form of open innovation. The refusal to implement complements as innovations can cause tension between platform owners and developers. Th...

  4. Cross-platform learning: on the nature of children's learning from multiple media platforms.

    Science.gov (United States)

    Fisch, Shalom M

    2013-01-01

    It is increasingly common for an educational media project to span several media platforms (e.g., TV, Web, hands-on materials), assuming that the benefits of learning from multiple media extend beyond those gained from one medium alone. Yet research typically has investigated learning from a single medium in isolation. This paper reviews several recent studies to explore cross-platform learning (i.e., learning from combined use of multiple media platforms) and how such learning compares to learning from one medium. The paper discusses unique benefits of cross-platform learning, a theoretical mechanism to explain how these benefits might arise, and questions for future research in this emerging field. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  5. Challenges and trends in the development of a magnetoresistive biochip portable platform

    International Nuclear Information System (INIS)

    Martins, Veronica C.; Germano, Jose; Cardoso, Filipe A.; Loureiro, Joana; Cardoso, Susana; Sousa, Leonel; Piedade, Moises; Fonseca, Luis P.; Freitas, P.P.

    2010-01-01

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  6. Challenges and trends in the development of a magnetoresistive biochip portable platform

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Veronica C., E-mail: veronicamartins@ist.utl.p [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Germano, Jose [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Cardoso, Filipe A.; Loureiro, Joana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cardoso, Susana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Sousa, Leonel; Piedade, Moises [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Electrical and Computer Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Fonseca, Luis P. [IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Freitas, P.P. [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-05-15

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  7. Rapid and Easy Protocol for Quantification of Next-Generation Sequencing Libraries.

    Science.gov (United States)

    Hawkins, Steve F C; Guest, Paul C

    2018-01-01

    The emergence of next-generation sequencing (NGS) over the last 10 years has increased the efficiency of DNA sequencing in terms of speed, ease, and price. However, the exact quantification of a NGS library is crucial in order to obtain good data on sequencing platforms developed by the current market leader Illumina. Different approaches for DNA quantification are available currently and the most commonly used are based on analysis of the physical properties of the DNA through spectrophotometric or fluorometric methods. Although these methods are technically simple, they do not allow exact quantification as can be achieved using a real-time quantitative PCR (qPCR) approach. A qPCR protocol for DNA quantification with applications in NGS library preparation studies is presented here. This can be applied in various fields of study such as medical disorders resulting from nutritional programming disturbances.

  8. MerCat: a versatile k-mer counter and diversity estimator for database-independent property analysis obtained from metagenomic and/or metatranscriptomic sequencing data

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard A.; Panyala, Ajay R.; Glass, Kevin A.; Colby, Sean M.; Glaesemann, Kurt R.; Jansson, Georg C.; Jansson, Janet K.

    2017-02-21

    MerCat is a parallel, highly scalable and modular property software package for robust analysis of features in next-generation sequencing data. MerCat inputs include assembled contigs and raw sequence reads from any platform resulting in feature abundance counts tables. MerCat allows for direct analysis of data properties without reference sequence database dependency commonly used by search tools such as BLAST and/or DIAMOND for compositional analysis of whole community shotgun sequencing (e.g. metagenomes and metatranscriptomes).

  9. The European Photovoltaic Technology Platform

    International Nuclear Information System (INIS)

    Nowak, S.; Aulich, H.; Bal, J.L.; Dimmler, B.; Garnier, A.; Jongerden, G.; Luther, J.; Luque, A.; Milner, A.; Nelson, D.; Pataki, I.; Pearsall, N.; Perezagua, E.; Pietruszko, S.; Rehak, J.; Schellekens, E.; Shanker, A.; Silvestrini, G.; Sinke, W.; Willemsen, H.

    2006-05-01

    The European Photovoltaic Technology Platform is one of the European Technology Platforms, a new instrument proposed by the European Commission. European Technology Platforms (ETPs) are a mechanism to bring together all interested stakeholders to develop a long-term vision to address a specific challenge, create a coherent, dynamic strategy to achieve that vision and steer the implementation of an action plan to deliver agreed programmes of activities and optimise the benefits for all parties. The European Photovoltaic Technology Platform has recently been established to define, support and accompany the implementation of a coherent and comprehensive strategic plan for photovoltaics. The platform will mobilise all stakeholders sharing a long-term European vision for PV, helping to ensure that Europe maintains and improves its industrial position. The platform will realise a European Strategic Research Agenda for PV for the next decade(s). Guided by a Steering Committee of 20 high level decision-makers representing all relevant European PV Stakeholders, the European PV Technology Platform comprises 4 Working Groups dealing with the subjects policy and instruments; market deployment; science, technology and applications as well as developing countries and is supported by a secretariat

  10. Dental Implant Surrounding Marginal Bone Level Evaluation: Platform Switching versus Platform Matching—One-Year Retrospective Study

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2017-01-01

    Full Text Available The benefits and feasibility of platform switching have been discussed in several studies, reporting lesser crestal bone loss in platform-switched implants than in platform-matched implants. Objective. The aim of the present study was to observe the changes in vertical and horizontal marginal bone levels in platform-switched and platform-matched dental implants. Materials and Methods. 51 patients received 60 dental implants in the present study over a 1-year period. Measurement was performed between the implant shoulder and the most apical and horizontal marginal defect by periapical radiographs to examine the changes of peri-implant alveolar bone before and 12 months after prosthodontic restoration delivery. Results. These marginal bone measurements showed a bone gain of 0.23±0.58 mm in the vertical gap and 0.22±0.53 mm in the horizontal gap of platform matching, while in platform switching a bone gain of 0.93±1 mm (P<0.05 in the vertical gap and 0.50±0.56 mm in the horizontal gap was found. The average vertical gap reduction from the baseline until 12 months was 0.92±1.11 mm in platform switching and 0.29±0.85 mm in platform matching (P<0.05. Conclusions. Within the limitations of the present study, platform switching seemed to be more effective for a better peri-implant alveolar bone vertical and horizontal gap reduction at 1 year.

  11. Evaluating Unmanned Aerial Platforms for Cultural Heritage Large Scale Mapping

    Science.gov (United States)

    Georgopoulos, A.; Oikonomou, C.; Adamopoulos, E.; Stathopoulou, E. K.

    2016-06-01

    When it comes to large scale mapping of limited areas especially for cultural heritage sites, things become critical. Optical and non-optical sensors are developed to such sizes and weights that can be lifted by such platforms, like e.g. LiDAR units. At the same time there is an increase in emphasis on solutions that enable users to get access to 3D information faster and cheaper. Considering the multitude of platforms, cameras and the advancement of algorithms in conjunction with the increase of available computing power this challenge should and indeed is further investigated. In this paper a short review of the UAS technologies today is attempted. A discussion follows as to their applicability and advantages, depending on their specifications, which vary immensely. The on-board cameras available are also compared and evaluated for large scale mapping. Furthermore a thorough analysis, review and experimentation with different software implementations of Structure from Motion and Multiple View Stereo algorithms, able to process such dense and mostly unordered sequence of digital images is also conducted and presented. As test data set, we use a rich optical and thermal data set from both fixed wing and multi-rotor platforms over an archaeological excavation with adverse height variations and using different cameras. Dense 3D point clouds, digital terrain models and orthophotos have been produced and evaluated for their radiometric as well as metric qualities.

  12. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing.

    Science.gov (United States)

    Liu, Na; Yang, Jinghua; Guo, Shaogui; Xu, Yong; Zhang, Mingfang

    2013-01-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs involved in the post-transcriptional gene regulation and play a critical role in plant growth, development and stresses response. However less is known about miRNAs involvement in grafting behaviors, especially with the watermelon (Citrullus lanatus L.) crop, which is one of the most important agricultural crops worldwide. Grafting method is commonly used in watermelon production in attempts to improve its adaptation to abiotic and biotic stresses, in particular to the soil-borne fusarium wilt disease. In this study, Solexa sequencing has been used to discover small RNA populations and compare miRNAs on genome-wide scale in watermelon grafting system. A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known miRNA families and 15 novel miRNAs) and 47 (17 known miRNA families and 30 novel miRNAs) miRNAs were expressed significantly different in watermelon grafted on to bottle gourd and squash, respectively. MiRNAs expressed differentially when watermelon was grafted onto different rootstocks, suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expressions to regulate plant growth and development as well as adaptation to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular aspects of miRNA-mediated regulation in grafted watermelon. Obviously, this result would provide a basis for further unravelling the mechanism on how miRNAs information is exchanged between scion and rootstock in grafted

  13. The Educational Platform: Constructing Conceptual Frameworks.

    Science.gov (United States)

    Peca, Kathy; Isham, Mark

    2001-01-01

    The education faculty at Eastern New Mexico University used educational platforms as a means of developing the unit's conceptual framework. Faculty members developed personal platforms, then synthesized them into one curricular area platform. The resultant unit educational platform became the basis for the unit's conceptual framework, which…

  14. Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing

    DEFF Research Database (Denmark)

    Bohmann, Kristine; Monadjem, Ara; Noer, Christina Lehmkuhl

    2011-01-01

    Given the diversity of prey consumed by insectivorous bats, it is difficult to discern the composition of their diet using morphological or conventional PCR-based analyses of their faeces. We demonstrate the use of a powerful alternate tool, the use of the Roche FLX sequencing platform to deep......-sequence uniquely 5′ tagged insect-generic barcode cytochrome c oxidase I (COI) fragments, that were PCR amplified from faecal pellets of two free-tailed bat species Chaerephon pumilus and Mops condylurus (family: Molossidae). Although the analyses were challenged by the paucity of southern African insect COI...

  15. Chemical biology on the genome.

    Science.gov (United States)

    Balasubramanian, Shankar

    2014-08-15

    In this article I discuss studies towards understanding the structure and function of DNA in the context of genomes from the perspective of a chemist. The first area I describe concerns the studies that led to the invention and subsequent development of a method for sequencing DNA on a genome scale at high speed and low cost, now known as Solexa/Illumina sequencing. The second theme will feature the four-stranded DNA structure known as a G-quadruplex with a focus on its fundamental properties, its presence in cellular genomic DNA and the prospects for targeting such a structure in cels with small molecules. The final topic for discussion is naturally occurring chemically modified DNA bases with an emphasis on chemistry for decoding (or sequencing) such modifications in genomic DNA. The genome is a fruitful topic to be further elucidated by the creation and application of chemical approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. MytiBase: a knowledgebase of mussel (M. galloprovincialis transcribed sequences

    Directory of Open Access Journals (Sweden)

    Roch Philippe

    2009-02-01

    Full Text Available Abstract Background Although Bivalves are among the most studied marine organisms due to their ecological role, economic importance and use in pollution biomonitoring, very little information is available on the genome sequences of mussels. This study reports the functional analysis of a large-scale Expressed Sequence Tag (EST sequencing from different tissues of Mytilus galloprovincialis (the Mediterranean mussel challenged with toxic pollutants, temperature and potentially pathogenic bacteria. Results We have constructed and sequenced seventeen cDNA libraries from different Mediterranean mussel tissues: gills, digestive gland, foot, anterior and posterior adductor muscle, mantle and haemocytes. A total of 24,939 clones were sequenced from these libraries generating 18,788 high-quality ESTs which were assembled into 2,446 overlapping clusters and 4,666 singletons resulting in a total of 7,112 non-redundant sequences. In particular, a high-quality normalized cDNA library (Nor01 was constructed as determined by the high rate of gene discovery (65.6%. Bioinformatic screening of the non-redundant M. galloprovincialis sequences identified 159 microsatellite-containing ESTs. Clusters, consensuses, related similarities and gene ontology searches have been organized in a dedicated, searchable database http://mussel.cribi.unipd.it. Conclusion We defined the first species-specific catalogue of M. galloprovincialis ESTs including 7,112 unique transcribed sequences. Putative microsatellite markers were identified. This annotated catalogue represents a valuable platform for expression studies, marker validation and genetic linkage analysis for investigations in the biology of Mediterranean mussels.

  17. The Transcriptome Analysis and Comparison Explorer--T-ACE: a platform-independent, graphical tool to process large RNAseq datasets of non-model organisms.

    Science.gov (United States)

    Philipp, E E R; Kraemer, L; Mountfort, D; Schilhabel, M; Schreiber, S; Rosenstiel, P

    2012-03-15

    Next generation sequencing (NGS) technologies allow a rapid and cost-effective compilation of large RNA sequence datasets in model and non-model organisms. However, the storage and analysis of transcriptome information from different NGS platforms is still a significant bottleneck, leading to a delay in data dissemination and subsequent biological understanding. Especially database interfaces with transcriptome analysis modules going beyond mere read counts are missing. Here, we present the Transcriptome Analysis and Comparison Explorer (T-ACE), a tool designed for the organization and analysis of large sequence datasets, and especially suited for transcriptome projects of non-model organisms with little or no a priori sequence information. T-ACE offers a TCL-based interface, which accesses a PostgreSQL database via a php-script. Within T-ACE, information belonging to single sequences or contigs, such as annotation or read coverage, is linked to the respective sequence and immediately accessible. Sequences and assigned information can be searched via keyword- or BLAST-search. Additionally, T-ACE provides within and between transcriptome analysis modules on the level of expression, GO terms, KEGG pathways and protein domains. Results are visualized and can be easily exported for external analysis. We developed T-ACE for laboratory environments, which have only a limited amount of bioinformatics support, and for collaborative projects in which different partners work on the same dataset from different locations or platforms (Windows/Linux/MacOS). For laboratories with some experience in bioinformatics and programming, the low complexity of the database structure and open-source code provides a framework that can be customized according to the different needs of the user and transcriptome project.

  18. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  19. Flexible experimental FPGA based platform

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2016-01-01

    This paper presents an experimental flexible Field Programmable Gate Array (FPGA) based platform for testing and verifying digital controlled dc-dc converters. The platform supports different types of control strategies, dc-dc converter topologies and switching frequencies. The controller platform...... interface supporting configuration and reading of setup parameters, controller status and the acquisition memory in a simple way. The FPGA based platform, provides an easy way within education or research to use different digital control strategies and different converter topologies controlled by an FPGA...

  20. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    Science.gov (United States)

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  1. Product Platform Screening at LEGO

    DEFF Research Database (Denmark)

    Mortensen, Niels Henrik; Steen Jensen, Thomas; Nielsen, Ole Fiil

    2012-01-01

    Product platforms offer great benefits to companies developing new products in highly competitive markets. Literature describes how a single platform can be designed from a technical point of view, but rarely mentions how the process begins. How do companies identify possible platform candidates...... after a few changes had been applied to the initial process layout. This case study shows how companies must focus on a limited selection of simultaneous projects in order to keep focus. Primary stakeholders must be involved from the very beginning, and short presentations of the platform concepts...

  2. A fast and robust method for full genome sequencing of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Type 1 and Type 2

    DEFF Research Database (Denmark)

    Kvisgaard, Lise Kirstine; Hjulsager, Charlotte Kristiane; Fahnøe, Ulrik

    2013-01-01

    . In the present study, fast and robust methods for long range RT-PCR amplification and subsequent next generation sequencing (NGS) were developed and validated on nine Type 1 and nine Type 2 PRRSV viruses. The methods generated robust and reliable sequences both on primary material and cell culture adapted...... viruses and the protocols performed well on all three NGS platforms tested (Roche 454 FLX, Illumina HiSeq2000, and Ion Torrent PGM™ Sequencer). These methods will greatly facilitate the generation of more full genome PRRSV sequences globally....

  3. Reusable platform concepts

    International Nuclear Information System (INIS)

    Gudmestad, O.T.; Sparby, B.K.; Stead, B.L.

    1993-01-01

    There is an increasing need to reduce costs of offshore production facilities in order to make development of offshore fields profitable. For small fields with short production time there is in particular a need to investigate ways to reduce costs. The idea of platform reuse is for such fields particularly attractive. This paper will review reusable platform concepts and will discuss their range of application. Particular emphasis will be placed on technical limitations. Traditional concepts as jackups and floating production facilities will be discussed by major attention will be given to newly developed ideas for reuse of steel jackets and concrete structures. It will be shown how the operator for several fields can obtain considerable savings by applying such reusable platform concepts

  4. Disentangling Competition Among Platform Driven Strategic Groups

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric

    2015-01-01

    In platform-driven markets, competitive advantage is derived from superior platform design and configurations. For this reason, platform owners strive to create unique and inimitable platform configurals to maintain and extend their competitiveness within network economies. To disentangle firm...... competition within platform-driven markets, we opted for the UK mobile payment market as our empirical setting. By embracing the theoretical lens of strategic groups and digital platforms, this study supplements prior research by deriving a taxonomy of platform-driven strategic groups that is grounded...

  5. Tracking TCRβ sequence clonotype expansions during antiviral therapy using high-throughput sequencing of the hypervariable region

    Directory of Open Access Journals (Sweden)

    Mark W Robinson

    2016-04-01

    Full Text Available To maintain a persistent infection viruses such as hepatitis C virus (HCV employ a range of mechanisms that subvert protective T cell responses. The suppression of antigen-specific T cell responses by HCV hinders efforts to profile T cell responses during chronic infection and antiviral therapy. Conventional methods of detecting antigen-specific T cells utilise either antigen stimulation (e.g. ELISpot, proliferation assays, cytokine production or antigen-loaded tetramer staining. This limits the ability to profile T cell responses during chronic infection due to suppressed effector function and the requirement for prior knowledge of antigenic viral peptide sequences. Recently high-throughput sequencing (HTS technologies have been developed for the analysis of T cell repertoires. In the present study we have assessed the feasibility of HTS of the TCRβ complementarity determining region (CDR3 to track T cell expansions in an antigen-independent manner. Using sequential blood samples from HCV-infected individuals undergoing anti-viral therapy we were able to measure the population frequencies of >35,000 TCRβ sequence clonotypes in each individual over the course of 12 weeks. TRBV/TRBJ gene segment usage varied markedly between individuals but remained relatively constant within individuals across the course of therapy. Despite this stable TRBV/TRBJ gene segment usage, a number of TCRβ sequence clonotypes showed dramatic changes in read frequency. These changes could not be linked to therapy outcomes in the present study however the TCRβ CDR3 sequences with the largest fold changes did include sequences with identical TRBV/TRBJ gene segment usage and high joining region homology to previously published CDR3 sequences from HCV-specific T cells targeting the HLA-B*0801-restricted 1395HSKKKCDEL1403 and HLA-A*0101–restricted 1435ATDALMTGY1443 epitopes. The pipeline developed in this proof of concept study provides a platform for the design of

  6. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Science.gov (United States)

    Sharpe, Richard M; Koepke, Tyson; Harper, Artemus; Grimes, John; Galli, Marco; Satoh-Cruz, Mio; Kalyanaraman, Ananth; Evans, Katherine; Kramer, David; Dhingra, Amit

    2016-01-01

    High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  7. Platform development: implications for portfolio management

    DEFF Research Database (Denmark)

    Hsuan, Juliana; Hansen, Poul H. Kyvsgård

    2007-01-01

    " The challenge of implementing industrial platforms in practice can be described as a configuration problem caused by a considerable number of variables, which often have contradictory influences on the total performance of the firm. Consequently, the specific platform decisions become extremely...... complex, possibly increasing the strategic risks for the firm. This paper reports preliminary findings on platform management process at LEGO, a Danish toy company. Specifically, we report the process of applying games combined with simulations and workshops in the platform development. We also propose...... a framework, based on the portfolio management thinking to evaluate the degree of modularity embedded in a given platform and to which extent it is aligned with other platforms."...

  8. Stratifying the Develoment of Product Platforms

    DEFF Research Database (Denmark)

    Sköld, Martin; Karlsson, Christer

    2013-01-01

    companies develop platforms for different aims, purposes, and product scopes. Following on from this, the requirements for platform development resources, the ways of organizing platform development, and the implications for management styles have not been explored and are presumably varying. To start...... influencing the project length, requirements for platform development resources, principles for organizing, and implications for management styles....

  9. The COMET Sleep Research Platform.

    Science.gov (United States)

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  10. Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing.

    Directory of Open Access Journals (Sweden)

    Lei-Ming Sun

    Full Text Available MicroRNAs (miRNAs are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf. and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes.

  11. Identification of platform levels

    DEFF Research Database (Denmark)

    Mortensen, Niels Henrik

    2005-01-01

    reduction, ability to launch a wider product portfolio without increasing resources and reduction of complexity within the whole company. To support the multiple product development process, platform based product development has in many companies such as Philips, VW, Ford etc. proven to be a very effective...... product development in one step and therefore the objective of this paper is to identify levels of platform based product development. The structure of this paper is as follows. First the applied terminology for platforms will be briefly explained and then characteristics between single and multi product...... development will be examined. Based on the identification of the above characteristics five platform levels are described. The research presented in this paper is a result of MSc, Ph.D projects at the Technical University of Denmark and consultancy projects within the organisation of Institute of Product...

  12. Tools for integrated sequence-structure analysis with UCSF Chimera

    Directory of Open Access Journals (Sweden)

    Huang Conrad C

    2006-07-01

    Full Text Available Abstract Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit; (c can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is

  13. Sequence stratigraphy in a mixed carbonate-silicilastic depositional system (Middle Miocene; Styrian Basin, Austria)

    Science.gov (United States)

    Friebe, J. Georg

    1993-07-01

    The mixed carbonate-siliciclastic Weißenegg (Allo-) Formation records three depositional sequences corresponding approximately to the TB 2.3, TB 2.4 and TB 2.5 global cycles. Sea-level fluctuations were of the order of at least 30 m. Siliciclastic lowstand systems tracts comprise lignite deposits, reworked basement and tidal siltstones (above a tectonically enhanced sequence boundary) as well as coastal sand bars. Coastal sands of the transgressive systems tract contain distinct layers of well cemented nodules. They are interpreted as the first stage in hardground formation and record superimposed minor sea-level fluctuations. Coral patch reefs and rhodolith platforms developed during transgressive phases and were subsequently drowned and/or suffocated by siliciclastics during early highstand. Shallowing upwards siliciclastic parasequences, each terminated by a bank of rhodolith limestone, form the (late) highstand systems tract. The limestone beds record superimposed fourth-order transgressive pulses. Occasionally a carbonate highstand wedge developed. Lowstand carbonate shedding occurred where the top of a platform which suffered incipient drowning during highstand was near sealevel again during the following lowstand. Late highstand delta progradation is common.

  14. DNAApp: a mobile application for sequencing data analysis.

    Science.gov (United States)

    Nguyen, Phi-Vu; Verma, Chandra Shekhar; Gan, Samuel Ken-En

    2014-11-15

    There have been numerous applications developed for decoding and visualization of ab1 DNA sequencing files for Windows and MAC platforms, yet none exists for the increasingly popular smartphone operating systems. The ability to decode sequencing files cannot easily be carried out using browser accessed Web tools. To overcome this hurdle, we have developed a new native app called DNAApp that can decode and display ab1 sequencing file on Android and iOS. In addition to in-built analysis tools such as reverse complementation, protein translation and searching for specific sequences, we have incorporated convenient functions that would facilitate the harnessing of online Web tools for a full range of analysis. Given the high usage of Android/iOS tablets and smartphones, such bioinformatics apps would raise productivity and facilitate the high demand for analyzing sequencing data in biomedical research. The Android version of DNAApp is available in Google Play Store as 'DNAApp', and the iOS version is available in the App Store. More details on the app can be found at www.facebook.com/APDLab; www.bii.a-star.edu.sg/research/trd/apd.php The DNAApp user guide is available at http://tinyurl.com/DNAAppuser, and a video tutorial is available on Google Play Store and App Store, as well as on the Facebook page. samuelg@bii.a-star.edu.sg. © The Author 2014. Published by Oxford University Press.

  15. DNAApp: a mobile application for sequencing data analysis

    Science.gov (United States)

    Nguyen, Phi-Vu; Verma, Chandra Shekhar; Gan, Samuel Ken-En

    2014-01-01

    Summary: There have been numerous applications developed for decoding and visualization of ab1 DNA sequencing files for Windows and MAC platforms, yet none exists for the increasingly popular smartphone operating systems. The ability to decode sequencing files cannot easily be carried out using browser accessed Web tools. To overcome this hurdle, we have developed a new native app called DNAApp that can decode and display ab1 sequencing file on Android and iOS. In addition to in-built analysis tools such as reverse complementation, protein translation and searching for specific sequences, we have incorporated convenient functions that would facilitate the harnessing of online Web tools for a full range of analysis. Given the high usage of Android/iOS tablets and smartphones, such bioinformatics apps would raise productivity and facilitate the high demand for analyzing sequencing data in biomedical research. Availability and implementation: The Android version of DNAApp is available in Google Play Store as ‘DNAApp’, and the iOS version is available in the App Store. More details on the app can be found at www.facebook.com/APDLab; www.bii.a-star.edu.sg/research/trd/apd.php The DNAApp user guide is available at http://tinyurl.com/DNAAppuser, and a video tutorial is available on Google Play Store and App Store, as well as on the Facebook page. Contact: samuelg@bii.a-star.edu.sg PMID:25095882

  16. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Deep sequencing as a method of typing bluetongue virus isolates.

    Science.gov (United States)

    Rao, Pavuluri Panduranga; Reddy, Yella Narasimha; Ganesh, Kapila; Nair, Shreeja G; Niranjan, Vidya; Hegde, Nagendra R

    2013-11-01

    Bluetongue (BT) is an economically important endemic disease of livestock in tropics and subtropics. In addition, its recent spread to temperate regions like North America and Northern Europe is of serious concern. Rapid serotyping and characterization of BT virus (BTV) is an essential step in the identification of origin of the virus and for controlling the disease. Serotyping of BTV is typically performed by serum neutralization, and of late by nucleotide sequencing. This report describes the near complete genome sequencing and typing of two isolates of BTV using Illumina next generation sequencing platform. Two of the BTV RNAs were multiplexed with ten other unknown samples. Viral RNA was isolated and fragmented, reverse transcribed, the cDNA ends were repaired and ligated with a multiplex oligo. The genome library was amplified using primers complementary to the ligated oligo and subjected to single and paired end sequencing. The raw reads were assembled using a de novo method and reference-based assembly was performed based on the contig data. Near complete sequences of all segments of BTV were obtained with more than 20× coverage, and single read sequencing method was sufficient to identify the genotype and serotype of the virus. The two viruses used in this study were typed as BTV-1 and BTV-9E. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Turbine engine airfoil and platform assembly

    Science.gov (United States)

    Campbell, Christian X [Oviedo, FL; James, Allister W [Chuluota, FL; Morrison, Jay A [Oviedo, FL

    2012-07-31

    A turbine airfoil (22A) is formed by a first process using a first material. A platform (30A) is formed by a second process using a second material that may be different from the first material. The platform (30A) is assembled around a shank (23A) of the airfoil. One or more pins (36A) extend from the platform into holes (28) in the shank (23A). The platform may be formed in two portions (32A, 34A) and placed around the shank, enclosing it. The two platform portions may be bonded to each other. Alternately, the platform (30B) may be cast around the shank (23B) using a metal alloy with better castability than that of the blade and shank, which may be specialized for thermal tolerance. The pins (36A-36D) or holes for them do not extend to an outer surface (31) of the platform, avoiding stress concentrations.

  19. The Innovative Capabilities Of Digital Payment Platforms

    DEFF Research Database (Denmark)

    Kazan, Erol

    2015-01-01

    This study presents a model for studying the innovative capabilities of digital payment platforms in regards to open innovation integration and commercialization. We perceive digital platforms as layered modular IT artifacts, where platform governance and the configuration of platform layers impact...... the support for open innovation. The proposed model has been employed in a comparative case study between two digital payment platforms: Apple Pay and Google Wallet. The findings suggest that digital payment platforms make use of boundary resources to be highly integrative or integratable, which supports...... the intended conjoint commercialization efforts. Furthermore, the architectural design of digital platforms impacts the access to commercialization, resulting to an exclusion or inclusion strategy in accessing value opportunities. Our findings contribute to the open innovation and digital platform literature...

  20. PR-PR: cross-platform laboratory automation system.

    Science.gov (United States)

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  1. Wearable sensors network for health monitoring using e-Health platform

    Directory of Open Access Journals (Sweden)

    I. Orha

    2014-06-01

    Full Text Available In this paper we have proposed to present a wearable system for automatic recording of the main physiological parameters of the human body: body temperature, galvanic skin response, respiration rate, blood pressure, pulse, blood oxygen content, blood glucose content, electrocardiogram (ECG, electromyography(EMG, and patient position. To realize this system, we have developed a program that can read and automatically save in a file, the data from specialized sensors. The results can be later interpreted, by comparing them with known normal values and thus offering the possibility for a primary health status diagnosis by specialized personnel. The data received from the wearable sensors is taken by an interface circuit, provided with signal conditioning (filtering, amplification, etc. A microcontroller controls the data acquisition. In this applications we used an Arduino Uno standard development platform. The data are transferred to a PC, using serial communication port of Arduino platform and a communications shield. The whole process of health assessment is commissioned by a program developed by us in the Python programming language. The program provides automatic recording of the aforementioned parameters in a predetermined sequence, or only certain parameters are registered.

  2. Performance Measurement of Complex Event Platforms

    Directory of Open Access Journals (Sweden)

    Eva Zámečníková

    2016-12-01

    Full Text Available The aim of this paper is to find and compare existing solutions of complex event processing platforms (CEP. CEP platforms generally serve for processing and/or predicting of high frequency data. We intend to use CEP platform for processing of complex time series and integrate a solution for newly proposed method of decision making. The decision making process will be described by formal grammar. As there are lots of CEP solutions we will take the following characteristics under consideration - the processing in real time, possibility of processing of high volume data from multiple sources, platform independence, platform allowing integration with user solution and open license. At first we will talk about existing CEP tools and their specific way of use in praxis. Then we will mention the design of method for formalization of business rules used for decision making. Afterwards, we focus on two platforms which seem to be the best fit for integration of our solution and we will list the main pros and cons of each approach. Next part is devoted to benchmark platforms for CEP. Final part is devoted to experimental measurements of platform with integrated method for decision support.

  3. Bicycle: a bioinformatics pipeline to analyze bisulfite sequencing data.

    Science.gov (United States)

    Graña, Osvaldo; López-Fernández, Hugo; Fdez-Riverola, Florentino; González Pisano, David; Glez-Peña, Daniel

    2018-04-15

    High-throughput sequencing of bisulfite-converted DNA is a technique used to measure DNA methylation levels. Although a considerable number of computational pipelines have been developed to analyze such data, none of them tackles all the peculiarities of the analysis together, revealing limitations that can force the user to manually perform additional steps needed for a complete processing of the data. This article presents bicycle, an integrated, flexible analysis pipeline for bisulfite sequencing data. Bicycle analyzes whole genome bisulfite sequencing data, targeted bisulfite sequencing data and hydroxymethylation data. To show how bicycle overtakes other available pipelines, we compared them on a defined number of features that are summarized in a table. We also tested bicycle with both simulated and real datasets, to show its level of performance, and compared it to different state-of-the-art methylation analysis pipelines. Bicycle is publicly available under GNU LGPL v3.0 license at http://www.sing-group.org/bicycle. Users can also download a customized Ubuntu LiveCD including bicycle and other bisulfite sequencing data pipelines compared here. In addition, a docker image with bicycle and its dependencies, which allows a straightforward use of bicycle in any platform (e.g. Linux, OS X or Windows), is also available. ograna@cnio.es or dgpena@uvigo.es. Supplementary data are available at Bioinformatics online.

  4. The chemical toxicity of cesium in Indian mustard (Brassica juncea L.) seedlings

    International Nuclear Information System (INIS)

    Lai, Jin-long; Tao, Zong-ya; Fu, Qian; Han, Na; Wu, Guo; Zhang, Hong; Lu, Hong; Luo, Xue-gang

    2016-01-01

    To distinguish between the radiological and chemical effects of radiocesium, we study the chemical toxicity of cesium in the seedlings of Indian mustard (Brassica juncea L.). In this study, the experiment was designed in two factors and five levels random block design to investigate the interaction effects of Cs and K. Results showed that excessive Cs was one of the main factors influence the growth of Brassica juncea seedlings. And the toxicity of Cs in Brassica juncea is likely to be caused by Cs interacts with K-binding sites in essential K-dependent protein, either competes with K for essential biochemical functions, causing intracellular metabolic disturbance. To test the hypothesis that the toxicity of Cs might cause intracellular metabolic disturbance, next-generation sequencing (NGS)-based Illumina paired-end Solexa sequencing platform was employed to analysis the changes in gene expression, and understand the key genes in B. juncea seedlings responding to the toxicity of Cs. Based on the assembled de novo transcriptome, 2032 DEGs that play significant roles in the response to the toxicity of Cs were identified. Further analysis showed that excessive Cs is disturbance the auxin signal transduction pathway, and inhibited the indoleacetic acid-induced protein (AUX/IAA) genes expression eventually lead the seedlings growth and development be inhibited. The results suggest that disturbances to tryptophan metabolism might be linked to changes in growth. - Highlights: • Analyze the chemical toxicity of cesium in seedlings of Indian mustard. • Distinguish between the radiological and chemical effects of radiocesium. • 2032 DEGs that play significant roles in the response to Cs toxicity were identified. • Excessive Cs is disturbance the auxin signal transduction pathway.

  5. Cretaceous tropical carbonate platform changes used as paleoclimatic and paleoceanic indicators: the three lower Cretaceous platform crises

    Science.gov (United States)

    Arnaud-Vanneau, A.; Vrielynck, B.

    2009-04-01

    Carbonate platform sediments are of biogenic origin. More commonly the bioclasts are fragments of shells and skeletons. The bioclastic composition of a limestone may reflect the nature of biota inhabiting the area and a carbonate platform can be estimated as a living factory, which reflects the prevailing ecological factors. The rate of carbonate production is highest in the tropics, in oligotrophic environments, and in the photic zone. The rate of carbonate production varies greatly with temperature and nutrient input. Three types of biotic carbonate platform can be distinguished. The highest carbonate production is linked to oligotrophic carbonate platform characterized by the presence of assemblages with hermatypic corals. This type of platform is developed in shallow marine environment, nutrient poor water and warm tropical sea. A less efficient production of carbonate platform is related to mesotrophic environments in cooler and/or deeper water and associated to nutrient flux with, sometime, detrital input. The biota includes red algae, solitary coral and branching ahermatypic corals, common bryozoans, crinoids and echinoids. The less productive carbonate platform is the eutrophic muddy platform where the mud is due to the intense bacterial activity, probably related to strong nutrient flux. All changes of type of carbonate platform can be related to climatic and oceanic changes. Three platform crises occurred during lower Cretaceous time. They are followed by important turnover of microfauna (large benthic foraminifers) and microflora (marine algae). They start with the demise of the previous oligotrophic platform, they continue with oceanic perturbations, expression of which was the widespread deposition of organic-rich sediments, well expressed during Late Aptian/Albian and Cenomanian Turonian boundary and the replacement of previous oligotrophic platforms by mesotrophic to eutrophic platforms. The first crisis occurred during Valanginian and Hauterivian

  6. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  7. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  8. ADN-Viewer: a 3D approach for bioinformatic analyses of large DNA sequences.

    Science.gov (United States)

    Hérisson, Joan; Ferey, Nicolas; Gros, Pierre-Emmanuel; Gherbi, Rachid

    2007-01-20

    Most of biologists work on textual DNA sequences that are limited to the linear representation of DNA. In this paper, we address the potential offered by Virtual Reality for 3D modeling and immersive visualization of large genomic sequences. The representation of the 3D structure of naked DNA allows biologists to observe and analyze genomes in an interactive way at different levels. We developed a powerful software platform that provides a new point of view for sequences analysis: ADNViewer. Nevertheless, a classical eukaryotic chromosome of 40 million base pairs requires about 6 Gbytes of 3D data. In order to manage these huge amounts of data in real-time, we designed various scene management algorithms and immersive human-computer interaction for user-friendly data exploration. In addition, one bioinformatics study scenario is proposed.

  9. Distributed Fracturing Affecting the Isolated Carbonate Platforms, the Latemar Platform (Dolomites, North Italy).

    NARCIS (Netherlands)

    Boro, H.; Bertotti, G.V.; Hardebol, N.J.

    2012-01-01

    Isolated carbonate platforms are highly heterogeneous bodies and are typically composed of laterally juxtaposed first order domains with different sedimentological composition and organization, i.e. a well-stratified platform interior, a massive margin and a slope with steeply dipping and poorly

  10. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.

    Science.gov (United States)

    Falotico, Egidio; Vannucci, Lorenzo; Ambrosano, Alessandro; Albanese, Ugo; Ulbrich, Stefan; Vasquez Tieck, Juan Camilo; Hinkel, Georg; Kaiser, Jacques; Peric, Igor; Denninger, Oliver; Cauli, Nino; Kirtay, Murat; Roennau, Arne; Klinker, Gudrun; Von Arnim, Axel; Guyot, Luc; Peppicelli, Daniel; Martínez-Cañada, Pablo; Ros, Eduardo; Maier, Patrick; Weber, Sandro; Huber, Manuel; Plecher, David; Röhrbein, Florian; Deser, Stefan; Roitberg, Alina; van der Smagt, Patrick; Dillman, Rüdiger; Levi, Paul; Laschi, Cecilia; Knoll, Alois C; Gewaltig, Marc-Oliver

    2017-01-01

    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain-body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 "Neurorobotics" of the Human Brain Project (HBP). At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a

  11. Genomic GC-content affects the accuracy of 16S rRNA gene sequencing bsed microbial profiling due to PCR bias

    DEFF Research Database (Denmark)

    Laursen, Martin F.; Dalgaard, Marlene Danner; Bahl, Martin Iain

    2017-01-01

    Profiling of microbial community composition is frequently performed by partial 16S rRNA gene sequencing on benchtop platforms following PCR amplification of specific hypervariable regions within this gene. Accuracy and reproducibility of this strategy are two key parameters to consider, which may...... be influenced during all processes from sample collection and storage, through DNA extraction and PCR based library preparation to the final sequencing. In order to evaluate both the reproducibility and accuracy of 16S rRNA gene based microbial profiling using the Ion Torrent PGM platform, we prepared libraries...... be explained partly by premature read truncation, but to larger degree their genomic GC-content, which correlated negatively with the observed relative abundances, suggesting a PCR bias against GC-rich species during library preparation. Increasing the initial denaturation time during the PCR amplification...

  12. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials.

    Science.gov (United States)

    Mas-Moruno, Carlos; Fraioli, Roberta; Albericio, Fernando; Manero, José María; Gil, F Javier

    2014-05-14

    Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.

  13. Long Term Analysis of Adaptive Low-Power Instrument Platform Power and Battery Performance

    Science.gov (United States)

    Edwards, T.; Bowman, J. R.; Clauer, C. R.

    2017-12-01

    Operation of the Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) by the Magnetosphere-Ionosphere Science Team (MIST) at Virginia Tech has been ongoing for about 10 years. These instrument platforms are deployed on the East Antarctic Plateau in remote locations that are difficult to access regularly. The systems have been designed to operate unattended for at least 5 years. During the Austral summer, the systems charge batteries using solar panels and power is provided by the batteries during the winter months. If the voltage goes below a critical level, the systems go into hibernation and wait for voltage from the solar panels to initiate a restart sequence to begin operation and battery charging. Our first system was deployed on the East Antarctic Plateau in 2008 and we report here on an analysis of the power and battery performance over multiple years and provide an estimate for how long these systems can operate before major battery maintenance must be performed.

  14. Analysis of human plasma metabolites across different liquid chromatography/mass spectrometry platforms: Cross-platform transferable chemical signatures.

    Science.gov (United States)

    Telu, Kelly H; Yan, Xinjian; Wallace, William E; Stein, Stephen E; Simón-Manso, Yamil

    2016-03-15

    The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different liquid chromatography/mass spectrometry (LC/MS) platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC/MS platforms using reversed-phase chromatography and different chromatographic scales (conventional HPLC, UHPLC and nanoLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (relative standard deviation (RSD) HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. An Adaptive Hybrid Multiprocessor technique for bioinformatics sequence alignment

    KAUST Repository

    Bonny, Talal

    2012-07-28

    Sequence alignment algorithms such as the Smith-Waterman algorithm are among the most important applications in the development of bioinformatics. Sequence alignment algorithms must process large amounts of data which may take a long time. Here, we introduce our Adaptive Hybrid Multiprocessor technique to accelerate the implementation of the Smith-Waterman algorithm. Our technique utilizes both the graphics processing unit (GPU) and the central processing unit (CPU). It adapts to the implementation according to the number of CPUs given as input by efficiently distributing the workload between the processing units. Using existing resources (GPU and CPU) in an efficient way is a novel approach. The peak performance achieved for the platforms GPU + CPU, GPU + 2CPUs, and GPU + 3CPUs is 10.4 GCUPS, 13.7 GCUPS, and 18.6 GCUPS, respectively (with the query length of 511 amino acid). © 2010 IEEE.

  16. Next generation sequencing and its applications in forensic genetics

    DEFF Research Database (Denmark)

    Børsting, Claus; Morling, Niels

    2015-01-01

    articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs......It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have...... matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific...

  17. Morphological indicators of growth stages in carbonates platform evolution: comparison between present-day and Miocene platforms of Northern Borneo, Malaysia.

    Science.gov (United States)

    Pierson, B.; Menier, D.; Ting, K. K.; Chalabi, A.

    2012-04-01

    Satellite images of present-day reefs and carbonate platforms of the Celebes Sea, east of Sabah, Malaysia, exhibit large-scale features indicative of the recent evolution of the platforms. These include: (1) multiple, sub-parallel reef rims at the windward margin, suggestive of back-stepping of the platform margin; (2) contraction of the platform, possibly as a result of recent sea level fluctuations; (3) colonization of the internal lagoons by polygonal reef structures and (4) fragmentation of the platforms and creation of deep channels separating platforms that used to be part of a single entity. These features are analogue to what has been observed on seismic attribute maps of Miocene carbonate platforms of Sarawak. An analysis of several growth stages of a large Miocene platform, referred to as the Megaplatform, shows that the platform evolves in function of syn-depositional tectonic movements and sea level fluctuations that result in back-stepping of the margin, illustrated by multiple reef rims, contraction of the platform, the development of polygonal structures currently interpreted as karstic in origin and fragmentation of the megaplatform in 3 sub-entities separated by deep channels that precedes the final demise of the whole platform. Comparing similar features on present-day to platforms and Miocene platforms leads to a better understanding of the growth history of Miocene platforms and to a refined predictability of reservoir and non-reservoir facies distribution.

  18. ABI Base Recall: Automatic Correction and Ends Trimming of DNA Sequences.

    Science.gov (United States)

    Elyazghi, Zakaria; Yazouli, Loubna El; Sadki, Khalid; Radouani, Fouzia

    2017-12-01

    Automated DNA sequencers produce chromatogram files in ABI format. When viewing chromatograms, some ambiguities are shown at various sites along the DNA sequences, because the program implemented in the sequencing machine and used to call bases cannot always precisely determine the right nucleotide, especially when it is represented by either a broad peak or a set of overlaying peaks. In such cases, a letter other than A, C, G, or T is recorded, most commonly N. Thus, DNA sequencing chromatograms need manual examination: checking for mis-calls and truncating the sequence when errors become too frequent. The purpose of this paper is to develop a program allowing the automatic correction of these ambiguities. This application is a Web-based program powered by Shiny and runs under R platform for an easy exploitation. As a part of the interface, we added the automatic ends clipping option, alignment against reference sequences, and BLAST. To develop and test our tool, we collected several bacterial DNA sequences from different laboratories within Institut Pasteur du Maroc and performed both manual and automatic correction. The comparison between the two methods was carried out. As a result, we note that our program, ABI base recall, accomplishes good correction with a high accuracy. Indeed, it increases the rate of identity and coverage and minimizes the number of mismatches and gaps, hence it provides solution to sequencing ambiguities and saves biologists' time and labor.

  19. The catfish genome database cBARBEL: an informatic platform for genome biology of ictalurid catfish.

    Science.gov (United States)

    Lu, Jianguo; Peatman, Eric; Yang, Qing; Wang, Shaolin; Hu, Zhiliang; Reecy, James; Kucuktas, Huseyin; Liu, Zhanjiang

    2011-01-01

    The catfish genome database, cBARBEL (abbreviated from catfish Breeder And Researcher Bioinformatics Entry Location) is an online open-access database for genome biology of ictalurid catfish (Ictalurus spp.). It serves as a comprehensive, integrative platform for all aspects of catfish genetics, genomics and related data resources. cBARBEL provides BLAST-based, fuzzy and specific search functions, visualization of catfish linkage, physical and integrated maps, a catfish EST contig viewer with SNP information overlay, and GBrowse-based organization of catfish genomic data based on sequence similarity with zebrafish chromosomes. Subsections of the database are tightly related, allowing a user with a sequence or search string of interest to navigate seamlessly from one area to another. As catfish genome sequencing proceeds and ongoing quantitative trait loci (QTL) projects bear fruit, cBARBEL will allow rapid data integration and dissemination within the catfish research community and to interested stakeholders. cBARBEL can be accessed at http://catfishgenome.org.

  20. Towards a Framework of Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2014-01-01

    Digital platforms are disruptive information technology (IT) artifacts that erode conventional business logic associated with traditional market structures. This paper presents a framework for examining the disruptive potential of digital platforms whereby we postulate that the strategic interplay...... digital platforms purposely decouple platform layers, to foster open innovation and accelerate market disruption. This paper therefore represents a first concrete step aimed at unravelling the disruptive potential of digital platforms....... of governance regimes and platform layers is deterministic of whether disruptive derivatives are permitted to flourish. This framework has been employed in a comparative case study between centralized (i.e., PayPal) and decentralized (i.e., Coinkite) digital payment platforms to illustrate its applicability...

  1. Abnormal network flow detection based on application execution patterns from Web of Things (WoT) platforms.

    Science.gov (United States)

    Yoon, Young; Jung, Hyunwoo; Lee, Hana

    2018-01-01

    In this paper, we present a research work on a novel methodology of identifying abnormal behaviors at the underlying network monitor layer during runtime based on the execution patterns of Web of Things (WoT) applications. An execution pattern of a WoT application is a sequence of profiled time delays between the invocations of involved Web services, and it can be obtained from WoT platforms. We convert the execution pattern to a time sequence of network flows that are generated when the WoT applications are executed. We consider such time sequences as a whitelist. This whitelist reflects the valid application execution patterns. At the network monitor layer, our applied RETE algorithm examines whether any given runtime sequence of network flow instances does not conform to the whitelist. Through this approach, it is possible to interpret a sequence of network flows with regard to application logic. Given such contextual information, we believe that the administrators can detect and reason about any abnormal behaviors more effectively. Our empirical evaluation shows that our RETE-based algorithm outperforms the baseline algorithm in terms of memory usage.

  2. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Ravi K Patel

    Full Text Available Next generation sequencing (NGS technologies provide a high-throughput means to generate large amount of sequence data. However, quality control (QC of sequence data generated from these technologies is extremely important for meaningful downstream analysis. Further, highly efficient and fast processing tools are required to handle the large volume of datasets. Here, we have developed an application, NGS QC Toolkit, for quality check and filtering of high-quality data. This toolkit is a standalone and open source application freely available at http://www.nipgr.res.in/ngsqctoolkit.html. All the tools in the application have been implemented in Perl programming language. The toolkit is comprised of user-friendly tools for QC of sequencing data generated using Roche 454 and Illumina platforms, and additional tools to aid QC (sequence format converter and trimming tools and analysis (statistics tools. A variety of options have been provided to facilitate the QC at user-defined parameters. The toolkit is expected to be very useful for the QC of NGS data to facilitate better downstream analysis.

  3. Product Platform Development in Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer; Skold, Martin

    2011-01-01

    The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number o...... of platforms and product brands serve as the key dimensions when distinguishing the different strategies. Each strategy has its own challenges and raises various issues to deal with.......The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number...

  4. Extending the BEAGLE library to a multi-FPGA platform.

    Science.gov (United States)

    Jin, Zheming; Bakos, Jason D

    2013-01-19

    Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein's pruning algorithm is a standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been developed that includes optimized implementations of Felsenstein's pruning algorithm for various data parallel architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based platform called the Convey HC-1. The core calculation of our implementation, which includes both the phylogenetic likelihood function (PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform's peak memory bandwidth and the implementation's memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when compared with BEAGLE's CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE's GPU implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power efficiency of 1.7 Gflops per Watt. The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic inference requires high memory bandwidth and a design methodology that emphasizes high memory

  5. The universal modular platform

    International Nuclear Information System (INIS)

    North, R.B.

    1995-01-01

    A new and patented design for offshore wellhead platforms has been developed to meet a 'fast track' requirement for increased offshore production, from field locations not yet identified. The new design uses modular construction to allow for radical changes in the water depth of the final location and assembly line efficiency in fabrication. By utilizing high strength steels and structural support from the well conductors the new design accommodates all planned production requirements on a support structure significantly lighter and less expensive than the conventional design it replaces. Twenty two platforms based on the new design were ready for installation within 18 months of the project start. Installation of the new platforms began in 1992 for drilling support and 1993 for production support. The new design has become the Company standard for all future production platforms. Large saving and construction costs have been realized through its light weight, flexibility in both positioning and water depth, and its modular construction

  6. A comprehensive platform for highly multiplexed mammalian functional genetic screens

    Directory of Open Access Journals (Sweden)

    Cheung-Ong Kahlin

    2011-05-01

    Full Text Available Abstract Background Genome-wide screening in human and mouse cells using RNA interference and open reading frame over-expression libraries is rapidly becoming a viable experimental approach for many research labs. There are a variety of gene expression modulation libraries commercially available, however, detailed and validated protocols as well as the reagents necessary for deconvolving genome-scale gene screens using these libraries are lacking. As a solution, we designed a comprehensive platform for highly multiplexed functional genetic screens in human, mouse and yeast cells using popular, commercially available gene modulation libraries. The Gene Modulation Array Platform (GMAP is a single microarray-based detection solution for deconvolution of loss and gain-of-function pooled screens. Results Experiments with specially constructed lentiviral-based plasmid pools containing ~78,000 shRNAs demonstrated that the GMAP is capable of deconvolving genome-wide shRNA "dropout" screens. Further experiments with a larger, ~90,000 shRNA pool demonstrate that equivalent results are obtained from plasmid pools and from genomic DNA derived from lentivirus infected cells. Parallel testing of large shRNA pools using GMAP and next-generation sequencing methods revealed that the two methods provide valid and complementary approaches to deconvolution of genome-wide shRNA screens. Additional experiments demonstrated that GMAP is equivalent to similar microarray-based products when used for deconvolution of open reading frame over-expression screens. Conclusion Herein, we demonstrate four major applications for the GMAP resource, including deconvolution of pooled RNAi screens in cells with at least 90,000 distinct shRNAs. We also provide detailed methodologies for pooled shRNA screen readout using GMAP and compare next-generation sequencing to GMAP (i.e. microarray based deconvolution methods.

  7. Understanding the sequence preference of recurrent RNA building blocks using quantum chemistry: The intrastrand RNA dinucleotide platform

    Czech Academy of Sciences Publication Activity Database

    Mládek, Arnošt; Šponer, Judit E.; Kulhánek, P.; Lu, X.-J.; Olson, W.K.; Šponer, Jiří

    2012-01-01

    Roč. 8, č. 1 (2012), s. 335-347 ISSN 1549-9618 R&D Projects: GA AV ČR(CZ) IAA400040802; GA ČR(CZ) GAP208/10/2302; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GAP208/11/1822; GA ČR(CZ) GD203/09/H046 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : RNA dinucleotide platform * quantum-chemical calculation Subject RIV: BO - Biophysics Impact factor: 5.389, year: 2012

  8. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Directory of Open Access Journals (Sweden)

    Richard M Sharpe

    Full Text Available High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  9. High Performance Protein Sequence Database Scanning on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Adrianto Wirawan

    2009-01-01

    Full Text Available The enormous growth of biological sequence databases has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing rapidly as well. The recent emergence of low cost parallel multicore accelerator technologies has made it possible to reduce execution times of many bioinformatics applications. In this paper, we demonstrate how the Cell Broadband Engine can be used as a computational platform to accelerate two approaches for protein sequence database scanning: exhaustive and heuristic. We present efficient parallelization techniques for two representative algorithms: the dynamic programming based Smith–Waterman algorithm and the popular BLASTP heuristic. Their implementation on a Playstation®3 leads to significant runtime savings compared to corresponding sequential implementations.

  10. Whole genome sequencing of Mycobacterium tuberculosis SB24 isolated from Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Noraini Philip

    2016-09-01

    Full Text Available Mycobacterium tuberculosis (M. tuberculosis is the causative agent of tuberculosis (TB that causes millions of death every year. We have sequenced the genome of M. tuberculosis isolated from cerebrospinal fluid (CSF of a patient diagnosed with tuberculous meningitis (TBM. The isolated strain was referred as M. tuberculosis SB24. Genomic DNA of the M. tuberculosis SB24 was extracted and subjected to whole genome sequencing using PacBio platform. The draft genome size of M. tuberculosis SB24 was determined to be 4,452,489 bp with a G + C content of 65.6%. The whole genome shotgun project has been deposited in NCBI SRA under the accession number SRP076503.

  11. Next-generation sequencing: hype and hope for development of personalized radiation therapy?

    International Nuclear Information System (INIS)

    Tinhofer, Ingeborg; Niehr, Franziska; Konschak, Robert; Liebs, Sandra; Munz, Matthias; Stenzinger, Albrecht; Weichert, Wilko; Keilholz, Ulrich; Budach, Volker

    2015-01-01

    The introduction of next-generation sequencing (NGS) in the field of cancer research has boosted worldwide efforts of genome-wide personalized oncology aiming at identifying predictive biomarkers and novel actionable targets. Despite considerable progress in understanding the molecular biology of distinct cancer entities by the use of this revolutionary technology and despite contemporaneous innovations in drug development, translation of NGS findings into improved concepts for cancer treatment remains a challenge. The aim of this article is to describe shortly the NGS platforms for DNA sequencing and in more detail key achievements and unresolved hurdles. A special focus will be given on potential clinical applications of this innovative technique in the field of radiation oncology

  12. ConDeTri--a content dependent read trimmer for Illumina data.

    Science.gov (United States)

    Smeds, Linnéa; Künstner, Axel

    2011-01-01

    During the last few years, DNA and RNA sequencing have started to play an increasingly important role in biological and medical applications, especially due to the greater amount of sequencing data yielded from the new sequencing machines and the enormous decrease in sequencing costs. Particularly, Illumina/Solexa sequencing has had an increasing impact on gathering data from model and non-model organisms. However, accurate and easy to use tools for quality filtering have not yet been established. We present ConDeTri, a method for content dependent read trimming for next generation sequencing data using quality scores of each individual base. The main focus of the method is to remove sequencing errors from reads so that sequencing reads can be standardized. Another aspect of the method is to incorporate read trimming in next-generation sequencing data processing and analysis pipelines. It can process single-end and paired-end sequence data of arbitrary length and it is independent from sequencing coverage and user interaction. ConDeTri is able to trim and remove reads with low quality scores to save computational time and memory usage during de novo assemblies. Low coverage or large genome sequencing projects will especially gain from trimming reads. The method can easily be incorporated into preprocessing and analysis pipelines for Illumina data. Freely available on the web at http://code.google.com/p/condetri.

  13. Stratigraphical analysis of the neoproterozoic sedimentary sequences of the Sao Francisco Basin

    International Nuclear Information System (INIS)

    Martins, Mariela; Lemos, Valesca Brasil

    2007-01-01

    A stratigraphic analysis was performed under the principles of Sequence Stratigraphy on the neoproterozoic sedimentary sequences of the Sao Francisco Basin (Central Brazil). Three periods of deposition separated by unconformities were recognized in the Sao Francisco Megasequence: (1) Sequences 1 and 2, a cryogenian glaciogenic sequence, followed by a distal scarp carbonate ramp, developed during stable conditions, (2) Sequence 3, a Upper Cryogenian stack homoclinal ramps with mixed carbonate-siliciclastic sedimentation, deposited under a progressive influence of compressional stresses of the Brasiliano Cycle, (3) Sequence 4, a Lower Ediacaran shallow platform dominated by siliciclastic sedimentation of molassic nature, the erosion product of the nearby uplifted thrust sheets. Each of the carbonate-bearing sequences presents a distinct δ 13 C isotopic signature. The superposition to the global curve for carbon isotopic variation allowed the recognition of a major depositional hiatus between the Paranoa and Sao Francisco Megasequences, and suggested that the glacial diamictite deposition (Jequitai Formation) took place most probably around 800 Ma. This constrains the Sao Francisco Megasequence deposition to the interval between 800 and 600 Ma (the known ages of the Brasiliano Orogeny defines the upper limit). A minor depositional hiatus (700.680 Ma) was also identified separating sequences 2 and 3. Isotopic analyses suggest that from then on, more restricted environmental conditions were established in the basin, probably associated with a first order global event, which prevailed throughout deposition of the Sequence 3. (author)

  14. New offshore platform in the Mexican Gulf

    Energy Technology Data Exchange (ETDEWEB)

    Beisel, T.

    1982-04-01

    After a construction period of only 10 months, the second steel Offshore platform was recently completed in the Mexican Gulf. The pattern for this structure was the Cognac platform. The erection of the new platform, called the 'Cerveza' platform, is described in the article.

  15. Sinking offshore platform. Nedsenkbar fralandsplatform

    Energy Technology Data Exchange (ETDEWEB)

    Einstabland, T.B.; Olsen, O.

    1988-12-19

    The invention deals with a sinking offshore platform of the gravitational type designed for being installed on the sea bed on great depths. The platform consists of at least three inclining pillars placed on a foundation unit. The pillars are at the upper end connected to a tower structure by means of a rigid construction. The tower supports the platform deck. The rigid construction comprises a centre-positioned cylinder connected to the foundation. 11 figs.

  16. Understanding Platform-Based Digital Currencies

    OpenAIRE

    Ben Fung; Hanna Halaburda

    2014-01-01

    Given technological advances and the widespread use of the Internet, various digital currencies have emerged. In most cases, Internet platforms such as Facebook and Amazon restrict the functionality of their digital currencies to enhance the business model and maximize their profits. While platform-based digital currencies could increase the efficiency of retail payments, they could also raise some important policy issues if they were to become widely used outside of the platform. Thus, it is...

  17. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    Science.gov (United States)

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  18. Paleogenomics in a temperate environment: shotgun sequencing from an extinct Mediterranean caprine.

    Directory of Open Access Journals (Sweden)

    Oscar Ramírez

    Full Text Available BACKGROUND: Numerous endemic mammals, including dwarf elephants, goats, hippos and deers, evolved in isolation in the Mediterranean islands during the Pliocene and Pleistocene. Most of them subsequently became extinct during the Holocene. Recently developed high-throughput sequencing technologies could provide a unique tool for retrieving genomic data from these extinct species, making it possible to study their evolutionary history and the genetic bases underlying their particular, sometimes unique, adaptations. METHODOLOGY/PRINCIPALS FINDINGS: A DNA extraction of a approximately 6,000 year-old bone sample from an extinct caprine (Myotragus balearicus from the Balearic Islands in the Western Mediterranean, has been subjected to shotgun sequencing with the GS FLX 454 platform. Only 0.27% of the resulting sequences, identified from alignments with the cow genome and comprising 15,832 nucleotides, with an average length of 60 nucleotides, proved to be endogenous. CONCLUSIONS: A phylogenetic tree generated with Myotragus sequences and those from other artiodactyls displays an identical topology to that generated from mitochondrial DNA data. Despite being in an unfavourable thermal environment, which explains the low yield of endogenous sequences, our study demonstrates that it is possible to obtain genomic data from extinct species from temperate regions.

  19. Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations.

    Science.gov (United States)

    Berger, C; Berger, B; Parson, W

    2012-01-01

    In recent years, evidence from domestic dogs has increasingly been analyzed by forensic DNA testing. Especially, canine hairs have proved most suitable and practical due to the high rate of hair transfer occurring between dogs and humans. Starting with the description of a contamination-free sample handling procedure, we give a detailed workflow for sequencing hypervariable segments (HVS) of the mtDNA control region from canine evidence. After the hair material is lysed and the DNA extracted by Phenol/Chloroform, the amplification and sequencing strategy comprises the HVS I and II of the canine control region and is optimized for DNA of medium-to-low quality and quantity. The sequencing procedure is based on the Sanger Big-dye deoxy-terminator method and the separation of the sequencing reaction products is performed on a conventional multicolor fluorescence detection capillary electrophoresis platform. Finally, software-aided base calling and sequence interpretation are addressed exemplarily.

  20. Distributed Processing of Sentinel-2 Products using the BIGEARTH Platform

    Science.gov (United States)

    Bacu, Victor; Stefanut, Teodor; Nandra, Constantin; Mihon, Danut; Gorgan, Dorian

    2017-04-01

    The constellation of observational satellites orbiting around Earth is constantly increasing, providing more data that need to be processed in order to extract meaningful information and knowledge from it. Sentinel-2 satellites, part of the Copernicus Earth Observation program, aim to be used in agriculture, forestry and many other land management applications. ESA's SNAP toolbox can be used to process data gathered by Sentinel-2 satellites but is limited to the resources provided by a stand-alone computer. In this paper we present a cloud based software platform that makes use of this toolbox together with other remote sensing software applications to process Sentinel-2 products. The BIGEARTH software platform [1] offers an integrated solution for processing Earth Observation data coming from different sources (such as satellites or on-site sensors). The flow of processing is defined as a chain of tasks based on the WorDeL description language [2]. Each task could rely on a different software technology (such as Grass GIS and ESA's SNAP) in order to process the input data. One important feature of the BIGEARTH platform comes from this possibility of interconnection and integration, throughout the same flow of processing, of the various well known software technologies. All this integration is transparent from the user perspective. The proposed platform extends the SNAP capabilities by enabling specialists to easily scale the processing over distributed architectures, according to their specific needs and resources. The software platform [3] can be used in multiple configurations. In the basic one the software platform runs as a standalone application inside a virtual machine. Obviously in this case the computational resources are limited but it will give an overview of the functionalities of the software platform, and also the possibility to define the flow of processing and later on to execute it on a more complex infrastructure. The most complex and robust

  1. Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts

    Science.gov (United States)

    1982-01-01

    Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.

  2. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  3. Offshore Minerals Management Platforms for the Gulf of Mexico (GOM), Geographic NAD83, MMS (2006) [platforms_mms_2006

    Data.gov (United States)

    Louisiana Geographic Information Center — Offshore Minerals Management Platforms for the Gulf of Mexico (GOM). Identifies the location of platforms in GOM. All platforms existing in the database are included.

  4. BioWord: A sequence manipulation suite for Microsoft Word

    Directory of Open Access Journals (Sweden)

    Anzaldi Laura J

    2012-06-01

    Full Text Available Abstract Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  5. BioWord: A sequence manipulation suite for Microsoft Word

    Science.gov (United States)

    2012-01-01

    Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326

  6. BioWord: a sequence manipulation suite for Microsoft Word.

    Science.gov (United States)

    Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan

    2012-06-07

    The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  7. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Tian, Yunhong; Tian, Yunming; Luo, Xiaojun; Zhou, Tao; Huang, Zuoping; Liu, Ying; Qiu, Yihan; Hou, Bing; Sun, Dan; Deng, Hongyu; Qian, Shen; Yao, Kaitai

    2014-09-03

    MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. A comprehensive

  8. A magneto-motive ultrasound platform designed for pre-clinical and clinical applications

    Directory of Open Access Journals (Sweden)

    Diego Ronaldo Thomaz Sampaio

    Full Text Available Abstract Introduction Magneto-motive ultrasound (MMUS combines magnetism and ultrasound (US to detect magnetic nanoparticles in soft tissues. One type of MMUS called shear-wave dispersion magneto-motive ultrasound (SDMMUS analyzes magnetically induced shear waves (SW to quantify the elasticity and viscosity of the medium. The lack of an established presets or protocols for pre-clinical and clinical studies currently limits the use of MMUS techniques in the clinical setting. Methods This paper proposes a platform to acquire, process, and analyze MMUS and SDMMUS data integrated with a clinical ultrasound equipment. For this purpose, we developed an easy-to-use graphical user interface, written in C++/Qt4, to create an MMUS pulse sequence and collect the ultrasonic data. We designed a graphic interface written in MATLAB to process, display, and analyze the MMUS images. To exemplify how useful the platform is, we conducted two experiments, namely (i MMUS imaging to detect magnetic particles in the stomach of a rat, and (ii SDMMUS to estimate the viscoelasticity of a tissue-mimicking phantom containing a spherical target of ferrite. Results The developed software proved to be an easy-to-use platform to automate the acquisition of MMUS/SDMMUS data and image processing. In an in vivo experiment, the MMUS technique detected an area of 6.32 ± 1.32 mm2 where magnetic particles were heterogeneously distributed in the stomach of the rat. The SDMMUS method gave elasticity and viscosity values of 5.05 ± 0.18 kPa and 2.01 ± 0.09 Pa.s, respectively, for a tissue-mimicking phantom. Conclusion Implementation of an MMUS platform with addressed presets and protocols provides a step toward the clinical implementation of MMUS imaging equipment. This platform may help to localize magnetic particles and quantify the elasticity and viscosity of soft tissues, paving a way for its use in pre-clinical and clinical studies.

  9. Development and evaluation of a panel of filovirus sequence capture probes for pathogen detection by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available A detailed understanding of the circulating pathogens in a particular geographic location aids in effectively utilizing targeted, rapid diagnostic assays, thus allowing for appropriate therapeutic and containment procedures. This is especially important in regions prevalent for highly pathogenic viruses co-circulating with other endemic pathogens such as the malaria parasite. The importance of biosurveillance is highlighted by the ongoing Ebola virus disease outbreak in West Africa. For example, a more comprehensive assessment of the regional pathogens could have identified the risk of a filovirus disease outbreak earlier and led to an improved diagnostic and response capacity in the region. In this context, being able to rapidly screen a single sample for multiple pathogens in a single tube reaction could improve both diagnostics as well as pathogen surveillance. Here, probes were designed to capture identifying filovirus sequence for the ebolaviruses Sudan, Ebola, Reston, Taï Forest, and Bundibugyo and the Marburg virus variants Musoke, Ci67, and Angola. These probes were combined into a single probe panel, and the captured filovirus sequence was successfully identified using the MiSeq next-generation sequencing platform. This panel was then used to identify the specific filovirus from nonhuman primates experimentally infected with Ebola virus as well as Bundibugyo virus in human sera samples from the Democratic Republic of the Congo, thus demonstrating the utility for pathogen detection using clinical samples. While not as sensitive and rapid as real-time PCR, this panel, along with incorporating additional sequence capture probe panels, could be used for broad pathogen screening and biosurveillance.

  10. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs

    OpenAIRE

    Chang, Tzu-Hao; Huang, Hsi-Yuan; Hsu, Justin Bo-Kai; Weng, Shun-Long; Horng, Jorng-Tzong; Huang, Hsien-Da

    2013-01-01

    Background Functional RNA molecules participate in numerous biological processes, ranging from gene regulation to protein synthesis. Analysis of functional RNA motifs and elements in RNA sequences can obtain useful information for deciphering RNA regulatory mechanisms. Our previous work, RegRNA, is widely used in the identification of regulatory motifs, and this work extends it by incorporating more comprehensive and updated data sources and analytical approaches into a new platform. Methods ...

  11. Genomic Sequence Variation Markup Language (GSVML).

    Science.gov (United States)

    Nakaya, Jun; Kimura, Michio; Hiroi, Kaei; Ido, Keisuke; Yang, Woosung; Tanaka, Hiroshi

    2010-02-01

    a potential data exchanging format for genomic sequence variation data exchange focusing on human health applications. The international standardization of GSVML is necessary, and is currently underway. GSVML can be applied to enhance the utilization of genomic sequence variation data worldwide by providing a communicable platform between clinical and research applications. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Towards a Framework of Digital Platform Competition

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    between monopolistic (i.e., Pingit) and federated (i.e., Paym) mobile payment platforms to illustrate its applicability and yield principles on the nature and impact of competition among platform-driven ubiquitous systems. Preliminary findings indicate that monopolistic mobile digital platforms attempt...... to create unique configurals to obtain monopolistic power by tightly coupling platform layers, which are difficult to replicate. Conversely, federated digital platforms compete by dispersing the service layer to harness the collective resources from individual firms. Furthermore, the interaction...

  13. Integration of the program TNXYZ in the platform SALOME

    International Nuclear Information System (INIS)

    Chaparro V, F. J.; Silva A, L.; Del Valle G, E.; Gomez T, A. M.; Vargas E, S.

    2013-10-01

    This work presents the procedure realized to integrate the code TNXYZ like a processing tool to the graphic simulation platform SALOME. The code TNXYZ solves the neutron transport equation in stationary state, for several energy groups, quantizing the angular variable by the discrete ordinates method and the space variable by nodal methods. The platform SALOME is a graphic surrounding designed for the construction, edition and simulation of mechanical models focused to the industry and contrary to other software, it allows to integrate external source codes to the surrounding, to form a complete scheme of execution, supervision, pre and post information processing. The code TNXYZ was programmed in the 90s in a Fortran compiler, but to be used at the present time the code should be actualized to the current compiler characteristics; also, in the original scheme was carried out a modularization process, that is to say, the main program was divided in sections where the code carries out important operations, with the intention of flexibility the data extraction process along its processing sequence and that can be useful in a later development of coupling. Finally, to verify the integration a fuel assembly BWR was modeled, as well as a control cell. The cross sections were obtained with the Monte Carlo Serpent code. Some results obtained with Serpent were used to verify and to begin with the validation of the code, being obtained an acceptable comparison in the infinite multiplication factor. The validation process should extend and one has planned to present in a future work. This work is part of the development of the research group formed between the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (IPN) and the Instituto Nacional de Investigaciones Nucleares (ININ) in which a simulation Mexican platform of nuclear reactors is developed. (Author)

  14. Assembly procedure for Shot Loading Platform

    International Nuclear Information System (INIS)

    Routh, R.D.

    1995-01-01

    This supporting document describes the assembly procedure for the Shot Loading Platform. The Shot Loading Platform is used by multiple equipment removal projects to load shielding shot in the annular spaces of the equipment storage containers. The platform height is adjustable to accommodate different sizes of storage containers and transport assemblies

  15. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  16. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding.

    Science.gov (United States)

    Bhat, Javaid A; Ali, Sajad; Salgotra, Romesh K; Mir, Zahoor A; Dutta, Sutapa; Jadon, Vasudha; Tyagi, Anshika; Mushtaq, Muntazir; Jain, Neelu; Singh, Pradeep K; Singh, Gyanendra P; Prabhu, K V

    2016-01-01

    Genomic selection (GS) is a promising approach exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. In plant breeding, it provides opportunities to increase genetic gain of complex traits per unit time and cost. The cost-benefit balance was an important consideration for GS to work in crop plants. Availability of genome-wide high-throughput, cost-effective and flexible markers, having low ascertainment bias, suitable for large population size as well for both model and non-model crop species with or without the reference genome sequence was the most important factor for its successful and effective implementation in crop species. These factors were the major limitations to earlier marker systems viz., SSR and array-based, and was unimaginable before the availability of next-generation sequencing (NGS) technologies which have provided novel SNP genotyping platforms especially the genotyping by sequencing. These marker technologies have changed the entire scenario of marker applications and made the use of GS a routine work for crop improvement in both model and non-model crop species. The NGS-based genotyping have increased genomic-estimated breeding value prediction accuracies over other established marker platform in cereals and other crop species, and made the dream of GS true in crop breeding. But to harness the true benefits from GS, these marker technologies will be combined with high-throughput phenotyping for achieving the valuable genetic gain from complex traits. Moreover, the continuous decline in sequencing cost will make the WGS feasible and cost effective for GS in near future. Till that time matures the targeted sequencing seems to be more cost-effective option for large scale marker discovery and GS, particularly in case of large and un-decoded genomes.

  17. An Epidemiologic Study of Genetic Variation in Hormonal Pathways in Relation to the Effect of Hormone Replacement Therapy on Breast Cancer Risk

    Science.gov (United States)

    2008-10-01

    PGR gene to be associated with breast cancer. Using long-range PCR techniques to sequence exons 1 and 2 of PGR, and a Solexa chip from Illumina...specific histologic types associated with single SNPs in PGR, AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2 and CYP3A4 Breast caner overall Ductal Lobular...1.3 0.96 T/T 92 (9.1) 120 (9.6) 1.1 0.8 1.4 72 (9.5) 1.1 0.8 1.5 27 (9.7) 1.0 0.6 1.7 0.93 CYP3A4 rs12333983 T/T 791 (77.8) 985

  18. Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement

    Directory of Open Access Journals (Sweden)

    Arun Prabhu Dhanapal

    2015-01-01

    Full Text Available The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away.

  19. MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding

    Directory of Open Access Journals (Sweden)

    Charlotte D’Hulst

    2016-07-01

    Full Text Available Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs in the main olfactory epithelium express the same odorant receptor (OR in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these “MouSensors.” In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction.

  20. The smallest cells pose the biggest problems: high-performance computing and the analysis of metagenome sequence data

    International Nuclear Information System (INIS)

    Edwards, R A

    2008-01-01

    New high-throughput DNA sequencing technologies have revolutionized how scientists study the organisms around us. In particular, microbiology - the study of the smallest, unseen organisms that pervade our lives - has embraced these new techniques to characterize and analyze the cellular constituents and use this information to develop novel tools, techniques, and therapeutics. So-called next-generation DNA sequencing platforms have resulted in huge increases in the amount of raw data that can be rapidly generated. Argonne National Laboratory developed the premier platform for the analysis of this new data (mg-rast) that is used by microbiologists worldwide. This paper uses the accounting from the computational analysis of more than 10,000,000,000 bp of DNA sequence data, describes an analysis of the advanced computational requirements, and suggests the level of analysis that will be essential as microbiologists move to understand how these tiny organisms affect our every day lives. The results from this analysis indicate that data analysis is a linear problem, but that most analyses are held up in queues. With sufficient resources, computations could be completed in a few hours for a typical dataset. These data also suggest execution times that delimit timely completion of computational analyses, and provide bounds for problematic processes

  1. FastaValidator: an open-source Java library to parse and validate FASTA formatted sequences.

    Science.gov (United States)

    Waldmann, Jost; Gerken, Jan; Hankeln, Wolfgang; Schweer, Timmy; Glöckner, Frank Oliver

    2014-06-14

    Advances in sequencing technologies challenge the efficient importing and validation of FASTA formatted sequence data which is still a prerequisite for most bioinformatic tools and pipelines. Comparative analysis of commonly used Bio*-frameworks (BioPerl, BioJava and Biopython) shows that their scalability and accuracy is hampered. FastaValidator represents a platform-independent, standardized, light-weight software library written in the Java programming language. It targets computer scientists and bioinformaticians writing software which needs to parse quickly and accurately large amounts of sequence data. For end-users FastaValidator includes an interactive out-of-the-box validation of FASTA formatted files, as well as a non-interactive mode designed for high-throughput validation in software pipelines. The accuracy and performance of the FastaValidator library qualifies it for large data sets such as those commonly produced by massive parallel (NGS) technologies. It offers scientists a fast, accurate and standardized method for parsing and validating FASTA formatted sequence data.

  2. Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology

    Science.gov (United States)

    Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Gyoja, Fuki; Tanaka, Makiko; Ikuta, Tetsuro; Shoguchi, Eiichi; Fujiwara, Mayuki; Shinzato, Chuya; Hisata, Kanako; Fujie, Manabu; Usami, Takeshi; Nagai, Kiyohito; Maeyama, Kaoru; Okamoto, Kikuhiko; Aoki, Hideo; Ishikawa, Takashi; Masaoka, Tetsuji; Fujiwara, Atushi; Endo, Kazuyoshi; Endo, Hirotoshi; Nagasawa, Hiromichi; Kinoshita, Shigeharu; Asakawa, Shuichi; Watabe, Shugo; Satoh, Nori

    2012-01-01

    The study of the pearl oyster Pinctada fucata is key to increasing our understanding of the molecular mechanisms involved in pearl biosynthesis and biology of bivalve molluscs. We sequenced ∼1150-Mb genome at ∼40-fold coverage using the Roche 454 GS-FLX and Illumina GAIIx sequencers. The sequences were assembled into contigs with N50 = 1.6 kb (total contig assembly reached to 1024 Mb) and scaffolds with N50 = 14.5 kb. The pearl oyster genome is AT-rich, with a GC content of 34%. DNA transposons, retrotransposons, and tandem repeat elements occupied 0.4, 1.5, and 7.9% of the genome, respectively (a total of 9.8%). Version 1.0 of the P. fucata draft genome contains 23 257 complete gene models, 70% of which are supported by the corresponding expressed sequence tags. The genes include those reported to have an association with bio-mineralization. Genes encoding transcription factors and signal transduction molecules are present in numbers comparable with genomes of other metazoans. Genome-wide molecular phylogeny suggests that the lophotrochozoan represents a distinct clade from ecdysozoans. Our draft genome of the pearl oyster thus provides a platform for the identification of selection markers and genes for calcification, knowledge of which will be important in the pearl industry. PMID:22315334

  3. Platform decisions supported by gaming

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan

    2007-01-01

    Platform is an ambiguous multidisciplinary concept. The philosophy behind it is easy to communicate and makes intuitively sense. However, the ease in communication does overshadow the high complexity when the concept is implemented. The practical industrial platform implementation challenge can...... be described as being a configuration problem with a high number of variables. These variables are different in nature; they have contradictory influence on the total performance, and, their importance change over time. Consequently, the specific platform decisions become highly complex and the consequences...

  4. Digital platforms as enablers for digital transformation

    DEFF Research Database (Denmark)

    Hossain, Mokter; Lassen, Astrid Heidemann

    transformation is crucial. This study aims at exploring how organizations are driven towards transformation in various ways to embrace digital platforms for ideas, technologies, and knowledge. It shows the opportunities and challenges digital platforms bring in organizations. It also highlights underlying......Digital platforms offer new ways for organizations to collaborate with the external environment for ideas, technologies, and knowledge. They provide new possibilities and competence but they also bring new challenges for organizations. Understanding the role of these platforms in digital...... mechanisms and potential outcomes of various digital platforms. The contribution of the submission is valuable for scholars to understand and further explore this area. It provides insight for practitioners to capture value through digital platforms and accelerate the pace of organizations’ digital...

  5. [Orange Platform].

    Science.gov (United States)

    Toba, Kenji

    2017-07-01

    The Organized Registration for the Assessment of dementia on Nationwide General consortium toward Effective treatment in Japan (ORANGE platform) is a recently established nationwide clinical registry for dementia. This platform consists of multiple registries of patients with dementia stratified by the following clinical stages: preclinical, mild cognitive impairment, early-stage, and advanced-stage dementia. Patients will be examined in a super-longitudinal fashion, and their lifestyle, social background, genetic risk factors, and required care process will be assessed. This project is also notable because the care registry includes information on the successful, comprehensive management of patients with dementia. Therefore, this multicenter prospective cohort study will contribute participants to all clinical trials for Alzheimer's disease as well as improve the understanding of individuals with dementia.

  6. Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X Genomics' GemCode Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Lauren Coombe

    Full Text Available The linked read sequencing library preparation platform by 10X Genomics produces barcoded sequencing libraries, which are subsequently sequenced using the Illumina short read sequencing technology. In this new approach, long fragments of DNA are partitioned into separate micro-reactions, where the same index sequence is incorporated into each of the sequencing fragment inserts derived from a given long fragment. In this study, we exploited this property by using reads from index sequences associated with a large number of reads, to assemble the chloroplast genome of the Sitka spruce tree (Picea sitchensis. Here we report on the first Sitka spruce chloroplast genome assembled exclusively from P. sitchensis genomic libraries prepared using the 10X Genomics protocol. We show that the resulting 124,049 base pair long genome shares high sequence similarity with the related white spruce and Norway spruce chloroplast genomes, but diverges substantially from a previously published P. sitchensis- P. thunbergii chimeric genome. The use of reads from high-frequency indices enabled separation of the nuclear genome reads from that of the chloroplast, which resulted in the simplification of the de Bruijn graphs used at the various stages of assembly.

  7. Second generation sequencing of the mesothelioma tumor genome.

    Directory of Open Access Journals (Sweden)

    Raphael Bueno

    2010-05-01

    Full Text Available The current paradigm for elucidating the molecular etiology of cancers relies on the interrogation of small numbers of genes, which limits the scope of investigation. Emerging second-generation massively parallel DNA sequencing technologies have enabled more precise definition of the cancer genome on a global scale. We examined the genome of a human primary malignant pleural mesothelioma (MPM tumor and matched normal tissue by using a combination of sequencing-by-synthesis and pyrosequencing methodologies to a 9.6X depth of coverage. Read density analysis uncovered significant aneuploidy and numerous rearrangements. Method-dependent informatics rules, which combined the results of different sequencing platforms, were developed to identify and validate candidate mutations of multiple types. Many more tumor-specific rearrangements than point mutations were uncovered at this depth of sequencing, resulting in novel, large-scale, inter- and intra-chromosomal deletions, inversions, and translocations. Nearly all candidate point mutations appeared to be previously unknown SNPs. Thirty tumor-specific fusions/translocations were independently validated with PCR and Sanger sequencing. Of these, 15 represented disrupted gene-encoding regions, including kinases, transcription factors, and growth factors. One large deletion in DPP10 resulted in altered transcription and expression of DPP10 transcripts in a set of 53 additional MPM tumors correlated with survival. Additionally, three point mutations were observed in the coding regions of NKX6-2, a transcription regulator, and NFRKB, a DNA-binding protein involved in modulating NFKB1. Several regions containing genes such as PCBD2 and DHFR, which are involved in growth factor signaling and nucleotide synthesis, respectively, were selectively amplified in the tumor. Second-generation sequencing uncovered all types of mutations in this MPM tumor, with DNA rearrangements representing the dominant type.

  8. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2011-01-01

    The Windows Azure Platform has rapidly established itself as one of the most sophisticated cloud computing platforms available. With Microsoft working to continually update their product and keep it at the cutting edge, the future looks bright - if you have the skills to harness it. In particular, new features such as remote desktop access, dynamic content caching and secure content delivery using SSL make the latest version of Azure a more powerful solution than ever before. It's widely agreed that cloud computing has produced a paradigm shift in traditional architectural concepts by providin

  9. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    Science.gov (United States)

    Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.

    2009-01-01

    The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722

  10. Facies analysis and sequence stratigraphy of neoproterozoic Platform deposits in Adrar of Mauritania, Taoudeni basin, West Africa

    Science.gov (United States)

    Benan, C. A. A.; Deynoux, M.

    The Neoproterozoic and Palaeozoic Taoudeni basin forms the flat-lying and unmetamorphosed sedimentary cover of the West African Craton. In the western part of this basin, the Char Group and the lower part of the Atar Group make up a 400-m-thick Neoproterozoic siliciclastic succession which rests on the Palaeoproterozoic metamorphic and granitic basement. Five erosional bounding surfaces of regional extent have been identified in this succession. These surfaces separate five stratigraphic units with lithofacies associations ranging from fluvial to coastal and fluvial-, tide-, or wave-dominated shallow marine deposits. Owing to their regional extent and their position within the succession, the erosive bounding surfaces correspond to relative sea-level falls, and accordingly the five stratigraphic units they bound represent allocyclic transgressive-regressive depositional sequences (S1-S5). Changes in the nature of the deposits forming the transgressive-regressive cycles reflect landward or seaward shifts of the stacked sequences. These successive relative sea-level changes are related to the reactivation of basement faults and tilting during rifting of the Pan-Afro-Brasiliano supercontinent 1000 m.y. ago. The stromatolite bearing carbonate-shale sequences which form the rest of the Atar Group mark the onset of a quiet period of homogeneous subsidence contemporaneous with the Pan-African I oceanization 800-700 m.y. ago.

  11. Radiographic inspection on offshore platforms

    International Nuclear Information System (INIS)

    Soares, Sergio Damasceno; Sperandio, Augusto Gasparoni

    1994-01-01

    One of the great challenges for non-destructive inspection is on offshore platforms, where safety is a critical issue. Inspection by gammagraphy is practically forbidden on the platform deck due to problems to personnel safety and radiological protection. Ir-192 sources are used and the risk of an accident with loss of radioisotope must be considered. It is unfeasible to use gammagraphy, because in case of an accident the rapid evacuation from the platform would be impossible. This problem does not occur when X-ray equipment is used as the radiation source. The limited practicality and portability of the X-ray equipment have prevented its use as a replacement for the gammagraphy. This paper presents the preliminary tests to see the viable use of radiographic tests with constant potential on offshore platforms. (author). 2 refs., 1 fig., 2 tabs, 3 photos

  12. Peer-to-Peer Service Sharing Platforms

    DEFF Research Database (Denmark)

    Andersson, Magnus; Hjalmarsson, Anders; Avital, Michel

    2013-01-01

    The sharing economy has been growing continuously in the last decade thanks to the proliferation of internet-based platforms that allow people to disintermediate the traditional commercial channels and to share excess resources and trade with one another effectively at a reasonably low transaction...... cost. Whereas early peer-to-peer platforms were designed to enable file sharing and goods trading, we recently witness the emergence of a new breed of peer-to-peer platforms that are designed for ordinary service sharing. Ordinary services entail intangible provisions and are defined as an economic...... activity that generates immaterial benefits and does not result in ownership of material goods. Based on a structured analysis of 41 internet-based rideshare platforms, we explore and layout the unique characteristics of peer-to-peer service sharing platforms based on three distinct temporal patterns...

  13. Towards A Research Agenda on Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    Digital platforms are disruptive IT artifacts, because they facilitate the quick release of innovative platform derivatives from third parties. This study endeavors to unravel the disruptive potential, caused by distinct designs and configurations of digital platforms on market environments. We...... postulate that the disruptive potential of digital platforms is determined by the degree of alignment among the business, technology and platform profiles. Furthermore, we argue that the design and configuration of the aforementioned three elements dictates the extent to which open innovation is permitted....... To shed light on the disruptive potential of digital platforms, we opted for digital payment platforms as our unit of analysis. Through interviews with experts and payment providers, we seek to gain an in-depth appreciation of how contemporary digital payment platforms are designed and configured...

  14. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.

    Directory of Open Access Journals (Sweden)

    Wenning Zheng

    Full Text Available The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC tool and Pathogenomic Profiling Tool (PathoProT, which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.

  15. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.

    Science.gov (United States)

    Zheng, Wenning; Tan, Tze King; Paterson, Ian C; Mutha, Naresh V R; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A; Jakubovics, Nicholas S; Choo, Siew Woh

    2016-01-01

    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.

  16. Next generation sequencing and its applications in forensic genetics.

    Science.gov (United States)

    Børsting, Claus; Morling, Niels

    2015-09-01

    It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs, insertion/deletions, mRNA) that cannot be analyzed simultaneously with the standard PCR-CE methods used today. The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered. The detailed sequence information may aid mixture interpretation and will increase the statistical weight of the evidence. In this review, we will give an introduction to NGS and single-molecule sequencing, and we will discuss the possible applications of NGS in forensic genetics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. The Definitive Guide to NetBeans Platform

    CERN Document Server

    Bock, Heiko

    2009-01-01

    The Definitive Guide to NetBeans(t) Platform is a thorough and definitive introduction to the NetBeans Platform, covering all its major APIs in detail, with relevant code examples used throughout. The original German book on which this title is based was well received. The NetBeans Platform Community has put together this English translation, which author Heiko Bock updated to cover the latest NetBeans Platform 6.5 APIs. With an introduction by known NetBeans Platform experts Jaroslav Tulach, Tim Boudreau, and Geertjan Wielenga, this is the most up-to-date book on this topic at the moment. All

  18. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform

    Science.gov (United States)

    Falotico, Egidio; Vannucci, Lorenzo; Ambrosano, Alessandro; Albanese, Ugo; Ulbrich, Stefan; Vasquez Tieck, Juan Camilo; Hinkel, Georg; Kaiser, Jacques; Peric, Igor; Denninger, Oliver; Cauli, Nino; Kirtay, Murat; Roennau, Arne; Klinker, Gudrun; Von Arnim, Axel; Guyot, Luc; Peppicelli, Daniel; Martínez-Cañada, Pablo; Ros, Eduardo; Maier, Patrick; Weber, Sandro; Huber, Manuel; Plecher, David; Röhrbein, Florian; Deser, Stefan; Roitberg, Alina; van der Smagt, Patrick; Dillman, Rüdiger; Levi, Paul; Laschi, Cecilia; Knoll, Alois C.; Gewaltig, Marc-Oliver

    2017-01-01

    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller

  19. MicrobesFlux: a web platform for drafting metabolic models from the KEGG database

    Directory of Open Access Journals (Sweden)

    Feng Xueyang

    2012-08-01

    Full Text Available Abstract Background Concurrent with the efforts currently underway in mapping microbial genomes using high-throughput sequencing methods, systems biologists are building metabolic models to characterize and predict cell metabolisms. One of the key steps in building a metabolic model is using multiple databases to collect and assemble essential information about genome-annotations and the architecture of the metabolic network for a specific organism. To speed up metabolic model development for a large number of microorganisms, we need a user-friendly platform to construct metabolic networks and to perform constraint-based flux balance analysis based on genome databases and experimental results. Results We have developed a semi-automatic, web-based platform (MicrobesFlux for generating and reconstructing metabolic models for annotated microorganisms. MicrobesFlux is able to automatically download the metabolic network (including enzymatic reactions and metabolites of ~1,200 species from the KEGG database (Kyoto Encyclopedia of Genes and Genomes and then convert it to a metabolic model draft. The platform also provides diverse customized tools, such as gene knockouts and the introduction of heterologous pathways, for users to reconstruct the model network. The reconstructed metabolic network can be formulated to a constraint-based flux model to predict and analyze the carbon fluxes in microbial metabolisms. The simulation results can be exported in the SBML format (The Systems Biology Markup Language. Furthermore, we also demonstrated the platform functionalities by developing an FBA model (including 229 reactions for a recent annotated bioethanol producer, Thermoanaerobacter sp. strain X514, to predict its biomass growth and ethanol production. Conclusion MicrobesFlux is an installation-free and open-source platform that enables biologists without prior programming knowledge to develop metabolic models for annotated microorganisms in the KEGG

  20. Cyclic architecture of a carbonate sequence, early Aptian Shuaiba formation, Al Huwaisah field, Oman

    Energy Technology Data Exchange (ETDEWEB)

    Groetsch, J. (Shell Research, Rijswijk (Netherlands))

    1993-09-01

    Sequence stratigraphy of carbonates is a topic of ongoing controversy. In particular, small-scale shallowing-upward cycles can provide some key information needed for interpretation of carbonate sequences and/or third-order sea level changes. The early Aptian Shuaiba Formation in the Al Huwaisah field consists of about 90 m of shallow-water limestones. Throughout the formation, an overall decreasing influx of fine detritus is notable toward the top. The sequence can be subdivided into a basal unit and an overlying unit. Both units are composed of meter-scale shallowing-upward cycles of different composition, which can be recognized in core and well logs. Fourier analysis of the first principle component of a set of well logs (GR, FDC, CNL, Sonic) revealed an abrupt change in spectral behavior between the two units. Toward the top, the spectra are [open quotes]cleaning upward[close quotes] with an increasing pronunciation of a peak grouping of 1: 2: 5, suggesting a better preservation of orbital variations in the upper unit. Preservation of orbital forcing in shallowing-upward cycles requires rapid rates of sedimentation. In addition, increased shallow-water carbonate production on the platform is indicated by the appearance of reefal organisms. Hence, a higher rate of sedimentation and therefore a faster aggradation of the platform is inferred for the upper unit, which could have resulted from an increased rate of relative sea level rise. The sudden facies differentiation on the broad Arabian shelf in the upper part of the early Aptian reflects the development of an intrashelf basin. Changes in rate of relative sea level rise on the Arabian shelf might explain the repeated alternation from an easily correlatable ramp-type sedimentation, with slightly higher input of fine terrigenous sediment (e.g., lower unit of Shuaiba Formation) and a differentiation into platform and intrashelf basin facies due to faster aggradation (e.g., upper unit of Shuaiba Formation).

  1. Data on genome sequencing, analysis and annotation of a pathogenic Bacillus cereus 062011msu

    Directory of Open Access Journals (Sweden)

    Rashmi Rathy

    2018-04-01

    Full Text Available Bacillus species 062011 msu is a harmful pathogenic strain responsible for causing abscessation in sheep and goat population studied by Mariappan et al. (2012 [1]. The organism specifically targets the female sheep and goat population and results in the reduction of milk and meat production. In the present study, we have performed the whole genome sequencing of the pathogenic isolate using the Ion Torrent sequencing platform and generated 458,944 raw reads with an average length of 198.2 bp. The genome sequence was assembled, annotated and analysed for the genetic islands, metabolic pathways, orthologous groups, virulence factors and antibiotic resistance genes associated with the pathogen. Simultaneously the 16S rRNA sequencing study and genome sequence comparison data confirmed that the strain belongs to the species Bacillus cereus and exhibits 99% sequence homo;logy with the genomes of B. cereus ATCC 10987 and B. cereus FRI-35. Hence, we have renamed the organism as Bacillus cereus 062011msu. The Whole Genome Shotgun (WGS project has been deposited at DDBJ/ENA/GenBank under the accession NTMF00000000 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404036(SAMN07629099. Keywords: Bacillus cereus, Genome sequencing, Abscessation, Virulence factors

  2. Sedimentology and sequence stratigraphy of the Lopingian (Late Permian) coal measures in southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [School of Geosciences and Surveying Engineering, China University of Mining and Technology, Beijing (China); School of Earth and Environment, University of Leeds (United Kingdom); Shao, Longyi; Hao, Liming; Zhang, Pengfei [School of Geosciences and Surveying Engineering, China University of Mining and Technology, Beijing (China); Glasspool, Ian J. [Department of Geology, Field Museum of Natural History, Chicago, Illinois (United States); Wheeley, James R.; Hilton, Jason [School of Geography, Earth and Environmental Sciences, University of Birmingham (United Kingdom); Wignall, Paul B. [School of Earth and Environment, University of Leeds (United Kingdom); Yi, Tongsheng [Guizhou Bureau of Coal Geological Exploration, Guiyang, Guizhou (China); Zhang, Mingquan [Coal Geology and Prospecting Institute of Yunnan Province, Kunming, Yunnan (China)

    2011-01-01

    The Lopingian coal measures of southwestern China were deposited within a range of facies associations spanning a spectrum of settings from fluvial to marine carbonate platform. The transitional to terrestrial coal measures are dominated by siliciclastics, but they also contain fifteen laterally extensive marine bands (limestone beds and mudstone). These bands act as marker horizons that enable correlation between fully marine and terrestrial facies. Examination of this range of facies and their sedimentology has enabled the development of a high-resolution sequence stratigraphic framework. Set against the established backdrop of second-order Lopingian transgression, sixteen fourth-order sequences and three composite sequences (third-order) are recognized. Results show that, in the composite sequences, peat accumulation in the seaward parts of the study area predominantly correlates with early transgressive sequence sets (TSS), while in more landward areas it correlates with the middle TSS to late highstand sequence sets (HSS). Differences in peat-accumulation regimes within the sequence stratigraphic framework are attributed to variations in subsidence and background siliciclastic input rates in different depositional settings, with these combining to produce differences in the rate of accommodation change. The preservation of coal resources in the middle to late HSS in this area was most likely related to the rise of the regional base level throughout the Lopingian. (author)

  3. [Complete genome sequencing of polymalic acid-producing strain Aureobasidium pullulans CCTCC M2012223].

    Science.gov (United States)

    Wang, Yongkang; Song, Xiaodan; Li, Xiaorong; Yang, Sang-tian; Zou, Xiang

    2017-01-04

    To explore the genome sequence of Aureobasidium pullulans CCTCC M2012223, analyze the key genes related to the biosynthesis of important metabolites, and provide genetic background for metabolic engineering. Complete genome of A. pullulans CCTCC M2012223 was sequenced by Illumina HiSeq high throughput sequencing platform. Then, fragment assembly, gene prediction, functional annotation, and GO/COG cluster were analyzed in comparison with those of other five A. pullulans varieties. The complete genome sequence of A. pullulans CCTCC M2012223 was 30756831 bp with an average GC content of 47.49%, and 9452 genes were successfully predicted. Genome-wide analysis showed that A. pullulans CCTCC M2012223 had the biggest genome assembly size. Protein sequences involved in the pullulan and polymalic acid pathway were highly conservative in all of six A. pullulans varieties. Although both A. pullulans CCTCC M2012223 and A. pullulans var. melanogenum have a close affinity, some point mutation and inserts were occurred in protein sequences involved in melanin biosynthesis. Genome information of A. pullulans CCTCC M2012223 was annotated and genes involved in melanin, pullulan and polymalic acid pathway were compared, which would provide a theoretical basis for genetic modification of metabolic pathway in A. pullulans.

  4. Toe-of-slope of a Cretaceous carbonate platform in outcrop, seismic model and offshore seismic data (Apulia, Italy)

    Science.gov (United States)

    Bracco Gartner, Guido; Morsilli, Michele; Schlager, Wolfgang; Bosellini, Alfonso

    Synthetic seismic models of outcrops in the Early Cretaceous slope of a carbonate platform on the Gargano Promontory (southern Italy) were compared to an offshore seismic section south of the Promontory. Outcrops of the same age on the promontory have the same sequence stratigraphic characteristics as their offshore equivalent, and are the only areas where the transition from platform to basin of Early Cretaceous is exposed on land. Two adjacent outcrop areas were combined into one seismic-scale lithologic model with the aid of photo mosaics, measured sections, and biostratigraphic data. Velocity, density, and porosity measurements on spot samples were used to construct the impedance model. Seismic models were generated by vertical incidence and finite difference programs. The results indicate that the reflections in the seismic model are controlled by the impedance contrast between low porous intervals rich in debris from the platform and highly porous intervals of pelagic lime mudstone, nearly devoid of debris. Finite difference seismic display showed best resemblance with the real seismic data, especially by mapping a drowning unconformity.

  5. The Trip Itinerary Optimization Platform: A Framework for Personalized Travel Information

    Energy Technology Data Exchange (ETDEWEB)

    Kwasnik, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Carmichael, Scott P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sperling, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Isley, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-11-21

    The New Concepts Incubator team at the National Renewable Energy Laboratory (NREL) developed a three-stage online platform for travel diary collection, personal travel plan optimization and travel itinerary visualization. In the first stage, users provide a travel diary for the previous day through an interactive map and calendar interface and survey for travel attitudes and behaviors. One or more days later, users are invited via email to engage in a second stage where they view a personal mobility dashboard displaying recommended travel itineraries generated from a novel framework that optimizes travel outcomes over a sequence of interrelated trips. A week or more after viewing these recommended travel itineraries on the dashboard, users are emailed again to engage in a third stage where they complete a final survey about travel attitudes and behaviors. A usability study of the platform conducted online showed that, in general, users found the system valuable for informing their travel decisions. A total of 274 individuals were recruited through Amazon Mechanical Turk, an online survey platform, to participate in a transportation study using this platform. On average, the platform distilled 65 feasible travel plans per individual into two recommended itineraries, each optimal according to one or more outcomes and dependent on the fixed times and locations from the travel diary. For 45 percent of users, the trip recommendation algorithm returned only a single, typically automobile-centric, itinerary because there were no other viable alternative transportation modes available. Platform users generally agreed that the dashboard was enjoyable and easy to use, and that it would be a helpful tool in adopting new travel behaviors. Users generally agreed most that the time, cost and user preferred recommendations 'made sense' to them, and were most willing to implement these itineraries. Platform users typically expressed low willingness to try the carbon and

  6. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  7. A practice scaffolding interactive platform

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2009-01-01

    A Practice Scaffolding Interactive Platform (PracSIP) is a social learning platform which supports students in collaborative project based learning by simulating a professional practice. A PracSIP puts the core tools of the simulated practice at the students' disposal, it organizes collaboration...

  8. Development of a Modular Robotic Platform

    Directory of Open Access Journals (Sweden)

    Claudiu Ioan Cirebea

    2014-12-01

    Full Text Available In this paper a modular robotic platform is presented, for students and researchers laboratory work based on the Matlab-Simulink and dSpace real time control platform. The goal of this combination is to stimulate and to experiment with real time hardware and software in courses where mobile robotics is adopted as a motivating platform to introduce mechatronics competencies. Its many possibilities for modifications and extensions make experiments very easy. We used, for example, an omnidirectional mobile robot configuration with three Swedish wheels, whose kinematic model was simulated using Simulink. For real-time control, of the robot, the developed model has been implemented using DSpace platform DS1103.

  9. Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies.

    Science.gov (United States)

    Damiati, E; Borsani, G; Giacopuzzi, Edoardo

    2016-05-01

    The Ion Proton platform allows to perform whole exome sequencing (WES) at low cost, providing rapid turnaround time and great flexibility. Products for WES on Ion Proton system include the AmpliSeq Exome kit and the recently introduced HiQ sequencing chemistry. Here, we used gold standard variants from GIAB consortium to assess the performances in variants identification, characterize the erroneous calls and develop a filtering strategy to reduce false positives. The AmpliSeq Exome kit captures a large fraction of bases (>94 %) in human CDS, ClinVar genes and ACMG genes, but with 2,041 (7 %), 449 (13 %) and 11 (19 %) genes not fully represented, respectively. Overall, 515 protein coding genes contain hard-to-sequence regions, including 90 genes from ClinVar. Performance in variants detection was maximum at mean coverage >120×, while at 90× and 70× we measured a loss of variants of 3.2 and 4.5 %, respectively. WES using HiQ chemistry showed ~71/97.5 % sensitivity, ~37/2 % FDR and ~0.66/0.98 F1 score for indels and SNPs, respectively. The proposed low, medium or high-stringency filters reduced the amount of false positives by 10.2, 21.2 and 40.4 % for indels and 21.2, 41.9 and 68.2 % for SNP, respectively. Amplicon-based WES on Ion Proton platform using HiQ chemistry emerged as a competitive approach, with improved accuracy in variants identification. False-positive variants remain an issue for the Ion Torrent technology, but our filtering strategy can be applied to reduce erroneous variants.

  10. Exome sequencing generates high quality data in non-target regions

    Directory of Open Access Journals (Sweden)

    Guo Yan

    2012-05-01

    Full Text Available Abstract Background Exome sequencing using next-generation sequencing technologies is a cost efficient approach to selectively sequencing coding regions of human genome for detection of disease variants. A significant amount of DNA fragments from the capture process fall outside target regions, and sequence data for positions outside target regions have been mostly ignored after alignment. Result We performed whole exome sequencing on 22 subjects using Agilent SureSelect capture reagent and 6 subjects using Illumina TrueSeq capture reagent. We also downloaded sequencing data for 6 subjects from the 1000 Genomes Project Pilot 3 study. Using these data, we examined the quality of SNPs detected outside target regions by computing consistency rate with genotypes obtained from SNP chips or the Hapmap database, transition-transversion (Ti/Tv ratio, and percentage of SNPs inside dbSNP. For all three platforms, we obtained high-quality SNPs outside target regions, and some far from target regions. In our Agilent SureSelect data, we obtained 84,049 high-quality SNPs outside target regions compared to 65,231 SNPs inside target regions (a 129% increase. For our Illumina TrueSeq data, we obtained 222,171 high-quality SNPs outside target regions compared to 95,818 SNPs inside target regions (a 232% increase. For the data from the 1000 Genomes Project, we obtained 7,139 high-quality SNPs outside target regions compared to 1,548 SNPs inside target regions (a 461% increase. Conclusions These results demonstrate that a significant amount of high quality genotypes outside target regions can be obtained from exome sequencing data. These data should not be ignored in genetic epidemiology studies.

  11. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    Science.gov (United States)

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  12. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    Directory of Open Access Journals (Sweden)

    Steven Kelly

    Full Text Available The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  13. An integrative variant analysis suite for whole exome next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Challis Danny

    2012-01-01

    Full Text Available Abstract Background Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions of the genome. Although the exome capture sequencing methods have become routine and well established, there is currently a lack of tools specialized for variant calling in this type of data. Results Using statistical models trained on validated whole-exome capture sequencing data, the Atlas2 Suite is an integrative variant analysis pipeline optimized for variant discovery on all three of the widely used next generation sequencing platforms (SOLiD, Illumina, and Roche 454. The suite employs logistic regression models in conjunction with user-adjustable cutoffs to accurately separate true SNPs and INDELs from sequencing and mapping errors with high sensitivity (96.7%. Conclusion We have implemented the Atlas2 Suite and applied it to 92 whole exome samples from the 1000 Genomes Project. The Atlas2 Suite is available for download at http://sourceforge.net/projects/atlas2/. In addition to a command line version, the suite has been integrated into the Genboree Workbench, allowing biomedical scientists with minimal informatics expertise to remotely call, view, and further analyze variants through a simple web interface. The existing genomic databases displayed via the Genboree browser also streamline the process from variant discovery to functional genomics analysis, resulting in an off-the-shelf toolkit for the broader community.

  14. Platform economy in Denmark – precarious employment?

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Madsen, Per Kongshøj

    limited. Nevertheless the labour offered through the platforms has a precarious character for instance in terms of lower wages and poorer rights and protection compared to the labour at the traditional, offline labour market. One important issue here is also the confusion as to whether the worker......This paper takes a labour market perspective on the emerging concept of the 'sharing economy' or 'platform economy', which we use as a more appropriate term for the phenomenon. Platform economy is in the article understood as those business models that have emerged since the millennium, where...... digital platforms serve as the link between persons wanting to make use of certain activities, services etc. and those owning them and we only have an interest in the work-related platforms. That means platforms, where paid work is offered and demanded. International examples of this new phenomenon...

  15. Next generation sequencing reveals the hidden diversity of zooplankton assemblages.

    Directory of Open Access Journals (Sweden)

    Penelope K Lindeque

    Full Text Available BACKGROUND: Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. METHODOLOGY/PRINCIPLE FINDINGS: Plankton net hauls (200 µm were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. CONCLUSIONS: Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may

  16. Temporal correlation of fluvial and alluvial sequences in the Makran Range, SE-Iran

    Science.gov (United States)

    Kober, F.; Zeilinger, G.; Ivy-Ochs, S.; Dolati, A.; Smit, J.; Burg, J.-P.; Bahroudi, A.; Kubik, P. W.; Baur, H.; Wieler, R.; Haghipour, N.

    2009-04-01

    The Makran region of southeastern Iran is an active accretionary wedge with a partially subaerial component. New investigations have revealed a rather complex geodynamic evolution of the Makran active accretionary wedge that is not yet fully understood in its entity. Ongoing convergence between the Arabian and Eurasian plates and tectonic activity since the late Mesozoic has extended all trough the Quaternary. We focus here on fluvial and alluvial sequences in tectonically separated basins that have been deposited probably in the Pliocene/Quaternary, based on stratigraphic classification in official geological maps, in order to understand the climatic and tectonic forces occurring during the ongoing accretionary wegde formation. Specifically, we investigate the influence of Quaternary climate variations (Pleistocene cold period, monsoonal variations) on erosional and depositional processes in the (semi)arid Makran as well as local and regional tectonic forces in the Coastal and Central Makran Range region. Necessary for such an analysis is a temporal calibration of alluvial and fluvial terrace sequences that will allow an inter-basin correlation. We utilize the exposure age dating method using terrestrial cosmogenic nuclides (TCN) due to the lack of otherwise datatable material in the arid Makran region. Limited radiocarbon data are only available for marine terraces (wave-cut platforms). Our preliminary 21Ne and 10Be TCN-ages of amalgamated clast samples from (un)deformed terrace and alluvial sequences range from ~250 ky to present day (modern wash). These ages agree in relative terms with sequences previously assigned by other investigations through correlation of Quaternary sequences from Central and Western Iran regions. However, our minimum ages suggest that all age sequences are of middle to late Pleistocene age, compared to Pliocene age estimates previously assigned for the oldest units. Although often suggested, a genetical relation and connection of those

  17. Profiling cancer gene mutations in clinical formalin-fixed, paraffin-embedded colorectal tumor specimens using targeted next-generation sequencing.

    Science.gov (United States)

    Zhang, Liangxuan; Chen, Liangjing; Sah, Sachin; Latham, Gary J; Patel, Rajesh; Song, Qinghua; Koeppen, Hartmut; Tam, Rachel; Schleifman, Erica; Mashhedi, Haider; Chalasani, Sreedevi; Fu, Ling; Sumiyoshi, Teiko; Raja, Rajiv; Forrest, William; Hampton, Garret M; Lackner, Mark R; Hegde, Priti; Jia, Shidong

    2014-04-01

    The success of precision oncology relies on accurate and sensitive molecular profiling. The Ion AmpliSeq Cancer Panel, a targeted enrichment method for next-generation sequencing (NGS) using the Ion Torrent platform, provides a fast, easy, and cost-effective sequencing workflow for detecting genomic "hotspot" regions that are frequently mutated in human cancer genes. Most recently, the U.K. has launched the AmpliSeq sequencing test in its National Health Service. This study aimed to evaluate the clinical application of the AmpliSeq methodology. We used 10 ng of genomic DNA from formalin-fixed, paraffin-embedded human colorectal cancer (CRC) tumor specimens to sequence 46 cancer genes using the AmpliSeq platform. In a validation study, we developed an orthogonal NGS-based resequencing approach (SimpliSeq) to assess the AmpliSeq variant calls. Validated mutational analyses revealed that AmpliSeq was effective in profiling gene mutations, and that the method correctly pinpointed "true-positive" gene mutations with variant frequency >5% and demonstrated high-level molecular heterogeneity in CRC. However, AmpliSeq enrichment and NGS also produced several recurrent "false-positive" calls in clinically druggable oncogenes such as PIK3CA. AmpliSeq provided highly sensitive and quantitative mutation detection for most of the genes on its cancer panel using limited DNA quantities from formalin-fixed, paraffin-embedded samples. For those genes with recurrent "false-positive" variant calls, caution should be used in data interpretation, and orthogonal verification of mutations is recommended for clinical decision making.

  18. Software Development Process Improvement in Datacom Platform

    OpenAIRE

    Trabelsi, Walid

    2008-01-01

    Masteroppgave i Informasjons- og Kommunikasjonsteknologi 2008, Universitetet i Agder, Grimstad Ericsson Mobile Platform (EMP) is responsible of the development of a software platform and also to some extend responsible for related hardware parts. EMP is developing the data communication parts of the platform which is used by EMP customers. The platform development is done in large development programs and each program span over a quite a long time period. However, as we see eve...

  19. Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean.

    Science.gov (United States)

    Manzanares-Palenzuela, C Lorena; de-los-Santos-Álvarez, Noemí; Lobo-Castañón, María Jesús; López-Ruiz, Beatriz

    2015-06-15

    Current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) with a minimum content of 0.9% would benefit from the availability of reliable and rapid methods to detect and quantify DNA sequences specific for GMOs. Different genosensors have been developed to this aim, mainly intended for GMO screening. A remaining challenge, however, is the development of genosensing platforms for GMO quantification, which should be expressed as the number of event-specific DNA sequences per taxon-specific sequences. Here we report a simple and sensitive multiplexed electrochemical approach for the quantification of Roundup-Ready Soybean (RRS). Two DNA sequences, taxon (lectin) and event-specific (RR), are targeted via hybridization onto magnetic beads. Both sequences are simultaneously detected by performing the immobilization, hybridization and labeling steps in a single tube and parallel electrochemical readout. Hybridization is performed in a sandwich format using signaling probes labeled with fluorescein isothiocyanate (FITC) or digoxigenin (Dig), followed by dual enzymatic labeling using Fab fragments of anti-Dig and anti-FITC conjugated to peroxidase or alkaline phosphatase, respectively. Electrochemical measurement of the enzyme activity is finally performed on screen-printed carbon electrodes. The assay gave a linear range of 2-250 pM for both targets, with LOD values of 650 fM (160 amol) and 190 fM (50 amol) for the event-specific and the taxon-specific targets, respectively. Results indicate that the method could be applied for GMO quantification below the European labeling threshold level (0.9%), offering a general approach for the rapid quantification of specific GMO events in foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2010-01-01

    The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know