WorldWideScience

Sample records for solenoidal electron spectrometer

  1. A solenoidal electron spectrometer for a precision measurement of the neutron β-asymmetry with ultracold neutrons

    International Nuclear Information System (INIS)

    Plaster, B.; Carr, R.; Filippone, B.W.; Harrison, D.; Hsiao, J.; Ito, T.M.; Liu, J.; Martin, J.W.; Tipton, B.; Yuan, J.

    2008-01-01

    We describe an electron spectrometer designed for a precision measurement of the neutron β-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported

  2. A solenoidal electron spectrometer for a precision measurement of the neutron {beta}-asymmetry with ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Plaster, B. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)], E-mail: plaster@pa.uky.edu; Carr, R.; Filippone, B.W. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Harrison, D. [Physics Department, University of Winnipeg, Manitoba, Canada R3B 2E9 (Canada); Hsiao, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Ito, T.M. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Martin, J.W. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Physics Department, University of Winnipeg, Manitoba, R3B 2E9 (Canada); Tipton, B.; Yuan, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-10-11

    We describe an electron spectrometer designed for a precision measurement of the neutron {beta}-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  3. A superconducting electron spectrometer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.; Grumbkow, A. von

    1983-03-01

    The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)

  4. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Barnett, B.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K + and K - interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K - p interactions during 1977 and 1978, which is also described briefly

  5. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  6. Bent solenoids for spectrometers and emittance exchange sections

    International Nuclear Information System (INIS)

    Norem, J.

    1999-01-01

    Bent solenoids can be used to transport low energy beams as they provide both confinement and dispersion of particle orbits. Solenoids are being considered both as emittance exchange sections and spectrometers in the muon cooling system as part of the study of the muon collider. They present the results of a study of bent solenoids which considers the design of coupling sections between bent solenoids to straight solenoids, drift compensation fields, aberrations, and factors relating to the construction, such as field ripple, stored energy, coil forces and field errors

  7. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  8. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-01-01

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  9. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S.Y.; Zheng, S.X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-01-01

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  10. 2 T superconducting detector solenoid for the PANDA target spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, A.A.; Koshurnikov, E.K. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation); Lobanov, Y.Y. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation)], E-mail: lobanov@jinr.ru; Makarov, A.F. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation); Orth, H. [Gesellschaft fuer Schwerionenforschung, Planckstrasse 1, D-64291, Darmstadt (Germany); Sissakian, A.N.; Vodopianov, A.S. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation)

    2008-02-01

    This paper describes the JINR design of the large 2 T superconducting solenoid for the target spectrometer of the PANDA experiment at HESR (FAIR, GSI, Darmstadt, Germany). The solenoid coil has an inner radius of 1.08 m and a length of 2.90 m. This solenoid is non-centrally split providing a warm bore of 100 mm in diameter through the coil to accommodate sufficient space for the internal target installations. Maximally stored energy in the windings is 22.3 MJ. All tracking and calorimetric detectors surrounding the target point, with exception of a forward cone of 5{sup 0} opening, are placed inside the lqHe-cryostat. The main features of the design and technique are as follows: a copper stabilizer and soldering technique for the superconducting cable; a stainless steel cryostat; winding technique over a mandrel; coreless type of the coil; low operational current. The details of the PANDA solenoid design including the magnetic field and stress-strain calculations are covered.

  11. A spectrometer using one or two superconducting coaxial solenoids

    International Nuclear Information System (INIS)

    Schapira, J.P.; Gales, S.; Laurent, J.P.

    1979-06-01

    A set of two superconducting solenoidal coils which are presently under construction at the Orsay I.P.N. is described. Because of its optical properties, the system can be used as spectrometer: focusing properties with small geometrical aberrations allowing large solid angles to be used together with good transmission and isochronism. Various types of experiments can be envisaged with such a device: angular correlation at zero degree, study of rare events like exotic reactions, time of flight for mass identification and rapid (much less than 1 μs) and efficient collection of radioactive nuclei for subsequent spectroscopy measurements [fr

  12. Electron volt neutron spectrometers

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.

    2011-01-01

    The advent of pulsed neutron sources has made available intense fluxes of epithermal neutrons (500 meV ≤E≤100 eV ). The possibility to open new investigations on condensed matter with eV neutron scattering techniques, is related to the development of methods, concepts and devices that drive, or are inspired by, emerging studies at this energy scale. Electron volt spectrometers have undergone continuous improvements since the construction of the first prototype instruments, but in the last decade major breakthroughs have been accomplished in terms of resolution and counting statistics, leading, for example, to the direct measurement of the proton 3-D Born–Oppenheimer potential in any material, or to quantitatively probe nuclear quantum effects in hydrogen bonded systems. This paper reports on the most effective methods and concepts for energy analysis and detection, as well as devices for the optimization of electron volt spectrometers for different applications. This is set in the context of the progress made up to date in instrument development. Starting from early stages of development of the technique, particular emphasis will be given to the Vesuvio eV spectrometer at the ISIS neutron source, the first spectrometer where extensive scientific, as well as research and development programmes have been carried out. The potential offered by this type of instrumentation, from single particle excitations to momentum distribution studies, is then put in perspective into the emerging fields of eV spectroscopy applied to cultural heritages and neutron irradiation effects in electronics. - Highlights: ► Neutron spectrometers at eV energies. ► Methods and techniques for eV neutrons counting at spallation sources. ► Scattering, imaging and radiation hardness tests with multi-eV neutrons.

  13. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  14. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  15. Electron spectrometers with internal conversion

    International Nuclear Information System (INIS)

    Suita, J.C.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The efforts that the Department of Physics (DEFI) of Institute of Nuclear Engineering (IEN) are being made aiming at adjusting the electron spectrometers with internal conversion to its necessity, are shown. (E.G.) [pt

  16. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-01-01

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  17. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  18. Solenoid System for PRISM and COMET

    International Nuclear Information System (INIS)

    Yoshida, Makoto

    2008-01-01

    An experiment of searching for coherent neutrino-less conversion of muons to electron conversion in muonic atom, μ - +N(A,Z)→e - +N(A,Z), is powerful probe for new physics phenomena beyond the Standard Model. We offer the experiment at a sensitivity of B(μ - N→e - N) -16 with muon beamline consisting of high-field pion capture solenoids, curved solenoids to select beam momenta, and a curved solenoid spectrometer to detect μ - -e - conversion with low-counting-rate conditions. Design of superconducting solenoid magnets of pion capture and transport beam line has been studied and is described in this paper

  19. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    International Nuclear Information System (INIS)

    Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F.; Friedman, A.; Roy, P.K.; Seidl, P.; Lund, S.M.; Faltens, A.; Vay, J.L.; Prost, L.

    2007-01-01

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam

  20. Realisation of a {beta} spectrometer solenoidal and a double {beta} spectrometer at coincidence; Realisation d'un spectrometre {beta} solenoidal et d'un double spectrometre {beta} a coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of {beta} spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports {alpha}{sub K} / {alpha}{sub L} and it is especially efficient for the accurate energy levels of the {gamma} rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the {beta} and {gamma} emission is rather little lower to 4{pi} steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations {beta}{gamma} and e{sup -}{gamma}. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e{sup -}e{sup -}, e{sup -}{beta} of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e{sup -}e{sup -}, e{sup -}{beta}. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: {sup 76}As (26 h), {sup 122}Sb (2,8 j), {sup 124}Sb (60 j), {sup 125}Sb (2,7 years). (M.B.) [French] Les deux spectrometres qui ont ete realises permettent d'aborder un grand nombre de problemes de spectrometrie nucleaire. Ils possedent des champs d'application tres differents qui se completent. Le spectrometre solenoidal permet la determination des energies limites des spectres {beta} et de leur forme; il permet aussi la determination des coefficients de conversion interne et des rapports

  1. The electronic system of Beijing spectrometer

    International Nuclear Information System (INIS)

    Xi Deming

    1990-01-01

    Beijing Spectrometer (BES) in an experimental facility of high energy physics on Beijing Electron Positron Collider (BEPC). A brief description including the global design, the read out circuits, the performances and the recent status of its electronic system is presented

  2. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  3. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    Kondo, K.; Okamura, M.; Yamamoto, T.; Sekine, M.

    2012-01-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  4. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  5. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, O; Xu, H; Becker, J; Feldbauer, F; Heinsius, F -H; Held, T; Koch, H; Kopf, B; Pelizaeus, M; Schröder, T; Steinke, M; Wiedner, U; Zhong, J; Bianconi, A; Bragadireanu, M; Pantea, D; Tudorache, A; Tudorache, V; De Napoli, M; Giacoppo, F; Raciti, G; Rapisarda, E; Sfienti, C; Bialkowski, E; Budzanowski, A; Czech, B; Kistryn, M; Kliczewski, S; Kozela, A; Kulessa, P; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; zycki, W Czy; Domagala, M; Hawryluk, M; Lisowski, E; Lisowski, F; Wojnar, L; Gil, D; Hawranek, P; Kamys, B; Kistryn, St; Korcyl, K; Krzemien, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wronska, A; Al-Turany, M; Augustin, I; Deppe, H; Flemming, H; Gerl, J; Goetzen, K; Hohler, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Mishra, D; Orth, H; Peters, K; Saitô, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Voss, B; Wieczorek, P; Wilms, A; Brinkmann, K -T; Freiesleben, H; Jaekel, R; Kliemt, R; Wuerschig, T; Zaunick, H -G; Abazov, V M; Alexeev, G; Arefev, A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigorian, S; Karmokov, A; Koshurnikov, E K; Kudaev, V Ch; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, A; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Föhl, K; Glazier, D; Watts, D; Woods, P; Eyrich, W; Lehmann, A; Teufel, A; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A G; Bettoni, D; Carassiti, V; Cecchi, A; Dalpiaz, P; Fioravanti, E; Garzia, I; Negrini, M; Savri`e, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Brodski, I; Döring, W; Drexler, P; Düren, M; Gagyi-Palffy, Z; Hayrapetyan, A; Kotulla, M; Kühn, W; Lange, S; Liu, M; Metag, V; Nanova, M; Novotny, R; Salz, C; Schneider, J; Schoenmeier, P; Schubert, R; Spataro, S; Stenzel, H; Strackbein, C; Thiel, M; Thoering, U; Yang, S; Clarkson, T; Cowie, E; Downie, E; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, S; MacGregor, D; McKinnon, B; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Bubak, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Löhner, H; Messchendorp, J; Smit, H; van der Weele, J C; García, F; Riska, D -O; Büscher, M; Dosdall, R; Dzhygadlo, R; Gillitzer, A; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Stockmanns, T; Wintz, P; Wüstner, P; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, S; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Balanutsa, V; Chernetsky, V; Demekhin, A; Dolgolenko, A; Fedorets, P; Gerasimov, A; Goryachev, V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Hoeppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Weitzel, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Varma, R; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Boucher, J; Hennino, T; Kunne, R; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Van de Wiele, J; Zerguerras, T; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Belikov, N I; Davidenko, A M; Derevshchikov, A A; Goncharenko, Yu M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Kravtsov, V I; Matulenko, Yu A; Melnik, Y M; Meshchanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasilev, A N; Yakutin, A E; Baeck, T; Cederwall, B; Bargholtz, C; Geren, L; Tegnér, P E; Belostotskii, S; Gavrilov, G; Itzotov, A; Kiselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Yu; Veretennikov, D; Vikhrov, V; Zhadanov, A; Fava, L; Panzieri, D; Alberto, D; Amoroso, A; Botta, E; Bressani, T; Bufalino, S; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Grasso, A; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Serbanut, G; Sosio, S; Bertini, R; Calvo, D; Coli, S; De Remigis, P; Feliciello, A; Filippi, A; Giraudo, G; Mazza, G; Rivetti, A; Szymanska, K; Tosello, F; Wheadon, R; Morra, O; Agnello, M; Iazzi, F; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Ekström, C; Calén, H; Grape, S; Hoeistad, B; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Zlomanczuk, Yu; Díaz, J; Ortiz, A; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlovskii, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.

  6. High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment

    Czech Academy of Sciences Publication Activity Database

    Erhard, M.; Bauer, S.; Beglarian, A.; Bergmann, T.; Bonn, J.; Drexlin, G.; Goullon, J.; Groh, S.; Gluck, F.; Kleesiek, M.; Haussmann, N.; Höhn, T.; Johnston, K.; Kraus, M.; Reich, J.; Rest, O.; Schlosser, K.; Schupp, M.; Slezák, Martin; Thummler, T.; Vénos, Drahoslav; Weinheimer, C.; Wüstling, S.; Zbořil, M.

    2014-01-01

    Roč. 9, JUN (2014), P06022 ISSN 1748-0221 R&D Projects: GA ČR(CZ) GAP203/12/1896 Institutional support: RVO:61389005 Keywords : real-time monitoring * spectrometers * control systems Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014

  7. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    NARCIS (Netherlands)

    Erni, W.; Keshelashvili, I; Krusche, B.

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible

  8. Electron-ion-x-ray spectrometer system

    International Nuclear Information System (INIS)

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.

    1993-01-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays

  9. A 'tiny-orange' spectrometer for electrons

    International Nuclear Information System (INIS)

    Silva, N.C. da.

    1990-01-01

    An tiny-orange electron spectrometer was designed and constructed using flat permanent magnets and a surface barrier detector. The transmission functions of different system configurations were determined for energies in the 200-1100 KeV range. A mathematical model for the system was developed. (L.C.J.A.)

  10. A superheterodyne spectrometer for electronic paramagnetic. Resonance

    International Nuclear Information System (INIS)

    Laffon, J.L.

    1963-12-01

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [fr

  11. Competition of electron-cyclotron maser and free-electron laser modes with combined solenoidal and longitudinal wiggler fields

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.

    1986-01-01

    A relativistic electron beam with a finite transverse dc momentum (β/sub perpendicular/ = 1/γ 0 ) passing through a region of combined uniform solenoidal and longitudinal wiggler magnetic fields is observed to convert 25% of its kinetic energy into coherent radiation at frequency ω = γ 2 0 (k/sub w/V 0 +Ω/sub c//γ 0 ) if the phase velocity of the generated wave is slightly above the speed of light. In this situation, the bunchings of the slow electron-cyclotron mode and free-electron laser modes with combined solenoidal and longitudinal wiggler fields (lowbitron) are observed to compensate each other, which gives rise to a finite threshold for lowbitron operation. In order to attain high efficiency, the wiggler strength of a lowbitron must substantially exceed the threshold

  12. MAGNETIC SPECTROMETER DESIGN FOR ELECTRON SCATTERING ABOVE 1 Bev

    Energy Technology Data Exchange (ETDEWEB)

    Schopper, H.

    1963-06-15

    Design considerations are discussed for magnetic spectrometer electron scattering investigations with the higher energy (above 1 Bev) electron sources which are being developed. The spectrometers are to be used to discriminate between elastic and inelastic processes. A momentum resolution of the order of one per cent is required for these experiments. Various spectrometers are compared according to their optical properties and the number of magnets they consist of. (R.E.U.)

  13. The VESUVIO electron volt neutron spectrometer

    Science.gov (United States)

    Mayers, J.; Reiter, G.

    2012-04-01

    This paper describes the VESUVIO electron volt neutron spectrometer at the ISIS pulsed neutron source and its data analysis routines. VESUVIO is used primarily for the measurement of proton momentum distributions in condensed matter systems, but can also be used to measure the kinetic energies of heavier masses and bulk in-situ sample compositions. A series of VESUVIO runs on the same zirconium hydride sample over the past two years show that (1) kinetic energies of protons can be measured to an absolute accuracy of ˜1%. (2) Measurements of the proton momentum distribution n(p) are highly reproducible from run to run. This shows that small changes in kinetic energy and the detailed shape of n(p) with parameters such as temperature, pressure and sample composition can be reliably extracted from VESUVIO data. (3) The impulse approximation (IA) is well satisfied on VESUVIO. (4) The small deviations from the IA due to the finite momentum transfer of measurement are well understood. (5) There is an anomaly in the magnitude of the inelastic neutron cross-section of the protons in zirconium hydride, with an observed reduction of 10% ± 0.3% from that given in standard tables. This anomaly is independent of energy transfer to within experimental error. Future instrument developments are discussed. These would allow the measurement of n(p) in other light atoms, D, 3He, 4He, Li, C and O and measurement of eV electronic and magnetic excitations.

  14. The VESUVIO electron volt neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J; Reiter, G

    2012-01-01

    This paper describes the VESUVIO electron volt neutron spectrometer at the ISIS pulsed neutron source and its data analysis routines. VESUVIO is used primarily for the measurement of proton momentum distributions in condensed matter systems, but can also be used to measure the kinetic energies of heavier masses and bulk in-situ sample compositions. A series of VESUVIO runs on the same zirconium hydride sample over the past two years show that (1) kinetic energies of protons can be measured to an absolute accuracy of ∼1%. (2) Measurements of the proton momentum distribution n(p) are highly reproducible from run to run. This shows that small changes in kinetic energy and the detailed shape of n(p) with parameters such as temperature, pressure and sample composition can be reliably extracted from VESUVIO data. (3) The impulse approximation (IA) is well satisfied on VESUVIO. (4) The small deviations from the IA due to the finite momentum transfer of measurement are well understood. (5) There is an anomaly in the magnitude of the inelastic neutron cross-section of the protons in zirconium hydride, with an observed reduction of 10% ± 0.3% from that given in standard tables. This anomaly is independent of energy transfer to within experimental error. Future instrument developments are discussed. These would allow the measurement of n(p) in other light atoms, D, 3 He, 4 He, Li, C and O and measurement of eV electronic and magnetic excitations. (paper)

  15. Electron optics development for photo-electron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wannberg, Bjoern [VG Scienta AB, P.O. Box 15120, SE-750 15 Uppsala (Sweden); BW Particle Optics AB, P.O. Box 55, SE-822 22 Alfta (Sweden)], E-mail: bjorn@particleoptics.se

    2009-03-21

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  16. Electron optics development for photo-electron spectrometers

    International Nuclear Information System (INIS)

    Wannberg, Bjoern

    2009-01-01

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  17. Coherent states of non-relativistic electron in the magnetic-solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Filho, D P Meira; Gitman, D M

    2010-01-01

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  18. Coherent states of non-relativistic electron in the magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050, Tomsk (Russian Federation); Gavrilov, S P; Filho, D P Meira [Institute of Physics, University of Sao Paulo (Brazil); Gitman, D M, E-mail: bagrov@phys.tsu.r, E-mail: gavrilovsergeyp@yahoo.co, E-mail: gitman@dfn.if.usp.b, E-mail: dmeira@dfn.if.usp.b [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo (Brazil)

    2010-09-03

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  19. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  20. APES: Acute Precipitating Electron Spectrometer - A High Time Resolution Monodirectional Magnetic Deflection Electron Spectrometer

    Science.gov (United States)

    Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-01-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  1. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    NARCIS (Netherlands)

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron

  2. Calibration of an electron volt neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J.; Adams, M.A.

    2011-01-01

    The procedure for calibrating the VESUVIO eV neutron spectrometer at the ISIS neutron source is described. VESUVIO is used primarily to measure the momentum distribution n(p) of atoms, by inelastic scattering of very high energy (5-150 eV) neutrons. The results of the calibrations show that measurements of n(p) in atoms with masses lower than 16 amu can be measured with a resolution width ∼25% of the intrinsic peak widths in the current instrument configuration. Some suggestions as to how the instrument resolution could be significantly improved are made.

  3. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    OpenAIRE

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron beam. A two-stage GM cryocooler, equipped with a first generation ErNi5 regenerator, cools the epoxy impregnated solenoid down to the operating temperature of about 7.5 K. This leaves a conservati...

  4. Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.

    1991-10-01

    The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab

  5. PAES: Positron annihilation induced Auger electron spectrometer

    OpenAIRE

    Hugenschmidt, Christoph

    2015-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) is a newly developed application for surface studies with high elemental selectivity and exceptional surface sensitivity. The instrument is operated by the Technische Universität München and is located at NEPOMUC.

  6. PAES: Positron annihilation induced Auger electron spectrometer

    Directory of Open Access Journals (Sweden)

    Christoph Hugenschmidt

    2015-08-01

    Full Text Available Positron annihilation induced Auger electron spectroscopy (PAES is a newly developed application for surface studies with high elemental selectivity and exceptional surface sensitivity. The instrument is operated by the Technische Universität München and is located at NEPOMUC.

  7. Electronics for a focal plane crystal spectrometer

    International Nuclear Information System (INIS)

    Goeke, R.F.

    1978-01-01

    The HEAO-B program forced the usual constraints upon the spacecraft experimental electronics: high reliability, low power consumption, and tight packaging at reasonable cost. The programmable high voltage power supplies were unique in both application and simplicity of manufacture. The hybridized measurement chain is a modification of that used on the SAS-C program; the charge amplifier design in particular shows definite improvement in performance over previous work

  8. Performance of the electron energy-loss spectrometer

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1977-01-01

    Performance characteristics of the electron energy-loss spectrometer incorporating a new high-resolution hemispherical monochromator are reported. The apparatus achieved an energy-resolution of 25 meV in the elastic scattering mode, and angular distributions of elastically scattered electrons were in excellent agreement with previous workers. Preliminary energy-loss spectra for several atmospheric gases demonstrate the excellent versatility and stable operation of the improved system. 12 references

  9. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    International Nuclear Information System (INIS)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown

  10. A simple photoionization scheme for characterizing electron and ion spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wituschek, A.; Vangerow, J. von; Grzesiak, J.; Stienkemeier, F.; Mudrich, M., E-mail: mudrich@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany)

    2016-08-15

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  11. Wide angle spectrometers for intermadiate energy electron accelerators

    International Nuclear Information System (INIS)

    Leconte, P.

    1982-10-01

    It is shown that improvements of the detector acceptances (in solid angle and momentum bite) is as important as increased duty cycle for coincidence experiments. To have a maximum efficiency and thus to reduce the cost of experiments, it is imperative to develop maximum solid angle systems. This implies an axial symmetry with respect to the incoming beam. At Saclay, we have investigated some of the properties of specific detectors covering up to 90% of 4π steradians for a high energy, 100% duty cycle electron accelerator. The techniques of wide angle spectrometers have already been explored on a large scale in high energy physics. However, in the case of charged particles, such detectors, compared to classical iron dipole spectrometers, present a smaller resolving power and a rather low background rejection. The choice of which of these two solutions is to be used depends on the conditions of the specific experiment

  12. Electronic THz-spectrometer for plasmonic enhanced deep subwavelength layer detection

    NARCIS (Netherlands)

    Berrier, A.; Schaafsma, M.C.; Gómez Rivas, J.; Schäfer-Eberwein, H.; Haring Bolivar, P.; Tripodi, L.; Matters-Kammerer, M.K.

    2015-01-01

    We demonstrate the operation of a miniaturized all-electronic CMOS based THz spectrometer with performances comparable to that of a THz-TDS spectrometer in the frequency range 20 to 220 GHz. The use of this all-electronic THz spectrometer for detection of a thin TiO2 layer and a B. subtilis bacteria

  13. Concept for an Electron Ion Collider (EIC) detector built around the BaBar solenoid

    OpenAIRE

    PHENIX Collaboration; Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.

    2014-01-01

    The PHENIX collaboration presents here a concept for a detector at a future Electron Ion Collider (EIC). The EIC detector proposed here, referred to as ePHENIX, will have excellent performance for a broad range of exciting EIC physics measurements, providing powerful investigations not currently available that will dramatically advance our understanding of how quantum chromodynamics binds the proton and forms nuclear matter.

  14. Electrostatic electron spectrometer based on two cylinders without axial symmetry

    International Nuclear Information System (INIS)

    Varga, D.; Toekesi, K.

    2005-01-01

    Complete text of publication follows. During the last decades electrostatic analyzers were widely used in atomic and surface physics. This was due to their good focusing and dispersion properties, The cylindrical mirror analyzer (CMA) is one of the most advantageous electrostatic analyzers. Its second order focusing properties have been calculated by many authors. A modified, so called 'box' type, CMA (ESA-13) is described in ref. [1]. For CMA (ESA-13), the position of the electron source and focus are outside the analyzer which is desirable for practical reasons. The ends of the cylinders are closed with two coaxial discs, therefore the electrostatic field near the edge is distorted compared to the logarithmic field existing in the classical 'in-finite' cylindrical mirror analyzer. However, the 'box' type distorted field cylindrical mirror analyzer geometry contains several limitations regarding the irradiation of the sample. Therefore, the construction of these analyzers was changed by replacing the endings of the analyzer with conically shaped electrodes ensuring a better accessibility for excitation. But among the various experimental tasks many geometrical conditions arise that are different or that need different sizes compared with the previous ones. Therefore, in a practical point of view, it is extremely advantageous to have different variations of spectrometers. This allows us to choose the best solution for a given problem. In this work, we present electron-optical properties of a mirror type electrostatic electron spectrometer consisting of two cylinders with eccentricity (see Fig 1.), namely the Eccentric Cylindrical Mirror Analyzer (ECMA). The designed analyzer is a possible variation of CMA for measuring the energy distribution of electrons with high energy resolution or making an electron monocromator. It has been shown that the Eccentric Cylindrical Mirror Analyzer has second-order focusing properties with remarkable dispersion (see Fig 2

  15. Proposal for the theoretical investigation of the relativistic beam-plasma interaction with application to the proof-of-principle electron beam-heated linear solenoidal reactor

    International Nuclear Information System (INIS)

    Thode, L.E.

    1978-09-01

    A 36-month program to study the linear relativistic electron beam-plasma interaction is proposed. This program is part of a joint proposal between the Physics International Company (PI) and Los Alamos Scientific Laboratory (LASL) that combines the advanced electron beam generator technology at PI with the highly developed computer simulation technology at LASL. The proposed LASL program includes direct support for 1- and 3-m beam-plasma interaction experiments planned at PI and development of theory relevant for design of a 10-m proof-of-principle electron beam-driven linear solenoidal reactor

  16. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  17. Development of a mini-orange spectrometer for conversion electron study

    International Nuclear Information System (INIS)

    Mishra, N.R.; Chakravarty, V.; Chintalapudi, S.N.; Ghugre, S.S.; Sastry, D.L.

    1996-01-01

    Conversion electrons provide with an unique tool to have an unambiguous multipolarity assignment for the observed gamma transitions. The fabrication of an electron spectrometer to detect these conversion electrons is a non-trivial task

  18. Testing of the SPEDE conversion electron spectrometer at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2157167

    2017-04-24

    The aim of this work was to test the performance of the SPEDE detector in the MINIBALL setup at CERN’s ISOLDE laboratory. The main research objective of MINIBALL is to study properties of atomic nuclei employing radioactive ion beams. Radioactive Bi-207 and Hg-191 were used in this experiment. SPEDE detects internal conversion electrons which are created in transitions between states in atomic nucleus. The internal conversion is competing process to more common γ-ray emission. This way it is possible to measure different properties of nuclear structure for example the E0-transitions. The simultaneous γ and electron measurements are possible when SPEDE is used in conjunction with the MINIBALL spectrometer. The GEANT4 simulation results were used to help interpretation of experimental results. As a result, αK/L-ratio was determined for Bi-207 conversion electrons, for the 5^2− -> 1^2− transition αK/L = 3.29±0.06 and for the 13^2+-> 5^2− transition αK/L = 3.11±0.05 were obtained. Also, the partial...

  19. Electron spectroscopy for surface analysis - the ES300 electron spectrometer and its applications

    International Nuclear Information System (INIS)

    Walker, J.A.J.; Price, W.B.

    1980-07-01

    The features of the ES300 electron spectrometer are described together with factors which affect the energy spectrum, experimental variables and interpretation of the spectral information. A discussion of five applications illustrates the use of X-ray photo-electron spectroscopy (XPS) in the diverse work of the Risley Nuclear Power Development Laboratories (RNL). The analytical results are given for each of the examples and their interpretation discussed in the chemical context of the original problem. (author)

  20. Sprag solenoid brake

    Science.gov (United States)

    Dane, P. H.

    1972-01-01

    Operation of solenoid braking mechanism is discussed. Illustrations of construction of the brake are provided. Device is used for braking low or medium speed shaft rotations and produces approximately ten times braking torque of similar solenoid brakes.

  1. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  2. Two-arm electron/photon/hadron spectrometer TALES collaboration

    International Nuclear Information System (INIS)

    Hayano, R.S.; Sakurai, H.; Shigaki, K.

    1990-12-01

    To discover and probe the existence of a quark gluon plasma, it would seem desirable to have a detector which is sensitive to as many of the proposed 'signatures' as possible, so that they could all be observed and turned on and off in a predictable, reproducible, controllable and unified way. By emphasizing an open geometry experiment, optimized for detecting low-mass, low P T electron-positron pairs, a reasonably comprehensive measurement of the majority of the quark gluon plasma signatures must be obtained. Thus, the report first addresses physics motivation and goals, focusing on dielectron production; π 0 , η and direct photon measurements; global event characterization; identified hadron P T spectra; and charm production. An overview of the proposed central detector is then presented. Next, major detector components and expected performance are discussed, focusing on tracking, electron-pair reconstruction (a gas ring-imaging Cerenkov RICH counter), Dalitz-decay rejection, a highly-segmented electromagnetic calorimeter, global event characterization, an optical forward spectrometer, and a summary of performance. Finally, the report describes major research and development items and estimated costs. (N.K.)

  3. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Wang, Lan; Wang, Wei-Hong; Gao, Qing-Xiu; Wang, Jie

    2016-01-01

    Highlights: • The static electromagnetic characteristics of solenoid valve were numerically studied. • The effects of driving current were considered. • The effects of solenoid valve’s eight essential structure parameters were considered. - Abstract: In the present paper, the effects of driving current and solenoid valve’s structure parameters (including iron-core’s length, magnetic pole’s cross-sectional area, coil turn, coil’s position, armature’s thickness, damping hole’s position, damping hole’s size, and width of working air–gap) on the static electromagnetic characteristics have been numerically investigated. From the results, it can be known that the electromagnetic energy conversion will be seriously influenced by driving current for its effects on magnetic field strength and magnetic saturation phenomenon, an excessive increase of current will weak electromagnetic energy conversion for the accelerating power losses. The capacity of electromagnetic energy conversion is also relative to each solenoid valve’s parameter albeit it is not very sensitive to each parameters. The generated electromagnetic force will be enhanced by rising iron-core’s length, equalizing the cross-sectional areas of major and vice poles, increasing coil turn within a moderate range, closing the coil’s position towards armature’s centre, enlarging armature’s thickness, pushing the damping holes’ positions away from armature’s centre, reducing the sizes of damping holes, and reducing the width of working air–gap; but such enhancements won’t be realized once the driving current is excessively higher.

  4. Simulations for a compact electron-positron spectrometer

    International Nuclear Information System (INIS)

    Filep, T.; Krasznahorkay, A.; Csatlos, M.; Gulyas, J.

    2011-01-01

    Complete text of publication follows. In the frame of the ENSAR (FP7) project, we are constructing a Compact Positron- Electron spectrometer (COPE) using toroidal magnetic field. It will be used for studying the internal pair creation process in nuclear transitions. It will look like a miniaturized model of the ATLAS spectrometer at CERN at a scale of 1:100. The mean design parameters are high efficiency, good energy resolution and precise angle reconstruction. By our plans the size of this spectrometer would be limited to a diameter of about 30 cm and length about 20 cm, having 1 % energy- and 2deg angular resolutions. The solid angle of the planned spectrometer will be 2π. It is necessary to develop a geometry in which the inhomogeneity of the field can be easily handled. Prior to the construction it was necessary to perform computer simulations in order to avoid rough construction mistakes. The better approach of the reality with simulations is very important. The problem what we have to solve is very complicated. We need to simulate the magnetic field and trajectory of the particle moving in that field. We started our simulations using the PerMag software package. >From the result we learned the followings: 1) It has no meaning to cover the magnets with iron coat because it complicates the magnetic field. 2) It is not a good idea to form the magnetic one-segment from a big magnet and 12 smaller magnets. The fringing field of the small magnets significantly modifies the magnetic field distribution around the segment. On the other hand the construction of one segment from pieces is very difficult in reality. 3) The best shape for a segment which can easily be constructed is simple box. The PerMag package could simulate the magnetic field only in 2D, but we wanted to do more precise simulation in 3D. The free package developed by the European Synchrotron Radiation Facility (ESRF) was used for the simulation of the magnetic field applying the finite element method

  5. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part I - an absolute traceable energy calibration for electron spectrometers

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.; Anthony, M.T.

    1991-01-01

    Experiments have been made to provide calibrated kinetic energy values for AES peaks in order to calibrate Auger electron spectrometers of various resolving powers. The kinetic energies are measured using a VG Scientific ESCALAB 2 which has power supplies appropriate for AES measurements in both the constant ΔE and constant ΔE/E modes. The absolute calibration of the energy scale is obtained by the development of a new measurement chain which, in turn, is calibrated in terms of the post-1990 representation of electron volts using XPS peaks with a traceable kinetic energy accuracy of 0.02 eV. The effects of instrumental and operating parameters, including the spectrometer dispersion and stray magnetic fields, are all assessed and contribute errors for three peaks not exceeding 0.06 eV and for two peaks not exceeding 0.03 eV. Calibrated positions in the direct spectrum are given for the Cu M 2,3 VV, Au N 6,7 VV, Ag M 4 NN, Cu L 3 VV and Au M 5 N 6,7 N 6,7 transitions at 0.2 eV resolution, referred to both the Standard Vacuum Level and the Fermi level. For the derivative spectrum the positions of the negative excursions are derived numerically by computer from this data and are established with the same accuracy. Data are tabulated for the above peaks in both the direct and differentiated modes for the popular resolutions of 0.15%, 0.3% and 0.6% produced by Gaussian broadening of the high resolution spectra. Differentiations are effected by both sinusoidal modulation and Savitzky-Golay functions of 2 eV and 5 eV peak-to-peak

  6. Preparations for Measurement of Electroweak Boson Production Cross-Sections using the Electron Decay Modes, with the Compact Muon Solenoid Detector

    CERN Document Server

    Wardrope, D R

    2009-01-01

    The Compact Muon Solenoid was designed to make discoveries at the TeV scale : to elucidate the nature of electroweak symmetry breaking and to search for physics beyond the Standard Model. For any such discovery to be credible, it must first be demonstrated that the CMS detector is understood. One mechanism to make this demonstration is to measure “standard candle” processes, such as W and Z production. This thesis describes preparations undertaken to make these measurements using the electron decay modes, with an integrated luminosity of 10 inverse picobarns of collision data. The energy resolution of the electromagnetic calorimeter was measured in test beam data. An improved method of deriving the optimised weights necessary for amplitude reconstruction is described. The measurement of electron charge using tracks is impaired by the electron showering in the tracker material. A novel charge measurement technique that is complementary to the existing method was assessed. Missing transverse energy is a pow...

  7. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  8. Field electron emission spectrometer combined with field ion/electron microscope as a field emission laboratory

    International Nuclear Information System (INIS)

    Shkuratov, S.I.; Ivanov, S.N.; Shilimanov, S.N.

    1996-01-01

    The facility, combining the field ion microscope, field electron emission microscope and field electron emission spectrometer, is described. Combination of three methodologies makes it possible to carry out the complete cycle of emission studies. Atom-plane and clean surface of the studied samples is prepared by means of field evaporation of the material atom layers without any thermal and radiation impact. This enables the study of atom and electron structure of clean surface of the wide range materials, the study whereof through the field emission methods was previously rather difficult. The temperature of the samples under study changes from 75 up to 2500 K. The energy resolution of the electron analyzer equals 30 MeV. 19 refs., 10 figs

  9. Double differential distributions of electron emission in ion-atom and electron-atom collisions using an electron spectrometer

    International Nuclear Information System (INIS)

    Misra, Deepankar; Thulasiram, K.V.; Fernandes, W.; Kelkar, Aditya H.; Kadhane, U.; Kumar, Ajay; Singh, Yeshpal; Gulyas, L.; Tribedi, Lokesh C.

    2009-01-01

    We study electron emission from atoms and molecules in collisions with fast electrons and heavy ions (C 6+ ). The soft collision electrons (SE), two center electron emission (TCEE), the binary encounter (BE) events and the KLL Auger lines along with the elastically scattered peaks (in electron collisions) are studied using a hemispherical electrostatic electron analyzer. The details of the measurements along with description of the spectrometer and data acquisition system are given. The angular distributions of the low energy (few eV) electrons in soft collisions and the binary encounter electrons at keV energies are compared with quantum mechanical models based on the first Born (B1) and the continuum distorted wave-Eikonal initial state approximation (CDW-EIS).

  10. High-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap

    International Nuclear Information System (INIS)

    Robbins, D.L.; Chen, H.; Beiersdorfer, P.; Faenov, A.Ya.; Pikuz, T.A.; May, M.J.; Dunn, J.; Smith, A.J.

    2004-01-01

    A compact high-resolution (λ/Δλ≅10 000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured

  11. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Figure 1: Some members of the solenoid and liquid argon teams proudly pose in front of the barrel cryosat, complete with detector and magnet. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. Figure 2: The alignment survey by Dirk Mergelkuhl and Aude Wiart. (EST-SU) At the start of the New Year the solenoid was moved to the cryostat insertion stand. Figure 3: The solenoid on the insertion stand, with Akira Yamamoto the solenoid designer and project leader. Figure 4: Taka Kondo, ATLAS Japan spokesperson, and Shoichi Mizumaki, Toshiba project engineer for the ATLAS solenoid, celebrate the insertion. Aft...

  12. Electron spectroscopy measurements with a shifted analyzing plane setting in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Dyba, Stephan [Institut fuer Kernphysik, Uni Muenster (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    With the KATRIN (KArlsruhe TRItium Neutrino) experiment the endpoint region of the tritium beta decay will be measured to determine the electron-neutrino mass with a sensitivity of 200 meV/c{sup 2} (90% C.L.). For the high precision which is needed to achieve the sub-eV range a MAC-E filter type spectrometer is used to analyze the electron energy. To understand the various background contributions inside the spectrometer vessel different electric and magnetic field settings were investigated during the last commissioning phase. This talk will focus on the so called shifted analyzing plane measurement in which the field settings were tuned in a way to provide non standard potential barriers within the spectrometer. The different settings allowed to perform a spectroscopic measurement, determining the energy spectrum of background electrons born within the spectrometer.

  13. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  14. Highly effective portable beta spectrometer for precise depth selective electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Aldiyarov, N.U.; Kadyrzhanov, K.K.; Seytimbetov, A.M.; Zhdanov, V.S.

    2007-01-01

    Full text: More broad application of the nuclear-physical method of precise Depth Selective Electron Moessbauer Spectroscopy (DS EMS) is limited by insufficient accessibility of highly-effective beta spectrometers with acceptable resolution. It should be mentioned that the method DS EMS is realized at a combined installation that consists of a highly-effective beta spectrometer and a conventional portable nuclear gamma-resonance spectrometer. Yet few available beta spectrometers have sophisticated design and controlling; in most cases they are cumbersome. All the attempts to simplify beta spectrometers resulted in noticeable worsening of depth resolution for the DS EMS method making the measurements non precise. There is currently an obvious need in a highly-effective portable easily controlled beta spectrometer. While developing such portable beta spectrometer, it is more promising to use as basis a simpler spectrometer, which has ratio of sample size to spectrometer size of about five times. The paper presents an equal-arm version of a highly-effective portable beta spectrometer with transverse heterogeneous sector magnetic field that assures double focusing. The spectrometer is equipped with a large-area non-equipotential source (a sample under investigation) and a position-sensitive detector. This portable spectrometer meets all requirements for achievement of the DS EMS depth resolution close to the physical limit and demonstrates the following main characteristics: equilibrium orbit radius ρ 0 = 80 mm, instrumental energy resolution 0.6 % at solid angle 1 % of 4π steradian, area of non-equipotential source ∼ 80 mm 2 , registration by position-sensitive detector of ∼ 10 % of the energy interval. Highly-effective portable beta spectrometer assures obtaining Moessbauer data with depth resolution close to physical limit of the DS EMS method. So in measurements at conversion and Auger electrons with energies of about units of keV and above, the achieved

  15. A novel spectrometer for studying exotic nuclei with the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Woertche, H.J.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    A novel concept of an electron spectrometer developed for the ELISe facility is presented. This spectrometer will be constructed as a part of the international Facility for Antiprotons and Ion Research (FAIR) at GSI Helmholtzzentrum fuer Schwerionenforschung. The spectrometer is designed to analyze electron scattering at the ion-electron interaction region of the NESR and EAR colliding storage rings with a high resolution and a large solid angle. A pre-deflector with a zero-field central channel along the path of the intersecting beam allows the measurement of scattered electrons without interfering with the circulating beams. Ion-optical and magnet design calculations are presented to demonstrate the feasibility and achievement of realistic design specifications.

  16. Simulated performance of the in-beam conversion-electron spectrometer, SPICE

    Energy Technology Data Exchange (ETDEWEB)

    Ketelhut, S., E-mail: ketelhut@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Evitts, L.J.; Garnsworthy, A.B.; Bolton, C.; Ball, G.C.; Churchman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Dunlop, R. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Hackman, G.; Henderson, R.; Moukaddam, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Rand, E.T.; Svensson, C.E. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Witmer, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada)

    2014-07-01

    The SPICE spectrometer is a new in-beam electron spectrometer designed to operate in conjunction with the TIGRESS HPGe Clover array at TRIUMF-ISAC. The spectrometer consists of a large area, annular, segmented lithium-drifted silicon electron detector shielded from the target by a photon shield. A permanent magnetic lens directs electrons around the photon shield to the detector. Experiments will be performed utilising Coulomb excitation, inelastic-scattering, transfer and fusion–evaporation reactions using stable and radioactive ion beams with suitable heavy-ion detection. Good detection efficiency can be achieved in a large energy range up to 3500 keV electron energy using several magnetic lens designs which are quickly interchangeable. COMSOL and Geant4 simulations have been used to maximise the detection efficiency. In addition, the simulations have guided the design of components to minimise the contributions from various sources of backgrounds.

  17. Back-view Auger electron spectrometer-diffractometer

    International Nuclear Information System (INIS)

    Antipov, V.G.; Bol'shunov, I.B.; Romanov, S.S.

    1990-01-01

    Design of a device on the base of quasispherical four-grid energy analyzer for recording the Auger electron spectra (AES) and observation of the patterns of slow electron diffraction (SED) on the side of an electron gun, is described. A layout of a small-sized electron gun providing for diffraction pattern recording up to the electron energies E ≅ 20 eV, is presented. At E=100 eV the gun current is ≅ 0.8 muA at electron beam diameter on a sample ≤ 1 mm. In the AES regime the gun allows one to record Auger spectra at electron energy E ≤ 3 keV, current ≅ 5 muA and electron beam diameter on a sample ≤ 0.2 mm. The maximum gun current is ≅ 25 muA for an increased beam diameter. Exapmles illustrating the device operation in AES and SED regimes, are presented

  18. In-beam electron spectrometer used in conjunction with a gas-filled recoil separator

    International Nuclear Information System (INIS)

    Kankaanpaeae, H.; Butler, P.A.; Greenlees, P.T.; Bastin, J.E.; Herzberg, R.D.; Humphreys, R.D.; Jones, G.D.; Jones, P.; Julin, R.; Keenan, A.; Kettunen, H.; Leino, M.; Miettinen, L.; Page, T.; Rahkila, P.; Scholey, C.; Uusitalo, J.

    2004-01-01

    The conversion-electron spectrometer SACRED has been redesigned for use in conjunction with the RITU gas-filled recoil separator. The system allows in-beam recoil-decay-tagging (RDT) measurements of internal conversion electrons. The performance of the system using standard sources and in-beam is described

  19. The CMS superconducting solenoid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The huge solenoid that will generate the magnetic field for the CMS experiment at the LHC is shown stored in the assembly hall above the experimental cavern. The solenoid is made up of five pieces totaling 12.5 m in length and 6 m in diameter. It weighs 220 tonnes and will produce a 4 T magnetic field, 100 000 times the strength of the Earth's magnetic field, storing enough energy to melt 18 tonnes of gold.

  20. Solenoidal fusion system

    International Nuclear Information System (INIS)

    Linlor, W.I.

    1980-01-01

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  1. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Winzen, Daniel; Hannen, Volker; Ortjohann, Hans-Werner; Zacher, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2012-07-01

    The KATRIN (KArlsruhe TRItium Neutrino mass) experiment will study the tritium {beta}-spectrum near the endpoint of 18.6 keV, aiming to measure the mass of the electron antineutrino. Using an electrostatic retarding spectrometer (MAC-E-Filter), the projected sensitivity for m{sub ve} is 200 meV/c{sup 2} at 90% C.L. In order to map out the electric and magnetic fields in the main spectrometer, an angular selective electron gun is currently being developed. The e-gun uses an UV-Laser to produce electrons via the photo-electric effect from a copper substrate which are then accelerated electrostatically. It features a small energy spread of approx. 0.1 eV, a sharp emission angle and will be able to cover the whole magnetic flux tube of KATRIN. Using a pulsed laser it is also possible to investigate the time of flight (TOF) of electrons through the spectrometer, offering enhanced sensitivity to spectrometer properties far away from the analysing plane. By comparing information from transmission function measurements and TOF data with Monte Carlo simulations of the setup, one will be able to achieve a detailed understanding of the spectrometer properties.

  2. Physical design of the positron induced auger electron spectrometer

    International Nuclear Information System (INIS)

    Qin Xiubo; Jiang Xiaopan; Wang Ping; Yu Runsheng; Wang Baoyi; Wei Long

    2009-01-01

    Positron Annihilation Induced Auger Electron Spectroscopy (PAES) has several advantages over those excited by X-rays, high energy electrons or neutrons, such as excellent surface selectivity, high signal-to-noise ratio, low radiation damage,etc. A physical design of time of flight PAES (TOF-PAES) apparatus based on the Beijing Intense Slow Positron Beam (BIPB) is described in this paper. The positrons and electrons are transported in a 4 x 10 -3 T uniform magnetic field, and the gradient of magnetic field is designed to pluralize the Auger electrons emitted with 2π angle. The Auger electron energy is adjusted by a Faraday cage to optimize the energy resolution,which can be better than 2 eV. (authors)

  3. High-effective position time spectrometer in actual measurements of low intensity region of electron spectra

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.

    2002-01-01

    Magnetic position-time spectrometer was proposed in previous work, where not only electron coordinates in focal plane are measured by position sensitive detector (PSD) but places of their birth in beta source plane of a large area are fixed using another PSD, situated behind it, by quick effects, accompanying radioactive decay. PSD on the basis of macro-channel plates are used. It is succeeded in position-time spectrometer to combine beta sources of a large area with multichannel registration for a wide energy interval, that efficiency of measurements was two orders of magnitude increase d in comparison magnetic apparatus having PSD only in focal plane. Owing to two detectors' switching on coincidence the relation effect/background in increased minimum on two orders of magnitude in comparison with the same apparatus. At some complication of mathematical analysis it was obtained, that high characteristics of position-time spectrometer are kept during the use the magnetic field, providing double focusing. Owning to this focusing the gain the efficiency of measurements will make one more order of magnitude. Presented high-effective position-time spectrometer is supposed to use in the measurements of low-intensity region of electron spectra, which are important for development of fundamental physics. This is the first of all estimation of electron anti-neutrino mass by the form of beta spectrum of tritium in the region of boundary energy. Recently here there was problem of non physical negative values. This problem can be solved by using in measurement of different in principle high-effective spectrometers, which possess improved background properties. A position-time spectrometers belongs to these apparatus, which provides the best background conditions at very large effectiveness of the measurements of tritium beta spectrum in the region of boundary energy with acceptable high resolution. An important advantage of position-time spectrometer is the possibility of

  4. 2D electron systems viewed through an RF spectrometer

    International Nuclear Information System (INIS)

    Andrei, E.Y.

    1994-01-01

    Electrons trapped at the liquid helium-vacuum interface are an almost ideal realization of a 2D electron system. I will describe experiments probing the in-plane as well as the out-of-plane motion of the electrons. The former have emphasized the dynamics and thermodynamics of the electronic motion within the plane to understand the nature of the liquid-solid transition and to outline its phase boundary. The latter have studied the escape out of the electron layer and provided an opportunity to observe tunneling in a clean and well-characterized system as well as to measure the effects of correlations on the tunneling process. More recently experiments in the presence of a magnetic field transverse to the direction of tunneling have revealed several novel phenomena associated with the magnetic coupling between the in-plane and the out-of-plane electronic motions. Together, these experiments helped uncover the multi-faceted physics that can be found in this system. (orig.)

  5. Approximate theory the electromagnetic energy of solenoid in special relativity

    International Nuclear Information System (INIS)

    Prastyaningrum, I; Kartikaningsih, S.

    2017-01-01

    Solenoid is a device that is often used in electronic devices. A solenoid is electrified will cause a magnetic field. In our analysis, we just focus on the electromagnetic energy for solenoid form. We purpose to analyze by the theoretical approach in special relativity. Our approach is begun on the Biot Savart law and Lorentz force. Special theory relativity can be derived from the Biot Savart law, and for the energy can be derived from Lorentz for, by first determining the momentum equation. We choose the solenoid form with the goal of the future can be used to improve the efficiency of the electrical motor. (paper)

  6. High field laser heated solenoids

    International Nuclear Information System (INIS)

    Hoffman, A.L.

    1979-01-01

    A 10 kJ pulsed CO 2 laser and 3.8 cm bore, 15 T, 8 μs rise time, 1-m long fast solenoid facility has been constructed to demonstrate the feasibility of using long wavelength lasers to heat magnetically confined plasmas. The most critical physics requirement is the necessity of creating and maintaining an on-axis electron density minimum to trap the axially directed laser beam. Satisfaction of this requirement has been demonstrated by heating 1.5 Torr deuterium fill plasmas in 2.7 cm bore plasma tubes to line energies of approximately 1 kJ/m. (Auth.)

  7. A new magnetic spectrometer for the investigation of the internal conversion electron in capture reaction

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1978-01-01

    Planning, development and manufacture of a new beta spectrometer for the investigation of the internal conversion electrons, from 0,02 to 10 MeV, emitted during the radioative capture process of the thermal neutrons. The resolution on the base of resolution curve is about 1,5 X 10 sup(-3) [pt

  8. Test report: Electron-proton spectrometer qualification test unit, qualification test

    Science.gov (United States)

    Vincent, D. L.

    1972-01-01

    Qualification tests of the electron-proton spectrometer test unit are presented. The tests conducted were: (1) functional, (2) thermal/vacuum, (3) electromagnetic interference, (4) acoustic, (5) shock, (6) vibration, and (7) humidity. Results of each type of test are presented in the form of data sheets.

  9. [A high resolution projection electron spectrometers]: Final report 1978-1987

    International Nuclear Information System (INIS)

    1988-01-01

    The main emphasis of the work has been to study inner shell ionization processes. The signatures have been K x-rays or K Auger transitions. We have worked with semiconductor or Bragg x-ray spectrometers. Toward the end of the contract we concentrated on projectile electron spectroscopy. These topics and other atomic physics projects are described briefly in this progress report

  10. Microprocessor system for data acquisition processing and display for Auger electrons spectrometer

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Cudny, W.; Hildebrandt, S.; Marzec, J.; Walentek, J.; Zaremba, K.

    1984-01-01

    Data acquisition system for Auger electron spectrometry is developed. The system is used for chemical and structural analysis of materials and consists of a cylindrical mirror analyzer being a measuring spectrometer device, CAMAC unit and control unit. The control unit comprises a microcomputer based on INTEL 8080 microprocessor and display

  11. Electron spectrometer for measurement of the energy distributions and angular distributions of electrons ejected by ionizing radiation

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1975-01-01

    With a broad range of applications in mind, a new electron spectrometer has been constructed which is flange mountable, has an easily accessible source region, is rotatable over the range 25 0 less than or equal to theta less than or equal to 335 0 , and has a wide dynamical range and a wide range of resolving power

  12. A silicon microstrip detector in a magnetic spectrometer for high-resolution electron scattering experiments at the S-DALINAC

    International Nuclear Information System (INIS)

    Lenhardt, A.W.; Bonnes, U.; Burda, O.; Neumann-Cosel, P. von; Platz, M.; Richter, A.; Watzlawik, S.

    2006-01-01

    A silicon microstrip detector was developed as focal plane detector of the 169.7 deg. magic angle double-focussing spectrometer at the superconducting Darmstadt electron linear accelerator (S-DALINAC). It allows experiments with minimum ionizing electrons at data rates up to 100 kHz, utilizing the maximum resolution of the spectrometer achievable in dispersion-matching mode

  13. Constant-gap spectrometer design for the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Wörtche, H.J.; Berg, G.P.A.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    For the study of electron-scattering off radioactive nuclei, the ELISe spectrometer will be constructed as a part of the Facility of Antiprotons and Ion Research (FAIR) in Darmstadt. A conceptional design of a spectrometer with a “clam-shell” gap was presented before. Here, we will present an improved design with a pre-deflector with a constant gap. Such a pre-deflector is not only simpler to construct but also provides larger angle acceptances in the forward-angle range compared to those with the “clam-shell” design.

  14. Orbital electron capture measurements with an internal-source spectrometer

    International Nuclear Information System (INIS)

    Gerner, C.P.

    1978-01-01

    Electron-capture measurements have been performed on 131 Ba and on 106 Agsup(m). For 131 Ba the L/K-and M/L-capture rations of the allowed decay have been measured to the 1048 keV level in 131 Cs. The Qsub(EC) value, the exchange- and overlap-correction factors Xsup(L/K) and Xsup(M/L) and the reduced capture ratios have been determined. For 106 Agsup(m) the L/K-capture ratio of the allowed decay has been measured to the 2757 keV level in 106 Pd. The Q value, the exchange- and overlap-correction factor Xsup(L/K) and the reduced L/K- capture ratio have been derived. The measurements indicate that agreement between experimentally determined capture ratios and exchange-corrected theoretical predictions is fairly good, both for allowed and for first-forbidden non-unique transitions. (Auth./C.F.)

  15. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. At the start of the New Year the solenoid was moved to the cryostat insertion stand. After a test insertion on 6th February and a few weeks of preparation work it was finally inserted on 27th February. A couple of hectic 24-hours/7-day weeks followed in order to connect all services in the cryostat bulkhead. But last Monday, 15th March, both warm flanges of the cryostat could be closed. In another week's time we expect to finish the connection of the cryogenic cooling lines and the superconducting bus lines with the external services. Then the cool-down and test will commence... ...

  16. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  17. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R., E-mail: hogstrom@lsu.edu; Carver, Robert L.; Gibbons, John P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Clarke, Taylor; Henderson, Alexander; Liang, Edison P. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, Texas 77005-1827 (United States)

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower

  18. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    Science.gov (United States)

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration

  19. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part II - the determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.

    1991-01-01

    For the use of published general or theoretical sensitivity factors in quantitative AES and XPS the energy dependence of both the spectrometer transmission function and the detector sensitivity must be known. Here we develop simple procedures which allow these dependencies to be determined experimentally. Detailed measurements for a modified VG Scientific ESCALAB II, the metrology spectrometer, operated in both the constant ΔE/E and constant ΔE modes, are presented and compared with theoretical estimates. It is shown that an exceptionally detailed electron-optical calculation, involving proprietary information, would be required to match the accuracy of the experimental procedures developed. Removal of the spectrometer transmission function and the detector sensitivity terms allows the measured spectrum to be converted to the true electron emission spectrum irrespective of the mode of operation. This provides the first step to the provision of reference samples to calibrate the transmission functions and detector sensitivities of all instruments so that they, in turn, may produce true electron emission spectra. This is vital if (i) all instruments are to give consistent results, (ii) theoretical terms are to be used in quantifying either AES or XPS and (iii) reference data banks are to be established for AES or XPS

  20. The SAGE spectrometer: A tool for combined in-beam γ-ray and conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Papadakis, P; Herzberg, R-D; Pakarinen, J; Butler, P A; Cox, D; Cresswell, J R; Parr, E; Sampson, J; Greenlees, P T; Sorri, J; Hauschild, K; Jones, P; Julin, R; Peura, P; Rahkila, P; Sandzelius, M; Coleman-Smith, P J; Lazarus, I H; Letts, S C; Pucknell, V F E

    2011-01-01

    The SAGE spectrometer allows simultaneous in-beam γ-ray and internal conversion electron measurements, by combining a germanium detector array with a highly segmented silicon detector and an electron transport system. SAGE is coupled with the ritu gas-filled recoil separator and the great focal-plane spectrometer for recoil-decay tagging studies. Digital electronics are used both for the γ ray and the electron parts of the spectrometer. SAGE was commissioned in the Accelerator Laboratory of the University of Jyvaeskylae in the beginning of 2010.

  1. A multichannel magnetic β-ray spectrometer for rapid measurements of electron spectra

    International Nuclear Information System (INIS)

    Kariya, Komyo; Morikawa, Kaoru.

    1989-01-01

    In order to make the magnetic β-ray spectrometer suitable for rapid measurements of electron spectra with short-lived nuclides, twelve small GM counters have been arrayed along the focal plane of a 180deg focusing flat type design. All the signal pulses from each one of these detectors are mixed together onto a single cable. By means of multichannel PHA, each pulse can be traced back to the specific detector which sent it out. In order to avoid time consuming evacuation procedures, the sample source is placed outside a thin window of the preevacuated analyzer chamber. By the use of this multichannel spectrometer a β-ray spectrum with maximum energy up to about 10 MeV can be measured within 1 min or so. Electron spectra measured with 113m In, 119m In and 144 Pr source are shown. (author)

  2. The Wavelength-Dispersive Spectrometer and Its Proposed Use in the Analytical Electron Microscope

    Science.gov (United States)

    Goldstein, Joseph I.; Lyman, Charles E.; Williams, David B.

    1989-01-01

    The Analytical Electron Microscope (AEM) equipped with a wavelength-dispersive spectrometer (WDS) should have the ability to resolve peaks which normally overlap in the spectra from an energy-dispersive spectrometer (EDS). With a WDS it should also be possible to measure lower concentrations of elements in thin foils due to the increased peak-to-background ratio compared with EDS. The WDS will measure X-ray from the light elements (4 less than Z less than 1O) more effectively. This paper addresses the possibility of interfacing a compact WDS with a focussing circle of approximately 4 cm to a modem AEM with a high-brightness (field emission) source of electrons.

  3. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, John; Mishra, Ashok Kumar [Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  4. Development and commissioning of a double-prism spectrometer for the diagnosis of femtosecond electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2016-12-15

    Free-electron lasers as accelerator-driven light sources and wakefield-based acceleration in plasmas require the knowledge of the longitudinal extension and the longitudinal current profile of the involved electron bunches. These bunches can yield lengths below 10 μm, or durations shorter than approx. 33 fs, as well as charges less than 30 pC. During this work, transition radiation from relativistic electron bunches was investigated in the mid-infrared wavelength regime. A spectrometer using an arrangement of two consecutive zinc selenide prisms was developed, built and commissioned. The instrument covers the spectral range from 2 μm to 18 μm in a single shot. Measurements with the double-prism spectrometer were conducted at the FEL facilities FLASH at DESY in Hamburg, Germany and FELIX at the Radboud Universiteit in Nijmegen, The Netherlands. The assessment of the spectrometer and comparative studies with established diagnostic devices at FLASH show high signal-to-noise ratios at bunch charges below 10 pC and confirm the obtained results.

  5. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    Energy Technology Data Exchange (ETDEWEB)

    Storer, P; Caprari, R S; Clark, S A.C.; Vos, M; Weigold, E

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a{sub 0}{sup -1}. The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs.

  6. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    International Nuclear Information System (INIS)

    Storer, P.; Caprari, R.S.; Clark, S.A.C.; Vos, M.; Weigold, E.

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a 0 -1 . The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs

  7. LCLS Gun Solenoid Design Considerations

    International Nuclear Information System (INIS)

    Schmerge, John

    2010-01-01

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  8. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  9. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  10. Electronics for processing of data from a double collector isotopic ratio mass spectrometer

    International Nuclear Information System (INIS)

    Handu, V.K.

    1979-01-01

    The output data available from the mass spectrometer type MS-660 developed in the mass spectrometry section of Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, for the determination of H/D ratios in liquid/gas sample consist of uncompensated mass 3 and mass 2 signals. After the mass 3 signal has been compensated for H 3 + formation, the on-line ratio of compensated mass 3 to mass 2 is calculated, displayed, and then printed on a printer for record. The electronic compensation circuit, the discrete voltage-to-frequency (V/F) converter circuit, the ratio calculating system using V/F converters, and a digital interface system for Hindustan Teleprinter to print out the ratios are explained. Results obtained on mass spectrometer MS-660 are presented. (auth.)

  11. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    International Nuclear Information System (INIS)

    Poletto, L.; Frassetto, F.; Miotti, P.; Di Cicco, A.; Iesari, F.; Finetti, P.; Grazioli, C.; Kivimäki, A.; Stagira, S.; Coreno, M.

    2014-01-01

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented

  12. Suprathermal electron studies in the TCV tokamak: Design of a tomographic hard-x-ray spectrometer

    International Nuclear Information System (INIS)

    Gnesin, S.; Coda, S.; Decker, J.; Peysson, Y.

    2008-01-01

    Electron cyclotron resonance heating and electron cyclotron current drive, disruptive events, and sawtooth activity are all known to produce suprathermal electrons in fusion devices, motivating increasingly detailed studies of the generation and dynamics of this suprathermal population. Measurements have been performed in the past years in the tokamak a configuration variable (TCV) tokamak using a single pinhole hard-x-ray (HXR) camera and electron-cyclotron-emission radiometers, leading, in particular, to the identification of the crucial role of spatial transport in the physics of ECCD. The observation of a poloidal asymmetry in the emitted suprathermal bremsstrahlung radiation motivates the design of a proposed new tomographic HXR spectrometer reported in this paper. The design, which is based on a compact modified Soller collimator concept, is being aided by simulations of tomographic reconstruction. Quantitative criteria have been developed to optimize the design for the greatly variable shapes and positions of TCV plasmas.

  13. The source of monoenergetic electrons for the monitoring of spectrometer in the KATRIN neutrino experiment

    CERN Document Server

    Slezák, Martin

    The international project KATRIN (KArlsruhe TRItium Neutrino experiment) is a next-generation tritium $\\beta$-decay experiment. It is designed to measure the electron anti-neutrino mass by means of a unique electron spectrometer with sensitivity of 0.2 eV/c$^2$. This is an improvement of one order of magnitude over the last results. Important part of the measurement will rest in continuous precise monitoring of high voltage of the KATRIN main spectrometer. The monitoring will be done by means of conversion electrons emitted from a solid source based on $^{83}$Rb decay. Properties of several of these sources are studied in this thesis by means of the semiconductor $\\gamma$-ray spectroscopy. Firstly, measurement of precise energy of the 9.4 keV nuclear transition observed in $^{83}$Rb decay, from which the energy of conversion electrons is derived, is reported. Secondly, measurement of activity distribution of the solid sources by means of the Timepix detector is described. Finally, a report on measurement of r...

  14. Design and realization of a space-borne reflectron time of flight mass spectrometer: electronics and measuring head

    International Nuclear Information System (INIS)

    Devoto, P.

    2006-03-01

    The purpose of this thesis is the design of the electronics of a time of flight mass spectrometer, the making and the vacuum tests of a prototype which can be put onboard a satellite. A particular effort was necessary to decrease to the maximum the mass and electric consumption of the spectrometer, which led to the development of new circuits. The work completed during this thesis initially concerns the electronics of the measuring equipment which was conceived in a concern for modularity. A complete 'reflectron' type mass spectrometer was then designed, simulated and developed. The built prototype, which uses the developed electronics, was exposed to ion flows of different masses and energies in the CESR vacuum chambers. Its measured performances validate the implemented principles and show that an identical mass spectrometer can be put onboard a satellite with profit, for planetary or solar missions. (author)

  15. The XRS microcalorimeter spectrometer at the Livermore Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F S; Beiersdorfer, P; Boyce, K; Brown, G V; Chen, H; Gygax, J; Kahn, S M; Kelley, R; Kilbourne, C A; Magee, E; Thorn, D B

    2007-08-22

    NASA's X-ray Spectrometer (XRS) microcalorimeter instrument has been operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory since July of 2000. The spectrometer is currently undergoing its third major upgrade to become an easy to use, extremely high performance instrument for a broad range of EBIT experiments. The spectrometer itself is broadband, capable of simultaneously operating from 0.1 to 12 keV and has been operated at up to 100 keV by manipulating its operating conditions. The spectral resolution closely follows the spaceflight version of the XRS, beginning at 10 eV FWHM at 6 keV in 2000, upgraded to 5.5 eV in 2003, and will hopefully be {approx}3.8 eV in the Fall of 2007. Here we review the operating principles of this unique instrument, the extraordinary science that has been performed at EBIT over the last 6 years, and prospects for future upgrades. Specifically we discuss upgrades to cover the high-energy band (to at least 100 keV) with a high quantum efficiency detector, and prospects for using a new superconducting detector to reach 0.8 eV resolution at 1 keV, and 2 eV at 6 keV with high counting rates.

  16. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  17. Field and frequency modulated sub-THz electron spin resonance spectrometer

    Directory of Open Access Journals (Sweden)

    Christian Caspers

    2016-05-01

    Full Text Available 260-GHz radiation is used for a quasi-optical electron spin resonance (ESR spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH using field modulation. Original high-field ESR of 4f electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.

  18. The MEDUSA electron and ion spectrometer and the PIA ultraviolet photometers on Astrid-2

    Directory of Open Access Journals (Sweden)

    O. Norberg

    2001-06-01

    Full Text Available The miniature electron and ion spectrometer MEDUSA on Astrid-2 consists of two "top-hat"-type spherical electrostatic analyzers, sharing a common top-hat. Fast energy sweeps (16 electron sweeps and 8 ion sweeps per second allow for very high temporal resolution measurements of a two-dimensional slice of the particle distribution function. The energy range covered, is in the case of electrons, 4 eV to 22 keV and, in the case of ions, 2 eV to 12 keV. MEDUSA is mounted with its aperture close to the spin plane of Astrid-2, which allows for good pitch-angle coverage when the local magnetic field is in the satellite spin plane. The PIA-1/2 spin-scanning ultraviolet photometers measure auroral emissions. Using the spacecraft spin and orbital motion, it is possible to create two-dimensional images from the data. Spin-scanning photometers, such as PIA, are low-cost, low mass alternatives to auroral imagers, but place constraints on the satellite attitude. Data from MEDUSA are used to study processes in the auroral region, in particular, electrodynamics of aurora and "black aurora". MEDUSA is also a technological development, paving the way for highly capable, miniaturized particle spectrometers.Key words. Ionosphere (instruments and techniques – Magnetospheric physics (auroral phenomena; instruments and techniques

  19. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau

    2009-11-01

    Full Text Available A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  20. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy.

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  1. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  2. Momentum mapping spectrometer for probing the fragmentation dynamics of molecules induced by keV electrons

    International Nuclear Information System (INIS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R

    2011-01-01

    We describe a new experimental setup for studying the fragmentation dynamics of molecules induced by the impact of keV electrons using the well-known technique of recoil ion momentum spectroscopy. The apparatus consists of mainly a time- and position-sensitive multi-hit particle detector for ion analysis and a channel electron multiplier detector for detecting the ejected electrons. Different components of the setup and the relevant electronics for data acquisition are described in detail with their working principles. In order to verify the reliable performance of the setup, we have recorded the collision-induced ionic spectra of the CO 2 molecule by the impact of keV electrons. Information about the ion pairs of CO + :O + , C + :O + and O + :O + resulting from dissociative ionizing collisions of 20 and 26 keV electrons with a dilute gaseous target of CO 2 molecules has been obtained. Under conditions of the present experiment, the momentum resolutions of the spectrometer for the combined momenta of CO + and O + ions in the direction of the time-of-flight axis and perpendicular to the direction of an electron beam are found to be 10.0 ± 0.2 and 15.0 ± 0.3 au, respectively

  3. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.; Webster, James [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Grubbs, Guy [University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249 (United States); Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States); Michell, Robert G.; Samara, Marilia [Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States); Jahn, Jörg-Micha [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249 (United States)

    2016-05-15

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  4. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    International Nuclear Information System (INIS)

    Ogasawara, Keiichi; Stange, Jason L.; Trevino, John A.; Webster, James; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Jahn, Jörg-Micha

    2016-01-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  5. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    International Nuclear Information System (INIS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-01-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E≅1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube

  6. The MEG positron spectrometer

    International Nuclear Information System (INIS)

    Nishiguchi, Hajime

    2007-01-01

    We have been developing an innovative spectrometer for the MEG experiment at the Paul Scherrer Institute (PSI) in Switzerland. This experiment searches for a lepton flavour violating decay μ + →e + γ with a sensitivity of 10 -13 in order to explore the region predicted by supersymmetric extensions of the standard model. The MEG positron spectrometer consists of a specially designed superconducting solenoidal magnet with a highly graded field, an ultimate low-mass drift chamber system, and a precise time measuring counter system. This innovative positron spectrometer is described here focusing on the drift chamber system

  7. SSC detector solenoid

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, E.D.; Wands, R.H.

    1989-01-01

    A detector utilizing a superconducting solenoid is being discussed for the Superconducting Super Collider (SSC). A useful field volume of 8 m diameter x 16 m length at 1.5-2 T (--1 GJ at 2T) is required. It has been decided that all of the particle physics calorimetry will be inside the bore of the solenoid and that there is no need for the coil and cryostat to be ''thin'' in radiation lengths. An iron yoke will reduce the excitation required and will provide muon identification and a redundant momentum measurement of the muons. The authors have developed a conceptual design to meet these requirements. The magnet will use a copper-stabilized Nb-Ti conductor sized for a cryostable pool boiling heat flux --0.025 W/cm/sup 2/. A thermosiphon from a storage vessel above the cryostat will be used to prevent bubble stagnation in the liquid helium bath. The operating current, current density, coil subdivision and dump resistor have been chosen to guarantee that the coil will be undamaged should a quench occur. The axial electromagnetic force will be reacted by metallic support links; the stainless steel coil case will support the radial force. The 5000 metric tons of calorimetry will be supported from the iron yoke through a trussed cylindrical shell structure separate from the cryostat. The coil and case, radiation shield and stainless vacuum vessel would be fabricated and cryogenically tested as two 8-m sections. These would be lowered into the underground experimental hall and installed into the iron flux return yoke to provide the required 16-m length

  8. A new time of flight mass spectrometer for absolute dissociative electron attachment cross-section measurements in gas phase

    Science.gov (United States)

    Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay

    2018-02-01

    A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.

  9. How to measure energy of LEReC electron beam with magnetic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-04-11

    For successful cooling the energies of RHIC ion beam and LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with required accuracy, e-beam energy can have as large initial offset as 5%. The final setting of e-beam energy will be performed by observing either Schottky spectrum or recombination signal from debunched ions co-traveling with the e-beam. Yet, to start observing such signals one has to set absolute energy of electron beam with accuracy better than 10-2, preferably better than 5∙10-3. The aim of this exercise is to determine whether and how such accuracy can be reached by utilizing LEReC 180° bend as a spectrometer.

  10. Efficiency calibration of electron spectrometers by the help of standard spectrum

    International Nuclear Information System (INIS)

    Toth, J.; Cserny, I.; Varga, D.; Koever, I.; Toekesi, K.

    2004-01-01

    Complete text of publication follows. For studying thin films and surface nanostructures quantitative analytical applications of electron spectroscopic techniques have a great importance. The most frequently used techniques are XPS, XAES and AES in quantitative surface electron spectroscopy. Applying these techniques changes in the detection efficiency vs. electron kinetic energy change the measured electron peak intensity ratios and in this way the neglect of the energy dependence of the spectrometer efficiency can influence surface atomic concentrations derived. The importance of the precise determination of the atomic concentrations is very crucial, especially in the determination of non-destructive depth profiles by the help of AR-XPS in which small changes in the relative concentrations can change dramatically the concentration depth profiles of a few nanometer depth ranges. In the present study the REELS technique was used to determine the relative detection efficiency by the help of a standard spectrum measured on the surface of fine microcrystalline Cu specimen. The experimental relative efficiency curves vs. electron kinetic energy were compared to the calculated efficiency curve. The efficiency calibration is discussed from the point of view of quantitative XPS, AR- XPS, AES and from the point of view of IMFP determination by XPS. The work was supported by the Hungarian National Science Foundation, OTKAT038016. For the Cu specimen and the standard spectrum the authors are indebted to the Sur- face Analysis Society of Japan, to Dr. Shigeo Tanuma and Professor Keisuke Goto (NIT). (author)

  11. Angle-resolving time-of-flight electron spectrometer for near-threshold precision measurements of differential cross sections of electron-impact excitation of atoms and molecules

    International Nuclear Information System (INIS)

    Lange, M.; Matsumoto, J.; Setiawan, A.; Panajotovic, R.; Harrison, J.; Lower, J. C. A.; Newman, D. S.; Mondal, S.; Buckman, S. J.

    2008-01-01

    This article presents a new type of low-energy crossed-beam electron spectrometer for measuring angular differential cross sections of electron-impact excitation of atomic and molecular targets. Designed for investigations at energies close to excitation thresholds, the spectrometer combines a pulsed electron beam with the time-of-flight technique to distinguish between scattering channels. A large-area, position-sensitive detector is used to offset the low average scattering rate resulting from the pulsing duty cycle, without sacrificing angular resolution. A total energy resolution better than 150 meV (full width at half maximum) at scattered energies of 0.5-3 eV is achieved by monochromating the electron beam prior to pulsing it. The results of a precision measurement of the differential cross section for electron-impact excitation of helium, at an energy of 22 eV, are used to assess the sensitivity and resolution of the spectrometer

  12. Improvement of the intrinsic time resolving power of the Cologne iron-free orange type electron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Regis, J.-M.; Materna, Th.; Pascovici, G.; Christen, S.; Dewald, A.; Fransen, C.; Jolie, J.; Petkov, P.; Zell, K. O. [Institut fuer Kernphysik (IKP), Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2010-11-15

    Conversion electron spectroscopy represents an important tool for nuclear structure analysis of medium and heavy nuclei. Two iron-free magnetic electron spectrometers of the orange type have been installed at the Institute for Nuclear Physics of the University of Cologne. The very large transmission of 15% and the very good energy resolution of 1% makes the iron-free orange spectrometer a powerful instrument. By means of fast timing techniques, lifetimes of nuclear excited states can be measured with an accuracy better than 20 ps. For the first time, the energy dependent centroid position of prompt events yielding the time-walk characteristics (the prompt curve) of the orange spectrometer fast timing setup has been measured using prompt secondary {delta}-electrons generated in a pulsed beam experiment. The prompt curve calibrated as a function of energy allows precise lifetime determination down to a few tens of picoseconds by the use of the centroid shift method.

  13. Inauguration of the CMS solenoid

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In early 2005 the final piece of the CMS solenoid magnet arrived, marked by this ceremony held in the CMS assembly hall at Cessy, France. The solenoid is made up of five pieces totaling 12.5 m in length and 6 m in diameter. Weighing 220 tonnes, it will produce a 4 T magnetic field, 100 000 times the strength of the Earth's magnetic field and store enough energy to melt 18 tonnes of gold.

  14. Installation and calibration of a grating spectrometer for electron cyclotron emission measurements using circular waveguide

    International Nuclear Information System (INIS)

    Lohr, J.; Johns, G.; Moeller, C.; Prater, R.

    1986-01-01

    The grating spectrometer installation on the DIII-D tokamak is discussed. It uses fundamental circular waveguide propagating the TE 11 lowest order mode followed by oversized circular guide carrying the low loss TE 01 mode. The short section of fundamental guide permits use of an electronic chopper operating at 50 kHz for both calibration and plasma operation. By using a.c.-coupled amplifiers tuned to the chopping frequency, the background signal generated in the InSb detectors by neutrons and x-rays is automatically subtracted and the system noise bandwidth is reduced. Compared with a quasi-optical system, the much smaller fundamental horn and front end waveguide allow the entire waveguide system to be located outside a gate valve. With this configuration the entire waveguide run, including the actual horn and vacuum window used during plasma operations, can be included in the calibration set-up

  15. A superheterodyne spectrometer for electronic paramagnetic. Resonance; Spectrometre superheterodyne de resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Laffon, J L [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-12-15

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [French] Apres quelques generalites sur le phenomene de resonance paramagnetique electronique, une synthese des differentes techniques experimentales, permet de fixer le choix d'un type d'appareillage. Un spectrometre de RPE superheterodyne realise en laboratoire et comportant un circuit original est expose dans le detail. Cet appareil a permis de nombreux resultats experimentaux dont quelques-uns sont decrits a titre d'exemple. (auteur)

  16. The data acquisition system used in one-dimension multichannel fast electron energy loss spectrometer

    International Nuclear Information System (INIS)

    Jiang Weichun; Zhu Linfan; Zhang Yijun; Xu Kezuo

    2010-01-01

    It describes a data acquisition system used in one dimension multichannel fast electron energy loss spectrometer, which can work in scan acquisition mode and static acquisition mode. The timing precision of the scan mode is less than 4 μs by utilizing the gated signal generated by data acquisition card DAQ2010 and an AND logic circuit. A timer card PCI8554 is used to synchronize the data acquisition card and the personal computer. The scan voltage supply is controlled by the personal computer through the RS232 interface. The multithreading technology is used in the acquisition software in order to improve the accommodating-err ability of the acquisition system. A satisfactory test result is given. (authors)

  17. Application Of Electronic Nose And Ion Mobility Spectrometer To Quality Control Of Spice Mixtures

    International Nuclear Information System (INIS)

    Banach, U.; Tiebe, C.; Huebert, Th.

    2009-01-01

    The aim of the paper is to demonstrate the application of electronic nose (e-nose) and ion mobility spectrometry (IMS) to quality control and to find out product adulteration of spice mixtures. Therefore the gaseous head space phase of four different spice mixtures (spices for sausages and saveloy) was differed from original composition and product adulteration. In this set of experiments metal-oxide type e-nose (KAMINA-type) has been used, and characteristic patterns of data corresponding to various complex odors of the four different spice mixtures were generated. Simultaneously an ion mobility spectrometer was coupled also to an emission chamber for the detection of gaseous components of spice mixtures. The two main methods that have been used show a clear discrimination between the original spice mixtures and product adulteration could be distinguished from original spice mixtures.

  18. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  19. Generation of ten kilotesla longitudinal magnetic fields in ultraintense laser-solenoid target interactions

    OpenAIRE

    Xiao, K. D.; Zhou, C. T.; Zhang, H.; Huang, T. W.; Li, R.; Qiao, B.; Cao, J. M.; Cai, T. X.; Ruan, S. C.; He, X. T.

    2018-01-01

    Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten kilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of impo...

  20. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim

    2013-10-15

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  1. Design of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    Gehrke, Tim

    2013-10-01

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  2. Reflection-time-of-flight spectrometer for two-electron (e,2e) coincidence spectroscopy on surfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Kerherve, G.; Winkler, C.

    2008-01-01

    In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/γ,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E kin ≅25 eV is around 100 ns. The corresponding time- and energy resolution are typically ≅1 ns and ≅0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented

  3. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  4. Dual Electron Spectrometer for Magnetospheric Multiscale Mission: Results of the Comprehensive Tests of the Engineering Test Unit

    Science.gov (United States)

    Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.; hide

    2011-01-01

    The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.

  5. Very large solid angle spectrometer for single arm electron scattering experiments

    International Nuclear Information System (INIS)

    Leconte, P.

    1981-01-01

    Major information about short range behavior of nuclear forces should be obtained through electron scattering experiments at high momentum transfer. Cross sections will be very low as is usually the case in electron scattering. In order to reach them, the solid angle of the detection system will have to be enlarged. Traditional optics cannot give correct answer to the problem. For very large apertures, it is impossible to obtain good focussing properties which provide accurate momentum/position correlation with no dependence on the entrance angles. Furthermore, the experiment will require the measurement of these angles. It means that the final system will be equipped with a complete set of position sensitive detectors able to measure positions and angles of trajectories in both planes. Then, the question arises: is it really necessary to provide good focussing, or more precisely: is it possible to get all the required information without the help of a sophisticated predetermined magnetic optics. We try to answer this question and then to sketch from a new point of view the best spectrometer we could think of

  6. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    International Nuclear Information System (INIS)

    Lawton, J J; Pulisciano, A; Palmer, R E

    2009-01-01

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  7. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J J; Pulisciano, A; Palmer, R E, E-mail: R.E.Palmer@bham.ac.u [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-11-25

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  8. Design of a wideband multilayer grating spectrometer for the study of electronic structure of thin-film CIS solar cells

    International Nuclear Information System (INIS)

    Imazono, Takashi; Koike, Masato; Kuramoto, Satoshi; Nagano, Tetsuya; Koeda, Masaru; Moriya, Naoji

    2014-01-01

    A soft x-ray emission spectrometer equipped with a wideband Ni/C multilayer-coated laminar-type varied-line-spacing holographic grating is designed to analyze the electronic structure in thin-film copper indium selenide (CIS) solar cells nondestructively by soft x-ray emission spectroscopy. The spectrometer equipped with the multilayer grating thus designed allows us to detect the L emission lines of Cu, In, and Se simultaneously from a CIS absorber layer in the 1–3.5 keV range at a constant angle of incidence. (author)

  9. Monte-Carlo study of the influence of backscattered electrons on the transmission of a mini-orange β spectrometer

    Science.gov (United States)

    Detistov, Pavel; Balabanski, Dimiter L.

    2015-04-01

    This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made.

  10. Monte-Carlo study of the influence of backscattered electrons on the transmission of a mini-orange β spectrometer

    International Nuclear Information System (INIS)

    Detistov, Pavel; Balabanski, Dimiter L

    2015-01-01

    This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made. (paper)

  11. Electronic module for control of sample feeding device of spectrometers of X-ray fluorescent analysis of CRV type

    International Nuclear Information System (INIS)

    Petrov, V.A.; Fursov, A.V.

    2002-01-01

    The scheme of electronic module for sample feeding device control for the CRV type X-ray fluorescence analysis spectrometers is considered. This module provides realization of next functions: sample change operations and installation in starting position; signaling and defense at emergency cases; indication of any sample amount in the spectrometer chamber; testing function at tuning and testing of modules. All these principal functions are entrusted with microcontroller. Programming of the microcontroller is putting into effect by algorithm of the whole sample feeding device. In the capacity of microcontroller the single crystalline processor PICI16C54 and stepping motor of NV-306-V2202 model have been used

  12. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu, Sichuan 610200 (China); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [Department of Nuclear Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-11-15

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  13. Description and performance of an electron-ion coincidence TOF spectrometer used at the Brazilian synchrotron facility LNLS

    International Nuclear Information System (INIS)

    Burmeister, F.; Coutinho, L.H.; Marinho, R.R.T.; Homem, M.G.P.; Morais, M.A.A. de; Mocellin, A.; Bjoerneholm, O.; Sorensen, S.L.; Fonseca, P.T.; Lindgren, A.; Naves de Brito, A.

    2010-01-01

    This paper reports the characteristics and performance of a Time-of-Flight Mass Spectrometer (TOF-MS) for coincidence measurements between electrons and ions that has been developed jointly in Sweden and Brazil. The spectrometer, used for studies of inner-shell photoexcitation of molecules in the gas-phase, has been optimized by implementing ion and electron lenses to allow the use of relatively small diameter detectors. Simulations were performed to understand the lens performance and they show that ions (electrons) could be collected without angular discrimination with a maximum kinetic energy up to ten (two) times higher than without the lens actions. A rotary vacuum chamber allows the spectrometer axis to be positioned at different angles relative to the polarization vector of the excitation beam. An important characteristic of the apparatus is that the acquisition setup allows a multi-hit capability with 1 ns resolution. Hereby, Photoelectron-Photoion-Photoion Coincidence (PEPIPICO) measurements can be performed on molecules containing two or more atoms of equal mass. A method to obtain experimental detection efficiencies of a single ion and one of one, two or three electrons has been developed. A systematic study of the interaction region has been performed to determine the shape of the photon and gas beams. Measurements on molecular nitrogen demonstrate the spectrometer's ability to resolve fragments with the same charge to mass ratio arriving within only a few ns. Simulations and experimental results of fragmentation of two singly charged cation nitrogen atoms agree, confirming that the spectrometer performance is well understood.

  14. Description and performance of an electron-ion coincidence TOF spectrometer used at the Brazilian synchrotron facility LNLS

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, F. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Coutinho, L.H. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Instituto de Fisica, Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil); Marinho, R.R.T. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Homem, M.G.P. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Morais, M.A.A. de; Mocellin, A. [Instituto de Fisica, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil); Bjoerneholm, O. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Sorensen, S.L. [SLF, Institute of Physics, University of Lund, Box 118, S-221 00 Lund (Sweden); Fonseca, P.T. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Lindgren, A. [SLF, Institute of Physics, University of Lund, Box 118, S-221 00 Lund (Sweden); Naves de Brito, A., E-mail: arnaldo.naves@gmail.co [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Instituto de Fisica, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil)

    2010-06-15

    This paper reports the characteristics and performance of a Time-of-Flight Mass Spectrometer (TOF-MS) for coincidence measurements between electrons and ions that has been developed jointly in Sweden and Brazil. The spectrometer, used for studies of inner-shell photoexcitation of molecules in the gas-phase, has been optimized by implementing ion and electron lenses to allow the use of relatively small diameter detectors. Simulations were performed to understand the lens performance and they show that ions (electrons) could be collected without angular discrimination with a maximum kinetic energy up to ten (two) times higher than without the lens actions. A rotary vacuum chamber allows the spectrometer axis to be positioned at different angles relative to the polarization vector of the excitation beam. An important characteristic of the apparatus is that the acquisition setup allows a multi-hit capability with 1 ns resolution. Hereby, Photoelectron-Photoion-Photoion Coincidence (PEPIPICO) measurements can be performed on molecules containing two or more atoms of equal mass. A method to obtain experimental detection efficiencies of a single ion and one of one, two or three electrons has been developed. A systematic study of the interaction region has been performed to determine the shape of the photon and gas beams. Measurements on molecular nitrogen demonstrate the spectrometer's ability to resolve fragments with the same charge to mass ratio arriving within only a few ns. Simulations and experimental results of fragmentation of two singly charged cation nitrogen atoms agree, confirming that the spectrometer performance is well understood.

  15. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Casey, D.; Clancy, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T. [General Atomics, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States)

    2014-11-15

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})

  16. Levels in /sup 179/W studied in the /sup 181/Ta(p, 3n) reaction by on-line electron and gamma ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, B J; Konijn, J [Instituut voor Kernphysisch Onderzoek, Amsterdam (Netherlands); Klank, B; Jett, J H; Ristinen, R A [Colorado Univ., Boulder (USA)

    1975-01-01

    Levels in /sup 179/W have been deduced from in-beam gamma and conversion electron studies of the /sup 181/Ta(p, 3n)/sup 179/W reaction. The gamma-ray spectrum was studied with Ge(Li) detectors and a crystal diffraction spectrometer; the conversion electrons were measured with solenoid Si(Li) spectrometer. The multipolarities of some 50 transitions could be determined. Coriolis mixing of the Nilsson orbits with N = 6 was calculated.

  17. Electron optical study of the Venus Express ASPERA-4 Electron Spectrometer (ELS) top-hat electrostatic analyser

    International Nuclear Information System (INIS)

    Collinson, Glyn A; Kataria, D O; Coates, Andrew J; Tsang, Sharon M E; Arridge, Christopher S; Lewis, Gethyn R; Frahm, Rudy A; Winningham, J David; Barabash, Stas

    2009-01-01

    The performance of the Venus Express (VEX) ASPERA-4 Electron Spectrometer (ELS) is different from the nominal response shown by the ASPERA-3 ELS aboard Mars Express due to machining tolerance. Up to now, the precise mechanism for this was unknown and, therefore, the results of the experimental calibration could not be supported with a theoretical understanding of the fundamental instrument science behind the device. In this study, we show that the difference is due to a misalignment of the inner hemisphere and a widening of the entrance aperture of the instrument. The response of the VEX ELS can be approximated by a combination of a vertical offset of the inner hemisphere of ≈0.6 mm and a lateral offset of less than 0.125 mm, combined with an aperture that is ≈0.54 mm wider than nominal. The resulting K-factor, geometric factor, energy resolution and peak elevation are in good agreement with those observed experimentally. Therefore, we now have a good agreement between both laboratory calibration data and computer simulation, giving a firm foundation for future scientific data analysis

  18. Report of the large solenoid detector group

    International Nuclear Information System (INIS)

    Hanson, G.G.; Mori, S.; Pondrom, L.G.

    1987-09-01

    This report presents a conceptual design of a large solenoid for studying physics at the SSC. The parameters and nature of the detector have been chosen based on present estimates of what is required to allow the study of heavy quarks, supersymmetry, heavy Higgs particles, WW scattering at large invariant masses, new W and Z bosons, and very large momentum transfer parton-parton scattering. Simply stated, the goal is to obtain optimum detection and identification of electrons, muons, neutrinos, jets, W's and Z's over a large rapidity region. The primary region of interest extends over +-3 units of rapidity, although the calorimetry must extend to +-5.5 units if optimal missing energy resolution is to be obtained. A magnetic field was incorporated because of the importance of identifying the signs of the charges for both electrons and muons and because of the added possibility of identifying tau leptons and secondary vertices. In addition, the existence of a magnetic field may prove useful for studying new physics processes about which we currently have no knowledge. Since hermeticity of the calorimetry is extremely important, the entire central and endcap calorimeters were located inside the solenoid. This does not at the moment seem to produce significant problems (although many issues remain to be resolved) and in fact leads to a very effective muon detector in the central region

  19. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  20. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.

    Science.gov (United States)

    Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi

    2014-01-01

    Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases. Copyright © 2013 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  1. The SPEDE spectrometer

    Science.gov (United States)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  2. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  3. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2014-09-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ˜30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  4. Stabilization of superconducting dry solenoids

    International Nuclear Information System (INIS)

    Urata, M.; Maeda, H.

    1989-01-01

    Premature quenches in superconducting solenoids, wound with Formvar coated NbTi conductors, have been studied. Some model coils were tested wound with various winding tensions. The experimental results are discussed considering the calculated stress distribution for coil winding, cool-down to liquid helium temperature, and energization at 4.2 K. /Some mechanisms of premature quenches are classified by the winding tension. Some stabilization methods are presented based on these quench mechanisms

  5. Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer

    Science.gov (United States)

    Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib

    2018-05-01

    In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.

  6. Exploring the Physics Limitations of Compact High Gradient Accelerating Structures Simulations of the Electron Current Spectrometer Setup in Geant4

    CERN Document Server

    Van Vliet, Philine Julia

    2017-01-01

    The high field gradient of 100 MV/m that will be applied to the accelerator cavities of the Compact Linear Collider (CLIC), gives rise to the problem of RF breakdowns. The field collapses and a plasma of electrons and ions is being formed in the cavity, preventing the RF field from penetrating the cavity. Electrons in the plasma are being accelerated and ejected out, resulting in a breakdown current up to a few Amp`eres, measured outside the cavities. These breakdowns lead to luminosity loss, so reducing their amount is of great importance. For this, a better understanding of the physics behind RF breakdowns is needed. To study these breakdowns, the XBox 2 test facility has a spectrometer setup installed after the RF cavity that is being conditioned. For this report, a simulation of this spectrometer setup has been made using Geant4. Once a detailed simulation of the RF field and cavity has been made, it can be connected to this simulation of the spectrometer setup and used to recreate the data that has b...

  7. Conceptual design of the Radial Gamma Ray Spectrometers system for α particle and runaway electron measurements at ITER

    DEFF Research Database (Denmark)

    Nocente, Massimo; Tardocchi, Marco; Barnsley, Robin

    2017-01-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines...... the measurements sensitive to α particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration...... of 100ms, a time resolution of at least 10ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space...

  8. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Chen, Z.Y., E-mail: zychen@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu 610200, Sichuan (China); Huang, D.W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Lee, S.G.; Shi, Y.J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-11-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K{sub α} spectra of helium-like argon and its satellite lines. The wavelength range of K{sub α} spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  9. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    International Nuclear Information System (INIS)

    Yan, W.; Chen, Z.Y.; Jin, W.; Huang, D.W.; Lee, S.G.; Shi, Y.J.; Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G.

    2016-01-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K_α spectra of helium-like argon and its satellite lines. The wavelength range of K_α spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  10. Design and construction of a high-stability, low-noise power supply for use with high-resolution electron energy loss spectrometers

    International Nuclear Information System (INIS)

    Katz, J.E.; Davies, P.W.; Crowell, J.E.; Somorjai, G.A.

    1982-01-01

    The design and construction of a high-stability, low-noise power supply which provides potentials for the lens and analyzer elements of a 127 0 Ehrhardt-type high-resolution electron energy loss spectrometer (HREELS) is described. The supply incorporates a filament emission-control circuit and facilities for measuring electron beam current at each spectrometer element, thus facilitating optimal tuning of the spectrometer. Spectra obtained using this supply are shown to have a four-fold improvement in signal-to-noise ratio and a higher resolution of the vibrational loss features when compared with spectra taken using a previously existing supply based on passive potential divider networks

  11. Workshop on CEBAF [Continuous Electron Beam Accelerator Facility] spectrometer magnet design and technology: Proceedings

    International Nuclear Information System (INIS)

    1986-09-01

    The planned experimental program at CEBAF includes high-resolution, large acceptance spectrometers and a large toroidal magnetic, detector. In order to take full advantage of the high quality beam characteristics, the performances required will make these devices quite unique instruments compared to existing facilities in the same energy range. Preliminary designs have shown that such performances can be reached, but key questions concerning design concepts and most appropriate and cost-effective technologies had to be answered before going further with the designs. It was the purpose of the Workshop on CEBAF Spectrometer Magnet Design and Technology, organized by the CEBAF Research and Engineering Divisions, to provide the most complete information about the state-of-the-art tools and techniques in magnet design and construction and to discuss the ones most appropriate to the CEBAF spectrometers. In addition, it is expected that this Workshop will be the staring point for further interactions and collaborations between international magnet experts and the CEBAF staff, during the whole process of designing and building the spectrometers

  12. Space shuttle charging or beam-plasma discharge: What can electron spectrometer observations contribute to solving the question?

    International Nuclear Information System (INIS)

    Watermann, J.; Wilhelm, K.; Torkar, K.M.; Riedler, W.

    1988-01-01

    Several cooperative plasma experiments were carried out on board Spacelab-1, the ninth payload of the Space Transportation System (STS-9). Among them, the electron spectrometer 1ES019A was designed to observe 01.-12.5 keV electron fluxes with high temporal and spatial resolution, while the SEPAC electron beam accelerator emitted electron beams with currents up to 280 mA and maximum energies of 5 keV. Since the question of orbiter charging to high voltages has controversially been discussed in several publications on STS-3 and STS-9 electron beam experiments, an attempt is made to relate information from the return electron flux observed during the SEPAC operations to the vehicle charging interpretation. A close examination reveals that most of our observations can be understood if the occurrence of a beam-plasma discharge is assumed at least for electron beam intensities above 100 mA. This would provide a substantial return current capability. High orbiter charging effects during electron beam accelerator electron emissions are consequently not supported by the observations

  13. Superconducting Solenoid for Superfast THz Spectroscopy

    Science.gov (United States)

    Bragin, A. V.; Khrushchev, S. V.; Kubarev, V. V.; Mezencev, N. A.; Tsukanov, V. M.; Sozinov, G. I.; Shkaruba, V. A.

    This project is related to new spectroscopy method in little-developed THz range. The method is founded on using of a free electron laser (NovoFEL) with high spectral power radiation which can be smoothly tuned in desirable range of spectrum. The objects of research of this method are fast processes in physics, chemical and biological reactions. Uniform magnetic field of 6 T value in the research area can considerably increase possibilities of this method. The magnetic field will modulate radiation of free molecules induction on characteristic frequencies of the Zeeman splitting that gives more possibilities of identification of molecules having even weak magnetic momentum. Moreover, the use of magnetic field allows essentially increase sensitivity of this method due to almost complete separation of weak measuring signals from powerful radiation of the laser. A superconducting solenoid was developed for this method. Its design and peculiarities are described in this paper.

  14. Design of SC solenoid with high homogeneity

    International Nuclear Information System (INIS)

    Yang Xiaoliang; Liu Zhong; Luo Min; Luo Guangyao; Kang Qiang; Tan Jie; Wu Wei

    2014-01-01

    A novel kind of SC (superconducting) solenoid coil is designed to satisfy the homogeneity requirement of the magnetic field. In this paper, we first calculate the current density distribution of the solenoid coil section through the linear programming method. Then a traditional solenoid and a nonrectangular section solenoid are designed to produce a central field up to 7 T with a homogeneity to the greatest extent. After comparison of the two solenoid coils designed in magnet field quality, fabrication cost and other aspects, the new design of the nonrectangular section of a solenoid coil can be realized through improving the techniques of framework fabrication and winding. Finally, the outlook and error analysis of this kind of SC magnet coil are also discussed briefly. (authors)

  15. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max

    2012-12-15

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.

  16. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  17. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches

    Science.gov (United States)

    Lindner, F. H.; Bin, J. H.; Englbrecht, F.; Haffa, D.; Bolton, P. R.; Gao, Y.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Parodi, K.; Thirolf, P. G.; Schreiber, J.

    2018-01-01

    Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

  18. Progress in ATLAS central solenoid magnet

    CERN Document Server

    Yamamoto, A; Makida, Y; Tanaka, K; Haruyama, T; Yamaoka, H; Kondo, T; Mizumaki, S; Mine, S; Wada, K; Meguro, S; Sotoki, T; Kikuchi, K; ten Kate, H H J

    2000-01-01

    The ATLAS central solenoid magnet is being developed to provide a magnetic field of 2 Tesla in the central tracking volume of the ATLAS detector under construction at the CERN/LHC project. The solenoid coil design features high-strength aluminum stabilized superconductor to make the coil thinnest while maintaining its stability and the pure-aluminum strip technique for quench protection and safety. The solenoid coil is installed in a common cryostat with the LAr calorimeter in order to minimize the cryostat wall. A transparency of 0.66 radiation length is achieved with these integrated efforts. The progress in the solenoid coil fabrication is reported. (8 refs).

  19. Central Solenoid Insert Technical Specification

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

    2011-09-01

    The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by

  20. Laser-heated solenoid fusion

    International Nuclear Information System (INIS)

    Vlases, G.C.

    1977-01-01

    Since the suggestion by Dawson, Hertzberg, and Kidder that high-energy CO 2 lasers could be used to heat magnetically confined plasma columns to thermonuclear temperatures, a great deal of theoretical and experimental work has been performed. In this paper we first review the experiments on the basic laser-plasma interaction phenomena, in which lasers with energies up to 1 kJ have been used to produce plasmas at n/sub e/ greater than 10 18 and T/sub e/ greater than 200 eV. The second part reviews fusion reactor studies based on the laser solenoid

  1. Improved focus solenoid design for linear induction accelerators

    International Nuclear Information System (INIS)

    Zentler, J.M.; Van Maren, R.D.; Nexsen, W.E.

    1992-08-01

    Our FXR linear induction accelerator produces a 2 KA, 17 MeV electron beam of 60 ns duration. The beam is focused on a tantalum target to produce x-rays for radiography. The FWHM spot size of the focused beam is currently 2.2 mm. We strive to reduce the spot size by 30% by improving the field characteristics of focusing solenoids housed in each of 50 induction cells along the beamline. Tilts in the magnetic axis of the existing solenoids range up to 12 mrad (0.7 degrees). We are building new solenoid assemblies which include ferromagnetic homogenizer rings. These dramatically reduce field errors. A field tilt of under 0.5 mrad has been achieved. Mechanical alignment of the rings is critical. We developed a novel construction method in which the rings are wound with 4 mil thick Si-Fe ribbon into grooves on an aluminum cylinder. The cylinder then becomes the winding mandrel for the focus solenoids. This forms a more accurate and compact assembly than the standard practice of pressing individual solid rings onto a tube

  2. Three dimensional multilayer solenoid microcoils inside silica glass

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun

    2016-01-01

    Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.

  3. Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    Science.gov (United States)

    Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2016-09-01

    The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.

  4. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser.

    Science.gov (United States)

    Zastrau, Ulf; Fletcher, Luke B; Förster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

    2014-09-01

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ΔE/E = 1.1 × 10(-4) and wave-number resolution of Δk/k = 3 × 10(-3), allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5 μm agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  5. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  6. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  7. Improving the resolution in soft X-ray emission spectrometers through photon-counting using an Electron Multiplying CCD

    International Nuclear Information System (INIS)

    Hall, D J; Soman, M; Tutt, J; Murray, N; Holland, A; Schmitt, T; Raabe, J; Strocov, V N; Schmitt, B

    2012-01-01

    In 2007, a study of back-illuminated Charge-Coupled Devices (CCDs) for soft X-ray photon detection demonstrated the improvements that could be brought over more traditional micro-channel plate detectors for X-ray spectrometers based on diffraction gratings and position sensitive detectors. Whilst the spatial resolution was reported to be improved dramatically, an intrinsic limit of approximately 25 micrometers was found due to the spreading of the charge cloud generated in the CCD across several pixels. To overcome this resolution limit, it is necessary to move away from the current integrated imaging methods and consider a photon-counting approach, recording the photon interaction locations to the sub-pixel level. To make use of photon-counting techniques it is important that the individual events are separable. To maintain the throughput of the spectrometer for high intensity lines, higher frame rates and therefore higher readout speeds are required. With CCD based systems, the increased noise at high readout speeds can limit the photon-counting performance. The Electron-Multiplying CCD shares a similar architecture with the standard CCD but incorporates a g ain register . This novel addition allows controllable gain to be applied to the signal before the read noise is introduced, therefore allowing individual events to be resolved above the noise even at much higher readout rates. In the past, the EM-CCD has only been available with imaging areas too small to be practical in soft X-ray emission spectrometers. The current drive for large area Electron-Multiplying CCDs is opening this technology to new photon-counting applications, requiring in-depth analysis of the processes and techniques involved. Early results indicate that through the introduction of photon-counting techniques the resolution in such systems can be dramatically improved.

  8. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  9. A compact CMA spectrometer with axially integrated hybrid electron-ion gun for ISS, AES and sputter depth profile analysis

    International Nuclear Information System (INIS)

    Gisler, E.; Bas, E.B.

    1986-01-01

    Until now, the combined application of electrons and ions in surface analysis required two separate sources for electrons and ions with different incidence angles. The newly developed hybrid electron-ion gun, however, allows bombardment of the same sample area both with noble gas ions and with electrons coming from the same direction. By integrating such a hybrid gun axially in a cylindrical mirror energy analyser (CMA) a sensitive compact single flange spectrometer obtains for ion scattering spectroscopy (ISS), Auger electron spectroscopy (AES), and sputtering all within normal beam incidence. This concept makes accurate beam centering very easy. Additionally, the bombardment from the same direction both for sputtering and for surface analysis brings advantages in depth profiling. The scattering angle for ISS has a constant value of about 138 0 . The hybrid gun delivers typically an electron beam current of -20μA at 3keV for AES, and an ion beam current of +40 nA and +1.2μA at 2 keV for ISS and sputtering respectively. The switching time between ISS, AES, and sputtering mode is about 0.1 s. So this system is best suited for automatically controlled depth profile analysis. The design and operation of this new system will be described and some applications will be discussed. (author)

  10. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Yung Szen, E-mail: yungszen@utm.my [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan); Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Tabuchi, Yutaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan); Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro, E-mail: kitagawa@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan)

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  11. ATLAS's superconducting solenoid takes up position

    CERN Multimedia

    2004-01-01

    The ATLAS superconducting solenoid was moved to its final destination on 16 January. It has taken up position opposite the ATLAS liquid argon barrel cryostat, which will house the electromagnetic calorimeter. All that remains to do now is to slide it into the insulation vacuum, this will be done in the next few weeks. Built by Toshiba, under responsibility of KEK in Japan, the central solenoid is 2.4 metres in diameter, 5.3 metres long and weighs 5.5 tonnes. "It will provide an axial magnetic field of 2 Tesla that will deflect particles inside the inner detector," as Roger Ruber, on-site project coordinator, explains. The inner detector, which consists of three sub-detectors, will be installed inside the solenoid later. The solenoid during one of the transport operations. Securely attached to the overhead travelling crane, the solenoid is situated in front of the opening to the liquid argon calorimeter, it will be inserted soon.

  12. Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer.

    Science.gov (United States)

    Nurjuliana, M; Che Man, Y B; Mat Hashim, D; Mohamed, A K S

    2011-08-01

    The volatile compounds of pork, other meats and meat products were studied using an electronic nose and gas chromatography mass spectrometer with headspace analyzer (GCMS-HS) for halal verification. The zNose™ was successfully employed for identification and differentiation of pork and pork sausages from beef, mutton and chicken meats and sausages which were achieved using a visual odor pattern called VaporPrint™, derived from the frequency of the surface acoustic wave (SAW) detector of the electronic nose. GCMS-HS was employed to separate and analyze the headspace gasses from samples into peaks corresponding to individual compounds for the purpose of identification. Principal component analysis (PCA) was applied for data interpretation. Analysis by PCA was able to cluster and discriminate pork from other types of meats and sausages. It was shown that PCA could provide a good separation of the samples with 67% of the total variance accounted by PC1. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. SU-F-T-84: Measurement and Monte-Carlo Simulation of Electron Phase Spaces Using a Wide Angle Magnetic Electron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Englbrecht, F; Lindner, F; Bin, J; Wislsperger, A; Reiner, M; Kamp, F; Belka, C; Dedes, G; Schreiber, J; Parodi, K [LMU Munich, Munich, Bavaria (Germany)

    2016-06-15

    Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by an online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser

  14. ''Massless gaps'' for solenoid + calorimeter

    International Nuclear Information System (INIS)

    Marraffino, J.; Wu, W.; Beretvas, A.; Green, D.; Denisenko, K.; Para, A.

    1991-11-01

    The necessary existence of material in front of the first active element in a calorimeter will degrade the performance of that device. The question is by what factor. The follow up question is what can be done to minimize the damage. These questions are usually of primary importance for liquid argon calorimetry because of the necessity of containment dewars. However, the problem is universal. For example, the Solenoid Detector Collaboration, SDC, has proposed a superconducting coil which would be placed in front of the EM calorimeter. Although much effort has been made to minimize the depth of material in the coil, still the resolution and linearity must be optimized if the SDC goal of precision electromagnetic (EM) calorimetry is to be realized

  15. Conceptual design of the radial gamma ray spectrometers system for α particle and runaway electron measurements at ITER

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.

    2017-07-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.

  16. Micro Plasma Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this IRAD project is to develop a preliminary design elements of miniature electron and ion plasma spectrometers and supporting electronics, focusing...

  17. Design of an electronic charged particle spectrometer to measure (ρR), yield, and implosion symmetry on the OMEGA Upgrade

    International Nuclear Information System (INIS)

    Hicks, D.G.; Li, C.K.; Petrasso, R.D.; Wenzel, K.W.; Knauer, J.P.

    1994-11-01

    The preliminary design for a state-of-the-art diagnostic that will measure a broad energy spectrum of charged particles generated in the OMEGA Upgrade facility is investigated. Using a set of photodiodes (∼10) and a 0.8 Tesla permanent magnet, the diagnostic will uniquely determine particle energies and identities from 0.2 MeV up to the maximum charged particle energies (10.6 MeV tritons, 12.5 MeV deuterons and 17.4 MeV protons). With its high density picture elements, each photodiode has 10 6 single-hit detectors, giving the spectrometer a dynamic range of 1 - 10 5 particles/shot. For example, in the case of a DT yield of 10 9 neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Furthermore, the measurement of knock-on D and T spectra will allow ρR's up to 0.15 g/cm 2 to be measured (for a 1 keV plasma), or 0.3 g/cm 2 2 if hydrogen doping is used. In addition, the yield and slowing down of secondary protons may be used to determine ρR up to 0.3 g/cm 2 . Significantly, this diagnostic will also directly measure the DD fusion yield and energy degradation of nascent 3 MeV protons. By using two such compact spectrometers to measure the yield and spectra on widely separated ports around the OMEGA Upgrade target chamber, the implosion and bum symmetry can be determined. Furthermore, the ion temperature, and, in principle, even the electron temperature can be measured. The diagnostic and its development will be fully tested at several critical steps, utilizing 0.2-16 MeV protons (and several other charged particles and neutrons) from our absolutely calibrated Cockcroft-Walton facility

  18. Indirectly cooled large thin superconducting CDF solenoid

    International Nuclear Information System (INIS)

    Kondo, Kunitaka; Mori, Shigeki; Yoshizaki, Ryozo; Saito, Ryusei; Asano, Katsuhiko.

    1985-01-01

    The manufacturing technique of the indirectly cooled large thin superconducting solenoid for the collider detector facility (CDF solenoid) has been studied through cooperation of University of Tsukuba and the National Laboratory for High Energy Physics of the Ministry of Education of Japan, and the Fermi National Accelerator Laboratory in the U.S. Fabrication and testing of the solenoid has recently been completed by Hitachi. The CDF solenoid has a large-sized thin structure for meeting the requirement by experiments to be applied. Hitachi has thus developed a variety of new technologies including the design standard, coil cooling method, material selection, and manufacturing technique in accordance with experimental data, which were confirmed in a series of analyses and tests made on various prototypes. The CDF solenoid, built using Hitachi's new technologies, is of the world's top class among equipment of this type. This paper outlines the design criteria for the major components employed in the CDF solenoid and the test results of the solenoid. (author)

  19. Design and characterization of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    Hachmann, M.; Flöttmann, K.; Gehrke, T.; Mayet, F.

    2016-01-01

    REGAE is a small electron linear accelerator at DESY. In order to focus short and low charged electron bunches down to a few μm permanent magnetic solenoids were designed, assembled and field measurements were done. Due to a shortage of space close to the operation area an in-vacuum solution has been chosen. Furthermore a two-ring design made of wedges has been preferred in terms of beam dynamic issues. To keep the field quality of a piecewise built magnet still high a sorting algorithm for the wedge arrangement including a simple magnetic field model has been developed and used for the construction of the magnets. The magnetic field of these solenoids has been measured with high precision and compared to simulations. - Highlights: • presenting a two-ring radially magnetized permanent magnetic solenoid design. • development of a analytical field description and field quality factor. • development of a sorting algorithm for permanent magnetic pieces to form a magnet. • performing a high-precision field measurement of a high gradient field.

  20. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  1. Solenoidal magnetic field influences the beam neutralization by a background plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.

    2004-01-01

    An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration is much longer than the electron plasma period. In the opposite limit, the beam pulse excites large-amplitude plasma waves. Figure 1 shows the influence of a solenoidal magnetic field on charge and current neutralization. Analytical studies show that the solenoidal magnetic field begins to influence the radial electron motion when ω ce > βω pe . Here, ω ce is the electron gyrofrequency, ω pe is the electron plasma frequency, and β = V b /c is the ion beam velocity. If a solenoidal magnetic field is not applied, plasma waves do not propagate. In contrast, in the presence of a solenoidal magnetic field, whistler waves propagate ahead of the beam and can perturb the plasma ahead of the beam pulse. In the limit ω ce >> βω pe , the electron current completely neutralizes the ion beam current and the beam self magnetic field greatly diminishes. Application of an external solenoidal magnetic field clearly makes the collective processes of ion beam-plasma interactions rich in physics content. Many results of the PIC simulations remain to be explained by analytical theory. Four new papers have been published or submitted describing plasma neutralization of an intense ion beam pulse

  2. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    International Nuclear Information System (INIS)

    Petzoldt, G.

    2007-01-01

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  3. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, G.

    2007-08-29

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  4. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  5. Beam collimation and transport of laser-accelerated protons by a solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Tauschwitz, A; Bagnoud, V [GSI - Hemholtzzentrum fur Schwerionenforschung GmbH, Plasmaphysik and PHELIX, Planckstrasse 1, 64291 Darmstadt (Germany); Daido, H; Tampo, M [Photo Medical Research Center, JAEA, 8-1 Umemidai, Kizugawa-city, Kyoto, 619-0215 (Japan); Schollmeier, M, E-mail: k.harres@gsi.d [Sandia National Laboratories, Albuquerque NM 87185 (United States)

    2010-08-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10{sup 12} particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  6. Beam collimation and transport of laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M; Tauschwitz, A; Bagnoud, V; Daido, H; Tampo, M; Schollmeier, M

    2010-01-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10 12 particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  7. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Science.gov (United States)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrère, D.; Rijllart, A.; Saban, R.

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument's capabilities.

  8. Designing focusing solenoids for superconducting RF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  9. Embedded Solenoid Transformer for Power Conversion

    DEFF Research Database (Denmark)

    2015-01-01

    A resonant power converter for operation in the radio frequency range, preferably in the VHF, comprises at least one PCB-embedded transformer. The transformer is configured for radio frequency operation and comprises a printed circuit board defining a horizontal plane, the printed circuit board...... comprising at least two horizontal conductive layers separated by an isolating layer, a first embedded solenoid forming a primary winding of the transformer and a second embedded solenoid being arranged parallel to the first solenoid and forming a secondary winding of the transformer, wherein the first...

  10. Measurement of the electron antineutrino angular correlation coefficient a with the neutron decay spectrometer aSPECT

    International Nuclear Information System (INIS)

    Simson, Martin

    2010-01-01

    This thesis describes measurements with the retardation spectrometer aSPECT at the Institut Laue-Langevin in Grenoble. The goal of the measurement is to determine the angular correlation coefficient a from the form of the proton recoil spectrum in the decay of the free neutron in order to determine a precise value for the ratio of the weak axial vector and vector coupling constants of the nucleon. A big improvement was achieved with the use of a silicon drift detector which was used here for the first time to detect low energetic protons. A saturation effect of the electronics that was only discovered during the analysis of the data from neutron decay proved to be not correctable. The findings from analysis, simulations and test experiments gained in this work should allow a measurement of a with high precision in a future beamtime. (orig.)

  11. Measurement of the electron antineutrino angular correlation coefficient a with the neutron decay spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Simson, Martin

    2010-09-21

    This thesis describes measurements with the retardation spectrometer aSPECT at the Institut Laue-Langevin in Grenoble. The goal of the measurement is to determine the angular correlation coefficient a from the form of the proton recoil spectrum in the decay of the free neutron in order to determine a precise value for the ratio of the weak axial vector and vector coupling constants of the nucleon. A big improvement was achieved with the use of a silicon drift detector which was used here for the first time to detect low energetic protons. A saturation effect of the electronics that was only discovered during the analysis of the data from neutron decay proved to be not correctable. The findings from analysis, simulations and test experiments gained in this work should allow a measurement of a with high precision in a future beamtime. (orig.)

  12. Grating spectrometer installation for electron cyclotron emission measurements on the DIII-D tokamak using circular waveguide and synchronous detection

    International Nuclear Information System (INIS)

    Lohr, J.; Jahns, G.; Moeller, C.; Prater, R.

    1986-01-01

    The grating spectrometer installation on the DIII-D tokamak uses fundamental circular waveguide propagating the TE 11 lowest-order mode followed by oversized circular guide carrying the low-loss TE 01 mode. The short section of fundamental guide permits use of an electronic chopper operating at 100 kHz for both calibration and plasma operation. By using ac-coupled amplifiers tuned to the chopping frequency, the background signal generated in the indium antimonide detectors by neutrons and x rays is automatically subtracted and the system noise bandwidth is reduced. Compared with a quasi-optical system, the much smaller fundamental horn and front-end waveguide allow the waveguide system to be located outside a gate valve. With this configuration the entire waveguide run, including the actual horn and vacuum window used during plasma operations, can be included in the calibration setup

  13. Grating spectrometer installation for electron cyclotron emission measurements on the DIII-D tokamak using circular waveguide and synchronous detection

    International Nuclear Information System (INIS)

    Lohr, J.; Jahns, G.; Moeller, C.; Prater, R.

    1986-03-01

    The grating spectrometer installation on the DIII-D tokamak uses fundamental circular waveguide propagating the TE 11 lowest order mode followed by oversized circular guide carrying the low loss TE 01 mode. The short section of fundamental guide permits use of an electronic chopper operating at 100 kHz for both calibration and plasma operation. By using ac-coupled amplifiers tuned to the chopping frequency, the background signal generated in the indium antimonide detectors by neutrons and x-rays is automatically subtracted and the system noise bandwidth is reduced. Compared with a quasi-optical system, the much smaller fundamental horn and front end waveguide allow the waveguide system to be located outside a gate valve. With this configuration the entire waveguide run, including the actual horn and vacuum window used during plasma operations, can be included in the calibration set-up

  14. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  15. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  16. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  17. Test results of the g-2 superconducting solenoid magnet system

    NARCIS (Netherlands)

    Bunce, G; Morse, WM; Benante, J; Cullen, MH; Danby, GT; Endo, K; Fedotovich, GV; Geller, J; Green, MA; Grossmann, A; GrossePerdckamp, M; Haeberlen, U; Hseuh, H; Hirabayashi, H; Hughes, VW; Jackson, JW; Jia, LX; Jungmann, K; Krienen, F; Larsen, R; Khazin, B; Kawall, D; Meng, W; Pai, C; Polk, T.; Prigl, R; Putlitz, GZ; Redin, S; Roberts, BL; Ryskulov, N; Semertzidas, Y; Shutt, R; Snydstrup, L; Tallerico, T; vonWalter, P; Woodle, K; Yamamoto, A

    The g-2 experiment dipole consists of a single 48 turn, 15.1 meter diameter outer solenoid and a pair of 24 turn inner solenoids, 13.4 meters in diameter. The inner solenoids are hooked in series and are run at a polarity that is opposite that of the outer solenoid, thus creating a dipole field in

  18. Method validation for chemical composition determination by electron microprobe with wavelength dispersive spectrometer

    Science.gov (United States)

    Herrera-Basurto, R.; Mercader-Trejo, F.; Muñoz-Madrigal, N.; Juárez-García, J. M.; Rodriguez-López, A.; Manzano-Ramírez, A.

    2016-07-01

    The main goal of method validation is to demonstrate that the method is suitable for its intended purpose. One of the advantages of analytical method validation is translated into a level of confidence about the measurement results reported to satisfy a specific objective. Elemental composition determination by wavelength dispersive spectrometer (WDS) microanalysis has been used over extremely wide areas, mainly in the field of materials science, impurity determinations in geological, biological and food samples. However, little information is reported about the validation of the applied methods. Herein, results of the in-house method validation for elemental composition determination by WDS are shown. SRM 482, a binary alloy Cu-Au of different compositions, was used during the validation protocol following the recommendations for method validation proposed by Eurachem. This paper can be taken as a reference for the evaluation of the validation parameters more frequently requested to get the accreditation under the requirements of the ISO/IEC 17025 standard: selectivity, limit of detection, linear interval, sensitivity, precision, trueness and uncertainty. A model for uncertainty estimation was proposed including systematic and random errors. In addition, parameters evaluated during the validation process were also considered as part of the uncertainty model.

  19. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    International Nuclear Information System (INIS)

    Chatzidimitriou-Dreismann, C.A.; Gray, E. MacA.; Blach, T.P.

    2012-01-01

    The “standard” procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron–proton scattering results that together called into question the validity of the “standard” calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron–deuteron scattering from D 2 in the backscattering angular range (θ>90°) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the “standard” calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present “standard” calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H 2 molecules. For Case (B), some suggestions as to how the “standard” calibration could be considerably improved are made.

  20. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidimitriou-Dreismann, C.A., E-mail: dreismann@chem.tu-berlin.de [Institute of Chemistry (Sekr. C2), Technical University of Berlin, D-10623 Berlin (Germany); Gray, E. MacA., E-mail: e.gray@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111 (Australia); Blach, T.P., E-mail: t.blach@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111 (Australia)

    2012-06-01

    The 'standard' procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron-proton scattering results that together called into question the validity of the 'standard' calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron-deuteron scattering from D{sub 2} in the backscattering angular range ({theta}>90 Degree-Sign ) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the 'standard' calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present 'standard' calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H{sub 2} molecules. For Case (B), some suggestions as to how the 'standard' calibration could be considerably improved are made.

  1. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    Science.gov (United States)

    Chatzidimitriou-Dreismann, C. A.; Gray, E. MacA.; Blach, T. P.

    2012-06-01

    The "standard" procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron-proton scattering results that together called into question the validity of the "standard" calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron-deuteron scattering from D2 in the backscattering angular range (θ>90°) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the "standard" calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present "standard" calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H2 molecules. For Case (B), some suggestions as to how the "standard" calibration could be considerably improved are made.

  2. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    Science.gov (United States)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  3. Form coefficient of helical toroidal solenoids

    International Nuclear Information System (INIS)

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  4. Ultimate Performance of the ATLAS Superconducting Solenoid

    CERN Document Server

    Ruber, R; Kawai, M; Kondo, Y; Doi, Y; Haruyama, T; Haug, F; Kate, H ten; Kondo, T; Pirotte, O; Metselaar, J; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A

    2007-01-01

    A 2 tesla, 7730 ampere, 39 MJ, 45 mm thin superconducting solenoid with a 2.3 meters warm bore and 5.3 meters length, is installed in the center of the ATLAS detector and successfully commissioned. The solenoid shares its cryostat with one of the detector's calorimeters and provides the magnetic field required for the inner detectors to accurately track collision products from the LHC at CERN. After several years of a stepwise construction and test program, the solenoid integration 100 meters underground in the ATLAS cavern is completed. Following the on-surface acceptance test, the solenoid is now operated with its final cryogenic, powering and control system. A re-validation of all essential operating parameters is completed. The performance and test results of underground operation are reported and compared to those previously measured.

  5. Compact muon solenoid magnet reaches full field

    CERN Multimedia

    2006-01-01

    Scientist of the U.S. Department of Energy in Fermilab and collaborators of the US/CMS project announced that the world's largest superconducting solenoid magnet has reached full field in tests at CERN. (1 apge)

  6. HB+ inserted into the CMS Solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2006-01-01

    The first half of the barrel hadron calorimeter (HB+) has been inserted into the superconducting solenoid of CMS, in preparation for the magnet test and cosmic challenge. The operation went smoothly, lasting a couple of days.

  7. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.

    1976-01-01

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  8. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  9. A novel electrostatic ion-energy spectrometer by the use of a proposed ``self-collection'' method for secondary-electron emission from a metal collector

    Science.gov (United States)

    Hirata, M.; Nagashima, S.; Cho, T.; Kohagura, J.; Yoshida, M.; Ito, H.; Numakura, T.; Minami, R.; Kondoh, T.; Nakashima, Y.; Yatsu, K.; Miyoshi, S.

    2003-03-01

    For the purpose of end-loss-ion energy analyses in open-field plasmas, a newly developed electrostatic ion-energy spectrometer is proposed on the basis of a "self-collection" principle for secondary-electron emission from a metal collector. The ion-energy spectrometer is designed with multiple grids for analyzing incident ion energies, and a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most important characteristic properties of this spectrometer is the use of our proposed principle of a "self-collection" mechanism due to E×B drifts for secondary electrons emitted from the grounded metal-plate collector by the use of no further additional magnetic systems except the ambient open-ended fields B. The proof-of-principle and characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed ion-energy spectrometer for end-loss-ion diagnostics in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation, since these electrons have contributed to disturb these ion signals from conventional end-loss-ion detectors.

  10. Conceptual design of the Mu2e production solenoid cold mass

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Lamm, M.; Mokhov, N.V.; Nicol, T.H.; Page, T.M.; Pronskikh, V.; /Fermilab

    2011-06-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The required magnetic field is produced by a series of superconducting solenoids of various apertures and lengths. This paper describes the conceptual design of the 5 T, 4 m long solenoid cold mass with 1.67 m bore with the emphasis on the magnetic, radiation and thermal analyses.

  11. E-beam heated linear solenoid reactors

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.

    1976-01-01

    A conceptual design and system analysis shows that electron beam heated linear solenoidal reactors are attractive for near term applications which can use low gain fusion sources. Complete plant designs have been generated for fusion based breeders of fissile fuel over a wide range of component parameters (e.g., magnetic fields, reactor lengths, plasma densities) and design options (e.g., various radial and axial loss mechanisms). It appears possible that a reactor of 100 to 300 meters length operating at power levels of 1000 MWt can economically produce 2000 to 8000 kg/yr of 233 U to supply light water reactor fuel needs beyond 2000 A.D. Pure fusion reactors of 300 to 500 meter lengths are possible. Physics and operational features of reactors are described. Beam heating by classical and anomalous energy deposition is reviewed. The technology of the required beams has been developed to MJ/pulse levels, within a factor of 20 of that needed for full scale production reactors. The required repetitive pulsing appears practical

  12. The plastic ball spectrometer - an electronic 4π detector with particle identification

    International Nuclear Information System (INIS)

    Baden, A.; Poskanzer, A.M.; Renner, T.; Riedesel, H.

    1982-04-01

    For the high multiplicity events occuring in relativistic nuclear collisions an electronic 4π detector with particle identification has been built. It consists of 815 ΔE-E telescopes and 176 TOF telescopes covering 97% of 4π. Very good particle identification has been obtained for hydrogen and helium isotopes and also π + have been detected with high efficiency. (orig.)

  13. Synchrotron oscillation effects on an rf-solenoid spin resonance

    Science.gov (United States)

    Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.

    2012-12-01

    New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.

  14. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  15. The SAGE spectrometer

    International Nuclear Information System (INIS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M.; Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D.; Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J.

    2014-01-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  16. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    Science.gov (United States)

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Experiments with a double solenoid system

    Energy Technology Data Exchange (ETDEWEB)

    Pampa Condori, R.; Lichtenthaeler Filho, R.; Faria, P.N. de; Lepine-Szily, A.; Mendes Junior, D.R.; Pires, K.C.C.; Assuncao, M.; Scarduelli, V.B.; Leistenschneider, E.; Morais, M.C.; Shorto, J.M.B.; Gasques, L. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: RIBRAS [1] is presently the only experimental equipment in South America capable of producing secondary beams of rare isotopes. It consists of two superconducting solenoids, installed in one of the beam lines of the 8 MV Pelletron Tandem accelerator of the University of Sao Paulo. The exotic nuclei are produced in the collision between the primary beam of the Pelletron Accelerator and the primary target. The secondary beam is selected by the in-flight technique and is usually contaminated with particles coming from scattering and reactions in the primary target such as {sup 7}Li, alpha and other light particles as protons, deuterons and tritons. Solenoids are selectors with large acceptance and the double solenoid system provides ways to improve the quality of the secondary beam by using a degrador in the midst of the two solenoids. The main contamination of the secondary beam comes from {sup 7}Li{sup 2+} particles coming from the primary beam. A degrador placed between the two solenoids is able to separate those particles from the {sup 6}He beam providing an additional charge exchange {sup 7}Li{sup 2+-→}3{sup +}. In addition, the differential energy loss in the degrador provides further selection of the light particles as protons, deuterons, tritons and and alpha particles by the second solenoid. Here we present the results of the first experiment performed at RIBRAS using both solenoids. A pure {sup 6}He beam was produced and the reaction {sup 6}He+p was measured using a thick CH{sub 2} target. 1. R. Lichtenthaeler et al., Eur. Phys. J. A 25,s01,733 (2005) and Nucl. Phys. News 15, 25 (2005). (author)

  18. Performance of the second Deep Inelastic Neutron Scatering spectrometer at the Bariloche electron LINAC

    International Nuclear Information System (INIS)

    Palomino, L A Rodríguez; Blostein, J J; Dawidowski, J

    2013-01-01

    We report on the new Deep Inelastic Neutron Scattering detector bank recently implemented at the Bariloche electron LINAC. We show the characterization and calibration process carried out, which comprises the determinarion of the detector bank efficiency, and the evaluation of the performance of the filter difference technique. As part of the benchmarking process, polyethylene spectra were measured and analyzed, and the scattering cross sections for carbon and hydrogen were determined in the process. With the addition of this new detector bank to the existing one, we evaluate the combined capacity of the two banks

  19. THE DEVELOPMENT OF A SUPER-STABLE DATUM POINT FOR MONITORING THE ENERGY SCALE OF ELECTRON SPECTROMETERS IN THE ENERGY RANGE UP TO 20 keV

    Czech Academy of Sciences Publication Activity Database

    Vénos, Drahoslav; Zbořil, Miroslav; Kašpar, Jaromír; Dragoun, Otokar; Bonn, J.; Kovalík, Alojz; Lebeda, Ondřej; Lebedev, N. A.; Ryšavý, Miloš; Schlosser, K.; Špalek, Antonín; Weinheimer, C.

    2010-01-01

    Roč. 53, č. 3 (2010), s. 305-312 ISSN 0543-1972 R&D Projects: GA ČR GA202/06/0002; GA MŠk LA318; GA MŠk LC07050; GA MŠk LA08002 Institutional research plan: CEZ:AV0Z10480505 Keywords : nuclear transition energy * conversion electrons * electron spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.154, year: 2010

  20. Central Solenoid On-surface Test

    CERN Multimedia

    Ruber, R

    2004-01-01

    A full scale on-surface test of the central solenoid has been performed before its final installation in the ATLAS cavern starting in November. The successful integration of the central solenoid into the barrel cryostat, as reported in the March 2004 ATLAS eNews, was hardly finished when testing started. After a six-week period to cool down the LAr calorimeter, the solenoid underwent a similar procedure. Cooling it down to 4.6 Kelvin from room temperature took just over five and a half days. Cold and superconducting, it was time to validate the functionality of the control and safety systems. These systems were largely the same as the systems to be used in the final underground installation, and will be used not only for the solenoid and toroid magnets, but parts of it also for other LHC experiments. This solenoid test was the first occasion to test the system functionality in a real working environment. Several days were spent to fine tune the systems, especially the critical safety system, which turned out...

  1. Time dependence of electron and positron fluxes measured with the AMS-02 spectrometer

    CERN Document Server

    AUTHOR|(CDS)2081963; Duranti, Matteo

    The electrons (e-) and positrons (e+) are a rare component of Cosmic Rays (CRs) since they constitute respectively only a 1% and 0.1% of cosmic radiation. However, the correct detection of e+- covers a great importance in the astrophysics field since, unlike the hadronic component, they are subjected to strong energy losses through the interaction with Interstellar Medium. As consequence e with energies above GeV that reach the Earth are galactic, with the source inside Kpc and through the study of their primary spectra it is possible to probe the local interstellar medium (LIS) and to indirectly detect new possible sources like pulsar or dark matter. However, these spectra, when measured near Earth, are significantly affected by the solar activity and we have the so-called solar modulation of CRs (SM). The solar activity has a cycle which period is ~11 years, during which it increases reaching a maximum and then decreases again. The intensity of cosmic ray radiation is correlated (or rather anticorrelated...

  2. Trigger and readout electronics for the Phase-I upgrade of the ATLAS forward muon spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas and small strip Thin Gap Chambers conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger and tracking...

  3. Trigger and Readout Electronics for the Phase-I Upgrade of the ATLAS Forward Muon Spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas (MM) and small strip Thin Gap Chambers (sTGC) conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger ...

  4. Biomedical applications of electronic microscopy and elementary analysis with spectrometer of x rays

    International Nuclear Information System (INIS)

    Hernandez Chavarria, F.; Saenz, A.; Freer, E.

    2002-01-01

    The electronic microscopy has advanced from its invention 60 years ago and its application in biomedical sciences has been very big. Parallel to the development of new technology in this field and that has allowed to reach a resolution of 1,4 amstrong for the transmission microscope and from 30 to 70 amstrong for the racking microscope its has been adapted to these microscopes by other devices that allow to realize an elementary analysis of the sample that is being examined in the microscope. The advantage of this procedure is that the sample is being examined in the microscope in real time can be analyzed in his chemical composition without being destroyed. Additional it is possible to realize an analysis of the distribution of its elements in the whole sample. The application of this new method in the biological sciences is very wide. We can detect inorganic materials as the lead, arsenic, calcium, mercury, aluminium, etc. in different tissue of the body, obtained of biopsy or autopsy. A practical application is the analysis of the composition of vesiculary calculus or urinary determining in that way the physiopathogeny of the process. (Author) [es

  5. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  6. Operations of the thermal control system for Alpha Magnetic Spectrometer electronics following the beta angle of the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun; Li, Jinbo; Cui, Zheng; Wang, Naihua; Sun, Qie; Cheng, Lin, E-mail: cheng@sdu.edu.cn

    2014-12-11

    The Alpha Magnetic Spectrometer (AMS) has been running and measuring cosmic rays on the International Space Station (ISS) since May 19, 2011. The thermal control system (TCS) plays an important role in keeping all components and equipment working in an operational temperature range. Since the AMS started working on the ISS, AMS thermal engineers have been monitoring the on-orbit status of the TCS. During normal operation, the local temperature of AMS components regularly varies along with the β angle of the ISS. Based on the collected temperature data, the general characteristics of local temperature variations of TCS for AMS Electronics following the β of the ISS are discussed with the statistics of the orbit-averaged temperature and the orbit standard deviation of temperature. Furthermore some temperature anomalies at specific β are also studied. - Highlights: • The variation of the main radiators temperature is statistically analyzed. • The hot case and cold case for the main radiators are found in normal operations. • The solar illumination falling on the inner sheet of RAM radiator leads to temperature jump. • The temperature anomalies on the WAKE radiator show a uniform trend except WR3 sensor. • The regularity of the temperature variation is described with fitted equations.

  7. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  8. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  9. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-01

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  10. Some options for the muon collider capture and decay solenoids

    International Nuclear Information System (INIS)

    Green, M.A.

    1995-11-01

    This report discusses some of the problems associated with using solenoid magnets to capture the secondary particles that are created when an intense beam of 8 to 10 GeV protons interacts with the target at the center of the capture region. Hybrid capture solenoids with inductions of 28 T and a 22T are described. The first 14 to 15 T of the solenoid induction will be generated by a superconducting magnet. The remainder of the field will be generated by a Bitter type of water cooled solenoid. The capture solenoids include a transition section from the high field solenoid to a 7 T decay channel where pions and kaons that come off of the target decay into muons. A short 7 T solenoidal decay channel between the capture solenoid system and the phase rotation system is described. A concept for separation of negative and positive pions and kaons is briefly discussed

  11. Modelling the line shape of very low energy peaks of positron beam induced secondary electrons measured using a time of flight spectrometer

    International Nuclear Information System (INIS)

    Fairchild, A J; Chirayath, V A; Gladen, R W; Chrysler, M D; Koymen, A R; Weiss, A H

    2017-01-01

    In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed. (paper)

  12. First Operation of the Central Solenoid

    CERN Multimedia

    Ruber, R.

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. It was cooled down from the 17th to 23th May 2006, and the first kA was put into it the same evening as it was cold and superconductive. That makes our solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas. The Central Solenoid in its final position at the heart of ATLAS. The coil current (red line) and voltage (blue line) showing the operation at nominal current of 7.73 kA for a magnetic field of 2.0 T and the subsequent successful commissioning up to 8 kAT The cool down and powering of the solenoid was a major milestone for all control, cryogenic, power and vacuum systems and was achieved in perfect collaboration with the liquid argon detector with which it shares the Barrel Cryostat. Powering up to nominal current had to wait until the last week of July when the End-Cap Calorimeters were in closed position. The Tile Barrel and E...

  13. Compensation of oscillation coupling induced by solenoids

    International Nuclear Information System (INIS)

    Zelinskij, A.Yu.; Karnaukhov, I.M.; Shcherbakov, A.A.

    1988-01-01

    Methods for construction of various schemes of oscillation coupling compensation, induced by solenoids in charged particle storage rings, are described. Peculiarities of magnetic structure, enabling to localize oscillation coupling in wide energy range are discussed. Results of calculation of compensation schemes for design of NR-2000 storage ring spin rotation are presented

  14. Successful mapping of the solenoid magnet

    CERN Multimedia

    Aleksa, M.

    The ATLAS solenoid coil is about 5.3m long, has a diameter of 2.5m and is designed to deliver a magnetic field of approximately 2T for the ATLAS inner detector. The superconducting solenoid coil has been integrated inside the LAr barrel cryostat and was installed at its final position inside the cavern in November 2005. This summer - after completion of the extended barrel calorimeters and before the installation of the inner detector - the end cap calorimeters (LAr end caps and Tile extended barrels) were moved for the first time into their final position in order to create conditions as close as possible to final for the solenoid tests and for mapping the field inside the solenoid bore. Design and construction of the mapping machine The requirement on the absolute precision of the field measurements are 0.05% on the field integrals seen by particles; if this is achieved the momentum error coming from insufficient knowledge of the magnetic field will be negligible compared to the error stemming from the inn...

  15. Error field generation of solenoid magnets

    International Nuclear Information System (INIS)

    Saunders, J.L.

    1982-01-01

    Many applications for large solenoids and solenoidal arrays depend on the high precision of the axial field profile. In cases where requirements of ΔB/B for nonaxial fields are on the order of 10 -4 , the actual winding techniques of the solenoid need to be considered. Whereas an ideal solenoid consisting of current loops would generate no radial fields along the axis, in reality, the actual current-carrying conductors must follow spiral or helical paths. A straightforward method for determining the radial error fields generated by coils wound with actual techniques employed in magnet fabrication has been developed. The method devised uses a computer code which models a magnet by sending a single, current-carrying filament along the same path taken by the conductor during coil winding. Helical and spiral paths are simulated using small, straight-line current segments. This technique, whose results are presented in this paper, was used to predict radial field errors for the Elmo Bumpy Torus-Proof of Principle magnet. These results include effects due to various winding methods, not only spiral/helical and layer-to-layer transitions, but also the effects caused by worst-case tolerance conditions both from the conductor and the winding form (bobbin). Contributions made by extraneous circuitry (e.g., overhead buswork and incoming leads) are also mentioned

  16. Flowfield Analysis of a Pneumatic Solenoid Valve

    Directory of Open Access Journals (Sweden)

    Sheam-Chyun Lin

    2018-07-01

    Full Text Available Pneumatic solenoid valve has been widely used in the vehicle control systems for meeting the rapid-reaction demand triggered by the dynamic conditions encountered during the driving course of vehicle. For ensuring the safety of human being, the reliable and effective solenoid valve is in great demand to shorten the reaction time and thus becomes the topic of this research. This numerical study chooses a commercial 3/2-way solenoid valve as the reference valve for analysing its performance. At first, CFD software Fluent is adopted to simulate the flow field associated with the valve configuration. Then, the comprehensive flow visualization is implemented to identify the locations of adverse flow patterns. Accordingly, it is found that a high-pressure region exists in the zone between the nozzle exit and the top of iron core. Thereafter, the nozzle diameter and the distance between nozzle and spool are identified as the important design parameters for improving the pressure response characteristics of valve. In conclusion, this work establishes a rigorous and systematic CFD scheme to evaluate the performance of pneumatic solenoid valve.

  17. Growth techniques for monolithic YBCO solenoidal magnets

    International Nuclear Information System (INIS)

    Scruggs, S.J.; Putman, P.T.; Fang, H.; Alessandrini, M.; Salama, K.

    2006-01-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample

  18. Growth techniques for monolithic YBCO solenoidal magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scruggs, S.J. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)]. E-mail: Sscruggs2@uh.edu; Putman, P.T. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Fang, H. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Alessandrini, M. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Salama, K. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)

    2006-10-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample.

  19. Quench protection analysis of the Mu2e production solenoid

    International Nuclear Information System (INIS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions

  20. Quench protection analysis of the Mu2e production solenoid

    Science.gov (United States)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  1. First experiment with the double solenoid RIBRAS system

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenthaeler, R.; Condori, R. Pampa; Lepine-Szily, A.; Pires, K. C. C.; Morais, M. C.; Leistenschneider, E.; Scarduelli, V. B.; Gasques, L. R. [Instituto de Fisica da USP, Sao Paulo, Brazil, C.P. 66318, 05314-970 (Brazil); Faria, P. N. de; Mendes, D. R. Jr. [Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ, 24210-340 (Brazil); Shorto, J. M. B. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Lineu Prestes, 2242, 05508-000, Sao Paulo, SP (Brazil); Assuncao, M. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Campus Diadema, Sao Paulo (Brazil)

    2013-05-06

    A description of the double solenoid system (RIBRAS) operating since 2004 in one of the beam lines of the Pelletron Laboratory of the Institute of Physics of the University of Sao Paulo is presented. The recent installation of the secondary scattering chamber after the second solenoid is reported and the first experiment in RIBRAS using both solenoids is described.

  2. Development of a permanent magnet alternative for a solenoidal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.; Fahy, A.; Barr, M. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Jardine, A.; Allison, W. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dastoor, P.C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-12-01

    The most sensitive desktop-sized ionizer utilising electron bombardment is currently the solenoidal ion source. We present an alternate design for such an ion source whereby the solenoidal windings of the electromagnet are replaced by a shaped cylindrical permanent magnet in order to reduce the complexity and running costs of the instrument. Through finite element modelling of the magnetic field in COMSOL and experimental measurements on a small-scale prototype magnet stack, we demonstrate the required shape of the permanent magnet in order to generate the needed field, and the necessity of soft iron collars to smooth fluctuations along the central axis.

  3. Development of solenoid-induced helical wiggler with four poles per period

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Kiyochi, M.; Nakao, N.; Fujita, M.; Imasaki, K.; Nakai, S.; Mima, K.

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field

  4. Development of solenoid-induced helical wiggler with four poles per period

    CERN Document Server

    Ohigashi, N; Kiyochi, M; Nakao, N; Fujita, M; Imasaki, K; Nakai, S; Mima, K

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field.

  5. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    International Nuclear Information System (INIS)

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-01-01

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  6. Novel MEMS-based fabrication technology of micro solenoid-type inductor

    International Nuclear Information System (INIS)

    Uchiyama, S; Yang, Z Q; Takagi, H; Itoh, T; Maeda, R; Zhang, Y; Toda, A; Hayase, M

    2013-01-01

    Solenoid configuration of micro inductor, which has advantages of high quality factor and low loss, is needed in micro energy and power electronics applications but it is difficult to prepare using conventional microfabrication processes. In this work, we present a new microelectromechanical systems-based technology of micro solenoid-type inductor by a newly developed cylindrical projection photolithography method. Direct electroplating process of copper film on coil patterns was also successfully developed for achieving thick windings so that thick photoresist-based electroplating molds are not needed. Micro solenoid-type inductor prototypes of the winding pitch of about 40 µm, the winding number of 20 and 50, and the winding thickness of about 14 µm, were successfully fabricated on a 1 mm diameter glass capillary. The prepared 20-turn and 50-turn micro inductors were of inductance of 69 and 205 nH at 30 MHz, respectively. (paper)

  7. Dynamic analysis of fast-acting solenoid valves using finite element method

    International Nuclear Information System (INIS)

    Kwon, Ki Tae; Han, Hwa Taik

    2001-01-01

    It is intended to develop an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the finite element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well the experimental results including bouncing effects

  8. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    International Nuclear Information System (INIS)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-01-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons

  9. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Takahashi, K. [Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137 (Japan); Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Horioka, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan)

    2016-02-15

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  10. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Science.gov (United States)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  11. Inside the ATLAS solenoid cryostat

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Scientists are seen working on the inside of the ATLAS cryostat, which will be used to cool liquid argon to 90 K in the electromagnetic calorimeter. Thin lead plates immersed in the cooled liquid will produce electromagnetic showers of particles when an electron, positron or photon enter the detector. This causes the argon to glow, allowing the initial particle energy to be measured.

  12. What Happened with Spectrometer Magnet 2B

    International Nuclear Information System (INIS)

    Green, Michael A.

    2010-01-01

    The spectrometer solenoid is supposed to be the first magnets installed in MICE (1)-(4). This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A (5), magnet 2A (6), and magnet 2B (7). Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  13. Study of the electron-positron annihilation in the galactic center region with the Integral/SPI spectrometer

    International Nuclear Information System (INIS)

    Sizun, P.

    2007-04-01

    A spectral feature was detected in 1970 in the gamma-ray emission from the central regions of the Milky Way, during balloon flight observations. Located near 511 keV, this feature was soon attributed to the gamma-ray line tracing the annihilation of electrons with their anti-particles, positrons. However, none of the multiple astrophysical scenarios contemplated to explain the production of positrons in the Galactic bulge has been able to reproduce the high injection rate deduced from the flux of the 511 keV line, close to 10 43 positrons per second. Launched in 2002, the European gamma-ray satellite INTEGRAL was provided with a spectrometer, SPI, whose unprecedented imaging and spectral capabilities in this energy range enable us to further study the source of the 511 keV line detected in the Galactic centre region. Indeed, a better determination of the spatial extent of the source, the intrinsic width of the line and the fraction of positrons annihilating in-flight, directly or via the formation of ortho-Positronium atoms would improve our knowledge of both the annihilation medium and the initial source of positrons, and could allow us to discriminate between the various explanatory scenarios. The first part of this thesis deals with a key ingredient in the extraction of the annihilation spectrum: the optimization of the instrumental background model. New data screening and tracer selection procedures are presented. Classical multi-linear models are compared to neural and Bayesian networks. Finally, three years of observation are used to constrain the width of the source and derive its spectrum. The second part of the thesis focuses on one of the possible scenarios explaining the high positron injection rate deduced from the flux of the 511 keV line: the annihilation of light dark matter particles into electron-positron pairs. The various radiation mechanisms involved are modeled and confronted to observations in order to set an upper limit on the injection

  14. Reference Design of the Mu2e Detector Solenoid

    CERN Document Server

    Feher, S; Brandt,, J; Cheban, S; Coleman, R; Dhanaraj, N; Fang, I; Lamm, M; Lombardo, V; Lopes, M; Miller, J; Ostojic, R ,; Orris, D; Page, T; Peterson, T; Tang, Z; Wands, R

    2014-01-01

    The Mu2e experiment at Fermilab has been approved by the Department of Energy to proceed developing the preliminary design. Integral to the success of Mu2e is the superconducting solenoid system. One of the three major solenoids is the Detector Solenoid that houses the stopping target and the detectors. The goal of the Detector Solenoid team is to produce detailed design specifications that are sufficient for vendors to produce the final design drawings, tooling and fabrication procedures and proceed to production. In this paper we summarize the Reference Design of the Detector Solenoid.

  15. Comparative performance analysis of a dual-solenoid mechanical oscillator

    International Nuclear Information System (INIS)

    Lee, V C C; Lee, H V; Harno, H G; Woo, K C

    2015-01-01

    An innovative dual-solenoid electro-mechanical-vibro-impact system has been constructed and experimentally studied. Comparative studies against a mechanical spring system and a permanent magnet system have been performed, where it is shown that the dual-solenoid system is able to produce oscillations better than the permanent magnet system and more energy efficiently. Comparison with a higher-powered dual solenoid system has also been conducted where a stationary solenoid has shown to be a more dominant parameter. In addition, it is also discovered that a mechanical oscillator in the dual-solenoid system is independent of the angular frequency. (paper)

  16. Form factor of some types of toroidal solenoids

    International Nuclear Information System (INIS)

    Koryavko, V.I.; Litvinenko, Yu.A.

    1979-01-01

    Obtained were the type of dependence between consumed power and formed field for toroidal helical-wound solenoids and the expression for the form factor analogous to the Fabry coefficient for cylindrical solenoids. Determined were optimum dimensions of the helical winding of ''forceless'' toroidal solenoids satisfying the condition of the formation of maximum field at minimum consumed power. Investigations also covered some types of conventional toroidal solenoids. Presented in the paper diagrams permitted to chose dimensions of the considered toroidal solenoids according to their consumed power and winding material volume

  17. Solenoidal Fields for Ion Beam Transport and Focusing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some

  18. Solenoidal Fields for Ion Beam Transport and Focusing

    International Nuclear Information System (INIS)

    Lee, Edward P.; Leitner, Matthaeus

    2007-01-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries (1-1), but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations (1-2) provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools (1-3) contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field (1-4). Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy (1-5) and Warm Dense Matter experiments (1-6), although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca(copyright) code (1-7) and some numerical

  19. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  20. Construction of compact FEM using solenoid-induced helical wiggler

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Fujita, M.; Imasaki, K.; Mima, K.; Nakai, S.

    2003-01-01

    A prototype of compact Free-Electron Maser (FEM) has been designed for the operation in a usual small laboratory which does not have electric source capacity available enough. The electron energy is 60-120 keV. As it is lower, stronger guiding magnetic field is necessary in addition to wiggler field. To fulfil this condition a solenoid-induced helical wiggler is applied from the viewpoint of saving the electric power of restricted source capacity. The wiggler, for example, with the period of 12 mm creates the field of 92 G in the guiding field of 3.2 kG. The whole system of FEM has been just constructed in a small-scale laboratory. It is so small to occupy the area of 0.7x2.9 m 2

  1. New Insights in Catalytic Sites: Characterization of Spectroscopy and Reactivity of Metal Oxide Clusters with Anion Slow Electron Velocity-Map Imaging

    Science.gov (United States)

    2016-06-08

    SEVI experiment, 16 ions were produced by expanding an appropriate gas mixture into vacuum with a pulsed solenoid valve. Anions were created from... laser ablation. They pass through an rf ion guide and are mass- selected in a quadrupole mass spectrometer. They are then injected into an rf...selected anions are dissociated by the absorption of multiple photons from a tunable infrared free electron laser . 33 This work is motivated by the

  2. ATLAS superconducting solenoid on-surface test

    CERN Document Server

    Ruber, Roger J M Y; Doi, Y; Haruyama, T; Haug, F; ten Kate, H H J; Kawai, M; Kondo, T; Kondo, Y; Makida, Y; Mizumaki, S; Olesen, G; Pavlov, O V; Pezzetti, M; Pirotte, O; Sbrissa, E; Yamamoto, A

    2005-01-01

    The ATLAS detector is presently under construction as one of the five LHC experiment set-ups. It relies on a sophisticated magnet system for the momentum measurement of charged particle tracks. The superconducting solenoid is at the center of the detector, the magnet system part nearest to the proton-proton collision point. It is designed for a 2 Tesla strong axial magnetic field at the collision point, while its thin-walled construction of 0.66 radiation lengths avoids degradation of energy measurements in the outer calorimeters. The solenoid and calorimeter have been integrated in their common cryostat, cooled down and tested on-surface. We review the on-surface set-up and report the performance test results.

  3. Laser ion source with solenoid field

    International Nuclear Information System (INIS)

    Kanesue, Takeshi; Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-01-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11 , which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator

  4. Laser ion source with solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fuwa, Yasuhiro [Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-7501 (Japan); RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan)

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  5. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  6. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  7. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  8. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  9. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer

    International Nuclear Information System (INIS)

    Zhong Hongying; Fu Jieying; Wang Xiaoli; Zheng Shi

    2012-01-01

    Highlights: ► Irradiation of photons with energies more than the band gap generates electron–hole pairs. ► Electron tunneling probability is dependent on the electron mobility. ► Tunneling electrons are captured by charge deficient atoms. ► Unpaired electrons induce cleavages of chemical bonds. - Abstract: Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ = 355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO 2 nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry.

  10. Lessons learned with the SAGE spectrometer

    International Nuclear Information System (INIS)

    Sorri, J; Greenlees, P T; Jones, P; Julin, R; Konki, J; Pakarinen, J; Rahkila, P; Sandzelius, M; Uusitalo, J; Papadakis, P; Cox, D M; Herzberg, R D

    2012-01-01

    The SAGE spectrometer combines a high-efficiency γ-ray detection system with an electron spectrometer. Some of the design features have been known to be problematic and surprises have come up during the early implementation of the spectrometer. Tests related to bismuth germanate Compton-suppression shields, electron detection efficiency and an improved cooling system are discussed in the paper. (paper)

  11. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    International Nuclear Information System (INIS)

    Palutke, S.; Wurth, W.; Gerken, N. C.; Mertens, K.; Klumpp, S.; Martins, M.; Mozzanica, A.; Schmitt, B.; Wunderer, C.; Graafsma, H.; Meiwes-Broer, K.-H.

    2015-01-01

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emission process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators

  12. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    Science.gov (United States)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  13. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  14. Simulation of the SAGE spectrometer

    International Nuclear Information System (INIS)

    Cox, D.M.; Herzberg, R.D.; Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.; Hauschild, K.

    2015-01-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  15. Stable particle motion in a linear accelerator with solenoid focusing

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1979-01-01

    The equation governing stable particle motion in a linear ion accelerator containing discrete rf and either discrete or continuous solenoid focusing was derived. It was found for discrete solenoid focusing that: cos μ = (1 + dΔ) cos theta/2 + (lΔ/theta - dtheta/2l - thetaΔd 2 /4l) sin theta/2, Δ = 1/f and l + 2d = βlambda, where μ, theta, f, l, and d are the phase advance per cell, precession angle in the solenoid, focal length of the rf lens, length of the solenoid in one cell, and the drift distance between the center of the rf gap and the effective edge of the solenoid. The relation for a continuous solenoid is found by setting d equal to zero. The boundaries of the stability region for theta vs Δ with fixed l and d are obtained when cos μ =+-1

  16. STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2017-06-01

    Full Text Available Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m∕z channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular

  17. STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

    Science.gov (United States)

    Topping, David O.; Allan, James; Rami Alfarra, M.; Aumont, Bernard

    2017-06-01

    Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS) is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m/z) channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular fingerprints. Therefore

  18. Survey of the laser-solenoid fusion reactor

    International Nuclear Information System (INIS)

    Amherd, N.A.

    1975-09-01

    This report surveys the prospects for a laser-solenoid fusion reactor. A sample reactor and scaling laws are used to describe the concept's characteristics. Experimental results are reviewed, and the laser and magnet technologies that undergird the laser-solenoid concept are analyzed. Finally, a systems analysis of fusion power reactors is given, including a discussion of direct conversion and fusion-fission effects, to ascertain the system attributes of the laser-solenoid configuration

  19. Functional and genomic analyses of alpha-solenoid proteins.

    Science.gov (United States)

    Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A

    2013-01-01

    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.

  20. Calculus of the Cryebis 2 supraconductor solenoid

    International Nuclear Information System (INIS)

    Levy, G.

    1985-01-01

    This report describes the design of the superconducting solenoid CRYEBIS 2. With the prescribed parameters (5 Teslas central field, 120mm for inner diameter, 1600 mm for length), one determinates the dimensions of coil, its energy, the conductor, the working point of the magnet with its critical limits (intensity, field, temperature). The superconducting switch is calculated in the same manner. The study of a quench shows the good behaviour of the coil which is always safe even the detection system is in failure. In final, the mechanical stresses are verified lower than yield strength [fr

  1. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  2. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  3. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jay Jayakumar, R.; Tsuji, H.; Ohsaki, O.

    2001-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  4. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Tsuji, H.; Ohsaki, O.

    1999-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  5. Optimization of the Mu2e Production Solenoid Heat and Radiation Shield

    Science.gov (United States)

    Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.

    2014-03-01

    The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.

  6. Conceptual design of a 20 Tesla pulsed solenoid for a laser solenoid fusion reactor

    International Nuclear Information System (INIS)

    Nolan, J.J.; Averill, R.J.

    1977-01-01

    Design considerations are described for a strip wound solenoid which is pulsed to 20 tesla while immersed in a 20 tesla bias field so as to achieve within the bore of the pulsed solenoid at net field sequence starting at 20 tesla and going first down to zero, then up to 40 tesla, and finally back to 20 tesla in a period of about 5 x 10 -3 seconds. The important parameters of the solenoid, e.g., aperture, build, turns, stored and dissipated energy, field intensity and powering circuit, are given. A numerical example for a specific design is presented. Mechanical stresses in the solenoid and the subsequent choice of materials for coil construction are discussed. Although several possible design difficulties are not discussed in this preliminary report of a conceptual magnet design, such as uniformity of field, long-term stability of insulation under neutron bombardment and choice of structural materials of appropriate tensile strength and elasticity to withstand magnetic forces developed, these questions are addressed in detail in the complete design report and in part in reference one. Furthermore, the authors feel that the problems encountered in this conceptual design are surmountable and are not a hindrance to the construction of such a magnet system

  7. The electron antineutrino angular correlation coefficient a in free neutron decay. Testing the standard model with the aSPECT-spectrometer

    International Nuclear Information System (INIS)

    Borg, Michael

    2011-01-01

    The β-decay of free neutrons is a strongly over-determined process in the Standard Model (SM) of Particle Physics and is described by a multitude of observables. Some of those observables are sensitive to physics beyond the SM. For example, the correlation coefficients of the involved particles belong to them. The spectrometer aSPECT was designed to measure precisely the shape of the proton energy spectrum and to extract from it the electron anti-neutrino angular correlation coefficient a. A first test period (2005/2006) showed the ''proof-of-principles''. The limiting influence of uncontrollable background conditions in the spectrometer made it impossible to extract a reliable value for the coefficient a (published in 2008). A second measurement cycle (2007/2008) aimed to under-run the relative accuracy of previous experiments (δa)/(a)=5%. I performed the analysis of the data taken there which is the emphasis of this doctoral thesis. A central point are background studies. The systematic impact of background on a was reduced to (δa (syst.) )/(a)=0.61 %. The statistical accuracy of the analyzed measurements is (δa (stat.) )/(a)∼1.4 %. Besides, saturation effects of the detector electronics were investigated which were initially observed. These turned out not to be correctable on a sufficient level. An applicable idea how to avoid the saturation effects is discussed in the last chapter. (orig.)

  8. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    Science.gov (United States)

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities 200 nm bandwidth.

  9. First detector installed inside the ALICE solenoid...

    CERN Multimedia

    2006-01-01

    ALICE's emblematic red magnet welcomed its first detector on 23 September, when the array of seven Cherenkov detectors, named HMPID, was successfully installed. ALICE team members standing in front of the completed HMPID detector.The red magnet, viewed from its front opening. The HMPID unit, seen from the back (top right corner of photo) is placed on a frame and lifted onto a platform during the installation. After the installation of the ACORDE scintillator array and the muon trigger and tracking chambers, the ALICE collaboration fitted the first detector inside the solenoid. The HMPID, for High Momentum Particle Identification, was installed at the 2 o'clock position in the central and most external region of the space frame, just below the solenoid yoke. It will be used to extend the hadron identification capability of the ALICE experiment up to 5 GeV/c, thus complementing the reach of the other particle identification systems (ITS, TPC and TOF). The HMPID is a Ring Imaging Cherenkov (RICH) detector in a...

  10. The D0 solenoid NMR magnetometer

    International Nuclear Information System (INIS)

    Sten Uldall Hansen; Terry Kiper; Tom Regan; John Lofgren

    2002-01-01

    A field monitoring system for the 2 Tesla Solenoid of the D0 detector is described. It is comprised of a very small NMR probe cabled to a DSP based signal processing board. The design magnetic field range is from 1.0 to 2.2 Tesla, corresponding to an RF frequency range of 42.57 to 93.67 MHz. The desired an accuracy is one part in 10 5 . To minimize material in the interaction region of the D0 detector, the overall thickness of the NMR probe is 4 mm, including its mounting plate, and its width is 10 mm. To minimize cable mass, 4mm diameter IMR-100A cables are used for transmitting the RF signals from a nearby patch panel 25 meters to each of four probes mounted within the bore of the solenoid. RG213U cables 45 meters long are used to send the RF from the movable counting house to the patch panel. With this setup, the detector signal voltage at the moving counting room is in the range of 250-400 mV

  11. Adjustment of Adiabatic Transition Magnetic Field of Solenoid-Induced Helicla Wiggler

    CERN Document Server

    Tsunawaki, Y

    2005-01-01

    We have been constructed a solenoid-induced helical wiggler for a compact free electron maser operated in a usual small laboratory which does not have electric source capacity available enough. It consists of two staggered-iron arrays inserted perpendicularly to each other in a solenoid electromagnet. In order to lead/extract an electron beam into/from the wiggler, adiabatic transition (AT) field is necessary at both ends of the wiggler. In this work the AT field was produced by setting staggered-nickel plates with different thickness in the five periods. The thickness of each nickel plate was decided by the field analysis using the MAGTZ computational code based on a magnetic moment method. Exact thickness was, however, found by the precise measurement of the field distribution with the greatest circumspection to obtain a homogeneous increment of the AT field. The change of AT field distribution was studied by referring to an equivalent electric circuit of the wiggler.

  12. Plasma confinement apparatus using solenoidal and mirror coils

    International Nuclear Information System (INIS)

    Fowler, T.K.; Condit, W.C.

    1979-01-01

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  13. Plasma confinement apparatus using solenoidal and mirror coils

    Science.gov (United States)

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  14. Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shao Qing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2015-06-15

    Electron cyclotron resonance (ECR) ion source is an essential component of heavy-ion accelerator. For a given design, the intensities of the highly charged ion beams extracted from the source can be increased by enlarging the physical volume of ECR zone. Several models for ECR ion source were and will be constructed depending on their operating conditions. In this paper three simulation models with 3, 4 and 6 solenoid system were built, but it's not considered anything else except the number of coils. Two groups of optimization analysis are presented, and the evolution strategy (ES) is adopted as an optimization tool which is a technique based on the ideas of mutation, adaptation and annealing. In this research, the volume of ECR zone was calculated approximately, and optimized designs for ECR solenoid magnet system were presented. Firstly it is better to make the volume of ECR zone large to increase the intensity of ion beam under the specific confinement field conditions. At the same time the total volume of superconducting solenoids must be decreased to save material. By considering the volume of ECR zone and the total length of solenoids in each model with different number of coils, the 6 solenoid system represented the highest coil performance. By the way, a certain case, ECR zone volume itself can be essential than the cost. So the maximum ECR zone volume for each solenoid magnet system was calculated respectively with the same size of the plasma chamber and the total magnet space. By comparing the volume of ECR zone, the 6 solenoid system can be also made with the maximum ECR zone volume.

  15. The Design Parameters for the MICE Tracker Solenoid

    International Nuclear Information System (INIS)

    Green, Michael A.; Chen, C.Y.; Juang, Tiki; Lau, Wing W.; Taylor, Clyde; Virostek, Steve P.; Wahrer, Robert; Wang, S.T.; Witte, Holger; Yang, Stephanie Q.

    2006-01-01

    The first superconducting magnets to be installed in the muon ionization cooling experiment (MICE) will be the tracker solenoids. The tracker solenoid module is a five coil superconducting solenoid with a 400 mm diameter warm bore that is used to provide a 4 T magnetic field for the experiment tracker module. Three of the coils are used to produce a uniform field (up to 4 T with better than 1 percent uniformity) in a region that is 300 mm in diameter and 1000 mm long. The other two coils are used to match the muon beam into the MICE cooling channel. Two 2.94-meter long superconducting tracker solenoid modules have been ordered for MICE. The tracker solenoid will be cooled using two-coolers that produce 1.5 W each at 4.2 K. The magnet system is described. The decisions that drive the magnet design will be discussed in this report

  16. Pressure control valve using proportional electro-magnetic solenoid actuator

    International Nuclear Information System (INIS)

    Yun, So Nam; Ham, Young Bog; Park, Pyoung Won

    2006-01-01

    This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed

  17. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    Harres, K.; Alber, I.; Guenther, M.; Nuernberg, F.; Otten, A.; Schuetrumpf, J.; Roth, M.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Tampo, M.; Schollmeier, M.

    2010-01-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 10 12 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  18. HISS spectrometer

    International Nuclear Information System (INIS)

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented

  19. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  20. Study of energetic electrons in the outer radiation-belt regions using data obtained by the LLL spectrometer on OGO-5 in 1968

    International Nuclear Information System (INIS)

    West, H.I. Jr.; Buck, R.M.; Davidson, G.

    1979-01-01

    An account is given of measurements of electrons made by the LLL magnetic electron spectrometer (60 to 3000 keV in seven differential energy channels) on the Ogo-5 satellite in the earth's outer-belt regions during 1968 and early 1969. The data were analyzed specifically to determine pitch-angle diffusion lifetimes as a function of energy in the L-range 2 to 5. As a part of this effort, the general dynamics of these regions were studied in terms of the time-dependent energy spectra, and pitch-angle distributions for the seven energy groups were obtained as a function of L with representative values presented for L = 2.5 to 6. The pitch-angle-diffusion results were used to analyze the dynamics of the electrons injected following the intense storms on October 31 and November 1, 1968, in terms of radial diffusion; the derived diffusion coefficients provide a quite reasonable picture of electron transport in the radiation belts. Both the radial- and pitch-angle-diffusion results are compared with earlier results. 53 references

  1. Development of a Robust, High Current, Low Power Field Emission Electron Gun for a Spaceflight Reflectron Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Southard, Adrian E.; Getty, Stephanie A.; Feng, Steven; Glavin, Daniel P.; Auciello, Orlando; Sumant, Anirudha

    2012-01-01

    Carbon materials, including carbon nanotubes (CNTs) and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD), have been of considerable interest for field emission applications for over a decade. In particular, robust field emission materials are compelling for space applications due to the low power consumption and potential for miniaturization. A reflectron time-of-flight mass spectrometer (TOF-MS) under development for in situ measurements on the Moon and other Solar System bodies uses a field emitter to generate ions from gaseous samples, using electron ionization. For these unusual environments, robustness, reliability, and long life are of paramount importance, and to this end, we have explored the field emission properties and lifetime of carbon nanotubes and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) thin films, the latter developed and patented by Argonne National Laboratory. We will present recent investigations of N-UNCD as a robust field emitter, revealing that this material offers stable performance in high vacuum for up to 1000 hours with threshold voltage for emission of about 3-4 V/lJm and current densities in the range of tens of microA. Optimizing the mass resolution and sensitivity of such a mass spectrometer has also been enabled by a parallel effort to scale up a CNT emitter to an array measuring 2 mm x 40 mm. Through simulation and experiment of the new extended format emitter, we have determined that focusing the electron beam is limited due to the angular spread of the emitted electrons. This dispersion effect can be reduced through modification of the electron gun geometry, but this reduces the current reaching the ionization region. By increasing the transmission efficiency of the electron beam to the anode, we have increased the anode current by two orders of magnitude to realize a corresponding enhancement in instrument sensitivity, at a moderate cost to mass resolution. We will report recent experimental and

  2. Concept design of the CFETR central solenoid

    International Nuclear Information System (INIS)

    Zheng, Jinxing; Song, Yuntao; Liu, Xufeng; Li, Jiangang; Wan, Yuanxi; Wan, Baonian; Ye, Minyou; Wu, Huan

    2015-01-01

    Highlights: • Main concept design work including coil's geometry, superconductor and support structure has been carried out. • The maximum magnetic field of CS coil is 11.9 T which is calculated by the coils’ operation current based on plasma equilibrium configuration. • The stray field in plasma area is less than 20 Gs under the CS coils’ operation currents designed for the plasma-heating phase. - Abstract: China Fusion Engineering Test Reactor (CFETR) superconducting tokamak is a national scientific research project of China with major and minor radius is 5.7 m and 1.6 m respectively. The magnetic field at the center of plasma with radius as R = 5.7 m is set to be 5.0 T. The major objective of the project is to build a fusion engineering tokamak reactor with fusion power in the range of 50–200 MW and should be self-sufficient by blanket. Six central solenoid coils of CFETR with same structure are made of Nb 3 Sn superconductor. Besides, the stray field in plasma area should be less than 20 Gs with the operation current of CS coils for plasma heating phase. The maximum magnetic field of CS coil is 11.9 T. It is calculated by the coils’ operation current based on plasma equilibrium configuration. The central solenoid needs to have enough stability margin under the condition of high magnetic field and strain. This paper discusses the design parameters, electromagnetic distribution, structure and stability analysis of the CS superconducting magnet for CFETR

  3. Use of microextraction by packed sorbent directly coupled to an electron ionization single quadrupole mass spectrometer as an alternative for non-separative determinations.

    Science.gov (United States)

    Casas Ferreira, Ana María; Moreno Cordero, Bernardo; Pérez Pavón, José Luis

    2017-02-01

    Sometimes it is not necessary to separate the individual compounds of a sample to resolve an analytical problem, it is enough to obtain a signal profile of the sample formed by all the components integrating it. Within this strategy, electronic noses based on the direct coupling of a headspace sampler with a mass spectrometer (HS-MS) have been proposed. Nevertheless, this coupling is not suitable for the analysis of non-volatile compounds. In order to propose an alternative to HS-MS determinations for non-volatile compounds, here we present the first 'proof of concept' use of the direct coupling of microextraction by packed sorbents (MEPS) to a mass spectrometer device using an electron ionization (EI) and a single quadrupole as ionization source and analyzer, respectively. As target compounds, a set of analytes with different physic-chemical properties were evaluated (2-ethyl-1-hexanol, styrene, 2-heptanone, among others). The use of MEPS extraction present many advantages, such as it is fast, simple, easy to automate and requires small volumes of sample and organic solvents. Moreover, MEPS cartridges are re-usable as samples can be extracted more than 100 times using the same syringe. In order to introduce into the system all the elution volume from the MEPS extraction, a programmable temperature vaporizer (PTV) is proposed as the injector device. Results obtained with the proposed methodology (MEPS-PTV/MS) were compared with the ones obtained based on the separative scheme, i.e. using gas chromatography separation (MEPS-PTV-GC/MS), and both methods provided similar results. Limits of detection were found to be between 3.26 and 146.6μgL -1 in the non-separative scheme and between 0.02 and 1.72μgL -1 when the separative methodology was used. Repeatability and reproducibility were evaluated with values below 17% in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  5. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  6. Quench protection and safety of the ATLAS central solenoid

    CERN Document Server

    Makida, Y; Haruyama, T; ten Kate, H H J; Kawai, M; Kobayashi, T; Kondo, T; Kondo, Y; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A; Yamaoka, H

    2002-01-01

    Fabrication of the ATLAS central solenoid was completed and the performance test has been carried out. The solenoid was successfully charged up to 8.4 kA, which is 10% higher than the normal operational current of 7.6 kA. Two methods for quench protection, pure aluminum strips accelerating quench propagation and quench protection heaters distributing normal zones, are applied in order to safely dissipate the stored energy. In this paper, quench characteristics and protection methods of the ATLAS central solenoid are described. (14 refs).

  7. A superconducting focusing solenoid for the neutrino factory linear accelerator

    International Nuclear Information System (INIS)

    Green, Michael A.; Lebedev, V.; Strauss, B.P.

    2001-01-01

    The proposed linear Accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can produce large stray fields. This report describes the 201.25 MHz acceleration system for the neutrino factory. This report also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity

  8. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    International Nuclear Information System (INIS)

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable open-quotes Integrated Research Experimentclose quotes (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, open-quotes the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenologyclose quotes. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well

  9. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  10. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  11. A magnetic-lens - mini-orange coincidence spectrometer

    International Nuclear Information System (INIS)

    Bargholtz, C.; Holmberg, L.; Ruus, N.; Tegner, P.E.; Weiss, G.

    1997-04-01

    A coincidence spectrometer consisting of a Gerholm type magnetic lens and a permanent magnet mini-orange spectrometer is described. Electron-electron or electron-positron coincidences may be registered in various angular settings. The spectrometer has been developed mainly to search for anomalous contributions to Bhabha scattering or positrons and is at present used for such studies. 6 refs

  12. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  13. Solenoid hammer valve developed for quick-opening requirements

    Science.gov (United States)

    Wrench, E. H.

    1967-01-01

    Quick-opening lightweight solenoid hammer valve requires a low amount of electrical energy to open, and closes by the restoring action of the mechanical springs. This design should be applicable to many quick-opening requirements in fluid systems.

  14. Low-energy nuclear reactions with double-solenoid- based ...

    Indian Academy of Sciences (India)

    solenoids to produce low-energy radioactive nuclear beams. In these systems the ... For many years, the disadvantage in these investigations ... fusion or breakup reaction, preferred with large forward-peaked cross-sections. To transfer the ...

  15. Measurement of the angular correlation coefficient a between electron and antineutrino in neutron β-decay with the spectrometer aSPECT

    International Nuclear Information System (INIS)

    Maisonobe, Romain

    2014-01-01

    Neutron β-decay is parametrized by several measurable correlation coefficients which are used to determine parameters of the Standard Model and to search for new physics. The aim of the retardation spectrometer aSPECT is to measure the electron-antineutrino angular correlation coefficient a with an unprecedented accuracy of well below 1%. The coefficient is extracted from a high precision measurement of the proton energy spectrum. A central point of this PhD thesis is the analysis of the background, motivated by the observations of discharges during the beam time of 2011, and an earlier indication for a dependence on the retardation potential. During this thesis, several measurements were conducted off-line, without ionizing particles from neutron decay. An 'internal' background (X-rays and ions) was identified. It has an influence of 10 -5 to 10 -4 on Δa/a depending on the vacuum level (∼10 -9 mbar) and the spectrometer settings. Within the analysis of the data from the beam time in 2013, a model was built to correct for backgrounds present in neutron decay experiment, taking into account its time dependence. The correction is about 3% on the coefficient for standard settings and vacuum but it can reach 7% for unfavorable settings. To reduce the background, a drift electric field was applied close to the maximum of the retardation potential. Additional measurements performed during this beam time included tests of systematics, in particular the edge effect (beam profile) and different electrode settings. In order to obtain the final result, the analysis has to be extended by including the different corrections and by comparing with simulations of the systematic effects. (author)

  16. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  17. The Compact Muon Solenoid Detector Control System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  18. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  19. Detailed design of the ITER central solenoid

    International Nuclear Information System (INIS)

    Libeyre, P.; Mitchell, N.; Bessette, D.; Gribov, Y.; Jong, C.; Lyraud, C.

    2009-01-01

    The central solenoid (CS) of the ITER tokamak contributes to the inductive flux to drive the plasma, to the shaping of the field lines in the divertor region and to vertical stability control. It is made of 6 independent coils, using a Nb3Sn cable-in-conduit superconducting conductor, held together by a vertical precompression structure. This design enables ITER to access a wide operating window of plasma parameters, up to 17 MA and covering inductive and non-inductive operation. Each coil is based on a stack of multiple pancake winding units to minimise joints. A glass-polyimide electrical insulation, impregnated with epoxy resin, is giving a high voltage operating capability, tested up to 29 kV. The CS performance is fatigue driven mainly by the stress levels in the conductor jacket and in the precompression structure needed to keep the modules in contact during the repulsive forces which can arise in operation. A rigid connection to the TF coils provided at one end and a centering support at the other end allow to resist net vertical forces as well as unbalanced radial forces while avoiding torsion transmission from the TF Coils to the CS assembly.

  20. DAQ cards for the Compact Muon Solenoid: a successful technology transfer case

    CERN Document Server

    Barone, M; Geralis, T; Mastroyiannopoulos, N; Tzamarias, S; Zachariadou, K; Tsoussis, L

    2002-01-01

    In this paper we give the description of a project accomplished by a collaboration of researchers, engineers and managers from a Greek medium-size company Hourdakis Electronics S.A and the research laboratories CERN in Geneva and DEMOKRITOS in Athens. The project involved the production of 22 input-output DAQ electronic modules to be used for R&D purposes in the Compact Muon Solenoid experiment of LHC at CERN. This project can be considered a successful technology transfer. (3 refs).

  1. Isotope, scanning electron microscope, and energy dispersive spectrometer studies of heterogeneous zircons from radioactive granites in the Grenville structural province, Quebec and Ontario

    International Nuclear Information System (INIS)

    Rimsaite, J.

    1981-01-01

    Heterogeneous zircons yielded discordant Pb-U, Pb-Th, and 207 Pb- 206 Pb isotopic ages. Most data points fall below the concordia curve, implying losses of daughter elements, bqt they define a discordia line that intersects the concordia at approximately 90 Ma and 1020 Ma. To obtain evidence for mobilization of U and radiogenic Pb, zircon grains were studied using a scanning electron microscope coupled with an energy dispersive spectrometer. High magnification backscattered and secondary electron images of the zircon revealed narrow fractures, zoning and diverse mineral inclusions. Three groups of mineral inclusions observed were: 1) those predating zoned zircon and apparently serving as a nucleus; 2) uraninite, feldspar, and apatite associated with the growth and zoning of the host zircon; and 3) fracture-fillings that postdate crystallization of the host zircon. The U- and Pb-rich inclusions incorporated into the zircon grains during and after its crystallization markedly affect isotopic ages of the host zircon. Migration of Pb and U have occurred along fractures in zircon. Zircon, uraninite, and other associated minerals have decomposed and complex reactions have taken place between the liberated Zr, U, Th and other elements to produce overgrowths on mineral grains and unidentified Zr-bearing material in fractures

  2. A solenoidal and monocusp ion source (SAMIS) (abstract)ab

    International Nuclear Information System (INIS)

    Burns, E.J.; Brainard, J.P.; Draper, C.H.; Ney, R.H.; Leung, K.N.; Perkins, L.T.; Williams, M.D.; Wilde, S.B.

    1996-01-01

    We have developed a new magnetic monocusp ion source for single aperture applications such as neutron generators. Coupling solenoidal magnetic fields on both sides of a monocusp magnetic field has generated over 70% atomic deuterium ions at pressures as low as 0.4 Pa (3 mTorr). This article describes the performance and characteristics of the solenoidal and monocusp ion source. copyright 1996 American Institute of Physics

  3. An Inexpensive Toroidal Solenoid for an Investigative Student Lab

    Science.gov (United States)

    Ferstl, Andrew; Broberg, John

    2008-09-01

    Magnetism and Ampère's law is a common subject in most calculus-based introductory physics courses. Many textbooks offer examples to calculate the magnetic field produced by a symmetric current by using Ampère's law. These examples include the solenoid and the toroidal solenoid (sometimes called a torus; see Fig. 1), which are used in many applications, including the study of plasmas.

  4. Design of new central solenoid for SST-1

    Science.gov (United States)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V. L.; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A. N.; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-04-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively

  5. Design of new central solenoid for SST-1

    International Nuclear Information System (INIS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V L; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A N; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-01-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively

  6. Design of new superconducting central solenoid of SST-1 tokamak

    International Nuclear Information System (INIS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh

    2015-01-01

    The key role of the central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current for longer duration. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼655 mm. The physics basis of the design includes volt-sec storage capacity of ∼0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼0.3 volt/m.The engineering design of new CS consists of Nb 3 Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The inter-layer low resistance (∼1 nΩ) at 14 kA @ 4.5 K terminal praying hand joints has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K

  7. Solenoid-free plasma startup in NSTX using transient CHI

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Nelson, B.A.; Mueller, D.; Bell, M.G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Maingi, R.; Maqueda, R.; Nagata, M.; Sabbagh, S.

    2009-01-01

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  8. Solenoid for Laser Induced Plasma Experiments at Janus

    Science.gov (United States)

    Klein, Sallee; Leferve, Heath; Kemp, Gregory; Mariscal, Derek; Rasmus, Alex; Williams, Jackson; Gillespie, Robb; Manuel, Mario; Kuranz, Carolyn; Keiter, Paul; Drake, R.

    2017-10-01

    Creating invariant magnetic fields for experiments involving laser induced plasmas is particularly challenging due to the high voltages at which the solenoid must be pulsed. Creating a solenoid resilient enough to survive through large numbers of voltage discharges, enabling it to endure a campaign lasting several weeks, is exceptionally difficult. Here we present a solenoid that is robust through 40 μs pulses at a 13 kV potential. This solenoid is a vast improvement over our previously fielded designs in peak magnetic field capabilities and robustness. Designed to be operated at small-scale laser facilities, the solenoid housing allows for versatility of experimental set-ups among diagnostic and target positions. Within the perpendicular field axis at the center there is 300 degrees of clearance which can be easily modified to meet the needs of a specific experiment, as well as an f/3 cone for transmitted or backscattered light. After initial design efforts, these solenoids are relatively inexpensive to manufacture.

  9. Nuclear magnetic resonance at 310 MHz in a superconducting solenoid; Resonance magnetique nucleaire a 310 MHz dans un solenoide supra-conducteur

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, J J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    The realisation of an NMR spectrometer with a superconducting magnet is presented in the first section. The methods to attain the best possible homogeneity of the magnetic field and to minimize the error in the spectrometer are described. The second section is devoted to the study of elastomers and nitr-oxides free radicals. A shift of the transition temperature with the magnetic field appears for the elastomers. The increasing paramagnetic shift has allowed a complete study by NMR of piperidinic and pyrrolidinic nitroxide free radicals. (author) [French] Dans la premiere partie est exposee la realisation d'un spectrometre de RMN utilisant un solenoide supraconducteur. Des solutions sont donnees pour obtenir la meilleure homogeneite possible du champ magnetique et pour minimiser les sources d'erreur apportees par le spectrometre. La deuxieme partie est consacree a l'etude d'elastomeres et de radicaux libres nitroxydes. Une variation de la temperature de transition avec le champ magnetique est mise en evidence pour les elastomeres. L'accroissement du deplacement paramagnetique a permis une etude complete par RMN des radicaux libres nitroxydes piperidiniques et pyrrolidiniques. (auteur)

  10. Nuclear magnetic resonance at 310 MHz in a superconducting solenoid; Resonance magnetique nucleaire a 310 MHz dans un solenoide supra-conducteur

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, J.J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    The realisation of an NMR spectrometer with a superconducting magnet is presented in the first section. The methods to attain the best possible homogeneity of the magnetic field and to minimize the error in the spectrometer are described. The second section is devoted to the study of elastomers and nitr-oxides free radicals. A shift of the transition temperature with the magnetic field appears for the elastomers. The increasing paramagnetic shift has allowed a complete study by NMR of piperidinic and pyrrolidinic nitroxide free radicals. (author) [French] Dans la premiere partie est exposee la realisation d'un spectrometre de RMN utilisant un solenoide supraconducteur. Des solutions sont donnees pour obtenir la meilleure homogeneite possible du champ magnetique et pour minimiser les sources d'erreur apportees par le spectrometre. La deuxieme partie est consacree a l'etude d'elastomeres et de radicaux libres nitroxydes. Une variation de la temperature de transition avec le champ magnetique est mise en evidence pour les elastomeres. L'accroissement du deplacement paramagnetique a permis une etude complete par RMN des radicaux libres nitroxydes piperidiniques et pyrrolidiniques. (auteur)

  11. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    International Nuclear Information System (INIS)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-01-01

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented

  12. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe [Department of Electrical and Electronic Engineering, Ariel University, Ariel 40700 (Israel)

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  13. Plans for longitudinal and transverse neutralized beam compression experiments, and initial results from solenoid transport experiments

    International Nuclear Information System (INIS)

    Seidl, P.A.; Armijo, J.; Baca, D.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grote, D.; Haber, I.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Molvik, A.W.; Rose, D.V.; Roy, P.K.; Sefkow, A.B.; Sharp, W.M.; Vay, J.L.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2007-01-01

    This paper presents plans for neutralized drift compression experiments, precursors to future target heating experiments. The target-physics objective is to study warm dense matter (WDM) using short-duration (∼1 ns) ion beams that enter the targets at energies just above that at which dE/dx is maximal. High intensity on target is to be achieved by a combination of longitudinal compression and transverse focusing. This work will build upon recent success in longitudinal compression, where the ion beam was compressed lengthwise by a factor of more than 50 by first applying a linear head-to-tail velocity tilt to the beam, and then allowing the beam to drift through a dense, neutralizing background plasma. Studies on a novel pulse line ion accelerator were also carried out. It is planned to demonstrate simultaneous transverse focusing and longitudinal compression in a series of future experiments, thereby achieving conditions suitable for future WDM target experiments. Future experiments may use solenoids for transverse focusing of un-neutralized ion beams during acceleration. Recent results are reported in the transport of a high-perveance heavy ion beam in a solenoid transport channel. The principal objectives of this solenoid transport experiment are to match and transport a space-charge-dominated ion beam, and to study associated electron-cloud and gas effects that may limit the beam quality in a solenoid transport system. Ideally, the beam will establish a Brillouin-flow condition (rotation at one-half the cyclotron frequency). Other mechanisms that potentially degrade beam quality are being studied, such as focusing-field aberrations, beam halo, and separation of lattice focusing elements

  14. Magnetic shielding for a transversely polarized target in the longitudinal field of the PANDA solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Bertold; Ahmed, Samer; Dbeyssi, Alaa; Mora Espi, Maria Carmen; Gerz, Kathrin; Lin, Dexu; Maas, Frank; Martinez, Ana Penuelas; Morales, Cristina; Wang, Yadi [Helmholtz Institut Mainz (Germany); Aguar Bartolome, Patricia [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    A transversely polarized target in PANDA would allow for the first time access to the imaginary part of the time like electromagnetic proton form factors, namely the phase angle in the imaginary plane between electric and magnetic form factors. Moreover it would allow for a number of other target single spin asymmetries revealing nucleon structure observables connected with the transverse spin structure of the proton. As a first step for achieving a transverse target polarization, the target region has to be shielded against the 2 T longitudinal magnetic flux from the solenoid of the PANDA spectrometer. We present experimental results on intense magnetic flux shielding using a BSCCO-2212 high temperature superconducting hollow cylinder at liquid helium temperature.

  15. Wide band ENDOR spectrometer

    International Nuclear Information System (INIS)

    Mendonca Filho, C.

    1973-01-01

    The construction of an ENDOR spectrometer operating from 0,5 to 75 MHz within a single band, with ore Klystron and homodine detection, and no fundamental changes on the electron spin resonance spectrometer was described. The ENDOR signal can be detected both by amplitude modulation of the frequency field, or direct detection of the ESR output, which is taken to a signal analyser. The signal-to-noise ratio is raised by averaging rather than filtering avoiding the use of long time constants, providing natural line widths. The experimental apparatus and the spectra obtained are described. A discussion, relating the ENDOR line amplitudes with the experimental conditions is done and ENDOR mechanism, in which there is a relevant presence of cross relaxation is proposed

  16. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  17. Optical simulations for the S3 project - Super separator spectrometer - gamma-electron coincidence spectroscopy of a transfermium nucleus: the 251Md101

    International Nuclear Information System (INIS)

    Dechery, Fabien

    2012-01-01

    In analogy with the atomic closed shells giving rise to the stability and high ionisation energies of noble gases, nuclear physics also has its magic numbers of protons and neutrons which enhance nuclear structure stability. Knowledge of the structure of doubly-magic nuclei, both proton and neutron numbers, is crucial to parameterize theoretical models. The discovery of the next and ultimate magic numbers will provide a strong constraint on the many predictions. These two numbers are like the centre coordinates of an area of enhanced stability of the nuclear chart, well known as 'island of stability'. These superheavy nuclei only exist due to pure quantum shell effects. My thesis work deals with two distinct, but complementary, aspects of fundamental physics with the common goal of studying these extreme mass nuclei structure. The first part corresponds to the development of a next generation instrument for nuclear physics to allow synthesis and spectroscopy studies of superheavy nuclei: the Super Separator Spectrometer S 3 . This project will be installed at SPIRAL2 (GANIL) and has been approved by the French Research National Agency (ANR) within the EQUIPEX framework. It has been designed to take advantage of the high intensity heavy ion beam from the LINAC, giving access to a wide range of physical programs. The second part corresponds to the preparation, realisation and analysis of an experiment on 251-Mendelevium in which the very first prompt gamma-electron coincidence spectroscopy was performed for a transfermium nuclei. (author) [fr

  18. High Frequency Design Considerations for the Large Detector Number and Small Form Factor Dual Electron Spectrometer of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    Science.gov (United States)

    Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.; hide

    2015-01-01

    Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.

  19. The aerogel Ring Imaging Cherenkov system at the Belle II spectrometer

    Science.gov (United States)

    Pestotnik, R.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    In the forward end-cap of the Belle II spectrometer, a proximity focusing Ring Imaging Cherenkov counter with an aerogel radiator will be installed. The detector will occupy a limited space inside solenoid magnet with longitudinal field of 1.5 T. It will consist of a double layer aerogel radiator, an expansion volume and a photon detector. 420 Hamamatsu hybrid avalanche photo sensors with 144 channels each will be used to read out single Cherenkov photons with high efficiency. More than 60,000 analog signals will be digitized and processed in the front end electronics and send to the unified experiment data acquisition system. The detector components have been successfully produced and are now being installed in the spectrometer. Tested before on the bench, they are currently being installed in the mechanical frame. Part of the detector have been commissioned and connected to the acquisition system to register the cosmic ray particles. The first preliminary results are in accordance with previous expectations. We expect an excellent performance of the device which will allow at least a 4σ separation of pions from kaons in the experiment kinematic region from 0.5 GeV/c to 4 GeV/c.

  20. Small angle spectrometers: Summary

    International Nuclear Information System (INIS)

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  1. Smartphone Spectrometers

    Science.gov (United States)

    Willmott, Jon R.; Mims, Forrest M.; Parisi, Alfio V.

    2018-01-01

    Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a ‘lab in a phone’ capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades. PMID:29342899

  2. Smartphone Spectrometers

    Directory of Open Access Journals (Sweden)

    Andrew J.S. McGonigle

    2018-01-01

    Full Text Available Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a ‘lab in a phone’ capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.

  3. Investigation of the electron dynamics of Si(111) 7 x 7 and development of a time-of-flight spectrometer for time- and angle-resolved two-photon photoemission

    International Nuclear Information System (INIS)

    Damm, Andreas

    2011-01-01

    This thesis consists of two main parts. The first one reports about recent investigations of the electron dynamics on the Si(111) 7 x 7 surface employing time- and angle-resolved two-photon photoemission (2PPE). The second part describes the construction and demonstration of the capabilities of a new electron time-of-flight spectrometer. It is shown that the electron dynamics of this surface are governed by adatom and bulk states. Variation of different experimental parameters leads to the suggestion that electrons scatter from the adatom states into the conduction band of Silicon. The localization in real space can be estimated from the distribution of the photoemission intensity in momentum space to be within one 7 x 7 unit cell. The electron population in the conduction band as well as those in the adatom band show a very long-living component. In addition to recombination through defect states, these electrons can undergo radiative recombination with holes in the valence band. The second part of this thesis reports about the design, construction and demonstration of the capabilities of a new electron time-of-flight spectrometer for applications in time- and angle-resolved 2PPE experiments. The new spectrometer is designed in a flexible manner to maximize either the energy resolution or the acceptance angle, respectively. By employing a position-sensitive electron detector it is possible for the first time to measure the energy as well as all components of the parallel momentum of the photoemitted electrons and thereby to fully characterize electrons from surface states. The time-resolution can be estimated from the width of a peak induced by photons scattered from the sample to be better than 150 ps. At the minimum of about 40 mm of the adjustable drift distance this leads to a energy resolution below 5 meV for electrons with kinetic energies of 1 eV. Thereby, the parallel momentum resolution is below 5 mA -1 for parallel momentum values k parallel ≤1A -1

  4. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  5. Experimental study of a laser-heated solenoid

    International Nuclear Information System (INIS)

    Rutkowski, H.L.

    1975-01-01

    An experimental investigation was made of the interaction of an intense CO 2 laser beam with a column of initially uv-ionized hydrogen immersed in a steady magnetic field of up to 100 kG. Under the intense laser radiation, the gas becomes ionized and heated to temperatures as high as 150 eV (1.6 x 10 6 0 K). The primary purpose of the investigation was to determine the properties of the dense, hot plasma formed in this manner. Time and space resolved measurements of the plasma electron density were made using holographic interferometry along the axis and Mach--Zehnder interferometry across the column. The temperature was determined by measuring the decay rate of a line from CV in the quartz uv. These measurements were supplemented by streak photography to provide data on the development of the luminosity of the plasma column, radially and axially, as a function of time. From these various diagnostic techniques, it was possible to determine that a density minimum is formed on-axis within a few tens of nanoseconds after initiation of the laser pulse. This effectively produces a light pipe which traps the beam, and suggests that long columns can be formed by laser irradiation. The beam energy was efficiently absorbed and plasma loss rates appeared to be those expected from classical MHD modelling. While a completely unambiguous answer as to the mode of laser discharge propagation occurring in the experiment was not obtained, the bulk of the evidence suggests a ''bleaching wave'' rather than a laser driven detonator. In summary, the experiment was successful in demonstrating the creation of dense, slender columns by laser breakdown, in support of the ''laser-heated solenoid'' fusion concept

  6. Ion beam transport and focus for LMF using an achromatic solenoidal lens system

    International Nuclear Information System (INIS)

    Olson, C.L.

    1990-01-01

    The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF

  7. Mini ion trap mass spectrometer

    Science.gov (United States)

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  8. A Cryogenic Test Stand for Large Superconducting Solenoid Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Orris, D. [Fermilab; Soyars, W. [Fermilab; Sylvester, C. [Fermilab

    2013-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquifier (CHL) has been designed, and operated. This test stand has been used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab mu2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  9. Dispersion in a bent-solenoid channel with symmetric focusing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-xi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2001-08-21

    Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the required dispersion in the ``emittance exchange'' scheme of longitudinal cooling. In this paper, we derive the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and give equations for determining the lattice functions, in particular, the dispersion functions.

  10. Operating experience feedback report - Solenoid-operated valve problems

    International Nuclear Information System (INIS)

    Ornstein, H.L.

    1991-02-01

    This report highlights significant operating events involving observed or potential common-mode failures of solenoid-operated valves (SOVs) in US plants. These events resulted in degradation or malfunction of multiple trains of safety systems as well as of multiple safety systems. On the basis of the evaluation of these events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the US Nuclear Regulatory Commission (NRC) concludes that the problems with solenoid-operated valves are an important issue that needs additional NRC and industry attention. This report also provides AEOD's recommendations for actions to reduce the occurrence of SOV common-mode failures. 115 refs., 7 figs., 2 tabs

  11. The Compact Muon Solenoid Heavy Ion program

    International Nuclear Information System (INIS)

    Yepes, Pablo

    2005-01-01

    The Pb-Pb center of mass energy at the LHC will exceed that of Au-Au collisions at RHIC (Relativistic Heavy Ion Collider) by nearly a factor of 30, providing exciting opportunities for addressing unique physics issues in a completely new energy domain. The interest of the Heavy Ion (HI) Physics at LHC is discussed in more detail in the LHC-USA white paper and the Compact Muon Solenoid (CMS) Heavy Ion proposal. A few highlights are presented in this document. Heavy ion collisions at LHC energies will explore regions of energy and particle density significantly beyond those reachable at RHIC. The energy density of the thermalized matter created at the LHC is estimated to be 20 times higher than at RHIC, implying an initial temperature, which is greater than at RHIC by more than a factor of two. The higher density of produced partons also allows a faster thermalization. As a consequence, the ratio of the quark-gluon plasma lifetime to the thermalization time increases by a factor of 10 over RHIC. Thus the hot, dense systems created in HI collisions at the LHC spend most of the time in a purely partonic state. The longer lifetime of the quark-gluon plasma state widens significantly the time window available to probe it experimentally. RHIC experiments have reported evidence for jet production in HI collisions and for suppression of high p T particle production. Those results open a new field of exploration of hot and dense nuclear matter. Even though RHIC has already broken ground, the production rates for jets with p T > 30 GeV are several orders of magnitude larger at the LHC than at RHIC, allowing for systematic studies with high statistics in a clean kinematic region. High p T quark and gluon jets can be used to study the hot hadronic medium produced in HI interactions. The larger Q 2 causes jets to materialize very soon after the collision. They are thus embedded in and propagate through the dense environment as it forms and evolves. Through their interactions

  12. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis

    Science.gov (United States)

    Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.

    2017-09-01

    High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.

  13. PEBS - Positron Electron Balloon Spectrometer

    CERN Document Server

    von Doetinchem, P.; Kirn, T.; Yearwood, G.Roper; Schael, S.

    2007-01-01

    The best measurement of the cosmic ray positron flux available today was performed by the HEAT balloon experiment more than 10 years ago. Given the limitations in weight and power consumption for balloon experiments, a novel approach was needed to design a detector which could increase the existing data by more than a factor of 100. Using silicon photomultipliers for the readout of a scintillating fiber tracker and of an imaging electromagnetic calorimeter, the PEBS detector features a large geometrical acceptance of 2500 cm^2 sr for positrons, a total weight of 1500 kg and a power consumption of 600 W. The experiment is intended to measure cosmic ray particle spectra for a period of up to 20 days at an altitude of 40 km circulating the North or South Pole. A full Geant 4 simulation of the detector concept has been developed and key elements have been verified in a testbeam in October 2006 at CERN.

  14. Development of the DAQ System of Triple-GEM Detectors for the CMS Muon Spectrometer Upgrade at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387583

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). After a long technical stop in 2019-2020, the LHC will restart and run at a luminosity of 2 × 1034 cm−2 s−1, twice its nominal value. This will in turn increase the rate of particles to which detectors in CMS will be exposed and affect their performance. The muon spectrometer in particular will suffer from a degraded detection efficiency due to the lack of redundancy in its most forward region. To solve this issue, the GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. Within the GEM collaboration, the Data Acquisition (DAQ) subgroup is in charge of the development of the electronics and software of the DAQ system of the detectors. This thesis presents th...

  15. Energy losses in the D0 β solenoid cryostat caused by current changes

    International Nuclear Information System (INIS)

    Visser, A.T.

    1993-11-01

    The proposed D0 β solenoid is a superconducting solenoid mounted inside an aluminum tube which supports the solenoid winding over it's full length. This aluminum support tube, also called bobbin, is therefore very tightly coupled to magnetic flux changes caused by solenoid current variations. These current changes in the solenoid, will cause answer currents to flow in the resistive bobbin wall and therefore cause heat losses. The insertion of an external dump resistor in the solenoid current loop reduces energy dissipation inside the cryostat during a quench and will shorten the discharge time constant. This note presents a simple electrical model for the coupled bobbin and solenoid and makes it easier to understand the circuit behavior and losses. Estimates for the maximum allowable rate of solenoid current changes, based on the maximum permissible rate of losses can be made using this model

  16. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    Science.gov (United States)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  17. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry.

    Science.gov (United States)

    Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  18. Structure design of the central solenoid in JT-60SA

    International Nuclear Information System (INIS)

    Asakawa, Shuji; Tsuchiya, Katsuhiko; Kuramochi, Masaya; Yoshida, Kiyoshi

    2009-09-01

    The upgrade of JT-60U magnet system to superconducting coils (JT-60SA: JT-60 Super Advanced) has been decided by parties of Japanese government (JA) and European commission (EU) in the framework of the Broader Approach (BA) agreement. The magnet system for JT-60SA consists of a central solenoid (CS), equilibrium field(EF) coils, toroidal field(TF) coils. The central solenoid consists the four winding pack modules. In order to counteract the thermal contraction as well as the electric magnetic repulsion and attraction together with other forces generated in each module, it is necessary to apply pre-loading to the support structure of the solenoid and to pursue a structure which is capable of sustaining such loading. In the present report, the structural design of the supporting structure of the solenoid and the jackets of the modules is verified analytically, and the results indicate that the structural design satisfies the 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure -'. (author)

  19. Modeling plasma flow in straight and curved solenoids

    International Nuclear Information System (INIS)

    Boercker, D.B.; Sanders, D.M.; Storer, J.; Falabella, S.

    1991-01-01

    The ''flux-tube'' model originated by Morozov is a very simple and numerically efficient method for simulating ion motion in plasma filters. In order to test its utility as a design tool, we compare the predictions of the model to recent experimental measurements of plasma flow in both straight and curved solenoids

  20. Completion of the ITER central solenoid model coils installation

    International Nuclear Information System (INIS)

    Tsuji, H.

    1999-01-01

    The short article details how dozens of problems, regarding the central solenoid model coils installation, were faced and successfully overcome one by one at JAERI-Naga. A black and white photograph shows K. Kwano, a staff member of the JAERI superconducting magnet laboratory, to be still inside the vacuum tank while the lid is already being brought down..

  1. Low-energy nuclear reactions with double-solenoid

    Indian Academy of Sciences (India)

    The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems ...

  2. Insulating process for HT-7U central solenoid model coils

    International Nuclear Information System (INIS)

    Cui Yimin; Pan Wanjiang; Wu Songtao; Wan Yuanxi

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the super-conducting experiment condition

  3. Electromagnetic behaviour of the shield in turbogenerators with superconducting solenoids

    International Nuclear Information System (INIS)

    Del Vecchio, P.; Veca, G.M.; Sacerdoti, G.

    1975-11-01

    The structure of turbogenerators with superconducting solenoids is analyzed and the investigation of electromagnetic behaviour of the rotating shield is presented. The cases considered are: (a) An hypothetical operation with a single phase with nominal current; (b) Steady-state operation in inverse sequence with 10% of the nominal current; (c) A step variation of the magnetic field intensity in the shield

  4. Design of 9 tesla superconducting solenoid for VECC RIB facility

    International Nuclear Information System (INIS)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok

    2013-01-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  5. Design of 9 tesla superconducting solenoid for VECC RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok [Variable Energy Cyclotron Centre, Kolkata (India)

    2013-07-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  6. Design, fabrication, and characterization of a solenoid system to ...

    Indian Academy of Sciences (India)

    system to generate magnetic field for an ECR proton source. S K JAIN .... The bore of the solenoid coils was fabricated using high voltage glass epoxy. Each ... sure drop and flow, the inlet and outlet connections were provided. ... stability of an ECR plasma source, as any small change in the distribution of the axial magnetic.

  7. Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment

    Science.gov (United States)

    Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.

    2017-10-01

    The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.

  8. Electron multiplier for the measurement of an ion current on a mass spectrometer; Multiplicateur d'electrons pour la mesure de courant d'ions sur un spectrometre de masse

    Energy Technology Data Exchange (ETDEWEB)

    Lohez, P; Nief, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The apparatus described is designed to measure weak ion currents received at the collector of a mass spectrometer. The report describes successively the study of electron paths in the multiplier by the method of analogy, using rubber membranes, and the practical details of construction of the apparatus. The variation with surface treatment of the secondary emission coefficient of the alloy CuBe containing 2 per cent Be, which makes up the dynodes, and the influence of the voltage on the gain per stage, are discussed. Results of tests regarding: the influence of the ion mass on the gain, the background of the instrument and the energy distribution of the impulses coming out on a high gain multiplier (q.q. 10{sup 7}) are given. Finally the performances of the multiplier are reported. 1- For a low gain (10{sup 4}), precision and reproducibility comparable to the electrometer valve, sensitivity 100 times greater, currents capable of detection 10{sup -17} Ampere. 2- For a high gain (10{sup 7}) and measurement by impulse counting, currents capable of detection 10{sup -19} Ampere. Mounting difficult to use on a mass spectrometer. (author) [French] L'appareil decrit est destine a la mesure des faibles courants d'ions re s au collecteur d'un spectrometre de masse. Le rapport decrit successivement l'etude des trajectoires des electrons dans le multiplicateur, par la methode analogique de la menbrane en caoutchouc, et la realisation pratique de l'appareil. La variation du coefficient d'emission secondaire de l'alliage CuBe a 2 pour cent de Be, constituant les dynodes suivant le traitement des surfaces, et l'influence de la tension sur le gain par etage sont discutees. Des resultats d'essais concernant: l'influence de la masse des ions sur le gain, le bruit de fond de l'appareil et la repartition en energie des impulsions de sortie sur un multiplicateur a gain eleve (q.q. 10{sup 7}) sont donnes. Enfin, sont rapportees les performances du multiplicateur. 1- pour un gain faible

  9. Design of a Solenoid Magnet for a Microwave Ion Source

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Dae Il

    2011-01-01

    A microwave ion source has many advantages, such as long-life time, low emittance, high brightness, and compactness. Also it is a big merit that 2.45GHz rf systems are easily available and inexpensive. Due to the reasons microwave ion sources are very attractive for industrial applications. But microwave ion sources need a solenoid magnet which is usually an electromagnet with a DC current power supply. The electromagnet solenoids of microwave ion sources can be installed in two methods. The first method is to use isolation transformer to supply electrical power to DC current power supply for the magnets. In this case the magnet is compact because it has the same potential with the extraction voltage. The second method is to put an electrical insulator, such as G10, between ion sources and magnets. In this case the solenoid magnet is bigger than one in the first method, especially for higher extraction voltage, because the space for the insulator is required. Permanent magnets can be a good candidate to make microwave ion source more compact. But it is difficult to control the magnetic field profile and the magnetic flux density for the permanent magnet solenoids. Due to the reason, in the case that the best performances in many operating conditions should be achieved by adjusting the profile and strength of the solenoid, electromagnet is better than permanent magnet. But in the case of industrial applications where operating conditions is usually fixed and the compactness is required, permanent magnet is better choice to build an ion source

  10. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  11. The Compact Muon Solenoid Experiment at the Large Hadron Collider The Compact Muon Solenoid Experiment at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    David Delepine

    2012-02-01

    Full Text Available The Compact Muon Solenoid experiment at the CERN Large Hadron Collider will study protonproton collisions at unprecedented energies and luminosities. In this article we providefi rst a brief general introduction to particle physics. We then explain what CERN is. Thenwe describe the Large Hadron Collider at CERN, the most powerful particle acceleratorever built. Finally we describe the Compact Muon Solenoid experiment, its physics goals,construction details, and current status.El experimento Compact Muon Solenoid en el Large Hadron Collider del CERN estudiarácolisiones protón protón a energías y luminosidades sin precedente. En este artículo presentamos primero una breve introducción general a la física de partículas. Despuésexplicamos lo que es el CERN. Luego describimos el Large Hadron Collider, el más potente acelerador de partículas construido por el hombre, en el CERN. Finalmente describimos el experimento Compact Muon Solenoid, sus objetivos en física, los detalles de su construcción,y su situación presente.

  12. Information-theoretical feature selection using data obtained by Scanning Electron Microscopy coupled with and Energy Dispersive X-ray spectrometer for the classification of glass traces

    International Nuclear Information System (INIS)

    Ramos, Daniel; Zadora, Grzegorz

    2011-01-01

    Highlights: → A selection of the best features for multivariate forensic glass classification using SEM-EDX was performed. → The feature selection process was carried out by means of an exhaustive search, with an Empirical Cross-Entropy objective function. → Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows or containers. - Abstract: In this work, a selection of the best features for multivariate forensic glass classification using Scanning Electron Microscopy coupled with an Energy Dispersive X-ray spectrometer (SEM-EDX) has been performed. This has been motivated by the fact that the databases available for forensic glass classification are sparse nowadays, and the acquisition of SEM-EDX data is both costly and time-consuming for forensic laboratories. The database used for this work consists of 278 glass objects for which 7 variables, based on their elemental compositions obtained with SEM-EDX, are available. Two categories are considered for the classification task, namely containers and car/building windows, both of them typical in forensic casework. A multivariate model is proposed for the computation of the likelihood ratios. The feature selection process is carried out by means of an exhaustive search, with an Empirical Cross-Entropy (ECE) objective function. The ECE metric takes into account not only the discriminating power of the model in use, but also its calibration, which indicates whether or not the likelihood ratios are interpretable in a probabilistic way. Thus, the proposed model is applied to all the 63 possible univariate, bivariate and trivariate combinations taken from the 7 variables in the database, and its performance is ranked by its ECE. Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows (from cars or buildings) or containers

  13. The large superconducting solenoids for the g-2 muon storage ring

    International Nuclear Information System (INIS)

    Bunce, G.; Cullen, J.; Danby, G.

    1994-01-01

    The g-2 muon storage ring at Brookhaven National Laboratory consists of four large superconducting solenoids. The two outer solenoids, which are 15.1 meters in diameter, share a common cryostat. The two inner solenoids, which are 13.4 meters in diameter, are in separate cryostats. The two 24 turn inner solenoids are operated at an opposite polarity from the two 24 turn outer solenoids. This generates a dipole field between the inner and outer solenoids. The flux between the solenoids is returned through a C shaped iron return yoke that also shapes the dipole field. The integrated field around the 14 meter diameter storage ring must be good to about 1 part in one million over the 90 mm dia. circular cross section where the muons are stored, averaged over the azimuth. When the four solenoids carry their 5300 A design current, the field in the 18 centimeter gap between the poles is 1.45 T. When the solenoid operates at its design current 5.5 MJ is stored between the poles. The solenoids were wound on site at Brookhaven National Laboratory. The cryostats were built around the solenoid windings which are indirectly cooled using two-phase helium

  14. IE Information Notice No. 85-17, Supplement 1: Possible sticking of ASCO solenoid valves

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    This notice is to inform recipients of the results of follow up investigations regarding the reasons for sticking of Automatic Switch Company (ASCO) solenoid valves used to shut main steam isolation valves (MSIVs) under accident conditions. GE has recommend that the licensee replace the potentially contaminated MSIV solenoid valves and institute a periodic examination and cleaning of the MSIV solenoid valves. Grand Gulf has replaced the eight MSIV HTX832320V dual solenoid valves with fully environmentally qualified ASCO Model NP 8323A20E dual solenoid valves. The environmentally qualified valve Model NP 8323A20E was included in a control sample placed in the test ovens with the solenoid valves that stuck at Grand Gulf. The environmentally qualified model did not stick under the test conditions that cause sticking in the other solenoid valves

  15. Focusing solenoid for the front end of a linear RF accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Terechkine, I.; Kashikhin, V.V.; Page, T.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2007-06-01

    A prototype of a superconducting focusing solenoid for use in an RF linac has been built and tested at Fermi National Accelerator Laboratory (FNAL). The solenoid is comprised of the main coil, two bucking coils, two dipole corrector windings, and a low carbon steel flux return. At the excitation current of 250 A, the magnetic field reaches 7.2 T in the center of the solenoid and is less than 5 G on the axis at a distance of 150 mm from the center. The length of the solenoid is 150 mm; the length of a cryovessel for the solenoid with a 20 mm diameter 'warm' bore is 270 mm. This paper presents the main design features of the focusing solenoid and discusses results from tests of the solenoid.

  16. Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356020; Widmann, Eberhard

    The Large Hadron Collider is a large particle accelerator at the CERN research laboratory, designed to provide particle physics experiments with collisions at unprecedented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment --- a sophisticated electronics system designed to filter events in real-time --- was upgraded. This upgrade consisted of the complete replacement of the trigger electronics and a full redesign of the system's architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all th...

  17. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    Science.gov (United States)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  18. Strategy for alignment of electron beam trajectory in LEReC cooling section

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kayran, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-09-23

    We considered the steps required to align the electron beam trajectory through the LEReC cooling section. We devised a detailed procedure for the beam-based alignment of the cooling section solenoids. We showed that it is critical to have an individual control of each CS solenoid current. Finally, we modeled the alignment procedure and showed that with two BPM fitting the solenoid shift can be measured with 40 um accuracy and the solenoid inclination can be measured with 30 urad accuracy. These accuracies are well within the tolerances of the cooling section solenoid alignment.

  19. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  20. Completeness for coherent states in a magnetic–solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Górska, K

    2012-01-01

    This paper completes our study of coherent states in the so-called magnetic–solenoid field (a collinear combination of a constant uniform magnetic field and Aharonov–Bohm solenoid field) presented in Bagrov et al (2010 J. Phys. A: Math. Theor. 43 354016, 2011 J. Phys. A: Math. Theor. 44 055301). Here, we succeeded in proving nontrivial completeness relations for non-relativistic and relativistic coherent states in such a field. In addition, we solve here the relevant Stieltjes moment problem and present a comparative analysis of our coherent states and the well-known, in the case of pure uniform magnetic field, Malkin–Man’ko coherent states. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  1. Conceptual design of the CMS 4 Tesla solenoid

    International Nuclear Information System (INIS)

    Baze, J.M.; Desportes, H.; Duthil, R.; Lesmond, C.; Lottin, J.C.; Pabot, Y.

    1992-02-01

    A large and important meeting 'Toward the LHC experimental programme' is due to be held at EVIAN-les-BAINS, on 5-8 March 1992. The major goal accurate measurement of muon momenta makes necessary, for the detectors, the use of large and powerful magnetic system producing high bending power. The CMS experiment is based on a solenoidal magnetic configuration. It has been designed to produce a high magnetic induction (4 T) in a 14 m long, 5.9 m bore cylindrical volume surrounding the interaction point. The diameter has been fixed to the maximum dimension compatible with road transportation to CERN. This long solenoid with its 12 500 ton iron yoke is a fully shielded magnet. The paper presents the conceptual design of the superconducting coil and its technical characteristics

  2. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-01-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  3. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  4. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  5. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  6. Effect of solenoidal magnetic field on drifting laser plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-01-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  7. Effect of solenoidal magnetic field on drifting laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazumasa; Sekine, Megumi [Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States) and RIKEN, Wako-shi, Saitama 351-0198 (United States); Cushing, Eric [Pennsylvania State University, University Park, PA 16802 (United States); Jandovitz, Peter [Cornell University, Ithaca, NY 14853 (United States)

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  8. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  9. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    International Nuclear Information System (INIS)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-01-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 (micro)m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  10. Design and realization of a space-borne reflectron time of flight mass spectrometer: electronics and measuring head; Conception et realisation d'un spectrometre de masse a temps de vol spatialisable de type 'reflectron' electronique et tete de mesure

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, P

    2006-03-15

    The purpose of this thesis is the design of the electronics of a time of flight mass spectrometer, the making and the vacuum tests of a prototype which can be put onboard a satellite. A particular effort was necessary to decrease to the maximum the mass and electric consumption of the spectrometer, which led to the development of new circuits. The work completed during this thesis initially concerns the electronics of the measuring equipment which was conceived in a concern for modularity. A complete 'reflectron' type mass spectrometer was then designed, simulated and developed. The built prototype, which uses the developed electronics, was exposed to ion flows of different masses and energies in the CESR vacuum chambers. Its measured performances validate the implemented principles and show that an identical mass spectrometer can be put onboard a satellite with profit, for planetary or solar missions. (author)

  11. Worchester Solenoid Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air in-leakage or loss of He. The valves have couplings for transverse actuator mounting

  12. System of cylindrical drift chambers in a superconducting solenoid

    International Nuclear Information System (INIS)

    Camilleri, L.; Blumenfeld, B.J.; Dimcovski, Z.

    1978-01-01

    A superconducting solenoid at the CERN ISR was equipped with a system of high accuracy cylindrical drift chambers. This detector consists of eight layers of field shaped drift cells with a delay line opposite each sense wire to provide coupled two dimensional readout. The design, construction, and operation of this system are discussed. The resolution and performance of the delay lines and sense wires under ISR running conditions are shown

  13. HIE-ISOLDE CRYO-MODULE Assembly - Superconducting Solenoid

    CERN Multimedia

    Leclercq, Yann

    2016-01-01

    Assembly of the cryo-module components in SM18 cleanroom. The superconducting solenoid (housed inside its helium vessel) is cleaned, prepared then installed on the supporting frame of the cryo-module and connected to the helium tank, prior to the assembly of the RF cavities on the structure. The completed first 2 cryo-modules installed inside the HIE-ISOLDE-LINAC ready for beam operation is also shown.

  14. Sprag solenoid brake. [development and operations of electrically controlled brake

    Science.gov (United States)

    Dane, D. H. (Inventor)

    1974-01-01

    The development and characteristics of an electrically operated brake are discussed. The action of the brake depends on energizing a solenoid which causes internally spaced sprockets to contact the inner surface of the housing. A spring forces the control member to move to the braking position when the electrical function is interrupted. A diagram of the device is provided and detailed operating principles are explained.

  15. Worcester Solenoid-Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as Integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air in leakage or loss of He. All valves have coupling for transverse actuator mounting

  16. Superconducting solenoids for an international muon cooling experiment

    International Nuclear Information System (INIS)

    Green, M.A.; Rey, J.M.

    2002-01-01

    The international muon ionization cooling experiment MICE will consist of two focusing cooling cells and a pair of uniform field solenoids used for particle identification and emittance measurements. The 2.75-meter long cooling cells have a pair of field flip coils and a coupling coil. The 0.52-meter diameter field flip coils surround an absorber that removes transverse and longitudinal momentum from the muons to be cooled. The beam in the absorber is at a minimum beta point so that scattering of the muons is minimized. The 1.7-meter diameter coupling coils are outside of conventional 201.25 MHz RF cavities that accelerate the muons putting longitudinal momentum into the muons without putting back the transverse momentum into the beam. A third set of flip coils helps the muon beam transition from and to the experimental solenoids. The 0.6-meter diameter experimental solenoids have a uniform field region (good to about 1 part in 1000) that is 1.3-meters long. The MICE experiment magnets must operate as a single unit so that the field profile will produce the maximum muon cooling

  17. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  18. The MEGA [Muon decays into an Electron and a GAmma ray] experiment: A search for μ → eγ

    International Nuclear Information System (INIS)

    Cooper, M.D.

    1988-01-01

    The MEGA experiment is designed to search for the μ → eγ process with a branching ratio sensitivity of 10 -13 . This decay violates the empirically established rule of lepton family number conservation and lies outside the Standard Model of electroweak interactions. In order for the experiment to make a factor of 500 improvement over the existing limit, a new design was adopted that employs highly modular, fast detectors and state-of-the-art electronic readout. The detectors are contained in a 15 kG solenoidal field produced by a superconducting magnet. The central region is a positron spectrometer, and the outer region is four layers of pair spectrometers. Data taking is expected to commence in 1989. 6 refs., 3 figs

  19. A spectrometer for submicron particles

    International Nuclear Information System (INIS)

    Pourprix, M.

    1995-01-01

    The electrostatic spectrometer for aerosol particles, is composed of two coaxial parallel conductive disks between which an electric field is established; an annular slot in the first disk allows for the atmosphere air intake. Suction and injection systems, and a third intermediate conductive disk are used to carry out a dynamic confinement that allows for the separation of particles having various electronic mobility and the determination of the suspended particle size distribution. Application to aerosol size spectrum determination and air quality monitoring

  20. Medium energy charged particle spectrometer

    International Nuclear Information System (INIS)

    Keppler, E.; Wilken, B.; Richer, K.; Umlauft, G.; Fischer, K.; Winterhoff, H.P.

    1976-10-01

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.) [de

  1. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    Science.gov (United States)

    Lenzi, T.

    2017-01-01

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). The GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. The architecture of the readout system is based on the use of the microTCA standard hosting FPGA-based Advanced Mezzanine Card (AMC) and of the Versatile Link with the GBT chipset to link the on-detector electronics to the micro-TCA boards. For the front-end electronics a new ASIC, called VFAT3, is being developed. On the detector, a Xilinx Virtex-6 FPGA mezzanine board, called the OptoHybrid, has to collect the data from 24 VFAT3s and to transmit the data optically to the off-detector micro-TCA electronics, as well as to transmit the trigger data at 40 MHz to the CMS Cathode Strip Chamber (CSC) trigger. The microTCA electronics provides the interfaces from the detector (and front-end electronics) to the CMS DAQ, TTC (Timing, Trigger and Control) and Trigger systems. In this paper, we will describe the DAQ system of the Triple-GEM project and provide results from the latest test beam campaigns done at CERN.

  2. Study of the electron-positron annihilation in the galactic center region with the Integral/SPI spectrometer; Etude de l'annihilation electron-positon dans la region du centre galactique avec le spectrometre INTEGRAL/SPI

    Energy Technology Data Exchange (ETDEWEB)

    Sizun, P

    2007-04-15

    A spectral feature was detected in 1970 in the gamma-ray emission from the central regions of the Milky Way, during balloon flight observations. Located near 511 keV, this feature was soon attributed to the gamma-ray line tracing the annihilation of electrons with their anti-particles, positrons. However, none of the multiple astrophysical scenarios contemplated to explain the production of positrons in the Galactic bulge has been able to reproduce the high injection rate deduced from the flux of the 511 keV line, close to 10{sup 43} positrons per second. Launched in 2002, the European gamma-ray satellite INTEGRAL was provided with a spectrometer, SPI, whose unprecedented imaging and spectral capabilities in this energy range enable us to further study the source of the 511 keV line detected in the Galactic centre region. Indeed, a better determination of the spatial extent of the source, the intrinsic width of the line and the fraction of positrons annihilating in-flight, directly or via the formation of ortho-Positronium atoms would improve our knowledge of both the annihilation medium and the initial source of positrons, and could allow us to discriminate between the various explanatory scenarios. The first part of this thesis deals with a key ingredient in the extraction of the annihilation spectrum: the optimization of the instrumental background model. New data screening and tracer selection procedures are presented. Classical multi-linear models are compared to neural and Bayesian networks. Finally, three years of observation are used to constrain the width of the source and derive its spectrum. The second part of the thesis focuses on one of the possible scenarios explaining the high positron injection rate deduced from the flux of the 511 keV line: the annihilation of light dark matter particles into electron-positron pairs. The various radiation mechanisms involved are modeled and confronted to observations in order to set an upper limit on the injection

  3. Background reduction of the KATRIN spectrometers. Transmission function of the pre-spectrometer and systematic tests of the main-spectrometer wire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Prall, Matthias

    2011-07-04

    precision). These measurements, together with the results of various quality assurance tests are stored in a database allowing to reconstruct the properties and history of each single electrode module. The UHV-compatible, fail-save, non-magnetic high voltage distribution, routing 46 voltages to the electrode modules inside the MS, was designed, tested systematically and its installation was started. The pre-spectrometer (PS), which has the same working principle as the MS is placed in front of it in the KATRIN experiment. It is foreseen to operate the MS at a potential of about 18.57 keV and the PS at about 18.3 keV reducing the rate of {beta}-decay electrons entering the MS to about 10{sup 3} s{sup -1}. This measure reduces the electron scattering probability in the MS and thus the background rate. Like this, however, electrons are confined longitudinally between the spectrometer potentials and radially by the strong magnetic field of a solenoid, placed between them. The electrons trapped in this Penning trap can also produce background. This work investigates the possibility to diminish this background source by reducing the PS potential by several keV worsening the trapping conditions. In this configuration, however, the PS transmission probability could be reduced as an adiabaticity requirement guaranteeing that electrons follow the magnetic field lines through the PS and are transmitted, is potentially violated. This phenomenon would introduce an additional systematic uncertainty for KATRIN. Therefore, the pre-spectrometer transmission at several magnetic fields settings. These investigations show that there are no non-adiabatic transmission losses for magnetic fields larger, or equal to 2.25 T (50% KATRIN design value).

  4. Handheld spectrometers: the state of the art

    Science.gov (United States)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  5. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  6. Development of Tandem, Double-Focusing, Electron Impact, Gas Source Mass Spectrometer for Measurement of Rare Double-Substituted Isotoplogues in Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Edward D. [University of California, Los Angeles, CA (United States)

    2015-07-30

    This project culminated in construction and delivery of the world’s first large-radius gas-source isotope ratio mass spectrometer that permits unparalleled analyses of the stable isotopic composition of methane gas. The instrument, referred to as the “Panorama” and installed at UCLA in March 2015, can now be used to determine the relative abundances of rare isotopic species of methane that serve as tracers of temperature of formation and/or subsequent processing of gas. With this technology we can begin to delineate different sources and sinks of methane isotopically in ways not possible until now.

  7. D0 Central Tracking Solenoid Energization, Controls, Interlocks and Quench Protection Operating Procedures

    International Nuclear Information System (INIS)

    Hance, R.

    1998-01-01

    This procedure is used when it is necessary to operate the solenoid energization, controls, interlocks and quench detection system. Note that a separate procedure exists for operating the solenoid 'cryogenic' systems. Only D0 Control Room Operators or the Project Electrical Engineer are qualified to execute these procedures or operate the solenoid system. This procedure assumes that the operator is familiar with using the Distributed Manufacturing Automation and Control Software (DMACS).

  8. A simple formula for emittance growth due to spherical aberration in a solenoid lens

    International Nuclear Information System (INIS)

    Kumar, V.; Phadte, D.; Patidar, C.B.

    2011-01-01

    We analyse the beam dynamics in a solenoid without the paraxial approximation, including up to the fifth order term in the radial displacement. We use this analysis to derive expressions for the coefficients of spherical aberration in terms of the on-axis field profile of the solenoid. Under the thin lens approximation, a simple formula is derived for the growth of rms emittance resulting due to spherical aberration in a solenoid. (author)

  9. Design of an elliptical solenoid magnet for transverse beam matching to the spiral inflector

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V.S.

    2013-01-01

    In this work, we present the design study of an elliptical solenoid magnet to be used for transverse beam matching at the input of a spiral inflector for efficient transmission. We have studied the dependence of axial field and gradients in the transverse directions of the elliptical solenoid magnet with ellipticity of the aperture. Using the beam envelope equations we have studied the feasibility of using an elliptical solenoid for transverse beam matching to the acceptance of a spiral inflector. (author)

  10. GEANT Monte Carlo simulations for the GREAT spectrometer

    International Nuclear Information System (INIS)

    Andreyev, A.N.; Butler, P.A.; Page, R.D.; Appelbe, D.E.; Jones, G.D.; Joss, D.T.; Herzberg, R.-D.; Regan, P.H.; Simpson, J.; Wadsworth, R.

    2004-01-01

    GEANT Monte Carlo simulations for the recently developed GREAT spectrometer are presented. Some novel applications of the spectrometer for γ-ray, conversion-electron and β-decay spectroscopy are discussed. The conversion-electron spectroscopy of heavy nuclei with strongly converted transitions and the extension of the recoil decay tagging method to β-decaying nuclei are considered in detail

  11. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  12. Beam dynamics of the interaction region solenoid in a linear collider due to a crossing angle

    Directory of Open Access Journals (Sweden)

    P. Tenenbaum

    2003-06-01

    Full Text Available Future linear colliders may require a nonzero crossing angle between the two beams at the interaction point (IP. This requirement in turn implies that the beams will pass through the strong interaction region solenoid with an angle, and thus that the component of the solenoidal field perpendicular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence of a crossing angle will cause optical effects not observed for beams passing through the solenoid on axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed linear collider detector solenoid configurations are presented.

  13. Detection circuit of solenoid valve operation and control rod drive mechanism utilizing the circuit

    International Nuclear Information System (INIS)

    Ono, Takehiko.

    1976-01-01

    Object: To detect the operation of a plunger and detect opening and closing operations of a solenoid valve driving device due to change in impedance of a coil for driving the solenoid valve to judge normality and abnormality of the solenoid valve, thereby increasing reliance and safety of drive and control apparatus of control rods. Structure: An arrangement comprises a drive and operation detector section wherein the operation of a solenoid driving device for controlling power supply to a coil for driving the solenoid valve to control opening and closing of the solenoid valve, and a plunger operation detector section for detecting change in impedance of the drive coil to detect that the plunger of the solenoid valve is either in the opening direction or closing direction, whereby a predetermined low voltage such as not to activate the solenoid valve even when the solenoid valve is open or closed is applied to detect a current flowing into the coil at that time, thus detecting an operating state of the plunger. (Yoshino, Y.)

  14. Analysis of electromagnetic field of direct action solenoid valve with current changing

    International Nuclear Information System (INIS)

    Liu Qianfeng; Bo Hanliang; Qin Benke

    2009-01-01

    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  15. What caused the failures of the solenoid valve screws

    International Nuclear Information System (INIS)

    Vassallo, T.P.; Mumford, J.R.; Hossain, F.

    2001-01-01

    At Seabrook Station on May 5,1998 following a lengthy purge of the pressurizer steam space through Containment isolation sample valve 1-RC-FV-2830, the UL status light associated with this solenoid valve did not come on when the valve was closed from the plant's main control board. The UL status light is used to confirm valve closure position to satisfy the plant's Technical Specification requirements. The incorrect valve position indication on the main control board was initially believed to have resulted from excessive heat from a failed voltage control module that did not reduce the voltage to the valve's solenoid coil. This conclusion was based on a similar event that occurred in November of 1996. Follow-up in-plant testing of the valve determined that the voltage control module had not failed and was functioning satisfactorily. Subsequent investigations determined the root cause of the event to be excessive heat-up of the valve caused by high process fluid temperature and an excessively long purge of the pressurizer. The excessive heat-up of the valve from the high temperature process fluid weakened the magnetic field strength of the valve stem magnet to the extent that the UL status light reed switch would not actuate when the valve was closed. Since the voltage control module was tested and found to be functioning properly it was not replaced. Only the UL status light reed switch was replaced with a more sensitive reed that would respond better to a reduced magnetic field strength that results from a hot magnet. During reed switch replacement, three terminal block screws in the valve housing were found fractured and three other terminal block screws fractured during determination of the electrical conductors. This paper describes the initial plant event and ensuing laboratory tests and examinations that were performed to determine the root cause of the failure of the terminal block screws from the Containment isolation sample solenoid valve. (author)

  16. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response

  17. A gamma scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, S

    1952-07-01

    A scintillation type gamma ray spectrometer employing coincidence counting, designed and built at the Physics Department of the University of Western Ontario is described. The spectrometer is composed of two anthracene and photomultiplier radiation detectors, two pulse analyzing channels, a coincidence stage, three scalers and a high voltage stabilized supply. A preliminary experiment to test the operation of the spectrometer was performed and the results of this test are presented. (author)

  18. Multiplate ionization total absorption spectrometer with a compressed gas

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, B.A.; Kantserov, V.A.

    1978-01-01

    The characteristics of a multiplate total absorption spectrometer working with the compressed xenon (up to 25 atm) containing up to 23 radiation lengths of matter are studied. The dependence of the spectrometer energy resolution on the detecting matter density, on the material and thickness of the absorber plates has been studied. The ability of the spectrometer with a tungsten absorber to select hadrons and electrons with P=6 GeV/c by total energy release and characteristics of the cascade longitudinal development has been also studied. The gas spectrometer as it is shown differs quite slightly from the similar spectrometer with liquid argon as for its time resolution it is much better

  19. Gas-mixing system for drift chambers using solenoid valves

    International Nuclear Information System (INIS)

    Cooper, W.E.; Sugano, K.; Trentlage, D.B.

    1983-04-01

    We describe an inexpensive system for mixing argon and ethane drift chamber gas which is used for the E-605 experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow rate independent. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running

  20. Test Results for HINS Focusing Solenoids at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, M.A.; Orris, D.F.; Terechkine, I.; Tompkins, J.C.; /Fermilab

    2008-08-01

    A focusing lens R&D program is close to completion and industrial production of magnets has begun. Two types of magnets are being built for use in the room temperature RF section at the front end of a superconducting H-minus linac of a High Intensity Neutrino Source. All of the magnets are designed as a solenoid with bucking coils to cancel the field in the vicinity of adjacent RF cavities, and one type incorporates steering dipole corrector coils. We present a summary of the predicted and measured quench and magnetic properties for both R&D and production device samples that have been tested at Fermilab.

  1. Solenoid fringe field compensation for the Cluster Klystron

    International Nuclear Information System (INIS)

    Wang, H.; Fernow, R.C.; Kirk, H.G.; Palmer, R.B.; Zhao, Y.

    1996-04-01

    Optimization of the solenoid pancake currents so as to have a uniform axial magnetic field over an extended volume, is very important for the successful operation of the Cluster Klystron. By boosting the first and the last pancake currents by 35%, a uniform field Br/Bz ≤ 0.1% at radius R ≤ 2 cm can be extended from ± 7 cm to ± 16 cm. The result confirms simulations and the requirements for a 3-beam Cluster Klystron Experiment are achieved

  2. Mechanical design of a 250 kilogauss solenoidal magnet

    International Nuclear Information System (INIS)

    Bonanos, P.

    1975-12-01

    The mechanical design and construction of a 5 cm bore, 23 cm long solenoidal magnet operated at 250 kilogauss is described. The magnet provides confining field for a plasma heated by a CO 2 laser. Radial diagnostic ports with a clear aperture of 0.41 cm allow viewing access near the magnet midplane. The on-axis field homogeneity is within 5 percent over a central length of 12 cm. The magnet sustained 500 to 1000 pulses at the highest field levels before catastrophic failure

  3. The Mechanical Design Optimization of a High Field HTS Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Lalitha, SL; Gupta, RC

    2015-06-01

    This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.

  4. An earthworm-like actuator using segmented solenoids

    International Nuclear Information System (INIS)

    Shin, Bu Hyun; Choi, Seung-Wook; Lee, Seung-Yop; Bang, Young-Bong

    2011-01-01

    A biomimetic actuator is developed using four segmented solenoids mimicking earthworm locomotion. The proposed actuator not only has a simple structure composed of cores and coils, but also enables bi-directional actuation and high speed locomotion regardless of friction conditions. We have implemented theoretical analysis to design the optimal profiles of input current signal for maximum speed and predict the output force and stroke. Experiments using a prototype show that the earthworm-like actuator travels with a speed above 60 mm s −1 regardless of friction conditions

  5. HB+ prepares for insertion into the CMS solenoid

    CERN Multimedia

    Dave Barney, CERN

    2006-01-01

    With calibration of the first half of the barrel Hadron Calorimeter (HB+) complete (using a radioactive source), preparations begin for its insertion into the solenoid for the Magnet Test and Cosmic Challenge (MTCC). It was moved out of its alcove at the beginning of March - a non-trivial (but completely successful) operation due to the proximity of one of the barrel yoke rings (YB+1). The other half of the barrel Hadron Calorimeter (HB-) and one of the endcaps (HE+) should also be calibrated before the MTCC.

  6. Photon pair spectrometers in a μ → eγ decay search with the MEGA experiment

    International Nuclear Information System (INIS)

    Dzemidzic, M.

    1993-01-01

    The MEGA experiment at LAMPF is conducting a search for the lepton family number violating decay μ + →e + γ with a branching ratio sensitivity of a few parts in 10 -13 . The detectors are contained in a 1.5 T solenoidal magnetic field. Positrons are confined to the central region and are measured by a set of cylindrical MWPCs. Photons are converted into e + e - pairs by one of three pair spectrometers in the outer region. Each pair spectrometer consists of an inner layer of plastic scintillator, two lead converters separated by a MWPC and three layers of drift chambers. The MEGA collaboration successfully concluded 1992 data taking with a set of positron MWPCs and two pair spectrometers. A brief overview of the pair spectrometer design and performance will be followed by a presentation of results to date of the data analysis

  7. Analysis of an adjustable field permanent magnet solenoid

    Science.gov (United States)

    Burris-Mog, T.; Burns, M.; Chavez, A.; Schillig, J.

    2017-10-01

    A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fields ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.

  8. Design verification methodology for a solenoid valve for industrial applications

    International Nuclear Information System (INIS)

    Park, Chang Dae; Lim, Byung Ju; Chun, Kyung Yul

    2015-01-01

    Solenoid operated valves (SOV) are widely used in many applications due to their fast dynamic responses, cost effectiveness, and less contamination sensitive characteristics. In this paper, we tried to provide a convenient method of design verification of SOV to design engineers who depend on their experiences and experiment during design and development process of SOV. First, we summarize a detailed procedure for designing SOVs for industrial applications. All of the design constraints are defined in the first step of the design, and then the detail design procedure is presented based on design experiences as well as various physical and electromagnetic relationships. Secondly, we have suggested a verification method of this design using theoretical relationships, which enables optimal design of SOV from a point of view of safety factor of design attraction force. Lastly, experimental performance tests using several prototypes manufactured based on this design method show that the suggested design verification methodology is appropriate for designing new models of solenoids. We believe that this verification process is novel logic and useful to save time and expenses during development of SOV because verification tests with manufactured specimen may be substituted partly by this verification methodology.

  9. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Rose, P.H.

    1975-01-01

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 10 13 to 10 14 neutrons/cm 2 -sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  10. Mass spectrometers in medicine

    International Nuclear Information System (INIS)

    Bushman, J.A.

    1975-01-01

    This paper describes how the mass spectrometer enables true lung function, namely the exchange of gases between the environment and the organism, to be measured. This has greatly improved the understanding of respiratory disease and the latest generation of respiratory mass spectrometers will do much to increase the application of the technique. (author)

  11. The Omicron Spectrometer

    CERN Document Server

    Allardyce, B W

    1976-01-01

    It is intended to build a spectrometer with a large solid angle and a large momentum acceptance at the reconstructed synchrocyclotron at CERN. This spectrometer will have an energy resolution of about 1 MeV for particles with momenta up to about 400 MeV/c.

  12. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  13. Silicon subsystem mechanical engineering closeout report for the Solenoidal Detector Collaboration

    International Nuclear Information System (INIS)

    Hanlon, J.; Christensen, R.W.; Hayman, G.; Jones, D.C.; Ross, R.; Wilds, W.; Yeamans, S.; Ziock, H.J.

    1995-01-01

    The authors group at Los Alamos National Laboratory was responsible for the mechanical engineering of the silicon tracking system of the Solenoidal Detector Collaboration (SDC) experiment of the Superconducting Super Collider (SSC) project. The responsibility included the overall design of the system from the mechanical point of view, development and integration of the cooling system, which was required to remove the heat generated by the front-end electronics, assembly of the system to extremely tight tolerances, and verification that the construction and operational stability and alignment tolerances would be met. A detailed description of the concepts they developed and the work they performed can be found in a report titled ''Silicon Subsystem Mechanical Engineering Work for the Solenoidal Detector Collaboration'' which they submitted to the SSC Laboratory. In addition to the mechanical engineering work, they also performed activation, background, and shielding studies for the SSC program. Much of the work they performed was potentially useful for other future high energy physics (HEP) projects. This report describes the closeout work that was performed for the Los Alamos SDC project. Four major tasks were identified for completion: (1) integration of the semi-automated assembly station being developed and construction of a precision part to demonstrate solutions to important general assembly problems (the station was designed to build precision silicon tracker subassemblies); (2) build a state-of-the-art TV holography (TVH) system to use for detector assembly stability tests; (3) design, build, and test a water based cooling system for a full silicon shell prototype; and (4) complete and document the activation, background, and shielding studies, which is covered in a separate report

  14. Silicon subsystem mechanical engineering closeout report for the Solenoidal Detector Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, J.; Christensen, R.W.; Hayman, G.; Jones, D.C.; Ross, R.; Wilds, W.; Yeamans, S.; Ziock, H.J.

    1995-02-01

    The authors group at Los Alamos National Laboratory was responsible for the mechanical engineering of the silicon tracking system of the Solenoidal Detector Collaboration (SDC) experiment of the Superconducting Super Collider (SSC) project. The responsibility included the overall design of the system from the mechanical point of view, development and integration of the cooling system, which was required to remove the heat generated by the front-end electronics, assembly of the system to extremely tight tolerances, and verification that the construction and operational stability and alignment tolerances would be met. A detailed description of the concepts they developed and the work they performed can be found in a report titled ``Silicon Subsystem Mechanical Engineering Work for the Solenoidal Detector Collaboration`` which they submitted to the SSC Laboratory. In addition to the mechanical engineering work, they also performed activation, background, and shielding studies for the SSC program. Much of the work they performed was potentially useful for other future high energy physics (HEP) projects. This report describes the closeout work that was performed for the Los Alamos SDC project. Four major tasks were identified for completion: (1) integration of the semi-automated assembly station being developed and construction of a precision part to demonstrate solutions to important general assembly problems (the station was designed to build precision silicon tracker subassemblies); (2) build a state-of-the-art TV holography (TVH) system to use for detector assembly stability tests; (3) design, build, and test a water based cooling system for a full silicon shell prototype; and (4) complete and document the activation, background, and shielding studies, which is covered in a separate report.

  15. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    Science.gov (United States)

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  16. Derivation of magnetic Coulomb's law for thin, semi-infinite solenoids

    OpenAIRE

    Kitano, Masao

    2006-01-01

    It is shown that the magnetic force between thin, semi-infinite solenoids obeys a Coulomb-type law, which corresponds to that for magnetic monopoles placed at the end points of each solenoid. We derive the magnetic Coulomb law from the basic principles of electromagnetism, namely from the Maxwell equations and the Lorentz force.

  17. A large superconducting thin solenoid for the STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Green, M.A.

    1992-06-01

    This Report describes the 4.4 meter, warm bore diameter, thin superconducting solenoid, for the proposed STAR experiment at the Brookhaven National Laboratory. The STAR solenoid will generate a very uniform central magnetic induction of 0.5 T within a space which is 4.0 meters in diameter by 4.2 meters long. The solenoid and its cryostat will be 0.7 radiation lengths thick over a length of 5.45 meters, about the center of the magnet making it the largest solenoid less than one radiation length to be built. This report describes a proposed design for the solenoid and cryostat, its flux return iron, its cryogenic system and its power supply and quench protection system

  18. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  19. Detector solenoid compensation in the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Cai, Y.; Irwin, J.; Sullivan, M.

    1995-01-01

    The PEP-II experimental detector includes a strong 1.5 T solenoid field in the interaction region (IR). With the fringe fields, the solenoid extends over a range of 6 m. Additional complications are that (1) it is displaced longitudinally from the interaction point (IP) by about 40 cm, (2) neither beam is parallel to the solenoid axis, and (3) the solenoid overlaps a dipole and a quadrupole on either side of the IP. In each half IR the correction system includes a set of skew quadrupoles, dipole correctors and normal quadrupoles to independently compensate the coupling, orbit perturbation, dispersion and focusing effect produced by the solenoid. The correction schemes for the Low Energy Ring (LER) and for the High Energy Ring (HER) are described, and the impact on the dynamic aperture is evaluated

  20. Performance of Nb3Sn multifilamentary superconductors in solenoidal magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.; Suenaga, M.; Robins, K.E.

    High current Nb 3 Sn multifilamentary conductors have been formed by heat treating cables braided from three types of composite wire. In the simplest configuration, these wires contain niobium filaments in a pure copper matrix. After braiding the conductor is coated with a layer of tin which diffuses through the copper during heat treatment to form Nb 3 S n filaments. The second configuration is made from wires containing niobium filaments in a copper-tin alloy and requires only heat treatment to form the Nb 3 Sn filaments. The third type of braid has wires which consist of groups of niobium filaments in the bronze matrix which are in turn in a copper matrix. Tantalum barriers surround each group of filaments to prevent the tin from contaminating the pure copper matrix. The cables have been wound into solenoids after heat treatment and the effect of mechanical handling was studied by monitoring the resistive voltage distribution in the coils. (U.S.)

  1. submitter Starting Manufacture of the ITER Central Solenoid

    CERN Document Server

    Libeyre, P; Dolgetta, N; Gaxiola, E; Jong, C; Lyraud, C; Mitchell, N; Journeaux, J Y; Vollmann, T; Evans, D; Sgobba, S; Langeslag, S; Reiersen, W; Martovetsky, N; Everitt, D; Hatfield, D; Rosenblad, P; Litherland, S; Freudenberg, K; Myatt, L; Smith, J; Brazelton, C; Abbott, R; Daubert, J; Rackers, K; Nentwich, T

    2016-01-01

    The central solenoid (CS) is a key component of the ITER magnet system to provide the magnetic flux swing required to drive induced plasma current up to 15 MA. The manufacture of its different subcomponents has now started, following completion of the design analyses and achievement of the qualification of the manufacturing procedures. A comprehensive set of analyses has been produced to demonstrate that the CS final design meets all requirements. This includes in particular structural analyses carried out with different finite-element models and addressing normal and fault conditions. Following the Final Design Review, held in November 2013, and the subsequent design modifications, the analyses were updated for consistency with the final design details and provide evidence that the Magnet Structural Design Criteria are fully met. Before starting any manufacturing activity of a CS component, a corresponding dedicated qualification program has been carried out. This includes manufacture of mockups using the re...

  2. Testing of the superconducting solenoid for the Fermilab collider detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Holmes, C.N.; Kephart, R.D.

    1985-07-01

    The 3 m phi x 5 m long x 1.5 T superconducting solenoid for the Fermilab Collider Detector has been installed at Fermilab and was tested in early 1985 with a dedicated refrigeration system. The refrigerator and 5.6-Mg magnet cold mass were cooled to 5 K in 210 hours. After testing at low currents, the magnet was charged to the design current of 5 kA in 5-MJ steps. During a 390 A/min charge a spontaneous quench occurred at 4.5 kA due to insufficient liquid helium flow. Three other quenches occurred during ''slow'' discharges which were nevertheless fast enough to cause high eddy current heating in the outer support cylinder. Quench behavior is well understood and the magnet is now quite reliable

  3. Start-up of spherical tokamak without a center solenoid

    International Nuclear Information System (INIS)

    Maekawa, Takashi; Nagata, Masayoshi

    2012-01-01

    For low-aspect tokamak reactors, spherical tokamak reactors, ST-type FESF/CTFs, it is essential to remove or minimize a central solenoid (CS). Even with the minimized CS, non-inductive start up of the plasma current is required. Rapid increase in the spontaneous plasma current at the final stage of current start-up drives ignition. At the initial stage, formation of plasma and magnetic surfaces are required. As non-inductive plasma start-up scenarios, ECH/ECCD, LHCD, HHFW, DC HELICITY injection, plasma merging and NBI have been studied. In the present article, the present status and future prospect of experimental and theoretical works on these subjects. (author)

  4. Behaviour of large cylindrical drift chambers in a superconducting solenoid

    International Nuclear Information System (INIS)

    Boer, W. de; Fues, W.; Grindhammer, G.; Kotthaus, R.; Lierl, H.; Moss, L.

    1980-04-01

    We describe the construction and behaviour of a set of cylindrical drift chambers operating inside a superconducting solenoid with a central magnetic field of 1.3 T. The chambers are part of the 4 π detector CELLO at the e + e - storage ring PETRA in Hamburg. The chambers were designed without field shaping to keep them as simple as possible. In order to parametrize accurately the nonlinear space-time relation, we used a computer simulation of the drift process in inhomogenous electric and magnetic fields. With such a parametrization we achieved a resolution of 210 μm, averaged over the whole drift cell and angles of incidence up to 30 0 . (orig.)

  5. Design of the pancake-winding central solenoid coil

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Nishi, Masataka; Tsuji, Hirosi

    1995-01-01

    There was a debate over whether a pancake-winding or layer-winding technique is more appropriate for the Central Solenoid (CS) coil for ITER superconducting magnet. The layer-winding CS has the advantage of homogeneous winding supporting the TF centering force without weak joints, but has many difficulties during manufacturing and quality control. On other hand, the pancake-winding has the advantage of better quality control during manufacturing and module testing but has difficulties with joints and feeders, and pipes located in the load path of the bucking force from the toroidal field coils. The compact joints, reinforcement by preformed amour, sharp bending, and double seals are applied to the design of pancake-winding CS coil and demonstrated by hardware developments. The pancake-winding CS coil by using modified existing technology is compatible with the bucking concept of the ITER magnet system. (author)

  6. Conceptual fusion reactor designs based on the laser heat solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-01-01

    The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

  7. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.; Quimby, D.C.

    1976-01-01

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  8. Alternative connections for the large MFTF-B solenoids

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    The MFTF-B central-cell solenoids are a set of twelve closely coupled, large superconducting magnets with similar but not exactly equal currents. Alternative methods of connecting them to their power supplies and dump resistors are investigated. The circuits are evaluated for operating conditions and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the current induced in coils that remain superconducting when one or more coils quench. The alternative connections include separate power supplies, combined power supplies, individual dump resistors, series dump resistors and combinations of these. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed in detail

  9. Numerical analysis of modified Central Solenoid insert design

    Energy Technology Data Exchange (ETDEWEB)

    Khodak, Andrei, E-mail: akhodak@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Martovetsky, Nicolai; Smirnov, Aleksandre [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Titus, Peter [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2015-10-15

    Highlights: • Modified design of coil for testing ITER superconducting cable is presented. • Numerical analysis allowed design verification. • Three-dimensional current sharing temperature distributions are obtained from the results. - Abstract: The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design three-dimensional numerical simulations were performed using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagnetic simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4 K, no current, (3) temperature 4 K, current 60 kA direct charge, and (4) temperature 4 K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4 K, no current, and temperature 4 K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor

  10. The CLIC Test Facility (CTF3) which allowed the first electron beam recombination in order to multiply the RF frequency from 3 GHz up to 15 GHz.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 0210005_11: The CTF3 linac accelerates an electron beam up to 350 MeV. Photo 0210005_1: At the front, the yellow dipole is used for the spectrometer line. At the back, a doublet of blue quadrupole for the matching. Photo 0210005_03: The CTF3 transfer line between the electron linac and the isochronous ring. Photo 0210005_04: One arc of the EPA isochronous ring. Photo 0210005_06: The CTF3 bunching system. The first RF wave guide feeds the Pre-Buncher while the second RF wave guide feeds the Buncher. They provide a bunched electron beam at 4 MeV. The blue magnet is a solenoid around the Buncher. Photo 0210005_07: A LIL accelerating structure used for CTF3. It is 4.5 meters long and provides an energy gain of 45 MeV. One can see 3 quadrupoles around the RF structure.

  11. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  12. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  13. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  14. Characterization of a Carbon Nanotube Field Emission Electron Gun for the VAPoR Miniaturized Pyrolysis-Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Getty, Stephanie; Li, Mary; Costen, Nicholas; Hess, Larry; Feng, Steve; King, Todd; Brinckerhoff, William; Mahaffy, Paul; Glavin, Daniel

    2009-01-01

    We are developing the VAPoR (Volatile Analysis by Pyrolysis of Regolith) instrument towards studying soil composition, volatiles, and trapped noble gases in the polar regions of the Moon. VAPOR will ingest a soil sample and conduct analysis by pyrolysis and time-of-flight mass spectrometry (ToF-MS). Here, we describe miniaturization efforts within this development, including a carbon nanotube (CNT) field emission electron gun that is under consideration for use as the electron impact ionization source for the ToF-MS.

  15. Study of a microstrip gas detector for the Compact Muon Solenoid experiment; Etude d`un detecteur a micropistes pour l`experience Compact Muon Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Clergeau, J F [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-06-19

    The micro-strip gas chambers (MSGC) were realized due to the technological advances in the field of micro-electronics. The wire of usual gas counters is replaced in these detectors by metallic stripes as a periodic sequence of electrodes (anodes and cathodes) spaced by around 200 {mu}m. At a distance of 3 mm above the strip containing substrate, a metallic plane is placed, thus defining the gaseous room where the passage of a charged particle produces by ionization a primary electron signal collected by the detector anodes. Due to its granularity a MSGC can operate under very high particle fluxes since charge can be collected very rapidly. Also, the impact parameters can be determined with high accuracy due to the high space and time resolutions. The Compact Muon Solenoid (CMS) or the MSGC detectors planned to equip one of the experiments proposed for LHC should detect, in extreme operational conditions, the particle impacts in a 4 Tesla magnetic field, for around ten years and for a particle flux of around 10{sup 4} Hz/mm{sup 2}. The CMS detector is described in chapter 2. The operation principle and the problems encountered in the development of MSGC detectors are summarized in chapter 3. The chapter 4 is dedicated to the study of the performances of MSGCs in magnetic fields. In the chapters 5 to 7 the processing of the signal from detectors of this type is described, particularly, the performances of various ways of treat the signal in terms of detection efficiency and counting loads are presented.The chapter 8 presents the results obtained with the prototype obtained at IPNL while the chapter 9 gives the conclusions of the performed works. (author) 55 refs.

  16. Wide-aperture magnetic spectrometer with face position of MWPC

    International Nuclear Information System (INIS)

    Avakyan, R.O.; Avetisyan, A.Eh.; Ajvazyan, R.B.; Asaturyan, R.A.; Dallakyan, K.R.; Kizogyan, O.S.; Matevosyan, Eh.M.; Sukiasyan, Yu.Z.; Taroyan, S.P.

    1988-01-01

    A pair magnetic spectrometer with automated wire chambers for studying electron and positron interactions with monocrystals at the Erevan synchrotron is described. As a working gas the argon-methane mixture with methylal vapor addition is used. Results of modelling and experiments with spectrometer are presented. 2 refs.; 6 figs

  17. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Startsev, E. A., Sefkow, A. B., Davidson, R. C.

    2008-10-10

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when ωce > ωpeβb, where ωce = eβ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  18. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Startsev, E. A.; Sefkow, A. B.; Davidson, R. C.

    2008-01-01

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when ω ce ∼> ω pe β b , where ω ce = eB/m e c is the electron gyrofrequency, ω pe is the electron plasma frequency, and β b = V b /c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement

  19. Neutron spectrometer using NE218 liquid scintillator

    International Nuclear Information System (INIS)

    Dance, J.B.; Francois, P.E.

    1976-01-01

    A neutron spectrometer has been constructed using NE218 liquid scintillator. Discrimination against electron-gamma events was obtained usng a charge-comparison pulse shape discrimination system. The resolution obtained was about 0.25 MeV F.W.H.M. at 2.0 MeV

  20. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Wang Chao; Tian Jinshou; Zhang Meizhi; Kang Yifan

    2011-01-01

    Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1.2 T, is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet,known as NdFeB magnet,is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1.0 x 10 -3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs. (authors)

  1. Using the scanning electron microscope and energy dispersive x-ray spectrometer to do mineral identification and compositional point counting on unconsolidated marine sediments

    International Nuclear Information System (INIS)

    Robson, S.H.

    1982-01-01

    This paper describes a rapid and accurate method of point-counting sands and silt-size in unconsolidated open-ocean sediments. As traditional techniques for this operation cannot be employed on the fine-grained material which frequently forms the bulk of deep sea marine sediments, an alternative method has been sought. The method described makes use of equipment known as QUANTEX-RAY comprising a computerised data acquisition and reduction system designed for use in X-ray energy spectrometry and used in conjunction with a scanning electron microscope (SEM). Grains that cannot be identified by their visual morphology in the scanning electron microscope are analysed by X-ray spectrometry. Spectra are acquired in 200 seconds or less and processed by a sequence of software routines under semi-automatic control producing a listing of oxide concentrations as the final result. Each user must customize the control programme and operating conditions to suit his requirements

  2. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    Science.gov (United States)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  3. A full-scale prototype for the tracking chambers of the ALICE muon spectrometer. Part II- Electronics. Preamplifier; Read-out prototype

    Energy Technology Data Exchange (ETDEWEB)

    Courtat, P.; Charlet, D.; Lebon, S.; Martin, J.M.; Sellem, R.; Wanlin, E. [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service d' Electronique Physique; Douet, R.; Harroch, H.; Bimbot, L.; Jouan, D.; Kharmandarian, L.; Le Bornec, Y.; Mac Cormick, M.; Willis, N. [Paris-11 Univ., 91 - Orsay (France). Institut de Physique Nucleaire

    1999-07-01

    A full scale prototype of one module of the first tracking station has already been constructed. It will be equipped with the new read-out electronics proposed for the final chambers. Before integration of the whole chain, tests have been carried out on the individual components in discrete circuit prototypes. The different parts of the chain are described, together with the tests performed. The final version with integrated circuits in then described. (author)

  4. A full-scale prototype for the tracking chambers of the ALICE muon spectrometer. Part II- Electronics. Preamplifier; Read-out prototype

    International Nuclear Information System (INIS)

    Courtat, P.; Charlet, D.; Lebon, S.; Martin, J.M.; Sellem, R.; Wanlin, E.; Douet, R.; Harroch, H.; Bimbot, L.; Jouan, D.; Kharmandarian, L.; Le Bornec, Y.; Mac Cormick, M.; Willis, N.

    1999-01-01

    A full scale prototype of one module of the first tracking station has already been constructed. It will be equipped with the new read-out electronics proposed for the final chambers. Before integration of the whole chain, tests have been carried out on the individual components in discrete circuit prototypes. The different parts of the chain are described, together with the tests performed. The final version with integrated circuits in then described. (author)

  5. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Kondratenko, M A; Filatov, Yu N; Kondratenko, A M

    2016-01-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented. (paper)

  6. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  7. Computer simulations of quench properties of thin, large superconducting solenoid magnets

    International Nuclear Information System (INIS)

    Kishimoto, Takeshi; Mori, Shigeki; Noguchi, Masaharu

    1983-01-01

    Measured quench data of a 1 m diameter x 1 m thin superconducting solenoid magnet with a single layer aluminum-stabilized NbTi/Cu superconductor of 269 turns were fitted by computer simulations using the one-dimensional approximation. Parameters obtained were used to study quench properties of a 3 m diameter x 5 m (1.5 Tesla) thin superconducting solenoid magnet with a stored magnetic energy of 30 x 10 6 J. Conductor dimensions with which the solenoid could be built substantially safe for the full field quench were optimized. (author)

  8. LIL-W: Positron conversion target and solenoid (pictures 01 and 04).

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    In the direction of the beam, from right to left: a steering dipole (DHZ.25); the arm, at 45 deg, of a wire scanner which measures beam size; the conversion target, housed in the small tank with a window, where positrons are produced; immediately afterwards, invisible inside the vacuum chamber, is a pulsed solenoid to focus the emerging positrons; finally, a large solenoid, consisting of 3 pancakes, further focuses the positrons. Towards the left, the linac LIL-W, its accelerating structure hidden under a continuous outer solenoid mantle.

  9. New development of hadron physics at new laser electron beam line (LEP2) of SPring-8

    International Nuclear Information System (INIS)

    Muramatsu, Norihito; Niiyama, Masayuki; Yosoi, Masaru

    2015-01-01

    This paper introduces the outline of LEPS2 beam line and two types of large detectors (electromagnetic calorimeter BGOegg and solenoid spectrometer), LEPS2/BGOegg experiment, and the target physics using LEPS2 solenoid spectrometer. In LEPS2 beam line, experiments are performed with the improvement of beam intensity by nearly one digit due to the simultaneous incidence of multiple lasers of high output, as well as with the installation of a large solid angle high-resolution detector. In LEPS2/BGOegg experiment, direct observation with a large solid angle of mesons such as π 0 , η, η', and ω has become possible, which has given expectation for new physics. As one of the physics at the core of BGOegg experiments, there is the systematic examination of interaction between η' and nucleus/nucleon. In the physics using a solenoid spectrometer, the first target is the measurement of penta-quark particle Θ + . (A.O.)

  10. Characterizing high-energy-formed particulates with the scanning electron microscope/energy dispersive spectrometer system. Progress report, March--September 1977

    International Nuclear Information System (INIS)

    Casey, A.W.; Biermann, A.H.

    1977-01-01

    A method is being sought that will allow the differentiation between particulates formed in implosions and particulates formed in explosions. The scanning electron microscope (SEM) and energy dispersive x-ray analysis (EDS) were used to measure and compare particle size, shape, surface morphology, and composition. Implosion and explosion detonations yielded spherical, smooth particles within the same size range. Although the particle size, shape, and morphology were the same for comparable samples of different detonation type, there were distinct differences in composition. It is not certain whether differences in composition reflect differences in device components or differences in the nature of the detonation

  11. HIE-Isolde: Commissioning and first results of the Mathilde system monitoring the positions of cavities and solenoids inside cryomodules

    CERN Document Server

    Kautzmann, Guillaume; Klumb, Francis; CERN. Geneva. ATS Department

    2016-01-01

    The new superconducting HIE-ISOLDE Linac replaced most of pre-existing REX ISOLDE facility at CERN. This upgrade involves the design, construction, installation and commissioning of 4 high-β cryomodules. Each high-β cryomodule houses five superconducting cavities and one superconducting solenoid. Beam-physics simulations show that the optimum linac working conditions are obtained when the main axes of the active components, located inside the cryostats, are aligned and permanently monitored on the REX Nominal Beam Line (NBL) within a precision of 0.3 mm for the cavities and 0.15 mm for the solenoids at one sigma level along directions perpendicular to the beam axis. The Monitoring and Alignment Tracking for HIE-ISOLDE (MATHILDE) system has been developed to fulfil the alignment and monitoring needs for components exposed to non-standard environmental conditions such as high vacuum or cryogenic temperatures. MATHILDE is based on opto-electronic sensors (HBCAM) observing, through high quality viewports, spher...

  12. Ion transmission in a linear radiofrequency spectrometer

    International Nuclear Information System (INIS)

    Gomet, J.-C.

    1975-01-01

    A linear radiofrequency spectrometer is used for the purpose of experimental determination of the absolute ionization cross sections of various ions obtained by electron impact on polyatomic molecules. The transmission of the apparatus is studied: it does not only depend on the mass resolution of the spectrometer, but also on the nature of ions. It is affected by charge transfers, especially for the parent ions. An empiric way of correction of the apparatus function is given which allows the use at 10 -6 Torr [fr

  13. Large acceptance spectrometers for π0 mesons

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1984-01-01

    A spectrometer composed of lead-oxide loaded glass blocks has been constructed for detection of neutral pi mesons emitted in low energy heavy ion reactions. The spectrometer detects the Cerenkov radiation emitted when the high energy photons (Eγ approx. 70 MeV) resulting from π 0 decay create electron-position pairs in the glass, initiating electromagnetic showers. A geometric acceptance of better than 5% of 4π is possible; the π 0 detection efficiency varies between this value at T/sub π/ = 0 MeV and 1% for T/sub π/ approx. 100 MeV

  14. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources

    International Nuclear Information System (INIS)

    Strueder, Lothar; Epp, Sascha; Rolles, Daniel; Hartmann, Robert; Holl, Peter; Lutz, Gerhard; Soltau, Heike; Eckart, Rouven; Reich, Christian; Heinzinger, Klaus; Thamm, Christian; Rudenko, Artem; Krasniqi, Faton; Kuehnel, Kai-Uwe; Bauer, Christian; Schroeter, Claus-Dieter; Moshammer, Robert; Techert, Simone; Miessner, Danilo; Porro, Matteo

    2010-01-01

    Fourth generation accelerator-based light sources, such as VUV and X-ray Free Electron Lasers (FEL), deliver ultra-brilliant (∼10 12 -10 13 photons per bunch) coherent radiation in femtosecond (∼10-100 fs) pulses and, thus, require novel focal plane instrumentation in order to fully exploit their unique capabilities. As an additional challenge for detection devices, existing (FLASH, Hamburg) and future FELs (LCLS, Menlo Park; SCSS, Hyogo and the European XFEL, Hamburg) cover a broad range of photon energies from the EUV to the X-ray regime with significantly different bandwidths and pulse structures reaching up to MHz micro-bunch repetition rates. Moreover, hundreds up to trillions of fragment particles, ions, electrons or scattered photons can emerge when a single light flash impinges on matter with intensities up to 10 22 W/cm 2 . In order to meet these challenges, the Max Planck Advanced Study Group (ASG) within the Center for Free Electron Laser Science (CFEL) has designed the CFEL-ASG MultiPurpose (CAMP) chamber. It is equipped with specially developed photon and charged particle detection devices dedicated to cover large solid-angles. A variety of different targets are supported, such as atomic, (aligned) molecular and cluster jets, particle injectors for bio-samples or fixed target arrangements. CAMP houses 4π solid-angle ion and electron momentum imaging spectrometers ('reaction microscope', REMI, or 'velocity map imaging', VMI) in a unique combination with novel, large-area, broadband (50 eV-25 keV), high-dynamic-range, single-photon-counting and imaging X-ray detectors based on the pnCCDs. This instrumentation allows a new class of coherent diffraction experiments in which both electron and ion emission from the target may be simultaneously monitored. This permits the investigation of dynamic processes in this new regime of ultra-intense, high-energy radiation-matter interaction. After an introduction into the salient features of the CAMP chamber and

  15. Study of preshower in the PANDA target spectrometer

    International Nuclear Information System (INIS)

    Dutta, Kamal; Kalita, Kushal; Suzuki, K.; Steinschaden, D.; Roy, B.J.

    2015-01-01

    PANDA (antiProton ANnihilation at DArmstdt) is one of the major projects at FAIR, GSI, Germany. The main objective of this experiment is to study the fundamental questions of hadron physics and QCD in pp¯ annihilation using high intensity cooled anti-proton beams with momenta between 1.5 GeV/c and 15 GeV/c. To achieve high momentum resolution and full solid angle coverage, the PANDA detector is split in to two parts: target spectrometer and forward spectrometer. The target spectrometer is a complex detector consisting of several subsystems surrounding the interaction point. It is surrounded by a 2 T superconducting solenoid magnet. A Micro Vertex Detector (MVD), close to interaction point, detects secondary vertices of D and Hyperon decays. The Straw Tube Tracker (STT) is the central tracking system around the MVD. A cherenkov counter named DIRC (Detection of Internally Reflected Cherenkov light), provides π/K separation for particle momenta up to 3.5 GeV/c. The barrel Time-of-Flight (TOF) detector, consists of plastic scintillator tiles with a time resolution of 100 ps. It is used to identify particles of momentum below cherenkov threshold

  16. Dielectron analysis in p-p collisions at 3.5 GeV with the HADES spectrometer. ω-meson line shape and a new electronics readout for the multi-wire drift chambers

    International Nuclear Information System (INIS)

    Tarantola Peloni, Attilio

    2011-06-01

    The HADES (High Acceptance DiElectron Spectrometer) is an experimental apparatus installed at the heavy-ion synchrotron SIS-18 at GSI, Darmstadt. The main physics motivation of the HADES experiment is the measurement of e + e - pairs in the invariant-mass range up to 1 GeV/c 2 in heavy-ion collisions as well as in pion and proton-induced reactions. The HADES physics program is focused on in-medium properties of the light vector mesons ρ(770), ω(783) and φ(1020), which decay with a small branching ratio into dileptons. Dileptons are penetrating probes which allow to study the in-medium properties of hadrons. However, in heavy-ion collisions, the measurement of such lepton pairs is difficult because they are rare and have a very large combinatorial background. Recently, HADES has been upgraded with new detectors and new electronics in order to handle higher intensity beams and reactions with heavy nuclei up to Au. HADES will continue for a few more years its rich physics program at its current place at SIS-18 and then move to the upcoming international Facility for Antiproton and Ion Research (FAIR) accelerator complex. In this context the physics results presented in this work are important prerequisites for the investigation of in-medium vector meson properties in p + A and A+A collisions. This work consists of five chapters. The first chapter introduces the physics motivation and a review of recent physics results. In the second chapter, the HADES spectrometer is described and its sub-detectors are presented. Chapter three deals with the issue of lepton identification and the reconstruction of the dielectron spectra in p + p collisions is presented. Here, two reactions are characterized: inclusive and exclusive dilepton production reactions. From the spectra obtained, the corresponding cross sections are presented with the respective statistical and systematical errors. A comparison with theoretical models is included as well. Conclusions are given in chapter

  17. Dielectron analysis in p-p collisions at 3.5 GeV with the HADES spectrometer. {omega}-meson line shape and a new electronics readout for the multi-wire drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tarantola Peloni, Attilio

    2011-06-15

    The HADES (High Acceptance DiElectron Spectrometer) is an experimental apparatus installed at the heavy-ion synchrotron SIS-18 at GSI, Darmstadt. The main physics motivation of the HADES experiment is the measurement of e{sup +}e{sup -} pairs in the invariant-mass range up to 1 GeV/c{sup 2} in heavy-ion collisions as well as in pion and proton-induced reactions. The HADES physics program is focused on in-medium properties of the light vector mesons {rho}(770), {omega}(783) and {phi}(1020), which decay with a small branching ratio into dileptons. Dileptons are penetrating probes which allow to study the in-medium properties of hadrons. However, in heavy-ion collisions, the measurement of such lepton pairs is difficult because they are rare and have a very large combinatorial background. Recently, HADES has been upgraded with new detectors and new electronics in order to handle higher intensity beams and reactions with heavy nuclei up to Au. HADES will continue for a few more years its rich physics program at its current place at SIS-18 and then move to the upcoming international Facility for Antiproton and Ion Research (FAIR) accelerator complex. In this context the physics results presented in this work are important prerequisites for the investigation of in-medium vector meson properties in p + A and A+A collisions. This work consists of five chapters. The first chapter introduces the physics motivation and a review of recent physics results. In the second chapter, the HADES spectrometer is described and its sub-detectors are presented. Chapter three deals with the issue of lepton identification and the reconstruction of the dielectron spectra in p + p collisions is presented. Here, two reactions are characterized: inclusive and exclusive dilepton production reactions. From the spectra obtained, the corresponding cross sections are presented with the respective statistical and systematical errors. A comparison with theoretical models is included as well

  18. The influence of the iron shield of the solenoid on spin tracking

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2005-01-01

    Full Text Available The influence of the iron shield of the solenoid on spin tracking is studied in this paper. In the case of the 200 MeV proton, the study has been numerically done in the ZGOUBI code. The distribution of the magnetic field was done by POISSON. We have come to the conclusion that the influence of the solenoid’s shielding on spin tracking is the same at its entrance and exit and that is directly proportional to the intensity of the magnetic induction B on the axis of the solenoid. We have also determined that the influence of the solenoid’s shielding is much stronger on transversal components of the spin than on its longitudinal component. The differences between components of the spin for the shielded and not-shielded solenoid diminish with the in crease in the distance from the solenoid.

  19. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Bielick, E.; Dawson, J.W. [Argonne National Lab., IL (United States)] [and others; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  20. Proceedings of the international workshop on solenoidal detectors for the SSC

    International Nuclear Information System (INIS)

    Abe, Fumio; Hasegawa, Katsuo

    1990-07-01

    This issue is the collection of the papers presented at the International Workshop on solenoidal detectors for the Superconducting Super Collider (SSC). The 48 of the presented papers are indexed individually. (J.P.N.)