Sample records for solder direct bond

  1. Universal solders for direct and powerful bonding on semiconductors, diamond, and optical materials

    Mavoori, Hareesh; Ramirez, Ainissa G.; Jin, Sungho


    The surfaces of electronic and optical materials such as nitrides, carbides, oxides, sulfides, fluorides, selenides, diamond, silicon, and GaAs are known to be very difficult to bond with low melting point solders (<300 °C). We have achieved a direct and powerful bonding on these surfaces by using low temperature solders doped with rare-earth elements. The rare earth is stored in micron-scale, finely-dispersed intermetallic islands (Sn3Lu or Au4Lu), and when released, causes chemical reactions at the interface producing strong bonds. These solders directly bond to semiconductor surfaces and provide ohmic contacts. They can be useful for providing direct electrical contacts and interconnects in a variety of electronic assemblies, dimensionally stable and reliable bonding in optical fiber, laser, or thermal management assemblies.

  2. A novel method for direct solder bump pull testing using lead-free solders

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  3. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    Enrico Mick


    Full Text Available Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm made of alumina toughened zirconia (ATZ, as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM and energy-dispersive X-ray (EDX analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings.

  4. Effects of soldering and laser welding on bond strength of ceramic to metal.

    Aladağ, Akin; Cömlekoğlu, M Erhan; Dündar, Mine; Güngör, M Ali; Artunç, Celal


    Welding or soldering of metal frameworks negatively affects the overall bond strength between the veneering ceramic and metal. The purpose of this study was to evaluate the effect of soldering and laser-welding procedures on the bond strength between ceramic and metal. Thirty Ni-based metal specimens (Wiron 99) (8 × 4 × 4 mm) were fabricated and divided into 3 groups; soldered (S), laser welded (L), and control (untreated cast alloy) (n=10). In S and L specimens, a notch (1 × 1.5 mm) was prepared longitudinally on the surface of each specimen and filled with compatible alloy (Wiron soldering rods and Wiroweld NC, respectively). Vickers hardness measurements were made after polishing the surfaces with a metallographic polishing kit. A veneering ceramic (VITA VMK 95) was vibrated, condensed in a mold, and fired on the metal frameworks. The specimens were sectioned in 2 axes to obtain nontrimmed bar specimens with a bonding area of approximately 1 mm². Forty bars per block were obtained. Each bar was subjected to microtensile bond strength (μTBS) testing with a crosshead speed of 1 mm/min. The μTBS data (MPa) were recorded, and SEM was used for failure analysis of the tested bars. The measurements were statistically analyzed using a 1-way ANOVA and Tamhane tests (α=.05). The mean differences in μTBS of veneering ceramic to soldered (10.4 ±2.4 MPa) and laser-welded (11.7 ±1.3 MPa) metal surfaces were not significantly different and were significantly lower than that of the cast alloy (25.4 ±3.6 MPa) (Plaser-welded groups (129 ±11 HV) (Plaser welding significantly decreased the μTBS of a veneering ceramic to a base metal alloy. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. Discrete component bonding and thick film materials study. [of capacitor chips bonded with solders and conductive epoxies

    Kinser, D. L.


    The bonding reliability of discrete capacitor chips bonded with solders and conductive epoxies was examined along with the thick film resistor materials consisting of iron oxide phosphate and vanadium oxide phosphates. It was concluded from the bonding reliability studies that none of the wide range of types of solders examined is capable of resisting failure during thermal cycling while the conductive epoxy gives substantially lower failure rates. The thick film resistor studies proved the feasibility of iron oxide phosphate resistor systems although some environmental sensitivity problems remain. One of these resistor compositions has inadvertently proven to be a candidate for thermistor applications because of the excellent control achieved upon the temperature coefficient of resistance. One new and potentially damaging phenomenon observed was the degradation of thick film conductors during the course of thermal cycling.

  6. Phase reaction of Au/Sn solder bonding for GaN-based vertical structure light emitting diodes


    Au/Sn solder bonding on Si substrates was used to fabricate the GaN-based vertical structure light emitting diodes (VSLEDs). The phase reaction of Au/Sn solder under different bonding conditions was investigated by the measurement of electron back scattering diffraction (EBSD), and the characteristics of VSLED were analyzed by scanning acoustic microscope (SAM), Raman scattering, current-voltage (I-V) and light output-current (L-I) curves. After the bonding process, horizontal stripes of Au/Sn phase (δ phase) and Au5Sn phase (ζ phase) were redirected to vertical stripes, and δ phase tended to move to the solder joint. Sn interstitial diffusion led to the distribution of δ phase and voids in Au/Sn solder, which could be seen in SAM and SEM images. Vertical distribution of the δ phase and ζ phase with proper voids in the Au/Sn bonding layer showed the best bonding quality. Good bonding quality led to little shift of the E2-high mode of Raman spectra peak in GaN after laser lift off (LLO). It also caused more light extraction and forward bias reduction to 2.9 V at 20 mA.

  7. Direct bonded space maintainers.

    Santos, V L; Almeida, M A; Mello, H S; Keith, O


    The aim of this study was to evaluate clinically a bonded space maintainer, which would reduce chair-side time and cost. Sixty appliances were fabricated from 0.7 mm stainless steel round wire and bonded using light-cured composite to the two teeth adjacent to the site of extraction of a posterior primary tooth. Twenty males and sixteen females (age range 5-9-years-old) were selected from the Pedodontic clinic of the State University of Rio de Janeiro. The sixty space maintainers were divided into two groups according to the site in which they were placed: a) absent first primary molar and b) absent second primary molar. Impressions and study models were obtained prior to and 6 months after bonding the appliances. During this period only 8.3% of failures were observed, most of them from occlusal or facial trauma. Student t-test did not show statistically significant alterations in the sizes of the maintained spaces during the trial period.

  8. Liquid-phase diffusion bonding: Temperature effects and solute redistribution in high temperature lead-free composite solders

    Anderson, Iver [Ames Lab. and Iowa State Univ., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Choquette, Stephanie [Ames Lab. and Iowa State Univ., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)


    Liquid-phase diffusion bonding (LPDB) is being studied as the primary phenomena occurring in the development of a high temperature lead-free composite solder paste composed of gas-atomized Cu-10Ni, wt.% (Cu-11Ni, at.%) powder blended with Sn-0.7Cu-0.05Ni-0.01Ge (Sn-1.3Cu-0.1Ni-0.02Ge, at.%) Nihon-Superior SN100C solder powder. Powder compacts were used as a model system. LPDB promotes enhanced interdiffusion of the low-melting alloy matrix with the solid Cu-10Ni reinforcement powder above the matrix liquidus temperature. The initial study involved the effective intermetallic compound (IMC) compositions and microstructures that occur at varying reflow temperatures and times between 250-300°C and 30-60s, respectively. Certain reflow temperatures encourage adequate interdiffusion to form a continuous highly-conductive network throughout the composite solder joints. The diffusion of nickel, in particular, has a disperse pattern that foreshadows the possibility of a highly-conductive low-melting solder that can be successfully utilized at high temperatures.

  9. Direct Bonded Pontic (Laporan Kasus

    Suhandi Sidjaja


    Full Text Available Advanced science and technology in dentistry enable dental practitioners to modified she bonding techniques in tooth replacement. A pontic made of composite resin bonded to etched enamel of the adjacent teeth can be used in the replacement of one missing anterior tooth with a virgin or sowed adpicent tooth. The advantages of this technique include a one visit treatment, cow cost, good esthetics, less side effects and easy repair or rebounding. Clinical evaluation showed a high success rate therefore with a proper diagnosis and a perfect skill of the direct bonded technique this treatment can be used as an alternative restoration.

  10. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases

  11. Why are Hydrogen Bonds Directional?



    The recent IUPAC recommendation on the definition of hydrogen bonding points out that directionality is a defining characteristic of a hydrogen bond and the angle ∠X-H-Y is generally linear or 180◦. It also suggests that the X-H· · ·Y angle be greater than 110◦ for an interaction to be characterized as a hydrogenbond but does not provide any rationale for the same. This article reports a rationale for limiting the angle, based on the electron density topology using the quantum theory of atoms in molecules. Electron density topology for common hydrogen bond donors HF, HCl, HBr, HNC, HCN and HCCH are reported in this work. These calculations lead to an interesting observation that the atomic basins of H atom in all these donor molecules are limited justifying the restriction of hydrogen bond angle. Moreover, similar analysis on some hydrogen bonded complexes confirms that beyond this angle the acceptor atom Y starts interacting with the atomic basin on X. However, conclusions based on bond lengths and angles have to be treated with care and as the IUPAC recommendation points out that independent ‘evidence for bond formation’ in every case is important.

  12. Rapid directional solidification in Sn-Cu lead-free solder

    Jun Shen; Yongchang Liu; Houxiu Gao


    An experimental study on the microstructures of a rapid directionally solidified metallo-eutectic Sn-Cu alloy was carried out.This material is an important alloy that is used as a lead-free solder. The results showed that the kinetic undercooling due to the rapid solidification process led to the formation of a pseudoeutectic zone, whereas the hypereutectic reaction produced the regular lamellar structure in the hypereutectic Sn-1.0Cu alloy. The corresponding arm spacing in the obtained lamellar phases decreased gradually with the increase of the applied cooling rate, which corresponded well with the prediction of a rapid directional solidification model.

  13. Non-contact estimation of the bond quality in soldered thin laminate by laser generated lamb waves; Laser reiki ramuha ni yoru handazuke sekisohaku no setsugo seijo no hisesshoku hyoka

    Kasama, H.; Futatsugi, T.; Cho, H.; Takemoto, M. [Aoyama-Gakuin University, Tokyo (Japan). Faculty of Science and Engineering


    The bond quality of a solder-bonded copper laminated plate was modeled into rigid contact (rc) and slip contact (sc) to calculate the velocity dispersion of lamb waves. The velocity dispersion of laser generated lamb waves was measured, and the bond quality or the thickness of a solder layer was evaluated by non-contact. In the model whose bond surface is rc, the velocity dispersion of lamb waves can be calculated under conditions where the stress and displacement in an interface are continuous. In the model whose bond surface is sc, it can be calculated under conditions where an interface slips freely. Weak bond indicates the velocity dispersion between rc and sc. In this model, the velocity dispersion can also be calculated by a change in the thickness of a solder layer and used for quantitative evaluation of a bond interface. A three-layer solder bond manufactured for trial could be evaluated from the velocity dispersion of laser lamb waves. At the room temperature, the change in bond quality near the solder melting point of bond laminate that was judged as rc was investigated. When the solidus temperature is exceeded, the amplitude of lamb waves and the velocity dispersion changed largely. The amplitude of lamb waves increases as the liquid phase ratio increases. The bond quality near the solder melting point can be evaluated using lamb waves. 9 refs., 10 figs., 2 tabs.

  14. LAMMPS Framework for Directional Dynamic Bonding


    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled...... to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  15. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)


    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  16. Bond strength of direct and indirect bonded brackets after thermocycling.

    Daub, Jacob; Berzins, David W; Linn, Brandon James; Bradley, Thomas Gerard


    Thermocycling simulates the temperature dynamics in the oral environment. With direct bonding, thermocycling reduces the bond strength of orthodontic adhesives to tooth structure. The purpose of this study was to evaluate the shear bond strengths (SBS) of one direct and two indirect bonding methods/adhesives after thermocycling. Sixty human premolars were divided into three groups. Teeth in group 1 were bonded directly with Transbond XT. Teeth in group 2 were indirect bonded with Transbond XT/Sondhi Rapid Set, which is chemically cured. Teeth in group 3 were indirect bonded with Enlight LV/Orthosolo and light cured. Each sample was thermocycled between 5 degrees C and 55 degrees C for 500 cycles. Mean SBS in groups 1, 2, and 3 were not statistically significantly different (13.6 +/- 2.9, 12.3 +/- 3.0, and 11.6 +/- 3.2 MPa, respectively; P > .05). However, when these values were compared with the results of a previous study using the same protocol, but without thermocycling, the SBS was reduced significantly (P = .001). Weibull analysis further showed that group 3 had the lowest bonding survival rate at the minimum clinically acceptable bond-strength range. The Adhesive Remnant Index was also determined, and group 2 had a significantly (P bond failures at the resin/enamel interface.

  17. Soldering handbook

    Vianco, Paul T


    Contains information related to soldering processes, and solder joint performance and reliability. Covers soldering fundamentals, technology, materials, substrate materials, fluxes, pastes, assembly processes, inspection, and environment. Covers today's advanced joining applications and emphasizes new materials, including higher strength alloys; predictive performance; computer modeling; advanced inspection techniques; new processing concepts, including laser heating; and the resurgence in ultrasonic soldering.

  18. Soldering of Nanotubes onto Microelectrodes

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina


    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...... bonds were consistently found to be mechanically stronger than the carbon nanotubes....

  19. Direct bonding applied to space maintenance.

    Swaine, T J; Wright, G Z


    Based on the conditions of this study, the following conclusions were reached: A success rate of 70 percent seems to justify further investigation into direct bonded space maintainers. A space maintainer directly bonded to the buccal surfaces seems to be efficient in maintaining single tooth spaces. Primary-to-primary appliances were more successful than the primary-to-permanent appliances, which suggests that incomplete first permanent molar eruption and a posterior location affect appliance durability.

  20. A new active solder for joining electronic components



    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  1. On the directionality of halogen bonding.

    Huber, Stefan M; Scanlon, Joseph D; Jimenez-Izal, Elisa; Ugalde, Jesus M; Infante, Ivan


    The origin of the high directionality of halogen bonding was investigated quantum chemically by a detailed comparison of typical adducts in two different orientations: linear (most stable) and perpendicular. Energy decomposition analyses revealed that the synergy between charge-transfer interactions and Pauli repulsion are the driving forces for the directionality, while electrostatic contributions are more favourable in the less-stable, perpendicular orientation.

  2. Effect of the Fourth Element on Bonding of Silicon Nitride Ceramics with Y2O3-Al2O3-SiO2 Glass Solders



    Bonding of Si3N4 ceramic was performed with Y2O3-Al2O3-SiO2(YAS)-X glass solders,which were mixed with TiO2 (YT) and Si3N4 (YN), respectively. The effects of bonding conditions and interfacial reaction on the joint strength were studied. The joint strength in different bonding conditions was measured by four-point bending tests. The interfacial microstructures were observed and analyzed by SEM, EPMA and XRD. It is shown that with the increase of bonding temperature and holding time, the joint strength increases reaching a peak, and then decreases. When TiO2 is put into YAS solder,the bonding interface with Si3N4/(Y-Sialon glass+TiN)/TiN/Y-Sialon glass is formed. When YAS solder is mixed with Si3N4 powder, the interfacial residual thermal stress may be decreased, and then the joint strength is enhanced. According to microanalyses, the bonding strength is related to interfacial reaction.

  3. Solder joint technology materials, properties, and reliability

    Tu, King-Ning


    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  4. Wave soldering with Pb-free solders

    Artaki, I.; Finley, D.W.; Jackson, A.M.; Ray, U. [AT and T Bell Labs., Princeton, NJ (United States); Vianco, P.T. [Sandia National Labs., Albuquerque, NM (United States)


    The manufacturing feasibility and attachment reliability of a series of newly developed lead-free solders were investigated for wave soldering applications. Some of the key assembly aspects addressed included: wettability as a function of board surface finish, flux activation and surface tension of the molten solder, solder joint fillet quality and optimization of soldering thermal profiles. Generally, all new solder formulations exhibited adequate wave soldering performance and can be considered as possible alternatives to eutectic SnPb for wave soldering applications. Further process optimization and flux development is necessary to achieve the defect levels associated with the conventional SnPb process.

  5. Efforts to Develop a 300°C Solder

    Norann, Randy A [Perma Works LLC


    This paper covers the efforts made to find a 300°C electrical solder solution for geothermal well monitoring and logging tools by Perma Works LLC. This paper covers: why a high temperature solder is needed, what makes for a good solder, testing flux, testing conductive epoxy and testing intermetallic bonds. Future areas of research are suggested.

  6. Die Soldering in Aluminium Die Casting

    Han, Q.; Kenik, E.A.; Viswanathan, S.


    Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-rich phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.

  7. Soldering in electronics assembly

    Judd, Mike


    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  8. Influence of Bonding Parameters on the Interaction Between Cu and Noneutectic Sn-In Solder Thin Films

    Sasangka, Wardhana A.; Gan, Chee Lip; Thompson, Carl V.; Choi, Won Kyoung; Wei, Jun


    Thermocompression bonding of through-layer copper interconnects is of great interest for fabrication of three-dimensional (3D) integrated circuits. We have investigated interactions of Cu films with noneutectic Sn-In at length scales of 1 μm to 5 μm. The effects of bonding time, bonding temperature, and post- bonding annealing temperature on intermetallic compound (IMC) formation, joint microstructure, and shear strength were investigated using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), x-ray diffractometry (XRD), and shear testing. It is shown that bonding temperature plays an important role in increasing the true contact area, while the postbonding annealing temperature affects the formation of a single IMC, the η-phase [Cu6(Sn,In)5]. Both of these phenomena were found to contribute to the shear strength of the joints. It is shown that two-step bonding processes, involving short bonding times and longer postbonding annealing, can be used to optimize the bond formation for increased throughput.

  9. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.;


    For microelectronics and especially for upcoming new packaging technologies in micromechanics and photonics fluxless, reliable and economic soldering technologies are needed. In this article, we consequently focus on the oxidation and reduction kinetics of three commonly used eutectic solder allo...... and reflowed AuSn(80/20) and SnPb(60/40) after the introduction of H2...

  10. Experiments on room temperature optical fiber-fiber direct bonding

    Hao, Jinping; Yan, Ping; Xiao, Qirong; Wang, Yaping; Gong, Mali


    High quality permanent connection between optical fibers is a significant issue in optics and communication. Studies on room temperature optical large diameter fiber-fiber direct bonding, which is essentially surface interactions of glass material, are presented here. Bonded fiber pairs are obtained for the first time through the bonding technics illustrated here. Two different kinds of bonding technics are provided-fresh surface (freshly grinded and polished) bonding and hydrophobic surface (activated by H2SO4 and HF) bonding. By means of fresh surface bonding, a bonded fiber pair with light transmitting efficiency of 98.1% and bond strength of 21.2 N is obtained. Besides, in the bonding process, chemical surface treatment of fibers' end surfaces is an important step. Therefore, various ways of surface treatment are analyzed and compared, based on atomic force microscopy force curves of differently disposed surfaces. According to the comparison, fresh surfaces are suggested as the prior choice in room temperature optical fiber-fiber bonding, owing to their larger adhesive force, attractive force, attractive distance, and adhesive range.

  11. Solderability preservation through the use of organic inhibitors

    Sorensen, N.R.; Hosking, F.M.


    Organic inhibitors can be used to prevent corrosion of metals and have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper, but provides a vast improvement relative to oxidized copper.

  12. Aging, stressing and solderability of electroplated and electroless copper

    Sorensen, N.R.; Hosking, F.M.


    Organic inhibitors can be used to prevent corrosion of metals have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by the molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper but provides a vast improvement relative to oxidized copper.

  13. Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders

    Kim, Seongjun; Kim, Keun-Soo; Kim, Sun-Sik; Suganuma, Katsuaki


    Interfacial reaction and die attach properties of Zn- xSn ( x = 20 wt.%, 30 wt.%, and 40 wt.%) solders on an aluminum nitride-direct bonded copper substrate were investigated. At the interface with Si die coated with Au/TiN thin layers, the TiN layer did not react with the solder and worked as a good protective layer. At the interface with Cu, CuZn5, and Cu5Zn8 IMC layers were formed, the thicknesses of which can be controlled by joining conditions such as peak temperature and holding time. During multiple reflow treatments at 260°C, the die attach structure was quite stable. The shear strength of the Cu/solder/Cu joint with Zn-Sn solder was about 30 MPa to 34 MPa, which was higher than that of Pb-5Sn solder (26 MPa). The thermal conductivity of Zn-Sn alloys of 100 W/m K to 106 W/m K was sufficiently high and superior to those of Au-20Sn (59 W/m K) and Pb-5Sn (35 W/m K).

  14. Solder flow over fine line PWB surface finishes

    Hosking, F.M.; Hernandez, C.L.


    The rapid advancement of interconnect technology has stimulated the development of alternative printed wiring board (PWB) surface finishes to enhance the solderability of standard copper and solder-coated surfaces. These new finishes are based on either metallic or organic chemistries. As part of an ongoing solderability study, Sandia National Laboratories has investigated the solder flow behavior of two azole-based organic solderability preservations, immersion Au, immersion Ag, electroless Pd, and electroless Pd/Ni on fine line copper features. The coated substrates were solder tested in the as-fabricated and environmentally-stressed conditions. Samples were processed through an inerted reflow machine. The azole-based coatings generally provided the most effective protection after aging. Thin Pd over Cu yielded the best wetting results of the metallic coatings, with complete dissolution of the Pd overcoat and wetting of the underlying Cu by the flowing solder. Limited wetting was measured on the thicker Pd and Pd over Ni finishes, which were not completely dissolved by the molten solder. The immersion Au and Ag finishes yielded the lowest wetted lengths, respectively. These general differences in solderability were directly attributed to the type of surface finish which the solder came in contact with. The effects of circuit geometry, surface finish, stressing, and solder processing conditions are discussed.

  15. The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloys

    Spinelli, José Eduardo, E-mail: [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Silva, Bismarck Luiz [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé; Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)


    Bi–Ag alloys have been stressed as possible alternatives to replace Pb-based solder alloys. Although acceptable melting temperatures and suitable mechanical properties may characterize such alloys, as referenced in literature, there is a lack of comprehension regarding their microstructures (morphologies and sizes of the phases) considering a composition range from 1.5 to 4.0 wt.%Ag. In order to better comprehend such aspects and their correlations with solidification thermal parameters (growth rate, v and cooling rate, T-dot), directional solidification experiments were carried out under transient heat flow conditions. The effects of Ag content on both cooling rate and growth rate during solidification are examined. Microstructure parameters such as eutectic/dendritic spacing, interphase spacing and diameter of the Ag-rich phase were determined by optical microscopy and scanning electron microscopy. The competition between eutectic cells and dendrites in the range from 1.5 to 4.0 wt.%Ag is explained by the coupled zone concept. Microhardness was determined for different microstructures and alloy Ag contents with a view to permitting correlations with microstructure parameters to be established. Hardness is shown to be directly affected by both solute macrosegregation and morphologies of the phases forming the Bi–Ag alloys, with higher hardness being associated with the cellular morphology of the Bi-2.5 and 4.0 wt.%Ag alloys. - Highlights: • Asymmetric zone of coupled growth for Bi–Ag is demonstrated. • Faceted Bi-rich dendrites have been characterized for Bi–1.5 wt.%Ag alloy. • Eutectic cells were shown for the Bi-2.5 and 4.0 wt.%Ag solder alloys. • Interphase spacing relations with G × v are able to represent the experimental scatters. • Hall-Petch type equations are proposed relating microstructural spacings to hardness.

  16. Development of gold based solder candidates for flip chip assembly

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri


    Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders for inte......Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders...

  17. Shrink-Fit Solderable Inserts Seal Hermetically

    Croucher, William C.


    Shrink-fit stainless-steel insert in aluminum equipment housing allows electrical connectors to be replaced by soldering, without degrading hermeticity of housing or connector. Welding could destroy electrostatic-sensitive components and harm housing and internal cables. Steel insert avoids problems because connector soldered directly to it rather than welded to housing. Seals between flange and housing, and between connector and flange resistant to leaks, even after mechanical overloading and thermal shocking.

  18. Solderability test system

    Yost, Fred (Cedar Crest, NM); Hosking, Floyd M. (Albuquerque, NM); Jellison, James L. (Albuquerque, NM); Short, Bruce (Beverly, MA); Giversen, Terri (Beverly, MA); Reed, Jimmy R. (Austin, TX)


    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

  19. Solderability test system

    Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.


    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

  20. Direct Printing of 1-D and 2-D Electronically Conductive Structures by Molten Lead-Free Solder

    Chien-Hsun Wang


    Full Text Available This study aims to determine the effects of appropriate experimental parameters on the thermophysical properties of molten micro droplets, Sn-3Ag-0.5Cu solder balls with an average droplet diameter of 50 μm were prepared. The inkjet printing parameters of the molten micro droplets, such as the dot spacing, stage velocity and sample temperature, were optimized in the 1D and 2D printing of metallic microstructures. The impact and mergence of molten micro droplets were observed with a high-speed digital camera. The line width of each sample was then calculated using a formula over a temperature range of 30 to 70 °C. The results showed that a metallic line with a width of 55 μm can be successfully printed with dot spacing (50 μm and the stage velocity (50 mm∙s−1 at the substrate temperature of 30 °C. The experimental results revealed that the height (from 0.63 to 0.58 and solidification contact angle (from 72° to 56° of the metallic micro droplets decreased as the temperature of the sample increased from 30 to 70 °C. High-speed digital camera (HSDC observations showed that the quality of the 3D micro patterns improved significantly when the droplets were deposited at 70 °C.

  1. Reduced oxide soldering activation (ROSA) PWB solderability testing

    Hernandez, C.L.; Hosking, F.M. [Sandia National Labs., Albuquerque, NM (United States). Physical and Joining Metallurgy Dept.; Reed, J. [Texas Instruments, Austin, TX (United States); Tench, D.M.; White, J. [Rockwell Science Center, Thousand Oaks, CA (United States)


    The effect of ROSA pretreatment on the solderability of environmentally stressed PWB test coupons was investigated. The PWB surface finish was an electroplated, reflowed solder. Test results demonstrated the ability to recover plated-through-hole fill of steam aged samples with solder after ROSA processing. ROSA offers an alternative method for restoring the solderability of aged PWB surfaces.

  2. Thioamides: versatile bonds to induce directional and cooperative hydrogen bonding in supramolecular polymers.

    Mes, Tristan; Cantekin, Seda; Balkenende, Dirk W R; Frissen, Martijn M M; Gillissen, Martijn A J; De Waal, Bas F M; Voets, Ilja K; Meijer, E W; Palmans, Anja R A


    The amide bond is a versatile functional group and its directional hydrogen-bonding capabilities are widely applied in, for example, supramolecular chemistry. The potential of the thioamide bond, in contrast, is virtually unexplored as a structuring moiety in hydrogen-bonding-based self-assembling systems. We report herein the synthesis and characterisation of a new self-assembling motif comprising thioamides to induce directional hydrogen bonding. N,N',N''-Trialkylbenzene-1,3,5-tris(carbothioamide)s (thioBTAs) with either achiral or chiral side-chains have been readily obtained by treating their amide-based precursors with P2S5. The thioBTAs showed thermotropic liquid crystalline behaviour and a columnar mesophase was assigned. IR spectroscopy revealed that strong, three-fold, intermolecular hydrogen-bonding interactions stabilise the columnar structures. In apolar alkane solutions, thioBTAs self-assemble into one-dimensional, helical supramolecular polymers stabilised by three-fold hydrogen bonding. Concentration- and temperature-dependent self-assembly studies performed by using a combination of UV and CD spectroscopy demonstrated a cooperative supramolecular polymerisation mechanism and a strong amplification of supramolecular chirality. The high dipole moment of the thioamide bond in combination with the anisotropic shape of the resulting cylindrical aggregate gives rise to sufficiently strong depolarised light scattering to enable depolarised dynamic light scattering (DDLS) experiments in dilute alkane solution. The rotational and translational diffusion coefficients, D(trans) and D(rot), were obtained from the DDLS measurements, and the average length, L, and diameter, d, of the thioBTA aggregates were derived (L = 490 nm and d = 3.6 nm). These measured values are in good agreement with the value L(w) = 755 nm obtained from fitting the temperature-dependent CD data by using a recently developed equilibrium model. This experimental verification

  3. A posttreatment evaluation of direct bonding in orthodontics.

    Zachrisson, B J


    A long-term evaluation was made of results achieved in direct bonding of metal attachments with a chemically polymerized composite material. A total of 705 attachments were bonded to different teeth, including premolars and molars, in forty-six children. Slim bracket bases, small quantities of adhesive paste, and trimming of the excess material were used to improve esthetics and to benefit in respect of gingival condition. The same person bonded all brackets and performed the orthodontic treatment by a friction-free edgewise light-wire technique. Mean treatment time was 17 months. The clinical appearance before, during, and after treatment is shown in Figs. 3 to 5. The failure rates for the whole treatment period were 4 to 10 per cent for central and lateral incisors, canines, and first premolars in both dental arches. The second premolars, which were often in various stages of eruption at the time of bonding, and the molars had higher failure rates (Table I). An evident individual variation was noted, as a few children had a high number of loose brackets. Clinical and scanning electron microscopic studies of tooth surfaces following removal of the brackets demonstrated normal surface appearance when plain-cut tungsten carbide burs rotated at low speed were used to remove remnants of adhesive that could not easily be scraped off. Precoating etched enamel with sealant, in combination with daily fluoride mouth rinses and good oral hygiene, virtually eliminated the caries problem, but regular inspection for interproximal cavities was needed. There were no signs of enamel damage or discoloration for periods of up to 12 months subsequent to bracket removal. Further details of the technical operative procedure, failure analysis, bracket type and design, gingival health, and other aspects of direct bonding were also discussed.

  4. Lead-free solder

    Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)


    A Sn--Ag--Cu eutectic alloy is modified with one or more low level and low cost alloy additions to enhance high temperature microstructural stability and thermal-mechanical fatigue strength without decreasing solderability. Purposeful fourth or fifth element additions in the collective amount not exceeding about 1 weight % (wt. %) are added to Sn--Ag--Cu eutectic solder alloy based on the ternary eutectic Sn--4.7%Ag--1.7%Cu (wt. %) and are selected from the group consisting essentially of Ni, Fe, and like-acting elements as modifiers of the intermetallic interface between the solder and substrate to improve high temperature solder joint microstructural stability and solder joint thermal-mechanical fatigue strength.

  5. Integrated environmentally compatible soldering technologies. Final report

    Hosking, F.M.; Frear, D.R.; Iman, R.L.; Keicher, D.M.; Lopez, E.P.; Peebles, H.C.; Sorensen, N.R.; Vianco, P.T.


    Chemical fluxes are typically used during conventional electronic soldering to enhance solder wettability. Most fluxes contain very reactive, hazardous constituents that require special storage and handling. Corrosive flux residues that remain on soldered parts can severely degrade product reliability. The residues are removed with chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or other hazardous solvents that contribute to ozone depletion, release volatile organic compounds into the atmosphere, or add to the solvent waste stream. Alternative materials and processes that offer the potential for the reduction or elimination of cleaning are being developed to address these environmental issues. Timing of the effort is critical, since the targeted chemicals will soon be heavily taxed or banned. DOE`s Office of Environmental Restoration and Waste Management (DOE/EM) has supported Sandia National Laboratories` Environmentally Conscious Manufacturing Integrated Demonstration (ECMID). Part of the ECM program involves the integration of several environmentally compatible soldering technologies for assembling electronics devices. Fluxless or {open_quotes}low-residue/no clean{close_quotes} soldering technologies (conventional and ablative laser processing, controlled atmospheres, ultrasonic tinning, protective coatings, and environmentally compatible fluxes) have been demonstrated at Sandia (SNL/NM), the University of California at Berkeley, and Allied Signal Aerospace-Kansas City Division (AS-KCD). The university demonstrations were directed under the guidance of Sandia staff. Results of the FY93 Soldering ID are presented in this report.

  6. Removing Dross From Molten Solder

    Webb, Winston S.


    Automatic device helps to assure good solder connections. Machine wipes dross away from area on surface of molten solder in pot. Sweeps across surface of molten solder somewhat in manner of windshield wiper. Each cycle of operation triggered by pulse from external robot. Equipment used wherever precise, automated soldering must be done to military specifications.

  7. Albumin-genipin solder for laser tissue welding

    Lauto, Antonio; Foster, John; Avolio, Albert; Poole-Warren, Laura


    Background. Laser tissue soldering (LTS) is an alternative technique to suturing for tissue repair. One of the major drawbacks of LTS is the weak tensile strength of the solder welds when compared to sutures. In this study, the possibility was investigated for a low cytotoxic crosslinker, acting on amino groups, to enhance the bond strength of albumin solders. Materials and Methods. Solder strips were welded onto rectangular sections of sheep small intestine by a diode laser. The laser delivered in continuous mode mode a power of 170 +/- 10 mW at λ=808 nm, through a multimode optical fiber (core size = 200 μm) to achieve a dose of 10.8 +/- 0.5 J/mg. The solder thickness and surface area were kept constant throughout the experiment (thickness = 0.15 +/- 1 mm, area = 12 +/- 1.2 mm2). The solder incorporated 62% bovine serum albumin, 0.38% genipin, 0.25% indocyanin green dye (IG) and water. Tissue welding was also performed with a similar solder, which did not incorporate genipin, as a control group. The repaired tissue was tested for tensile strength by a calibrated tensiometer. Results. The tensile strength of the "genipin" solder was twice as high as the strength of the BSA solder (0.21 +/- 0.04 N and 0.11 +/- 0.04 N respectively; p~10-15 unpaired t-test, N=30). Discussion. Addition of a chemical crosslinking agent, such as genipin, significantly increased the tensile strength of adhesive-tissue bonds. A proposed mechanism for this enhanced bond strength is the synergistic action of mechanical adhesion with chemical crosslinking by genipin.

  8. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian


    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  9. Measurement of bonding energy in an anhydrous nitrogen atmosphere and its application to silicon direct bonding technology

    Fournel, F.; Continni, L.; Morales, C.; Da Fonseca, J.; Moriceau, H.; Rieutord, F.; Barthelemy, A.; Radu, I.


    Bonding energy represents an important parameter for direct bonding applications as well as for the elaboration of physical mechanisms at bonding interfaces. Measurement of bonding energy using double cantilever beam (DCB) under prescribed displacement is the most used technique thanks to its simplicity. The measurements are typically done in standard atmosphere with relative humidity above 30%. Therefore, the obtained bonding energies are strongly impacted by the water stress corrosion at the bonding interfaces. This paper presents measurements of bonding energies of directly bonded silicon wafers under anhydrous nitrogen conditions in order to prevent the water stress corrosion effect. It is shown that the measurements under anhydrous nitrogen conditions (less than 0.2 ppm of water in nitrogen) lead to high stable debonding lengths under static load and to higher bonding energies compared to the values measured under standard ambient conditions. Moreover, the bonding energies of Si/SiO2 or SiO2/SiO2 bonding interfaces are measured overall the classical post bond annealing temperature range. These new results allow to revisit the reported bonding mechanisms and to highlight physical and chemical phenomena in the absence of stress corrosion effect.

  10. Solder dross removal apparatus

    Webb, Winston S. (Inventor)


    An automatic dross removal apparatus (10) is disclosed for removing dross from the surface of a solder bath (22) in an automated electric component handling system. A rotatable wiper blade (14) is positioned adjacent the solder bath (22) which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit (34) causes a motor (32) to rotate the wiper arm (14) one full rotational cycle each time a pulse is received from a robot controller (44) as a component approaches the solder bath (22).

  11. Computer simulation of solder joint failure

    Burchett, S.N.; Frear, D.R. [Sandia National Lab., Albuquerque, NM (United States); Rashid, M.M. [Univ. of California, Davis, CA (United States)


    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide the fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.

  12. Pb-Free Soldering Iron Temperature Controller

    Hamane, Hiroto; Wajima, Kenji; Hayashi, Yoichi; Komiyama, Eiichi; Tachibana, Toshiaki; Miyazaki, Kazuyoshi

    Recently, much importance has been attached to the environmental problem. The content of two directives to better control the management of waste electronic equipment was approved. The two directives are the Waste from Electrical and Electronic Equipment (WEEE) and the Restriction of Hazardous Substances (RoHS). These set phase-out dates for the use of lead materials contained in electronic products. Increasingly, attention is focusing on the potential use of Pb-free soldering in electronics manufacturing. It should be noted that many of the current solding irons are not suitable for Pb-free technology, due to the inferior wetting ability of Pb-free alloys compared with SnPb solder pastes. This paper presents a Pb-free soldering iron temperature controller using an embedded micro-processor with a low memory capacity.

  13. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

    Chu, John C. K.; Rovis, Tomislav


    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  14. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  15. Direct bonding for dissimilar metals assisted by carboxylic acid vapor

    Song, Jenn-Ming; Huang, Shang-Kun; Akaike, Masatake; Suga, Tadatomo


    This study developed a low-temperature low-vacuum direct bonding process for dissimilar metals via surface modification with formic acid vapor. Robust Cu/Ag and Cu/Zn bonding with a shear strength higher than 25 MPa can be achieved by thermal compression at 275 and 300 °C, respectively. CuZn5 and Cu5Zn8 formed at the interface of Cu/Zn joints, while no distinct interdiffusion layers appeared at the Cu/Ag interface. At elevated temperatures, the shear strength of Cu/Zn joints decreased significantly and turned to be weaker than Cu/Ag at 250 °C due to the softening of Zn. All the joints performed well subjected to thermal cycling up to 1000 times. However, compared with Cu/Ag joints with stable mechanical performance suffering aging at 250 °C, the shear strength of Cu/Zn degraded drastically up to 200 h, and after that it remained almost constant, which can be ascribed to the competitive growth between CuZn5 and Cu5Zn8, resulting in collapse and oxidation of CuZn5.

  16. Current Status of Lead-Free Soldering and Conductive Adhesives



    Lead-free soldering technology took offin the Japanese market during the year 2000, and as the year 2001-03 ushered in the 21 st century, a large number of products with lead-free soldering were already appearing on store shelves. Elsewhere, EU deliberation on the draft of the WEEE/RoHS directive finalized in February 2003 and be in force in July 2006. The course had been set for adopting lead-free solder for mounting processes of parts as well, bringing the possibility of lead-free solder mounting very close to achievement. This review will provide a view of the current state of technological progress in lead-free soldering, both in Japan and abroad, and will discuss future prospects.

  17. Development of lead-free solders for hybrid microcircuits

    Hosking, F.M.; Vianco, P.T.; Frear, D.R.; Robinson, D.G.


    Extensive work has been conducted by industry to develop lead-free solders for electronics applications. The driving force behind this effort is pressure to ban or tax the use of lead-bearing solders. There has been further interest to reduce the use of hazardous chemical cleaners. Lead-free soldering and low-residue, ``no clean`` assembly processing are being considered as solutions to these environmental issues. Most of the work has been directed toward commercial and military printed wiring board (PWB) technology, although similar problems confront the hybrid microcircuit (HMC) industry, where the development of lead-free HMC solders is generally lagging. Sandia National Laboratories is responsible for designing a variety of critical, high reliability hybrid components for radars. Sandia has consequently initiated a project, as part of its Environmentally Conscious Manufacturing program, to develop low-residue, lead-free soldering for HMCs. This paper discusses the progress of that work.

  18. Effect of Curing Direction on Microtensile Bond Strength of Fifth and Sixth Generation Dental Adhesives

    Ali Nadaf


    Full Text Available Background and Aims: Composite restorative materials and dental adhesives are usually cured with light sources. The light direction may influence the bond strength of dental adhesives. The aim of this study was to evaluate the effect of light direction on the microtensile bond strength of fifth and sixth generation dental adhesives.Materials and Methods: Prime & Bond NT and Clearfil SE bond were used with different light directions.Sixty human incisor teeth were divided into 4 groups (n=15. In groups A and C, Clearfil SE bond with light curing direction from buccal was used for bonding a composite resin to dentin. In groups B and D, Prime & Bond NT with light curing direction from composite was used. After thermocycling the specimens were subjected to tensile force until debonding occurred and values for microtensile bond strength were recorded. The data were analyzed using two-way ANOVA and Tukey post hoc test.Results: The findings showed that the bond strength of Clearfil SE bond was significantly higher than that of Prime&Bond NT (P<0.001. There was no significant difference between light curing directions (P=0.132.Conclusion: Light curing direction did not have significant effect on the bond strength. Sixth generation adhesives was more successful than fifth generation in terms of bond strength to dentin.

  19. Effect of Surface Finish of Substrate on Mechanical Reliability of in-48SN Solder Joints in Moems Package

    Koo, Ja-Myeong


    Interfacial reactions and shear properties of the In-48Sn (in wt.%) ball grid array (BGA) solder joints after bonding were investigated with four different surface finishes of the substrate over an underlying Cu pad: electroplated Ni/Au (hereafter E-NG), electroless Ni/immersion Au (hereafter ENIG), immersion Ag (hereafter I-Ag) and organic solderability preservative (hereafter OSP). During bonding, continuous AuIn2, Ni3(Sn,In)4 and Cu6(Sn,In)5 intermetallic compound (IMC) layers were formed at the solder/E-NG, solder/ENIG and solder/OSP interface, respectively. The interfacial reactions between the solder and I-Ag substrate during bonding resulted in the formation of Cu6(Sn,In)5 and Cu(Sn,In)2 IMCs with a minor Ag element. The In-48Sn/I-Ag solder joint showed the best shear properties among the four solder joints after bonding, whereas the solder/ENIG solder joint exhibited the weakest mechanical integrity.

  20. Low temperature aluminum soldering analysis

    Peterkort, W.G.


    The investigation of low temperature aluminum soldering included the collection of spread factor and dihedral angle data for several solder alloys and a study of flux effects on aluminum. Selected solders were subjected to environmental tests and evaluated on the basis of tensile strength, joint resistance, visual appearance, and metallurgical analysis. A production line method for determining adequate flux removal was developed.

  1. Solderability test development. Final report. [Meniscograph tests

    Jarboe, D.M.


    Operating procedures and data reduction techniques applicable to the Meniscograph (General Electric Company, Limited) were developed. Using force-time traces from tests involving various sample materials and configurations, flux types, and test temperatures, the wetting rate and contact angle were obtained through statistical treatment of the data. This information provides a means of directly correlating solderability with the physical phenomenon of wetting.

  2. Mechanical properties of QFP micro-joints soldered with lead-free solders using diode laser soldering technology

    HAN Zong-jie; XUE Song-bai; WANG Jian-xin; ZHANG Xin; ZHANG Liang; YU Sheng-lin; WANG Hui


    Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not only with Sn-Pb eutectic solders but also with infrared reflow soldering method. The results indicate that under the conditions of laser continuous scanning mode as well as the fixed laser soldering time, an optimal power exists, while the optimal mechanical properties of QFP micro-joints are gained. Mechanical properties of QFP micro-joints soldered with laser soldering system are better than those of QFP micro-joints soldered with IR reflow soldering method. Fracture morphologies of QFP micro-joints soldered with laser soldering system exhibit the characteristic of tough fracture, and homogeneous and fine dimples appear under the optimal laser output power.

  3. Enhanced Cu-to-Cu direct bonding by controlling surface physical properties

    Chiang, Po-Hao; Liang, Sin-Yong; Song, Jenn-Ming; Huang, Shang-Kun; Chiu, Ying-Ta; Hung, Chih-Pin


    Cu-to-Cu direct bonding is one of the key technologies for three-dimensional (3D) chip stacking. This research proposes a new concept to enhance Cu-to-Cu direct bonding through the control of surface physical properties. A linear relationship between bonding strength and the H/\\sqrt{R} value of the bonding face (H: subsurface hardness, R: surface roughness) was found. Low vacuum air plasma and thermal annealing were adopted to adjust the surface physical conditions. Instead of surface activation, an acceleration in copper atom diffusion due to plasma-induced compressive stress accounts for the improvement in bonding strength.

  4. Nanofluidic chip for liquid TEM cell fabricated by parylene and silicon nitride direct bonding

    Jang, Heejun; Kang, Il-Suk; Kim, Jihye; Kim, Jonghyun; Cha, Yun Jeong; Yoon, Dong Ki; Lee, Wonhee


    Despite the importance of nanofluidic transmission electron microscope (TEM) chips, a simple fabrication method has yet to be developed due to the difficulty of wafer bonding techniques using a nanoscale thick bonding layer. We present a simple and robust wafer scale bonding technique using parylene as a bonding layer. A nanoscale thick parylene layer was deposited on a silicon nitride (SiN) wafer and patterned to construct nanofluidic channels. The patterned parylene layer was directly bonded to another SiN wafer by thermal surface activation and bonding, with a bonding strength of ˜3 MPa. Fourier transform infrared spectroscopy showed that carbon-oxygen bonds were generated by thermal activation. We demonstrated TEM imaging of gold nanoparticles suspended in liquid using the fabricated nanofluidic chip.

  5. Novel Position-Space Renormalization Group for Bond Directed Percolation in Two Dimensions

    KAYA, H.; Erzan, A.


    A new position-space renormalization group approach is investigated for bond directed percolation in two dimensions. The threshold value for the bond occupation probabilities is found to be $p_c=0.6443$. Correlation length exponents on time (parallel) and space (transverse) directions are found to be $\

  6. Capillary flow solder wettability test

    Vianco, P.T.; Rejent, J.A.


    A test procedure was developed to assess the capillary flow wettability of solders inside of a confined geometry. The test geometry was comprised of two parallel plates with a controlled gap of constant thickness (0.008 cm, 0.018 cm, 0.025 cm, and 0.038 cm). Capillary flow was assessed by: (1) the meniscus or capillary rise of the solder within the gap, (2) the extent of void formation in the gap, and (3) the time-dependence of the risen solder film. Tests were performed with the lead-free solders.

  7. Microwave Tissue Soldering for Immediate Wound Closure

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Byerly, Diane; Dusl, John; Sognier, Marguerite A.; Carl, James


    A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or in proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds.

  8. Research Progress in Solderable Black Pad of Electroless Nickel/Immersion Gold

    Liu Haiping; Li Ning; Bi Sifu; Li Deyu


    Electroless nickel/immersion gold (ENIG) technology is widely used as one of the surface final finish for electronics packaging substrate and printed circuit board (PCB), providing a protective, conductive and solderable surface. However, there is a solder joint interfacial brittle fracture (or solderability failure) of using the ENIG coating. The characteristics and the application of ENIG technology were narrated in this paper. The research progress on the solderability failure of ENIG was introduced. The mechanism of "black pad" and the possible measure of eliminating or alleviating the "black pad" were also introduced. The development direction and market prospects of ENIG were prospected.

  9. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Colby, Denise; Bergman, Robert; Ellman, Jonathan


    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach

  10. Materials chemistry. Composition-matched molecular "solders" for semiconductors.

    Dolzhnikov, Dmitriy S; Zhang, Hao; Jang, Jaeyoung; Son, Jae Sung; Panthani, Matthew G; Shibata, Tomohiro; Chattopadhyay, Soma; Talapin, Dmitri V


    We propose a general strategy to synthesize largely unexplored soluble chalcogenidometallates of cadmium, lead, and bismuth. These compounds can be used as "solders" for semiconductors widely used in photovoltaics and thermoelectrics. The addition of solder helped to bond crystal surfaces and link nano- or mesoscale particles together. For example, CdSe nanocrystals with Na2Cd2Se3 solder was used as a soluble precursor for CdSe films with electron mobilities exceeding 300 square centimeters per volt-second. CdTe, PbTe, and Bi2Te3 powders were molded into various shapes in the presence of a small additive of composition-matched chalcogenidometallate or chalcogel, thus opening new design spaces for semiconductor technologies.

  11. Solderability perservative coatings: Electroless tin vs. organic azoles

    Artaki, I.; Ray, U.; Jackson, A.M.; Gordon, H.M. [AT and T Bell Labs., Princeton, NJ (United States); Vianco, P.T. [Sandia National Labs., Albuquerque, NM (United States)


    This paper compares the solderability performance and corrosions ion protection effectiveness of electroless tin coatings versus organic azole films after exposure to a series of humidity and thermal (lead-free solders) cycling conditions. The solderability of immersion tin is directly related to the tin oxide growth on the surface and is not affected by the formation of Sn-Cu intermetallic phases as long as the intermetallic phase is protected by a Sn layer. For a nominal tin thickness of 60{mu}inches, the typical thermal excursions associated with assembly are not sufficient to cause the intermetallic phase to consume the entire tin layer. Exposure to humidity at moderate to elevated temperatures promotes heavy tin oxide formation which leads to solderability loss. In contrast, thin azole films are more robust to humidity exposure; however upon heating in the presence of oxygen, they decompose and lead to severe solderability degradation. Evaluations of lead-free solder pastes for surface mount assembly applications indicate that immersion tin significantly improves the spreading of Sn:Ag and Sn:Bi alloys as compared to azole surface finishes.

  12. Influence of the direction of tubules on bond strength to dentin.

    Ogata, M; Okuda, M; Nakajima, M; Pereira, P N; Sano, H; Tagami, J


    This study investigated the influence of the direction of dentinal tubules on resin-dentin tensile bond strength (mu TBS) using four commercially available bonding systems and observed the resin-dentin interfaces with an SEM. The dentin bonding systems used in this study were Clearfil Liner Bond II (LB, Kuraray), Imperva Fluoro Bond (FB, Shofu), Single Bond (SB, 3M) and One-Step (OS, BISCO). Thirty-six extracted caries-free human molars were used for micro tensile bond testing and eight additional teeth were used for scanning electron microscopy (SEM). The teeth were divided into two groups according to the direction of the dentinal tubules at the resin-dentin interface: a perpendicular group, in which the occlusal enamel was removed perpendicular to the long axis of the tooth, and a parallel group, in which the mesial half of the tooth was removed parallel to the long axis of the tooth, and the coronal dentin surface was used for bonding. After the flat dentin surfaces were polished with #600 silicon carbide paper, each surface was treated with one of the four adhesive systems according to the manufacturer's recommendation, then covered with resin composite (Clearfil AP-X, Kuraray) to provide sufficient bulk for micro-tensile bond testing. After 24 hours in 37 degrees C water, the resin-bonded teeth were serially sliced perpendicular to the adhesive surface, the adhesive interface trimmed to a cross sectional area of 1 mm2 and subjected to tensile forces at a crosshead speed of 1 mm/min. Statistical analysis of the tensile bond strengths were performed using two-way ANOVA and Fisher's PLSD test at 95% level of confidence. The tensile bond strength of the group with tubules parallel to the bonded interface was higher than that of tubules cut perpendicularly. This tendency reached statistical significance using SB and OS.

  13. Active soft solder deposition by magnetron-sputter-ion-plating (MSIP)-PVD-process

    Lugscheider, E.; Bobzin, K.; Erdle, A


    In different technical areas micro electro mechanical systems (M.E.M.S.), e.g. micro pumps, micro sensors, actuators and micro dosage systems are in use today. The components of these M.E.M.S. consist of various materials, which have to be joined. To join materials like ceramics, plastics or metals to a hybrid M.E.M.S., established joining technologies have to be adjusted. For the assembling and mounting of temperature sensible micro components, a low temperature joining process, e.g. transient liquid phase (TLP) bonding or an active soft soldering process can be performed. In this article the deposition of a low melting active soft solder by magnetron-sputter (MS)-PVD deposition with an active substrate cooling will be presented. The substrate temperatures were set and controlled by an additional cooling unit, which was integrated into the sputtering facility. In the performed experiments a substrate temperature range from -40 to +20 deg. C was investigated. The effects of these different substrate temperatures to the microstructure and the soldering suitability of the solder system were investigated by scanning electron microscopy (SEM), nanoindentation and soldering tests. The chemical composition of the deposited solder systems was examined by glow discharge optical spectroscopy (GDOS)-analysis. As a suitable substrate temperature range for deposition -10 to -20 deg. C was detected. Solder systems deposited in this temperature range showed good solder abilities.

  14. Template-Directed meta-Selective Olefination of Aryl C–H Bonds


    Authors: Jinquan Yu ### Abstract The most common bond in many organic compounds is the C–H bond. Hence, it is a great challenge to selectively cleave a particular C–H bond in the presence of multiple ones. One of most widely used approach to this problem is the use of -chelating directing groups (1). However, the insertion of the transition metal is strictly restricted to the ortho-C–H bond through a six- or seven-membered cyclic pre-transition state (TS). Although many strategies ha...

  15. Surface-phosphorylated copolymer promotes direct bone bonding.

    Gopalakrishnanchettiyar, Sailaja S; Mohanty, Mira; Kumary, Thrikkovil V; Valappil, Mohanan P; Parameshwaran, Ramesh; Varma, Harikrishna K


    The bone bonding potential of surface-phosphorylated poly (2-hydroxyethyl methacrylate-co-methyl methacrylate) [poly (HEMA-co-MMA)] has been investigated and compared with commercially available poly (methyl methacrylate) bone cement (CMW1 radiopaque, Depuy; Johnson & Johnson, Blackpool, Lancashire, England, United Kingdom) as control. Poly (HEMA-co-MMA) is synthesized by free radical-initiated copolymerization and surface functionalized by phosphorylation. The X-ray photoelectron spectroscopy confirms the presence of surface-bound phosphate groups on poly (HEMA-co-MMA). The surface-phosphorylated poly (HEMA-co-MMA) promotes in vitro biomineralization, cell viability, cell adhesion, and expression of bone-specific markers such as osteocalcin and alkaline phosphatase. The bone implantation study performed in rabbits as per ISO 10993-6; 1994 (E) shows that surface-phosphorylated poly (HEMA-co-MMA) elicits bone bonding and new bone formation. New woven bone trabeculae are formed at the defect site of surface-phosphorylated poly (HEMA-co-MMA) within 1 week, while for control sample, inflammatory cells--predominantly, macrophages, fibroblasts, and fibrocytes--are present at the cortical margins around the defect. The 4 and 12 weeks postimplantation results show that the major part of the defects around the surface-phosphorylated poly (HEMA-co-MMA) implant is bridged with new woven bone, with significant remodeling (evident from resorption bays) along both the margins of the defect, but for control implants, the defects are only partially closed, with slight remodeling along the margins, but most of them are separated by fibrous tissue.

  16. Optical characterization of gaps in directly bonded Si compound optics using infrared spectroscopy

    Gully-Santiago, Michael; White, Victor


    Silicon direct bonding offers flexibility in the design and development of Si optics by allowing manufacturers to combine subcomponents with a potentially lossless and mechanically stable interface. The bonding process presents challenges in meeting the requirements for optical performance because air gaps at the Si interface cause large Fresnel reflections. Even small (35 nm) gaps reduce transmission through a direct bonded Si compound optic by 4% at $\\lambda = 1.25 \\; \\mu$m at normal incidence. We describe a bond inspection method that makes use of precision slit spectroscopy to detect and measure gaps as small as 14 nm. Our method compares low finesse Fabry-P\\'{e}rot models to high precision measurements of transmission as a function of wavelength. We demonstrate the validity of the approach by measuring bond gaps of known depths produced by microlithography.

  17. Novel position-space renormalization group for bond directed percolation in two dimensions

    Kaya, Hüseyin; Erzan, Ayşe

    A new position-space renormalization group approach is investigated for bond directed percolation in two dimensions. The threshold value for the bond occupation probabilities is found to be pc=0.6443. Correlation length exponents on time (parallel) and space (transverse) directions are found to be ν∥=1.719 and ν⊥=1.076, respectively, which are in very good agreement with the best-known series expansion results.

  18. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak


    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys (T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  19. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo


    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  20. Studies of intermetallic growth in Cu-solder systems and wettability at solid-liquid interfaces

    Martin, Raymond W.


    Approved for public release; distribution is unlimited The metallurgical bond formed between tin-lead solder and the copper substrate is characterized by the formation of an intermetallic compound layer. The growth of the intermetallic layer is the result of competing mechanisms, growth of the intermetallic at the intermetallic/copper interface and its dissolution at the intermetallic/liquid solder interface. These were studied by determining the dissolution rates of the copper and the i...

  1. Methylene blue solder re-absorption in microvascular anastomoses

    Birch, Jeremy F.; Hepplewhite, J.; Frier, Malcolm; Bell, Peter R. F.


    Soldered vascular anastomoses have been reported using several chromophores but little is known of the optimal conditions for microvascular anastomosis. There are some indications of the optimal protein contents of a solder, and the effects of methylene blue on anastomotic strength. The effects of varying laser power density in vivo have also been described, showing a high rate of thrombosis with laser power over 22.9Wcm-2. However no evidence exists to describe how long the solder remains at the site of the anastomosis. Oz et al reported that the fibrin used in their study had been almost completely removed by 90 days but without objective evidence of solder removal. In order to address the issue of solder re-absorption from the site of an anastomosis we used radio-labelled albumin (I-125) incorporated into methylene blue based solder. This was investigated in both the situation of the patent and thrombosed anastomosis with anastomoses formed at high and low power. Iodine-125 (half life: 60.2 days) was covalently bonded to porcine albumin and mixed with the solder solution. Radio-iodine has been used over many years to determine protein turnover using either I-125 or I-131. Iodine-125 labelled human albumin is regularly used as a radiopharmaceutical tool for the determination of plasma volume. Radio-iodine has the advantages of not affecting protein metabolism and the label is rapidly excreted after metabolic breakdown. Labelling with chromium (Cr-51) causes protein denaturation and is lost from the protein with time. Labelled albumin has been reported in human studies over a 21-day period, with similar results reported by Matthews. Most significantly McFarlane reported a different rate of catabolism of I-131 and I-125 over a 22-day period. The conclusion from this is that the rate of iodine clearance is a good indicator of protein catabolism. In parallel with the surgery a series of blank standards were prepared with a known mass of solder to correct for isotope

  2. Minimally invasive cosmetic dentistry: smile reconstruction using direct resin bonding.

    Prieto, Lucia Trazzi; Araujo, Cintia Tereza Pimenta; de Oliveira, Dayane Carvalho Ramos Salles; de Azevedo Vaz, Sergio Lins; D'Arce, Maria Beatriz Freitas; Paulillo, Luis Alexandre Maffei Sartini


    Discrepancies in tooth size and shape can interfere with smile harmony. Composite resin can be used to improve the esthetics of the smile at a low cost while offering good clinical performance. This article presents an approach for restoring and correcting functional, anatomic, and esthetic discrepancies with minimal intervention, using composites and a direct adhesive technique. This conservative restorative procedure provided the patient with maximum personal esthetic satisfaction.

  3. Soldering Formalism Theory and Applications

    Wotzasek, C


    The soldering mechanism is a new technique to work with distinct manifestations of dualities that incorporates interference effects, leading to new physical results that includes quantum contributions. This approach was used to investigate the cases of electromagnetic dualities, and $D\\geq 2$ bosonization. In the former context this technique is applied for the quantum mechanical harmonic oscillator, the scalar field theory in two dimensions and the Maxwell theory in four dimensions. The soldered actions in any dimension leads to a master action which is duality invariant under a much bigger set of symmetries. The effects of coupling to gravity are also elaborated. In the later context, a technique is developed that solders the dual aspects of some symmetry following from the bosonisation of two distinct fermionic models, leading to new results which cannot be otherwise obtained. Exploiting this technique, the two dimensional chiral determinants with opposite chirality are soldered to reproduce either the usu...

  4. Explorative study into the sustainable use and substitution of soldering metals in electronics: ecological and economical consequences of the ban of lead in electronics and lessons to be learned for the future

    Deubzer, O.


    The Directive 2002/95/EC (RoHS Directive), among other substances, bans the use of lead in the electrical and electronics industry. This explorative study assesses the worldwide environmental and economical effects of the substitution of lead in solders and finishes. It shows the worldwide additional cost of lead-free soldering compared to soldering with lead-containing solders and finishes. Also the additional consumption of tin, silver, bismuth and other metals, the worldwide additional ene...

  5. Wetting behavior of alternative solder alloys

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.


    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  6. Oxides formation on hydrophilic bonding interface in plasma-assisted InP/Al2O3/SOI direct wafer bonding

    Kewei Gong


    Full Text Available Successful direct wafer bonding between InP and silicon-on-insulator (SOI wafers has been demonstrated by adopting a 20-nm-thick Al2O3 as the intermediate layer. A detailed investigation on the property of the bonding interface is carried out. Water contact angle test reveals an improved hydrophilicity for both the InP and the Al2O3/SOI wafers after oxygen plasma surface activation. X-ray photoelectron spectroscopy is employed to characterize the bonding interface before and after the wafer bonding process. It is found that oxides are formed on the bonding interface during bonding, which helps ensure high quality hydrophilic bonding.

  7. Modification of Purine and Pyrimidine Nucleosides by Direct C-H Bond Activation

    Yong Liang


    Full Text Available Transition metal-catalyzed modifications of the activated heterocyclic bases of nucleosides as well as DNA or RNA fragments employing traditional cross-coupling methods have been well-established in nucleic acid chemistry. This review covers advances in the area of cross-coupling reactions in which nucleosides are functionalized via direct activation of the C8-H bond in purine and the C5-H or C6-H bond in uracil bases. The review focuses on Pd/Cu-catalyzed couplings between unactivated nucleoside bases with aryl halides. It also discusses cross-dehydrogenative arylations and alkenylations as well as other reactions used for modification of nucleoside bases that avoid the use of organometallic precursors and involve direct C-H bond activation in at least one substrate. The scope and efficiency of these coupling reactions along with some mechanistic considerations are discussed.

  8. Rh(III-catalyzed directed C–H bond amidation of ferrocenes with isocyanates

    Satoshi Takebayashi


    Full Text Available [RhCp*(OAc2(H2O] [Cp* = pentamethylcyclopentadienyl] catalyzed the C–H bond amidation of ferrocenes possessing directing groups with isocyanates in the presence of 2 equiv/Rh of HBF4·OEt2. A variety of disubstituted ferrocenes were prepared in high yields, or excellent diastereoselectivities.

  9. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation.

    Chen, Xuan; Zhu, Chongwei; Cui, Xiuling; Wu, Yangjie


    An efficient and direct 2-acetoxylation of quinoline N-oxides via copper(I) catalyzed C-H bond activation has been developed. This transformation was achieved using TBHP as an oxidant in the cross-dehydrogenative coupling (CDC) reaction of quinoline N-oxides with aldehydes, and provided a practical pathway to 2-acyloxyl quinolines.

  10. Direct cooled power electronics substrate

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN


    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  11. Bond selectivity in electron-induced reaction due to directed recoil on an anisotropic substrate

    Anggara, Kelvin; Huang, Kai; Leung, Lydie; Chatterjee, Avisek; Cheng, Fang; Polanyi, John C.


    Bond-selective reaction is central to heterogeneous catalysis. In heterogeneous catalysis, selectivity is found to depend on the chemical nature and morphology of the substrate. Here, however, we show a high degree of bond selectivity dependent only on adsorbate bond alignment. The system studied is the electron-induced reaction of meta-diiodobenzene physisorbed on Cu(110). Of the adsorbate's C-I bonds, C-I aligned `Along' the copper row dissociates in 99.3% of the cases giving surface reaction, whereas C-I bond aligned `Across' the rows dissociates in only 0.7% of the cases. A two-electronic-state molecular dynamics model attributes reaction to an initial transition to a repulsive state of an Along C-I, followed by directed recoil of C towards a Cu atom of the same row, forming C-Cu. A similar impulse on an Across C-I gives directed C that, moving across rows, does not encounter a Cu atom and hence exhibits markedly less reaction.

  12. Solder Joint Health Monitoring Testbed

    Delaney, Michael M.; Flynn, James G.; Browder, Mark E.


    A method of monitoring the health of selected solder joints, called SJ-BIST, has been developed by Ridgetop Group Inc. under a Small Business Innovative Research (SBIR) contract. The primary goal of this research program is to test and validate this method in a flight environment using realistically seeded faults in selected solder joints. An additional objective is to gather environmental data for future development of physics-based and data-driven prognostics algorithms. A test board is being designed using a Xilinx FPGA. These boards will be tested both in flight and on the ground using a shaker table and an altitude chamber.

  13. Handbook of machine soldering SMT and TH

    Woodgate, Ralph W


    A shop-floor guide to the machine soldering of electronics Sound electrical connections are the operational backbone of every piece of electronic equipment-and the key to success in electronics manufacturing. The Handbook of Machine Soldering is dedicated to excellence in the machine soldering of electrical connections. Self-contained, comprehensive, and down-to-earth, it cuts through jargon, peels away outdated notions, and presents all the information needed to select, install, and operate machine soldering equipment. This fully updated and revised volume covers all of the new technologies and processes that have emerged in recent years, most notably the use of surface mount technology (SMT). Supplemented with 200 illustrations, this thoroughly accessible text Describes reflow and wave soldering in detail, including reflow soldering of SMT boards and the use of nitrogen blankets * Explains the setup, operation, and maintenance of a variety of soldering machines * Discusses theory, selection, and control met...

  14. Indirect versus direct photoionization with ultrashort pulses: interferences and time-resolved bond-length changes

    Gräfe, S.; Engel, V.


    The photoionization of NaI molecules with femtosecond laser pulses leads to photoelectron distributions which vary with the delay between a pump- and a probe-pulse. If the vibrational wave packet as prepared in the pump-transition is located in a region where the bonding character is ionic, the photoelectron, due to its localization on the iodine atom, may be ejected directly or be scattered from the Na + ion. This leads to structures in the photoelectron spectrum which, in turn, reflect temporal bond-length changes.

  15. Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers with Low-Temperature Wafer Direct Bonding

    Xiaoqing Wang


    Full Text Available This paper presents a fabrication method of capacitive micromachined ultrasonic transducers (CMUTs by wafer direct bonding, which utilizes both the wet chemical and O2plasma activation processes to decrease the bonding temperature to 400 °C. Two key surface properties, the contact angle and surface roughness, are studied in relation to the activation processes, respectively. By optimizing the surface activation parameters, a surface roughness of 0.274 nm and a contact angle of 0° are achieved. The infrared images and static deflection of devices are assessed to prove the good bonding effect. CMUTs having silicon membranes with a radius of 60 μm and a thickness of 2 μm are fabricated. Device properties have been characterized by electrical and acoustic measurements to verify their functionality and thus to validate this low-temperature process. A resonant frequency of 2.06 MHz is obtained by the frequency response measurements. The electrical insertion loss and acoustic signal have been evaluated. This study demonstrates that the CMUT devices can be fabricated by low-temperature wafer direct bonding, which makes it possible to integrate them directly on top of integrated circuit (IC substrates.

  16. Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer

    Jeong, Gi Seok; Baek, Dong-Hyun; Jung, Ha Chul; Song, Ji Hoon; Moon, Jin Hee; Hong, Suck Won; Kim, In Young; Lee, Sang-Hoon


    A variety of flexible and stretchable electronics have been reported for use in flexible electronic devices or biomedical applications. The practical and wider application of such flexible electronics has been limited because commercial electronic components are difficult to be directly integrated into flexible stretchable electronics and electroplating is still challenging. Here, we propose a novel method for fabricating flexible and stretchable electronic devices using a porous elastomeric substrate. Pressurized steam was applied to an uncured polydimethylsiloxane layer for the simple and cost-effective production of porous structure. An electroplated nickel anchor had a key role in bonding commercial electronic components on elastomers by soldering techniques, and metals could be stably patterned and electroplated for practical uses. The proposed technology was applied to develop a plaster electrocardiogram dry electrode and multi-channel microelectrodes that could be used as a long-term wearable biosignal monitor and for brain signal monitoring, respectively.

  17. Organic chemistry. Functionalization of C(sp3)-H bonds using a transient directing group.

    Zhang, Fang-Lin; Hong, Kai; Li, Tuan-Jie; Park, Hojoon; Yu, Jin-Quan


    Proximity-driven metalation has been extensively exploited to achieve reactivity and selectivity in carbon-hydrogen (C-H) bond activation. Despite the substantial improvement in developing more efficient and practical directing groups, their stoichiometric installation and removal limit efficiency and, often, applicability as well. Here we report the development of an amino acid reagent that reversibly reacts with aldehydes and ketones in situ via imine formation to serve as a transient directing group for activation of inert C-H bonds. Arylation of a wide range of aldehydes and ketones at the β or γ positions proceeds in the presence of a palladium catalyst and a catalytic amount of amino acid. The feasibility of achieving enantioselective C-H activation reactions using a chiral amino acid as the transient directing group is also demonstrated.

  18. Eddy current quality control of soldered current-carrying busbar splices of superconducting magnets

    Kogan, L; Savary, F; Principe, R; Datskov, V; Rozenfel'd, E; Khudjakov, B


    The eddy current technique associated with a U-shaped transducer is studied for the quality control of soldered joints between superconducting busbars ('splices'). Two other quality control techniques, based on X-rays and direct measurement of the electrical resistance, are also studied for comparison. A comparative analysis of the advantages and disadvantages of these three methods in relation to the quality control of soldered superconducting busbar cables enclosed in copper shells is used for benchmarking. The results of inspections with the U-shaped eddy current transducer carried out on several sample joints presenting different types of soldering defects show the potential of this type of nondestructive (ND) quality control technique.

  19. Evaluation of Scattered Wave and Stress Concentration Field in a Damaged Solder Joint

    Dineva, P.; Gross, D.; Rangelov, T.


    Two different, but equally important problems for solder joint reliability are solved. The evaluation of the dynamic stress concentration field in the thin base layer of a damaged solder joint is the first one. It is considered as a rectangular plate with a central macro-crack surrounded with randomly distributed micro-cracks, subjected to uniform time-harmonic tension. The damaged solder joint state is described by the model of Gross and Zhang [1] (International Journal of Solids and Structures29, 1763-1779). The information of the stress concentration field in a damaged solder joint is important to understand the mechanisms in the base components of all electronic packages.The second problem is ultrasonic wave scattering in a solder joint damaged by micro-cracks, considered as a two-dimensional finite multi-layered system. The solution of this problem may aid the creation of the modern non-destructive evaluation method (NDEM) for a high quality control of products in electronic industry.The method of the solution of both boundary-value problems is a direct BIEM (boundary integral equation method). The numerical results obtained for a solder joint with real geometry and physical properties show how the acoustic and stress concentration fields depend on the solder joint damage state. The character of this dependence is discussed.

  20. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    Choi, W B; Lee Jae Sik; Sung, M Y


    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  1. Improving the Reliability of Si Die Attachment with Zn-Sn-Based High-Temperature Pb-Free Solder Using a TiN Diffusion Barrier

    Kim, Seongjun; Kim, Keun-Soo; Kim, Sun-Sik; Suganuma, Katsuaki; Izuta, Goro


    The thermal fatigue reliability of Si die-attached joints with Zn-30wt.%Sn, high-temperature, Pb-free solder was investigated, focusing on the interfacial microstructure and joining strength of a Cu/solder/Cu joint during thermal cycling. A sound die attachment on an aluminum nitride (AlN) direct-bonded copper (DBC) substrate was achieved by forming Cu-Zn intermetallic compound (IMC) layers at the interface with the Cu of the substrate. During the thermal cycling test performed between -40°C and 125°C, thermal fatigue cracks were induced by the growth of Cu-Zn IMCs at the interface with the Cu. A thin titanium nitride (TiN) film was applied to suppress the formation of Cu-Zn IMCs. Adequate joint formation was accomplished by using an Au/TiN-coated DBC substrate, and only the TiN layer was observed at both interfaces. In conjunction with the TiN diffusion barrier, the Si die-attached joint created with Zn-30wt.%Sn solder exhibited a stable interfacial microstructure during thermal cycling. No microstructural changes, such as IMC formation, grain growth or formation of fatigue cracks, were observed, and the joining strength was maintained even after 2000 cycles.

  2. Horizon shells and BMS-like soldering transformations

    Blau, Matthias; O'Loughlin, Martin


    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  3. Horizon shells and BMS-like soldering transformations

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)


    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  4. Laser solder repair technique for nerve anastomosis: temperatures required for optimal tensile strength

    McNally-Heintzelman, Karen M.; Dawes, Judith M.; Lauto, Antonio; Parker, Anthony E.; Owen, Earl R.; Piper, James A.


    Laser-assisted repair of nerves is often unsatisfactory and has a high failure rate. Two disadvantages of laser assisted procedures are low initial strength of the resulting anastomosis and thermal damage of tissue by laser heating. Temporary or permanent stay sutures are used and fluid solders have been proposed to increase the strength of the repair. These techniques, however, have their own disadvantages including foreign body reaction and difficulty of application. To address these problems solid protein solder strips have been developed for use in conjunction with a diode laser for nerve anastomosis. The protein helps to supplement the bond, especially in the acute healing phase up to five days post- operative. Indocyanine green dye is added to the protein solder to absorb a laser wavelength (approximately 800 nm) that is poorly absorbed by water and other bodily tissues. This reduces the collateral thermal damage typically associated with other laser techniques. An investigation of the feasibility of the laser-solder repair technique in terms of required laser irradiance, tensile strength of the repair, and solder and tissue temperature is reported here. The tensile strength of repaired nerves rose steadily with laser irradiance reaching a maximum of 105 plus or minus 10 at 12.7 When higher laser irradiances were used the tensile strength of the resulting bonds dropped. Histopathological analysis of the laser- soldered nerves, conducted immediately after surgery, showed the solder to have adhered well to the perineurial membrane, with minimal damage to the inner axons of the nerve. The maximum temperature reached at the solder surface and at the solder/nerve interface, measured using a non-contact fiber optic radiometer and thermocouple respectively, also rose steadily with laser irradiance. At 12.7, the temperatures reached at the surface and at the interface were 85 plus or minus 4 and 68 plus or minus 4 degrees Celsius respectively

  5. Palladium(II)-Catalyzed C-H Bond Activation/C-C and C-O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans.

    Neog, Kashmiri; Borah, Ashwini; Gogoi, Pranjal


    A palladium catalyzed cascade reaction of 4-hydroxycoumarins and in situ generated arynes has been developed for the direct synthesis of coumestans. This cascade strategy proceeds via C-H bond activation/C-O and C-C bond formations in a single reaction vessel. This methodology affords moderate to good yields of coumestans and is tolerant of a variety of functional groups including halide. The methodology was applied to the synthesis of natural product flemichapparin C.


    Y.H. Tian; C.Q. Wang; W.F. Zhou


    Flip chip bonding has become a primary technology that has found application in the chip interconnection process in the electronic manufacturing industry in recent years. The solder joints of the flip chip bonding are small and consist of complicated microstructures such as Sn solution,eutectic mixture, and intermetallic compounds (IMCs), whose mechanical performance is quite different from the original solder bulk. The evolution of microstructure of the flip chip solder joints under thermal aging was analyzed. The results show that with an increase in aging time, coarsening of solder bulk matrix and AuSn4 IMCs occurred within the solder. The IMCs that are formed at the bottom side of the flip chip bond were different from those on the top side during the aging process. ( Cu, Ni, Au )6Sn5 were formed at the interfaces of both sides, and large complicated (Au, Ni,Cu)Sn4 IMCs appeared for some time near the bottom interface after aging, but they disappeared again and thus ( Cu, Ni,Au )6Sns IMC thickness increased considerably. The influence of reflow times during the flip chip bonding (as-bonded condition) on the characteristics of interfacial IMCs was weakened when subjected to the aging process.

  7. Lead free solder mechanics and reliability

    Pang, John Hock Lye


    Lead-free solders are used extensively as interconnection materials in electronic assemblies and play a critical role in the global semiconductor packaging and electronics manufacturing industry. Electronic products such as smart phones, notebooks and high performance computers rely on lead-free solder joints to connect IC chip components to printed circuit boards. Lead Free Solder: Mechanics and Reliability provides in-depth design knowledge on lead-free solder elastic-plastic-creep and strain-rate dependent deformation behavior and its application in failure assessment of solder joint reliability. It includes coverage of advanced mechanics of materials theory and experiments, mechanical properties of solder and solder joint specimens, constitutive models for solder deformation behavior; numerical modeling and simulation of solder joint failure subject to thermal cycling, mechanical bending fatigue, vibration fatigue and board-level drop impact tests. This book also: Discusses the mechanical prope...

  8. Microstructurally based thermomechanical fatigue lifetime model of solder joints for electronic applications

    Frear, D.R.; Rashid, M.M.; Burchett, S.N.


    We present a new methodology for predicting the fatigue life of solder joints for electronics applications. This approach involves integration of experimental and computational techniques. The first stage involves correlating the manufacturing and processing parameters with the starting microstructure of the solder joint. The second stage involves a series of experiments that characterize the evolution of the microstructure during thermal cycling. The third stage consists of a computer modeling and simulation effort that utilizes the starting microstructure and experimental data to produce a reliability prediction of the solder joint. This approach is an improvement over current methodologies because it incorporates the microstructure and properties of the solder directly into the model and allows these properties to evolve as the microstructure changes during fatigue.

  9. Bond strength of individual carbon nanotubes grown directly on carbon fibers

    Kim, Kyoung Ju; Lee, Geunsung; Kim, Sung-Dae; Kim, Seong-Il; Youk, Ji Ho; Lee, Jinyong; Kim, Young-Woon; Yu, Woong-Ryeol


    The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (˜200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

  10. Bond strength of individual carbon nanotubes grown directly on carbon fibers.

    Kim, Kyoung Ju; Lee, Geunsung; Kim, Sung-Dae; Kim, Seong-Il; Youk, Ji Ho; Lee, Jinyong; Kim, Young-Woon; Yu, Woong-Ryeol


    The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (∼200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

  11. Comparative study on direct and indirect bracket bonding techniques regarding time length and bracket detachment

    Jefferson Vinicius Bozelli


    Full Text Available OBJECTIVE: The aim of this study was to assess the time spent for direct (DBB - direct bracket bonding and indirect (IBB - indirect bracket bonding bracket bonding techniques. The time length of laboratorial (IBB and clinical steps (DBB and IBB as well as the prevalence of loose bracket after a 24-week follow-up were evaluated. METHODS: Seventeen patients (7 men and 10 women with a mean age of 21 years, requiring orthodontic treatment were selected for this study. A total of 304 brackets were used (151 DBB and 153 IBB. The same bracket type and bonding material were used in both groups. Data were submitted to statistical analysis by Wilcoxon non-parametric test at 5% level of significance. RESULTS: Considering the total time length, the IBB technique was more time-consuming than the DBB (p < 0.001. However, considering only the clinical phase, the IBB took less time than the DBB (p < 0.001. There was no significant difference (p = 0.910 for the time spent during laboratorial positioning of the brackets and clinical session for IBB in comparison to the clinical procedure for DBB. Additionally, no difference was found as for the prevalence of loose bracket between both groups. CONCLUSION: the IBB can be suggested as a valid clinical procedure since the clinical session was faster and the total time spent for laboratorial positioning of the brackets and clinical procedure was similar to that of DBB. In addition, both approaches resulted in similar frequency of loose bracket.

  12. The Significance of Multivalent Bonding Motifs and “Bond Order” in DNA-Directed Nanoparticle Crystallization

    Thaner, Ryan V.; Eryazici, Ibrahim; Macfarlane, Robert J.; Brown, Keith A.; Lee, Byeongdu; Nguyen, SonBinh T.; Mirkin, Chad A.


    Multivalent oligonucleotide-based bonding elements have been synthesized and studied for the assembly and crystallization of gold nanoparticles. Through the use of organic branching points, divalent and trivalent DNA linkers were readily incorporated into the oligonucleotide shells that define DNA-nanoparticles and compared to monovalent linker systems. These multivalent bonding motifs enable the change of "bond strength" between particles and therefore modulate the effective "bond order." In addition, the improved accessibility of strands between neighboring particles, either due to multivalency or modifications to increase strand flexibility, gives rise to superlattices with less strain in the crystallites compared to traditional designs. Furthermore, the increased availability and number of binding modes also provide a new variable that allows previously unobserved crystal structures to be synthesized, as evidenced by the formation of a thorium phosphide superlattice.

  13. Study on laser and hot air reflow soldering of PBGA solder ball

    田艳红; 王春青


    Laser and hot air reflow soldering of PBGA solder ball was investigated. Experimental results showed that surface quality and shear strength of solder bump reflowed by laser was superior than the solder bump by hot air, and the microstructure within the solder bump reflowed by laser was much finer. Analysis on interfacial reaction showed that eutectic solder reacted with Au/Ni/Cu pad shortly after the solder was melted. Interface of solder bump reflowed by laser consists of a continuous AuSn4 layer and remnant Au element. Needle-like AuSn4 grew sidewise from interface, and then spread out to the entire interface region. A thin layer of Ni3Sn4 intermetallic compound was found at the interface of solder bump reflowed by hot air, and AuSn4 particles distributed within the whole solder bump randomly. The combination effect of the continuous AuSn4 layer and finer eutectic microstructure contributes to the higher shear strength of solder bump reflowed by laser.

  14. Transparent and electrically conductive GaSb/Si direct wafer bonding at low temperatures by argon-beam surface activation

    Predan, F.; Reinwand, D.; Klinger, V.; Dimroth, F.


    Direct wafer bonds of the material system n-GaSb/n-Si have been achieved by means of a low-temperature direct wafer bonding process, enabling an optical transparency of the bonds along with a high electrical conductivity of the boundary layer. In the used technique, the surfaces are activated by sputter-etching with an argon fast-atom-beam (FAB) and bonded in ultra-high vacuum. The bonds were annealed at temperatures between 300 and 400 °C, followed by an optical, mechanical and electrical characterization of the interface. Additionally, the influence of the sputtering on the surface topography of the GaSb was explicitly investigated. Fully bonded wafer pairs with high bonding strengths were found, as no blade could be inserted into the bonds without destroying the samples. The interfacial resistivities of the bonded wafers were significantly reduced by optimizing the process parameters, by which Ohmic interfacial resistivities of less than 5 mΩ cm2 were reached reproducibly. These promising results make the monolithic integration of GaSb on Si attractive for various applications.



    Mar 1, 2012 ... Based on this, a wettability test using copper grid was conducted on the solder alloys produced. The result shows that wetting time varied from 4 seconds to 5 seconds for the lead-free solders ... at the interfaces [4]. This study ...

  16. Nano-soldering to single atomic layer

    Girit, Caglar O.; Zettl, Alexander K.


    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  17. Direct-bonded Magnesite-Chrome Bricks for Kilns and Furnaces of Building Materials Industry JC 497-92 ( 96 )

    Yu Lingyan; Chai Junlan


    @@ 1 Contents and Applied Scope This standard specifies the classification, shapes and dimensions, technical requirements, test methods, inspection rules, marking, packing, transportation, storage and quality certificate of direct-bonded magne-site -chrome bricks for building materials industry.

  18. Understanding the Influence of Copper Nanoparticles on Thermal Characteristics and Microstructural Development of a Tin-Silver Solder

    Lin, D. C.; Srivatsan, T. S.; Wang, G.-X.; Kovacevic, R.


    This paper presents and discusses issues relevant to solidification of a chosen lead-free solder, the eutectic Sn-3.5%Ag, and its composite counterparts. Direct temperature recordings for the no-clean solder paste during the simulated reflow process revealed a significant amount of undercooling to occur prior to the initiation of solidification of the eutectic Sn-3.5%Ag solder, which is 6.5 °C, and for the composite counterparts, it is dependent on the percentage of copper nanopowder. Temperature recordings revealed the same temperature level of 221 °C for both melting (from solid to liquid) and final solidification (after recalescence) of the Sn-3.5%Ag solder. Addition of copper nanoparticles was observed to have no appreciable influence on melting temperature of the composite solder. However, it does influence solidification of the composite solder. The addition of 0.5 wt.% copper nanoparticles lowered the solidification temperature to 219.5 °C, while addition of 1.0 wt.% copper nanoparticles lowered the solidification temperature to 217.5 °C, which is close to the melting point of the ternary eutectic Sn-Ag-Cu solder alloy, Sn-3.7Ag-0.9Cu. This indicates the copper nanoparticles are completely dissolved in the eutectic Sn-3.5%Ag solder and precipitate as the Cu6Sn5, which reinforces the eutectic solder. Optical microscopy observations revealed the addition of 1.0 wt.% of copper nanoparticles to the Sn-3.5%Ag solder results in the formation and presence of the intermetallic compound Cu6Sn5. These particles are polygonal in morphology and dispersed randomly through the solder matrix. Addition of microsized copper particles cannot completely dissolve in the eutectic solder and projects a sunflower morphology with the solid copper particle surrounded by the Cu6Sn5 intermetallic compound coupled with residual porosity present in the solder sample. Microhardness measurements revealed the addition of copper nanopowder to the eutectic Sn-3.5%Ag solder resulted in

  19. High-precision optomechanical lens system for space applications assembled by a local soldering technique

    Pleguezuelo, Pol Ribes; Koechlin, Charlie; Hornaff, Marcel; Kamm, Andreas; Beckert, Erik; Fiault, Guillaume; Eberhardt, Ramona; Tünnermann, Andreas


    Soldering using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glass, ceramics, and optical crystals. This is due to a localized and minimized input of thermal energy. Solderjet bumping technology has been used to assemble a lens mount breadboard using specifications and requirements found for the optical beam expander for the European Space Agency EarthCare Mission. The silica lens and a titanium barrel have been designed and assembled with this technology in order to withstand the stringent mission demands of handling high mechanical and thermal loads without losing the optical performance. Finally, a high-precision optomechanical lens mount has been assembled with minimal localized stress (<1 MPa) showing outstanding performance in terms of wave-front error and beam depolarization ratio before and after environmental tests.

  20. Effect of the Fourth Element on Bonding of Si3N4 Ceramics with Y2O3-A l2O3-SiO2 Glass Solders%第四组元对Y2O3-Al2O3-SiO2钎料连接氮化硅陶瓷的影响



    在Y2O3-Al2O3-SiO2(YAS)钎料中添加TiO2(YT)和Si3N4(YN), 并进 行氮化硅陶瓷的连接。 用四点弯曲方法测定不同连接工艺下的连接强度, 并对连接界面进 行SEM, EPMA和XRD分析。 接头强度随着保温时间、 连接温度的增加, 而逐渐增加。 在 达到峰值后, 连接强度逐渐降低。 在YAS中添加TiO2, 可以形成Si3N4/Y-Sialon 玻璃+TiN/TiN/Y-Sialo玻璃的梯度层界面; 而在YAS钎料中添加Si3N4, 可以降低接 头界面的热应力, 改善接头强度。 微观分析表明: 接头强度的变化主要与界面反应有关 。%Bonding of Si3N4 ceramics was performed with Y2O3-Al2O3-SiO2(YAS )-X glass solders, which were mixed with TiO2 (YT) and Si3N4(YN) respe ctively. The effects of bonding conditions and interfacial reaction on the joint strength were studied. The joint strength of different bonding conditions was m easured by four-point bending tests. The interfacial microstructures were obser ved and analyzed by SEM, EPMA and XRD respectively. It is shown that with the in crease of bonding temperature and holding time, the joint strength increases rea ching a peak, and then decreases. When TiO2 is put into YAS solder, the bondi ng interface with Si3N4/Y-Sialon glass+TiN/TiN/Y-Sialo glass is formed. W hen YAS solder is mixed with Si3N4 powder, the interfacial thermal stress m ay be decreased, and the joint strength is enhanced. According to microanalyses , the bonding strength is related to interface reaction.

  1. Comparative shear tests of some low temperature lead-free solder pastes

    Branzei, Mihai; Plotog, Ioan; Varzaru, Gaudentiu; Cucu, Traian C.


    The range of electronic components and as a consequence, all parts of automotive electronic equipment operating temperatures in a vehicle is given by the location of that equipment, so the maximum temperature can vary between 358K and 478K1. The solder joints could be defined as passive parts of the interconnection structure of automotive electronic equipment, at a different level, from boards of electronic modules to systems. The manufacturing costs reduction necessity and the RoHS EU Directive3, 7 consequences generate the trend to create new Low-Temperature Lead-Free (LTLF) solder pastes family9. In the paper, the mechanical strength of solder joints and samples having the same transversal section as resistor 1206 case type made using the same LTLF alloys into Vapour Phase Soldering (VPS) process characterized by different cooling rates (slow and rapid) and two types of test PCBs pads finish, were benchmarked at room temperature. The presented work extends the theoretical studies and experiments upon heat transfer in VPSP in order to optimize the technology for soldering process (SP) of automotive electronic modules and could be extended for home and modern agriculture appliances industry. The shear forces (SF) values of the LTLF alloy samples having the same transversal section as resistor 1206 case type will be considered as references values of a database useful in the new solder alloy creation processes and their qualification for automotive electronics domain.

  2. Experimental Characterisation and Multi-Physic Modelling of Direct Bonding Mechanical Behaviour: Application to Spatial Optical Systems

    Cocheteau, N.; Maurel-Pantel, A.; Lebon, F.; Rosu, I.; Ait-Zaid, S.; Savin de Larclause, I.; Salaun, Y.


    Direct bonding is a well-known process. However in order to use this process in spatial instrument fabrication the mechanical resistance needs to be quantified precisely. In order to improve bonded strength, optimal parameters of the process are found by studying the influence of annealing time, temperature and roughness which are studied using three experimental methods: double shear, cleavage and wedge tests. Those parameters are chosen thanks to the appearance of time/temperature equivalence. All results brought out the implementation of a multi-physic model to predict the mechanical behavior of direct bonding interface.

  3. Direct Acylation of C(sp(3))-H Bonds Enabled by Nickel and Photoredox Catalysis.

    Joe, Candice L; Doyle, Abigail G


    Using nickel and photoredox catalysis, the direct functionalization of C(sp(3))-H bonds of N-aryl amines by acyl electrophiles is described. The method affords a diverse range of α-amino ketones at room temperature and is amenable to late-stage coupling of complex and biologically relevant groups. C(sp(3))-H activation occurs by photoredox-mediated oxidation to generate α-amino radicals which are intercepted by nickel in catalytic C(sp(3))-C coupling. The merger of these two modes of catalysis leverages nickel's unique properties in alkyl cross-coupling while avoiding limitations commonly associated with transition-metal-mediated C(sp(3))-H activation, including requirements for chelating directing groups and high reaction temperatures.

  4. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew


    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  5. Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates

    Leinenbach, C.; Valenza, F.; Giuranno, D.; Elsener, H. R.; Jin, S.; Novakovic, R.


    Au-Ge-based alloys are interesting as novel high-temperature lead-free solders because of their low melting point, good thermal and electrical conductivity, and high corrosion resistance. In the present work, the wetting and soldering behavior of the eutectic Au-28Ge (at.%) alloy on Cu and Ni substrates have been investigated. Good wetting on both substrates with final contact angles of 13° to 14° was observed. In addition, solder joints with bond shear strength of 30 MPa to 35 MPa could be produced under controlled conditions. Cu substrates exhibit pronounced dissolution into the Au-Ge filler metal. On Ni substrates, the NiGe intermetallic compound was formed at the filler/substrate interface, which prevents dissolution of Ni into the solder. Using thin filler metal foils (25 μm), complete consumption of Ge in the reaction at the Ni interface was observed, leading to the formation of an almost pure Au layer in the soldering zone.

  6. Low cycle fatigue of lead free solder joints

    Schemmann, Lars; Wedi, Andre; Baither, Dietmar; Schmitz, Guido [Institut fuer Materialphysik, Westf. Wilhelms-Universitaet, Muenster (Germany)


    Presently solders containing lead are banned from consumer electronics. Important alternatives are the Sn-Ag-Cu (SAC) solders and solders containing antimony. This work studies the isothermal low cycle fatigue properties of SAC solders and the SnSb(8) solder. For the experiments, model solder joints were produced and used. They consist of two pure copper plates joined together by a circular disk of solder. Low cycle fatigue experiments were done under displacement control. Furthermore hardness was tested by a micro indenter. In order to find an explanation for the different lifetimes of the solders, several micro structural investigations were performed. For this we used transmission and scanning electron microscopy as well as optical microscopy. The measured data showed a strong relation between lifetime and hardness of the solder alloy. We also found, that the type of solder influences the crack propagation.

  7. GeSn-on-insulator substrate formed by direct wafer bonding

    Lei, Dian; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Wang, Bing; Gong, Xiao; Tan, Chuan Seng; Yeo, Yee-Chia


    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge1-xSnx layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO2 on Ge1-xSnx, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge1-xSnx layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge1-xSnx epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge1-xSnx film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  8. Heterojunction characteristics of ZnO and CuO substrates formed by direct bonding

    Abe, Hiroshi; Fujishima, Masahide; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi [Department of Electronics and Information Systems, Akita Prefectural University, Yuri-honjo, Akita 015-0055 (Japan)


    The n-ZnO/p-CuO heterojunction characteristics have been investigated by direct bonding of ZnO and CuO substrates at room temperatures, and by post-annealing at 800 C. The ZnO substrate was fabricated by mixing of ZnO and Al{sub 2}O{sub 3} (2%) powders, pressing at 50 MPa, and sintering at 1400 C while the CuO substrate was fabricated by mixing of CuO and Li{sub 2}CO{sub 3} (1%) powders, pressing at 300 MPa, and sintering at 700 C. Rectifying behaviour with an ideality factor of 126 was observed after bonding of these substrates. Post-annealing of the heterojunction, however, significantly increased both the forward and the reverse currents, and the rectifying behaviour was lost. Symmetrical I-V curves with threshold voltages of about {+-} 1 V were observed and this degradation could be explained by impurity (Al and Li) segregation at the junction interface. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. GeSn-on-insulator substrate formed by direct wafer bonding

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail:, E-mail:; Yeo, Yee-Chia, E-mail:, E-mail: [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Lee, Kwang Hong; Wang, Bing [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); Bao, Shuyu [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Chuan Seng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)


    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge{sub 1-x}Sn{sub x} layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO{sub 2} on Ge{sub 1-x}Sn{sub x}, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge{sub 1-x}Sn{sub x} layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge{sub 1-x}Sn{sub x} epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge{sub 1-x}Sn{sub x} film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  10. A model ternary heparin conjugate by direct covalent bond strategy applied to drug delivery system.

    Wang, Ying; Xin, Dingcheng; Hu, Jiawen; Liu, Kaijian; Pan, Jiangao; Xiang, Jiannan


    A model ternary heparin conjugate by direct covalent bond strategy has been developed, in which modified heparin using active mix anhydride as intermediate conjugates with model drug molecule and model specific ligand, respectively. Designed ester bonds between model drug and heparin facilitate hydrolysis kinetics research. The strategy can be extended to design and synthesize a targeted drug delivery system. The key point is to use mixed anhydride groups as activating intermediates to mediate the synthesis of the ternary heparin conjugate. Formation of mixed anhydride is detected by the conductimetry experiment. The ternary heparin conjugate is characterized by (13)C NMR, FT-IR and GPC, respectively. The decreased trend on degree of substitution (DS) is consistent with that of introduced anticancer drug and specific ligand in drug delivery system. Moreover, their anticoagulant activity is evaluated by measuring activated partial thromboplastin time (APTT) and anti-factor Xa activity. The results show that model ternary heparin conjugate with reduced anticoagulant activity may avoid the risk of severe hemorrhagic complication during the administration and is potential to develop a safe and effective drug delivery system on anticancer research.

  11. Thermomechanical Behavior of Monolithic SN-AG-CU Solder and Copper Fiber Reinforced Solders


    controlled fatigue life, likely because of increased void -nucleation via creep-fatigue interactions. Since the solder is largely under plastically deform the solder in order to break the oxide layers and eliminate some minor voids around the NiTi particles. Figure 32... Underfill Constraint Effects during Thermomechanical Cycling of Flip Chip Solder Joints,” Journal of Electronic Materials, Vol. 31, No. 4, 2002

  12. Lead Ingestion Hazard in Hand Soldering Environments.



  13. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    Kojima, Takuto, E-mail:; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511 (Japan)


    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi{sub 2}.

  14. AgNO2-mediated direct nitration of the quinoxaline tertiary benzylic C-H bond and direct conversion of 2-methyl quinoxalines into related nitriles.

    Wu, Degui; Zhang, Jian; Cui, Jianhai; Zhang, Wei; Liu, Yunkui


    A unique method for AgNO2-mediated direct nitration of the quinoxaline tertiary C-H bond and direct conversion of 2-methyl quinoxalines into 2-quinoxaline nitriles under oxidative conditions has been developed. This protocol provides an efficient way to access quinoxaline containing nitroalkanes and nitriles depending on different substrate selection.

  15. Rapid fabrication and packaging of AlGaN/GaN high-temperature ultraviolet photodetectors using direct wire bonding

    So, Hongyun; Senesky, Debbie G.


    Cost-effective fabrication and rapid packaging of AlGaN/GaN ultraviolet (UV) photodetectors was demonstrated using direct wire bonding between aluminum wires and a GaN surface. The fabricated photodetectors showed stable dark current levels through the highly conductive 2D electron gas (2DEG), which was electrically connected to aluminum bonding wires. At room temperature, the current passing through the 2DEG rapidly increased upon exposure to UV light because of the generated electrons excited in the AlGaN/GaN layers. In addition, the devices showed consistent and reliable operation at high temperatures up to 100 °C with mechanically stable bonding wires (pull strength of 3-5.2 gram-force), supporting the use of direct wire bonding techniques to fabricate simple AlGaN/GaN sensors for UV detection within harsh environments, such as downhole and space exploration applications.

  16. Interfacial reaction of eutectic AuSi solder with Si (100) and Si (111) surfaces

    Jang, Jin-Wook; Hayes, Scott; Lin, Jong-Kai; Frear, Darrel R.


    The dissolution behavior of Si (100) and (111) dies by eutectic AuSi solder was investigated. On the Si (100) surface, the dissolution primarily occurred by the formation of craters resulting in a rough surface. The dissolution of the Si (111) resulted in a relatively smooth surface. The morphology of the Si (100) surface during a AuSi soldering reaction exhibited more time-dependent behavior and the etching craters on a Si (100) surface grew larger with time whereas Si (111) did not significantly change. This difference was ascribed to the surface energy differences between Si (111) and (100) surfaces that resulted in the two- and three-dimensional dissolution behaviors, respectively. This difference plays an important role in the formation of voids during the AuSi die bonding. The etching craters on Si (100) act as a AuSi solder sink and the regions surrounded by etch pits tend to become voids. For Si (111), flat surfaces were observed in the voided regions. Cross section analysis showed that no solder reaction occurred in the voided region of the Si (111) surface. This suggests the possibility of the formation of a thin inert layer in a potentially voided region prior to assembly. To achieve void-free die bonding, different parameters must be adjusted to the Si (100) and Si (111) surfaces with the AuSi alloy.

  17. Characteristics of intermetallics and micromechanical properties during thermal ageing of Sn-Ag-Cu flip-chip solder interconnects

    Li Dezhi [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Liu Changqing [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)]. E-mail:; Conway, Paul P. [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)


    Sn-3.8 wt.% Ag-0.7 wt.% Cu solder was applied to Al-1 wt.% Cu bond pads with an electroless nickel (Ni-P) interlayer as an under bump metallisation (UBM). The microstructure and micromechanical properties were studied after ageing at 80 deg. C and 150 deg. C. Two types of intermetallic compounds (IMCs) were identified by electron back-scattered diffraction (EBSD), these being a (Cu, Ni){sub 6}Sn{sub 5} formed at the solder-UBM interface and Ag{sub 3}Sn in the bulk solder. The (Cu, Ni){sub 6}Sn{sub 5} layer grew very slowly during the ageing process, with no Kirkendall voids found by scanning electron microscopy (SEM) after ageing at 80 deg. C. Nano-indentation was used to analyse the mechanical properties of different phases in the solder. Both (Cu, Ni){sub 6}Sn{sub 5} and Ag{sub 3}Sn were harder and more brittle than the {beta}-Sn matrix of the Sn-Ag-Cu alloy. The branch-like morphology of the Ag{sub 3}Sn IMC, especially at the solder-UBM interface, could ultimately be detrimental to the mechanical integrity of the solder when assembled in flip-chip joints.

  18. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry

    Sun, Chenxing; Zhao, Yuan-Yuan [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5 (Canada); Curtis, Jonathan M., E-mail: [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5 (Canada)


    Highlights: ► An ozonolysis reactor was coupled in-line with mass spectrometry (O{sub 3}-MS). ► Double bond positions in FAME were determined unambiguously without standards. ► LC directly connected to O{sub 3}-MS allowed double bond localization in lipid mixtures. ► LC/O{sub 3}-MS applied to bovine fat demonstrated practical use in lipid analysis. -- Abstract: The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O{sub 3}-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O{sub 3}-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O{sub 3}-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O{sub 3}-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.

  19. Directed Binding of Gliding Bacterium, Mycoplasma mobile, Shown by Detachment Force and Bond Lifetime

    Akihiro Tanaka


    Full Text Available Mycoplasma mobile, a fish-pathogenic bacterium, features a protrusion that enables it to glide smoothly on solid surfaces at a velocity of up to 4.5 µm s−1 in the direction of the protrusion. M. mobile glides by a repeated catch-pull-release of sialylated oligosaccharides fixed on a solid surface by hundreds of 50-nm flexible “legs” sticking out from the protrusion. This gliding mechanism may be explained by a possible directed binding of each leg with sialylated oligosaccharides, by which the leg can be detached more easily forward than backward. In the present study, we used a polystyrene bead held by optical tweezers to detach a starved cell at rest from a glass surface coated with sialylated oligosaccharides and concluded that the detachment force forward is 1.6- to 1.8-fold less than that backward, which may be linked to a catch bond-like behavior of the cell. These results suggest that this directed binding has a critical role in the gliding mechanism.

  20. Wafer level bonding using localized radio-frequency induction heating


    A wafer level bonding technique by localized induction heating has been developed and demonstrated in this paper.A suitable fabrication process scheme has also been established for the localized induction heating and bonding.It takes only about 20 seconds to complete the bonding process.The temperatures of solder loops and the central area of solder loops are above 300°C and below 70°C,respectively.Due to the solder reflow,robust and hermetic glass wafer bonding is accomplished,and the average tensile strength is 6.42 MPa.Under-heated or over-heated bonding has been found to result in cracks at bonding interfaces and sputtering layer,which degrades the bonding qualities.

  1. Modeling the diffusion of solid copper into liquid solder alloys

    Rizvi, M.J. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London, SE10 9LS (United Kingdom)], E-mail:; Lu, H.; Bailey, C. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London, SE10 9LS (United Kingdom)


    During the soldering process, the copper atoms diffuse into liquid solders. The diffusion process determines integrity and the reworking possibility of a solder joint. In order to capture the diffusion scenarios of solid copper into liquid Sn-Pb and Sn-Cu solders, a computer modeling has been performed for 10 s. An analytical model has also been proposed for calculating the diffusion coefficient of copper into liquid solders. It is found that the diffusion coefficient for Sn-Pb solder is 2.74 x 10{sup -10} m{sup 2}/s and for Sn-Cu solder is 6.44 x 10{sup -9} m{sup 2}/s. The modeling results reveal that the diffusion coefficient is one of the major factors that govern the rate at which solid Cu dissolve in the molten solder. The predicted dissolved amounts of copper into solders have been validated with the help of scanning electron microscopic analysis.

  2. Organic solderability preservation evaluation. Topical report

    Becka, G.A.; McHenry, M.R.; Slanina, J.T.


    An evaluation was conducted to determine the possible replacement of the hot air solder leveling (HASL) process used in the Allied Signal Federal Manufacturing & Technologies (FM&T) Printed Wiring Board Facility with an organic solderability preservative (OSP). The drivers for replacing HASL include (1) Eliminating lead from PWB fabrication processes; (2) Potential legislation restricting use of lead, (3) Less expensive processing utilizing OSP rather than HASL processing; (4) Avoiding solder dross disposal inherent with HASL processing, (5) OSP provides flat, planar surface required for surface mount technology product, and (6) Trend to thinner PWB designs. A reduction in the cost of nonconformance (CONC) due to HASL defects (exposed copper, solderability, dewetting and non-wetting) would be realized with the incorporation of the OSP process. Several supplier HASL replacement candidates were initially evaluated. One supplier chemistry was chosen for potential use in the FM&T PWB and assembly areas.

  3. Soldering Chiralities; 2, Non-Abelian Case

    Wotzasek, C


    We study the non-abelian extension of the soldering process of two chiral WZW models of opposite chiralities, resulting in a (non-chiral) WZW model living in a 2D space-time with non trivial Riemanian curvature.

  4. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi


    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  5. Temperature versus time curves for manual and automated soldering processes

    Trent, M.A.


    Temperature-versus-time curves were recorded for various electronic components during pre-tinning, hand soldering, and drag soldering operations to determine the temperature ranges encountered. The component types investigated included a wide range of electronic assemblies. The data collected has been arranged by process and will help engineers to: (1) predetermine the thermal profile to which various components are subjected during the soldering operation; (2) decide--on the basis of component heat sensitivity and the need for thermal relief--where hand soldering would be more feasible than drag soldering; and (3) determine the optimum drag solder control parameters.

  6. Microstructural characterization and mechanical property of active soldering anodized 6061 Al alloy using Sn-3.5Ag-xTi active solders

    Wang, Wei-Lin, E-mail:; Tsai, Yi-Chia, E-mail:


    Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on the titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.

  7. SNL initiatives in electronic fluxless soldering

    Hosking, F. M.; Frear, D. R.; Vianco, P. T.; Keicher, D. M.

    Conventional soldering of electronic components generally requires the application of a chemical flux to promote solder wetting and flow. Chlorofluorocarbons (CFC) and halogenated solvents are normally used to remove the resulting flux residues. While such practice has been routinely accepted throughout the electronics industry, the environmental impact of hazardous solvents on ozone depletion will eventually limit or prevent their use. Solvent substitution or alternative technologies must be developed to meet these goals. Sandia National Laboratories (SNL), Albuquerque has a comprehensive environmentally conscious electronics manufacturing program underway that is funded by the DOE Office of Technology Development. Primary elements of the integrated task are the characterization and development of alternative fluxless soldering technologies that would eliminate circuit board cleaning associated with flux residue removal. Storage and handling of hazardous solvents and mixed solvent-flux waste would be consequently reduced during electronics soldering. This paper will report on the progress of the SNL fluxless soldering initiative. Emphasis is placed on the use of controlled atmospheres, laser heating, and ultrasonic soldering.

  8. PWB solder wettability after simulated storage

    Hernandez, C.L.; Hosking, F.M.


    A new solderability test method has been developed at Sandia National Laboratories that simulates the capillary flow physics of solders on circuit board surfaces. The solderability test geometry was incorporated on a circuit board prototype that was developed for a National Center for Manufacturing Sciences (NCMS) program. The work was conducted under a cooperative research and development agreement between Sandia National Laboratories, NCMS, and several PWB fabricators (AT&T, IBM, Texas Instruments, United Technologies/Hamilton Standard and Hughes Aircraft) to advance PWB interconnect technology. The test was used to investigate the effects of environmental prestressing on the solderability of printed wiring board (PWB) copper finishes. Aging was performed in a controlled chamber representing a typical indoor industrial environment. Solderability testing on as-fabricated and exposed copper samples was performed with the Sn-Pb eutectic solder at four different reflow temperatures (215, 230, 245 and 260{degrees}C). Rosin mildly activated (RMA), low solids (LS), and citric acid-based (CA) fluxes were included in the evaluation. Under baseline conditions, capillary flow was minimal at the lowest temperatures with all fluxes. Wetting increased with temperature at both baseline and prestressing conditions. Poor wetting, however, was observed at all temperatures with the LS flux. Capillary flow is effectively restored with the CA flux.

  9. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan


    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  10. Direct functionalization of nitrogen heterocycles via Rh-catalyzed C-H bond activation.

    Lewis, Jared C; Bergman, Robert G; Ellman, Jonathan A


    [Reaction: see text]. Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh- N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy 3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy 3) 2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of

  11. Use of organic solderability preservatives on solderability retention of copper after accelerated aging

    Hernandez, C.L.; Sorensen, N.R.; Lucero, S.J.


    Organic solderability preservatives (OSP`s) have been used by the electronics industry for some time to maintain the solderability of circuit boards and components. Since solderability affects both manufacturing efficiency and product reliability, there is significant interest in maintaining good solder wettability. There is often a considerable time interval between the initial fabrication of a circuit board or component and its use at the assembly level. Parts are often stored under a variety of conditions, in many cases not well controlled. Solder wettability can deteriorate during storage, especially in harsh environments. This paper describes the ongoing efforts at Sandia National Laboratories to quantify solder watability on bare and aged copper surfaces. Benzotriazole and imidazole were applied to electronic grade copper to retard aging effects on solderability. The coupons were introduced into Sandia`s Facility for Atmospheric Corrosion Testing (FACT) to simulate aging in a typical indoor industrial environment. H{sub 2}S, NO{sub 2} and Cl{sub 2} mixed gas was introduced into the test cell and maintained at 35{degrees}C and 70% relative humidity for test periods of one day to two weeks. The OSP`s generally performed better than bare Cu, although solderability diminished with increasing exposure times.

  12. Corrosion resistance of the soldering joint of post-soldering of palladium-based metal-ceramic alloys.

    Kawada, E; Sakurai, Y; Oda, Y


    To evaluate the corrosion resistance of post soldering of metal-ceramic alloys, four commercially available palladium-system metal-ceramic alloys (Pd-Cu, Pd-Ni, Pd-Ag, and Pd-Sb systems) and two types of solder (12 k gold solder and 16 k gold solder) with different compositions and melting points were used. The corrosion resistance of the soldered joint was evaluated by anodic polarization. The electrochemical characteristics of soldered surface were measured using electrochemical equipment. Declines in corrosion resistance were not detectable with Pd-Cu, Pd-Ag and Pd-Sb types, but break down at low potential occurred with Pd-Ni type.

  13. GaN-Si direct wafer bonding at room temperature for thin GaN device transfer after epitaxial lift off

    Mu, Fengwen; Morino, Yuki; Jerchel, Kathleen; Fujino, Masahisa; Suga, Tadatomo


    Room temperature GaN-Si direct wafer bonding was done by surface activated bonding (SAB). At first, a feasibility study using GaN template has been done. Then, crystal-face dependence of the bonding results for freestanding GaN substrate has been investigated between Ga-face and N-face. The results of Ga-face to Si bonding are better than that of N-face to Si bonding such as higher bonding energy and larger bonded area. This difference should be caused by their different surface roughnesses after chemical-mechanical polishing (CMP). Besides, both of the structure and composition of the two kinds of interfaces were investigated to understand the bonding mechanisms. The phenomenon of Ga-enrichment during surface activation and Ga-diffusion into Si at room temperature for both Ga-face bonding and N-face bonding has been confirmed.

  14. The role of continuing bonds in coping with grief: overview and future directions.

    Root, Briana L; Exline, Julie Juola


    The existing empirical literature depicts a complex picture of the role that continuing bonds play in coping with bereavement, with contradictory findings emerging across studies. This article presents an overview of continuing bonds research and highlights several areas ripe for exploration. First, definitional issues are identified. Second, three paths for clarification are presented: the bereaved's perception of the bond as positive or negative, the quality of the predeath relationship, and the bereaved's afterlife beliefs. Through refining the definition and exploring these potential avenues of research, we hope to clarify the roles that continuing bonds may play in coping with bereavement.

  15. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.;


    Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...

  16. Age-aware solder performance models : level 2 milestone completion.

    Neilsen, Michael K.; Vianco, Paul Thomas; Neidigk, Matthew Aaron; Holm, Elizabeth Ann


    Legislated requirements and industry standards are replacing eutectic lead-tin (Pb-Sn) solders with lead-free (Pb-free) solders in future component designs and in replacements and retrofits. Since Pb-free solders have not yet seen service for long periods, their long-term behavior is poorly characterized. Because understanding the reliability of Pb-free solders is critical to supporting the next generation of circuit board designs, it is imperative that we develop, validate and exercise a solder lifetime model that can capture the thermomechanical response of Pb-free solder joints in stockpile components. To this end, an ASC Level 2 milestone was identified for fiscal year 2010: Milestone 3605: Utilize experimentally validated constitutive model for lead-free solder to simulate aging and reliability of solder joints in stockpile components. This report documents the completion of this milestone, including evidence that the milestone completion criteria were met and a summary of the milestone Program Review.

  17. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan;


    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  18. Bond strength durability of direct and indirect composite systems following surface conditioning for repair

    Passos, Sheila Pestana; Ozcan, Mutlu; Vanderlei, Aleska Dias; Leite, Fabiola Pessoa Pereira; Kimpara, Estevao Tomomitsu; Bottino, Marco Antonio


    Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sin

  19. Evaluation technology of lead-free solders; Namari free handa zairyo ni okeru hyoka gijutsu

    Yamashita, M.; Shiokawa, K. [Fuji Electric Co. Ltd., Tokyo (Japan); Ueda, A. [Fuji Electric Corporate Research and Development,Ltd., Kanagawa (Japan)


    Solders mainly composed of tin and lead are currently in widespread use in semiconductor devices. However, in view of lead influences on the human body and environmental problems, lead-free solders have been in urgent demand. In this study, aiming to improve the solderability and reliability of a tin-silver solder, one of most promising lead-free solder materials, we have investigated elements to be added. Focusing on typical lead-free tin-silver solders and tin-lead eutectic solders, this paper describes the result of investigations into the mechanical properties solderability, micro structures of the solder materials and gas analysis in soldering. (author)

  20. Twelve-year results of a direct-bonded partial prosthesis in a patient with advanced periodontitis: a clinical report.

    Minami, Hiroyuki; Minesaki, Yoshito; Suzuki, Shiro; Tanaka, Takuo


    Prosthodontic treatment for patients with advanced periodontitis is a therapeutic challenge. A minimally invasive technique is preferred to preserve the remaining mobile abutment teeth. This report describes the initial clinical treatment and 12-year follow-up of a direct-bonded prosthesis reinforced with a cast metal framework, used as a conservative treatment option to replace periodontally involved maxillary lateral incisors.

  1. New Initiation Modes for Directed Carbonylative C–C Bond Activation: Rhodium-Catalyzed (3 + 1 + 2) Cycloadditions of Aminomethylcyclopropanes


    Under carbonylative conditions, neutral Rh(I)-systems modified with weak donor ligands (AsPh3 or 1,4-oxathiane) undergo N-Cbz, N-benzoyl, or N-Ts directed insertion into the proximal C–C bond of aminomethylcyclopropanes to generate rhodacyclopentanone intermediates. These are trapped by N-tethered alkenes to provide complex perhydroisoindoles. PMID:27709913

  2. Microstructural Coarsening during Thermomechanical Fatigue and Annealing of Micro Flip-Chip Solder Joints

    Barney, Monica Michele [Univ. of California, Berkeley, CA (United States)


    Microstructural evolution due to thermal effects was studied in micro solder joints (55 ± 5 μm). The composition of the Sn/Pb solder studied was found to be hypereutectic with a tin content of 65-70 wt%.This was determined by Energy Dispersive X-ray analysis and confirmed with quantitative stereology. The quantitative stereological value of the surface-to-volume ratio was used to characterize and compare the coarsening during thermal cycling from 0-160 C to the coarsening during annealing at 160 C. The initial coarsening of the annealed samples was more rapid than the cycled samples, but tapered off as time to the one-half as expected. Because the substrates to which the solder was bonded have different thermal expansion coefficients, the cycled samples experienced a mechanical strain with thermal cycling. The low-strain cycled samples had a 2.8% strain imposed on the solder and failed by 1,000 cycles, despite undergoing less coarsening than the annealed samples. The high-strain cycled samples experienced a 28% strain and failed between 25 and 250 cycles. No failures were observed in the annealed samples. Failure mechanisms and processing issues unique to small, fine pitch joints are also discussed.

  3. Direct assessment of quantum nuclear effects on hydrogen bond strength by constrained-centroid ab initio path integral molecular dynamics

    Walker, Brent; Michaelides, Angelos


    The impact of quantum nuclear effects on hydrogen (H-) bond strength has been inferred in earlier work from bond lengths obtained from path integral molecular dynamics (PIMD) simulations. To obtain a direct quantitative assessment of such effects, we use constrained-centroid PIMD simulations to calculate the free energy changes upon breaking the H-bonds in dimers of HF and water. Comparing ab initio simulations performed using PIMD and classical nucleus molecular dynamics (MD), we find smaller dissociation free energies with the PIMD method. Specifically, at 50 K, the H-bond in (HF)2 is about 30% weaker when quantum nuclear effects are included, while that in (H2O)2 is about 15% weaker. In a complementary set of simulations, we compare unconstrained PIMD and classical nucleus MD simulations to assess the influence of quantum nuclei on the structures of these systems. We find increased heavy atom distances, indicating weakening of the H-bond consistent with that observed by direct calculation of the free energies of dissociation.

  4. A multi-wavelength fiber-optic temperature-controlled laser soldering system for upper aerodigestive tract reconstruction: an animal model.

    Abergel, Avraham; Gabay, Ilan; Fliss, Dan M; Katzir, Abraham; Gil, Ziv


    Laser soldering of a thick multilayer organ using conventional CO(2) lasers is ineffective. The purpose of this work was to develop a method for bonding the multilayer tissue of the upper aerodigestive tracts (UADT) without the need of sutures or stapling. Animal model. Academic research laboratory. The authors developed a multi-wavelength laser system, based on 2 fiber-optic lasers applied simultaneously. A highly absorbable CO(2) laser interacts with the muscular layer, and a nonabsorbable GaAs laser interacts with indocyanine-green solid albumin, placed between the mucosa and the muscular layer. The authors used an ex vivo porcine model to examine the capability of this system to effectively correct esophageal tears. The soldered esophagi burst pressure was >175 cm H(2)O (98% success rate) in 88 of the 90 experiments. A conventional CO(2) laser soldering resulted in insufficient bonding (mean burst pressure of 40 ± 7 cm H(2)O, n = 5), while the multi-wavelength laser system provided an ~9-fold tighter seal (359 ± 75.4 cm H(2)O, P system. Bonding of the UADT mucosa using a multi-wavelength, temperature-controlled laser soldering system can support significantly higher pressures then conventional CO(2) laser soldering and suture repair. The mean bonding pressure was 3.5-fold higher than the maximal swallowing pressure. Our findings provide a basis for implementation of new surgical tools for repair of esophageal perforations.

  5. Effect of Solder Flux Residues on Corrosion of Electronics

    Hansen, Kirsten Stentoft; Jellesen, Morten Stendahl; Møller, Per


    Flux from ‘No Clean’ solder processes can cause reliability problems in the field due to aggressive residues, which may be electrical conducting or corrosive in humid environments. The solder temperature during a wave solder process is of great importance to the amount of residues left on a PCBA[...

  6. Microstructural evolution of eutectic Au-Sn solder joints

    Song, Ho Geon


    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  7. Microstructural evolution of eutectic Au-Sn solder joints

    Song, Ho Geon [Univ. of California, Berkeley, CA (United States)


    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  8. Testing of printed circuit board solder joints by optical correlation

    Espy, P. N.


    An optical correlation technique for the nondestructive evaluation of printed circuit board solder joints was evaluated. Reliable indications of induced stress levels in solder joint lead wires are achievable. Definite relations between the inherent strength of a solder joint, with its associated ability to survive stress, are demonstrable.

  9. Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage.

    Wang, Teng; Jiao, Ning


    Because of the importance of nitrogen-containing compounds in chemistry and biology, organic chemists have long focused on the development of novel methodologies for their synthesis. For example, nitrogen-containing compounds show up within functional materials, as top-selling drugs, and as bioactive molecules. To synthesize these compounds in a green and sustainable way, researchers have focused on the direct functionalization of hydrocarbons via C-H or C-C bond cleavage. Although researchers have made significant progress in the direct functionalization of simple hydrocarbons, direct C-N bond formation via C-H or C-C bond cleavage remains challenging, in part because of the unstable character of some N-nucleophiles under oxidative conditions. The nitriles are versatile building blocks and precursors in organic synthesis. Recently, chemists have achieved the direct C-H cyanation with toxic cyanide salts in the presence of stoichiometric metal oxidants. In this Account, we describe recent progress made by our group in nitrile synthesis. C-H or C-C bond cleavage is a key process in our strategy, and azides or DMF serve as the nitrogen source. In these reactions, we successfully realized direct nitrile synthesis using a variety of hydrocarbon groups as nitrile precursors, including methyl, alkenyl, and alkynyl groups. We could carry out C(sp(3))-H functionalization on benzylic, allylic, and propargylic C-H bonds to produce diverse valuable synthetic nitriles. Mild oxidation of C═C double-bonds and C≡C triple-bonds also produced nitriles. The incorporation of nitrogen within the carbon skeleton typically involved the participation of azide reagents. Although some mechanistic details remain unclear, studies of these nitrogenation reactions implicate the involvement of a cation or radical intermediate, and an oxidative rearrangement of azide intermediate produced the nitrile. We also explored environmentally friendly oxidants, such as molecular oxygen, to make our

  10. Thermal decomposition of solder flux activators under simulated wave soldering conditions

    Piotrowska, Kamila; Jellesen, Morten Stendahl; Ambat, Rajan


    Purpose:The aim of this work is to investigate the decomposition behaviour of the activator species commonly used in the wave solder no-clean flux systems and to estimate the residue amount left after subjecting the samples to simulated wave soldering conditions. Design/methodology/approach: Chan......Purpose:The aim of this work is to investigate the decomposition behaviour of the activator species commonly used in the wave solder no-clean flux systems and to estimate the residue amount left after subjecting the samples to simulated wave soldering conditions. Design....../methodology/approach: Changes in the chemical structure of the activators were studied using Fourier transform infrared spectroscopy technique and were correlated to the exposure temperatures within the range of wave soldering process. The amount of residue left on the surface was estimated using standardized acid......-malic). The decomposition patterns of solder flux activators depend on their chemical nature, time of heat exposure and substrate materials. Evaporation of the residue from the surface of different materials (laminate with solder mask, copper surface or glass surface) was found to be more pronounced for succinic...

  11. A Study of the Interface of Soldered Joints of SnInAgTi Active Solder with Ito Ceramics

    M. Provazník; R. Koleňák


    This paper presents an analysis of the solderability ITO ceramics (In2O3/SnO2). The soft active solder SnInAgeTi was used for the experiments. The solder was activated by power ultrasound in air without flux. An analysis of the interface of the phases between the solder and the ceramic was carried out in order to discover the ultrasonic impacts on the active metal and to identify the mechanism of the joint on the ceramic side.

  12. Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy

    Abdoul-Aziz Bogno


    Full Text Available The properties and performance of lead-free solder alloys such as fluidity and wettability are defined by the alloy composition and solidification microstructure. Rapid solidification of metallic alloys is known to result in refined microstructures with reduced microsegregation and improved mechanical properties of the final products as compared to normal castings. The rapidly solidified Sn-based solders by melt spinning were shown to be suitable for soldering with low temperature and short soldering duration. In the present study, rapidly solidified Sn–0.7 wt.%Cu droplets generated by impulse atomization (IA were achieved as well as directional solidification under transient conditions at lower cooling rate. This paper reports on a comparative study of the rapidly solidified and the directionally solidified samples. Different but complementary characterization techniques were used to fully analyze the solidification microstructures of the samples obtained under the two cooling regimes. These include X-ray diffractometry (XRD and scanning electron microscopy (SEM. In order to compare the tensile strength and elongation to fracture of the directionally solidified ingot and strip castings with the atomized droplet, compaction and extrusion of the latter were carried out. It was shown that more balanced and superior tensile mechanical properties are available for the hot extruded samples from compacted as-atomized Sn–0.7 wt.%Cu droplets. Further, elongation-to-fracture was 2–3× higher than that obtained for the directionally solidified samples.

  13. Effect of 0.5 wt % Cu addition in Sn-3.5%Ag solder on the dissolution rate of Cu metallization

    Alam, M. O.; Chan, Y. C.; Tu, K. N.


    The dissolution of thin film under-bump-metallization (UBM) by molten solder has been one of the most serious processing problems in electronic packaging technology. Due to a higher melting temperature and a greater Sn content, a molten lead-free solder such as eutectic SnAg has a faster dissolution rate of thin film UBM than the eutectic SnPb. The work presented in this paper focuses on the role of 0.5 wt % Cu in the base Sn-3.5%Ag solder to reduce the dissolution of the Cu bond pad in ball grid array applications. We found that after 0.5 wt % Cu addition, the rate of dissolution of Cu in the molten Sn-3.5%Ag solder slows down dramatically. Systematic experimental work was carried out to understand the dissolution behavior of Cu by the molten Sn-3.5%Ag and Sn-3.5%Ag-0.5%Cu solders at 230-250 °C, for different time periods ranging from 1 to 10 min. From the curves of consumed Cu thickness, it was concluded that 0.5 wt % Cu addition actually reduces the concentration gradient at the Cu metallization/molten solder interface which reduces the driving force of dissolution. During the dissolution, excess Cu was found to precipitate out due to heterogeneous nucleation and growth of Cu6Sn5 at the solder melt/oxide interface. In turn, more Cu can be dissolved again. This process continues with time and leads to more dissolution of Cu from the bond pad than the amount expected from the solubility limit, but it occurs at a slower rate for the molten Sn-3.5%Ag-0.5%Cu solder.

  14. Electromigration and solid state aging of flip chip solder joints and analysis of tin whisker on lead-frame

    Lee, Taekyeong

    Electromigration and solid state aging in flip chip joint, and whisker on lead frame of Pb-containing (eutectic SnPb) and Pb-free solders (SnAg 3.5, SnAg3.8Cu0.7, and SnCu0.7), have been studied systematically, using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), and synchrotron radiation. The high current density in flip chip joint drives the diffusion of atoms of eutectic SnPb and SnAgCu. A marker is used to measure the diffusion flux in a half cross-sectioned solder joint. SnAgCu shows higher resistance against electromigration than eutectic SnPb. In the half cross-sectioned solder joint, void growth is the dominant failure mechanism. However, the whole solder balls in the underfill show that the failure mechanism is a result from the dissolution of electroless Ni under bump metallization (UBM) of about 10 mum thickness. The growth rate between intermetallic compounds in molten and solid solders differed by four orders of magnitude. In liquid solder, the growth rate is about 1 mum/min; the growth rate in solid solder is only about 10 -4 mum/min. The difference is not resulting from factors of thermodynamics, which is the change of Gibbs free energy before and after intermetallic compound formation, but from kinetic factors, which is the rate of change of Gibbs free energy. Even though the difference in growth rate between eutectic SnPb and Pb-free solders during solid state aging was found, the reason behind such difference shown is unclear. The orientation and stress levels of whiskers are measured by white X-ray of synchrotron radiation. The growth direction is nearly parallel to one of the principal axes of tin. The compressive stress level is quite low because the residual stress is relaxed by the whisker growth.

  15. Solder free joining as a highly effective method for making contact between thermoelectric materials and metallic electrodes

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo


    Quality of joining and interfacial evolution behavior play a critical role in the performance and reliability of thermoelectric (TE) devices. In this study, different joining methods using Zn−2AlZn−2Al solder alloy (1) and solder-free joining with microlayers of Ti and Cr as interconnecting agents...... (2) were systematically investigated and demonstrated on the low-cost ZnSb TE system. ZnSb material, which was chosen to bond with Ag and Ni metallic electrodes, exhibited a maximum zT value of 0.8 at 400∘C. With the joining method (1), Zn from the Zn−2AlZn−2Al solder was found to diffuse...

  16. High-precision opto-mechanical lens system for space applications assembled by innovative local soldering technique

    Ribes, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Burkhardt, D.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; Tünnermann, A.


    Solder joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals. This is due to a localized and minimized input of thermal energy. Solderjet bumping technology has been used to assemble a lens mount breadboard taking as input specifications the requirements found for the optical beam expander for the European Space Agency (ESA) EarthCare Mission. The silica lens and a titanium barrel have been designed and assembled with this technology in order to withstand the stringent mission demands; handling high mechanical and thermal loads without losing its optical performances. Finally a high-precision opto-mechanical lens mount has been assembled with a minimal localized stress (<1 MPa) showing outstanding performances in terms of wave-front error measurements and beam depolarization ratio before and after environmental tests.

  17. Capillary wave formation on excited solder jet and fabrication of lead-free solder ball

    ZHANG Shu-guang; HE Li-jun; ZHU Xue-xin; ZHANG Shao-ming; SHI Li-kai; XU Jun


    A survey of solder ball production processes especially focusing on disturbed molten metal jet breakup process was made. Then the formation of capillary wave on tin melt jet in the way of rapid solidification was studied. A semi-empirical formula, which can be written as λ = Cvib (σ/ρ)1/3f-2/3 to predict the relationship between wavelength of capillary wave and frequency of imposed vibration was obtained. Sn-4.0Ag-0.5Cu lead free solder ball was successfully produced with tight distribution and good sphericity. The excited jet breakup process is promising for cost effectively producing solder ball.

  18. Solder Joint Health Monitoring Testbed System

    Delaney, Michael M.


    The density and pin count for Field Programmable Gate Arrays (FPGAs) has been increasing, and has exceeded current methods of solder joint inspection, making early detection of failures more problematic. These failures are a concern for both flight safety and maintenance in commercial aviation. Ridgetop Group, Inc. has developed a method for detecting solder joint failures in real time. The NASA Dryden Flight Research Center is developing a set of boards to test this method in ground environmental and accelerated testing as well as flight test on a Dryden F-15 or F-18 research aircraft. In addition to detecting intermittent and total solder joint failures, environmental data on the boards, such as temperature and vibration, will be collected and time-correlated to aircraft state data. This paper details the technical approach involved in the detection process, and describes the design process and products to date for Dryden s FPGA failure detection boards.

  19. Nanocopper Based Solder-Free Electronic Assembly

    Schnabl, K.; Wentlent, L.; Mootoo, K.; Khasawneh, S.; Zinn, A. A.; Beddow, J.; Hauptfleisch, E.; Blass, D.; Borgesen, P.


    CuantumFuse nano copper material has been used to assemble functional LED test boards and a small camera board with a 48 pad CMOS sensor quad-flat no-lead chip and a 10 in flexible electronics demo. Drop-in replacement of solder, by use of stencil printing and standard surface mount technology equipment, has been demonstrated. Applications in space and commercial systems are currently under consideration. The stable copper-nanoparticle paste has been examined and characterized by scanning electron microscopy and high-resolution transmission electron microscopy; this has shown that the joints are nanocrystalline but with substantial porosity. Assessment of reliability is expected to be complicated by this and by the effects of thermal and strain-enhanced coarsening of pores. Strength, creep, and fatigue properties were measured and results are discussed with reference to our understanding of solder reliability to assess the potential of this nano-copper based solder alternative.

  20. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Buckley, J.D.; Stein, B.A.


    This book presents recent advances in joining technologies for the 1990s-welding, brazing, soldering, mechanical fastening, explosive welding, solid-state bonding, and adhesive bonding. A major consideration in the fabrication of any commercial, military, or space product is attachment systems which are safe and reliable. The subject matter covered includes technology developed in current research programs relevant to welding, bonding, and fastening of structural materials, for fabricating structures and mechanical systems use in the aerospace, automotive, and related industries. Specific topics include equipment, hardware and materials used when welding, brazing, and soldering; mechanical fastening; explosive welding; use of unique selected joining techniques; adhesive bonding; and nondestructive evaluation. ''The Factory of the Future'' is presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  1. Laser-assisted direct joining of AISI304 stainless steel with polycarbonate sheets: Thermal analysis, mechanical characterization, and bonds morphology

    Lambiase, F.; Genna, S.


    Laser-Assisted Metal and Plastic bonding (LAMP) of AISI304 sheets with polycarbonate sheets is investigated in this work. The process was performed by means of a high power diode laser with a maximum power of 200 W. The study introduces an integrated experimental approach aimed at understanding how the main process conditions (laser power and scanning speed) influence the direct-bonds quality, dimensions and presence of defects. To this end, the bonds dimension, shear strength, formation and dimension of bubbles in the bonded region were related to the temperature measurements and process parameters. According to the achieved results, the processing window that enables a good adhesion of the two materials is relatively small; this is due the activation of the adhesion phenomena that require overcoming an energy threshold. However, excessive energy levels reduce the bonds strength due to the increase in defects (bubbles) dimension that may combine (coalescence) leading to the formation of a central tunnel where the two substrates are completely detached.

  2. Moisture and aging effects of solder wettability of copper surfaces

    Hernandez, C.L.; Sorensen, N.R.; Lucero, S.J.


    Solderability is a critical property of electronic assembly that affects both manufacturing efficiency and product reliability. There is often a considerable time interval between initial fabrication of a circuit board or component and its use at the assembly level. Parts are often stored under a variety of conditions, usually not controlled. Solder wettability can soon deteriorate during storage, especially in extreme environments. This paper describes ongoing efforts at Sandia to quantify solder wettability on bare and aged Cu surfaces. In addition, organic solderability preservatives (OSPs) were applied to the bare Cu to retard solderability loss due to aging. The OSPs generally performed well, although wetting did decrease with exposure time.

  3. Parametric study on the solderability of etched PWB copper

    Hosking, F.M.; Stevenson, J.O.; Hernandez, C.L.


    The rapid advancement of interconnect technology has resulted in a more engineered approach to designing and fabricating printed wiring board (PWB) surface features. Recent research at Sandia National Laboratories has demonstrated the importance of surface roughness on solder flow. This paper describes how chemical etching was used to enhance the solderability of surfaces that were normally difficult to wet. The effects of circuit geometry, etch concentration, and etching time on solder flow are discussed. Surface roughness and solder flow data are presented. The results clearly demonstrate the importance of surface roughness on the solderability of fine PWB surface mount features.

  4. The microstructure and properties of as-cast Sn-Zn-Bi solder alloys

    Mladenović Srba A.


    Full Text Available Research on the lead-free solders has attracted wide attention, mostly as the result of the implementation of the Directive on the Restriction of the Use of Hazardous Substances in Electrical and Electronic Equipment. The Sn-Zn solder alloys have been considered to be one of the most attractive lead-free solders due to its ability to easily replace Sn-Pb eutectic alloy without increasing the soldering temperature. Furthermore, the mechanical properties are comparable or even superior to those of Sn-Pb solder. However, other problems still persist. The solution to overcoming these drawbacks is to add a small amount of alloying elements (Bi, Ag, Cr, Cu, and Sb to the Sn-Zn alloys. Microstructure, tensile strength, and hardness of the selected Sn-Zn-Bi ternary alloys have been investigated in this study. The SEM-EDS was used for the identification of co-existing phases in the samples. The specimens’ microstructures are composed of three phases: Sn-rich solid solution as the matrix, Bi-phase and Zn-rich phase. The Bi precipitates are formed around the Sn-dendrit grains as well as around the Zn-rich phase. The amount of Bi segregation increases with the increase of Bi content. The Sn-Zn-Bi alloys exhibit the high tensile strength and hardness, but the values of these mechanical properties decrease with the increase of Bi content, as well as the reduction of Zn content. The results presented in this paper may offer further knowledge of the effects various parameters have on the properties of lead-free Sn-Zn-Bi solders.

  5. Lead (Pb)-Free Solder Applications



    Legislative and marketing forces both abroad and in the US are causing the electronics industry to consider the use of Pb-free solders in place of traditional Sn-Pb alloys. Previous case studies have demonstrated the satisfactory manufacturability and reliability of several Pb-free compositions for printed circuit board applications. Those data, together with the results of fundamental studies on Pb-free solder materials, have indicated the general feasibility of their use in the broader range of present-day, electrical and electronic components.

  6. Effects of PCB thickness on adjustable fountain wave soldering

    M S Abdul Aziz; M Z Abdullah; C Y Khor; A Jalar; M A Bakar; W Y W Yusoff; F Che Ani; Nobe Yan; M Zhou; C Cheok


    This study investigates the effects of printed circuit board (PCB) thickness on adjustable fountain and conventional wave soldering. The pin-through-hole (PTH) vertical fill is examined with three PCBs of different thicknesses (i.e., 1.6, 3.1, and 6.0 mm) soldered through adjustable fountain and conventional wave soldering at conveyor angles of 0° and 6°. The vertical fill of each PCB is the focus. The PTH solder profile is inspected with a non-destructive X-ray computed tomography scanning machine. The percentages of the PTH vertical fill of both soldering processes are also estimated and compared. The aspect ratio of the PCB is also investigated. Experimental results reveal that adjustable fountain wave soldering yields better vertical fill than conventional wave soldering. The vertical fill level of adjustable fountain wave soldering is 100%, 90%, and 50% for the 1.6, 3.1, and 6.0 mm PCB thickness, respectively. FLUENT simulation is conducted for the vertical fill of the solder profile. Simulation and experimental results show that the PTH solder profiles of the two soldering processes are almost identical. The effect of PCB thickness on PTH voiding is also discussed.

  7. Prototype circuit boards assembled with non-lead bearing solders

    Vianco, P.T.; Rejent, J.A.


    The 91.84Sn-3.33Ag-4.83Bi and 96.5Sn-3.5Ag Pb-free solders were evaluated for surface mount circuit board interconnects. The 63Sn-37Pb solder provided the baseline data. All three solders exhibited suitable manufacturability per a defect analyses of circuit board test vehicles. Thermal cycling had no significant effect on the 91.84Sn-3.33Ag-4.83Bi solder joints. Some degradation in the form of grain boundary sliding was observed in 96.5Sn-3.5Ag and 63Sn-37Pb solder joints. The quality of the solder joint microstructures showed a slight degree of degradation under thermal shock exposure for all of the solders tested. Trends in the solder joint shear strengths could be traced to the presence of Pd in the solder, the source of which was the Pd/Ni finish on the circuit board conductor features. The higher, intrinsic strengths of the Pb-free solders encouraged the failure path to be located in proximity to the solder/substrate interface where Pd combined with Sn to form brittle PdSn{sub 4} particles, resulting in reduced shear strengths.

  8. Capillary flow of solder on chemically roughened PWB surfaces

    Hosking, F.M.; Stevenson, J.O.; Yost, F.G.


    The Center for Solder Science and Technology at Sandia National Laboratories has developed a solderability test for evaluating fundamental solder flow over PWB (printed wiring boards) surface finishes. The work supports a cooperative research and development agreement between Sandia, the National Center for Manufacturing Sciences (NCMS), and several industrial partners. An important facet of the effort involved the ``engineering`` of copper surfaces through mechanical and chemical roughening. The roughened topography enhances solder flow, especially over very fine features. In this paper, we describe how etching with different chemical solutions can affect solder flow on a specially designed ball grid array test vehicle (BGATV). The effects of circuit geometry, solution concentration, and etching time are discussed. Surface roughness and solder flow data are presented to support the roughening premise. Noticeable improvements in solder wettability were observed on uniformly etched surfaces having relatively steep peak-to-valley slopes.

  9. Automatic computer-aided system of simulating solder joint formation

    Zhao, Xiujuan; Wang, Chunqing; Zheng, Guanqun; Wang, Gouzhong; Yang, Shiqin


    One critical aspect in electronic packaging is the fatigue/creep-induced failure in solder interconnections, which is found to be highly dependent on the shape of solder joints. Thus predicting and analyzing the solder joint shape is warranted. In this paper, an automatic computer-aided system is developed to simulate the formation of solder joint and analyze the influence of the different process parameters on the solder joint shape. The developed system is capable of visually designing the process parameters and calculating the solder joint shape automatically without any intervention from the user. The automation achieved will enable fast shape estimation with the variation of process parameters without time consuming experiments, and the simulating system provides the design and manufacturing engineers an efficient software tools to design soldering process in design environment. Moreover, a program developed from the system can serve as the preprocessor for subsequent finite element joint analysis program.

  10. Characteristics of Laser Reflow Bumping of Sn3.5Ag and Sn3.5Ag0.5Cu Lead-Free Solder Balls

    Yanhong TIAN; Chunqing WANG; Yarong CHEN


    Lead-free Sn3.5Ag and Sn3.5Ag0.5Cu solder balls were reflowed by laser to form solder bumps. Shear test was performed on the solder bumps, and SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectrometer) was used to analyze the formation of intermetallic compounds (IMCs) at interface region. A finite element modeling on the temperature gradient and distribution at the interface of solder bump during laser reflow process was conducted to elucidate the mechanism of the IMCs growth direction. The results show that the parameters window for laser reflow bumping of Sn3.5Ag0.5Cu was wider than that of Sn3.5Ag. The shear strength of Sn3.5Ag0.5Cu solder bump was comparable to that of Sn3.5Ag solder bump, and was not affected obviously by laser power and irradiation time when appropriate parameters were used. Both laser power and heating time had a significant effect on the formation of IMCs. A continuous AuSn4 interrnetallic compound layer and some needle-like AuSn4 were observed at the interface of solder and Au/Ni/Cu metallization layer when the laser power is small. The formation of needle-like AuSn4 was due to temperature gradient at the interface, and the direction of temperature gradient was the preferred growth direction of AuSn4. With increasing the laser power and heating time, the needle-like AuSn4 IMCs dissolved into the bulk solder, and precipitated out once again during solidification along the grain boundary of the solder bump.

  11. Void-Free Direct Bonding of CMUT Arrays with Single Crystalline Plates and Pull- In Insulation

    Christiansen, Thomas Lehrmann; Hansen, Ole; Dahl Johnsen, Mathias


    anisotropically plasma etched cavities after the second oxidation. It is demonstrated that the protrusions will prevent good wafer bonding without subsequent polishing or etching steps. A new fabrication process is therefore proposed, allowing protrusionfree bonding surfaces with no alteration of the final......, and a proposed analytical model, which is in good agreement with the simulated results. The results demonstrate protrusion heights in the order of 10 nm to 40 nm, with higher oxidation temperatures giving the highest protrusions. Isotropically wet etched cavities exhibit significantly smaller protrusions than...

  12. Investigation of Sn-Pb solder bumps of prototype photo detectors for the LHCb experiment

    Delsante, M L; Arnau-Izquierdo, G


    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). LHCb is one of the dedicated LHC experiments, allowing high energy proton-proton collisions to be exploited. This paper presents the results of the metallurgic studies carried out on Sn-Pb solder bumps of prototype vacuum photo detectors under development for LHCb, and in particular for the ring imaging Cherenkov-hybrid photo diode (RICH-HPD) project. These detectors encapsulate, in a vacuum tube, an assembly made of two silicon chips bonded together by a matrix of solder bumps. Each bump lies on a suitable system of under-bump metallic layers ensuring mechanical and electrical transition between the chip pad and the solder alloy. During manufacturing of the detector, bump-bonded (BB) assemblies are exposed to severe heat cycles up to 400 degree C inducing, in the present fabrication process, a clear degradation of electrical connectivity. Several investigations such as microstructural observati...

  13. Microstructural Evolution of Lead-Free Solder Joints in Ultrasonic-Assisted Soldering

    Ji, Hongjun; Wang, Qiang; Li, Mingyu


    Solder joint reliability greatly depends on the microstructure of the solder matrix and the morphology of intermetallic compounds (IMCs) in the joints. Addition of strengthening phases such as carbon nanotubes and ceramic particles to solder joints to improve their properties has been widely studied. In this work, ultrasonic vibration (USV) of casting ingots was applied to considerably improve their microstructure and properties, and the resulting influence on fluxless soldering of Cu/Sn-3.0Ag-0.5Cu/Cu joints and their microstructural evolution was investigated. It was demonstrated that USV application during reflow of Sn-based solder had favorable effects on β-Sn grain size refinement as well as the growth and distribution of various IMC phases within the joints. The β-Sn grain size was significantly refined as the ultrasound power was increased, with a reduction of almost 90% from more than 100 μm to below 10 μm. Long and large Cu6Sn5 tubes in the solder matrix of the joints were broken into tiny ones. Needle-shaped Ag3Sn was transformed into flake-shaped. These IMCs were mainly precipitated along β-Sn phase boundaries. High-temperature storage tests indicated that the growth rate of interfacial IMCs in joints formed with USV was slower than in conventional reflow joints. The mechanisms of grain refinement and IMC fragmentation are discussed and related to the ultrasonic effects.

  14. An X-ray diffraction study of direct-bonded silicon interfaces

    Howes, P.B.; Benamara, M.; Grey, F.


    Semiconductor wafer bonding techniques have been used to create a giant twist grain boundary from two Si(001) wafers. We show, using X-ray diffraction measurements that after annealing the interface forms a highly ordered superstructure with relaxations extending to many layers into the crystals...

  15. Thermal compression chip interconnection using organic solderability preservative etched substrate by plasma processing.

    Cho, Sung-Won; Choi, JoonYoung; Chung, Chin-Wook


    The solderability of copper organic solderbility preservative (CuOSP) finished substrate was enhanced by the plasma etching. To improve the solderability of TC interconnection with the CuOSP finished substrate, the plasma etching process is used. An Oxygen-Hydrogen plasma treatment process is performed to remove OSP material. To prevent the oxidation by oxygen plasma treatment, hydrogen reducing process is also performed before TC interconnection process. The thickness of OSP material after plasma etching is measured by optical reflection method and the component analysis by Auger Electron Spectroscopy is performed. From the lowered thickness, the bonding force of TC interconnection after OSP etching process is lowered. Also the electrical open/short test was performed after assembling the completed semiconductor packaging. The improved yield due to the plasma etching process is achieved.

  16. Multilead, Vaporization-Cooled Soldering Heat Sink

    Rice, John


    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  17. Soldering and Mass Generation in Four Dimensions

    Banerjee, R; Banerjee, Rabin; Wotzasek, Clovis


    We propose bosonised expressions for the chiral Schwinger models in four dimensions. Then, in complete analogy with the two dimensional case, we show the soldering of two bosonised chiral Schwinger models with opposite chiralities to yield the bosonised Schwinger model in four dimensions. The implications of the Schwinger model or its chiral version, as known for two dimensions, thereby get extended to four dimensions.

  18. Comparison of shear bond strength of resin reinforced chemical cure glass ionomer, conventional chemical cure glass ionomer and chemical cure composite resin in direct bonding systems: an in vitro study.

    Rao, Kolasani Srinivasa; Reddy, T Praveen Kumar; Yugandhar, Garlapati; Kumar, B Sunil; Reddy, S N Chandrasekhar; Babu, Devatha Ashok


    The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement.

  19. Clinical comparison between a resin-reinforced self-cured glass ionomer cement and a composite resin for direct bonding of orthodontic brackets. Part 2: Bonding on dry enamel and on enamel soaked with saliva.

    Cacciafesta, V; Bosch, C; Melsen, B


    The purposes of this investigation were to compare the clinical performance of a resin-reinforced self-cured glass ionomer cement to a standard composite resin in the direct bonding of orthodontic brackets when bonded onto: a) dry teeth and b) teeth soaked with saliva. The two bonding agents were compared using a split-mouth design. In that, both systems were used for direct bonding of stainless steel brackets in every patient. Thirty-eight consecutive patients with fixed appliances were followed for a period of 12 months. The patients were randomly divided into two groups: group A (11 patients) and group B (27 patients). In group A, the performance of 220 stainless steel brackets was evaluated: 110 brackets were bonded with GC Fuji Ortho glass ionomer cement (GC Industrial Co., Tokyo, Japan) onto dry teeth, and 110 bonded with System 1+ composite resin (Ormco Corp., Glendora, CA). In group B, the performance of 540 stainless steel brackets was evaluated: 270 brackets were bonded with GC Fuji Ortho onto teeth soaked with saliva, and 270 bonded with System 1+. In group A, GC Fuji Ortho recorded an overall failure rate (34.5%) significantly higher (p 0.05) between the failure rates of the two bonding agents were found when GC Fuji Ortho was used on teeth soaked with saliva. It was concluded, therefore, that GC Fuji Ortho shows clinically acceptable bond strengths when bonded onto moist teeth, but not when used on dry enamel. Both bonding agents failed mostly at the enamel/adhesive interface, without causing any enamel damage.

  20. Preparation of solder pads by selective laser scanning

    Wenqing Shi; Yongqiang Yang; Yanlu Huang; Guoqiang Wei; Wei Guo


    We propose a new laser preparation technique to solder Sn-Ag3.5-Cu0.7 on a copper clad laminate (CCL). The experiment is conducted by selective laser heating and melting the thin solder layer and then preprint-ing it on CCL in order to form the matrix with solder pads. Through the analysis of macro morphology of the matrix with solder pads and microstructure of single pads, this technique is proved to be suitable for preparing solder pads and that the solder pads are of good mechanical properties. The results also reveal that high frequency laser pulse is beneficial to the formation of better solder pad, and that the 12-W fiber laser with a beam diameter of 0.030 mm can solder Sn-Ag3.5-Cu0.7 successfully on CCL at 500-kHz pulse frequency. The optimized parameters of laser soldering on CCL are as follows: the laser power is 12 W, the scanning speed is 1.0 mm/s, the beam diameter is 0.030 mm, the lead-free solder is Sn-Ag3.5-Cu0.7, and the laser pulse frequency is 500 kHz.

  1. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    Warnat, S.; King, H.; Wasay, A.; Sameoto, D.; Hubbard, T.


    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x-y and rotational accuracy of  ±2 µm and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ~15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µm s-1 and 20 µm s-1.

  2. Chelation-assisted palladium-catalyzed direct cyanation of 2-arylpyridine C-H bonds.

    Jia, Xiaofei; Yang, Dongpeng; Zhang, Shouhui; Cheng, Jiang


    A chelation-assisted palladium-catalyzed ortho-cyanation of the sp2 C-H bond by CuCN provided aromatic nitriles in moderate to good yields. Notably, the reaction could be conducted on a 10 mmol scale. The key intermediate of the natural product of Menispermum dauricum DC was concisely synthesized by the procedure. This new approach represents an exceedingly practical method for the synthesis of aromatic nitriles and offers an attractive alternative to the traditional Sandmeyer reaction.

  3. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming


    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  4. Au-SN Flip-Chip Solder Bump for Microelectronic and Optoelectronic Applications

    Yoon, Jeong-Won; Koo, Ja-Myeong; Jung, Seung-Boo


    As an alternative to the time-consuming solder pre-forms and pastes currently used, a co-electroplating method of eutectic Au-Sn alloy was used in this study. Using a co-electroplating process, it was possible to plate the Au-Sn solder directly onto a wafer at or near the eutectic composition from a single solution. Two distinct phases, Au5Sn and AuSn, were deposited at a composition of 30at.%Sn. The Au-Sn flip-chip joints were formed at 300 and 400 degrees without using any flux. In the case where the samples were reflowed at 300 degrees, only an (Au,Ni)3Sn2 IMC layer formed at the interface between the Au-Sn solder and Ni UBM. On the other hand, two IMC layers, (Au,Ni)3Sn2 and (Au,Ni)3Sn, were found at the interfaces of the samples reflowed at 400 degrees. As the reflow time increased, the thickness of the (Au,Ni)3Sn2 and (Au,Ni)3Sn IMC layers formed at the interface increased and the eutectic lamellae in the bulk solder coarsened.

  5. Effects of AlN Nanoparticles on the Microstructure, Solderability, and Mechanical Properties of Sn-Ag-Cu Solder

    Jung, Do-Hyun; Sharma, Ashutosh; Lim, Dong-Uk; Yun, Jong-Hyun; Jung, Jae-Pil


    The addition of nanosized AlN particles to Sn-3.0 wt pctAg-0.5 wt pctCu (SAC305) lead-free solder alloy has been investigated. The various weight fractions of AlN (0, 0.03, 0.12, 0.21, 0.60 wt pct) have been dispersed in SAC305 solder matrix by a mechanical mixing and melting route. The influences of AlN nanosized particles on the microstructure, mechanical properties, and solderability ( e.g., spreadability and wettability) have been carried out. The structural and morphological features of the nanocomposite solder were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscope (TEM). The experimental results show that the best combination of solderability and mechanical properties is obtained at 0.21 wt pct AlN in the solder matrix. The reinforced composite solder with 0.21 wt pct AlN nanoparticles shows ≈25 pct improvement in ultimate tensile strength (UTS), and ≈4 pct increase in the spreadability. In addition, the results of microstructural analyses of composite solders indicate that the nanocomposite solder, especially reinforced with 0.21 wt pct of AlN nanoparticles, exhibits better microstructure and improved elongation percentage, compared with the monolithic SAC305 solder.

  6. Design and fabrication of lanthanum-doped tin-silver-copper lead-free solder for the next generation of microelectronics applications in severe environment

    Sadiq, Muhammad

    Tin-Lead solder (Sn-Pb) has long been used in the Electronics industry. But, due to its toxic nature and environmental effects, certain restrictions are made on its use by the European Rehabilitation of Hazardous Substances (RoHS) directive, and therefore, many researchers are looking to replace it. The urgent need for removing lead from solder alloys led to the very fast introduction of lead-free solder alloys without a deep knowledge of their behavior. Therefore, an extensive knowledge and understanding of the mechanical behavior of the emerging generation of lead-free solders is required to satisfy the demands of structural reliability. Sn-Ag-Cu (SAC) solders are widely used as lead-free replacements but their coarse microstructure and formation of hard and brittle Inter-Metallic Compounds (IMCs) have limited their use in high temperature applications. Many additives are studied to refine the microstructure and improve the mechanical properties of SAC solders including iron (Fe), bismuth (Bi), antimony (Sb) and indium (In) etc. Whereas many researchers studied the impact of novel rare earth (RE) elements like lanthanum (La), cerium (Ce) and lutetium (Lu) on SAC solders. These RE elements are known as “vitamins of metals” because of their special surface active properties. They reduce the surface free energy, refine the grain size and improve the mechanical properties of many lead free solder alloys like Sn-Ag, Sn-Cu and SAC but still a systematic study is required to explore the special effects of “La” on the eutectic SAC alloys. The objective of this PhD thesis is to extend the current knowledge about lead free solders of SAC alloys towards lanthanum doping with varying environmental conditions implemented during service. This thesis is divided into six main parts.

  7. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

    Roshanghias, Ali; Khatibi, Golta; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert


    Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.

  8. Investigation of Solder Cracking Problems on Printed Circuit Boards

    Berkebile, M. J.


    A Solder Committee designated to investigate a solder cracking phenomena occurring on the SATURN electrical/electronic hardware found the cause to be induced stress in the soldered connections rather than faulty soldering techniques. The design of the printed circuit (PC) board assemblies did not allow for thermal expansion of the boards that occurred during normal operation. The difference between the thermal expansion properties of the boards and component lead materials caused stress and cracking in the soldered connections. The failure mechanism and various PC boards component mounting configurations are examined in this report. Effective rework techniques using flanged tubelets, copper tubelets, and soft copper wiring are detailed. Future design considerations to provide adequate strain relief in mounting configurations are included to ensure successful solder terminations.

  9. Assessment of potential solder candidates for high temperature applications

    Multi-Chip module (MCM) technology is a specialized electronic packaging technology recently gaining momentum due to the miniaturization drive in the microelectronics industry. The step soldering approach is being employed in the MCM technology. This method is used to solder various levels...... of the package with different solders of different melting temperatures. High Pb containing alloys where the lead levels can be above 85% by weight, is one of the solders currently being used in this technology. Responding to market pressure i.e. need for green electronic products there is now an increasing...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  10. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina


    Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...... remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...

  11. Anomalous creep in Sn-rich solder joints

    Song, Ho Geon; Morris Jr., John W.; Hua, Fay


    This paper discusses the creep behavior of example Sn-rich solders that have become candidates for use in Pb-free solder joints. The specific solders discussed are Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu and Sn-10In-3.1Ag, used in thin joints between Cu and Ni-Au metallized pads.



    In order to study the mechanism of vacuum fluxless soldering on the conditions of laser heating, the method of measuring temperature by the thermocouple is used to analyze the spreading and wetting process of boh fluxless SnPb solder in the vacuum surroundings and flux SnPb solder on Cu pad. Solder spreading and wetting affected by the soldering thermal process is also discussed according to the thermodynamics principle. Results show that vacuum fluxless soldering demands higher temperature, and the fall of the solder su rface tension is the important factor achieving fluxless laser soldering.

  13. Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization.

    Kundu, Nidhi; Tichkule, Swapnil; Pandit, Shashi Bhushan; Chattopadhyay, Kausik


    Pore-forming toxins (PFTs) are typically produced as water-soluble monomers, which upon interacting with target cells assemble into transmembrane oligomeric pores. Vibrio parahaemolyticus thermostable direct hemolysin (TDH) is an atypical PFT that exists as a tetramer in solution, prior to membrane binding. The TDH structure highlights a core β-sandwich domain similar to those found in the eukaryotic actinoporin family of PFTs. However, the TDH structure harbors an extended C-terminal region (CTR) that is not documented in the actinoporins. This CTR remains tethered to the β-sandwich domain through an intra-molecular disulphide bond. Part of the CTR is positioned at the inter-protomer interface in the TDH tetramer. Here we show that the truncation, as well as mutation, of the CTR compromise tetrameric assembly, and the membrane-damaging activity of TDH. Our study also reveals that intra-protomer disulphide bond formation during the folding/assembly process of TDH restrains the CTR to mediate its participation in the formation of inter-protomer contact, thus facilitating TDH oligomerization. However, once tetramerization is achieved, disruption of the disulphide bond does not affect oligomeric assembly. Our study provides critical insights regarding the regulation of the oligomerization mechanism of TDH, which has not been previously documented in the PFT family.

  14. High temperature solder alloys for underhood applications: Final report

    Kern, J.A. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mechanical Engineering; Drewien, C.A.; Yost, F.G.; Sackinger, S. [Sandia National Laboratories, Albuquerque, NM (United States); Weiser, M.W. [Johnson-Mathey Electronics Corp., Spokane, WA (United States)


    In this continued study, the microstructural evolution and peel strength as a function of thermal aging were evaluated for four Sn-Ag solders deposited on double layered Ag-Pt metallization. Additionally, activation energies for intermetallic growth over the temperature range of 134 to 190{degrees}C were obtained through thickness measurements of the Ag-Sn intermetallic that formed at the solder-metallization interface. It was found that Bi-containing solders yielded higher activation energies for the intermetallic growth, leading to thicker intermetallic layers at 175 and 190{degrees}C for times of 542 and 20.5 hrs, respectively, than the solders free of Bi. Complete reaction of the solder with the metallization occurred and lower peel strengths were measured on the Bi-containing solders. In all solder systems, a Ag-Sn intermetallic thickness of greater than {approximately}7 {mu}m contributed to lower peel strength values. The Ag-Sn binary eutectic composition and the Ag-Sn-Cu ternary eutectic composition solders yielded lower activation energies for intermetallic formation, less microstructural change with time, and higher peel strengths; these solder systems were resilient to the effects of temperatures up to 175{degrees}C. Accelerated isothermal aging studies provide useful criteria for recommendation of materials systems. The Sn-Ag and Sn-Ag-Cu eutectic compositions should be considered for future service life and reliability studies based upon their performance in this study.

  15. Recent Research Trend in Laser-Soldering Process

    Kim, Hwan Tae; Kil, Sang Cheol [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of); Hwang, Woon Suk [Inha University, Incheon (Korea, Republic of)


    The trend of the microjoining technology by the laser-soldering process has been reviewed. Among the production technologies, joining technology plays an important role in the fabrication of electronic components. This has led to an increasing attention towards the use of modem microjoining technology such as micro-resistance spot joining micro-soldering, micro-friction stir joining and laser-soldering, etc. This review covers the recent technical trends of laser-soldering collected from the COMPENDEX DB analysis of published papers, research subject and research institutes.

  16. Synthetic Molecular Motors: Thermal N Inversion and Directional Photoinduced C=N Bond Rotation of Camphorquinone Imines.

    Greb, Lutz; Eichhöfer, Andreas; Lehn, Jean-Marie


    The thermal and photochemical E/Z isomerization of camphorquinone-derived imines was studied by a combination of kinetic, structural, and computational methods. The thermal isomerization proceeds by linear N inversion, whereas the photoinduced process occurs through C=N bond rotation with preferred directionality as a result of diastereoisomerism. Thereby, these imines are arguably the simplest example of synthetic molecular motors. The generality of the orthogonal trajectories of the thermal and photochemical pathways allows for the postulation that every suitable chiral imine qualifies, in principle, as a molecular motor driven by light or heat.

  17. Aesthetic Management of Fluoresced Teeth with Ceramic Veneers and Direct Composite Bonding – An Overview and A Case Presentation

    Jhajharia, Kapil; Shah, Harsh Haren; Paliwal, Ashutosh; Parikh, Viral


    Tooth discolouration is a common problem and affects people of all ages. Apart from the conventional treatment modalities for the same, newer options are available today with better techniques and materials. The present case report describes a 17-year-old girl who had stained and pitted teeth, attributable to dental fluorosis and she desired aesthetic treatment for the same. The pros and cons of all treatment options were carefully weighed and a multistep treatment process involving ceramic veneers and direct bonding were planned. The execution of the planned treatment yielded a good aesthetic and functional outcome. PMID:26266231

  18. Aesthetic Management of Fluoresced Teeth with Ceramic Veneers and Direct Composite Bonding - An Overview and A Case Presentation.

    Jhajharia, Kapil; Shah, Harsh Haren; Paliwal, Ashutosh; Parikh, Viral; Patel, Shrikant


    Tooth discolouration is a common problem and affects people of all ages. Apart from the conventional treatment modalities for the same, newer options are available today with better techniques and materials. The present case report describes a 17-year-old girl who had stained and pitted teeth, attributable to dental fluorosis and she desired aesthetic treatment for the same. The pros and cons of all treatment options were carefully weighed and a multistep treatment process involving ceramic veneers and direct bonding were planned. The execution of the planned treatment yielded a good aesthetic and functional outcome.

  19. Direct detection by atomic force microscopy of single bond forces associated with the rupture of discrete charge-transfer complexes.

    Skulason, Hjalti; Frisbie, C Daniel


    Atomic force microscopy (AFM) was used to measure the chemical binding force of discrete electron donor-acceptor complexes formed at the interface between proximal self-assembled monolayers (SAMs). Derivatives of the well-known electron donor N,N,N',N'-tetramethylphenylenediamine (TMPD) and the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) were immobilized on Au-coated AFM tips and substrates by formation of SAMs of N,N,N'-trimethyl-N'-(10-thiodecyl)-1,4-phenylenediamine (I) and bis(10-(2-((2,5-cyclohexadiene-1,4-diylidene)dimalonitrile))decyl) disulfide (II), respectively. Pull-off forces between modified tips and substrates were measured under CHCl(3) solvent. The mean pull-off forces associated with TMPD/TCNQ microcontacts were more than an order of magnitude larger than the pull-off forces for TMPD/TMPD and TCNQ/TCNQ microcontacts, consistent with the presence of specific charge-transfer interactions between proximal TMPD donors and TCNQ acceptors. Furthermore, histograms of pull-off forces for TMPD/TCNQ contacts displayed 70 +/- 15 pN periodicity, assigned to the rupture of individual TMPD-TCNQ donor-acceptor (charge-transfer) complexes. Both the mean pull-off force and the 70 pN force quantum compare favorably with a contact mechanics model that incorporates the effects of discrete chemical bonds, solvent surface tensions, and random contact area variations in consecutive pull-offs. From the 70 pN force quantum, we estimate the single bond energy to be approximately 4-5 kJ/mol, in reasonable agreement with thermodynamic data. These experiments establish that binding forces due to discrete chemical bonds can be detected directly in AFM pull-off measurements employing SAM modified probes and substrates. Because SAMs can be prepared with a wide range of exposed functional groups, pull-off measurements between SAM-coated tips and substrates may provide a general strategy for directly measuring binding forces associated with a variety of simple

  20. Reliability Study of Solder Paste Alloy for the Improvement of Solder Joint at Surface Mount Fine-Pitch Components

    Mohd Nizam Ab. Rahman


    Full Text Available The significant increase in metal costs has forced the electronics industry to provide new materials and methods to reduce costs, while maintaining customers’ high-quality expectations. This paper considers the problem of most electronic industries in reducing costly materials, by introducing a solder paste with alloy composition tin 98.3%, silver 0.3%, and copper 0.7%, used for the construction of the surface mount fine-pitch component on a Printing Wiring Board (PWB. The reliability of the solder joint between electronic components and PWB is evaluated through the dynamic characteristic test, thermal shock test, and Taguchi method after the printing process. After experimenting with the dynamic characteristic test and thermal shock test with 20 boards, the solder paste was still able to provide a high-quality solder joint. In particular, the Taguchi method is used to determine the optimal control parameters and noise factors of the Solder Printer (SP machine, that affects solder volume and solder height. The control parameters include table separation distance, squeegee speed, squeegee pressure, and table speed of the SP machine. The result shows that the most significant parameter for the solder volume is squeegee pressure (2.0 mm, and the solder height is the table speed of the SP machine (2.5 mm/s.

  1. Effects of rare earth element Ce on solderabilities of micron-powdered Sn-Ag-Cu solder

    XUE Song-bai; YU Sheng-lin; WANG Xu-yan; LIU lin; HU Yong-fang; YAO Li-hua


    Several important properties of the micron-powdered Sn-Ag-Cu-Ce solder, including the spreadability, spreading ratio, wetting time, and melting point, were investigated for verifying the effects of rare earth element Ce on solderabilities of micron-powdered Sn-Ag-Cu solder. The solidus and the liquidus of the micron-powdered Sn-Ag-Cu-Ce solder are 193.6℃ and 218.4℃, respectively, about 28℃ and 3℃ lower than the melting point of the block Sn-Ag-Cu solder, which reminds the existence of the surface effect of the micron-powdered solder. By adding Ce into Sn-Ag-Cu alloy, its wetting time on pure copper can be obviously decreased. For the Sn-Ag-Cu-0.03%Ce, the soldering temperature is 250℃, and the wetting time on pure copper is close to 1s, with the soldering temperature approaching to 260℃, the wetting time is dropped to 0.8s, which is close to the wetting time, 0.68s, of Sn-Pb solder at 235℃.

  2. A Study of the Interface of Soldered Joints of SnInAgTi Active Solder with Ito Ceramics

    M. Provazník


    Full Text Available This paper presents an analysis of the solderability ITO ceramics (In2O3/SnO2. The soft active solder SnInAgeTi was used for the experiments. The solder was activated by power ultrasound in air without flux. An analysis of the interface of the phases between the solder and the ceramic was carried out in order to discover the ultrasonic impacts on the active metal and to identify the mechanism of the joint on the ceramic side.

  3. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao


    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling.

  4. The effect of micro alloying on the microstructure evolution of Sn-Ag-Cu lead-free solder

    Werden, Jesse

    The microelectronics industry is required to obtain alternative Pb-free soldering materials due to legal, environmental, and technological factors. As a joining material, solder provides an electrical and mechanical support in electronic assemblies and therefore, the properties of the solder are crucial to the durability and reliability of the solder joint and the function of the electronic device. One major concern with new Pb-free alternatives is that the microstructure is prone to microstructural coarsening over time which leads to inconsistent properties over the device's lifetime. Power aging the solder is a common method of stabilizing the microstructure for Pb-based alloys, however, it is unclear if this will be an appropriate solution to the microstructural coarsening of Pb-free solders. The goal of this work is to develop a better understanding of the coarsening process in new solder alloys and to suggest methods of stabilizing the solder microstructure. Microalloying is one potential solution to the microstructural coarsening problem. This experiment consists of a microstructural coarsening study of SAC305 in which each sample has been alloyed with one of three different solutes, directionally solidified at 100microm/s, and then aged at three different temperatures over a total period of 20 days. There are several important conclusions from this experiment. First, the coarsening kinetics of the intermetallics in the ternary eutectic follow the Ostwald ripening model where r3 in proprotional to t for each alloying constituent. Second, the activation energy for coarsening was found to be 68.1+/-10.3 kJ/mol for the SAC305 samples, Zn had the most significant increase in the activation energy increasing it to 88.8+/-34.9 kJ/mol for the SAC+Zn samples, Mn also increased the activation energy to 83.2+/-20.8 kJ/mol for the SAC+Mn samples, and Sb decreased the activation energy to 48.0+/-3.59 kJ/mol for the SAC+Sb samples. Finally, it was found that the

  5. 300 mm InGaAs-on-insulator substrates fabricated using direct wafer bonding and the Smart Cut™ technology

    Widiez, Julie; Sollier, Sébastien; Baron, Thierry; Martin, Mickaël; Gaudin, Gweltaz; Mazen, Frédéric; Madeira, Florence; Favier, Sylvie; Salaun, Amélie; Alcotte, Reynald; Beche, Elodie; Grampeix, Helen; Veytizou, Christelle; Moulet, Jean-Sébastien


    This paper reports the first demonstration of 300 mm In0.53Ga0.47As-on-insulator (InGaAs-OI) substrates. The use of direct wafer bonding and the Smart Cut™ technology lead to the transfer of high quality InGaAs layer on large Si wafer size (300 mm) at low effective cost, taking into account the reclaim of the III-V on Si donor substrate. The optimization of the three key building blocks of this technology is detailed. (1) The III-V epitaxial growth on 300 mm Si wafers has been optimized to decrease the defect density. (2) For the first time, hydrogen-induced thermal splitting is made inside the indium phosphide (InP) epitaxial layer and a wide implantation condition ranges is observed on the contrary to bulk InP. (3) Finally a specific direct wafer bonding with alumina oxide has been chosen to avoid outgas diffusion at the alumina oxide/III-V compound interface.

  6. Evaluating print performance of Sn-Ag-Cu lead-free solder pastes used in electronics assembly process

    Mallik, S.; Bauer, R.; Hübner, F.; Ekere, N. N.


    Solder paste is the most widely used interconnection material in the electronic assembly process for attaching electronic components/devices directly onto the surface of printed circuit boards, using stencil printing process. This paper evaluates the performance of three different commercially available Sn-Ag-Cu solder pastes formulated with different particle size distributions (PSD), metal content and alloy composition. A series of stencil printing tests were carried out using a specially designed stencil of 75 μm thickness and apertures of 300×300 μm2 dimension and 500 μm pitch sizes. Solder paste printing behaviors were found related to attributes such as slumping and surface tension and printing performance was correlated with metal content and PSD. The results of the study should benefit paste manufacturers and SMT assemblers to improve their products and practices.

  7. Palladium-catalyzed picolinamide-directed iodination of remote ortho-C−H bonds of arenes: Synthesis of tetrahydroquinolines

    Nack, William A; Wang, Xinmou; Wang, Bo


    Summary A new palladium-catalyzed picolinamide (PA)-directed ortho-iodination reaction of ε-C(sp2)−H bonds of γ-arylpropylamine substrates is reported. This reaction proceeds selectively with a variety of γ-arylpropylamines bearing strongly electron-donating or withdrawing substituents, complementing our previously reported PA-directed electrophilic aromatic substitution approach to this transformation. As demonstrated herein, a three step sequence of Pd-catalyzed γ-C(sp3)−H arylation, Pd-catalyzed ε-C(sp2)−H iodination, and Cu-catalyzed C−N cyclization enables a streamlined synthesis of tetrahydroquinolines bearing diverse substitution patterns. PMID:27559375

  8. Self-assembly of alkanethiolates directs sulfur bonding with GaAs(100)

    Mancheno-Posso, Pablo; Muscat, Anthony J.


    Molecules that contain linear alkane chains self-assemble on a variety of surfaces changing the degree of wetting, lubricity, and reactivity. We report on the reoxidation of GaAs(100) in air after adsorbing five alkanethiols (CnH2n+1-SH where n = 3, 6, 12, 18, 20) and one alkanedithiol (HS-(CH2)8-SH) deposited from the liquid phase. The alignment of the alkane chains forms a self-assembled layer, however, air diffuses readily through the carbon layer and reaches the surface. The impact of alignment is to improve the bonding of sulfur with the surface atoms which reduces the oxidation rate based on fitting the data to a reaction-diffusion model. The layer thickness and molecular density scale linearly with the number of carbon atoms in the alkane chain. The thickness of the alkanethiolate (RS-) layer grows by 0.87 ± 0.06 Å for each C atom in the chain and the surface density by 0.13 ± 0.03 molecule per nm2 per C atom up to a coverage of 5.0 molecules/nm2 for n = 20 or 0.8 monolayer. The surface coverage increases with length because interactions between methylene (CH2) groups in neighboring chains reduce the tilt angle of the molecules with the surface normal. The tight packing yields areas per alkanethiolate as low as 20 Å2 for n = 20. The amount of C in the layer divided by the chain length is approximately constant up to n = 12 but increases sharply by a factor of 2-4× for n = 18 and 20 based on the C 1s X-ray photoelectron spectroscopy (XPS) peak. Fourier transform infrared (FTIR) spectroscopy shows that the asymmetric methylene stretch shifts continuously to lower wavenumber and the relative peak area increases sharply with the length of the alkane chain. Fitting the data to a reaction-diffusion model shows that for times less than 30 min the surface oxide coverage does not depend on the thickness of the self-assembled layer nor the diffusivity of oxygen through the layer. Instead increasing the layer thickness makes more S available for bonding with the

  9. Thermal stress in a bi-material assembly with a 'piecewise-continuous' bonding layer: theorem of three axial forces

    Suhir, E.


    interfacial stresses). The maximum interfacial shearing stress in the assembly with the inhomogeneous bonding layer turned out to be only about 30% of the maximum shearing stress in an assembly with a homogeneous bonding layer having throughout its length the same modulus as the bonding material in the mid-portion of an assembly with an inhomogeneous bond. We would like to emphasize that the inhomogeneous bonding material addressed in this analysis does not necessarily have to be an epoxy one. Many other bonding materials with different moduli in the mid-portion and at the peripheral portions of the assembly could be considered for various practical applications. For instance, a high-modulus solder material such as, say, a tin-silver-copper (SAC) solder can be employed in the mid-portion of an assembly and a low-modulus solder (e.g. an indium-based alloy) at its peripheral portions. In other applications a high-modulus solder material could be considered for the mid-portion of the assembly and a low-modulus epoxy adhesive at its peripheral portions. We would also like to point out that the developed concept can be easily generalized for the situations when the bonding material is not a continuous one, but is of the ball-grid-array (BGA) or a pad-grid-array (PGA) type. Our concept could also be easily generalized for a two-dimensional case, for the situation when bending deformations should be accounted for, for non-uniform distribution of temperature (i.e. for assemblies with temperature gradients in the through-thickness and/or in the longitudinal direction), for situations when time-dependent effects (visco-elasticity, creep, stress relaxation) in the bonding material are important and for numerous other more complicated and practically important situations that might be encountered in engineering practice.

  10. Surface tension and reactive wetting in solder connections

    Wedi, Andre; Schmitz, Guido [Institut fuer Materialphysik, Westf. Wilhelms-Universitaet, Wilhelm-Klemm-Strasse 10, 48149 Muenster (Germany)


    Wetting is an important pre-requisite of a reliable solder connection. However, it is only an indirect measure for the important specific energy of the reactive interface between solder and base metallization. In order to quantify this energy, we measured wetting angles of solder drops as well as surface tension of SnPb solders under systematic variation of composition and gaseous flux at different reflow temperatures. For the latter, we used the sessile drop method placing a solder drop on a glas substrate. From the two independent data sets, the important energy of the reactive interface is evaluated based on Young's equation. Remarkably, although both, the tension between the solder and flux and the wetting angle, reveal significant dependence on solder composition. So the adhesion energy reveals distinguished plateaus which are related to different reaction products in contact to the solder. TEM analysis and calculations of phase stabilities show that there is no Cu6Sn5 for high lead concentrations. The experiments confirm a model of reactive wetting by Eustathopoulos.

  11. Assessment of potential solder candidates for high temperature applications

    of the package with different solders of different melting temperatures. High Pb containing alloys where the lead levels can be above 85% by weight, is one of the solders currently being used in this technology. Responding to market pressure i.e. need for green electronic products there is now an increasing...

  12. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore (India); Periyasamy, Ganga [Department of Chemistry, Central College Campus, Bangalore University, Bangalore (India)


    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.

  13. The effect of different surface treatments of stainless steel crown and different bonding agents on shear bond strength of direct composite resin veneer

    Ajami B


    Full Text Available Background and Aim: Stainless steel crown (SSC is the most durable and reliable restoration for primary teeth with extensive caries but its metalic appearance has always been a matter of concern. With advances in restorative materials and metal bonding processes, composite veneer has enhanced esthetics of these crowns in clinic. The aim of this study was to evaluate the shear bond strength of SSC to composite resin using different surface treatments and adhesives. Materials and Methods: In this experimental study, 90 stainless steel crowns were selected. They were mounted in molds and divided into 3 groups of 30 each (S, E and F. In group S (sandblast, buccal surfaces were sandblasted for 5 seconds. In group E (etch acidic gel was applied for 5 minutes and in group F (fissure bur surface roughness was created by fissure diamond bur. Each group was divided into 3 subgroups (SB, AB, P based on different adhesives: Single Bond, All Bond2 and Panavia F. Composite was then bonded to specimens. Cases were incubated in 100% humidity at 37°C for 24 hours. Shear bond strength was measured by Zwick machine with crosshead speed of 0.5 mm/min. Data were analyzed by ANOVA test with p0.05 so the two variables were studied separately. No significant difference was observed in mean shear bond strength of composite among the three kinds of adhesives (P>0.05. Similar results were obtained regarding surface treatments (P>0.05. Conclusion: Based on the results of this study, treating the SSC surface with bur and using single bond adhesive and composite can be used successfully to obtain esthetic results in pediatric restorative treatments.

  14. Cost comparison modeling between current solder sphere attachment technology and solder jetting technology

    Davidson, R.N.


    By predicting the total life-cycle cost of owning and operating production equipment, it becomes possible for processors to make accurate and intelligent decisions regarding major capitol equipment investments as well as determining the most cost effective manufacturing processes and environments. Cost of Ownership (COO) is a decision making technique based on inputting the total costs of acquiring, operating and maintaining production equipment. All quantitative economic and production data can be modeled and processed using COO software programs such as the Cost of Ownership Luminator program TWO COOL{trademark}. This report investigated the Cost of Ownership differences between the current state-of-the-art solder ball attachment process and a prototype solder jetting process developed by Sandia National Laboratories. The prototype jetting process is a novel and unique approach to address the anticipated high rate ball grid array (BGA) production requirements currently forecasted for the next decade. The jetting process, which is both economically and environmentally attractive eliminates the solder sphere fabrication step, the solder flux application step as well as the furnace reflow and post cleaning operations.

  15. A Study of Solder Alloy Ductility for Cryogenic Applications

    Lupinacci, A.; Shapiro, A. A.; Suh, J-O.; Minor, A. M.


    For aerospace applications it is important to understand the mechanical performance of components at the extreme temperature conditions seen in service. For solder alloys used in microelectronics, cryogenic temperatures can prove problematic. At low temperatures Sn-based solders undergo a ductile to brittle transition that leads to brittle cracks, which can result in catastrophic failure of electronic components, assemblies and spacecraft payloads. As industrial processes begin to move away from Pb-Sn solder, it is even more critical to characterize the behavior of alternative Sn-based solders. Here we report on initial investigations using a modified Charpy test apparatus to characterize the ductile to brittle transformation temperature of nine different solder systems.

  16. Hybrid microcircuit board assembly with lead-free solders

    Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.


    An assessment was made of the manufacturability of hybrid microcircuit test vehicles assembled using three Pb-free solder compositions 96.5Sn--3.5Ag (wt.%), 91.84Sn--3.33Ag--4.83Bi, and 86.85Sn--3.15Ag--5.0Bi--5.0Au. The test vehicle substrate was 96% alumina; the thick film conductor composition was 76Au--21Pt--3Pd. Excellent registration between the LCCC or chip capacitor packages and the thick film solder pads was observed. Reduced wetting of bare (Au-coated) LCCC castellations was eliminated by hot solder dipping the I/Os prior to assembly of the circuit card. The Pb-free solders were slightly more susceptible to void formation, but not to a degree that would significantly impact joint functionality. Microstructural damage, while noted in the Sn-Pb solder joints, was not observed in the Pb-free interconnects.

  17. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo


    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  18. The effect of direct and indirect water storage on the microtensile dentin bond strength of a total-etch and two self-etching adhesives.

    Abdalla, Ali I; El Eraki, Magda; Feilzer, Albert J


    To evaluate the effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. The adhesive materials were: one total-etch adhesive; Admira Bond and two self-etch adhesives; Clearfil SE Bond and Hybrid Bond. Freshly extracted human third molar teeth were used. In each tooth, a Class I cavity (4 x 4 mm) was prepared in the occlusal surface with the pulpal floor extending approximately 1 mm into dentin. The teeth were divided into three groups (n = 12). Each group was restored with the resin composite Clearfil APX using one of the tested adhesives. For each experimental group three test procedures (n = 10) were carried out: Procedure A: the teeth were stored in water for 24 hours, then sectioned longitudinally, buccolingually and mesiodistally to get rectangular slabs of 1.0 - 1.2 mm thickness on which a microtensile test was carried out; Procedure B: the teeth were also sectioned, however the slabs were stored in water at 37 degrees C for 1 year before microtensile testing; Procedure C: the teeth were kept in water at 37 degrees C for 1 year before sectioning and microtensile testing. During microtensile testing the slabs were placed in a universal testing machine and load was applied at a cross-head speed of 0.5 mm/minute. For the 24-hour water storage groups there was no significant difference in bond strength between the three adhesives. After 1 year of indirect water storage, the bond strength decreased but the reduction was not significantly different from those of 24 hours. After 1 year of direct water storage, the mean bond strengths of Admira Bond and Hybrid Bond were significantly reduced compared to their 24-hour results. In contrast the average value of Clearfil SE Bond was not significantly affected.

  19. Duality Symmetry and Soldering in Different Dimensions

    Banerjee, R


    We develop a systematic method of obtaining duality symmetric actions in different dimensions. This technique is applied for the quantum mechanical harmonic oscillator, the scalar field theory in two dimensions and the Maxwell theory in four dimensions. In all cases there are two such distinct actions. Furthermore, by soldering these distinct actions in any dimension a master action is obtained which is duality invariant under a much bigger set of symmetries than is usually envisaged. The concept of swapping duality is introduced and its implications are discussed. The effects of coupling to gravity are also elaborated. Finally, the extension of the analysis for arbitrary dimensions is indicated.

  20. Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation

    Harada, Hitoshi; Thalji, Reema; Bergman, Robert; Ellman, Jonathan


    Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe){sub 2}]{sub 2} and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.

  1. Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation

    Harada, Hitoshi; Thalji, Reema; Bergman, Robert; Ellman, Jonathan


    Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe){sub 2}]{sub 2} and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.

  2. Electromigration of composite Sn-Ag-Cu solder bumps

    Sharma, Ashutosh; Xu, Di Erick; Chow, Jasper; Mayer, Michael; Sohn, Heung-Rak; Jung, Jae Pil


    This study investigates the electromigration (EM) behavior of lead free Sn-Ag-Cu (SAC) solder alloys that were reinforced with different types of nanoparticles [Copper-coated carbon nanotubes (Cu/CNT), La2O3, Graphene, SiC, and ZrO2]. The composite solders were bumped on a Cu substrate at 220°C, and the resistance of the bumped solders was measured using a four wire setup. Current aging was carried out for 4 hours at a temperature of 160°C, and an increase in resistance was noted during this time. Of all the composite solders that were studied, La2O3 and SiC reinforced SAC solders exhibited the smallest resistances after current aging. However, the rate of change in the resistance at room temperature was lower for the SiC-reinforced SAC solder. The SAC and Graphene reinforced SAC solder bumps completely failed within 15 - 20 min of these tests. The SiC nanoparticles were reported to possibly entrap the SAC atoms better than other nanoparticles with a lower rate of EM. [Figure not available: see fulltext.

  3. Environmentally compatible solder materials for thick film hybrid assemblies

    Hosking, F.M.; Vianco, P.T.; Rejent, J.A.; Hernandez, C.L. [Sandia National Labs., Albuquerque, NM (United States). Materials and Process Sciences Center


    New soldering materials and processes have been developed over the last several years to address a variety of environmental issues. One of the primary efforts by the electronics industry has involved the development of alternative solders to replace the traditional lead-containing alloys. Sandia National Laboratories is developing such alternative solder materials for printed circuit board and hybrid microcircuit (HMC) applications. This paper describes the work associated with low residue, lead-free soldering of thick film HMC`s. The response of the different materials to wetting, aging, and mechanical test conditions was investigated. Hybrid test vehicles were designed and fabricated with a variety of chip capacitors and leadless ceramic chip carriers to conduct thermal, electrical continuity, and mechanical evaluations of prototype joints. Microstructural development along the solder and thick film interface, after isothermal solid state aging over a range of elevated temperatures and times, was quantified using microanalytical techniques. Flux residues on soldered samples were stressed (temperature-humidity aged) to identify potential corrosion problems. Mechanical tests also supported the development of a solder joint lifetime prediction model. Progress of this effort is summarized.

  4. Simulation of thermomechanical fatigue in solder joints

    Fang, H.E.; Porter, V.L.; Fye, R.M.; Holm, E.A. [Sandia National Labs., Albuquerque, NM (United States)


    Thermomechanical fatigue (TMF) is a very complex phenomenon in electronic component systems and has been identified as one prominent degradation mechanism for surface mount solder joints in the stockpile. In order to precisely predict the TMF-related effects on the reliability of electronic components in weapons, a multi-level simulation methodology is being developed at Sandia National Laboratories. This methodology links simulation codes of continuum mechanics (JAS3D), microstructural mechanics (GLAD), and microstructural evolution (PARGRAIN) to treat the disparate length scales that exist between the macroscopic response of the component and the microstructural changes occurring in its constituent materials. JAS3D is used to predict strain/temperature distributions in the component due to environmental variable fluctuations. GLAD identifies damage initiation and accumulation in detail based on the spatial information provided by JAS3D. PARGRAIN simulates the changes of material microstructure, such as the heterogeneous coarsening in Sn-Pb solder, when the component`s service environment varies.

  5. Mechanical Reliability of Aged Lead-­Free Solders

    Lewin, Susanne


    The usage of lead-­free solder joints in electronic packaging is of greatest concern to the electronic industry due to the health and environmental hazards arising with the use of lead. As a consequence, lead is legally prohibited in the European Union and the industry is aiming to produce lead-free products.            The reliability of solder joints is an important issue as the failure could destroy the whole function of a product. SnAgCu is a commonly used alloy for lead-­free solders. Co...

  6. Solder technology in the manufacturing of electronic products

    Vianco, P.T.


    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  7. Solderability and intermetallic compounds formation of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    CHEN Wenxue; XUE Songbai; WANG Hui; WANG Jianxin; HAN Zongjie


    The eutectie Sn-9Zn alloy was doped with Ag (0 wt.%-1 wt.%) to form Sn-9Zn-xAg lead-free solder alloys. The effect of the addition of Ag on the microstructure and solderability of this alloy was investigated and intermetallic compounds (IMCs) formed at the solder/Cu interface were also examined in this study. The results show that, due to the addition of Ag, the microstructure of the solder changes. When the quan-tity of Ag is lower than 0.3 wt.%, the needle-like Zn-rich phase decreases gradually. However, when the quantity of Ag is 0.5 wt.%-1 wt.%, Ag-Zn intermetallic compounds appear in the solder. In particular, adding 0.3 wt.% Ag improves the wetting behavior due to the better oxi-dation resistance of the Sn-9Zn solder. The addition of an excessive amount of Ag will deteriorate the wetting property because the gluti-nosity and fluidity of Sn-9Zn-(0.5, 1)Ag solder decrease. The results also indicate that the addition of Ag to the Sn-Zn solder leads to the pre-cipitation of ε-AgZn_3 from the liquid solder on preformed interracial intermetallics (Cu_5Zn_8). The peripheral AgZn_3, nodular on the Cu_5Zn_8 IMCs layer, is likely to be generated by a peritectic reaction L+γ-Ag_5Zn8→ε-AgZn_3 and the following crystallization of AgZn_3.

  8. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Liu Mei Lee


    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  9. High temperature solder alloys for underhood applications. Progress report

    Drewien, C.A.; Yost, F.G.; Sackinger, S. [Sandia National Labs., Albuquerque, NM (United States); Kern, J.; Weiser, M.W. [Univ. of New Mexico (United States). Dept. of Mechanical Engineering


    Under a cooperative research and development agreement with General Motors Corporation, lead-free solder systems including the flux, metallization, and solder are being developed for high temperature, underhood applications. Six tin-rich solders, five silver-rich metallizations, and four fluxes were screened using an experimental matrix whereby every combination was used to make sessile drops via hot plate or Heller oven processing. The contact angle, sessile drop appearance, and in some instances the microstructure was evaluated to determine combinations that would yield contact angles of less than 30{degrees}, well-formed sessile drops, and fine, uniform microstructures. Four solders, one metallization, and one flux were selected and will be used for further aging and mechanical property studies.

  10. Effect of Thick Film Firing Conditions on the Solderability and Structure of Au-Pt-Pd Conductor for Low-Temperature, Co-Fired Ceramic Substrates

    Hernandez, C.L; Vianco, P.T.


    Low-temperature, co-fired ceramics (LTCC) are the substrate material-of-choice for a growing number of multi-chip module (MCM) applications. Unlike the longer-standing hybrid microcircuit technology based upon alumina substrates, the manufacturability and reliability of thick film solder joints on LTCC substrates have not been widely studied. An investigation was undertaken to fully characterize such solder joints. A surface mount test vehicle with Daisy chain electrical connections was designed and built with Dupont{trademark} 951 tape. The Dupont{trademark} 4569 thick film ink (Au76-Pt21 -Pd3 wt.%) was used to establish the surface conductor pattern. The conductor pattern was fired onto the LTCC substrate in a matrix of process conditions that included: (1) double versus triple prints, (2) dielectric frame versus no frame, and (3) three firing temperatures (800 C, 875 C and 950 C). Pads were examined from the test vehicles. The porosity of the thick film layers was measured using quantitative image analysis in both the transverse and short transverse directions. A significant dependence on firing temperature was recorded for porosity. Solder paste comprised of Sn63-Pb37 powder with an RMA flux was screen printed onto the circuit boards. The appropriate components, which included chip capacitors of sizes 0805 up to 2225 and 50 mil pitch, leadless ceramic chip carriers having sizes of 16 I/O to 68 I/O, were then placed on the circuit boards. The test vehicles were oven reflowed under a N{sub 2} atmosphere. The solderability of the thick film pads was also observed to be sensitive to the firing conditions. Solderability appeared to degrade by the added processing steps needed for the triple print and dielectric window depositions. However, the primary factor in solderability was the firing temperature. Solderability was poorer when the firing temperature was higher.

  11. Method of defence of solder surface from oxidization

    Kurmashev Sh. D.


    Full Text Available Compositions are developed for defence of fusion solder from oxidization on the basis of mixture of glycerin, urea and powders of refractory oxides, carbides (Al2O3, TiO2, SIC, graphite. The offered compositions can be used for defence of fusion of solder from oxidization in the process of soludering and tinning of explorers, and also electric conclusions of elements of radio electronic apparatus by the method of immersion in stationary baths.

  12. Critical evaluations of lead-free solder alloys and performance comparisons

    Hitch, T.T.; Palit, K.; Prabhu, A.N. [David Sarnoff Research Center, Princeton, NJ (United States)


    This paper discusses the methodology for solder alloy selection, solder preparation processes, test selection, results, and conclusions. The conclusions from this phase of study were that: (1). Solders containing significant amounts of bismuth exhibit poor fatigue life. (2). The Sn-Ag-Cu alloy was the best solder we studied for use as a replacement for Sn-Pb eutectic. A second phase of the work involved detailed study of the Sn-Ag-Cu system with other additions to determine the optimum lead-free solder compositions in terms of melting point, solderability, and mechanical properties.

  13. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Liu Mei Lee; Ahmad Azmin Mohamad


    This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also disc...

  14. Microsurgical anastomosis of sperm duct by laser tissue soldering

    Wehner, Martin M.; Teutu-Kengne, Alain-Fleury; Brkovic, Drasko; Henning, Thomas; Klee, Doris; Poprawe, Reinhart; Jakse, Gerhard


    Connection of small vessels is usually done by suturing which is very cumbersome. Laser tissue soldering can circumvent that obstacle if a handy procedure can be defined. Our principle approach consists of a bioresorbable hollow stent with an expected degradation time of 3 weeks in combination with laser soldering. The stent is to be fed into the vessel to stabilize both ends and should allow percolation immediately after joining. The stents are made of Poly(D,L-lactid-co-glycolid) and solder is prepared from bovine serum albumin (BSA) doped with Indocyanine green (ICG) as chromophore to increase the absorption of laser light. After insertion, solder is applied onto the outer surface of the vessel and coagulated by laser radiation. The wavelength of 810 nm of a diode laser fits favorably to absorption properties of tissue and solder such that heating up of tissue is limited to prevent from necrosis and wound healing complications. In our study the preparation of stents, the consistency and doping of solder, a beam delivery instrument and the irradiation conditions are worked out. In-vitro tests are carried out on sperm ducts of Sprague-Dowlae (SD) rats. Different irradiation conditions are investigated and a micro-optical system consisting of a lens and a reflecting prism to ensure simultaneous irradiation of front and back side of the vessels tested. Under these conditions, the short-term rupture strength of laser anastomosis revealed as high as those achieved by suturing.

  15. Laser Soldering of Rat Skin Using a Controlled Feedback System

    Mohammad Sadegh Nourbakhsh


    Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.

  16. Creep properties of Pb-free solder joints

    Song, H.G.; Morris Jr., J.W.; Hua, F.


    Describes the creep behavior of three Sn-rich solders that have become candidates for use in Pb-free solder joints: Sn-3.5Ag, Sn-3Ag-0.5Cu and Sn-0.7Cu. The three solders show the same general behavior when tested in thin joints between Cu and Ni/Au metallized pads at temperatures between 60 and 130 C. Their steady-state creep rates are separated into two regimes with different stress exponents(n). The low-stress exponents range from {approx}3-6, while the high-stress exponents are anomalously high (7-12). Strikingly, the high-stress exponent has a strong temperature dependence near room temperature, increasing significantly as the temperature drops from 95 to 60 C. The anomalous creep behavior of the solders appears to be due to the dominant Sn constituent. Joints of pure Sn have stress exponents, n, that change with stress and temperature almost exactly like those of the Sn-rich solder joints. Research on creep in bulk samples of pure Sn suggests that the anomalous temperature dependence of the stress exponent may show a change in the dominant mechanism of creep. Whatever its source, it has the consequence that conventional constitutive relations for steady-state creep must be used with caution in treating Sn-rich solder joints, and qualification tests that are intended to verify performance should be carefully designed.

  17. Soldering in prosthodontics--an overview, part I.

    Byrne, Gerard


    The fit of fixed multiunit dental prostheses (FDP), traditionally termed fixed partial dentures (FPDs), is an ongoing problem. Poorly fitting restorations may hasten mechanical failure, due to abutment caries or screw failure. Soldering and welding play an important role in trying to overcome misfit of fixed multiunit prostheses. The term FPD will be used to denote multiunit fixed dental prostheses in this review. This is the first of a series of articles that review the state of the art and science of soldering and welding in relation to the fit of cemented or screw-retained multiunit prostheses. A comprehensive archive of background information and scientific findings is presented. Texts in dental materials and prosthodontics were reviewed. Scientific data were drawn from the numerous laboratory studies up to and including 2009. The background, theory, terminology, and working principles, along with the applied research, are presented. This first article focuses on soldering principles and dimensional accuracy in soldering. There is some discussion and suggestions for future research and development. Soldering may improve dimensional accuracy or reduce the distortion of multiunit fixed prostheses. Many variables can affect the outcome in soldering technique. Research science has developed some helpful guidelines. Research projects are disconnected and limited in scope. © 2011 by The American College of Prosthodontists.

  18. Soldering of Thin Film-Metallized Glass Substrates

    Hosking, F.M.; Hernandez, C.L.; Glass, S.J.


    The ability to produce reliable electrical and structural interconnections between glass and metals by soldering was investigated. Soldering generally requires premetallization of the glass. As a solderable surface finish over soda-lime-silicate glass, two thin films coatings, Cr-Pd-Au and NiCr-Sn, were evaluated. Solder nettability and joint strengths were determined. Test samples were processed with Sn60-Pb40 solder alloy at a reflow temperature of 210 C. Glass-to-cold rolled steel single lap samples yielded an average shear strength of 12 MPa. Solder fill was good. Control of the Au thickness was critical in minimizing the formation of AuSn{sub 4} intermetallic in the joint, with a resulting joint shear strength of 15 MPa. Similar glass-to-glass specimens with the Cr-Pd-Au finish failed at 16.5 MPa. The NiCr-Sn thin film gave even higher shear strengths of 20-22.5 MPa, with failures primarily in the glass.

  19. Synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks via the direct condensation of acetals and amines.

    Li, Zhi-Jun; Ding, San-Yuan; Xue, Hua-Dong; Cao, Wei; Wang, Wei


    We demonstrate herein a facile approach for constructing -C[double bond, length as m-dash]N- linked COFs from acetals. Three new COFs (imine-linked LZU-20, hydrazone-linked LZU-21, and azine-linked LZU-22) were synthesized by the direct condensation of dimethyl acetals and amines. All the synthesized COFs are highly crystalline and exhibit good thermal stability.

  20. Fluxless Bonding Processes Using Silver-Indium System for High Temperature Electronics and Silver Flip-Chip Interconnect Technology

    Wu, Yuan-Yun


    In this dissertation, fluxless silver (Ag)-indium (In) binary system bonding and Ag solid-state bonding are used between different bonded pairs which have large thermal expansion coefficient (CTE) mismatch and flip-chip interconnect bonding application. In contrast to the conventional soldering process, fluxless bonding technique eliminates contamination and reliability problems caused by flux to fabricate high quality joints. Due to large CTE mismatch, high quality joints are important to ma...

  1. Lead-free solder technology transfer from ASE Americas



    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a

  2. Influences of fine pitch solder joint shape parameters on fatigue life under thermal cycle

    HUANG Chun-yue; WU Zhao-hua; HUANG Hong-yan; ZHOU De-jian


    The solder joint reliability of a 0. 5 mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25 mm× 0.35 mm, the stand-off of 0.02 mm and the solder volume of 0. 026 mm3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5 mm pitch QFP.

  3. Joining technologies for the 1990s: welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Buckley, J.D.; Stein, B.A.


    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding. For individual titles see N86-11228 through N86-11255.

  4. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Buckley, John D. (Editor); Stein, Bland A. (Editor)


    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  5. Solderability of Sn-9Zn-0.5Ag-1In lead-free solder on Cu substrate

    Chang, T.-C. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, J.-W. [Department of Environmental and Safety Engineering, Chung Hwa College of Medical Technology, 89 Wen-Hwa 1st Street, Jen-Te, Tainan 71703, Taiwan (China); Wang, M.-C. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China)]. E-mail:; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Da-Yeh University, 112 Shan Jean Road, Da-tsuen, Chang-hua, Taiwan (China)


    The thermal properties, microstructure corrosion and oxidation resistance of the Sn-9Zn-0.5Ag-1In lead-free solder have been investigated by differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersive spectrometry, potentiostat and thermogravimetry. The Sn-9Zn-0.5Ag-1In solder alloy has a near-eutectic composition, it melts at 187.6 deg. C and the heat of fusion is determined as 71.3 J/g. The Sn-9Zn-0.5Ag-1In solder alloy with a corrosion potential of -1.09 V{sub SCE} and a current density of 9.90 x 10{sup -2} A/cm{sup 2}, shows a better corrosion resistance than that of the Sn-9Zn solder alloy. From the thermogravimetry analysis, the weight gain ratio of the Sn-9Zn solder alloy appears a parabolic relationship at 150 deg. C. The initial oxidation behavior of the Sn-9Zn-0.5Ag and Sn-9Zn-0.5Ag-1In solder alloys also shows a parabolic relationship but the weight gain ratio of them appears a negative linear one after aging at 150 deg. C for 2.5 and 5 h, respectively.

  6. The effects of nucleation and solidification mechanisms on the microstructure and thermomechanical response of tin silver copper solder joints

    Arfaei, Babak

    This work examines the nucleation mechanism of Sn in SnAgCu alloys and its effect on the microstructure of those solder joints. The nucleation rate of Sn in a SAC alloy was obtained by simultaneous calorimetric examination of the isothermal solidification of 88 flip chip Sn-Ag-Cu solder joints. Qualitative agreement with classic nucleation theory was observed, although it was concluded that the spherical cap model cannot be applied to explain the structure of nucleus. It was shown that the solidification temperature significantly affects the microstructure; samples that undercooled less than approximately 40oC revealed one or three large Sn grains, while interlaced twinning was observed in the samples that solidified at lower temperatures. In order to better understand the effect of microstructure on the thermomechanical properties of solder joints, a study of the dependence of room temperature shear fatigue lifetime on Sn grain number and orientation was conducted. This study examined the correlations of variations in fatigue life of solder balls with the microstructure of Sn-Ag-Cu solder. The mean fatigue lifetime was found to be significantly longer for samples with multiple Sn grains than for samples with single Sn grains. For single grain samples, correlations between Sn grain orientation (with respect to the loading direction) and lifetime were observed, providing insight on early failures in SnAgCu solder joints. Correlations between the lifetimes of single Sn grained, SAC205 solder joints with differences in Ag3Sn and Cu6Sn5 precipitate microstructures were investigated. It was found that Ag3Sn precipitates were highly segregated from Cu6Sn 5 precipitates on a length scale of approximately twenty microns. Furthermore, large (factor of two) variations of the Sn dendrite arm size were observed within given samples. Such variations in values of dendrite arm size within a single sample were much larger than observed variations of this parameter between

  7. Microstructure, mechanical and oxidation behavior of RE-containing lead-free solders

    Dudek, Martha A.

    Pb-free solders pose new challenges associated with their incorporation and reliability during service of electronic components. Recently, a new class of alloys containing rare-earth (RE) elements has been discovered. In this study, solder alloys containing lanthanum (La), cerium (Ce) and yttrium (Y) were developed and characterized. It was found that small additions of La and Ce to Sn-Ag-Cu alloys significantly improved their ductility. This has direct implications for mechanical shock and drop reliability. Microstructure characterization of solder and solder/Cu joints containing Sn-3.9Ag-0.7Cu-XRE (X = 0, 0.1, 0.5 and 2 weight percent) was conducted using optical microscopy, scanning electron microscopy and transmission electron microscopy. It was found that RE elements refined the solder microstructure. A serial-sectioning 3D reconstruction process was used to visualize the RE-containing intermetallics. Solidification of these alloys was studied using differential scanning calorimetry. The melting point of Sn-3.9Ag-0.7Cu did not change with the incorporation of RE elements. Additionally, the effect of RE content on shear and creep of lap-shear joints was studied. It was found that additions of La and Ce up to 0.5 weight percent improved the elongation of Sn-3.9Ag-0.7Cu. Y-containing alloys did not show an improvement. Creep tests were conducted at 60, 95 and 120 degrees Celsius. RE content did not markedly alter the creep behavior. Due to RE's high affinity for oxygen, oxidation of RE-containing alloys may affect their mechanical performance. Thus, the effect of 2 weight percent Ce, La or Y on the oxidation behavior was studied at 60, 95 and 130 degrees Celsius. All alloys exhibited parabolic oxidation kinetics. La and Y-containing alloys oxidized significantly faster than the Ce-containing alloy. Sn whiskering was observed to take place during oxidation, likely due to the compressive stresses developed during oxidation. Serial-sectioning with a focused ion beam

  8. Microstructure and oxidation performance of a –' Pt-aluminide bond coat on directionally solidified superalloy CM-247LC

    Md Zafir Alam; N Hazari; Dipak K Das


    The microstructure of a Pt-modified -' bond coat on CM-247LC Ni-base superalloy has been examined and its cyclic oxidation performance at 1100 °C in air is comparatively evaluated with that of a conventional -(Ni, Pt)Al bond coat. The -' bond coat was effective in imparting oxidation resistance to the CM-247LC alloy for about 100 h, whereas the coating imparted oxidation resistance for significantly longer duration of about 1000 h. The nature of surface damage that occurred to the -' coating during oxidation has been compared with that reported in the case of coating.

  9. Mechanical Properties and Microstructure Investigation of Lead Free Solder

    Wang, Qing; Gail, William F.; Johnson, R. Wayne; Strickland, Mark; Blanche, Jim


    eutectic region of Sn with moderately dispersed Ag3Sn intermetallic, surrounded by a dendritic Sn-rich phase. The SEM images of the fracture surface indicated the presence of a tough shear surface at the initial cavity break area and a break line in the middle of specimen along the failure direction. A hyperbolic-sine creep model was adopted and used to fit the creep experiment data. The effect on the mechanical properties by adding the quaternary element bismuth to the Sn-3.5Ag-0.8Cu alloy was measured and compared with the mechanical properties of the ternary alloys. The results of this research study provide necessary data for the modeling of solder joint reliability for a range of Sn-Ag-Cu compositions and a baseline for evaluating the effects of subsequent quaternary additions.

  10. A Flip-Chip AlGaInP LED with GaN/Sapphire Transparent Substrate Fabricated by Direct Wafer Bonding

    LIANG Ting; GUO Xia; GUAN Bao-Lu; GUO Jing; GU Xiao-Ling; LIN Qiao-Ming; SHEN Guang-Di


    A red-light AlGaInP light emitting diode(LED)is fabricated by,using direct wafer bonding technology.Taking N-GaN wafer as the transparent substrate,the red-light LED is flip-chiped onto a structured silicon submount.Electronic luminance(EL)test reveals that the luminance flux is 130% higher than that of the conventional LED made from the same LED wafer.Current-voltage(Ⅰ-Ⅴ)measurement indicates that the bonding processes do not impact the electrical property of AlGaInP LED in the small voltage region (V<1.5V).In the large voltage region (V>1.5 V),the Ⅰ-Ⅴ characteristic exhibits space-charge-limited currents characteristic due to the p-GaAs/n-GaN bonding interface.

  11. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Chen, Haiyan; Peng, Jianke; Fu, Li; Wang, Xincheng; Xie, Yan


    In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  12. Interaction Kinetics between Sn-Pb Solder Droplet and Au/Ni/Cu Pad

    Fuquan LI; Chunqing WANG; Yanhong TIAN


    The interfacial phenomena of the Sn-Pb solder droplet on Au/Ni/Cu pad are investigated. A continuous AuSn2and needle-like AuSn4 are formed at the interface after the liquid state reaction (soldering). The interfacial reaction between the solder and Au layer continues during solid state aging with AuSn4 breaking off from the interface and felling into the solder. The kinetics of Au layer dissolution and diffusion into the solder during soldering and aging is analyzed to elucidate intermetallic formation mechanism at the solder/Au pad interface.The concentration of Au near the solder/pad interface is identified to increase and reach the solubility limit during the period of liquid state reaction. During solid state reaction, the thickening of Au-Sn compound is mainly controlled by element diffusion.

  13. Development of a new Pb-free solder: Sn-Ag-Cu

    Miller, C.M.


    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217{degrees}C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  14. A critical review of constitutive models for solders in electronic packaging

    Chen, Gang; Zhao, Xiaochen; Wu, Hao


    .... Because the failure of the whole electronic packaging is often induced by the failure of solders, modeling and simulation of solder joint performance are quite important in ensuring the quality...

  15. Microbial leaching of waste solder for recovery of metal.

    Hocheng, H; Hong, T; Jadhav, U


    This study proposes an environment-friendly bioleaching process for recovery of metals from solders. Tin-copper (Sn-Cu), tin-copper-silver (Sn-Cu-Ag), and tin-lead (Sn-Pb) solders were used in the current study. The culture supernatant of Aspergillus niger removed metals faster than the culture supernatant of Acidithiobacillus ferrooxidans. Also, the metal removal by A. niger culture supernatant is faster for Sn-Cu-Ag solder as compared to other solder types. The effect of various process parameters such as shaking speed, temperature, volume of culture supernatant, and increased solder weight on bioleaching of metals was studied. About 99 (±1.75) % metal dissolution was achieved in 60 h, at 200-rpm shaking speed, 30 °C temperature, and by using 100-ml A. niger culture supernatant. An optimum solder weight for bioleaching was found to be 5 g/l. Addition of sodium hydroxide (NaOH) and sodium chloride (NaCl) in the bioleached solution from Sn-Cu-Ag precipitated tin (85 ± 0.35 %) and silver (80 ± 0.08 %), respectively. Passing of hydrogen sulfide (H2S) gas at pH 8.1 selectively precipitated lead (57.18 ± 0.13 %) from the Sn-Pb bioleached solution. The proposed innovative bioleaching process provides an alternative technology for recycling waste solders to conserve resources and protect environment.

  16. Self-Assembly of Chip-Size Components with Cavity Structures: High-Precision Alignment and Direct Bonding without Thermal Compression for Hetero Integration

    Mitsumasa Koyanagi


    Full Text Available New surface mounting and packaging technologies, using self-assembly with chips having cavity structures, were investigated for three-dimensional (3D and hetero integration of complementary metal-oxide semiconductors (CMOS and microelectromechanical systems (MEMS. By the surface tension of small droplets of 0.5 wt% hydrogen fluoride (HF aqueous solution, the cavity chips, with a side length of 3 mm, were precisely aligned to hydrophilic bonding regions on the surface of plateaus formed on Si substrates. The plateaus have micro-channels to readily evaporate and fully remove the liquid from the cavities. The average alignment accuracy of the chips with a 1 mm square cavity was found to be 0.4 mm. The alignment accuracy depends, not only on the area of the bonding regions on the substrates and the length of chip periphery without the widths of channels in the plateaus, but also the area wetted by the liquid on the bonding regions. The precisely aligned chips were then directly bonded to the substrates at room temperature without thermal compression, resulting in a high shear bonding strength of more than 10 MPa.

  17. Analysis of solderability test methods: predicition model generation for through-hole components

    Woods, Bobby


    peer-reviewed In order to achieve a reduction in solderability related defects on electronic components and Printed Circuit Board???s (PCB???s) in electronics manufacturing, preventive controls such as ???Dip & Look??? and ???Wetting Balance??? solderability testing need to be fully optimised to screen out all poor soldering components and PCB???s. Components and PCB???s that pass these tests should solder correctly in volume production. This thesis initially investigates the variations...

  18. Reliability of lead-free solders in electronic packaging technology

    Choi, Woojin

    The electromigration of flip chip solder bump (eutetic SnPb) has been studied at temperatures of 100, 125 and 150°C and current densities of 1.9 to 2.75 x 104 A/cm2. The under-bump-metallization on the chip side is thin film Al/Ni(V)/Cu and on the board side is thick Cu. By simulation, we found that current crowding occurs at the corner on the chip side where the electrons enter the solder ball. We are able to match this simulation to the real electromigration damage in the sample. The experimental result showed that voids initiated from the position of current crowding and propagated across the interface between UBM and the solder ball. The Cu-Sn intermetallic compounds formed during the reflow is known to adhere well to the thin film UBM, but they detached from the UBM after current stressing. Therefore, the UBM itself becomes part of the reliability problem of the flip chip solder joint under electromigration. Currently there is a renewed interest in Sn whisker growth owing to the introduction of Pb-free solder in electronic manufacturing. The leadframe is electroplated or finished with a layer of Pb-free solder. The solder is typically pure Sn or eutectic SnCu (0.7 atomic % Cu). It is a serious reliability concern in the use of the eutectic SnCu solder as leadframe surface finish due to the growth of long whiskers on it. The origin of the driving force of compressive stress can be mechanical, thermal, and chemical. Among them, the chemical force is the most important contribution to the whisker growth and its origin is due to the reaction between Sn and Cu to form intermetallic compound (IMC) at room temperature. For whisker or hillock growth, the surface cannot be free of oxide and it must be covered with oxide and the oxide must be a protective one so that it removes effectively all the vacancy sources and sinks on the surface. Hence, only those metals, which grow protective oxides such as Al and Sn, are known to have hillock growth or whisker growth. We

  19. A Corrosion Investigation of Solder Candidates for High-Temperature Applications

    Chidambaram, Vivek; Hald, John; Ambat, Rajan;


    The step soldering approach is being employed in the Multi-Chip module (MCM) technology. High lead containing alloys is one of the solders currently being used in this approach. Au-Sn and Au-Ge based candidate alloys have been proposed as alternative solders for this application. In this work, co...

  20. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  1. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  2. Photonic flash soldering of thin chips and SMD components on foils for flexible electronics

    Ende, D.A. van den; Hendriks, R.; Cauchois, R.; Kusters, R.H.L.; Cauwe, M.; Groen, W.A.; Brand, J. van den


    Ultrathin bare die chips and small-size surface mount device components were successfully soldered using a novel roll-to-roll compatible soldering technology. A high-power xenon light flash was used to successfully solder the components to copper tracks on polyimide (PI) and polyethylene terephthala

  3. Investigation Of Intermetallic Compounds In Sn-Cu-Ni Lead-Free Solders

    Nagy E.


    Full Text Available Interfacial intermetallic compounds (IMC play an important role in Sn-Cu lead-free soldering. The size and morphology of the intermetallic compounds formed between the lead-free solder and the Cu substrate have a significant effect on the mechanical strength of the solder joint.

  4. Experimental Methods in Reduced-gravity Soldering Research

    Pettegrew, Richard D.; Struk, Peter M.; Watson, John K.; Haylett, Daniel R.


    The National Center for Microgravity Research, NASA Glenn Research Center, and NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. An improved understanding of the effects of the acceleration environment is important to application of soldering during current and future human space missions. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole and surface mounted devices are being investigated. This paper focuses on the experimental methodology employed in this project and the results of macroscopic sample examination. The specific soldering process, sample configurations, materials, and equipment were selected to be consistent with those currently on-orbit. Other apparatus was incorporated to meet requirements imposed by operation onboard NASA's KC-135 research aircraft and instrumentation was provided to monitor both the atmospheric and acceleration environments. The contingent of test operators was selected to include both highly skilled technicians and less skilled individuals to provide a population cross-section that would be representative of the skill mix that might be encountered in space mission crews.

  5. Low-temperature solder for laser tissue welding

    Lauto, Antonio; Stewart, Robert B.; Felsen, D.; Foster, John; Poole-Warren, Laura; Poppas, Dix P.


    In this study, a two layer (TL) solid solder was developed with a fixed thickness to minimize the difference in temperature across the solder (ΔT) and to weld at low temperature. Solder strips comprising two layers (65% albumin, 35% water) were welded onto rectangular sections of dog small intestine by a diode laser (λ = 808 nm). The laser delivered a power of 170 +/- 10 mW through an optical fiber (spot size approximately 1 mm) for 100 seconds. A solder layer incorporated also a dye (carbon black, 0.25%) to absorb the laser radiation. A thermocouple and an infrared thermometer system recorded the temperatures at the tissue interface and at the external solder surface, during welding. The repaired tissue was tested for tensile strength by a calibrated tensiometer. The TL strips were able to minimize ΔT (12 +/- 4°C) and control the temperature at tissue-interface. The strips fused on tissue at 55=70°C for tissue repair, which cause more irreversible thermal damage.

  6. Creep characterization of solder bumps using nanoindentation

    Du, Yingjie; Liu, Xiao Hu; Fu, Boshen; Shaw, Thomas M.; Lu, Minhua; Wassick, Thomas A.; Bonilla, Griselda; Lu, Hongbing


    Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

  7. A new self-curing resin-modified glass-ionomer cement for the direct bonding of orthodontic brackets in vivo.

    Fricker, J P


    A new self-curing (chemically cured) resin-modified glass-ionomer cement, Fuji Ortho (GC International), is based on the technology of hybrid glass-ionomer restorative materials and features chemical adhesion to tooth structure and long-term fluoride release. This article describes a 12-month clinical evaluation of Fuji Ortho for the direct bonding of orthodontic (metal) brackets with System 1+ (Ormco Corp.) as a control. Three failures of Fuji Ortho occurred from a sample of 60 (5%), with five failures of the composite resin from a sample of 60 (8.3%). No statistical significance was seen between these results. Fuji Ortho is a satisfactory adhesive for the direct bonding of orthodontic brackets where there are no occlusal interferences.

  8. Current-injected light emission of epitaxially grown InAs/InP quantum dots on directly bonded InP/Si substrate

    Matsumoto, Keiichi; Zhang, Xinxin; Kishikawa, Junya; Shimomura, Kazuhiko


    Current-injected light emission was confirmed for metal organic vapor phase epitaxy (MOVPE) grown (Ga)InAs/InP quantum dots (QDs) on directly bonded InP/Si substrate. The InP/Si substrate was prepared by directly bonding of InP thin film and a Si substrate using a wet-etching and annealing process. A p-i-n LED structure including Stranski-Krastanov (Ga)InAs/InP QDs was grown by MOVPE on an InP/Si substrate. No debonding between Si substrate and InP layer was observed, even after MOVPE growth and operation of the device under continuous wave conditions at RT. The photoluminescence, current/voltage, and electroluminescence characteristics of the device grown on the InP/Si substrate were compared with reference grown on an InP substrate.

  9. Bottom-up nanoarchitecture of semiconductor nano-building blocks by controllable in situ SEM-FIB thermal soldering method

    Zhang, Xuan


    Here we demonstrate that the building blocks of semiconductor WO3 nanowires can be controllably soldered together by a novel nano-soldering technique of in situ SEM-FIB thermal soldering, in which the soldering temperature can precisely remain in an optimal range to avoid a strong thermal diffusion.

  10. Effects of Solder Temperature on Pin Through-Hole during Wave Soldering: Thermal-Fluid Structure Interaction Analysis

    Abdul Aziz, M. S.; Abdullah, M. Z.; Khor, C. Y.


    An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C) analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry. PMID:25225638

  11. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    Vianco, P.T.


    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  12. Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth.

    Nowicka, Alicja; Wilk, Grażyna; Lipski, Mariusz; Kołecki, Janusz; Buczkowska-Radlińska, Jadwiga


    New materials can increase the efficiency of pulp capping through the formation of a complete reparative dentin bridge with no toxic effects. The present study involved tomographic evaluations of reparative dentin bridge formation after direct pulp capping with calcium hydroxide, mineral trioxide aggregate (MTA), Biodentine (Septodont, Saint Maur des Fossés, France), and Single Bond Universal (3M ESPE, Seefeld, Germany) in human teeth. Forty-four caries-free, intact, human third molars scheduled for extraction were subjected to mechanical pulp exposure and assigned to 1 of 4 experimental groups depending on the pulp capping agent used: calcium hydroxide, MTA, Biodentine, or Single Bond Universal. After 6 weeks, the teeth were extracted and processed for cone-beam computed tomographic imaging and histologic examination. Tomographic data, including the density and volume of formed reparative dentin bridges, were evaluated using a scoring system. The reparative dentin formed in the calcium hydroxide, MTA, and Biodentine groups was significantly superior to that formed in the Single Bond Universal group in terms of thickness and volume. The dentin bridges in the Biodentine group showed the highest average and maximum volumes. The mean density of dentin bridges was the highest in the MTA group and the lowest in the Single Bond Universal group. The volume of reparative dentin bridges formed after direct pulp capping is dependent on the material used. Biodentine and MTA resulted in the formation of bridges with a significantly higher average volume compared with Single Bond Universal, and cone-beam computed tomographic imaging allowed for the identification of the location of dentin bridges. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Horizon Shells and BMS-like Soldering Transformations

    Blau, Matthias


    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like ...

  14. Development of alternatives to lead-bearing solders

    Vianco, P.T. [Sandia National Labs., Albuquerque, NM (United States)


    Soldering technology, using tin-lead alloys has had a significant role in the packaging of highly functional, low cost electronic devices. The elimination of lead from all manufactured products, whether through legislation or tax incentives, will impact the electronics community which uses lead-containing solders. In response to these proposed measures, the National Center for Manufacturing Sciences has established a multi-year program involving participants from industry, academia, and the national laboratories with the objective to identify potential replacements for lead-bearing solders. Selection of candidate alloys is based upon the analysis of materials properties, manufacturability, modeling codes for reliability prediction, as well as toxicological properties and resource availability, data developed in the program.

  15. Bosonisation and Duality Symmetry in the Soldering Formalism

    Banerjee, R


    We develop a technique that solders the dual aspects of some symmetry. Using this technique it is possible to combine two theories with such symmetries to yield a new effective theory. Some applications in two and three dimensional bosonisation are discussed. In particular, it is shown that two apparently independent three dimensional massive Thirring models with same coupling but opposite mass signatures, in the long wavelegth limit, combine by the process of bosonisation and soldering to yield an effective massive Maxwell theory. Similar features also hold for quantum electrodynamics in three dimensions. We also provide a systematic derivation of duality symmetric actions and show that the soldering mechanism leads to a master action which is duality invariant under a bigger set of symmetries than is usually envisaged. The concept of duality swapping is introduced and its implications are analysed. The example of electromagnetic duality is discussed in details.

  16. Corrosion Issues in Solder Joint Design and Service



    Corrosion is an important consideration in the design of a solder joint. It must be addressed with respect to the service environment or, as in the case of soldered conduit, as the nature of the medium being transported within piping or tubing. Galvanic-assisted corrosion is of particular concern, given the fact that solder joints are comprised of different metals or alloy compositions that are in contact with one-another. The (thermodynamic) potential for corrosion to take place in a particular environment requires the availability of the galvanic series for those conditions and which includes the metals or alloys in question. However, the corrosion kinetics, which actually determine the rate of material loss under the specified service conditions, are only available through laboratory evaluations or field data that are found in the existing literature or must be obtained by in-house testing.

  17. Hybrid framework with cobalt-chromium alloy and gold cylinder for implant superstructure: Bond strength and corrosion resistance.

    Yoshinari, Masao; Uzawa, Shinobu; Komiyama, Yataro


    The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system. CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.9% NaCl solution (pH 7.4 and pH 2.3) were evaluated. Scanning electron microscopy (SEM) of the fractured surface and electron probe microanalysis (EPMA) of the joined interfaces were also performed. The tensile bond strengths of the CoCr/Solder/Gold cylinder specimens showed similar values as the Gold alloy/Gold cylinder specimens. SEM observation and EPMA analyses suggested firm bonding between the CoCr alloy and gold cylinder. The released elements from the CoCr/Solder/Gold cylinder specimens were similar to ones from CoCr castings. Results showed that superstructures made of CoCr alloys joined with the gold cylinder using a high-fusing gold solder had sufficient bond strength and high corrosion resistance. These hybrid frameworks with cobalt-chromium alloy and gold cylinder are promising prosthesis for implant superstructures with the low cost and favorable mechanical properties instead of conventional high-gold alloys. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Process characterization and control of hand-soldered printed wiring assemblies

    Cheray, D.L.; Mandl, R.G.


    A designed experiment was conducted to characterize the hand soldering process parameters for manufacturing printed wiring assemblies (PWAs). Component tinning was identified as the most important parameter in hand soldering. After tinning, the soldering iron tip temperature of 700{degrees}F and the choice of operators influence solder joint quality more than any other parameters. Cleaning and flux/flux core have little impact on the quality of the solder joint. The need for component cleaning prior to assembly must be evaluated for each component.

  19. The impact of process parameters on gold elimination from soldered connector assemblies



    Minimizing the likelihood of solder joint embrittlement in connectors is realized by reducing or eliminating retained Au plating and/or Au-Sn intermetallic compound formation from the assemblies. Gold removal is performed most effectively by using a double wicking process. When only a single wicking procedure can be used, a higher soldering temperature improves the process of Au removal from the connector surfaces and to a nominal extent, removal of Au-contaminated solder from the joint. A longer soldering time did not appear to offer any appreciable improvement toward removing the Au-contaminated solder from the joint. Because the wicking procedure was a manual process, it was operator dependent.

  20. Lead Free Solder Joint Thermal Condition in Semiconductor Packaging

    M. N. Harif


    Full Text Available Problem statement: Solder joints are responsible for both electrical and mechanical connections. Solder does not have adequate ductility to ensure the repeated relative displacements due to the mismatch between expansion coefficients of the chip carrier and the circuit board. Solder material plays a crucial role to provide the necessary electrical and mechanical interconnections in an electronic assembly. Finding a technique to increase the service life of future connections is not the total solution. A method must be developed for predicting the remaining service life of many joints already in use. Approach: The effect of High Temperature Storage (HTS on lead free solder joint material for ball grid array application using pull test method is studied in this study. Some statistical analysis base on the pull test data also discussed. Three samples of different lead free solder joint material were selected in this experiment namely Sn3.8Ag0.7Cu (SAC387, Sn2.3Ag0.08Ni0.01Co (SANC and Sn3.5Ag. After the thermal condition test, all the lead free solder joint material samples were tested using Dage 4000 pull test machine. Each pull test will be 5 units and each unit contains 8 balls. Results: The mean pull strength for high temperature storage is 2847.66, 2628.20 and 2613.79 g for Sn3.5Ag, SANC and SAC387, respectively. Thus, Sn3.5Ag shows a significantly better solder joint performance in terms of joint strength compare to SANC and SAC387. Hence, Intermetallic Compound (IMC thicknesses were measured after cross-sectioning. Sample size for cross-sectioning was 3 units per read point, 2 balls per unit and 3 maximum IMC peaks per ball and the measurement using high power scope of 100x and Image Analyzer software to measure the IMC thickness. For high temperature storage, result show that the mean IMC thicknesses for SAC387, SANC and Sn3.5Ag are 3.9139, 2.3111 and 2.3931 µm. Conclusion/Recommendations: It was found that IMC thickness for SANC and Sn3

  1. Electromigration effect on intermetallic growth and Young's modulus in SAC solder joint

    Xu, Luhua; Pang, John H. L.; Ren, Fei; Tu, K. N.


    Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.

  2. H-bonding-directed self-assembly of synthetic copolymers containing nucleobases: organization and colloidal fusion in a noncompetitive solvent.

    Lutz, Jean-François; Pfeifer, Sebastian; Chanana, Munish; Thünemann, Andreas F; Bienert, Ralf


    The self-organization of random copolymers composed of a nucleobase monomer (either 1-(4-vinylbenzyl)thymine or 9-(4-vinylbenzyl)adenine) and dodecyl methacrylate (DMA) was studied in dilute chloroform solutions. The balance between the molar fractions of the nucleobase monomer (leading to intermolecular H-bonding) and DMA (soluble moiety in chloroform) in the polymer chains was found to be the parameter that principally influences the self-organization. DMA-rich copolymers are molecularly soluble in chloroform, whereas nucleobase-rich copolymers are insoluble in this solvent. Copolymers possessing an equimolar comonomer composition self-assemble into micrometer-sized particles physically cross-linked by intermolecular H-bonds (either thymine-thymine or adenine-adenine interactions, depending on the studied copolymer). Nevertheless, when mixed together, thymine- and adenine-based colloids fuse into thermodynamically stable microspheres cross linked by adenine-thymine interactions.

  3. Direct space decomposition of ELI-D: interplay of charge density and pair-volume function for different bonding situations.

    Wagner, Frank R; Kohout, Miroslav; Grin, Yuri


    The topological features, i.e., gradients and curvatures of the same-spin electron pair restricted electron localizability indicator (ELI-D) in position space are analyzed in terms of those of the electron density and the pair-volume function. The analysis of the topology of these constituent functions and their interplay on ELI-D attractor formation for a number of molecules representing chemically different bonding situations allows distinguishing between different chemical bonding scenarios on a quantum mechanical basis without the recourse to orbitals. The occurrence of the Laplacian of the electron density in the expression for the Laplacian of ELI-D allows us to establish a physical link between electron localizability and electron pairing as displayed by ELI-D and the role of Laplacian of the density in this context.

  4. Carboxylic acid functionalized ortho-linked oxacalix[2]benzene[2]pyrazine: synthesis, structure, hydrogen bond and metal directed self-assembly.

    Kong, Ling-Wei; Ma, Ming-Liang; Wu, Liang-Chun; Zhao, Xiao-Li; Guo, Fang; Jiang, Biao; Wen, Ke


    Cyclooligomerization of 2,6-dichloropyrazine 4 and benzyl 2,3-dihydroxybenzoate 5 under microwave irradiation resulted in a racemic pair of ester functionalized ortho-linked oxacalix[2]benzene[2]pyrazine 6, which was further transformed to the corresponding racemic carboxylic acid functionalized ortho-linked oxacalix[2]benzene[2]pyrazine 3. Both enantiomers of 3 adopt 1,3-alternate conformations with their two carboxylic acid groups pointing to opposite directions in the solid state. Enantiomers of 3 form a step-like one-dimensional supramolecular polymer via intermolecular hydrogen bond interactions between the carboxylic acids for crystals obtained in methanol. No hydrogen bonds were formed between the carboxylic acids for crystals of 3 obtained in pyridine and aqueous guanidine solutions; instead, intermolecular hydrogen bonds between the carboxylic acid groups of 3 and pyridine, as well as guanidinium ions were formed. Under metal-mediated self-assembly conditions, the pyrazinyl nitrogen atoms in 3 interacted with transition metal ions, such as Ag(I), Cu(II) and Zn(II), and resulted in the formation of four new metal-containing supramolecular complexes. Metallomacrocycles 7, 8 and 9 were formed by reactions of 3 with Ag(I) or Cu(II) ions by bridging two ligands 3 in the equatorial region via M-N coordination bonds. A one-dimensional coordination polymer 10 was generated by reaction between ligand 3 and Zn(II) ions, and a cage-based structure is presented in 10 by bridging of the cyclophane units by Zn(2+) ions via Zn-N and Zn-O bonds.

  5. Studies on in situ particulate reinforced tin-silver composite solders relevant to thermomechanical fatigue issues

    Choi, Sunglak


    Global pressure based on environmental and health concerns regarding the use of Pb-bearing solder has forced the electronics industry to develop Pb-free alternative solders. Eutectic Sn-Ag solder has received much attention as a potential Pb-free candidate to replace Sn-Pb solder. Since introduction of surface mount technology, packaging density increased and the electronic devices became smaller. As a result, solders in electronic modules are forced to function as a mechanical connection as well as electrical contact. Solders are also exposed to very harsh service conditions such as automotive under-the-hood and aerospace applications. Solder joints experience thermomechanical fatigue, i.e. interaction of fatigue and creep, during thermal cycling due to temperature fluctuation in service conditions. Microstructural study on thermomechanical fatigue of the actual eutectic Sn-Ag and Sn-4Ag-0.5Cu solder joints was performed to better understand deformation and damage accumulation occurring during service. Incorporation of reinforcements has been pursued to improve the mechanical and particularly thermomechanical behavior of solders, and their service temperature capability. In-situ Sn-Ag composite solders were developed by incorporating Cu 6Sn5, Ni3Sn4, and FeSn2 particulate reinforcements in the eutectic Sn-Ag solder in an effort to enhance thermomechanical fatigue resistance. In-situ composite solders were investigated on the growth of interfacial intermetallic layer between solder and Cu substrate growth and creep properties. Solder joints exhibited significant deformation and damage on free surface and interior regions during thermomechanical fatigue. Cracks initiated on the free surface of the solder joints and propagated toward interior regions near the substrate of the solder joint. Crack grew along Sn grain boundaries by grain boundary sliding. There was significant residual stress within the solder joint causing more damage. Presence of small amount of Cu

  6. High-temperature lead-free solder alternatives

    Nachiappan, Vivek Chidambaram; Hattel, Jesper Henri; Hald, John


    For lead-free solders in the high-temperature regime, unfortunately, a limited number of alloying systems are available. These are Bi based alloys, gold involving alloys and Zn–Al based alloys. Based on these systems, possible candidate alloys were designed to have a melting range between 270°C a...

  7. Thermomechanical fatigue damage evolution in SAC solder joints

    Matin, M. A.; Vellinga, W. P.; D Geers, M. G.


    Thermornechanical fatigue in lab-type Sn-Ag-Cu solder interconnections between two copper plates has been investigated under cyclic thermal loading within a number of temperature ranges. Fatigue mechanisms have been studied using optical and scanning electron microscopy. Among the various fatigue me

  8. Porosity in collapsible Ball Grid Array solder joints

    Gonzalez, C.A. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., Berkeley, CA (United States). Materials Science Div.


    Ball Grid Array (BGA) technology has taken off in recent years due to the increased need for high interconnect density. Opposite to all the advantages BGA packages offer, porosity in collapsible BGA solder joints is often a major concern in the reliability of such packages. The effect of pores on the strength of collapsible BGA solder-joints was studied by manufacturing samples with different degrees of porosity and testing them under a shear load. It was found that the shear strength of the solder joints decreased in a linear fashion with increasing porosity. Failure occurred by internal necking of the interpore matrix. It was confirmed that entrapment of flux residues leads to porosity by manufacturing fluxless samples in a specially made furnace, and comparing them with samples assembled using flux. Also, contamination of Au electrodeposits (in substrate metallization) was determined to cause significant porosity. It was found that hard-Au (Co hardened Au) electrodeposits produce high degrees of porosity even in the absence of flux. Finally, increasing the time the solder spends in the molten state was proven to successfully decrease porosity.

  9. Fundamentals of wetting and spreading with emphasis on soldering

    Yost, F.G.


    Soldering is often referred to as a mature technology whose fundamentals were established long ago. Yet a multitude of soldering problems persist, not the least of which are related to the wetting and spreading of solder. The Buff-Goodrich approach to thermodynamics of capillarity is utilized in a review of basic wetting principles. These thermodynamics allow a very compact formulation of capillary phenomena which is used to calculate various meniscus shapes and wetting forces. These shapes and forces lend themselves to experimental techniques, such as the sessile drop and the Wilhelmy plate, for measuring useful surface and interfacial energies. The familiar equations of Young, Wilhelmy, and Neumann are all derived with this approach. The force-energy duality of surface energy is discussed and the force method is developed and used to derive the Herring relations for anisotropic surfaces. The importance of contact angle hysteresis which results from surface roughness and chemical inhomogeneity is presented and Young's equation is modified to reflect these ever present effects. Finally, an analysis of wetting with simultaneous metallurigical reaction is given and used to discuss solder wetting phenomena. 60 refs., 13 figs.

  10. Thermomechanical fatigue damage evolution in SAC solder joints

    Matin, M. A.; Vellinga, W. P.; D Geers, M. G.


    Thermornechanical fatigue in lab-type Sn-Ag-Cu solder interconnections between two copper plates has been investigated under cyclic thermal loading within a number of temperature ranges. Fatigue mechanisms have been studied using optical and scanning electron microscopy. Among the various fatigue me

  11. Printed-Circuit-Board Soldering Training for Group IV Personnel.

    Hooprich, E. A.; Matlock, E. W.

    As part of a larger program to determine which Navy skills can be learned by lower aptitude personnel, and which methods and techniques would be most effective, an experimental course in printed circuit board soldering was given to 186 Group IV students in 13 classes. Two different training approaches--one stressing instructor guidance and the…

  12. Recycling of lead solder dross, Generated from PCB manufacturing

    Lucheva, Biserka; Tsonev, Tsonio; Iliev, Peter


    The main purpose of this work is to analyze lead solder dross, a waste product from manufacturing of printed circuit boards by wave soldering, and to develop an effective and environmentally sound technology for its recycling. A methodology for determination of the content and chemical composition of the metal and oxide phases of the dross is developed. Two methods for recycling of lead solder dross were examined—carbothermal reduction and recycling using boron-containing substances. The influence of various factors on the metal yield was studied and the optimal parameters of the recycling process are defined. The comparison between them under the same parameters-temperature and retention time, showed that recycling of dross with a mixture of borax and boric acid in a 1:2 ratio provides higher metal yield (93%). The recycling of this hazardous waste under developed technology gets glassy slag and solder, which after correction of the chemical composition can be used again for production of PCB.

  13. Roles of interfacial reaction on mechanical properties of solder interfaces

    Liu, Pilin

    This study investigated roles of interfacial reaction in fracture and fatigue of solder interconnects. The interfacial reaction phases in the as-reflowed and after aging were examined by cross-sectional transmission electron microscopy (TEM) while interfacial mechanical properties were determined from a flexural peel fracture mechanics technique. Because of their widespread uses in microelectronic packaging, SnPb solder interfaces, and Bi-containing Pb-free solder interfaces were chosen as the subjects of this study. In the interfacial reaction study, we observed a complicated micro structural evolution during solid-state aging of electroless-Ni(P)/SnPb solder interconnects. In as-reflowed condition, the interfacial reaction produced Ni3Sn 4 and P-rich layers. Following overaging, the interfacial microstructure degenerated into a complex multilayer structure consisting of multiple layers of Ni-Sn compounds and transformed Ni-P phases. In SnPb solder interfacial system, fatigue study showed that the overaging of the high P electroless Ni-P/SnPb interconnects resulted in a sharp reduction in the fatigue resistance of the interface in the high crack growth rate regime. Fracture mechanism analysis indicated that the sharp drop in fatigue resistance was triggered by the brittle fracture of the Ni3Sn2 intermetallic phase developed at the overaged interface. The fatigue behavior was strongly dependent on P concentration in electroless Ni. Kirkendall voids were found in the interfacial region after aging, but they did not cause premature fracture of the solder interfaces. In Bi-containing solder interfacial system, we found that Bi segregated to the Cu-intermetallic interface during aging in SnBi/Cu interconnect. This caused serious embrittlement of Sn-Bi/Cu interface. Further aging induced numerous voids along the Cu3Sn/Cu interface. These interfacial voids were different from Kirkendall voids. Their formation was explained on basis of vacancy condensation at the

  14. Developments of optimum flip-chip bonding process

    Jang, Dong H.; Kang, Sa Y.; Lee, Y. M.; Oh, S. Y.


    Flip-chip soldering is the critical technology for solving the current issues of electronic packaging industries that require the high I/O's. In order to increase the manufacturing ability of flip-chip technology, however, yield and reliability tissues should overcome. In this study, optimum flip-chip bonding process has been developed by using the test chips that had the electroplated solder bumps. Test chips are composed of three different types that are i) peripheral array pad chip, ii) peripheral array pad chip, and iii) area array pad chip. Each test chip has the daisy chain to consider the effect of reliability test. The electrical resistance was measured before and after reliability test. Based on these measurement, failure mode resulted from the moisture absorption was studied using scanning acoustic microscope. To achieve an optimum reflow profile of solder bump, correct temperature profile was set up with respect to the resin base flux. Different bonding forces were tested. Four underfill encapsulants were evaluated for minimum voids that caused the severe defects after reliability test. Also, the gap heights were measured with respect to applied bonding force after underfill was performed. Results from the moisture absorption and thermal cycling were discussed for flip-chip bonding on BT-resin substrates. The test vehicles using flip-chip technology have passed moisture preconditioning and temperature cycling tests.


    Y.H.Tian; C.Q.Wang


    Interactions between 63Sn37Pb solder and PBGA metallization(Au/Ni/Cu)during laser and infrared reflow soldering were studied.During laser refow soldering process,a thin layer of AuSn4 was observed at the interface of the solder bumps,its morphology was strongly dependent on the laser reflow power and heating time.The solder bumps formed by the first laser reflow was refowed again to form the solder joints.The AuSn4 compounds formed in the first laser reflow process dissolved into the bulk solder after the secondary infrared reflow process.The needle-like AuSn4 changed into rodlike,and distributed inside the solder near the solder/pad interface.

  16. Electromigration Behaviors of Cu Reinforced Sn-3.5Ag Composite Solder Joints

    Wang, Yan; Han, Jing; Ma, Limin; Zuo, Yong; Guo, Fu


    The composite approach, by incorporating small amounts of reinforcement particles in the solder matrix, has proven to be one of the effective ways to improve the reliability of solder joints. The effects of Cu addition on electromigration were investigated in this study by incorporating 2% volume fraction Cu particles into Sn-3.5Ag eutectic solder paste by the in situ process. The one-dimensional solder joints, designed to prevent the current crowding effect, were stressed under a constant current density of 104 A/cm2 at room temperature, and the temperature of the sample could reach 105 ± 5°C due to the Joule heating effect. Doping 2 vol.% Cu was found to retard the electromigration phenomenon effectively. After electric current stressing for 528 h, the growth rate of an interfacial intermetallic compound (IMC) layer at the anode decreased 73% in contrast to that of Sn-3.5Ag solder joints, and the IMC layer at the cathode was almost unchanged. The polarization effect of Cu reinforced composite solder joints was also apparently mitigated. In addition, the surface damage of the composite solder joints was relieved by incorporating 2 vol.% Cu particles. Compared to Sn-3.5Ag solder joints, which had protruded Cu6Sn5 and wrinkles of Sn-solder matrix on the surface, the solder joints with Cu addition had a more even surface.

  17. Electromigration Behaviors of Cu Reinforced Sn-3.5Ag Composite Solder Joints

    Wang, Yan; Han, Jing; Ma, Limin; Zuo, Yong; Guo, Fu


    The composite approach, by incorporating small amounts of reinforcement particles in the solder matrix, has proven to be one of the effective ways to improve the reliability of solder joints. The effects of Cu addition on electromigration were investigated in this study by incorporating 2% volume fraction Cu particles into Sn-3.5Ag eutectic solder paste by the in situ process. The one-dimensional solder joints, designed to prevent the current crowding effect, were stressed under a constant current density of 104 A/cm2 at room temperature, and the temperature of the sample could reach 105 ± 5°C due to the Joule heating effect. Doping 2 vol.% Cu was found to retard the electromigration phenomenon effectively. After electric current stressing for 528 h, the growth rate of an interfacial intermetallic compound (IMC) layer at the anode decreased 73% in contrast to that of Sn-3.5Ag solder joints, and the IMC layer at the cathode was almost unchanged. The polarization effect of Cu reinforced composite solder joints was also apparently mitigated. In addition, the surface damage of the composite solder joints was relieved by incorporating 2 vol.% Cu particles. Compared to Sn-3.5Ag solder joints, which had protruded Cu6Sn5 and wrinkles of Sn-solder matrix on the surface, the solder joints with Cu addition had a more even surface.

  18. Welding, Bonding and Fastening, 1984

    Buckley, J. D. (Editor); Stein, B. A. (Editor)


    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  19. Soldered Power Arm: An Easy and Effective Method for Intrusion and Retraction of Anterior Teeth

    Ketan K Vakil


    Full Text Available The orthodontic correction of deep overbite can be achieved with several mechanisms that will result in true intrusion of anterior teeth, extrusion of posterior teeth, or a combination of both. For the orthodontic correction of bimaxillary dentoalveolar protrusion with deep bite, there are several treatment modalities like segmented arch approach, retraction and intrusion utility arches, temporary anchorage devices. Though not a novel therapeutic concept, the use of miniscrew implants to obtain absolute anchorage has recently become very popular in clinical orthodontic approaches. To allow the use of sliding mechanics for bodily retraction with intrusion of anterior teeth, we devised a soldered power arm (SPA on standard molar tube. It is simple, stable, precise and effective in cases where anterior teeth need to be simultaneously retracted and intruded. A power arm can be readily fabricated from 20 gauge stainless steel wire and soldered on the molar buccal tube so as to avoid any distortion or loosening of power arm from molar tube during the course of the treatment. The SPA works efficiently with the molar being stabilized in all three planes of space. The resultant force vector is directed more apically toward the center of resistance of the anchor unit, which resulted in the treatment outcome of retraction and intrusion of the anterior teeth and correction of the deep bite.

  20. A general strategy for organocatalytic activation of C-H bonds via photoredox catalysis: direct arylation of benzylic ethers.

    Qvortrup, Katrine; Rankic, Danica A; MacMillan, David W C


    Direct C-H functionalization and arylation of benzyl ethers has been accomplished via photoredox organocatalysis. The productive merger of a thiol catalyst and a commercially available iridium photoredox catalyst in the presence of household light directly affords benzylic arylation products in good to excellent yield. The utility of this methodology is further demonstrated in direct arylation of 2,5-dihydrofuran to form a single regioisomer.

  1. Influence of soft bonding layer material viscoplasticity on thermal lens and aspherical aberration of high-power thin disk laser

    Wang, Mu; Zhu, Guangzhi; Zhu, Xiao; Feng, Yufan; Gao, Jiapeng


    An numerical model considering solder viscoplasticity is developed to analyze the thermal deformation of laser disk with indium bonded. The characteristic of soft bonding material is described using Anand viscoplasticity model. The Finite Element Method analytical results show that the back surface of laser disk with pumping will deform more significantly with time and finally be steady. Correspondingly the refraction power increase gradually and diffraction loss induced by aspherical aberration decrease gradually. Futhermore when pump spot is larger the refraction power and aspherical aberration will change more due to solder viscoplasticity.

  2. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    Jinhua Mi


    Full Text Available Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA and fine-pitch ball grid array (FBGA interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products.

  3. Thermal cycling life prediction of Sn-3.0Ag-0.5Cu solder joint using type-I censored data.

    Mi, Jinhua; Li, Yan-Feng; Yang, Yuan-Jian; Peng, Weiwen; Huang, Hong-Zhong


    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products.

  4. Nitriles as directionally tolerant hydrogen bond acceptors: IR-UV ion depletion spectroscopy of benzenepropanenitrile and its hydrate clusters

    Robertson, Patrick A.; Lobo, Isabella A.; Wilson, David J. D.; Robertson, Evan G.


    Benzenepropanenitrile (BPN) and its hydrate clusters are studied by R2PI and IR-UV ion-depletion spectroscopy in the CH/OH stretch regions, aided by theoretical calculations. A single water molecule binds to the terminal nitrile 'lone-pair' of the anti-BPN host, but there is also evidence for a side-type structure with OH donating to the nitrile π-electrons. In the gauche-BPN cluster, water is located at an intermediate angle that facilitates O⋯HC(ortho) interaction. A wide range of attachment angles is possible, as the intrinsic preference for linear hydrogen bonding is mediated by additional CH⋯O interactions that depend on molecular geometry near the nitrile group.

  5. H-Bonding Self-assembled Template-directed Synthesis of a Reactive Amide-bridged Ladder Polyvinylsiloxane

    You Zhi WAN; Ying Hua LIU; Ping XIE; Rong Ben ZHANG


    A novel, reactive amide-bridged ladder polyvinylsiloxane (abbr. LP) with Mn = 2.4×104was synthesized for the first time by means of aryl amide H-bonding self-assembled template.The regularity of LP was characterized by the XRD, 29Si NMR and DSC methods. XRD analysis demonstrated the ladder width w = 9.09 A and the ladder thickness t = 3.89 A, respectively, which are approximately consistent with the molecular simulation-calculated ones: w'= 10.60 A and t'=3.06 A. 29Si NMR displayed a resonance peak with small half peak width, △1/2 ~ 4 ppm, for the moiety [=Si(Vi)O2/2-]n of LP. Besides, as a collateral evidence, DSC measurement revealed a high glass transition temperature Tg = 225℃, suggesting high stiffness of the ladder main chain of LP.

  6. Improving orthodontic bonding to silver amalgam.

    Zachrisson, B U; Büyükyilmaz, T; Zachrisson, Y O


    Flat rectangular tabs (n = 84) prepared from lathe-cut amalgam (ANA 2000) were subjected to aluminum oxide sandblasting or roughening with a diamond bur. Mandibular incisor edgewise brackets were bonded to these tabs using: Concise (Bis-GMA resin); one of three metal-bonding adhesives, viz., Superbond C&B (4-META resin), Panavia Ex (10-MDP Bis-GMA resin) or Geristore (composite base); and Concise after application of the intermediate resins All-Bond 2 Primers A+B, or the Scotch-Bond Multi-Purpose (SBMP) system. All specimens were stored in water at 37 degrees C for 24 hours before tensile bond strength testing. Alignment and uniform loading during testing were secured by engaging a hook in a circular ring soldered onto the bracket slot before bonding. Similar control brackets (n = 12) were bonded with Concise to extracted caries-free mandibular incisors. Bond failure sites were classified by a modified ARI system. Mean tensile bond strengths in the experimental group ranged from 3.4 to 6.4 MPa--significantly weaker than the control sample (13.2 MPa). Bond failure generally occurred at the amalgam/adhesive interface. Superbond C&B created the strongest bonds to amalgam; according to ANOVA and Duncan's Multiple-Range test, they were significantly stronger than the bonds with Panavia Ex and Concise, with Geristore in between. However, the bond strength of Concise to sandblasted amalgam was comparable to the Superbond C&B bonds when coupled with an intermediate application of All-Bond 2 Primers A+B. The SBMP, on the other hand, was less effective.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.


    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  8. Experimental dental bio-adhesives for direct restorations: the influence of PMnEDM homologs structure on bond strength.

    Kupka, Tomasz W; Gibas, Mirosław; Dabrowska, Agnieszka; Tanasiewicz, Marta; Malec, Witold


    The purpose of this study was to evaluate the effect of PMnEDM dental monomer homologs chemical structure on shear bond strength between polymer-based composite and alloy. Four light-cured experimental universal dental bio-adhesives (group codes: A (PMDM), B (PM2EDM), C (PM3EDM), D (PM4EDM)) were preliminarily evaluated with respect to sensitivity to ambient light, curing time, depth of cure, and uncured film thickness according to standardized procedures. Appropriate tests were performed to measure shear bond strength (SBS) of polymer-based composite to cobalt-based alloy with the use of the adhesives investigated. Variability of results was evaluated by use of the coefficient of variation (CV). Results were estimated with the aid of one-way analysis of variance (ANOVA), performed on the logarithmic values, with alpha=0.05 significance level. All materials passed the requirements according to physicochemical properties. Except for formulation D, all results estimating SBS were positive with respect to standardized requirements. The uppermost mean SBS was achieved for the A adhesive (11.45 MPa) and appeared to be significantly different compared to D one (5.07 MPa) (p=0.0495). Also the B adhesive, having slightly lower mean SBS value (10.50 MPa) exhibited a significant difference in respect to D one (p=0.0455). The means for other trial pairs did not differ statistically. The materials here studied might be considered to have a practical use in dental clinics, especially the formulations B and C.

  9. Environmentally friendly solders 3-4 beyond Pb-based systems

    GAO Yuan; LIU Peng; GUO Fu; XIA Zhidong; LEI Yongping; SHI Yaowu


    Based on environmental considerations, global economic pressures, enacted by legislations in several countries, have warranted the elimination of lead from solders used in electronic applications.Sn3.5Ag, SnAgCu, and Sn0.7Cu have emerged among various lead-free candidates as the most promising solder alloys to be utilized in microelectronic industries.However, with the vast development and miniaturization of modern electronic packaging, new requirements such as superior service capabilities have been posed on lead-free solders.In order to improve the comprehensive property of the solder alloys, two possible approaches were adopted in the current research and new materials developed were patented.One approach was involved with the addition of alloying elements to make new ternary or quaternary solder alloys.Proper addition of rare earth element such as La and Ce have rendered solder alloys with improved mechanical properties, especially creep rupture lives of their joints.Another approach, the composite approach, was developed mainly to improve the service temperature capability of the solder alloys.Composite solders fabricated by mechanically incorporating various reinforcement particles to the solder paste have again exhibited enhanced properties without altering the existing processing characteristics.The recent progress and research efforts carried out on lead-free solder materials in Beijing University of Technology were reported.The effects of rare earth addition on the microstructure, processing properties, and mechanical properties were presented.The behaviors of various Sn-3.5Ag based composite solders were also explicated in terms of the roles of reinforcement particles on intermetallic growth, steady-state creep rate, the onset of tertiary creep, as well as the overall creep deformation in the solder joints.Thermomechanical fatigue (TMF) behavior of the solder alloys and composite solders were investigated with different parameters such as ramp rate

  10. Explorative study into the sustainable use and substitution of soldering metals in electronics: ecological and economical consequences of the ban of lead in electronics and lessons to be learned for the future

    Deubzer, O.


    The Directive 2002/95/EC (RoHS Directive), among other substances, bans the use of lead in the electrical and electronics industry. This explorative study assesses the worldwide environmental and economical effects of the substitution of lead in solders and finishes. It shows the worldwide

  11. Explorative study into the sustainable use and substitution of soldering metals in electronics: ecological and economical consequences of the ban of lead in electronics and lessons to be learned for the future

    Deubzer, O.


    The Directive 2002/95/EC (RoHS Directive), among other substances, bans the use of lead in the electrical and electronics industry. This explorative study assesses the worldwide environmental and economical effects of the substitution of lead in solders and finishes. It shows the worldwide additiona

  12. Effects of particle size on the mechanical properties of particle-reinforced Sn-Ag composite solder joint


    Particulate size has significant influenced on the mechanical properties of particle-reinforced composite solder joints. In this current research, Cu or Ni reinforcement particles were mechanically added to the Sn-3.5Ag eutectic solder, and the effects of the particle size on the mechanical properties of particle-reinforced composite solder joint were systematically studied. This investigation touched on how mechanical properties of the solder joints are affected by particles size. A quantitative formula was set up to correlate the mechanical property of the solder joint with particle size in different processing conditions. Besides, the fracture mechanism of the composite solder joint was analyzed.

  13. Troponate/Aminotroponate Ruthenium-Arene Complexes: Synthesis, Structure, and Ligand-Tuned Mechanistic Pathway for Direct C-H Bond Arylation with Aryl Chlorides in Water.

    Dwivedi, Ambikesh D; Binnani, Chinky; Tyagi, Deepika; Rawat, Kuber S; Li, Pei-Zhou; Zhao, Yanli; Mobin, Shaikh M; Pathak, Biswarup; Singh, Sanjay K


    A series of water-soluble troponate/aminotroponate ruthenium(II)-arene complexes were synthesized, where O,O and N,O chelating troponate/aminotroponate ligands stabilized the piano-stool mononuclear ruthenium-arene complexes. Structural identities for two of the representating complexes were also established by single-crystal X-ray diffraction studies. These newly synthesized troponate/aminotroponate ruthenium-arene complexes enable efficient C-H bond arylation of arylpyridine in water. The unique structure-activity relationship in these complexes is the key to achieve efficient direct C-H bond arylation of arylpyridine. Moreover, the steric bulkiness of the carboxylate additives systematically directs the selectivity toward mono- versus diarylation of arylpyridines. Detailed mechanistic studies were performed using mass-spectral studies including identification of several key cyclometalated intermediates. These studies provided strong support for an initial cycloruthenation driven by carbonate-assisted deprotonation of 2-phenylpyridine, where the relative strength of η(6)-arene and the troponate/aminotroponate ligand drives the formation of cyclometalated 2-phenylpyridine Ru-arene species, [(η(6)-arene)Ru(κ(2)-C,N-phenylpyridine) (OH2)](+) by elimination of troponate/aminotroponate ligands and retaining η(6)-arene, while cyclometalated 2-phenylpyridine Ru-troponate/aminotroponate species [(κ (2)-troponate/aminotroponate)Ru(κ(2)-C,N-phenylpyridine)(OH2)2] was generated by decoordination of η(6)-arene ring during initial C-H bond activation of 2-phenylpyridine. Along with the experimental mass-spectral evidence, density functional theory calculation also supports the formation of such species for these complexes. Subsequently, these cycloruthenated products activate aryl chloride by facile oxidative addition to generate C-H arylated products.

  14. The Mechanical Behavior of Sn-Ag4 Solder Joints Subjected to Thermal Cycling

    CHENGuohai; MAJusheng


    The method of mount strain gages is used to measure the stress/strain hysteresis loops of the solder joints under thermal cycling. The results show that different solders have different loops; the shape of the loops will change less, and finally become a line along with the thermal cycle increase. The shear module decreases along with the thermal cycling process. But the creep index of the solder joints is not sensitive to the cycling process,which fluctuates between 5 and 7. Because the elements of the solder and matrix materials diffuse during the process, the voids induced in the solder joints expand. The expansion of the voids will lead to the crystal lattice aberrance of solder crystal.

  15. Root Cause Investigation of Lead-Free Solder Joint Interfacial Failures After Multiple Reflows

    Li, Yan; Hatch, Olen; Liu, Pilin; Goyal, Deepak


    Solder joint interconnects in three-dimensional (3D) packages with package stacking configurations typically must undergo multiple reflow cycles during the assembly process. In this work, interfacial open joint failures between the bulk solder and the intermetallic compound (IMC) layer were found in Sn-Ag-Cu (SAC) solder joints connecting a small package to a large package after multiple reflow reliability tests. Systematic progressive 3D x-ray computed tomography experiments were performed on both incoming and assembled parts to reveal the initiation and evolution of the open failures in the same solder joints before and after the reliability tests. Characterization studies, including focused ion beam cross-sections, scanning electron microscopy, and energy-dispersive x-ray spectroscopy, were conducted to determine the correlation between IMC phase transformation and failure initiation in the solder joints. A comprehensive failure mechanism, along with solution paths for the solder joint interfacial failures after multiple reflow cycles, is discussed in detail.

  16. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A


    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  17. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.

    Vedernikov, Andrei N


    Atom economy and the use of "green" reagents in organic oxidation, including oxidation of hydrocarbons, remain challenges for organic synthesis. Solutions to this problem would lead to a more sustainable economy because of improved access to energy resources such as natural gas. Although natural gas is still abundant, about a third of methane extracted in distant oil fields currently cannot be used as a chemical feedstock because of a dearth of economically and ecologically viable methodologies for partial methane oxidation. Two readily available "atom-economical" "green" oxidants are dioxygen and hydrogen peroxide, but few methodologies have utilized these oxidants effectively in selective organic transformations. Hydrocarbon oxidation and C-H functionalization reactions rely on Pd(II) and Pt(II) complexes. These reagents have practical advantages because they can tolerate moisture and atmospheric oxygen. But this tolerance for atmospheric oxygen also makes it challenging to develop novel organometallic palladium and platinum-catalyzed C-H oxidation reactions utilizing O(2) or H(2)O(2). This Account focuses on these challenges: the development of M-C bond (M = Pt(II), Pd(II)) functionalization and related selective hydrocarbon C-H oxidations with O(2) or H(2)O(2). Reactions discussed in this Account do not involve mediators, since the latter can impart low reaction selectivity and catalyst instability. As an efficient solution to the problem of direct M-C oxidation and functionalization with O(2) and H(2)O(2), this Account introduces the use of facially chelating semilabile ligands such as di(2-pyridyl)methanesulfonate and the hydrated form of di(2-pyridyl)ketone that enable selective and facile M(II)-C(sp(n)) bond functionalization with O(2) (M = Pt, n = 3; M = Pd, n = 3 (benzylic)) or H(2)O(2) (M = Pd, n = 2). The reactions proceed efficiently in protic solvents such as water, methanol, or acetic acid. With the exception of benzylic Pd(II) complexes, the

  18. Reaction of Liquid Sn-Ag-Cu-Ce Solders with Solid Copper

    Chriaštel'Ová, J.; Rízeková Trnková, L.; Pocisková Dimová, K.; Ožvold, M.


    Small amounts of the rare-earth element Ce were added to the Sn-rich lead-free eutectic solders Sn-3.5Ag-0.7Cu, Sn-0.7Cu, and Sn-3.5Ag to improve their properties. The microstructures of the solders without Ce and with different amounts (0.1 wt.%, 0.2 wt.%, and 0.5 wt.%) of Ce were compared. The microstructure of the solders became finer with increasing Ce content. Deviation from this rule was observed for the Sn-Ag-Cu solder with 0.2 wt.% Ce, and for the Sn-0.7Cu eutectic alloy, which showed the finest microstructure without Ce. The melting temperatures of the solders were not affected. The morphology of intermetallic compounds (IMC) formed at the interface between the liquid solders and a Cu substrate at temperatures about 40°C above the melting point of the solder for dipping times from 2 s to 256 s was studied for the basic solder and for solder with 0.5 wt.% Ce addition. The morphology of the Cu6Sn5 IMC layer developed at the interface between the solders and the substrate exhibited the typical scallop-type shape without significant difference between solders with and without Ce for the shortest dipping time. Addition of Ce decreased the thickness of the Cu6Sn5 IMC layer only at the Cu/Sn-Ag-Cu solder interface for the 2-s dipping. A different morphology of the IMC layer was observed for the 256-s dipping time: The layers were less continuous and exhibited a broken relief. Massive scallops were not observed. For longer dipping times, Cu3Sn IMC layers located near the Cu substrate were also observed.


    Heinemann, D.; S. Knabner; Baumgarten, D.


    Printed Circuit Boards (PCB) play an important role in the manufacturing of electronic devices. To ensure a correct function of the PCBs a certain amount of solder paste is needed during the placement of components. The aim of the current research is to develop an real-time, closed-loop solution for the analysis of the printing process where solder is printed onto PCBs. Close range photogrammetry allows for determination of the solder volume and a subsequent correction if necessary. ...

  20. Investigation of moisture uptake into printed circuit board laminate and solder mask materials

    Conseil, Helene; Gudla, Visweswara Chakravarthy; Borgaonkar, Shruti


    Presence of moisture in a printed circuit board (PCB) laminate, typically made of glass fibres reinforced epoxy polymer, significantly influences the electrical functionality in various ways and causes problems during soldering process. This paper investigates the water uptake of laminates coated...... with different solder mask materials and exposed to saturated water vapour and liquid water. The solder masks are characterised for their microstructure and constituent phases using scanning electron microscopy and X-ray diffraction. The observations are correlated with themoisture absorption characteristic...

  1. Direct oxidative arylation of aryl C - H bonds with aryl boronic acids via pd catalysis directed by the N,N-dimethylaminomethyl group.

    Zhang, Ji-Cheng; Shi, Jiang-Ling; Wang, Bi-Qin; Hu, Ping; Zhao, Ke-Qing; Shi, Zhang-Jie


    Biaryl skeletons were directly constructed via palladium-catalyzed ortho-arylation of N,N-dimethyl benzylamine with aryl boronic acids with high efficiency and high regioselectivity under open-flask conditions. The N,N-dimethylaminomethyl group was first applied as a directing group in such an oxidative coupling. Various substrates proved to be efficient coupling partners, furnishing the corresponding ortho-monoarylated or -diarylated arenes in moderate to good yields under mild conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. H-bonding template-directed synthesis of a complete m-PDA-bridged ladder polyhydrosiloxane (OLPHS)


    A highly ordered m-phenylenediimino-bridged ladder polyhydrosiloxane (abbr. OLPHS) with Mn = 1.24 × 104 was synthesized stoichiometric hydrolysis and dehydrochlorination condensation reaction between Si-Cl and Si-OH bonds. The complete ladder structure of OLPHS has been confirmed by the following three data. Two characteristic Bragg's peaks representing the ladder width (w = 0.94 nm) and ladder thickness (t = 0.42 nm) were observed in XRD analysis, which are consistent with those calculated by molecular simulation. The very sharp absorption with a small half-peak width (w1/2 = 0.5 ppm) for [(-HN)HSiO2/2]n moiety of OLPHS in 29Si NMR spectrum indicated presence of the complete ladder structure. As collateral evidence, a higher glass transition temperature (Tg = 105 ℃) is also recorded in the DSC measurement, implying the high stiffness of ladder chain of OLPHS.(C) 2007 Rong Ben Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  3. Substituent Directed Phototransformations of BN-Heterocycles: Elimination vs Isomerization via Selective B-C Bond Cleavage.

    Yang, Deng-Tao; Mellerup, Soren K; Peng, Jin-Bao; Wang, Xiang; Li, Quan-Song; Wang, Suning


    Electron-rich and -poor BN-heterocycles with benzyl-pyridyl backbones and two bulky aryls on the boron (Ar = tipp, BN-1, Ar = MesF, BN-2) have been found to display distinct molecular transformations upon irradiation by UV light. BN-1 undergoes an efficient photoelimination reaction forming a BN-phenanthrene with ΦPE = 0.25, whereas BN-2 undergoes a thermally reversible, stereoselective, and quantitative isomerization to a dark colored BN-1,3,5-cyclooctatriene (BN-1,3,5-COT, BN-2a). This unusual photoisomerization persists for other BN-heterocycles with electron-deficient aryls such as BN-3 with a benzyl-benzothiazolyl backbone and Mes(F) substituents or BN-4 with a benzyl-pyridyl backbone and two C6F5 groups on the boron. The photoisomerization of BN-4 goes beyond BN-1,3,5-COT (BN-4a), forming a new species (BN-1,3,6-COT, BN-4b) via C-F bond cleavage and [1,3]-F atom sigmatropic migration. Computational studies support that BN-4a is an intermediate in the formation of BN-4b. This work establishes that steric and electronic factors can effectively control the transformations of BN-heterocycles, allowing access to important and previously unknown BN-embedded species.

  4. High-Temperature Lead-Free Solder Alternatives: Possibilities and Properties

    and mechanical properties of these potential candidate alloys with respect to the currently used high-lead content solders is made. Finally, the paper presents the superior characteristics as well as some drawbacks of these proposed high-temperature lead-free solder alternatives....... the criteria for the evaluation of a new high-temperature lead-free solder material. A list of potential ternary high-temperature lead-free solder alternatives based on the Au-Sn and Au-Ge systems is proposed. Furthermore, a comprehensive comparison of the high-temperature stability of microstructures...

  5. Creep Behavior of Lead-Free Sn-Ag-Cu + Ni-Ge Solder Alloys

    Hidaka, N.; Watanabe, H.; Yoshiba, M.


    We developed a new lead-free solder alloy, an Sn-Ag-Cu base to which a small amount of Ni and Ge is added, to improve the mechanical properties of solder alloys. We examined creep deformation in bulk and through-hole (TH) form for two lead-free solder alloys, Sn-3.5Ag-0.5Cu-Ni-Ge and Sn-3.0Ag-0.5Cu, at elevated temperatures, finding that the creep rupture life of the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy was over three times better than that of the Sn-3.0Ag-0.5Cu solder at 398 K. Adding Ni to the solder appears to make microstructural development finer and more uniform. The Ni added to the solder readily combined with Cu to form stable intermetallic compounds of (Cu, Ni)6Sn5 capable of improving the creep behavior of solder alloys. Moreover, microstructural characterization based on transmission electron microscopy analyses observing creep behavior in detail showed that such particles in the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy prevent dislocation and movement.

  6. Joining of Bi-2212 high- Tc superconductors and metals using indium solders

    Oh, S. Y.; Kim, H. R.; Jeong, Y. H.; Hyun, O. B.; Kim, C. J.


    BSCCO tubes can be used as a base material for switching devices such as superconducting fault current limiters (SFCLs) that prevent an electrical problem from occurring in an electrical power system. To apply an BSCCO bulk tube to a switching device, the superconducting tube has to be joined with a metallic part to by the over current to the metal part when the FCL is quenched. In this study, joining between Cu-Ni alloy and BSCCO was accomplished by soldering using In-Sn and In-Bi solders. Additionally, an Sn-Ag-Cu/In-Bi solder was used for the soldering of a different kind. For a better joining of the BSCCO superconductor with the In-Bi solder, the surface of the BSCCO was pre-coated with Ag by electro-plating. From the experiments, an intermetallic compound (IMC) of AgxIny chain was observed to be mainly formed from In-Sn and In-Bi soldering process. In case of the soldering of a different kind, IMC of AgxIny and CuxSny was also developed. Finally, we confirmed that the properties of soldering were enhanced by Sn-Ag-Cu/In-Bi twice-soldering process.

  7. Joining of Bi-2212 high-T{sub c} superconductors and metals using indium solders

    Oh, S.Y. [Nuclear Nanomaterials Development Laboratory, Korea Atomic Energy Research Institute (KAERI), 150 Dukjin-dong, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Kim, H.R.; Jeong, Y.H.; Hyun, O.B. [Superconductivity and Applications Group, Korea Electric Power Research Institute (KEPRI), Daejeon 305-380 (Korea, Republic of); Kim, C.J. [Nuclear Nanomaterials Development Laboratory, Korea Atomic Energy Research Institute (KAERI), 150 Dukjin-dong, Yusong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail:


    BSCCO tubes can be used as a base material for switching devices such as superconducting fault current limiters (SFCLs) that prevent an electrical problem from occurring in an electrical power system. To apply an BSCCO bulk tube to a switching device, the superconducting tube has to be joined with a metallic part to by the over current to the metal part when the FCL is quenched. In this study, joining between Cu-Ni alloy and BSCCO was accomplished by soldering using In-Sn and In-Bi solders. Additionally, an Sn-Ag-Cu/In-Bi solder was used for the soldering of a different kind. For a better joining of the BSCCO superconductor with the In-Bi solder, the surface of the BSCCO was pre-coated with Ag by electro-plating. From the experiments, an intermetallic compound (IMC) of Ag{sub x}In{sub y} chain was observed to be mainly formed from In-Sn and In-Bi soldering process. In case of the soldering of a different kind, IMC of Ag{sub x}In{sub y} and Cu{sub x}Sn{sub y} was also developed. Finally, we confirmed that the properties of soldering were enhanced by Sn-Ag-Cu/In-Bi twice-soldering process.

  8. An Evaluation of Prototype Circuit Boards Assembled with a Sn-Ag Bi Solder



    An evaluation was performed which examined the aging of surface mount solder joints assembled with 91.84Sn-3.33Ag-4.83Bi solder. Defect analysis of the as-fabricated test vehicles revealed excellent solderability, good package alignment, and a minimum number of voids. Continuous DC electrical monitoring of the solder joints did not reveal opens during as many as 10,000 thermal cycles (0 C, 100 C). The solder joints exhibited no significant degradation through 2500 cycles, based upon an absence of microstructural damage and sustained shear and pull strengths of chip capacitors and J-leaded solder joints, respectively. Thermal cycles of 5000 and 10,000 resulted in some surface cracking of the solder fillets and coatings. In a few cases, deeper cracks were observed in the thinner reaches of several solder fillets. There was no deformation or cracking in the solder located in the gap between the package I/O and the circuit board pad nor in the interior of the fillets, both locations that would raise concerns of joint mechanical integrity. A drop in the chip capacitor shear strength was attributed to crack growth near the top of the fillet.

  9. Influence of Difference Solders Volume on Intermetallic Growth of Sn-4.0Ag-0.5Cu/ENEPIG

    Saliza Azlina O.


    Full Text Available In recent years, portable electronic packaging products such as smart phones, tablets, notebooks and other gadgets have been developed with reduced size of component packaging, light weight, high speed and with enhanced performance. Thus, flip chip technology with smaller solder sphere sizes that would produce fine solder joint interconnections have become essential in order to fulfill these miniaturization requirements. This study investigates the interfacial reactions and intermetallics formation during reflow soldering and isothermal aging between Sn-4.0Ag-0.5Cu (SAC405 and electroless nickel/immersion palladium/immersion gold (EN(PEPIG. Solder diameters of 300 μm and 700 μm were used to compare the effect of solder volume on the solder joint microstructure. The solid state isothermal aging was performed at 125°C starting from 250 hours until 2000 hours. The results revealed that only (Cu,Ni6Sn5 IMC was found at the interface during reflow soldering while both (Cu,Ni6Sn5 and (Ni,Cu3Sn4 IMC have been observed after aging process. Smaller solder sizes produced thinner IMC than larger solder joints investigated after reflow soldering, whereas the larger solders produced thinner IMC than the smaller solders after isothermal aging. Aging duration of solder joints has been found to be increase the IMC’s thickness and changed the IMC morphologies to spherical-shaped, compacted and larger grain size.

  10. Repairable chip bonding/interconnect process

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.


    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  11. Nano Coated Lead Free Solders for Sustainable Electronic Waste Management

    K. Arun Vasantha Geethan

    Full Text Available ABSTRACT Lead has been used in a wide range of applications, but in the past decades it became clear that its high toxicity could cause various problems. Studies indicate that exposure to high concentrations of lead can cause harmful damages to humans. To eliminate the usage of lead in electronic products as an initiative towards electronic waste management (e waste, lead free solders were produced with suitable methods by replacing lead. But lead free solders are not preferred as a substitute of lead because they are poor in their mechanical properties such as tensile strength, shear strength and hardness which are ultimately required for a material to resist failure.Nano-Structured materials and coatings offer the potential for Vital improvements in engineering properties based on improvements in physical and mechanical properties resulting from reducing micro structural features by factors of 100 to 1000 times compared to current engineering materials.

  12. Tin-silver and tin-copper alloys for capillarity joining-soft soldering-of copper piping; Aportaciones de estano-plata y estano-cobre en la soldadura blanda por capilaridad de canalizaciones de cobre

    Duran, J.; Amo, J. M.; Duran, C. M.


    It is studied the influence of the type of alloy used as filling material on the defects of the soldering joints in copper piping installations, which induce the fluid leak of the systems. The different eutectic temperatures and solidus-liquidus ranges of these alloys, require the setting of the soldering heat input in each case to obtain the suitable capillarity features and alloying temperatures to achieve for the correct formation of the bonding. Most defects in the joints are demonstrated to be generated by bad dossification of thermal inputs, which led depending on the filler alloy used to variations in its fluidity that may produce penetration failures in the bonds or insufficient consistency for the filling of the joints. (Author) 7 refs.

  13. The clinical application of direct bonding fixed retaining wire.%直接粘接式固定保持弓丝的临床应用

    李雪琦; 刘进


    目的:介绍直接粘接式固定保持弓丝的材料及临床应用中的使用方法和效果。方法:使用3MUnitek公司所生产的固定保持器套件。按光固材料的使用步骤,将弓丝粘到牙列片段的唇侧及舌侧。结果:32例病例中,保持期最长1.5a,最短1a,8人次因材料部分脱落而需重新粘接,6个病例保持结束时覆牙 合覆盖近Ⅱ度。26例保持良好的矫治效果。表明此种保持器是一种效果稳定、操作简便、美观的保持器。结论:固定保持器是一种稳定、有效和美观的保持方法。%Objective:To introduce fixed retaining wire materials,applyingmethod and clinical effects.Methods:The fixed retaining kits made in 3MUnitek Co. were used.The wire was bonded with directly bonding technique to the labial or lingual surfaces of teeth according to the application steps of light-cure material.The longest retaining period was 1.5 years,and the shortest one was 1 year.Results:The results showed that among 32 cases there were 8 times of rebonding due to the wire bonding failure.The overbite and over jet of six cases increased about two degree when the retention finished.26 cases maintained fine effect.Conclusions:The fixed retaining appliance is stable,effective and aesthetic.

  14. Morphology and Shear Strength of Lead-Free Solder Joints with Sn3.0Ag0.5Cu Solder Paste Reinforced with Ceramic Nanoparticles

    Yakymovych, A.; Plevachuk, Yu.; Švec, P.; Švec, P.; Janičkovič, D.; Šebo, P.; Beronská, N.; Roshanghias, A.; Ipser, H.


    To date, additions of different oxide nanoparticles is one of the most widespread procedures to improve the mechanical properties of metals and metal alloys. This research deals with the effect of minor ceramic nanoparticle additions (SiO2, TiO2 and ZrO2) on the microstructure and mechanical properties of Cu/solder/Cu joints. The reinforced Sn3.0Ag0.5Cu (SAC305) solder alloy with 0.5 wt.% and 1.0 wt.% of ceramic nanoparticles was prepared through mechanically stirring. The microstructure of as-solidified Cu/solder/Cu joints was studied using scanning electron microscopy. The additions of ceramic nanoparticles suppressed the growth of the intermetallic compound layer Cu6Sn5 at the interface solder/Cu and improved the microstructure of the joints. Furthermore, measurements of mechanical properties showed improved shear strength of Cu/composite solder/Cu joints compared to joints with unreinforced solder. This fact related to all investigated ceramic nanoinclusions and should be attributed to the adsorption of nanoparticles on the grain surface during solidification. However, this effect is less pronounced on increasing the nanoinclusion content from 0.5 wt.% to 1.0 wt.% due to agglomeration of nanoparticles. Moreover, a comparison analysis showed that the most beneficial influence was obtained by minor additions of SiO2 nanoparticles into the SAC305 solder alloy.

  15. Copper-catalyzed direct amination of quinoline N-oxides via C-H bond activation under mild conditions.

    Zhu, Chongwei; Yi, Meiling; Wei, Donghui; Chen, Xuan; Wu, Yangjie; Cui, Xiuling


    A highly efficient and concise one-pot strategy for the direct amination of quinoline N-oxides via copper-catalyzed dehydrogenative C-N coupling has been developed. The desired products were obtained in good to excellent yields for 22 examples starting from the parent aliphatic amines. This methodology provides a practical pathway to 2-aminoquinolines and features a simple system, high efficiency, environmental friendliness, low reaction temperature, and ligand, additives, base, and external oxidant free conditions.

  16. Indirect bonding technique in orthodontics

    Kübra Yıldırım


    Full Text Available ‘Direct Bonding Technique’ which allows the fixed orthodontic appliances to be directly bonded to teeth without using bands decreased the clinic time for bracket bonding and increased esthetics and oral hygiene during orthodontic treatment. However, mistakes in bracket positioning were observed due to decreased direct visual sight and access to posterior teeth. ‘Indirect Bonding Technique’ was developed for eliminating these problems. Initially, decreased bond strength, higher bond failure rate, periodontal tissue irritation, compromised oral hygiene and increased laboratory time were the main disadvantages of this technique when compared to direct bonding. The newly developed materials and modified techniques help to eliminate these negative consequences. Today, the brackets bonded with indirect technique have similar bond strength with brackets bonded directly. Moreover, indirect and direct bonding techniques have similar effects on periodontal tissues. However, indirect bonding technique requires more attention and precision in laboratory and clinical stage, and has higher cost. Orthodontist's preference between these two bonding techniques may differ according to time spent in laboratory and clinic, cost, patient comfort and personal opinion.

  17. Direct observation of a hydrophobic bond in loop-closure of a capped (-OCH2CH2-)n oligomer in water

    Chaudhari, Mangesh I; Paulaitis, Michael E


    The small r variation of the probability density P(r) for end-to-end separations of a -CH2CH3 capped (-OCH2CH2-)n oligomer in water is computed to be closely similar to the CH4 ... CH4 potential of mean force under the same circumstances. Since the aqueous solution CH4 ... CH4 potential of mean force is the natural physical definition of a primitive hydrophobic bond, the present result identifies an experimentally accessible circumstance for direct observation of a hydrophobic bond which has not been observed previously because of the low solubility of CH4 in water. The physical picture is that the soluble chain molecule carries the capping groups into aqueous solution, and permits them to find one another with reasonable frequency. Comparison with the corresponding results without the solvent shows that hydration of the solute oxygen atoms swells the chain molecule globule. This supports the view that the chain molecule globule might have a secondary effect on the hydrophobic interaction which is of first in...

  18. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    So, Hongyun; Senesky, Debbie G.


    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  19. A microstructural analysis of solder joints from the electronic assemblies of dismantled nuclear weapons

    Vianco, P.T.; Rejent, J.A. [Sandia National Labs., Albuquerque, NM (United States). Materials Joining Dept.


    MC1814 Interconnection Boxes from dismantled B57 bombs, and MC2839 firing Sets from retired W70-1 warheads were obtained from the Pantex facility. Printed circuit boards were selected from these components for microstructural analysis of their solder joints. The analysis included a qualitative examination of the solder joints and quantitative assessments of (1) the thickness of the intermetallic compound layer that formed between the solder and circuit board Cu features, and (2) the Pb-rich phase particle distribution within the solder joint microstructure. The MC2839 solder joints had very good workmanship qualities. The intermetallic compound layer stoichiometry was determined to be that of Cu6Sn5. The mean intermetallic compound layer thickness for all solder joints was 0.885 mm. The magnitude of these values did not indicate significant growth over the weapon lifetime. The size distribution of the Pb-rich phase particles for each of the joints were represented by the mean of 9.85 {times} 10{sup {minus}6} mm{sup 2}. Assuming a spherical geometry, the mean particle diameter would be 3.54 mm. The joint-to-joint difference of intermetallic compound layer thickness and Pb-rich particle size distribution was not caused by varying thermal environments, but rather, was a result of natural variations in the joint microstructure that probably existed at the time of manufacture. The microstructural evaluation of the through-hole solder joints form the MC2839 and MC1814 components indicated that the environmental conditions to which these electronic units were exposed in the stockpile, were benign regarding solder joint aging. There was an absence of thermal fatigue damage in MC2839 circuit board, through-hole solder joints. The damage to the eyelet solder joints of the MC1814 more likely represented infant mortality failures at or very near the time of manufacture, resulting from a marginal design status of this type of solder joint design.

  20. Novel 1.3-micron high-speed directly modulated semiconductor laser device designs and the development of wafer bonding technology for compliant-substrate fabrication

    Greenberg, Joseph


    High speed optical sources at 1.3 mum are required to drive the fiber optic infrastructure around the world. Of the three components that make up an optical link, these sources limit the overall data transmission capacity of these networks. The importance of operating at 1.3 mum, has led device engineers to rely on InP-based devices, though inferior in many ways to devices based on GaAs. This work seeks to develop new device designs to improve the directly modulated bandwidths of 1.3 mum lasers. Elevated temperatures degrade the DC and high speed performance of semiconductor lasers. InP-based devices are especially susceptible to temperature variations. Lasers were flip chip bonded to diamond heat sinks to improve heat removal from these devices. Although dramatic improvements were seen in their DC performance, the lasers' high frequency response did not improve. Other factors such, as carrier heating, likely limited the performance of these devices. Device designs on GaAs emitting at 1.3 mum were sought as a replacement for the troublesome InP devices. Laser structures employing ordered quantum wells on GaAs (111) substrates have been proposed. Theoretical calculations indicate that 1.3 mum emission should be achievable, and 1.55 mum emission may be possible. Experimental evidence from devices based on GaAs (111) indicates that such lasers should outperform their InP-based counterparts. Lasers grown on InGaAs-like substrates, either bulk ternary or compliant substrates, are promising candidates for improving 1.3 mum device performance. In anticipation of availability of such substrates, a toolkit for designing InxGa1--xAs quantum well lasers on InyGa 1--yAs substrates has been developed. The choice of well and substrate compositions, well width and desired percentage strain combinations emitting at 1.3 mum can be made using a few simple graphs. An analytical valence band model has been employed to qualitatively test competing device designs. Twist bonded compliant

  1. Core-shell nanowire based electrical surface fastener used for room-temperature electronic packaging bonding

    Wang, Peng; Ju, Yang; Hosoi, Atsushi


    With the ongoing miniaturization in electronic packaging, the traditional solders suffer from severe performance degradation. In addition, the high temperature required in the traditional solder reflow process may damage electronic elements. Therefore, there is an increasing urgent need for a new kind of nontoxic solder that can afford good mechanical stress and electrical contact at low temperature. This paper presents a method of fabricating nanowire surface fastener for the application of microelectronic packaging bonding at room temperature. This surface fastener consists of copper core and polystyrene shell nanowire arrays. It showed an adhesive strength of ˜24 N/cm2 and an electrical resistance of ˜0.41 × 10-2 Ω·cm2. This kind of nanowire surface fastener may enable the exploration of wide range applications, involving assembly of components in the electronic packaging.

  2. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya


    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding.

  3. Dominant effects of Sn orientation on serrated cathode dissolution and resulting failure in actual solder joints under electromigration

    Yang, T.L.; Yu, J.J.; Li, C.C.; Lin, Y.F.; Kao, C.R., E-mail:


    Highlights: • Excessive serrated cathode dissolution strongly depends on the Sn grain orientation. • Sn grain orientation is a dominant factor that controls the direction of the serrated teeth. • Producing joints with fine Sn grains is one of the approaches to improve the reliability against current-induced failures in solder joints. - Abstract: Excessive metal dissolution is one of the major electromigration-induced degradation mechanisms in interconnects, and it often produces a distinctive serrated cathode interface with most of the serrated teeth inclined toward a specific direction. In this study, actual flip-chip solder joints were systematically analyzed to understand this highly interesting morphology. It was unequivocally established that the Sn grain orientation is a dominant factor that controls the direction of the serrated teeth. When the c-axis of a Sn grain was nearly parallel to the electron flow direction, serrated dissolution occurred, with the serrated teeth inclined toward the c-axis. These observations were rationalized based on the diffusion anisotropy of Cu in Sn.

  4. Combined thermal, thermodynamic and kinetic modelling for the reliability of high-density lead-free solder interconnections

    Yu, Hao


    Continuous miniaturization of electronics devices as well as increasing complexity of soldering metallurgy introduce more and more challenges to the reliability of modern electronics products. Although loading condition plays an important role, the reliability of solder interconnections is ultimately controlled by microstructures' responses to loading. It is therefore of great importance to understand and control the microstructural evolutions of solder interconnections under different loadin...

  5. Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

    Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu


    Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

  6. Tissue soldering with biodegradable polymer films: in-vitro investigation of hydration effects on weld strength

    Sorg, Brian S.; Welch, Ashley J.


    Previous work demonstrated increased breaking strengths of tissue repaired with liquid albumin solder reinforced with a biodegradable polymer film compared to unreinforced control specimens. It was hypothesized that the breaking strength increase was due to reinforcement of the liquid solder cohesive strength. Immersion in a moist environment can decrease the adhesion of solder to tissue and negate any strength benefits gained from reinforcement. The purpose of this study was to determine if hydrated specimens repaired with reinforced solder would still be stronger than unreinforced controls. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with 806-nm diode laser light. A poly(DL-lactic- co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). The repaired tissues were immersed in phosphate buffered saline for time periods of 1 and 2 days. The breaking strengths of all of the hydrated specimens decreased compared to the acute breaking strengths. However, the reinforced specimens still had larger breaking strengths than the unreinforced controls. These results indicate that reinforcement of a liquid albumin solder may have the potential to improve the breaking strength in a clinical setting.

  7. Dural reconstruction by fascia using a temperature-controlled CO2 laser soldering system

    Forer, Boaz; Vasilyev, Tamar; Brosh, Tamar; Kariv, Naam; Gil, Ziv; Fliss, Dan M.; Katzir, Abraham


    Conventional methods for dura repair are normally based on sutures or stitches. These methods have several disadvantages: (1) The dura is often brittle, and the standard procedures are difficult and time consuming. (2) The seal is leaky. (3) The introduction of a foreign body (e.g. sutures) may cause an inflammatory response. In order to overcome these difficulties we used a temperature controlled fiber optic based CO2 laser soldering system. In a set of in vitro experiments we generated a hole of diameter 10 mm in the dura of a pig corpse, covered the hole with a segment of fascia, and soldered the fascia to the edges of the hole, using 47% bovine albumin as a solder. The soldering was carried out spot by spot, and each spot was heated to 65° C for 3-6 seconds. The soldered dura was removed and the burst pressure of the soldered patch was measured. The average value for microscopic muscular side soldering was 194 mm Hg. This is much higher than the maximal physiological pressure of the CSF fluid in the brain, which is 15 mm Hg. In a set of in vivo experiments, fascia patches were soldered on holes in five farm pigs. The long term results of these experiments were very promising. In conclusion, we have developed an advanced technique for dural reconstruction, which will find important clinical applications.

  8. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S


    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  9. Development of lead-free solders for high-temperature applications

    Chidambaram, Vivek

    -temperature applications. Unfortunately, even the substitute technologies that are currently being developed cannot address several critical issues of high-temperature soldering. Therefore, further research and development of high-temperature lead-free soldering is obviously needed. It is hoped that this thesis can serve...... as a valuable source of information to those interested in environmentally conscious electronic packaging....

  10. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  11. Development of a solder bump technique for contacting a three-dimensional multi electrode array

    Frieswijk, T.A.; Frieswijk, T.A.; Bielen, J.A.; Bielen, J.A.; Rutten, Wim; Bergveld, Piet


    The application of a solder bump technique for contacting a three-dimensional multi electrode array is presented. Solder bumping (or C4: Controlled Collapse Chip Connections, also called Flip Chip contacting) is the most suitable contacting technique available for small dimensions and large numbers

  12. The automated system for technological process of spacecraft's waveguide paths soldering

    Tynchenko, V. S.; Murygin, A. V.; Emilova, O. A.; Bocharov, A. N.; Laptenok, V. D.


    The paper solves the problem of automated process control of space vehicles waveguide paths soldering by means of induction heating. The peculiarities of the induction soldering process are analyzed and necessity of information-control system automation is identified. The developed automated system makes the control of the product heating process, by varying the power supplied to the inductor, on the basis of information about the soldering zone temperature, and stabilizing the temperature in a narrow range above the melting point of the solder but below the melting point of the waveguide. This allows the soldering process automating to improve the quality of the waveguides and eliminate burn-troughs. The article shows a block diagram of a software system consisting of five modules, and describes the main algorithm of its work. Also there is a description of the waveguide paths automated soldering system operation, for explaining the basic functions and limitations of the system. The developed software allows setting of the measurement equipment, setting and changing parameters of the soldering process, as well as view graphs of temperatures recorded by the system. There is shown the results of experimental studies that prove high quality of soldering process control and the system applicability to the tasks of automation.

  13. Mechanical properties of FeCo magnetic particles-based Sn-Ag-Cu solder composites

    Xu, Siyang; Prasitthipayong, Anya; Pickel, Andrea D.; Habib, Ashfaque H.; McHenry, Michael E.


    We demonstrate magnetic nanoparticles (MNPs) in enabling lead-free solder reflow in RF fields and improved mechanical properties that impact solder joint reliability. Here, we report on Sn-Ag-Cu (SAC) alloys. SAC solder-FeCo MNP composites with 0, 1, 2, 3, and 4 wt. % FeCo MNP and the use of AC magnetic fields to achieve localized reflow. Electron microscopy of the as-reflowed samples show a decrease in the volume of Sn dendrite regions as well as smaller and more homogeneously dispersed Ag3Sn intermetallic compounds (IMCs) with increasing MNP concentrations. Mechanical properties of the composites were measured by nanoindentation. In pure solder samples and solder composites with 4 wt. % MNP, hardness values increased from 0.18 GPa to 0.20 GPa and the modulus increased from 39.22 GPa to 71.22 GPa. The stress exponent, reflecting creep resistance, increased from 12.85 of pure solder to 16.47 for solder composites with 4 wt. % MNP. Enhanced mechanical properties as compared with the as-prepared solder joints are explained in terms of grain boundary and dispersion strengthening resulting from the microstructural refinement.

  14. Intermetallic compound layer growth kinetics in non-lead bearing solders

    Vianco, P.T.; Kilgo, A.C.; Grant, R.


    The introduction of alternative, non-lead bearing solders into electronic assemblies requires a thorough investigation of product manufacturability and reliability. Both of these attributes can be impacted by the excessive growth of intermetallic compound (IMC) layers at the solder/substrate interface. An extensive study has documented the stoichiometry and solid state growth kinetics of IMC layers formed between copper and the lead-free solders: 96.5Sn-3.5Ag (wt.%), 95Sn-5Sb, 100Sn, and 58Bi-42Sn. Aging temperatures were 70--205 C for the Sn-based solders and 55--120 C for the Bi-rich solder. Time periods were 1--400 days for all of the alloys. The Sn/Cu, Sn-Ag/Cu, and Sn-Sb/Cu IMC layers exhibited sub-layers of Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn; the latter composition was present only following prolonged aging times or higher temperatures. The total layer growth exhibited a time exponent of n = 0.5 at low temperatures and a value of n = 0.42 at higher temperatures in each of the solder/Cu systems. Similar growth kinetics were observed with the low temperature 58Bi-42Sn solder; however, a considerably more complex sub-layer structure was observed. The kinetic data will be discussed with respect to predicting IMC layer growth based upon solder composition.

  15. Generation of Tin(II) Oxide Crystals on Lead-Free Solder Joints in Deionized Water

    Chang, Hong; Chen, Hongtao; Li, Mingyu; Wang, Ling; Fu, Yonggao


    The effect of the anode and cathode on the electrochemical corrosion behavior of lead-free Sn-Ag-Cu and Sn-Ag-Cu-Bi solder joints in deionized water was investigated. Corrosion studies indicate that SnO crystals were generated on the surfaces of all lead-free solder joints. The constituents of the lead-free solder alloys, such as Ag, Cu, and Bi, did not affect the corrosion reaction significantly. In contrast to lead-free solders, PbO x was formed on the surface of the traditional 63Sn-37Pb solder joint in deionized water. A cathode, such as Au or Cu, was necessary for the electrochemical corrosion reaction of solders to occur. The corrosion reaction rate decreased with reduction of the cathode area. The formation mechanism of SnO crystals was essentially a galvanic cell reaction. The anodic reaction of Sn in the lead-free solder joints occurred through solvation by water molecules to form hydrated cations. In the cathodic reaction, oxygen dissolved in the deionized water captures electrons and is deoxidized to hydroxyl at the Au or Cu cathode. By diffusion, the anodic reaction product Sn2+ and the cathodic reaction product OH- meet to form Sn(OH)2, some of which can dehydrate to form more stable SnO· xH2O crystals on the surface of the solder joints. In addition, thermodynamic analysis confirms that the Sn corrosion reaction could occur spontaneously.

  16. Indium Corporation Introduces New Pb-Free VOC-Free Wave Solder Flux


    The Indium Corporation of America has introduced WF-7742 Wave Solder Flux specifically designed to meet the process demands of Pb-Free manufacturing. WF-7742 is a VOC-Free material formulated for Pb-Free wave soldering of surface-mount, mixed-technology and through-holeelectronics assemblies.

  17. Assessment of circuit board surface finishes for electronic assembly with lead-free solders

    Ray, U.; Artaki, I.; Finley, D.W.; Wenger, G.M. [Bell Labs., Princeton, NJ (United States). Lucent Technologies; Pan, T.; Blair, H.D.; Nicholson, J.M. [Ford Motor Co., Dearborn, MI (United States); Vianco, P.T. [Sandia National Labs., Albuquerque, NM (United States)


    The suitability of various metallic printed wiring board surface finishes was assessed for new technology applications that incorporate assembly with Lead-free solders. The manufacture of a lead-free product necessitates elimination of lead (Pb) from the solder, the circuit board as well as the component lead termination. It is critical however for the selected interconnect Pb-free solder and the corresponding printed wiring board (PWB) and component lead finishes to be mutually compatible. Baseline compatibility of select Pb-free solders with Pb containing PWB surface finish and components was assessed. This was followed by examining the compatibility of the commercially available CASTIN{trademark} (SnAgCuSb) Pb-free solder with a series of PWB metallic finishes: Ni/Au, Ni/Pd, and Pd/Cu. The compatibility was assessed with respect to assembly performance, solder joint integrity and long term attachment reliability. Solder joint integrity and mechanical behavior of representative 50 mil pitch 20I/O SOICs was determined before and after thermal stress. Mechanical pull test studies demonstrated that the strength of SnAgCuSb solder interconnections is notably greater than that of SnPb interconnections.

  18. Wettability study of lead free solder paste and its effect towards multiple reflow

    Idris Siti Rabiatull Aisha


    Full Text Available Nowadays, wafer bumping using solder paste has come into focus as it provides a low cost method. However, since the industries are moving towards lead-free electronic packaging, a new type of no-clean flux was produced specifically for lead-free solder paste. Therefore, this study is used to evaluate the wettability of two different types of no-clean flux onto copper substrate. Besides, its effect towards multiple reflow was also studied. Reflow soldering was conducted for both types of solder paste that contained different type of no-clean flux for up to double reflow. Two different reflow profile was used. The results showed that the Flux A exhibit better soldering performance after first and second reflow soldering. In addition, type of intermetallic compound (IMC found after first reflow remain the same even after second reflow which was Cu-Sn based. This is shows that Flux A manage to control the diffusion process which will finally leads to a better solder joint performance. Nevertheless, mechanical testing should be carried out in order to evaluate the solder joint strength.

  19. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands.

    Barry, Dawn E; Caffrey, David F; Gunnlaugsson, Thorfinnur


    Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures.

  20. Photodiodes integration on a suspended ridge structure VOA using 2-step flip-chip bonding method

    Kim, Seon Hoon; Kim, Tae Un; Ki, Hyun Chul; Kim, Doo Gun; Kim, Hwe Jong; Lim, Jung Woon; Lee, Dong Yeol; Park, Chul Hee


    In this works, we have demonstrated a VOA integrated with mPDs, based on silica-on-silicon PLC and flip-chip bonding technologies. The suspended ridge structure was applied to reduce the power consumption. It achieves the attenuation of 30dB in open loop operation with the power consumption of below 30W. We have applied two-step flipchip bonding method using passive alignment to perform high density multi-chip integration on a VOA with eutectic AuSn solder bumps. The average bonding strength of the two-step flip-chip bonding method was about 90gf.

  1. Discrete component bonding and thick film materials study

    Kinser, D. L.


    The results are summarized of an investigation of discrete component bonding reliability and a fundamental study of new thick film resistor materials. The component bonding study examined several types of solder bonded components with some processing variable studies to determine their influence upon bonding reliability. The bonding reliability was assessed using the thermal cycle: 15 minutes at room temperature, 15 minutes at +125 C 15 minutes at room temperature, and 15 minutes at -55 C. The thick film resistor materials examined were of the transition metal oxide-phosphate glass family with several elemental metal additions of the same transition metal. These studies were conducted by preparing a paste of the subject composition, printing, drying, and firing using both air and reducing atmospheres. The resulting resistors were examined for adherence, resistance, thermal coefficient of resistance, and voltage coefficient of resistance.

  2. Complex of automated equipment and technologies for waveguides soldering using induction heating

    Murygin, A. V.; Tynchenko, V. S.; Laptenok, V. D.; Emilova, O. A.; Bocharov, A. N.


    The article deals with the problem of designing complex automated equipment for soldering waveguides based on induction heating technology. A theoretical analysis of the problem, allowing to form a model of the «inductor-waveguide» system and to carry out studies to determine the form of inducing wire, creating a narrow and concentrated heat zone in the area of the solder joint. Also solves the problem of the choice of the temperature control means, the information from which is used later to generate the effective management of induction soldering process. Designed hardware complex in conjunction with the developed software system is a system of automatic control, allowing to manage the process of induction heating, to prevent overheating and destruction of the soldered products, improve the stability of induction soldering process, to improve the quality of products, thereby reducing time and material costs for the production.

  3. Optimization of Pb-Free Solder Joint Reliability from a Metallurgical Perspective

    Zeng, Kejun; Pierce, Mike; Miyazaki, Hiroshi; Holdford, Becky


    To obtain the desired performance of Pb-free packages in mechanical tests, while the solder composition should be carefully selected, the influence of metals dissolved from the soldering pad or under bump metallization (UBM) should also be taken into account. Dissolved metals such as Cu can alter the intermetallic compound (IMC) formation, not only at the local interface but also on the other side of the joint. The high rate of interfacial cracking of Sn-Ag-Cu solder joints on Ni/Au-plated pads is attributed to the high stiffness of the solder and the dual IMC structure of (Cu,Ni)6Sn5 on Ni3Sn4 at the interface. Approaches to avoid this dual IMC structure at the interface are discussed. A rule for selecting the solder alloy composition and the pad surface materials on both sides of the joints is proposed for ball grid array (BGA) packages.

  4. Tensile properties and thermal shock reliability of Sn-Ag-Cu solder joint with indium addition.

    Yu, A-Mi; Jang, Jae-Won; Lee, Jong-Hyun; Kim, Jun-Ki; Kim, Mok-Soon


    The thermal shock reliability and tensile properties of a newly developed quaternary Sn-1.2Ag-0.5Cu-0.4In (wt%) solder alloy were investigated and compared to those of ternary Sn-Ag-Cu based Pb-free solder alloys. It was revealed that the Sn-1.2Ag-0.5Cu-0.4In solder alloy shows better thermal shock reliability compared to the Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu solder alloys. The quaternary alloy has higher strength than Sn-1.0Ag-0.5Cu alloy, and higher elongation than Sn-3.0Ag-0.5Cu alloy. It was also revealed that the addition of indium promotes the formation of Ag3(Sn, In) phase in the solder joint during reflow process.

  5. Properties and Microstructures of Sn-Bi-X Lead-Free Solders

    Fan Yang


    Full Text Available The Sn-Bi base lead-free solders are proposed as one of the most popular alloys due to the low melting temperature (eutectic point: 139°C and low cost. However, they are not widely used because of the lower wettability, fatigue resistance, and elongation compared to traditional Sn-Pb solders. So the alloying is considered as an effective way to improve the properties of Sn-Bi solders with the addition of elements (Al, Cu, Zn, Ga, Ag, In, Sb, and rare earth and nanoparticles. In this paper, the development of Sn-Bi lead-free solders bearing elements and nanoparticles was reviewed. The variation of wettability, melting characteristic, electromigration, mechanical properties, microstructures, intermetallic compounds reaction, and creep behaviors was analyzed systematically, which can provide a reference for investigation of Sn-Bi base solders.

  6. Study on Sn-Zn Solder Used in Cu-Al Soldering%用于铜铝焊接的锡锌焊料研究

    倪广春; 张浩; 韩敏


    Lead-free electronic products led the development of lead-free solder technology. Taking cost factors into account, some copper material has been replaced by aluminum material. When ordinary Sn-Cu and Sn-Ag-Cu solder are used in soldering of Cu-Al, there is the electrochemical corrosion problems. So Sn-Zn solder is used for Cu-Al soldering. However, the joints of Sn-Zn solder are brittle and easy to crack. Focus on problems in Cu-Al soldering joint of electrical and electronic devices, put forward Sn-Zn-X alloy soldering materials, did a large number of experiments, and achieved good results.%电子产品无铅化的推广带动了无铅焊料技术的发展,考虑到成本因素,部分铜材已被铝材取代。普通的锡铜系和锡银铜系焊料在铜铝焊接时,存在电化学腐蚀问题,因此多用锡锌焊料进行焊接。但锡锌焊料的焊点脆,存在易开裂的问题。针对电工电子器件铜铝焊接点存在的问题,提出了Sn一Zn一X多元合金焊接材料,并做了大量实验,取得很好的效果。

  7. Physical properties of lead free solders in liquid and solid state

    Mhiaoui, Souad


    The European legislation prohibits the use of lead containing solders in Europe. However, lead free solders have a higher melting point (typical 20%) and their mechanical characteristics are worse. Additional problems are aging and adhesion of the solder on the electronic circuits. Thus, research activities must focus on the optimization of the properties of Sn-Ag-Cu based lead free solders chosen by the industry. Two main objectives are treated in this work. In the center of the first one is the study of curious hysteresis effects of metallic cadmium-antimony alloys after thermal cycles by measuring electronic transport phenomena (thermoelectric power and electrical resistivity). The second objective, within the framework of ''cotutelle'' between the universities of Metz and of Chemnitz and supported by COST531, is to study more specifically lead free solders. A welding must well conduct electricity and well conduct and dissipate heat. In Metz, we determined the electrical conductivity, the thermoelectric power and the thermal conductivity of various lead free solders (Sn-Ag-Cu, Sn-Cu, Sn-Ag, Sn-Sb) as well in the liquid as well in the solid state. The results have been compared to classical lead-tin (Pb-Sn) solders. In Chemnitz we measured the surface tension, the interfacial tension and the density of lead free solders. We also measured the viscosity of these solders without and with additives, in particular nickel. These properties were related to the industrial problems of wettability and spreadability. Lastly, we solidified alloys under various conditions. We observed undercooling. We developed a technique of mixture of nanocrystalline powder with lead free solders ''to sow'' the liquid bath in order to obtain ''different'' solids which were examined using optical and electron microscopy. (orig.)

  8. The amide C-N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C-H activation and annulation reactions: access to 8-amido isocoumarins.

    Kaishap, Partha Pratim; Sarma, Bipul; Gogoi, Sanjib


    The N-O, N-N and O-O bonds are the frequently used internally oxidative directing groups used in various redox-neutral coupling reactions. The sole use of the C-N bond as the oxidizing directing group was reported recently by Li X. and co-workers for the Rh(iii)-catalyzed C-H activation of phenacyl ammonium salts. Herein, we report the use of the amide C-N bond of isatins as the oxidizing directing group for the Ru(ii)-catalyzed redox-neutral C-H activation and annulation reactions with alkynes which afford 8-amido isocoumarins. The reaction also features excellent regioselectivity with alkyl aryl substituted alkynes.

  9. Multi-scale modeling of elasto-plastic response of SnAgCu lead-free solder alloys at different ageing conditions: Effect of microstructure evolution, particle size effects and interfacial failure

    Maleki, Milad; Cugnoni, Joel, E-mail:; Botsis, John


    In microelectronics applications, SnAgCu lead-free solder joints play the important role of ensuring both the mechanical and electrical integrity of the components. In such applications, the SnAgCu joints are subjected to elevated homologous temperatures for an extended period of time causing significant microstructural changes and leading to reliability issues. In this study, the link between the change in microstructures and deformation behavior of SnAgCu solder during ageing is explained by developing a hybrid multi-scale microstructure-based modeling approach. Herein, the SnAgCu solder alloy is seen as a three phase metal matrix composite in which Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5} hard intermetallics play the role of reinforcements and Sn the role of a ductile matrix. The hardening of the Sn matrix due to fine intermetallics in the eutectic mixture is modeled by incorporating the mean field effects of geometrically necessary dislocations. Subsequently, a two level homogenization procedure based on micromechanical finite element (FE) models is used to capture the interactions between the different phases. For this purpose, tomographic images of microstructures obtained by Focused Ion Beam (FIB) and synchrotron X-Ray in different ageing conditions are directly used to generate statistically representative volume elements (RVE) using 3D FE models. The constitutive behavior of the solder is determined by sequentially performing two scales of numerical homogenization at the eutectic level and then at the dendrite level. For simplification, the anisotropy of Sn as well as the potential recovery processes have been neglected in the modeling. The observed decrease in the yield strength of solder due to ageing is well captured by the adopted modeling strategy and allows explaining the different ageing mechanisms. Finally, the effects of potential debonding at the intermetallic particle-matrix interface as well as particle fracture on the overall strength of solder are

  10. Low-cost bump bonding activities at CERN

    Vaehaenen, S; Tick, T; Campbell, M, E-mail: Sami.vaehaenen@cern.c [CERN, PH-ESE 1211 Geneva 23 (Switzerland)


    Conventional bumping processes used in the fabrication of hybrid pixel detectors for High Energy Physics (HEP) experiments use electroplating for Under Bump Metallization (UBM) and solder bump deposition. This process is laborious, involves time consuming photolithography and can only be performed using whole wafers. Electroplating has been found to be expensive when used for the low volumes which are typical of HEP experiments. In the low-cost bump bonding development work, electroless deposition technology of UBM is studied as an alternative to the electroplating process in the bump size / pitch window beginning from 20 {mu}m / 50 {mu}m. Electroless UBM deposition used in combination with solder transfer techniques has the potential to significantly lower the cost of wafer bumping without requiring increased wafer volumes. A test vehicle design of sensor and readout chip, having daisy chains and Kelvin bump structures, was created to characterize the flip chip process with electroless UBM. Two batches of test vehicle wafers were manufactured with different bump pad metallization. Batch no. 1 had AlSi(1%) metallization, which is similar to the one used on sensor wafers, and Batch no. 2 had AlSi(2%)Cu(1%) metallization, which is very similar to the one used on readout wafers. Electroless UBMs were deposited on both wafer batches. In addition, electroplated Ni UBM and SnPb solder bumps were grown on the test sensor wafers. Test assemblies were made by flip chip bonding the solder-bumped test sensors against the test readout chips with electroless UBMs. Electrical yields and individual joint resistances were measured from assemblies, and the results were compared to a well known reference technique based on electroplated solder bumps structures on both chips. The electroless UBMs deposited on AlSi(2%)Cu(1%) metallization showed excellent electrical yields and small tolerances in individual joint resistance. The results from the UBMs deposited on AlSi(1

  11. Nanoscale soldering of axially positioned single-walled carbon nanotubes: a molecular dynamics simulation study.

    Cui, Jianlei; Yang, Lijun; Zhou, Liang; Wang, Yang


    The miniaturization of electronics devices into the nanometer scale is indispensable for next-generation semi-conductor technology. Carbon nanotubes (CNTs) are considered to be the promising candidates for future interconnection wires. To study the carbon nanotubes interconnection during nanosoldering, the melting process of nanosolder and nanosoldering process between single-walled carbon nanotubes are simulated with molecular dynamics method. As the simulation results, the melting point of 2 nm silver solder is about 605 K because of high surface energy, which is below the melting temperature of Ag bulk material. In the nanosoldering process simulations, Ag atoms may be dragged into the nanotubes to form different connection configuration, which has no apparent relationship with chirality of SWNTs. The length of core filling nanowires structure has the relationship with the diameter, and it does not become longer with the increasing diameter of SWNT. Subsequently, the dominant mechanism of was analyzed. In addition, as the heating temperature and time, respectively, increases, more Ag atoms can enter the SWNTs with longer length of Ag nanowires. And because of the strong metal bonds, less Ag atoms can remain with the tight atomic structures in the gap between SWNT and SWNT. The preferred interconnection configurations can be achieved between SWNT and SWNT in this paper.

  12. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    Kostandyan, Erik; Sørensen, John Dalsgaard


    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  13. Pb-free Sn-Ag-Cu ternary eutectic solder

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.


    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  14. Perpendicular Growth Characteristics of Cu-Sn Intermetallic Compounds at the Surface of 99Sn-1Cu/Cu Solder Interconnects

    Chen, Zhiwen; Liu, Changqing; Wu, Yiping; An, Bing


    The growth of intermetallic compounds (IMCs) on the free surface of 99Sn-1Cu solder joints perpendicular to the interdiffusion direction has been investigated in this work. The specimens were specifically designed and polished to reveal a flat free surface at the solder/Cu interface for investigation. After aging at 175°C for progressively increased durations, the height of the perpendicular IMCs was examined and found to follow a parabolic law with aging duration that could be expressed as y = 0.11√ t, where t is the aging duration in hours and y is the height of the perpendicular IMCs in μm. For comparison, the planar growth of IMCs along the interdiffusion direction was also investigated in 99Sn-1Cu/Cu solder joints. After prolonged aging at 175°C, the thickness of the planar interfacial IMC layers also increased parabolically with aging duration and could be expressed as h_{{IMC}} = 0.27√ t + 4.6, where h is the thickness in μm and t is the time in hours. It was found that both the planar and perpendicular growth of the IMCs were diffusion-controlled processes, but the perpendicular growth of the IMCs was much slower than their planar growth due to the longer diffusion distance. It is proposed that Cu3Sn forms prior to the formation of Cu6Sn5 in the perpendicular IMCs, being the reverse order compared with the planar IMC growth.

  15. Imaging and Analysis of Void-defects in Solder Joints Formed in Reduced Gravity using High-Resolution Computed Tomography

    Easton, John W.; Struk, Peter M.; Rotella, Anthony


    As a part of efforts to develop an electronics repair capability for long duration space missions, techniques and materials for soldering components on a circuit board in reduced gravity must be developed. This paper presents results from testing solder joint formation in low gravity on a NASA Reduced Gravity Research Aircraft. The results presented include joints formed using eutectic tin-lead solder and one of the following fluxes: (1) a no-clean flux core, (2) a rosin flux core, and (3) a solid solder wire with external liquid no-clean flux. The solder joints are analyzed with a computed tomography (CT) technique which imaged the interior of the entire solder joint. This replaced an earlier technique that required the solder joint to be destructively ground down revealing a single plane which was subsequently analyzed. The CT analysis technique is described and results presented with implications for future testing as well as implications for the overall electronics repair effort discussed.

  16. Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent

    Sarika Kalra


    Full Text Available Aims and Objectives : To compare the marginal sealing ability of ormocer with a hybrid composite using an ormocer based bonding agent and a conventional fifth generation bonding agent. Materials and Methods : Fifty four human premolars were randomly distributed into four test groups of 12 teeth each and two control groups of 3 teeth each. Class I occlusal preparation of 1.5 mm depth were made in each tooth. These were restored using the adhesive and restorative material according to the group. The restorations were finished using a standard composite finishing and polishing kit. Thermocycling between 5 o C and 55 o C was carried out. Having blocked the root apex and the entire tooth surface except 1 mm around the restoration margin, the teeth were immersed in 2% methylene blue for 48 hours, after which the dye penetration through the margins of each sample was studied under a stereomicroscope. Results and Discussion : Group IV (Admira with Admira Bond showed the minimum marginal leakage with a mean of 0.200 mm. Four samples in this group showed no microleakage at all and a maximum of 0.400 mm was seen in one sample. Group II (Spectrum TPH with Admira Bond showed the maximum leakage with a mean of 0.433 mm. One sample showed as much as 1.00 mm of microleakage. Admira when used with Admira Bond showed lesser microleakage than Spectrum TPH used with Prime & Bond NT, the difference being statistically insignificant.

  17. Bond Issues.

    Pollack, Rachel H.


    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  18. Laser ablative fluxless soldering (LAFS): 60Sn-40Pb solder wettability tests on laser cleaned OFHC copper substrates

    Peebles, H. C.; Keicher, D. M.; Hosking, F. M.; Hlava, P. F.; Creager, N. A.


    OFHC copper substrates, cleaned by laser ablation under argon and helium gas, were tested for solder wettability by 60Sn-40Pb using an area-of-spread method. The wettability of copper surfaces cleaned under both argon and helium gas was found to equal or exceed the wettability obtained on this surface in air using a standard RMA flux. The area of spread on copper substrates cleaned under helium was eight times larger than the area of spread of substrates cleaned under argon. The enhanced spreading observed on the substrates cleaned under helium gas was found to be due to surface roughness. 11 refs., 8 figs., 2 tabs.

  19. Detection of micro solder balls using active thermography and probabilistic neural network

    He, Zhenzhi; Wei, Li; Shao, Minghui; Lu, Xingning


    Micro solder ball/bump has been widely used in electronic packaging. It has been challenging to inspect these structures as the solder balls/bumps are often embedded between the component and substrates, especially in flip-chip packaging. In this paper, a detection method for micro solder ball/bump based on the active thermography and the probabilistic neural network is investigated. A VH680 infrared imager is used to capture the thermal image of the test vehicle, SFA10 packages. The temperature curves are processed using moving average technique to remove the peak noise. And the principal component analysis (PCA) is adopted to reconstruct the thermal images. The missed solder balls can be recognized explicitly in the second principal component image. Probabilistic neural network (PNN) is then established to identify the defective bump intelligently. The hot spots corresponding to the solder balls are segmented from the PCA reconstructed image, and statistic parameters are calculated. To characterize the thermal properties of solder bump quantitatively, three representative features are selected and used as the input vector in PNN clustering. The results show that the actual outputs and the expected outputs are consistent in identification of the missed solder balls, and all the bumps were recognized accurately, which demonstrates the viability of the PNN in effective defect inspection in high-density microelectronic packaging.

  20. Enhanced laser tissue soldering using indocyanine green chromophore and gold nanoshells combination.

    Khosroshahi, Mohammad E; Nourbakhsh, Mohammad S


    Gold nanoshells (GNs) are new materials that have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes. The purposes of this study were to use the combination of indocyanine green (ICG) and different concentration of gold nanoshells for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different combinations of ICG and gold nanoshells were prepared. A full thickness incision of 2 × 20 mm(2) was made on the surface and after addition of mixtures it was irradiated by an 810 nm diode laser at different power densities. The changes of tensile strength (σ(t)) due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σ(t) of repaired incisions increases by increasing the concentration of gold nanoshells in solder, Ns, and decreasing Vs. It was demonstrated that laser soldering using combination of ICG + GNs could be practical provided the optothermal properties of the tissue are carefully optimized. Also, the tensile strength of soldered skin is higher than skins that soldered with only ICG or GNs. In our case, this corresponds to σ(t) = 1800 g cm(-2) at I ∼ 47 Wcm(-2), T ∼ 85 [ordinal indicator, masculine]C, Ns = 10, and Vs = 0.3 mms(-1).

  1. A microstructural study of creep and thermal fatigue deformation in 60Sn-40Pb solder joints

    Tribula, D.


    Thermal fatigue failures of solder joints in electronic devices often arise from cyclic shear strains imposed by the mismatched thermal expansion coefficients of the materials that bind the joint as temperature changes are encountered. Increased solder joint reliability demands a fundamental understanding of the metallurigical mechanisms that control the fatigue to design accurate accelerated probative tests and new, more fatigue resistant solder alloys. The high temperatures and slow strain rates that pertain to thermal fatigue imply that creep is an important deformation mode in the thermal fatigue cycle. In this work, the creep behaviour of a solder joint is studied to determine the solder's microstructural response to this type of deformation and to relate this to the more complex problem of thermal fatigue. It is shown that creep failures arise from the inherent inhomogeneity and instability of the solder microstructure and suggest that small compositional changes of the binary near-eutectic Pn-Sn alloy may defeat the observed failure mechanisms. This work presents creep and thermal fatigue data for several near-eutectic Pb-Sn solder compositions and concludes that a 58Sn-40Pb-2In and a 58Sn-40Pb-2Cd alloy show significantly enhanced fatigue resistance over that of the simple binary material. 80 refs., 33 figs., 1 tab.

  2. Wettability Studies of Pb-Free Soldering Materials

    Moser, Z.; Gąsior, W.; Pstruś, J.; Dębski, A.


    For Pb-free soldering materials, two main substitutes are currently being considered, consisting of Sn-Ag and Sn-Ag-Cu eutectics, both with melting points higher than that of the Sn-Pb eutectic. Therefore, both will require higher soldering temperatures for industrial applications. Also, both eutectics have a higher surface tension than the Sn-Pb eutectic, requiring wettability studies on adding Bi, Sb, and In to the eutectics to decrease the melting points and surface tension. The experimental results for the surface tension were compared with thermodynamic modeling by Butler’s method and were used to create the SURDAT database, which also includes densities for pure metals, binary, ternary, quaternary, and quinary alloys. To model the surface tension, excess Gibbs energies of the molten components were taken from the ADAMIS database. For the case of the Ag-Sn system, enthalpies of formation of Ag3Sn from solution calorimetry were used for checking optimized thermodynamic parameters. In the study of Sn-Ag-Cu-Bi-Sb liquid alloys, the range of possible Bi compositions for practical applications has been used to formulate a generalized metric of wettability, which was checked by measurements of the influence of In on the Sn-Ag-Cu system.

  3. Effect of contact metallization on electromigration reliability of Pb-free solder joints

    Ding, Min; Wang, Guotao; Chao, Brook; Ho, Paul S.; Su, Peng; Uehling, Trent


    The effect of underbump metallization (UBM) on electromigration (EM) lifetime and failure mechanism has been investigated for Pb-free solder bumps of 97Sn3Ag composition in the temperature range of 110-155 °C. The EM lifetime of the SnAg Pb-free solders with either Cu or Ni UBM was found to be better than the eutectic SnPb (63Sn37Pb) solders but worse than high-Pb (95Pb5Sn) solders. In the test temperature range, the EM lifetimes were found to be comparable for Cu and Ni UBMs but with different activation energies: 0.64-0.72 eV for Cu UBM and 1.03-1.11 eV for Ni UBM. EM failure was observed only in solder bumps with electron current flow from UBM to the substrate. Failure analysis revealed that EM damage was initiated by the formation of intermetallic compounds (IMC) at the UBM/solder interface which was found to be significantly enhanced by mass transport driven by the electron current. Under EM, the continued growth of IMC with the dissolution of the UBM and the accumulation of Kirkendall voids resulted in the formation of interfacial cracks and eventual EM failure of the solder bump. For Ni UBM, the IMC formation was dominated by the Ni3Sn4 phase while for Cu UBM, a bilayer of Cu3Sn/Cu6Sn5 was found. Void formation at the Cu6Sn5/solder interface was found to be important in controlling the EM lifetime of the Cu UBM solder.

  4. The influence of silver content on structure and properties of Sn–Bi–Ag solder and Cu/solder/Cu joints

    Šebo, P. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava 3 (Slovakia); Švec, P. Sr., E-mail: [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janičkovič, D.; Illeková, E. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia); Zemánková, M. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava 3 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine); Sidorov, V. [Ural State Pedagogical University, Cosmonavtov 26, 620017 Ekaterinburg (Russian Federation); Švec, P. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia)


    The effect of silver content on structure and properties of Sn{sub 100−x}Bi{sub 10}Ag{sub x} (x=3–10 at%) lead-free solder and Cu–solder–Cu joints was investigated. The microstructure of the solder in both bulk and rapidly solidified ribbon forms was analyzed by scanning electron microscopy (SEM) and X-ray diffraction. The peculiarities in melting kinetic, studied by differential scanning calorimetry (DSC), and silver influence on it are described and discussed. The wetting of a copper substrate was examined by the sessile drop method in the temperature range of 553–673 K in air and deoxidizing gas (N{sub 2}+10%H{sub 2}) at atmospheric pressure. Cu–solder–Cu joints were also prepared in both atmospheres, and their shear strength was measured by the push-off method. The produced solders consisted of tin, bismuth and Ag{sub 3}Sn phases. The product of the interaction between the solder and the copper substrate consists of two phases: Cu{sub 3}Sn, which is adjacent to the substrate, and a Cu{sub 6}Sn{sub 5} phase. The wetting angle in air increased slightly as the silver concentration in the solder increased. Wetting of the copper substrate in N{sub 2}+10H{sub 2} gas shows the opposite tendency: the wetting angle slightly decreased as the silver content in the solder increased. The shear strength of the joints prepared in air (using flux) tends to decrease with increasing production temperature and increasing silver content in the solder. The equivalent decrease in the shear strength of the joints prepared in N{sub 2}+10H{sub 2} is more apparent.

  5. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe


    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique. PMID:26473871

  6. Life Prediction of Ball Grid Array Soldered Joints under Thermal Cycling Loading by Fracture Mechanics Method


    Fatigue crack propagation life of ball grid array (BGA) soldered joints during thermal cycling loading was investigated by fracture mechanics approach using finite element analysis. The relationships between the strain energy release rate (G) and crack size (α), thermal cycle numbers (N) can be derived. Based on the relationships, fatigue life of the soldered joints was determined. The results showed that crack propagation life was higher than crack initiation life. Therefore, it appears that it is more appropriate to predict the fatigue life of soldered joints using the fracture mechanics method.

  7. Research on defects inspection of solder balls based on eddy current pulsed thermography.

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe


    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  8. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    Xiuyun Zhou


    Full Text Available In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT. Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  9. Effect of constraint on crack propagation behavior in BGA soldered joints

    王莉; 王国忠; 方洪渊; 钱乙余


    The effects of stress triaxiality on crack propagation behavior in the BGA soldered joint were analyzed using FEM method. The computation results verified that stress triaxiality factor has an important effect on crack growth behavior. Crack growth rate increased with increasing stress triaxiality at the near-tip region, which is caused by increasing crack lengths or decreasing solder joint heights. Solder joint deformation is subjected to constraint effect provided by its surrounding rigid ceramic substrate, the constraint can be scaled by stress triaxiality near crack tip region. Therefore, it can be concluded that crack growth rate increased when the constraint effect increases.

  10. Observations of microstructural coarsening in micro flip-chip solder joints

    Barney, Monica M.; Morris, J. W.


    Coarsening of solder microstructures dramatically affects fatigue lifetimes. This paper presents a study of microstructural evolution due to thermal cycling and aging of small solder joints. The lead-tin solder joints in this study have a height of 55 5 m and a tin content of 65 70 wt.%, with a degenerate eutectic microstructure. The joint microstructure coarsens more rapidly during aging at 160°C than cycling from 0 160°C. No coarsened bands are observed. The cycling data scales with standard coarsening equations, while the aging data fits to an enhanced trend. The joints experiencing 2.8% strain during cycling fail by 1000 cycles.

  11. A cause of the non-solderability of ceramic capacitor terminations

    Cozzolino, M. J.; Kumar, A.; Ewell, G. J.


    The results of an analysis into the cause of the non-solderability of multiple defective part lots from two capacitor manufacturers are described. This analysis consisted of visual, scanning electron microscopic, surface, and metalographic examinations and analyses. The results indicated that non-solderability results from areas of excess porosity in the termination which are caused by segregation of ink constituents during manufacturing. This segregation can be minimized by proper monitoring and control of process variables; where excess porosity does occur, solderability can be improved by proper precleaning of parts.

  12. Wettability study of lead free solder paste and its effect towards multiple reflow

    Idris Siti Rabiatull Aisha; Zuleikha Siti; Abd Malek Zetty Akhtar


    Nowadays, wafer bumping using solder paste has come into focus as it provides a low cost method. However, since the industries are moving towards lead-free electronic packaging, a new type of no-clean flux was produced specifically for lead-free solder paste. Therefore, this study is used to evaluate the wettability of two different types of no-clean flux onto copper substrate. Besides, its effect towards multiple reflow was also studied. Reflow soldering was conducted for both types of solde...

  13. Electromigration Reliability and Morphologies of Cu Pillar Flip-Chip Solder Joints with Cu Substrate Pad Metallization

    Lai, Yi-Shao; Chiu, Ying-Ta; Chen, Jiunn


    The Cu pillar is a thick underbump metallurgy (UBM) structure developed to alleviate current crowding in a flip-chip solder joint under operating conditions. We present in this work an examination of the electromigration reliability and morphologies of Cu pillar flip-chip solder joints formed by joining Ti/Cu/Ni UBM with largely elongated ˜62 μm Cu onto Cu substrate pad metallization using the Sn-3Ag-0.5Cu solder alloy. Three test conditions that controlled average current densities in solder joints and ambient temperatures were considered: 10 kA/cm2 at 150°C, 10 kA/cm2 at 160°C, and 15 kA/cm2 at 125°C. Electromigration reliability of this particular solder joint turns out to be greatly enhanced compared to a conventional solder joint with a thin-film-stack UBM. Cross-sectional examinations of solder joints upon failure indicate that cracks formed in (Cu,Ni)6Sn5 or Cu6Sn5 intermetallic compounds (IMCs) near the cathode side of the solder joint. Moreover, the ~52- μm-thick Sn-Ag-Cu solder after long-term current stressing has turned into a combination of ~80% Cu-Ni-Sn IMC and ~20% Sn-rich phases, which appeared in the form of large aggregates that in general were distributed on the cathode side of the solder joint.

  14. Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology.

    Zhou, Yihui; Wu, WenBiao; Qiu, Keqiang


    Here, we focused on the recycling of waste printed circuit boards (WPCBs) using vacuum pyrolysis-centrifugation coupling technology (VPCT) aiming to obtain valuable feedstock and resolve environmental pollution. The two types of WPCBs were pyrolysed at 600°C for 30 min under vacuum condition. During the pyrolysis process, the solder of WPCBs was separated and recovered when the temperature range was 400-600°C, and the rotating drum was rotated at 1000 rpm for 10 min. The type-A of WPCBs pyrolysed to form an average of 67.91 wt.% residue, 27.84 wt.% oil, and 4.25 wt.% gas; and pyrolysis of the type-B of WPCBs led to an average mass balance of 72.22 wt.% residue, 21.57 wt.% oil, and 6.21 wt.% gas. The GC-MS and FT-IR analyses showed that the two pyrolysis oils consisted mainly of phenols and substituted phenols. The pyrolysis oil can be used for fuel or chemical feedstock for further processing. The recovered solder can be recycled directly and it can also be a good resource of lead and tin for refining. The pyrolysis residues contained various metals, glass fibers and other inorganic materials, which could be recovered after further treatment. The pyrolysis gases consisted mainly of CO, CO(2), CH(4), and H(2), which could be collected and recycled.

  15. Analysis of a short beam with application to solder joints: could larger stand-off heights relieve stress?

    Suhir, Ephraim


    Physically meaningful and easy-to-use analytical (mathematical) stress model is developed for a short beam with clamped and known-in-advance offset ends. The analysis is limited to elastic deformations. While the classical Timoshenko short-beam theory seeks the beam's deflection caused by the combined bending and shear deformations for the given loading, an inverse problem is considered here: the lateral force is sought for the given ends offset. In short beams this force is larger than in long beams, since, in order to achieve the given displacement (offset), the applied force has to overcome both bending and shear resistance of the beam. It is envisioned that short beams could adequately mimic the state of stress in solder joint interconnections, including ball-grid-array (BGA) systems, with large, compared to conventional joints, stand-off heights. When the package/printed-circuit-board (PCB) assembly is subjected to the change in temperature, the thermal expansion (contraction) mismatch of the package and the PCB results in an easily predictable relative displacement (offset) of the ends of the solder joint. This offset can be determined from the known external thermal mismatch strain (determined as the product of the difference in the coefficients of thermal expansion and the change in temperature) and the position of the joint with respect to the mid-cross-section of the assembly. The maximum normal and shearing stresses could be viewed as suitable criteria of the beam's (joint's) material long-term reliability. It is shown that these stresses can be brought down by employing beam-like joints, i.e., joints with an increased stand-off height compared to conventional joints. It is imperative, of course, that, if such joints are employed, there is still enough interfacial real estate, so that the BGA bonding strength is not compromised. On the other hand, owing to the lower stress level, reliability assurance might be much less of a challenge than in the case of

  16. Alternative Solder Bond Packaging Approach for High-Voltage (HV) Pulsed Power Devices


    speed and high - temperature operation capabilities. However, the advanced capabilities of these switches are a challenge to demonstrate due to the...with a high - temperature anneal. The ohmic contacts to the anode, gate, and the substrate of the devices were formed using annealed nickel (Ni...with isopropyl alcohol. The copper strips and copper terminals underwent an additional cleaning with hydrochloric acid to ensure all oxidation was

  17. Parental Bonding

    T. Paul de Cock


    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  18. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    Liu, Xiangqian


    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  19. Abnormal growth of Ag3Sn intermetallic compounds in Sn-Ag lead-free solder

    SHEN Jun; LIU Yongchang; GAO Houxiu


    The abnormal growth of Ag3Sn intermetallic compounds in eutectic Sn-3.5% Ag solder was investigated through high-temperature aging treatment. Microstructural evolutions of this solder before and after the aging treatment were observed by optical microscopy and scanning electron microscopy. Precise differential thermal analysis was made to study the changes in enthalpies of the solder under different conditions. The results reveal that the water-cooled solder is in metastable thermodynamic state due to the high free energy of Ag3Sn nanoparticles, which sporadically distribute in the matrix as second-phase. The second-phase Ag3Sn nanoparticles aggregate rapidly and grow to form bulk intermetallic compounds due to the migration of grain boundary between primary Sn-rich phase and the Ag3Sn nanoparticles during high temperature aging treatment.

  20. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting

    Domkin, Konstantin; Hattel, Jesper Henri; Thorborg, Jesper


    Soldering of cast alloys to the dies has been a continuing source of die surface damage in the aluminum die-casting industry. To reduce the repair and maintenance costs, an approach to modeling the damage and predicting the die lifetime is required. The aim of the present study is the estimation...... of the die lifetime based on a quantitative analysis of die soldering in the framework of the numerical simulations of the die-casting process. Full 3D simulations of the process, including the filling. solidification, and the die cooling, are carried out using the casting simulation software MAGMAsoft....... The resulting transient temperature fields on the die surface and in the casting are then post-processed to estimate the die soldering. The present work deals only with the metallurgical/chemical kind of soldering which occurs at high temperatures and involves formation and growth of intermetallic layers...

  1. Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints

    Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah


    FEM simulations of PbSn solder fatigue damage are used to evaluate seven cities that represent a variety of climatic zones. It is shown that the rate of solder fatigue damage is not ranked with the cities' climate designations. For an accurate ranking, the mean maximum daily temperature, daily temperature change and a characteristic of clouding events are all required. A physics-based empirical equation is presented that accurately calculates solder fatigue damage according to these three factors. An FEM comparison of solder damage accumulated through service and thermal cycling demonstrates the number of cycles required for an equivalent exposure. For an equivalent 25-year exposure, the number of thermal cycles (-40 degrees C to 85 degrees C) required ranged from roughly 100 to 630 for the cities examined. It is demonstrated that increasing the maximum cycle temperature may significantly reduce the number of thermal cycles required for an equivalent exposure.

  2. Thermal analysis of selected tin-based lead-free solder alloys

    Palcut, Marián; Sopoušek, J.; Trnková, L.


    The Sn-Ag-Cu alloys have favourable solderability and wetting properties and are, therefore, being considered as potential lead-free solder materials. In the present study, tin-based Sn-Ag-Cu and Sn-Ag-Cu-Bi alloys were studied in detail by a differential scanning calorimetry (DSC) and thermodyna......The Sn-Ag-Cu alloys have favourable solderability and wetting properties and are, therefore, being considered as potential lead-free solder materials. In the present study, tin-based Sn-Ag-Cu and Sn-Ag-Cu-Bi alloys were studied in detail by a differential scanning calorimetry (DSC...... was simulated using the Thermo-Calc software package. This approach enabled us to obtain the enthalpy of cooling for each alloy and to compare its temperature derivative with the experimental DSC curves....

  3. Shear Deformation Behaviors of Sn3.5Ag Lead-free Solder Samples

    Jing Han; Hongtao Chen; Mingyu Li; Chunqing Wang


    In this study,shear tests have been performed on the as-reflowed Sn3.5Ag solder bumps and joints to investigate the deformation behavior of Sn3.5Ag lead-free solder samples.Scanning electron microscopy (SEM) was employed to characterize the microstructures of the samples and orientation imaging microscopy (OIM) with electron backscattered diffraction (EBSD) in SEM was used to obtain crystallographic orientation of grains to provide a detailed characterization of the deformation behavior in Sn3.5Ag solder samples after shear tests.The deformation behavior in solder samples under shear stress was discussed.The experimental results suggest that the dynamic recrystallization could occur under shear stress at room temperature and recrystallized grains should evolve from subgrains by rotation.Compared with that of non-recrystallized and as-reflowed microstructures,the microhardness of the recrystallized microstructure decreased after shear tests.

  4. Joint Strength with Soldering of Al2O3 Ceramics After Ni-P Chemical Plating

    邹贵生; 吴爱萍; 张德库; 孟繁明; 白海林; 张永清; 黎义; 巫世杰; 顾兆旃


    Ni-P alloy was chemically plated on Al2O3 ceramics to produce uniform alloy coatings at temperatures below 70℃. Cu metal was electroplated onto the Ni-P coating to facilitate the soldering and shorten the chemical plating time. Then, the electroplated ceramic specimens were soldered with 60 wt.% Sn-40 wt.% Pb solder in active colophony. The highest shear strength was acquired after the heat treatment at 170℃ for 15 min. The joint fractures mostly propagated along the interface between the ceramics and the Ni-P coating, with some fracture in both the ceramics and the Ni-P coating near the interface and some along the interface between the Cu and Ni-P coatings. The results show that ceramic surface roughness and the chemical plating parameters influence the coating quality, and that suitable heat treatment before the soldering also improves the adhesion between the ceramics and Ni-P coatings, thus strengthening the joints.

  5. Correlation Between Sn Grain Orientation and Corrosion in Sn-Ag-Cu Solder Interconnects

    Lee, Tae-Kyu; Liu, Bo; Zhou, Bite; Bieler, Thomas; Liu, Kuo-Chuan


    The impact of a marine environment on Sn-Ag-Cu interconnect reliability is examined using salt spray exposure followed by thermal cycling. Sn-Ag-Cu solder alloy wafer-level packages, with and without pretreatment with 5% NaCl salt spray, were thermally cycled to failure. The prior salt spray reduced the characteristic lifetime of the Sn-Ag-Cu solder joints by over 43%. Although Sn-based materials show strong resistance to corrosion, the nature of localized corroded areas at critical locations in the solder joint caused significant degradation in the Sn-Ag-Cu solder joints. An important link between the corrosion path and Sn grain orientation was observed using orientation imaging microscopy (OIM). A strong correlation between the corrosion path and grain orientation was identified, indicating that the corrosion attack preferentially followed the basal plane of the Sn lattice.

  6. Influence of Asymmetrical Waveform on Low-Cycle Fatigue Life of Micro Solder Joint

    Kanda, Yoshihiko; Kariya, Yoshiharu


    The effects of waveform symmetry on the low-cycle fatigue life of the Sn-3.0Ag-0.5Cu alloy have been investigated, using micro solder joint specimens with approximately the same volume of solder as is used in actual products. Focusing on crack initiation life, fatigue tests on Sn-Ag-Cu micro solder joints using asymmetrical triangular waveforms revealed no significant reduction in fatigue life. A slight reduction in fatigue life at low strain ranges caused by an increase in the fatigue ductility exponent, which is the result of a weakening microstructure due to loads applied at high temperature for long testing time, was observed. This was due to the fact that grain boundary damage, which has been reported in large-size specimens subjected to asymmetrical triangular waveforms, does not occur in Sn-Ag-Cu micro size solder joints with only a small number of crystal grain boundaries.

  7. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Rolin, T. D.; Hodge, R. E.


    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  8. Evaluation of Detachable Ga-Based Solder Contacts for Thermoelectric Materials

    Kolb, H.; Sottong, R.; Dasgupta, T.; Mueller, E.; de Boor, J.


    Low electrical and thermal contact resistances are a prerequisite for highly efficient thermoelectric generators. Likewise, certain measurement setups for characterization of thermoelectric materials rely on good-quality contacts between sample and setup. Detachable contacts are an interesting alternative to permanent contacting solutions due to ease of handling and nondestructive disassembly of valuable samples. Therefore, the applicability of gallium-based liquid metal solder as detachable contact material was studied, particularly with regard to compatibility of the solder with state-of-the-art thermoelectric materials CoSb3, Mg2Si, and FeSi2. Tungsten, nickel, chromium, and titanium were tested as protective coatings between the thermoelectric material and liquid metal solder. Electrical measurements showed that some materials form excellent and stable contacts with the solder for a limited temperature range. At higher temperatures, application of a protective layer was found to be necessary for all investigated materials. Tungsten and nickel showed promising results as protective layer.

  9. Nano ZrO2 Particulate-reinforced Lead-Free Solder Composite

    Jun SHEN; Yongchang LIU; Dongjiang WANG; Houxiu GAO


    A lead-free solder composite was prepared by adding ZrO2 nanopowders in eutectic Sn-Ag alloy. Microstructural features and microhardness properties of those solders with different ZrO2 nanopowder fraction were examined. Results indicate that the addition of ZrO2 nanopowders reduced the size ofβ-Sn grains and restrained the formation of bulk Ag3Sn intermetallic compounds (IMCs) due to the adsorption effect of the ZrO2 particles. The Vicker's hardness of the obtained lead-free solder composites fits well with the Hall-Petch relationship. The refinement of β-Sn grains favors to improve the microhardness of composite solders.

  10. Interfacial Reactions and Joint Strengths of Sn- xZn Solders with Immersion Ag UBM

    Jee, Y. K.; Yu, Jin


    The solder joint microstructures of immersion Ag with Sn- xZn ( x = 0 wt.%, 1 wt.%, 5 wt.%, and 9 wt.%) solders were analyzed and correlated with their drop impact reliability. Addition of 1 wt.% Zn to Sn did not change the interface microstructure and was only marginally effective. In comparison, the addition of 5 wt.% or 9 wt.% Zn formed layers of AgZn3/Ag5Zn8 at the solder joint interface, which increased drop reliability significantly. Under extensive aging, Ag-Zn intermetallic compounds (IMCs) transformed into Cu5Zn8 and Ag3Sn, and the drop impact resistance at the solder joints deteriorated up to a point. The beneficial role of Zn on immersion Ag pads was ascribed to the formation of Ag-Zn IMC layers, which were fairly resistant to the drop impact, and to the suppression of the brittle Cu6Sn5 phase at the joint interface.

  11. Effect of electromigration on interfacial reaction in Ni/Sn3.0Ag0.5Cu/Au/Pd/Ni-P flip chip solder joints%电迁移对Ni/Sn3.0Ag0.5Cu/Au/Pd/Ni—P倒装焊点界面反应的影响

    黄明亮; 陈雷达; 周少明; 赵宁


    no Cu-Sn-Ni ternary IMC at the solder/Ni-P interface (cathode). Crack forms at the Ni2SnP/Cu interface due to the weak bonding force between Ni2SnP and Cu. When electrons flow from Ni to Ni-P, no obvious consumption of Ni-P is observed during EM; the current crowding effect induces a rapid and localized dissolution of Ni UBM and Cu pad at the chip side (cathode). The dissolved Ni and Cu atoms are driven along the flowing direction of electrons and form a large number of IMC particles in the solder matrix. During EM, the (Au,Pd,Ni)Sn4 phase prefers to be redistributed only at the anode interface, regardless of the direction of electron flow.

  12. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M


    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants.

  13. Joint Lead-Free Solder Test Program for High Reliability Military and Space Applications

    Brown, Christina


    Current and future space and defense systems face potential risks from the continued use of tin-lead solder, including: compliance with current environmental regulations, concerns about potential environmental legislation banning lead-containing products, reduced mission readiness, and component obsolescence with lead surface finishes. For example, the United States Environmental Protection Agency (USEPA) has lowered the Toxic Chemical Release reporting threshold for lead to 100 pounds. Overseas, the Waste Electrical and Electronic Equipment (WEEE) and the Restriction on Hazardous Substances (RoHS) Dicctives in Europe and similar mandates in Japan have instilled concern that a legislative body will prohibit the use of lead in aerospace/military electronics soldering. Any potential banning of lead compounds could reduce the supplier base and adversely affect the readiness of missions led by the National Aeronautics and Space Administration (NASA) and the U.S. Department of Defense (DoD). Before considering lead-free electronics for system upgrades or future designs, however, it is important for the DoD and NASA to know whether lead-free solders can meet their systems' requirements. No single lead-free solder is likely to qualify for all defense and space applications. Therefore, it is important to validate alternative solders for discrete applications. As a result of the need for comprehensive test data on the reliability of lead-free solders, a partnership was formed between the DoD, NASA, and several original equipment manufactures (OEMs) to conduct solder-joint reliability (laboratory) testing of three lead-free solder alloys on newly manufactured and reworked circuit cards to generate performance data for high-reliability (IPC Class 3) applications.

  14. Thermomechanical cycling investigation of CU particulate and NITI reinforced lead-free solder

    Horton, W. Scott.


    In todayâ s Flip Chip (FC) and Ball Grid Array (BGA) electronic packages solder joints provide both the electrical as well as the mechanical connections between the silicon chip and the substrate. Due to coefficient of thermal expansion (CTE) differences between the chip and substrate the solder joints undergo thermomechanical stresses and strains as an electronic package is heated and cooled with power on/off cycles. Advances in chip designs result in chips that are larger, run hotter and d...

  15. Effects of voids on thermal-mechanical reliability of lead-free solder joints

    Benabou Lahouari


    Full Text Available Reliability of electronic packages has become a major issue, particularly in systems used in electrical or hybrid cars where severe operating conditions must be met. Many studies have shown that solder interconnects are critical elements since many failure mechanisms originate from their typical response under thermal cycles. In this study, effects of voids in solder interconnects on the electronic assembly lifetime are estimated based on finite element simulations.

  16. Packaging of hard solder 500W QCW diode laser array

    Li, Xiaoning; Wang, Jingwei; Hou, Dong; Nie, Zhiqiang; Liu, Xingsheng


    The package structure critically influences the major characteristics of diode laser, such as thermal behavior, output power, wavelength and smile effect. In this work, a novel micro channel cooler (MCC) for stack array laser with good heat dissipation capability and high reliability is presented. Numerical simulations of thermal management with different MCC structure are conducted and analyzed. Based on this new MCC packaging structure, a series of QCW 500W high power laser arrays with hard solder packaging technology has been fabricated. The performances of the laser arrays are characterized. A narrow spectrum of 3.12 nm and an excellent smile value are obtained. The lifetime of the laser array is more than 1.38×109 shots and still ongoing.

  17. Modeling of thermal processes in waveguide tracts induction soldering

    Murygin, A. V.; Tynchenko, V. S.; Laptenok, V. D.; Emilova, O. A.; Seregin, Yu N.


    The problem solving of the induction heating models development, which describe the heating of the separate structural assembly components of the waveguide path and product generally, is presented in this paper. Proposed mathematical models are based on the thermodynamics equation and on the heat balance law. The system of the heating process mathematical models, such as surge tube and flange heating, and the mathematical model of the energy distribution are presented. During the modeling process with Matlab system by using mathematical models graphs of the tube, flange and coupling heating were obtained. These design charts are confirmed by the results of the experimental study. During the experimental studies pyrometers for temperature control and a video camera for visual control of the process parameters were used. On the basis of obtained models the induction soldering process features analysis is carried out and the need of its automation by the using of the information control systems for thermal management between the connection elements is revealed.

  18. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.


    below pure tin). Depositions on a rotating cylinder electrode (with current screen), followed by composition measurements, provided useful information on the relationship between current density and alloy composition. Preliminary experiments with alloy plating on silicon substrates, with and without......Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...... photoresist, have shown a stable and promising alternative to pure tin and tin-lead alloys for flip-chip bonding applications....

  19. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    Iman, R.L.; Anderson, D.J. [Sandia National Labs., Albuquerque, NM (United States); Burress, R.V. [SEHO (United States)] [and others


    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The test data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.

  20. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Lei Sun


    Full Text Available SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.

  1. Soldering in a Reduced Gravity Environment (SoRGE)

    Easton, John W.; Struk, Peter M.


    Future long-duration human exploration missions will be challenged by constraints on mass and volume allocations available for spare parts. Addressing this challenge will be critical to the success of these missions. As a result, it is necessary to consider new approaches to spacecraft maintenance and repair that reduce the need for large replacement components. Currently, crew members on the International Space Station (ISS) recover from faults by removing and replacing, using backup systems, or living without the function of Orbital Replacement Units (ORUs). These ORUs are returned to a depot where the root cause of the failure is determined and the ORU is repaired. The crew has some limited repair capability with the Modulation/DeModulation (MDM) ORU, where circuit cards are removed and replace in faulty units. The next step to reducing the size of the items being replaced would be to implement component-level repair. This mode of repair has been implemented by the U.S. Navy in an operational environment and is now part of their standard approach for maintenance. It is appropriate to consider whether this approach can be adapted for future spaceflight operations. To this end, the Soldering in a Reduced Gravity Environment (SoRGE) experiment studied the effect of gravity on the formation of solder joints on electronic circuit boards. This document describes the SoRGE experiment, the analysis methods, and results to date. This document will also contain comments from the crew regarding their experience conducting the SoRGE experiment as well as recommendations for future improvements. Finally, this document will discuss the plans for the SoRGE samples which remain on ISS.

  2. Solder-Filling of a Cicc Cable for the Efda Dipole Magnet

    Bauer, P.; Bruzzone, P.; Cau, F.; Weiss, K.; Portone, A.; Salpietro, E.; Vogel, M.; Vostner, A.


    Several prototype Cable-In-Conduit-Conductors (CICC) for the superconducting EDIPO (Efda DIPOle) revealed a degradation of their critical current (Ic) increasing with each loading cycle. The strong Lorentz-forces during operation in combination with the limited support of the single strands against these forces are thought to be the cause of the permanent degradation of the brittle Nb3Sn superconductor from which the multi-stranded CICC are made. In summer 2006 EFDA started to explore the possibility to remedy the Ic degradation by solder-filling the conductor in order to mechanically stabilize the twisted-strand cable inside the conduit. This solution was not considered as the main one, but as an emergency solution to be applied to the completed magnet, should every other option fail. The solder-filling approach was previously applied with success in some cases. Some issues, however, needed to be clarified before this solution could be proposed for the EDIPO project. The most important among them are the choice of solder material, details of the solder filling process, and the thermo-mechanical implications of a solder-filled, high-field, high-current cable. This work, being reported here, made use not only of simulation but also of experiments, such as the mechanical testing of solder filled cables at cryogenic temperatures.

  3. Preliminary Study on Synthesis of Organolead Halide with Lead Derived from Solder Wire

    Pratiwi, P.; Rahmi, G. N.; Aimon, A. H.; Iskandar, F.; Abdullah, M.; Nuryadin, B. W.


    Organolead halide has attracted great attention for application in perovskite solar cells due to its high power conversion efficiency (PCE) of up to 20.1%. One of the most common perovskite materials is lead based reagent. In this research, we have synthesized organolead halide with lead extracted from solder wire. In the preparation procedure, first PbCl2 and PbI2 are produced by reacting lead from the solder wire with NaCl and KI, which are used as the basic substance for the perovskite material. Then, in order to get perovskite solution, the powders are reacted with methylamine iodide (MAI) in dimethylformamide (DMF) using a solution based method. Further, the spin coating method is used to fabricate perovskite thin film. The XRD peak results agreed with JCPDS Powder Diffraction of PbCl2 and PbI2. Based on FTIR, the transmittance spectra of the organolead mixed halide that was prepared using solder wire lead exhibited absorption peaks identical to organolead mixed halide using commercial lead. The UV-Vis absorbance spectra of the organolead mixed halide from solder wire lead also exhibited the same absorption ability as from commercial lead. Morever, EDS measurement showed that the element composition of the perovskite thin film using lead from solder wire identical to that from commercial lead. This indicates that solder wire lead is suitable enough for organolead halide material synthesis.

  4. Effect of Cu concentration on morphology of Sn-Ag-Cu solders by mechanical alloying

    Kao, Szu-Tsung; Duh, Jenq-Gong


    The mechanical alloying (MA) process is considered an alternative approach to produce solder materials. In this study, the effect of Cu concentration in the ternary Sn-3.5Ag-xCu (x=0.2, 0.7, and 1) solder by MA was investigated. The (Cu,Sn) solid solution was precipitated as the Cu6Sn5 intermetallic compound (IMC), which was distributed nonuniformly through the microstructure. The Cu6Sn5 IMC, which was present in the SnAgCu solder with high Cu composition, causes the as-milled MA particle to fracture to a smaller size. Appreciable distinction on morphology of as-milled MA powders with different Cu content was revealed. When the Cu concentration was low (x=0.2), MA particle aggregated to a spherical ingot with large particle size. For higher Cu concentration (x=0.7 and x=1), the MA particle turned to flakes with smaller particle size. The distinction of the milling mechanism of Sn-3.5Ag-xCu (x=0.2, 0.7, and 1) solder by the MA process was discussed. An effective approach was developed to reduce the particle size of the SnAgCu solder from 1 mm down to 10-100 µm by doping the Cu6Sn5 nanoparticle during the MA process. In addition, the differential scanning calorimetry (DSC) results also ensure the compatibility to apply the solder material for the reflow process.

  5. Development of high strength Sn-Mg solder alloys with reasonable ductility

    Alam, Md Ershadul; Gupta, Manoj


    This study discussed the development of a series of new lead-free Sn-Mg solders by incorporating varying amounts of Mg (0.8, 1.5 and 2.5 wt. %) into pure Sn using disintegrated melt deposition technique followed by room temperature extrusion. All extruded Sn and Sn-Mg solder samples were characterized. Microstructural characterization studies revealed equiaxed grain morphology, minimal porosity and relatively uniform distribution of secondary phase. Better coefficient of thermal expansion was observed for Sn-2.5Mg sample when compared to conventional Sn-37Pb solder. Melting temperature of Sn-1.5Mg was found to be 212°C which is much lower than the conventional Sn-Ag-Cu or Sn-Cu (227°C) solders. Microhardness was increased with increasing amount of Mg in pure Sn. Room temperature tensile test results revealed that newly developed Sn-Mg solders exhibit enhanced strengths (0.2% yield strength and ultimate tensile strength) with comparable (if not better) ductility when compared to other commercially available and widely used Sn-based solder alloys.

  6. Effect of interface microstructure on the mechanical properties of Pb-free hybrid microcircuit solder joints

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.


    Although Sn-Pb eutectic alloy is widely used as a joining material in the electronics industry, it has well documented environmental and toxicity issues. Sandia National Laboratories is developing alternative solder materials to replace traditional Pb-containing alloys. The alloys are based on the Sn-Ag, Sn-Ag-Bi and Sn-Ag-Bi-Au systems. Prototype hybrid microcircuit (HMC) test vehicles have been developed to evaluate these Pb-free solders, using Au-Pt-Pd thick film metallization. Populated test vehicles with surface mount devices have been designed and fabricated to evaluate the reliability of surface mount solder joints. The test components consist of a variety of dummy chip capacitors and leadless ceramic chip carriers (LCCC`s). Intermetallic compound (IMC) layer reaction products that form at the solder/substrate interface have been characterized and their respective growth kinetics quantified. Thicker IMC layers pose a potential reliability problem with solder joint integrity. Since the IMC layer is brittle, the likelihood of mechanical failure of a joint in service is increased. The effect of microstructure and the response of these different materials to wetting, aging and mechanical testing was also investigated. Solid-state reaction data for intermetallic formation and mechanical properties of the solder joints are reported.

  7. Mechanical properties of Pb-free solder alloys on thick film hybrid microcircuits

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.; Hosking, F.M.


    The technology drivers of the electronics industry continue to be systems miniaturization and reliability, in addition to addressing a variety of important environmental issues. Although the Sn-Pb eutectic alloy is widely used as a joining material in the electronics industry, it has drawn environmental concern due to its Pb content. The solder acts both as an electrical and mechanical connection within the different packaging levels in an electronic device. New Pb-free solders are being developed at Sandia National Laboratories. The alloys are based on the Sn-Ag alloy, having Bi and Au additions. Prototype hybrid microcircuit (HMC) test vehicles have been assembled to evaluate Pb-free solders for Au-Pt-Pd thick film soldering. The test components consist of a variety of dummy chip capacitors and leadless ceramic chip carriers (LCCC`s). The mechanical properties of the joints were evaluated. The reflow profiles and the solid state intermetallic formation reaction will also be presented. Improved solder joint manufacturability and increased fatigue resistance solder alloys are the goals of these materials.

  8. Numerical simulation of soldered joints and reliability analysis of PLCC components with J-shape leads

    Zhang Liang; Xue Songbai; Lu Fangyan; Han Zongjie; Wang Jianxin


    This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element method. By analyzing the stress of soldered joints, it is found that the largest stress is at the area between the soldered joints and the leads, and analysis results indicate that the von Mises stress at the location slightly increases with the increase of lead counts. For PLCC with 84 leads the soldered joints was modeled for three typical loading (273-398 K, 218-398 K and 198-398 K) in order to study the influence of acceleration factors on the reliability of soldered joints. And the estimation of equivalent plastic strain of three different lead-free solder alloys (Sn3.8Ag0.7Cu, Sn3.5Ag and Sn37Pb) was also carried out.

  9. Development of new multicomponent Sn–Ag–Cu–Bi lead-free solders for low-cost commercial electronic assembly

    El-Daly, A.A., E-mail: [Physics Department, Faculty of Science, Zagazig Univ., Zagazig (Egypt); Center of Nanotechnology, Zagazig Univ., Zagazig (Egypt); El-Taher, A.M. [Physics Department, Faculty of Science, Zagazig Univ., Zagazig (Egypt); Center of Nanotechnology, Zagazig Univ., Zagazig (Egypt); Gouda, S. [Physics Department, Faculty of Science, Zagazig Univ., Zagazig (Egypt)


    Highlights: • Small amounts of Bi have been added into Sn–1.5Ag–0.7Cu solder. • Bi reduced the undercooling and eutectic temperature of SAC257 solder. • Bi refined the microstructure and diminishes the nucleation rate of IMCs. • Bi increased the creep resistance and fracture lifetime of the solder. • Overall SAC properties can be improved adding not more than 3 wt.% Bi. - Abstract: Eutectic Sn–Ag–Cu (SAC) solder is one of the candidate alternatives to Sn–Pb-based solder alloys. The coupling effect of both minor alloying Bi addition and reducing the amount of Ag phase have been proposed as an important approach to optimize existing and to develop new SAC solders. Characteristics of new Sn–Ag–Cu–Bi solders were analyzed and compared with those of as-solidified Sn–1.5Ag–0.7Cu (SAC157) alloy. The results of differential scanning calorimetry (DSC) indicate significant reduction of both undercooling, eutectic temperature, solidus and liquidus temperatures with the addition of Bi into SAC(157) solder, although the pasty range remains the same or slightly increased. Moreover, SAC(157) solders containing Bi were found to have a higher creep resistance (126.1 times) than SAC(157) solder at the same stress level and testing temperature. The higher creep resistance was contributed by the solid solution and precipitations strengthen effects of Bi. The precipitation of these Bi atoms or particles can significantly refine the microstructure, blocks the movement of dislocations and increases the creep resistance of Bi-containing solders. The creep life time of plain SAC(157) alloy was extremely enlarged 23.7 times with the addition of 3 wt.% Bi. Constitutive Garofalo model of creep for both SAC(157) and Sn–Ag–Cu–Bi solders was assembled based on the experimental data.

  10. Study on Solder Joint Reliability of Plastic Ball Grid Array Component Based on SMT Products Virtual Assembly Technology

    HUANG Chunyue; WU Zhaohua; ZHOU Dejian


    Based on surface mount products virtual assembly technology, the solder joint reliability of plastic ball grid array (PBGA) was studied. Four process parameters, including the upper pad diameter,the stencil thickness, the chip weight on a single solder joint and the lower pad diameter were chose as four control factors. By using an L25(56) orthogonal array the PBGA solder joints which have 25 different process parameters' levels combinations were designed. The numerical models of all the 25 PBGA solder joints were developed and the finite element analysis models were setup. The stress and strain distribution within the PBGA solder joints under thermal cycles were studied by finite element analysis, and the thermal fatigue life of PBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis was performed. The results of study show that that the impact sequence of the four factors from high to low on the fatigue life of PBGA solder joints are the stencil thickness,the upper pad diameter, the lower pad diameter and the chip weight on a single solder joint; the best level combination ofprocess parameters that results in the longest fatigue life is the lower pad diameter of 0.6 mm, the stencil thickness of 0.175 mm, the chip weight on asingle solder joint of 28×10-5 N and the upper pad diameter of 0.5 mm.

  11. Effect of Lanthanum on Driving Force for Cu6Sn5 Growth and Improvement of Solder Joint Reliability


    By means of adding low content of rare earth element La into Sn60-Pb40 solder alloy, the growth of Cu6Sn5 intermetallic compound at the interface of solder joint is hindered, and the thermal fatigue life of solder joint is increased by 2 times. The results of thermodynamic calculation based on diffusion kinetics show that, the driving force for Cu6Sn5 growth is lowered by adding small content of La in Sn60-Pb40 solder alloy. Meanwhile, there is an effective local mole fraction range of La, in which, 0.18% is the limited value and 0.08% is the best value.

  12. Effects of Aging Treatment on Mechanical Properties of Sn-58Bi Epoxy Solder on ENEPIG-Surface-Finished PCB

    Kim, Jungsoo; Myung, Woo-Ram; Jung, Seung-Boo


    The mechanical properties of Sn-58Bi epoxy solder were evaluated by low-speed shear testing as functions of aging time and temperature. To determine the effects of epoxy, the interfacial reaction and mechanical properties of both Sn-58Bi and Sn-58Bi epoxy solder were investigated after aging treatment. The chemical composition and growth kinetics of the intermetallic compound (IMC) formed at the interface between Sn-58Bi solder and electroless nickel electroless palladium immersion gold (ENEPIG) surface finish were analyzed. Sn-58Bi solder paste was applied by stencil-printing on flame retardant-4 substrate, then reflowed. Reflowed samples were aged at 85°C, 95°C, 105°C, and 115°C for up to 1000 h. (Ni,Pd)3Sn4 IMC formed between Sn-58Bi solder and ENEPIG surface finish after reflow. Ni3Sn4 and Ni3P IMCs formed at the interface between (Ni,Pd)3Sn4 IMC and ENEPIG surface finish after aging at 115°C for 300 h. The overall IMC growth rate of Sn-58Bi solder joint was higher than that of Sn-58Bi epoxy solder joint during aging. The shear strength of Sn-58Bi epoxy solder was about 2.4 times higher than that of Sn-58Bi solder due to the blocking effect of epoxy, and the shear strength decreased with increasing aging time.

  13. Effect of firing conditions on thick film microstructure and solder joint strength for low-temperature, co-fired ceramic substrates

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.


    Low-temperature, co-fired ceramics (LTCC) are the substrate material-of-choice for a growing number of multi-chip module (MCM) applications. Unlike the longer-standing hybrid microcircuit technology based upon alumina substrates, the manufacturability and reliability of thick film solder joints on LTCC substrates have not been widely studied. An investigation was undertaken to fully characterize solder joints on these substrates. A surface mount test vehicle with Daisy chain electrical connections was designed and built with Dupont{trademark} 951 tape. The Dupont{trademark} 4569 thick film ink (Au76-Pt21-Pd3 wt.%) was used to establish the surface conductor pattern. The conductor pattern was fired onto the LTCC substrate in a matrix of processing conditions that included: (1) double versus triple prints, (2) dielectric window versus no window, and (3) three firing temperatures (800 C, 875 C and 950 C). Sn63-Pb37 solder paste with an RMA flux was screen printed onto the circuit boards. The appropriate packages, which included five sizes of chip capacitors and four sizes of leadless ceramic chip carriers, were placed on the circuit boards. The test vehicles were oven reflowed under a N{sub 2} atmosphere. Nonsoldered pads were removed from the test vehicles and the porosity of their thick film layers was measured using quantitative image analysis in both the transverse and short transverse directions. A significant dependence on firing temperature was recorded for porosity. The double printed substrates without a dielectric window revealed a thick film porosity of 31.2% at 800 C, 26.2% at 875 C and 20.4% at 950 C. In contrast, the thick film porosity of the triple printed substrates with a dielectric window is 24.1% at 800 C, 23.2% at 875 C and 17.6% at 950 C. These observations were compared with the shear strength of the as-fabricated chip capacitor solder joints to determine the effect of firing conditions on solder joint integrity. The denser films from the higher

  14. Electrodeposition of lead-free, tin-based alloy solder films

    Han, Chunfen

    The dominant materials used for solders in electronic assemblies over the past 60 years have been Pb-Sn alloys. Increasing pressure from environmental and health authorities has stimulated the development of various Pb-free solders. Two of the most promising replacements are eutectic Sn-Cu and Sn-Ag-Cu alloys that are produced primarily by electrodeposition. During soldering and solid state aging (storage or in service of the electronic assemblies), interactions take place at the solder/substrate metal interface and form intermetallic compounds (IMCs) which are crucial for the reliability of the solder joints. Simple and "green" Sn-citrate and Sn-Cu-citrate solutions have been developed and optimized to electrodeposit eutectic and near eutectic Sn-Cu solder films. Sn-citrate suspensions with Cu particles and Sn-Cu-citrate suspensions with Ag nano-particles have also been developed and optimized to allow for electrochemical composite deposition of eutectic and near eutectic Sn-Cu and Sn-Ag-Cu solder films. Different plating and post-plating conditions, including solution concentration, current density, agitation, additives, and aging, have been investigated by evaluating their effects on plating rate, deposit composition and microstructure. Tri-ammonium citrate is used as the only complexing agent for Sn, Sn-Cu, and Sn-Ag-Cu deposition. Speciation diagram calculations, reduction potential calculations, and polarization studies are conducted to study Sn-citrate solution chemistry and the kinetics of Sn electrodeposition. X-ray photoelectron spectroscopy (XPS) analysis is used to identify the precipitates formed in Sn-citrate solutions at low pH. Current-controlled and potential-controlled electrochemical techniques, nucleation modeling, and surface morphology characterization techniques are applied to study the nucleation and film growth mechanism of Sn and Sn-Cu electrodeposition from Sn-citrate and Sn-Cu-citrate solutions. Reflow and aging tests for deposited Sn

  15. Intermetallic compound formation at Sn-3.0Ag-0.5Cu-1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions

    Wang, Feng-Jiang [Department of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)]. E-mail:; Yu, Zhi-Shui [Department of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Qi, Kai [Department of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)


    Intermetallic formations of Sn-3.0Ag-0.5Cu solder alloy with additional 1.0 wt% Zn were investigated for Cu-substrate during soldering and isothermal aging. During soldering condition, the Cu{sub 5}Zn{sub 8} compound with granular-type morphology is the interfacial IMC for Sn-3.0Ag-0.5Cu-1.0Zn solder, while the Cu{sub 6}Sn{sub 5} compound with scallop-type morphology is the interfacial IMC for Sn-3.0Ag-0.5Cu solder. During thermal aging, the final interfacial structure for Sn-3.0Ag-0.5Cu-1.0Zn solder is solder/Cu{sub 5}Zn{sub 8}/Cu{sub 6}Sn{sub 5}/Cu{sub 3}Sn/Cu, different from the solder/Cu{sub 6}Sn{sub 5}/Cu{sub 3}Sn/Cu for Sn-3.0Ag-0.5Cu solder. The thickness of Cu-Sn IMC layers increases, while the thickness of Cu{sub 5}Zn{sub 8} compound layer decreases with increasing aging time due to the decomposition of the Cu{sub 5}Zn{sub 8} layer by the diffusion of Cu and Zn atoms into the solder and Cu{sub 6}Sn{sub 5} at higher aging temperature. For Sn-3.0Ag-0.5Cu-1.0Zn solder, at higher aging temperature of 150 or 175 {sup o}C, with the formation of Cu{sub 3}Sn at Cu{sub 6}Sn{sub 5}/Cu, Kirkendall voids can be observed at the interface of Cu{sub 3}Sn/Cu.

  16. Effect of diode-laser parameters on shear force of micro-joints soldered with Sn-Ag-Cu lead-free solder on Au/Ni/Cu pad

    WANG Jian-xin; XUE Song-bai; FANG Dian-song; JU Jin-long; HAN Zong-jie; YAO Li-hua


    Soldering experiments with Sn-3.5Ag-0.5Cu lead-free solder on Au/Ni/Cu pad were carried out by means of diode-laser and IR reflow soldering methods respectively. The influence of different heating methods as well as output power of diode-laser on shear force of micro-joints was studied and the relationship between the shear force and microstructures of micro-joints was analyzed.The results indicate that the formation of intermetallic compound Ag3Sn is the key factor to affect the shear force and the fine eutectic network structures of micro-joints as well as the dispersion morphology of fine compound Ag3Sn, in which eutectic network band is responsible for the improvement of the shear force of micro-joints soldered with Sn-Ag-Cu lead-free solder. With the increases of output power of diode-laser, the shear force and the microstructures change obviously. The eutectic network structures of micro-joints soldered with diode-laser soldering method are more homogeneous and the grains of Ag3Sn compounds are finer in the range of near optimal output power than those soldered with IR reflow soldering method, so the shear force is also higher than that using IR reflow soldering method. When the output power value of diode-laser is about 41.0 W, the shear force exhibits the highest value that is 70% higher than that using IR reflow soldering method.

  17. Bond Boom


    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen,and Zhejiang and Guangdong provinces to issue bonds for the first time.How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the Shanghai Securities Journal.Edited excerpts follow.

  18. Bond Boom


    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen, and Zhejiang and Guangdong provinces to issue bonds for the first time. How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the ShanghaiSecuritiesJournal. Edited excerpts follow:

  19. Surface Morphology of Sn-Rich Solder Interconnects After Electrical Loading

    Zhu, Q. S.; Liu, H. Y.; Wang, Z. G.; Shang, J. K.


    Morphological changes from electromigration were examined on microsized Sn-Ag-Cu, pure Sn, and single-crystal Sn solder interconnects. It was found that both grain structure and alloying had a strong influence on the form of electromigration damage. In polycrystal Sn, grain boundary grooves were the primary form of electromigration damage, while in single-crystal Sn interconnects wavy surface relief appeared following electromigration. Alloying with Ag and Cu encouraged formation of Sn hillocks and Cu6Sn5 intermetallic compound (IMC) segregation. The grain boundary grooves were related to the divergence of the vacancy concentration at grain boundaries, which induced Sn grain tilting or sliding. Removal of the grain boundaries in the single-crystal interconnect made surface diffusion the primary electromigration mechanism, resulting in wavy surface relief after long electromigration time. In Sn-Ag-Cu alloy, directional flow of Cu caused Cu6Sn5 IMC segregation, which produced large compressive stress, driving the stressed grains to grow into hillocks.

  20. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    Suhir, E.; Yi, S.; Ghaffarian, R.


    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  1. Effects of Ga Addition on Interfacial Reactions Between Sn-Based Solders and Ni

    Wang, Chao-Hong; Li, Kuan-Ting


    The use of Ga as a micro-alloying element in Sn-based solders can change the microstructure of solder joints to improve the mechanical properties, and even suppress the interfacial intermetallic compound (IMC) growth. This research investigated the effects of Ga addition (0.2-1 wt.%Ga) on the IMC formation and morphological evolution in the Sn-based solder joints with Ni substrate. In the soldering reaction at 250°C and with less than 0.2 wt.%Ga addition, the formed phase was Ni3Sn4. When the Ga addition increased to 0.5 wt.%, it changed to a thin Ni2Ga3 layer of ˜1 μm thick, which stably existed at the interface in the initial 1-h reaction. Subsequently, the whole Ni2Ga3 layer detached from the Ni substrate and drifted into the molten solder. The Ni3Sn4 phase became dominant in the later stage. Notably, the Ga addition significantly reduced the grain size of Ni3Sn4, resulting in the massive spalling of Ni3Sn4 grains. With 1 wt.%Ga addition, the Ni2Ga3 layer remained very thin with no significant growth, and it stably existed at the interface for more than 10 h. In addition, the solid-state reactions were examined at temperatures of 160°C to 200°C. With addition of 0.5 wt.%Ga, the Ni3Sn4 phase dominated the whole reaction. By contrast, with increasing to 1 wt.%Ga, only a thin Ni2Ga3 layer was found even after aging at 160°C for more than 1200 h. The 1 wt.%Ga addition in solder can effectively inhibit the Ni3Sn4 formation in soldering and the long-term aging process.

  2. High-Reliability Low-Ag-Content Sn-Ag-Cu Solder Joints for Electronics Applications

    Shnawah, Dhafer Abdulameer; Said, Suhana Binti Mohd; Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum; Che, Fa Xing


    Sn-Ag-Cu (SAC) alloy is currently recognized as the standard lead-free solder alloy for packaging of interconnects in the electronics industry, and high- Ag-content SAC alloys are the most popular choice. However, this choice has been encumbered by the fragility of the solder joints that has been observed in drop testing as well as the high cost of the Ag itself. Therefore, low-Ag-content SAC alloy was considered as a solution for both issues. However, this approach may compromise the thermal-cycling performance of the solders. Therefore, to enhance the thermal-cycling reliability of low-Ag-content SAC alloys without sacrificing their drop-impact performance, alloying elements such as Mn, Ce, Ti, Bi, In, Sb, Ni, Zn, Al, Fe, and Co were selected as additions to these alloys. However, research reports related to these modified SAC alloys are limited. To address this paucity, the present study reviews the effect of these minor alloying elements on the solder joint reliability of low-Ag-content SAC alloys in terms of thermal cycling and drop impact. Addition of Mn, Ce, Bi, and Ni to low-Ag-content SAC solder effectively improves the thermal-cycling reliability of joints without sacrificing the drop-impact performance. Taking into consideration the improvement in the bulk alloy microstructure and mechanical properties, wetting properties, and growth suppression of the interface intermetallic compound (IMC) layers, addition of Ti, In, Sb, Zn, Al, Fe, and Co to low-Ag-content SAC solder has the potential to improve the thermal-cycling reliability of joints without sacrificing the drop-impact performance. Consequently, further investigations of both thermal-cycling and drop reliability of these modified solder joints must be carried out in future work.


    XUE Songbai; WU Yuxiu; HAN Zongjie; WANG Jianxin


    The finite element method(FEM) is used to analyze the effects of lead widths and pitches on reliability of soldered joints. The optimum Simulation for QFP devices is also researched. The results indicate that when the lead pitches are the same, the maximum equivalent stress of the soldered joints increases with the increasing of lead widths, while the reliability of the soldered joints reduces. When the lead widths are the same, the maximum equivalent stress of the soldered joints doesn't decrease completely with the increasing of lead pitches, a minimum value of the maximum equivalent stress values exists in all the curves. Under this condition the maximum equivalent stress of the soldered joints is relatively the least, the reliability of soldered joints is high and the assembly is excellent. The simulating results indicate the best parameter: The lead width is 0.2 mm and lead pitch is 0.3 mm (the distance between two leads is 0.1 mm), which are benefited for the micromation of QFP devices now. The minimum value of the maximum equivalent stress of soldered joints exists while lead width is 0.25 mm and lead pitch is 0.35 mm (the distance between two leads is 0.1 mm), the devices can serve for a long time and the reliability is the highest, the assembly is excellent. The simulating results also indicate the fact that the lead width is 0.15 mm and lead pitch is 0.2 mm maybe the limit of QFP, which is significant for the high lead count and micromation of assembly.

  4. The critical oxide thickness for Pb-free reflow soldering on Cu substrate

    Chung, C. Key [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Assembly Test Global Materials, Intel Microelectronics Asia Ltd, B1, No. 205, Tun-Hwa North Road, 10595 Taipei, Taiwan (China); Chen, Y.J.; Li, C.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Kao, C.R., E-mail: [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China)


    Oxidation is an undesirable effect of reflow soldering. Non-wetting occurs when the oxide layer grows above the critical thickness. Characterizing the critical oxide thickness for soldering is challenging due to oxide's nano-scale thickness and irregular topographic surface. In this paper, the critical copper oxide thickness was characterized by Time-of-Flight Secondary Ion Mass Spectrometry, Scanning Electron Microscopy, Energy-Dispersive X-ray spectroscopy, and Transmission Electron Microscopy. Copper substrates were coated with an Organic-Solderable-Preservative (OSP) layer and baked at 150 Degree-Sign C and 85% Relative Humidity for different amounts of time. The onset of the non-wetting phenomenon occurred when the oxide thickness reached 18 {+-} 5 nm. As the oxide grew beyond this critical thickness, the percentage of non-wetting solder joint increased exponentially. The growth of the oxide thickness followed a parabolic rate law. The rate constant of oxidation was 0.6 Multiplication-Sign 10{sup -15} cm{sup 2} min{sup -1}. Oxidation resulted from interdiffusion of copper and oxygen atoms through the OSP and oxide layers. The oxidation mechanism will be presented and discussed. - Highlights: Black-Right-Pointing-Pointer Critical oxide thickness for Pb free solder on Cu substrate is 18 {+-} 5 nm. Black-Right-Pointing-Pointer Above the critical oxide, non-wet solder joint increases exponentially. Black-Right-Pointing-Pointer A maximum 13-nm oxide thickness is suggested for good solder joint. Black-Right-Pointing-Pointer Initial growth of oxide thickness is logarithmic and then parabolic after 12 nm. Black-Right-Pointing-Pointer Thick oxide (360-560 nm) is formed as pores shorten the oxidation path.

  5. Effects of Ga Addition on Interfacial Reactions Between Sn-Based Solders and Ni

    Wang, Chao-Hong; Li, Kuan-Ting


    The use of Ga as a micro-alloying element in Sn-based solders can change the microstructure of solder joints to improve the mechanical properties, and even suppress the interfacial intermetallic compound (IMC) growth. This research investigated the effects of Ga addition (0.2-1 wt.%Ga) on the IMC formation and morphological evolution in the Sn-based solder joints with Ni substrate. In the soldering reaction at 250°C and with less than 0.2 wt.%Ga addition, the formed phase was Ni3Sn4. When the Ga addition increased to 0.5 wt.%, it changed to a thin Ni2Ga3 layer of ˜1 μm thick, which stably existed at the interface in the initial 1-h reaction. Subsequently, the whole Ni2Ga3 layer detached from the Ni substrate and drifted into the molten solder. The Ni3Sn4 phase became dominant in the later stage. Notably, the Ga addition significantly reduced the grain size of Ni3Sn4, resulting in the massive spalling of Ni3Sn4 grains. With 1 wt.%Ga addition, the Ni2Ga3 layer remained very thin with no significant growth, and it stably existed at the interface for more than 10 h. In addition, the solid-state reactions were examined at temperatures of 160°C to 200°C. With addition of 0.5 wt.%Ga, the Ni3Sn4 phase dominated the whole reaction. By contrast, with increasing to 1 wt.%Ga, only a thin Ni2Ga3 layer was found even after aging at 160°C for more than 1200 h. The 1 wt.%Ga addition in solder can effectively inhibit the Ni3Sn4 formation in soldering and the long-term aging process.

  6. FeCl2-promoted cleavage of the unactivated C-C bond of alkylarenes and polystyrene: direct synthesis of arylamines.

    Qin, Chong; Shen, Tao; Tang, Conghui; Jiao, Ning


    Ironing it out: an efficient and convenient nitrogenation strategy involving C-C bond cleavage for the straightforward synthesis of versatile arylamines is presented. Various alkyl azides and alkylarenes, including the common industrial by-product cumene, react using this protocol. Moreover, this method provides a potential strategy for the degradation of polystyrene.

  7. Oxidation kinetics of thin copper films and wetting behaviour of copper and Organic Solderability Preservatives (OSP) with lead-free solder

    Ramirez, Mauricio, E-mail: [Robert Bosch GmbH, Robert-Bosch-Strasse 2, 71701 Schwieberdingen (Germany); Chair for Surface Science and Corrosion, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen (Germany); Henneken, Lothar [Robert Bosch GmbH, Robert-Bosch-Strasse 2, 71701 Schwieberdingen (Germany); Virtanen, Sannakaisa [Chair for Surface Science and Corrosion, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen (Germany)


    The oxide formation on thin copper films deposited on Si wafer was studied by XPS, SEM and Sequential Electrochemical Reduction Analysis SERA. The surfaces were oxidized in air with a reflow oven as used in electronic assembly at temperatures of 100 deg. C, 155 deg. C, 200 deg. C, 230 deg. C and 260 deg. C. The SERA analyses detected only the formation of Cu{sub 2}O but the XPS analysis done for the calibration of the SERA equipment proved also the presence of a CuO layer smaller than 2 nm above the Cu{sub 2}O oxide. The oxide growth follows a power-law dependence on time within this temperature range and an activation energy of 33.1 kJ/mol was obtained. The wettability of these surfaces was also determined by measuring the contact angle between solder and copper substrate after the soldering process. A correlation between oxide thickness and wetting angle was established. It was found that the wetting is acceptable only when the oxide thickness is smaller than 16 nm. An activation energy of 27 kJ/mol was acquired for the spreading of lead free solder on oxidized copper surfaces. From wetting tests on copper surfaces protected by Organic Solderability Preservatives (OSP), it was possible to calculate the activation energy for the thermal decomposition of these protective layers.

  8. Bond strength with custom base indirect bonding techniques.

    Klocke, Arndt; Shi, Jianmin; Kahl-Nieke, Bärbel; Bismayer, Ulrich


    Different types of adhesives for indirect bonding techniques have been introduced recently. But there is limited information regarding bond strength with these new materials. In this in vitro investigation, stainless steel brackets were bonded to 100 permanent bovine incisors using the Thomas technique, the modified Thomas technique, and light-cured direct bonding for a control group. The following five groups of 20 teeth each were formed: (1) modified Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Maximum Cure), (2) Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Custom I Q), (3) Thomas technique with light-cured base composite (Transbond XT) and chemically cured sealant (Sondhi Rapid Set), (4) modified Thomas technique with chemically cured base adhesive (Phase II) and chemically cured sealant (Maximum Cure), and (5) control group directly bonded with light-cured adhesive (Transbond XT). Mean bond strengths in groups 3, 4, and 5 were 14.99 +/- 2.85, 15.41 +/- 3.21, and 13.88 +/- 2.33 MPa, respectively, and these groups were not significantly different from each other. Groups 1 (mean bond strength 7.28 +/- 4.88 MPa) and 2 (mean bond strength 7.07 +/- 4.11 MPa) showed significantly lower bond strengths than groups 3, 4, and 5 and a higher probability of bond failure. Both the original (group 2) and the modified (group 1) Thomas technique were able to achieve bond strengths comparable to the light-cured direct bonded control group.

  9. CO₂ laser welding of corneal cuts with albumin solder using radiometric temperature control.

    Strassmann, Eyal; Livny, Eitan; Loya, Nino; Kariv, Noam; Ravid, Avi; Katzir, Abraham; Gaton, Dan D


    To examine the efficacy and reproducibility of CO₂ laser soldering of corneal cuts using real-time infrared fiber-optic radiometric control of tissue temperature in bovine eyes (in vitro) and to evaluate the duration of this procedure in rabbit eyes (in vivo). In vitro experiment: a 6-mm central perforating cut was induced in 40 fresh bovine eyes and sealed with a CO₂ laser, with or without albumin soldering, following placement of a single approximating nylon suture. A fiber-optic radiometric temperature control system for the CO₂ laser was used. Leaking pressure and histological findings were analyzed and compared between groups. In vivo experiment: following creation of a central perforation, 6 rabbit eyes were treated with a CO₂ laser with albumin solder and 6 rabbit eyes were treated with 10-0 nylon sutures. The amount of time needed for completion of the procedures was compared. In vitro experiment: effective sealing was achieved by CO₂ laser soldering. Mean (± SD) leaking pressure was 109 ± 30 mm Hg in the bovine corneas treated by the laser with albumin solder compared to 51 ± 7 mm Hg in the sutured control eyes (n = 10 each; p laser without albumin solder (48 ± 12 mm Hg) and in the cuts sealed only with albumin without laser welding (6.3 ± 4 mm Hg) than in the cuts treated with laser welding and albumin solder. In vivo experiment: mean surgical time was 140 ± 17 s in the laser-treated rabbits compared to 330 ± 30 s in the sutured controls (n = 6; p laser soldering revealed sealed corneal edges with a small gap bridged by coagulated albumin. The inflammatory reaction was minimal in contrast to the sutured controls. No thermal damage was detected at the wound edges. CO₂ laser soldering combined with the fiber-optic radiometer is an effective, reliable, and rapid tool for the closure of corneal wounds, and holds advantages over conventional suturing in terms of leaking pressure and surgical time. Copyright © 2013 S. Karger AG, Basel.

  10. Mechanical Shock Behavior of Environmentally-Benign Lead-free Solders

    Yazzie, Kyle

    The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or by accidental dropping. In this study, the mechanical shock behavior of Sn and Sn-Ag-Cu alloys was systematically analyzed over the strain rate range 10-3 -- 30 s-1 in bulk samples, and over 10-3 -- 12 s-1 on the single solder joint level. More importantly, the influences of solder microstructure and intermetallic compounds (IMC) on mechanical shock resistance were quantified. A thorough microstructural characterization of Sn-rich alloys was conducted using synchrotron x-ray computed tomography. The three-dimensional morphology and distribution of contiguous phases and precipitates was analyzed. A multiscale approach was utilized to characterize Sn-rich phases on the microscale with x-ray tomography and focused ion beam tomography to characterize nanoscale precipitates. A high strain rate servohydraulic test system was developed in conjunction with a modified tensile specimen geometry and a high speed camera for quantifying deformation. The effect of microstructure and applied strain rate on the local strain and strain rate distributions were quantified using digital image correlation. Necking behavior was analyzed using a novel mirror fixture, and the triaxial stresses associated with necking were corrected using a self-consistent method to obtain the true stress-true strain constitutive behavior. Fracture mechanisms were quantified as a function of strain rate. Finally, the relationship between solder microstructure and intermetallic compound layer thickness with the mechanical shock resistance of Sn-3.8Ag-0.7Cu solder joints was characterized. It was found that at low strain rates the dynamic

  11. Fundamentals of lead-free solder interconnect technology from microstructures to reliability

    Lee, Tae-Kyu; Kim, Choong-Un; Ma, Hongtao


    This unique book provides an up-to-date overview of the fundamental concepts behind lead-free solder and interconnection technology. Readers will find a description of the rapidly increasing presence of electronic systems in all aspects of modern life as well as the increasing need for predictable reliability in electronic systems. The physical and mechanical properties of lead-free solders are examined in detail, and building on fundamental science, the mechanisms responsible for damage and failure evolution, which affect reliability of lead-free solder joints are identified based on microstructure evolution.  The continuing miniaturization of electronic systems will increase the demand on the performance of solder joints, which will require new alloy and processing strategies as well as interconnection design strategies. This book provides a foundation on which improved performance and new design approaches can be based.  In summary, this book:  Provides an up-to-date overview on lead-free soldering tech...

  12. The influence of heat treatment on properties of lead-free solders

    Lýdia Trnková Rízeková


    Full Text Available The article is focused on the analysis of degradation of properties of two eutectic lead-free solders SnCu0.7 and SnAg3.5Cu0.7. The microstructures of the intermetallic compound (IMC layers at the copper substrate - solder interface were examined before and after heat treatment at 150°C for 50, 200, 500 and 1000 hours. The thickness of IMC layers of the Cu6Sn5 phase was growing with the increasing time of annealing and shown the typical scallops. For the heat treatment times of 200 hours and longer, the Cu3Sn IMC layers located near the Cu substrate were also observed. The experiments showed there is a link between the thickness of IMC layers and decrease of the shear strength of solder joints. In general, the joints made of the ternary solder showed higher shear strength before and after heat treatment in comparison to joints from solder SnCu0.7.

  13. Application of robust color composite fringe in flip-chip solder bump 3-D measurement

    Kuo, Chung-Feng Jeffrey; Wu, Han-Cheng


    This study developed a 3-D measurement system based on flip-chip solder bump, used fringes with different modulation intensities in color channels, in order to produce color composite fringe with robustness, and proposed a multi-channel composite phase unwrapping algorithm, which uses fringe modulation weights of different channels to recombine the phase information for better measurement accuracy and stability. The experimental results showed that the average measurement accuracy is 0.43μm and the standard deviation is 1.38 μm. The results thus proved that the proposed 3-D measurement system is effective in measuring a plane with a height of 50 μm. In the flip-chip solder bump measuring experiment, different fringe modulation configurations were tested to overcome the problem of reflective coefficient between the flip-chip base board and the solder bump. The proposed system has a good measurement results and robust stability in the solder bump measurement, and can be used for the measurement of 3-D information for micron flip-chip solder bump application.

  14. Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints

    Kim, Kyoung-Ho; Koike, Junichi; Yoon, Jeong-Won; Yoo, Sehoon


    The wetting behavior, interfacial reactions, and mechanical reliability of Sn-Ag-Cu solder on a plasma-coated printed circuit board (PCB) substrate were evaluated under multiple heat-treatments. Conventional organic solderability preservative (OSP) finished PCBs were used as a reference. The plasma process created a dense and highly cross-linked polymer coating on the Cu substrates. The plasma finished samples had higher wetting forces and shorter zero-cross times than those with OSP surface finish. The OSP sample was degraded after sequential multiple heat treatments and reflow processes, whereas the solderability of the plasma finished sample was retained after multiple heat treatments. After the soldering process, similar microstructures were observed at the interfaces of the two solder joints, where the development of intermetallic compounds was observed. From ball shear tests, it was found that the shear force for the plasma substrate was consistently higher than that for the OSP substrate. Deterioration of the OSP surface finish was observed after multiple heat treatments. Overall, the plasma surface finish was superior to the conventional OSP finish with respect to wettability and joint reliability, indicating that it is a suitable material for the fabrication of complex electronic devices.

  15. Electrical Resistance of the Solder Connections for the Consolidation of the LHC Main Interconnection Splices

    Lutum, R; Scheuerlein, C


    For the consolidation of the LHC 13 kA main interconnection splices, shunts will be soldered onto each of the 10170 splices. The solder alloy selected for this purpose is Sn60Pb40. In this context the electrical resistance of shunt to busbar lap splices has been measured in the temperature range from RT to 20 K. A cryocooler set-up has been adapted such that a test current of 150 A could be injected for accurate resistance measurements in the low nΩ range. To study the influence of the solder bulk resistivity on the overall splice resistance, connections produced with Sn96Ag4 and Sn77.2In20Ag2.8 have been studied as well. The influence of the Sn60Pb40 solder resistance is negligible when measuring the splice resistance in a longitudinal configuration over a length of 6 cm. In a transverse measurement configuration the splice resistance is significantly influenced by the solder. The connections prepared with Sn77.2In20Ag2.8 show significantly higher resistance values, as expected from the relatively high sol...

  16. In situ X-ray observation and simulation of ratcheting-fatigue interactions in solder joints

    Shi, Liting; Mei, Yunhui; Chen, Gang; Chen, Xu


    Reflow voids created by solder oxidation reduce the reliability of lap joints. In situ visualization of reflow voids in Sn-3Ag-0.5Cu (SAC305) lap-shear solder joints under cyclic stressing was realized by X-ray computed tomography (CT), while the ratcheting deformation of the solder joints was monitored by a non-contact displacement detecting system (NDDS). The results revealed that the shape evolution of reflow voids in solder joints, as characterized by the sphericity of the voids, can be divided into three stages: i.e., the initial stage with a sharp drop, a stable stage, and a rapidly declining stage. A new evolution law for describing the progress of sphericity was proposed, and was further introduced into a viscoplastic constitutive model based on the OW-AF nonlinear kinematic hardening rule. The damage-coupled OW-AF model yielded an accurate estimation of the whole-life ratcheting behavior of Sn-3Ag-0.5Cu (SAC305) lap-shear solder joints. [Figure not available: see fulltext.

  17. Improvement of the auto wire feeder machine in a de-soldering process

    Niramon Nonkhukhetkhong


    Full Text Available This paper presents the methodology of the de-soldering process for rework of disk drive Head Stack Assembly (HSA units. The auto wire feeder is a machine that generates Tin (Sn on the product. This machine was determined to be one of the major sources of excess Sn on the HSA. The defect rate due to excess Sn is more than 30%, which leads to increased processing time and cost to perform additional cleaning steps. From process analysis, the major causes of excess Sn are as follows: 1 The machine cannot cut the wire all the way into the flux core area; 2 The sizes and types of soldering irons are not appropriate for the unit parts; and, 3 There are variations introduced into the de-soldering process by the workforce. This paper proposes a methodology to address all three of these causes. First, the auto wire feeder machine in the de-solder process will be adjusted in order to cut wires into flux core. Second, the types of equipment and material used in de-soldering will be optimized. Finally, a new standard method for operators, which can be controlled more easily, will be developed in order to reduce defects due to workforce related variation. After these process controls and machine adjustments were implemented, the overall Sn related problems were significantly improved. Sn contamination was reduced by 41% and cycle time was reduced by an average of 15 seconds.

  18. The Role of Pd in Sn-Ag-Cu Solder Interconnect Mechanical Shock Performance

    Lee, Tae-Kyu; Zhou, Bite; Bieler, Thomas R.; Tseng, Chien-Fu; Duh, Jeng-Gong


    The mechanical stability of solder joints with Pd added to Sn-Ag-Cu alloy with different aging conditions was investigated in a high- G level shock environment. A test vehicle with three different strain and shock level conditions in one board was used to identify the joint stability and failure modes. The results revealed that Pd provided stability at the package-side interface with an overall shock performance improvement of over 65% compared with the Sn-Ag-Cu alloy without Pd. A dependency on the pad structure was also identified. However, the strengthening mechanism was only observed in the non-solder mask defined (NSMD) pad design, whereas the solder mask defined (SMD) pad design boards showed no improvement in shock performance with Pd-added solders. The effects of Sn grain orientation on shock performance, interconnect stability, and crack propagation path with and without Pd are discussed. The SAC305 + Pd solder joints showed more grain refinements, recrystallization, and especially mechanical twin deformation during the shock test, which provides a partial explanation for the ability of SAC305 + Pd to absorb more shock-induced energy through active deformation compared with SAC305.

  19. Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition

    Kang, Sung K.; Leonard, Donovan; Shih, Da-Yuan; Gignac, Lynne; Henderson, D. W.; Cho, Sungil; Yu, Jin


    The near-ternary eutectic Sn-Ag-Cu alloys have been identified as leading Pb-free solder candidates to replace Pb-bearing solders in microelectronic applications. However, recent investigations on the processing behavior and solder joints reliability assessment have revealed several potential reliability risk factors associated with the alloy system. The formation of large Ag3Sn plates in Sn-Ag-Cu joints, especially when solidified in a relatively slow cooling rate, is one issue of concern. The implications of large Ag3Sn plates on solder joint performance and several methods to control them have been discussed in previous studies. The minor Zn addition was found to be effective in reducing the amount of undercooling required for tin solidification and thereby to suppress the formation of large Ag3Sn plates. The Zn addition also caused the changes in the bulk microstructure as well as the interfacial reaction. In this paper, an in-depth characterization of the interfacial reaction of Zn-added Sn-Ag-Cu solders on Cu and Au/Ni(P) surface finishes is reported. The effects of a Zn addition on modification of the interfacial IMCs and their growth kinetics are also discussed.

  20. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin


    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  1. Effects of Ni-coated Carbon Nanotubes addition on the electromigration of Sn–Ag–Cu solder joints

    Yang, Zhongbao; Zhou, Wei; Wu, Ping, E-mail:


    Highlights: •The electromigration behaviors of the composite solder joints were investigated. •The presence of Ni altered the morphology of the IMC layer after reflow. •Carbon nanotube network was observed in solder matrix. •Current crowding occurred at the carbon nanotube networks. •The electromigration effect of composite solder joint was suppressed effectively. -- Abstract: The electromigration behaviors of line-type Cu/Sn–Ag–Cu/Cu interconnects with and without Ni-Coated multi-walled Carbon Nanotubes addition were investigated in this work. After soldering, the (Cu,Ni){sub 6}Sn{sub 5} intermetallic compounds formed at the solder/Cu interface. The electromigration analysis shows that the presence of Carbon Nanotubes can suppress the atomic diffusion in the solder induced by electromigration effectively. And finite element simulation indicates that the Carbon Nanotube networks can reduce the current density in the solder matrix, which results in the improvement of electromigration resistance of composite solders.

  2. Development of aluminum, manganese, and zinc-doped tin-silver-copper-X solders for electronic assembly

    Boesenberg, Adam James

    The global electronic assembly community is striving for a robust replacement for leaded solders due to increased environmental regulations. A family of Pb-free solder alloys based on Sn-Ag-Cu (SAC) compositions has shown promise; but reliability issues in certain assembly and operating environments have arisen. Elemental (X) additions (Al, Mn, Zn) to SAC3595 were developed recently for better control of heterogeneous nucleation in solder joint solidification. Cu substrate solderability of these SAC+X alloys was investigated at concentrations between 0.01-0.25 wt. % using globule wetting balance tests due to concern about increased oxidation during reflow. Asymmetric four point bend (AFPB) tests were conducted on as-soldered and thermally aged specimens to investigate correlation between decreased shear strength and extended aging time; a common phenomenon seen in solder joints in service. Composition dependence of these X additions also was explored in simplified Cu joints by differential scanning calorimetry (DSC) and joint microstructure analysis to determine the coupling between undercooling and solidification morphology on single and multiple reflow cycles. Interesting observations by methods such as x-ray diffraction (XRD) and nano-indentation of SAC solder joints with aluminum elemental additions led to promising results and provided a possible solution to promoting heterogeneous nucleation and high reliability in these solder alloys.

  3. Compatibility of lead-free solders with lead containing surface finishes as a reliability issue in electronic assemblies

    Vianco, P.; Rejent, J. [Sandia National Labs., Albuquerque, NM (United States); Artaki, I.; Ray, U.; Finley, D.; Jackson, A. [AT and T Bell Labs., Princeton, NJ (United States)


    Enhanced performance goals and environmental restrictions have heightened the consideration for use of alternative solders as replacements for the traditional tin-lead (Sn-Pb) eutectic and near-eutectic alloys. However, the implementation of non-Pb bearing surface finishes may lag behind solder alloy development. A study was performed which examined the effect(s) of Pb contamination on the performance of Sn-Ag-Bi and Sn-Ag-Cu-Sb lead-free solders by the controlled addition of 63Sn-37Pb solder at levels of 0.5 {minus} 8.0 wt.%. Thermal analysis and ring-in-plug shear strength studies were conducted on bulk solder properties. Circuit board prototype studies centered on the performance of 20I/O SOIC gull wing joints. Both alloys exhibited declines in their melting temperatures with greater Sn-Pb additions. The ring-in-plug shear strength of the Sn-Ag-Cu-Sb solder increased slightly with Sn-Pb levels while the Sn-Ag-Bi alloy experienced a strength loss. The mechanical behavior of the SOIC (Small Outline Integrated Circuit) Sn-Ag-Bi solder joints reproduced the strength levels were insensitive to 10,106 thermal cycles. The Sn-Ag-Cu-Sb solder showed a slight decrease in the gull wing joint strengths that was sensitive to the Pb content of the surface finish.

  4. Modeling Material Properties of Lead-Free Solder Alloys

    Guo, Zhanli; Saunders, Nigel; Miodownik, Peter; Schillé, Jean-Philippe


    A full set of physical and thermophysical properties for lead-free solder (LFS) alloys have been calculated, including liquidus/solidus temperatures, fraction solid, density, coefficient of thermal expansion, thermal conductivity, Young’s modulus, viscosity, and liquid surface tension, all as a function of composition and temperature (extending into the liquid state). The results have been extensively validated against data available in the literature. A detailed comparison of the properties of two LFS alloys Sn-20In-2.8Ag and Sn-5.5Zn-4.5In-3.5Bi with Sn-37Pb has been made to show the utility and need for calculations that cover a wide range of properties, including the need to consider the effect of nonequilibrium cooling. The modeling of many of these properties follows well-established procedures previously used in JMatPro software for a range of structural alloys. This paper describes an additional procedure for the calculation of the liquid surface tension for multicomponent systems, based on the Butler equation. Future software developments are reviewed, including the addition of mechanical properties, but the present calculations can already make a useful contribution to the selection of appropriate new LFS alloys.

  5. An Investigation of TiO2 Addition on Microstructure Evolution of Sn-Cu-Ni Solder Paste Composite

    Saud Norainiza


    Full Text Available In this research, varying fraction of titanium oxide (TiO2 reinforcement particles was successfully incorporated into Sn-Cu-Ni solder paste in an effort to study the influence of TiO2 addition on microstructure evolution of Sn-Cu-Ni solder paste composite. Sn-Cu-Ni solder paste composite was produced by mixing TiO2 particle with Sn-Cu-Ni solder paste. The microstructure analysis was carried out by Scanning Electron Microscopy-Energy dispersive X-ray (SEM-EDX. The addition TiO2 particle helps to refine the bulk solder microstructure and suppress the intermetallic compound (IMC formation at the interface as will be discussed further.

  6. Effects of rapid solidification on the microstructure and microhardness of a lead-free Sn-3.5Ag solder

    SHEN Jun; LIU Yongchang; Han Yajing; GAO Houxiu


    A lead-free Sn-3.5Ag solder was prepared by rapid solidification technology. The high solidification rate, obtained by rapid cooling, promotes nucleation, and suppresses the growth of Ag3Sn intermetallic compounds (IMCs) in Ag-rich zone, yielding fine Ag3Sn nanoparticulates with spherical morphology in the matrix of the solder. The large amount of tough homogeneously-dispersed IMCs helps to improve the surface area per unit volume and obstructs the dislocation lines passing through the solder, which fits with the dispersion-strengthening theory. Hence, the rapidly-solidified Sn-3.5Ag solder exhibits a higher microhardness when compared with a slowly-solidified Sn-3.5Ag solder.


    Pavol Šebo


    Full Text Available Developing and microstructure of lead-free Sn-Cu solders containing 3, 5 and 10 wt. % of copper in bulk as well as in ribbon form is presented. Wetting of copper substrate by these solders at the temperatures 300, 350 and 400°C in air (partially in N2+10H2 during 1800 s was studied by sessile drop method. Joints Cu – solder – Cu were prepared at 300°C and 1800 s in air as well as in gas mix and their shear strength was measured. The microstructure was studied by light and scanning electron microscopy (SEM equipped with energy dispersive X-ray analyzer and standard X-ray diffraction machine. Wetting angle decreases with increasing wetting temperature. Wetting angle increased for higher (10 wt. % amount of copper in solder. Shear strength of the joints decreases with increasing the copper concentration in solder.

  8. Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections

    Ren, Guang [Stokes Laboratories, Bernal Institute, University of Limerick (Ireland); Department of Civil Engineering and Materials Science, University of Limerick (Ireland); Wilding, Ian J. [Henkel Ltd, Hemel Hempstead (United Kingdom); Collins, Maurice N., E-mail: [Stokes Laboratories, Bernal Institute, University of Limerick (Ireland)


    Due to its commercial potential and the technological challenges associated with processing, low temperature soldering is a topic gaining widespread interest in both industry and academia in the application space of consumer and “throw away” electronics. This review focuses on the latest metallurgical alloys, tin zinc (Sn–Zn) and tin bismuth (Sn–Bi), for lower temperature processed electronic interconnections. The fundamentals of solder paste production and flux development for these highly surface active metallic powders are introduced. Intermetallic compounds that underpin low temperature solder joint production and reliability are discussed. The influence of alloying on these alloys is described in terms of critical microstructural changes, mechanical properties and reliability. The review concludes with an outlook for next generation electronic interconnect materials. - Highlights: • Review of the latest advances in Sn–Zn and Sn–Bi solder alloys. • Technological developments underpinning low temperature soldering. • Micro alloying influences on next generation interconnect materials.

  9. In-situ study of electromigration-induced grain rotation in Pb-free solder joint by synchrotron microdiffraction

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning


    The rotation of Sn grains in Pb-free flip chip solder joints hasn't been reported in literature so far although it has been observed in Sn strips. In this letter, we report the detailed study of the grain orientation evolution induced by electromigration by synchrotron based white beam X-ray microdiffraction. It is found that the grains in solder joint rotate more slowly than in Sn strip even under higher current density. On the other hand, based on our estimation, the reorientation of the grains in solder joints also results in the reduction of electric resistivity, similar to the case of Sn strip. We will also discuss the reason why the electric resistance decreases much more in strips than in the Sn-based solders, and the different driving force for the grain growth in solder joint and in thin film interconnect lines.

  10. Spreading Behavior and Evolution of IMCs During Reactive Wetting of SAC Solders on Smooth and Rough Copper Substrates

    Satyanarayan; Prabhu, K. N.


    The effect of surface roughness of copper substrate on the reactive wetting of Sn-Ag-Cu solder alloys and morphology of intermetallic compounds (IMCs) was investigated. The spreading behavior of solder alloys on smooth and rough Cu substrates was categorized into capillary, diffusion/reaction, and contact angle stabilization zones. The increase in substrate surface roughness improved the wetting of solder alloys, being attributed to the presence of thick Cu3Sn IMC at the interface. The morphology of IMCs transformed from long needle shaped to short protruded type with an increase in the substrate surface roughness for the Sn-0.3Ag-0.7Cu and Sn-3Ag-0.5Cu solder alloys. However, for the Sn-2.5Ag-0.5Cu solder alloy the needle-shaped IMCs transformed to the completely scallop type with increase in the substrate surface roughness. The effect of Ag content on wetting behavior was not significant.

  11. Wafer bonding applications and technology

    Gösele, Ulrich


    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  12. Strength and reliability of low temperature transient liquid phase bonded Cu-Sn-Cu interconnects

    Brincker, Mads; Söhl, Stefan; Eisele, Ronald


    as a potential technology that could enable the realization of stacks with better thermal performance and reliability than those can be achieved using conventional soldering techniques. Low temperature TLP bonded CuSnCu samples are fabricated, and the strength of the achieved bonds is measured by shear testing......As power electronic devices have tendencies to operate at higher temperatures and current densities, the demand for reliable and efficient packaging technologies are ever increasing. This paper reports the studies on application of transient liquid phase (TLP) bonding of CuSnCu systems...... for achieving a strong and high temperature resistant bond. Finally, initial results from a thermal cycling test are presented and it is concluded that the achieved TLP bonding is a promising candidate for the fabrication of reliable interconnects in power electronics....

  13. A statistical mechanics model to predict electromigration induced damage and void growth in solder interconnects

    Wang, Yuexing; Yao, Yao; Keer, Leon M.


    Electromigration is an irreversible mass diffusion process with damage accumulation in microelectronic materials and components under high current density. Based on experimental observations, cotton type voids dominate the electromigration damage accumulation prior to cracking in the solder interconnect. To clarify the damage evolution process corresponding to cotton type void growth, a statistical model is proposed to predict the stochastic characteristic of void growth under high current density. An analytical solution of the cotton type void volume growth over time is obtained. The synchronous electromigration induced damage accumulation is predicted by combining the statistical void growth and the entropy increment. The electromigration induced damage evolution in solder joints is developed and applied to verify the tensile strength deterioration of solder joints due to electromigration. The predictions agree well with the experimental results.

  14. Bosonisation and Soldering of Dual Symmetries in Two and Three Dimensions

    Banerjee, R


    We develop a technique that solders the dual aspects of some symmetry following from the bosonisation of two distinct fermionic models, thereby leading to new results which cannot be otherwise obtained. Exploiting this technique, the two dimensional chiral determinants with opposite chirality are soldered to reproduce either the usual gauge invariant expression leading to the Schwinger model or, alternatively, the Thirring model. Likewise, two apparently independent three dimensional massive Thirring models with same coupling but opposite mass signatures, in the long wavelegth limit, combine by the process of bosonisation and soldering to yield an effective massive Maxwell theory. The current bosonisation formulas are given, both in the original independent formulation as well as the effective theory, and shown to yield consistent results for the correlation functions. Similar features also hold for quantum electrodynamics in three dimensions.

  15. Multistate Degradation Mo del for Prognostics of Solder Joints Under Vibration Conditions

    TANG Wei; JING Bo; HUANG Yifeng; SHENG Zengjin; JIAO Xiaoxuan


    This paper develops a multistate degra-dation structure of the solder joints which can be used under various vibration conditions based on nonhomoge-neous continuous-time hidden semi-Markov process. The parameters of the structure were estimated to illustrate the stochastic relationship between the degradation pro-cess and the monitoring indicator by using unsupervised learning methods. Random vibration tests on solder joints with different levels of power spectral density and fixed forms were conducted with a real time monitoring electri-cal resistance to examine the suitability of the model. It was experimentally verified that the multistate degrada-tion structure matches the experimental process reason-ably and accurately. Based on this multistate degradation model, the online prognostics of solder joint were analyzed and the results indicated that faults or failures can be de-tected timely, leading to appreciate maintenance actions scheduled to avoid catastrophic failures of electronics.

  16. The Lead-Free Solder Selection Method and Process Optimization Based on Design of Experiment

    Wang Bing


    Full Text Available In the study, through researching the characteristic of the lead-free solder, we introduce the method of QFD (Quality Function Deployment to transform the demand of production properties and process into the technical demand of the lead-free solder, thus we could transform the demand concept of sampling into a concrete performance index. Finally we can obtain two parameters of the technological competitive power index and market competitive power index to evaluate performance of the lead-free solder through making a series of experiments. We utilize the design of experiment method to find out key parameter of process and the best collocation of parameter, which make the co planarity of tin ball descend to 149 from 178 and promote the process’s ability up to 95.2 from 85%.

  17. Design of Experiments to Determine Causes of Flex Cable Solder Wicking, Discoloration and Hole Location Defects

    Wolfe, Larry


    Design of Experiments (DoE) were developed and performed in an effort to discover and resolve the causes of three different manufacturing issues; large panel voids after Hot Air Solder Leveling (HASL), cable hole locations out of tolerance after lamination and delamination/solder wicking around flat flex cable circuit lands after HASL. Results from a first DoE indicated large panel voids could be eliminated by removing the pre-HASL cleaning. It also revealed eliminating the pre-HASL bake would not be detrimental when using a hard press pad lamination stackup. A second DoE indicated a reduction in hard press pad stackup lamination pressure reduced panel stretch in the y axis approximately 70%. A third DoE illustrated increasing the pre-HASL bake temperature could reduce delamination/solder wicking when using a soft press pad lamination stackup.

  18. Research and application of visual location technology for solder paste printing based on machine vision

    Luosi WEI; Zongxia JIAO


    A location system is very important for solder paste printing in the process of surface mount technology (SMT). Using machine vision technology to complete the location mission is new and very efficient. This paper presents an integrated visual location system for solder paste printing based on machine vision. The working principle of solder paste printing is introduced and then the design and implementation of the visual location system are described. In the system, two key techniques are completed by secondary development based on VisionPro.One is accurate image location solved by the pattern-based location algorithms of PatMax. The other one is camera calibration that is achieved by image warping technology through the checkerboard plate. Moreover, the system can provide good performances such as high image locating accuracy with 1/40 sub-pixels, high anti-jamming, and high-speed location of objects whose appearance is rotated, scaled, and/or stretched.

  19. Single Image Camera Calibration in Close Range Photogrammetry for Solder Joint Analysis

    Heinemann, D.; Knabner, S.; Baumgarten, D.


    Printed Circuit Boards (PCB) play an important role in the manufacturing of electronic devices. To ensure a correct function of the PCBs a certain amount of solder paste is needed during the placement of components. The aim of the current research is to develop an real-time, closed-loop solution for the analysis of the printing process where solder is printed onto PCBs. Close range photogrammetry allows for determination of the solder volume and a subsequent correction if necessary. Photogrammetry is an image based method for three dimensional reconstruction from two dimensional image data of an object. A precise camera calibration is indispensable for an accurate reconstruction. In our certain application it is not possible to use calibration methods with two dimensional calibration targets. Therefore a special calibration target was developed and manufactured, which allows for single image camera calibration.

  20. Investigation Of The Effects Of Reflow Profile Parameters On Lead-free Solder Bump Volumes And Joint Integrity

    Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.


    The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.