WorldWideScience

Sample records for solder committee designated

  1. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    Science.gov (United States)

    Suhir, E.; Yi, S.; Ghaffarian, R.

    2017-03-01

    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  2. Design of Experiments to Determine Causes of Flex Cable Solder Wicking, Discoloration and Hole Location Defects

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Larry

    2009-04-22

    Design of Experiments (DoE) were developed and performed in an effort to discover and resolve the causes of three different manufacturing issues; large panel voids after Hot Air Solder Leveling (HASL), cable hole locations out of tolerance after lamination and delamination/solder wicking around flat flex cable circuit lands after HASL. Results from a first DoE indicated large panel voids could be eliminated by removing the pre-HASL cleaning. It also revealed eliminating the pre-HASL bake would not be detrimental when using a hard press pad lamination stackup. A second DoE indicated a reduction in hard press pad stackup lamination pressure reduced panel stretch in the y axis approximately 70%. A third DoE illustrated increasing the pre-HASL bake temperature could reduce delamination/solder wicking when using a soft press pad lamination stackup.

  3. Soldering handbook

    CERN Document Server

    Vianco, Paul T

    1999-01-01

    Contains information related to soldering processes, and solder joint performance and reliability. Covers soldering fundamentals, technology, materials, substrate materials, fluxes, pastes, assembly processes, inspection, and environment. Covers today's advanced joining applications and emphasizes new materials, including higher strength alloys; predictive performance; computer modeling; advanced inspection techniques; new processing concepts, including laser heating; and the resurgence in ultrasonic soldering.

  4. Design committee makes major headway

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Work of Ontario's Market Design Committee (MDC), charged with recommending the detailed steps to restructuring the electric power industry in Ontario was described. In its short life of only a few weeks, MDC had to create a series of strenuous internal rules in order to accomplish the enormous task of restructuring the industry in the relatively short time set out in the Government's White Paper in February 1998. Most of this article is devoted to describing the nature and functions of the Independent Market Operator (IMO), more commonly referred to as the Independent System Operator or the dispatch and control centre for the electrical system. The IMO will be governed by a board of 15 members consisting of a CEO, end-users, generation providers, marketers and transmission providers. Five independent members will be appointed by the Government from a list suggested by market participants to represent the broad industry and public interest. The IMO will be created as a not-for-profit, statutory corporation using a special act of the Ontario Legislature. Special needs identified by MDC will be drawn mostly from the Ontario Corporation Act, with operating procedures included as by-laws. The Ontario Energy Board (OEB) and the IMO are envisaged as having a relationship somewhat similar to the Ontario Securities Commission's role in overseeing the Toronto Stock Exchange. The involvement of the Independent Power Producers' Society of Ontario (IPPSO) in the work of the MDC is also described

  5. Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

    Directory of Open Access Journals (Sweden)

    Shoudong Gu

    2016-06-01

    Full Text Available To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT (Surface Mount Technology production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process. Here, the critical jet ejection velocity is discussed through theoretical analysis. The relations between ejection velocity and needle structure, needle velocity, and nozzle diameter were obtained by FLUENT software. Then, the prototype of the solder paste jetting system was fabricated, and the performance was verified by experiments. The effects of the gap between nozzle and needle, the driving voltage, and the nozzle diameter on the jetting performance and droplet diameter were obtained. Solder paste droplets 0.85 mm in diameter were produced when the gap between the nozzle and needle was adjusted to 10 μm, the driving voltage to 80 V, the nozzle diameter to 0.1 mm, and the variation of the droplet diameter was within ±3%.

  6. Spontaneous soldering

    International Nuclear Information System (INIS)

    Percacci, R.

    1984-01-01

    It is proposed that the soldering form of general relativity be treated as a dynamical variable. This gives rise to the possibility of treating the linear connection on (n-dimensional) spacetime and an internal O(k)-Yang-Mills field as different components of the same O(N) gauge field (N= n+k). The distinction between gravitational and Yang-Mills interactions is due to a kind of Higgs mechanism driven by the vacuum expectation value of the soldering form. (orig.)

  7. Drafting & Design Technology. Technical Committee Report.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in drafting and design technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and…

  8. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  9. SMT soldering handbook

    National Research Council Canada - National Science Library

    Strauss, Rudolf

    1998-01-01

    ... 3.2.1 Constituents, melting behaviour and mechanical properties 3.2.2 Composition of solders for use in electronics 3.2.3 Lead-free solders 3.2.4 Solder impurities The soldered joint 3.3.1 Solde...

  10. Lead free solder mechanics and reliability

    CERN Document Server

    Pang, John Hock Lye

    2012-01-01

    Lead-free solders are used extensively as interconnection materials in electronic assemblies and play a critical role in the global semiconductor packaging and electronics manufacturing industry. Electronic products such as smart phones, notebooks and high performance computers rely on lead-free solder joints to connect IC chip components to printed circuit boards. Lead Free Solder: Mechanics and Reliability provides in-depth design knowledge on lead-free solder elastic-plastic-creep and strain-rate dependent deformation behavior and its application in failure assessment of solder joint reliability. It includes coverage of advanced mechanics of materials theory and experiments, mechanical properties of solder and solder joint specimens, constitutive models for solder deformation behavior; numerical modeling and simulation of solder joint failure subject to thermal cycling, mechanical bending fatigue, vibration fatigue and board-level drop impact tests. This book also: Discusses the mechanical prope...

  11. New Brunswick Market Design Committee : final report

    International Nuclear Information System (INIS)

    2002-04-01

    This report presents a plan for implementing New Brunswick's electricity restructuring. It includes two resolutions and 95 recommendations to help achieve the main policy objectives of the White Paper, the New Brunswick Energy Policy. The most significant policy goal outlined in the White Paper is the restructuring of the electricity sector, with initial competition being only at the wholesale and large industrial retail level. The Board of Commissioners of Public Utilities will regulate many aspects of the new electricity market. In addition, green pricing options will be made available. The Market Design Committee recommends that the government set up a bilateral contract market for wholesale and large industrial customers to contract with alternate providers for electrical power. Power generators would have the freedom to sell by contract to customers both within and outside the province. The report describes the requirements for establishing a bilateral contract market and how it functions. The Committee also recommends designating a Heritage Pool of electricity available from the existing generation assets in the province. Other recommendations include the creation of programs that will help meet environmental protection goals. The programs include net metering, support of embedded generation, renewable portfolio standards, energy efficiency programs, green pricing, broad-based carbon dioxide emissions trading, emission performance standards, and the promotion of cogeneration. 37 refs., 2 figs

  12. Microstructural discovery of Al addition on Sn–0.5Cu-based Pb-free solder design

    International Nuclear Information System (INIS)

    Koo, Jahyun; Lee, Changsoo; Hong, Sung Jea; Kim, Keun-Soo; Lee, Hyuck Mo

    2015-01-01

    It is important to develop Pb-free solder alloys suitable for automotive use instead of traditional Sn–Pb solder due to environmental regulations (e.g., Restriction of Hazardous Substances (RoHS)). Al addition has been spotlighted to enhance solder properties. In this study, we investigated the microstructural change of Sn–0.5Cu wt.% based Pb-free solder alloys with Al addition (0.01–0.05 wt.%). The small amount of Al addition caused a remarkable microstructural change. The Al was favored to form Cu–Al intermetallic compounds inside the solder matrix. We identified the Cu–Al intermetallic compound as Cu_3_3Al_1_7, which has a rhombohedral structure, using EPMA and TEM analyses. This resulted in refined Cu_6Sn_5 networks in the Sn–0.5Cu based solder alloy. In addition, we conducted thermal analysis to confirm its stability at a high temperature of approximately 230 °C, which is the necessary temperature range for automotive applications. The solidification results were substantiated thermodynamically using the Scheil solidification model. We can provide criteria for the minimum aluminum content to modify the microstructure of Pb-free solder alloys. - Graphical abstract: The minor Al additions refined eutectic Cu_6Sn_5 IMC networks on the Sn–0.5Cu based solder alloys. The microstructure was dramatically changed with the minor Al addition. - Highlights: • We observed dramatic microstructure-change with Al additions. • We defined Cu_3_3Al_1_7 IMC with Al additions using TEM analysis. • We investigated grain refinement with Al additions using EBSD. • We discussed the refinement based on Scheil solidification model.

  13. Microstructural discovery of Al addition on Sn–0.5Cu-based Pb-free solder design

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jahyun; Lee, Changsoo [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Hong, Sung Jea [MK Electron Co., Ltd., Yongin Cheoin-gu 316-2 (Korea, Republic of); Kim, Keun-Soo, E-mail: keunsookim@hoseo.edu [Department of Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-11-25

    It is important to develop Pb-free solder alloys suitable for automotive use instead of traditional Sn–Pb solder due to environmental regulations (e.g., Restriction of Hazardous Substances (RoHS)). Al addition has been spotlighted to enhance solder properties. In this study, we investigated the microstructural change of Sn–0.5Cu wt.% based Pb-free solder alloys with Al addition (0.01–0.05 wt.%). The small amount of Al addition caused a remarkable microstructural change. The Al was favored to form Cu–Al intermetallic compounds inside the solder matrix. We identified the Cu–Al intermetallic compound as Cu{sub 33}Al{sub 17}, which has a rhombohedral structure, using EPMA and TEM analyses. This resulted in refined Cu{sub 6}Sn{sub 5} networks in the Sn–0.5Cu based solder alloy. In addition, we conducted thermal analysis to confirm its stability at a high temperature of approximately 230 °C, which is the necessary temperature range for automotive applications. The solidification results were substantiated thermodynamically using the Scheil solidification model. We can provide criteria for the minimum aluminum content to modify the microstructure of Pb-free solder alloys. - Graphical abstract: The minor Al additions refined eutectic Cu{sub 6}Sn{sub 5} IMC networks on the Sn–0.5Cu based solder alloys. The microstructure was dramatically changed with the minor Al addition. - Highlights: • We observed dramatic microstructure-change with Al additions. • We defined Cu{sub 33}Al{sub 17} IMC with Al additions using TEM analysis. • We investigated grain refinement with Al additions using EBSD. • We discussed the refinement based on Scheil solidification model.

  14. Interface between Sn-Sb-Cu solder and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sebo, P., E-mail: Pavel.Sebo@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Svec, P. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janickovic, D.; Illekova, E. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine)

    2011-07-15

    Highlights: {yields} New lead-free solder materials based on Sn-Sb-Cu were designed and prepared. {yields} Melting and solidification temperatures of the solders have been determined. {yields} Cu-substrate/solder interaction has been analyzed and quantified. {yields} Phases formed at the solder-substrate interface have been identified. {yields} Composition and soldering atmospheres were correlated with joint strength. - Abstract: Influence of antimony and copper in Sn-Sb-Cu solder on the melting and solidification temperatures and on the microstructure of the interface between the solder and copper substrate after wetting the substrate at 623 K for 1800 s were studied. Microstructure of the interface between the solder and copper substrates in Cu-solder-Cu joints prepared at the same temperature for 1800 s was observed and shear strength of the joints was measured. Influence of the atmosphere - air with the flux and deoxidising N{sub 2} + 10H{sub 2} gas - was taken into account. Thermal stability and microstructure were studied by differential scanning calorimetry (DSC), light microscopy, scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). Melting and solidification temperatures of the solders were determined. An interfacial transition zone was formed by diffusion reaction between solid copper and liquid solder. At the interface Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} phases arise. Cu{sub 3}Sn is adjacent to the Cu substrate and its thickness decreases with increasing the amount of copper in solder. Scallop Cu{sub 6}Sn{sub 5} phase is formed also inside the solder drop. The solid solution Sn(Sb) and SbSn phase compose the interior of the solder drop. Shear strength of the joints measured by push-off method decreases with increasing Sb concentration. Copper in the solder shows even bigger negative effect on the strength.

  15. Complications with computer-aided designed/computer-assisted manufactured titanium and soldered gold bars for mandibular implant-overdentures: short-term observations.

    Science.gov (United States)

    Katsoulis, Joannis; Wälchli, Julia; Kobel, Simone; Gholami, Hadi; Mericske-Stern, Regina

    2015-01-01

    Implant-overdentures supported by rigid bars provide stability in the edentulous atrophic mandible. However, fractures of solder joints and matrices, and loosening of screws and matrices were observed with soldered gold bars (G-bars). Computer-aided designed/computer-assisted manufactured (CAD/CAM) titanium bars (Ti-bars) may reduce technical complications due to enhanced material quality. To compare prosthetic-technical maintenance service of mandibular implant-overdentures supported by CAD/CAM Ti-bar and soldered G-bar. Edentulous patients were consecutively admitted for implant-prosthodontic treatment with a maxillary complete denture and a mandibular implant-overdenture connected to a rigid G-bar or Ti-bar. Maintenance service and problems with the implant-retention device complex and the prosthesis were recorded during minimally 3-4 years. Annual peri-implant crestal bone level changes (ΔBIC) were radiographically assessed. Data of 213 edentulous patients (mean age 68 ± 10 years), who had received a total of 477 tapered implants, were available. Ti-bar and G-bar comprised 101 and 112 patients with 231 and 246 implants, respectively. Ti-bar mostly exhibited distal bar extensions (96%) compared to 34% of G-bar (p overdentures supported by soldered gold bars or milled CAD/CAM Ti-bars are a successful treatment modality but require regular maintenance service. These short-term observations support the hypothesis that CAD/CAM Ti-bars reduce technical complications. Fracture location indicated that the titanium thickness around the screw-access hole should be increased. © 2013 Wiley Periodicals, Inc.

  16. Laser assisted soldering: microdroplet accumulation with a microjet device.

    Science.gov (United States)

    Chan, E K; Lu, Q; Bell, B; Motamedi, M; Frederickson, C; Brown, D T; Kovach, I S; Welch, A J

    1998-01-01

    We investigated the feasibility of a microjet to dispense protein solder for laser assisted soldering. Successive micro solder droplets were deposited on rat dermis and bovine intima specimens. Fixed laser exposure was synchronized with the jetting of each droplet. After photocoagulation, each specimen was cut into two halves at the center of solder coagulum. One half was fixed immediately, while the other half was soaked in phosphate-buffered saline for a designated hydration period before fixation (1 hour, 1, 2, and 7 days). After each hydration period, all tissue specimens were prepared for scanning electron microscopy (SEM). Stable solder coagulum was created by successive photocoagulation of microdroplets even after the soldered tissue exposed to 1 week of hydration. This preliminary study suggested that tissue soldering with successive microdroplets is feasible even with fixed laser parameters without active feedback control.

  17. New Brunswick Market Design Committee : First interim report

    International Nuclear Information System (INIS)

    2001-10-01

    In June 2001, a Market Design Committee was appointed by the Government of New Brunswick tp provide some advice on the best ways to implement the electricity restructuring initiatives detailed in a White Paper on energy policy in New Brunswick. The Market Design Committee is a very technical committee that was set up with a number of goals in mind: make recommendations concerning all codes and operating protocols, make recommendations on market surveillance and the establishment of a workable competitive market, take into account the reliability of supply for New Brunswick, address ways by which to avoid rate shock to existing self-generators, make recommendations for mitigation of market power in the wholesale and large retail markets, evaluate methods of stranded cost recovery, make recommendations on the requirement for reciprocity in New Brunswick electricity market design, and review the role and treatment of small-scale, on-site electricity generation and make recommendations. The final recommendations are set to be presented in April 2002. This document details the progress realized to date and outlines the plans made for the subsequent phases of the work. The different topics discussed in this document each form the basis for one section of the report. They are: market design committee constitution and process, basic market model, market power issues, transmission issues, environment and renewables, and next steps for the market design committee

  18. Soldering of Mg Joints Using Zn-Al Solders

    Science.gov (United States)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-04-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  19. A novel method for direct solder bump pull testing using lead-free solders

    Science.gov (United States)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  20. Design methods and criteria recommended by the RAMSES committee

    International Nuclear Information System (INIS)

    Jakubowicz, H.; Moulin, D.; Petrequin, P.; Tortel, J.; Schaller, K.

    1980-09-01

    The design of structures of LMFBR in France must comply with the national regulations and takes into account the rules adopted by other countries but these rules need complements. The French Atomic Energy Commission has founded a committee named RAMSES (which states for 'Regles d'Analyse Mecanique des Structures') in order to write recommendations to give out the needed informations on design rules based on all the available background experience. The elastic follow up problem has received great attention and a recommendation was already printed. Of great concern in elevated temperature is a creep fatigue investigation. A creep fatigue design method adapted to materials used is being set up

  1. Influence of solder joint length to the mechanical aspect during the thermal stress analysis

    Science.gov (United States)

    Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che

    2017-09-01

    Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.

  2. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Peng, Jianke [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Wang, Xincheng [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Xie, Yan [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    Graphical abstract: - Highlights: • The wetting angle of lead free solder on Cu was reduced by surface microstructure. • The wetting form of Sn-Ag-Cu solder on Cu was “non-composite surface”. • The experimental results had a sound fit with the theoretical calculation. - Abstract: In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  3. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  4. On the problem of soldering refractory metals with silver-containing solders

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Andryushchenko, V.I.; Chepelenko, V.N.; Batov, V.M.

    1981-01-01

    The processes of wetting, spreading and interphase interactions of copper-silver liquid alloys alloyed with Ni and Si, with niobium, tantalum, molybdenum, tungsten, 12Kh18N10T steel and nickel are studied. It has been determined that Ni or Si additions into the copper-silver solder improve the wetting and adhesion. When soldering with the alloy containing Ni additions, the strength of a soldered Joint grows with the increase of soldering duration while soldering with the alloy containing Si additions, the strength decreases. That is why Ni-containing solders are preferable for soldering thick-walled structures, and Si-containing solders - for thin-walled structures [ru

  5. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  6. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  7. Committees

    Science.gov (United States)

    2012-11-01

    Leadership Team of the IAHR Committee for Hydraulic Machinery and Systems Eduard EGUSQUIZA, UPC Barcelona, Spain, Chair François AVELLAN, EPFL-LMH, Switzerland, Past Chair Richard K FISHER, Voith Hydro Inc., USA, Past Chair Fidel ARZOLA, Edelca, Venezuela Michel COUSTON, Alstom Hydro, France Niklas DAHLBÄCKCK, Vatenfall, Sweden Normand DESY, Andritz VA TECH Hydro Ltd., Canada Chisachi KATO, University of Tokyo, Japan Andrei LIPEJ, Turboinstitut, Slovenija Torbjørn NIELSEN, NTNU, Norway Romeo SUSAN-RESIGA, 'Politehnica' University Timisoara, Romania Stefan RIEDELBAUCH, Stuggart University, Germany Albert RUPRECHT, Stuttgart University, Germany Qing-Hua SHI, Dong Fang Electrical Machinery Co., China Geraldo TIAGO, Universidade Federal de Itajubá, Brazil International Advisory Committee Shouqi YUAN (principal) Jiangsu University China QingHua SHI (principal) Dong Fang Electrical Machinery Co. China Fidel ARZOLA EDELCA Venezuela Thomas ASCHENBRENNER Voith Hydro GmbH & Co. KG Germany Anton BERGANT Litostroj Power doo Slovenia B C BHAOYAL Research & Technology Centre India Hermod BREKKE NTNU Norway Stuart COULSON Voith Hydro Inc. USA Paul COOPER Fluid Machinery Research Inc USA V A DEMIANOV Power Machines OJSC Russia Bart van ESCH Technische Universiteit Eindhoven Netherland Arno GEHRER Andritz Hydro Graz Austria Akira GOTO Ebara Corporation Japan Adiel GUINZBURG The Boeing Company USA D-H HELLMANN KSB AG Germany Ashvin HOSANGADI Combustion Research and Flow Technology USA Byung-Sun HWANG Korea Institute of Material Science Korea Toshiaki KANEMOTO Kyushu Institute of Technology Japan Mann-Eung KIM Korean Register of Shipping Korea Jiri KOUTNIK Voith Hydro GmbH & Co. KG Germany Jinkook LEE Eaton Corporation USA Young-Ho LEE Korea Maritime University Korea Woo-Seop LIM Hyosung Goodsprings Inc Korea Jun MATSUI Yokohama National University Japan Kazuyoshi Mitsubishi H I Ltd, Japan MIYAGAWA Christophe NICOLET Power Vision Engineering Srl Switzerland Maryse PAGE Hydro

  8. Solder joint technology materials, properties, and reliability

    CERN Document Server

    Tu, King-Ning

    2007-01-01

    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  9. Handbook of machine soldering SMT and TH

    CERN Document Server

    Woodgate, Ralph W

    1996-01-01

    A shop-floor guide to the machine soldering of electronics Sound electrical connections are the operational backbone of every piece of electronic equipment-and the key to success in electronics manufacturing. The Handbook of Machine Soldering is dedicated to excellence in the machine soldering of electrical connections. Self-contained, comprehensive, and down-to-earth, it cuts through jargon, peels away outdated notions, and presents all the information needed to select, install, and operate machine soldering equipment. This fully updated and revised volume covers all of the new technologies and processes that have emerged in recent years, most notably the use of surface mount technology (SMT). Supplemented with 200 illustrations, this thoroughly accessible text Describes reflow and wave soldering in detail, including reflow soldering of SMT boards and the use of nitrogen blankets * Explains the setup, operation, and maintenance of a variety of soldering machines * Discusses theory, selection, and control met...

  10. Using a standards committee to design practical procedure system improvements

    International Nuclear Information System (INIS)

    Grider, D.A.; Plung, D.

    1993-01-01

    In the post-Three Mile Island (TMI) environment, numerous reports have been issued on how to improve the quality of procedures used at government and commercial nuclear facilities. The studies tend to be long on what is wrong with existing procedures and short on practical directions on how to fix those faults. Few of these studies have been conducted by practitioners with full-time procedure-managing or procedure writing experience. None of these studies go into detail on how to improve the procedure system itself. Over the last 10 yr, various nuclear facilities within the US Department of Energy (DOE) have carried out individual programs to develop procedures that meet post-TMI standards. However, ∼2 yr ago, DOE formed a Procedures Standards Committee to advise DOE in developing a set of post-TMI guidelines that could be consistently applied throughout all DOE nuclear facilities. The committee has achieved not only its original mission by producing a series of integrated guidance documents but has also evolved a systems approach to procedures management that sets new standards for procedure quality and efficiency. As members of this committee, the authors want to describe what has made the group's approach so successful. The lessons learned may be translatable to a wide range of government and commercial industry procedure programs

  11. Spectroscopic investigation of oxidized solder surfaces

    International Nuclear Information System (INIS)

    Song, Jenn-Ming; Chang-Chien, Yu-Chien; Huang, Bo-Chang; Chen, Wei-Ting; Shie, Chi-Rung; Hsu, Chuang-Yao

    2011-01-01

    Highlights: → UV-visible spectroscopy is successfully used to evaluate the degree of discoloring of solders. → The surface oxides of solders can also be identified by UV-visible absorption spectra. → The discoloration of solder surface can be correlated with optical characterization of oxides. → A strategy against discoloring by alloying was also suggested. - Abstract: For further understanding of the discoloration of solder surfaces due to oxidation during the assembly and operation of electronic devices, UV-vis and X-ray photoelectron spectroscopic analyses were applied to evaluate the degree of discoloring and identify the surface oxides. The decrease in reflectance of the oxidized solder surface is related to SnO whose absorption band is located within the visible region. A trace of P can effectively depress the discoloration of solders under both solid and semi-solid states through the suppression of SnO.

  12. Members of research ethics committees accepted a modification of the randomized consent design

    NARCIS (Netherlands)

    Schellings, Ron; Kessels, Alfons G.; ter Riet, Gerben; Kleijnen, Jos; Leffers, Pieter; Knottnerus, J. André; Sturmans, Ferd

    2005-01-01

    Background and Objective: The use of randomized consent designs has been subject of methodologic and ethical controversy. In most Western countries, research ethics committees make the decision as to whether a randomized consent design can be applied. The purpose of the study is to assess to what

  13. Thermomechanical fatigue of Sn-37 wt.% Pb model solder joints

    International Nuclear Information System (INIS)

    Liu, X.W.; Plumbridge, W.J.

    2003-01-01

    The fatigue of Sn-37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain-stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 deg. C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu 6 Sn 5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling

  14. Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Department; Son, Jae Sung [Department; School; Dolzhnikov, Dmitriy S. [Department; Filatov, Alexander S. [Department; Hazarika, Abhijit [Department; Wang, Yuanyuan [Department; Hudson, Margaret H. [Department; Sun, Cheng-Jun [Advanced; Chattopadhyay, Soma [Physical; Talapin, Dmitri V. [Department; Center

    2017-07-27

    Here we report the syntheses of largely unexplored lead and bismuth chalcogenidometallates in the solution phase. Using N2H4 as the solvent, new compounds such as K6Pb3Te6·7N2H4 were obtained. These soluble molecular compounds underwent cation exchange processes using resin chemistry, replacing Na+ or K+ by decomposable N2H5+ or tetraethylammonium cations. They also transformed into stoichiometric lead and bismuth chalcogenide nanomaterials with the addition of metal salts. Such a versatile chemistry led to a variety of composition-matched solders to join lead and bismuth chalcogenides and tune their charge transport properties at the grain boundaries. Solution-processed thin films composed of Bi0.5Sb1.5Te3 microparticles soldered by (N2H5)6Bi0.5Sb1.5Te6 exhibited thermoelectric power factors (~28 μW/cm K2) comparable to those in vacuum-deposited Bi0.5Sb1.5Te3 films. The soldering effect can also be integrated with attractive fabrication techniques for thermoelectric modules, such as screen printing, suggesting the potential of these solders in the rational design of printable and moldable thermoelectrics.

  15. Investigation Of The Effects Of Reflow Profile Parameters On Lead-free Solder Bump Volumes And Joint Integrity

    Science.gov (United States)

    Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.

    2011-01-01

    The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.

  16. Co-design and implementation research: challenges and solutions for ethics committees.

    Science.gov (United States)

    Goodyear-Smith, Felicity; Jackson, Claire; Greenhalgh, Trisha

    2015-11-16

    Implementation science research, especially when using participatory and co-design approaches, raises unique challenges for research ethics committees. Such challenges may be poorly addressed by approval and governance mechanisms that were developed for more traditional research approaches such as randomised controlled trials. Implementation science commonly involves the partnership of researchers and stakeholders, attempting to understand and encourage uptake of completed or piloted research. A co-creation approach involves collaboration between researchers and end users from the onset, in question framing, research design and delivery, and influencing strategy, with implementation and broader dissemination strategies part of its design from gestation. A defining feature of co-creation is its emergent and adaptive nature, making detailed pre-specification of interventions and outcome measures impossible. This methodology sits oddly with ethics committee protocols that require precise pre-definition of interventions, mode of delivery, outcome measurements, and the role of study participants. But the strict (and, some would say, inflexible) requirements of ethics committees were developed for a purpose - to protect participants from harm and help ensure the rigour and transparency of studies. We propose some guiding principles to help square this circle. First, ethics committees should acknowledge and celebrate the diversity of research approaches, both formally (through training) and informally (by promoting debate and discussion); without active support, their members may not understand or value participatory designs. Second, ground rules should be established for co-design applications (e.g. how to judge when 'consultation' or 'engagement' becomes research) and communicated to committee members and stakeholders. Third, the benefits of power-sharing should be recognised and credit given to measures likely to support this important goal, especially in research with

  17. Nano-soldering to single atomic layer

    Science.gov (United States)

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  18. Safer Soldering Guidelines and Instructional Resources

    Science.gov (United States)

    Love, Tyler S.; Tomlinson, Joel

    2018-01-01

    Soldering is a useful and necessary process for many classroom, makerspace, Fab Lab, technology and engineering lab, and science lab activities. As described in this article, soldering can pose many safety risks without proper engineering controls, standard operating procedures, and direct instructor supervision. There are many safety hazards…

  19. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    Science.gov (United States)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  20. Features of soldering of molybdenum a lols

    International Nuclear Information System (INIS)

    Grishin, V.L.; Rybkin, B.V.; Cherkasov, A.F.

    1980-01-01

    Soldering features of complex-alloy molybdenum alloys were investigated in comparison with alloys based on solid solutions. Soldering features of heterogeneous molybdenum base alloys were investigated using samples of 0.5-1.O mm sheets with the strain of about 95% made of ingots which had been smelted in arc vacuum furnaces. The soldering of samples was carried out in 5x1O -5 mm Hg vacuum using different sources of heating: radiation, electron-ray and contact. It was shown that heat-resisting soldered joints of heterogeneous molybdenum alloys could be produced using zirconium and niobium base solders containing the most effective hardeners of the parent material (titanum, vanadium, tantalum, molybdenum, tungsten). To preserve high mechanical properties of heterogeneous alloys it was expedient to use for welding local heating sources which permitted to decrease considerably temperature- time conditions of the process

  1. New Brunswick Market Design Committee : Congestion management issues

    International Nuclear Information System (INIS)

    2001-01-01

    The restructuring of the New Brunswick wholesale power market comprises a number of issues that need to be resolved concerning transmission system related policy decisions and detailed design issues. The wholesale market structure, ownership structure, and means of preventing market power abuses all have an impact on the resolution of many of those issues. Some transmission related decisions regarding congestion management must be made, and they are examined in this document. The report includes a discussion of the issues related to congestion on the transmission system, a review of the decisions that remain to be made while proposing a number of alternatives, reviews decisions that other jurisdictions have made in somewhat similar circumstances. Finally, the advantages and disadvantages of each alternative are identified. Several high level transmission tariff design issues requiring to be addressed later in greater detail are listed in this document. 1 tab

  2. Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    McNally, K.M.; Sorg, B.S.; Welch, A.J.; Dawes, J.M.; Owen, E.R.

    1999-01-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5mgml -1 to 0.25mgml -1 was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4Wcm -2 using a solid protein solder composed of 60% BSA and 0.25mgml -1 ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85±5 deg. C with a

  3. Characterization of the microstructure of tin-silver lead free solder

    Energy Technology Data Exchange (ETDEWEB)

    Hurtony, Tamás, E-mail: hurtony@ett.bme.hu [Department of Electronics Technology, Budapest University of Technology and Economics, Egry József utca 18, Budapest, H-1111 (Hungary); Szakál, Alex; Almásy, László [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Len, Adél [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Faculty of Engineering and Information Technology, University of Pécs (Hungary); Kugler, Sándor [Department of Theoretical Physics, Budapest University of Technology and Economics (Hungary); Bonyár, Attila; Gordon, Péter [Department of Electronics Technology, Budapest University of Technology and Economics, Egry József utca 18, Budapest, H-1111 (Hungary)

    2016-07-05

    Reliability and lifetime are the two most relevant design considerations in the production of safety critical assemblies. For example in a modern automobile dozens of electronic assemblies are integrated in which thousands of solder joints are mounting the electronic components to the printed circuit boards. There exists no standardised and universal observation method for characterising the fine microstructure of such solder joints. Previously we have developed a new method for the quantitative characterization of lead-free solder alloys and in present study the validity of the proposed method is demonstrated. Microstructure of Sn-3.5Ag lead free solder alloy was investigated by electrochemical impedance spectroscopy. Solder samples were solidified with different cooling rates in order to induce differences in the microstructure. Microstructure of the ingots was revealed by selective electrochemical etching. Electrochemical impedance spectra (EIS) were measured before and after the selective etching process. The complex impedance spectra contain information about microstructure of the solder alloys. Comparison and modelling of two EIS spectra allowed obtaining a characteristic parameter of surface structure of the etched specimens. The EIS measurements were complemented with small angle neutron scattering measurements and scanning electron microscopy, in order to correlate the EIS parameter with the magnitude of the interface of the β-Sn and Ag{sub 3}Sn phases.

  4. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints.

    Science.gov (United States)

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-12-01

    Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (ptensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint.

  5. Solderability study of RABiTS-based YBCO coated conductors

    International Nuclear Information System (INIS)

    Zhang Yifei; Duckworth, Robert C.; Ha, Tam T.; Gouge, Michael J.

    2011-01-01

    Study examines the implication of solder and flux selection in YBCO splice joints. Focus is on commercially available RABiTS-based YBCO coated conductors. Solderability varied with solder and flux for three different stabilizations tested. Resistivity of stabilizer was dominant factor in splice joint resistance. Solder materials affected splice joint resistance when solderability was poor. The solderability of commercially available YBa 2 Cu 3 O 7-x (YBCO) coated conductors that were made from Rolling Assisted Biaxially Textured Substrates (RABiTS)-based templates was studied. The coated conductors, also known as second-generation (2G) high temperature superconductor (HTS) wires (in the geometry of flat tapes about 4 mm wide), were laminated with copper, brass, or stainless steel strips as stabilizers. To understand the factors that influence their solderability, surface profilometry and scanning electron microscopy were used to characterize the wire surfaces. The solderability of three solders, 52In48Sn, 67Bi33In, and 100In (wt.%), was evaluated using a standard test (IPC/ECA J-STD-002) and with two different commercial fluxes. It was found that the solderability varied with the solder and flux but the three different wires showed similar solderability for a fixed combination of solder and flux. Solder joints of the 2G wires were fabricated using the tools and the procedures recommended by the HTS wire manufacturer. The solder joints were made in a lap-joint geometry and with the superconducting sides of the two wires face-to-face. The electrical resistances of the solder joints were measured at 77 K, and the results were analyzed to qualify the soldering materials and evaluate the soldering process. It was concluded that although the selection of soldering materials affected the resistance of a solder joint, the resistivity of the stabilizer was the dominant factor.

  6. The constitutive response of three solder materials

    International Nuclear Information System (INIS)

    Perez-Bergquist, Alejandro G.; Cao Fang; Perez-Bergquist, Sara J.; Lopez, Mike F.; Trujillo, Carl P.; Cerreta, Ellen K.; Gray, George T.

    2012-01-01

    Highlights: ► The full constitutive response of three solder materials. ► Test temperatures from −196 °C to 60 °C and strain rates from 10 −3 to >10 3 s −1 . ► Substitutes for leaded solders from a mechanical/microstructural properties view. - Abstract: As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196 °C to 60 °C) and strain rate (10 −3 to >10 3 s −1 ). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.

  7. The constitutive response of three solder materials

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bergquist, Alejandro G., E-mail: alexpb@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, NM 87545 (United States); Cao Fang [Exxon Mobil Research and Engineering Company, Annadale, NJ 08801 (United States); Perez-Bergquist, Sara J.; Lopez, Mike F.; Trujillo, Carl P.; Cerreta, Ellen K.; Gray, George T. [Materials Science and Technology Division, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, NM 87545 (United States)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer The full constitutive response of three solder materials. Black-Right-Pointing-Pointer Test temperatures from -196 Degree-Sign C to 60 Degree-Sign C and strain rates from 10{sup -3} to >10{sup 3} s{sup -1}. Black-Right-Pointing-Pointer Substitutes for leaded solders from a mechanical/microstructural properties view. - Abstract: As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (-196 Degree-Sign C to 60 Degree-Sign C) and strain rate (10{sup -3} to >10{sup 3} s{sup -1}). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.

  8. Optimal parameters for laser tissue soldering

    Science.gov (United States)

    McNally-Heintzelman, Karen M.; Sorg, Brian S.; Chan, Eric K.; Welch, Ashley J.; Dawes, Judith M.; Owen, Earl R.

    1998-07-01

    Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration have led to inconsistencies in published results of laser-solder repair of tissue. To determine optimal parameters for laser tissue soldering, an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The effects of laser irradiance and exposure time on tensile strength of the weld and temperature rise as well as the effect of hydration on bond stability were investigated. Optimum irradiance and exposure times were identified for each solder type. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the weld. A reduction in dye concentration from 2.5 mg/ml to 0.25 mg/ml was also found to result in an increase in tensile strength. The strongest welds were produced with an irradiance of 6.4 W/cm2 for 50 s using a solid protein solder composed of 60% BSA and 0.25 mg/ml ICG. Steady-state solder surface temperatures were observed to reach 85 plus or minus 5 degrees Celsius with a temperature gradient across the solid protein solder strips of between 15 and 20 degrees Celsius. Finally, tensile strength was observed to decrease significantly (20 to 25%) after the first hour of hydration in phosphate-buffered saline. No appreciable change was observed in the strength of the tissue bonds with further hydration.

  9. Thermomechanical Behavior of Monolithic SN-AG-CU Solder and Copper Fiber Reinforced Solders

    National Research Council Canada - National Science Library

    Reuse, Rolando

    2005-01-01

    .... The thermomechanical cycling in the solder causes numerous reliability challenges, mostly because of the mismatch of the coefficient of thermal expansion between the silicon chip and the substrate...

  10. Review of design approaches of advanced pressurized LWRs. Report of a technical committee meeting and workshop

    International Nuclear Information System (INIS)

    1996-01-01

    The Technical Committee Meeting and Workshop was devoted to review and discuss differences and commonalties in the various design approaches with the aim of increasing the understanding of the design decisions taken, and a number of general conclusions were drawn. Though many differences in design approaches were found in the presentations, a number of common features could also be identified. These included design approaches to achieve further improvements with respect to safety, design simplification, reduction in cost, incorporation of feedback from operating experience, and control room improvements regarding human factors and digitization. Design approaches to achieve further improvements in safety included consideration of severe accidents in the design process, increased thermal margins and water inventories, longer grace periods and double containments. Refs, figs and tabs

  11. Review of design approaches of advanced pressurized LWRs. Report of a technical committee meeting and workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The Technical Committee Meeting and Workshop was devoted to review and discuss differences and commonalties in the various design approaches with the aim of increasing the understanding of the design decisions taken, and a number of general conclusions were drawn. Though many differences in design approaches were found in the presentations, a number of common features could also be identified. These included design approaches to achieve further improvements with respect to safety, design simplification, reduction in cost, incorporation of feedback from operating experience, and control room improvements regarding human factors and digitization. Design approaches to achieve further improvements in safety included consideration of severe accidents in the design process, increased thermal margins and water inventories, longer grace periods and double containments. Refs, figs and tabs.

  12. New Brunswick Market Design Committee : market design issues paper : choice of market model

    International Nuclear Information System (INIS)

    2001-01-01

    A model for the competitive electricity market in New Brunswick was not specified by the White Paper: New Brunswick Energy Policy, published in March 2001. One of the tasks of the Market Design Committee (MDC) is to select a market model for the province. This report was prepared with this objective in mind. It begins by providing a description of the basic functions that must be performed by any electricity system. Different market models will function differently, and a descriptions of how the functions would be performed under each model is presented. Considering the specific size and geographic location of New Brunswick, a number of actual markets that could be of interest are presented. The various electricity markets normally use one of four market models: vertically integrated monopoly utility, a competitive pool market, a bilateral contract market, and a single-buyer market. The first model was not explained as it represents the existing, non-competitive model whereby the government owns and/or regulates price and investment decision. The case where a market operator receives bids and offers from buyers and sellers and matches them to derive a price and schedule for the spot market is what is called the competitive pool market. When electricity trade takes place through a series of contracts between individual buyers and sellers, it is referred to as a bilateral contract market. Finally, the single-buyer market is defined as a monopoly where the buyer purchases from multiple sellers based on competition amongst them. Different examples are provided of applications of the three markets described in the paper. Both New England and New Zealand were chosen to better illustrate the concepts of a fully competitive pool-based market, as they either have close ties to New Brunswick, or share physical similarities. The single-buyer model is illustrated by the case of Northern Ireland where size is similar. The choices made in Quebec were described in the final

  13. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  14. Creep-fatigue damage rules for advanced fast reactor design. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-03-01

    The IAEA, following the recommendations of the International Working Group on Fast Reactors, convened a Technical Committee Meeting on Creep-Fatigue Damage Rules to be used in Fast Reactor Design. The objective of the meeting was to review developments in design rules for creep-fatigue conditions and to identify any areas in which further work would be desirable. The meeting was hosted by AEA Technology, Risley, and held in Manchester, United Kingdom, 11-13 June 1996. It was attended by experts from the European Commission, France, India, Japan, the Republic of Korea, the Russian Federation and the United Kingdom. Refs, figs, tabs

  15. Effect of gap distance on tensile strength of preceramic base metal solder joints.

    Science.gov (United States)

    Fattahi, Farnaz; Motamedi, Milad

    2011-01-01

    In order to fabricate prostheses with high accuracy and durability, soldering techniques have been introduced to clinical dentistry. However, these prostheses always fail at their solder joints. The purpose of this study was to evaluate the effect of gap distance on the tensile strength of base metal solder joints. Based on ADA/ISO 9693 specifications for tensile test, 40 specimens were fabricated from a Ni-Cr alloy and cut at the midpoint of 3-mm diameter bar and placed at desired positions by a specially designed device. The specimens were divided into four groups of 10 samples according to the desired solder gap distance: Group1: 0.1mm; Group2: 0.25mm; Group3: 0.5mm; and Group4: 0.75mm. After soldering, specimens were tested for tensile strength by a universal testing machine at a cross-head speed of 0.5mm/min with a preload of 10N. The mean tensile strength values of the groups were 162, 307.8, 206.1 and 336.7 MPa, respectively. The group with 0.75-mm gap had the highest and the group with 0.1-mm gap had the lowest tensile strength. Bonferroni test showed that Group1 and Group4 had statistically different values (P=0.023), but the differences between other groups were not sig-nificant at a significance level of 0.05. There was no direct relationship between increasing soldering gap distance and tensile strength of the solder joints.

  16. Fundamentals of lead-free solder interconnect technology from microstructures to reliability

    CERN Document Server

    Lee, Tae-Kyu; Kim, Choong-Un; Ma, Hongtao

    2015-01-01

    This unique book provides an up-to-date overview of the fundamental concepts behind lead-free solder and interconnection technology. Readers will find a description of the rapidly increasing presence of electronic systems in all aspects of modern life as well as the increasing need for predictable reliability in electronic systems. The physical and mechanical properties of lead-free solders are examined in detail, and building on fundamental science, the mechanisms responsible for damage and failure evolution, which affect reliability of lead-free solder joints are identified based on microstructure evolution.  The continuing miniaturization of electronic systems will increase the demand on the performance of solder joints, which will require new alloy and processing strategies as well as interconnection design strategies. This book provides a foundation on which improved performance and new design approaches can be based.  In summary, this book:  Provides an up-to-date overview on lead-free soldering tech...

  17. Thermomechanical fatigue life prediction for several solders

    Science.gov (United States)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  18. Conceptual designs of advanced fast reactor. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-10-01

    A Technical Committee meeting (TCM) was held on Conceptual Designs of Advanced Fast Power Reactors to review the lessons learned from the construction and operation of demonstration and near-commercial size plants. This TCM focused on design and development of advanced fast reactors and identified methodologies to evaluate the economic competitiveness and reliability of advanced projects. The Member States which participated in the TCM were at different stages of LMFR development. The Russian Federation, Japan and India had prototype and/or experimental LMFRs and continue with mature R and D programmes. China, the Republic of Korea and Brazil were at the beginning of LMFR development. Therefore the aims of the TCM were to obtain technical descriptions of different design approaches for experimental, prototype, demonstration and commercial LMFRs, and to describe the engineering judgements made in developing the design approaches. Refs, figs, tabs

  19. Conceptual designs of advanced fast reactor. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A Technical Committee meeting (TCM) was held on Conceptual Designs of Advanced Fast Power Reactors to review the lessons learned from the construction and operation of demonstration and near-commercial size plants. This TCM focused on design and development of advanced fast reactors and identified methodologies to evaluate the economic competitiveness and reliability of advanced projects. The Member States which participated in the TCM were at different stages of LMFR development. The Russian Federation, Japan and India had prototype and/or experimental LMFRs and continue with mature R and D programmes. China, the Republic of Korea and Brazil were at the beginning of LMFR development. Therefore the aims of the TCM were to obtain technical descriptions of different design approaches for experimental, prototype, demonstration and commercial LMFRs, and to describe the engineering judgements made in developing the design approaches. Refs, figs, tabs.

  20. Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.

  1. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  2. Microstructure evolution and thermomechanical fatigue of solder materials

    NARCIS (Netherlands)

    Matin, M.A.

    2005-01-01

    The microelectronics industry is confronted with the new challenge to produce joints with lead-free solder materials replacing classical tin-lead solders in devices used in many fields (e.g. consumer electronics, road transport, aviation, space-crafts, telecommunication). In service, solder

  3. Efforts to Develop a 300°C Solder

    Energy Technology Data Exchange (ETDEWEB)

    Norann, Randy A [Perma Works LLC

    2015-01-25

    This paper covers the efforts made to find a 300°C electrical solder solution for geothermal well monitoring and logging tools by Perma Works LLC. This paper covers: why a high temperature solder is needed, what makes for a good solder, testing flux, testing conductive epoxy and testing intermetallic bonds. Future areas of research are suggested.

  4. Small reactors with simplified design. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    There is a potential future need for small reactors for applications such as district heating, electricity production at remote locations and desalination. Nuclear energy can provide an environmentally benign alternative to meet these needs. For successful deployment, small reactors must satisfy the requirements of users, regulators and the general public. The IAEA has been following the developments in the field of small reactors as a part of the sub-programme on advanced reactor technology. In accordance with the interests of Member States, a Technical Committee meeting (TCM) was organized in Mississauga, Ontario, Canada, 15-19 May 1995 to discuss the status of designs and design requirements related to small reactors for diverse applications. The papers presented at the TCM and a summary of the discussions are contained in this TECDOC which, it is hoped, will serve the Member States as a useful source of technical information on the development of small reactors with simplified design

  5. Small reactors with simplified design. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    There is a potential future need for small reactors for applications such as district heating, electricity production at remote locations and desalination. Nuclear energy can provide an environmentally benign alternative to meet these needs. For successful deployment, small reactors must satisfy the requirements of users, regulators and the general public. The IAEA has been following the developments in the field of small reactors as a part of the sub-programme on advanced reactor technology. In accordance with the interests of Member States, a Technical Committee meeting (TCM) was organized in Mississauga, Ontario, Canada, 15-19 May 1995 to discuss the status of designs and design requirements related to small reactors for diverse applications. The papers presented at the TCM and a summary of the discussions are contained in this TECDOC which, it is hoped, will serve the Member States as a useful source of technical information on the development of small reactors with simplified design. Refs, figs, tabs.

  6. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction

    Science.gov (United States)

    Takaku, Yoshikazu; Ohnuma, Ikuo; Kainuma, Ryosuke; Yamada, Yasushi; Yagi, Yuji; Nishibe, Yuji; Ishida, Kiyohito

    2006-11-01

    Bismuth and its alloys are candidates for Pb-free high-temperature solders that can be substituted for conventional Pb-rich Pb-Sn solders (melting point (mp) = 573 583 K). However, inferior properties such as brittleness and weak bonding strength should be improved for practical use. To that end, BiCu-X (X=Sb, Sn, and Zn) Pb-free high-temperature solders are proposed. Miscibility gaps in liquid BiCu-X alloys were surveyed using the thermodynamic database ADAMIS (alloy database for micro-solders), and compositions of the BiCu-X solders were designed on the basis of calculation. In-situ composite solders that consist of a Bi-base matrix with fine intermetallic compound (IMC) particles were produced by gas-atomizing and melt-spinning methods. The interfacial reaction between in-situ composite solders and Cu or Ni substrates was investigated. The IMCs at the interface formed a thin, uniform layer, which is an appropriate morphology for a reliable solder joint.

  7. THE POSSIBILITY OF USING LASER-ULTRASOUND TO MONITOR THE QUALITY SOLDERED CONNECTIONS CHAMBERS OF LIQUID ROCKET ENGINES

    Directory of Open Access Journals (Sweden)

    N. V. Astredinova

    2014-01-01

    Full Text Available During the manufacturing process to the design of modern liquid rocket engines are presented important requirements, such as minimum weight, maximum stiffness and strength of nodes, maximum service life in operation, high reliability and quality of soldered and welded seams. Due to the high quality requirements soldered connections and the specific design of the nozzle, it became necessary in the development and testing of a new non-conventional non-destructive testing method – laser-ultrasound diagnosis. In accordance with regulatory guidelines, quality control soldered connections is allowed to use an acoustic kind of control methods of the reflected light, transmitted light, resonant, free vibration and acoustic emission. Attempts to use traditional methods of non-destructive testing did not lead to positive results. This is due primarily to the size of typical solder joint defects, as well as the structural features of the rocket engine, the data structure is not controllable. In connection with this, a new method that provides quality control soldered connections cameras LRE based on the thermo generation of ultrasound. Methods of ultrasonic flaw detection of photoacoustic effect, in most cases, have a number of advantages over methods that use standard (traditional piezo transducers. In the course of studies have found that the sensitivity of the laser-ultrasonic method and flaw detector UDL-2M can detect lack of adhesion in the solder joints on the upper edges of the nozzle in the sub-header area of the site.

  8. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  9. A Hodge dual for soldered bundles

    International Nuclear Information System (INIS)

    Lucas, Tiago Gribl; Pereira, J G

    2009-01-01

    In order to account for all possible contractions allowed by the presence of the solder form, a generalized Hodge dual is defined for the case of soldered bundles. Although for curvature the generalized dual coincides with the usual one, for torsion it gives a completely new dual definition. Starting from the standard form of a gauge Lagrangian for the translation group, the generalized Hodge dual yields precisely the Lagrangian of the teleparallel equivalent of general relativity, and consequently also the Einstein-Hilbert Lagrangian of general relativity

  10. Visual detection of defects in solder joints

    Science.gov (United States)

    Blaignan, V. B.; Bourbakis, Nikolaos G.; Moghaddamzadeh, Ali; Yfantis, Evangelos A.

    1995-03-01

    The automatic, real-time visual acquisition and inspection of VLSI boards requires the use of machine vision and artificial intelligence methodologies in a new `frame' for the achievement of better results regarding efficiency, products quality and automated service. In this paper the visual detection and classification of different types of defects on solder joints in PC boards is presented by combining several image processing methods, such as smoothing, segmentation, edge detection, contour extraction and shape analysis. The results of this paper are based on simulated solder defects and a real one.

  11. An Approach for Impression Creep of Lead Free Microelectronic Solders

    Science.gov (United States)

    Anastasio, Onofrio A.

    2002-06-01

    Currently, the microelectronics industry is transitioning from lead-containing to lead-free solders in response to legislation in the EU and Japan. Before an alternative alloy can be designated as a replacement for current Pb-Sn extensive testing must be accomplished. One major characteristic of the alloy that must be considered is creep. Traditionally, creep testing requires numerous samples and a long tin, which thwarts the generation of comprehensive creep databases for difficult to prepare samples such as microelectronic solder joints. However, a relatively new technique, impression creep enables us to rapidly generate creep data. This test uses a cylindrical punch with a flat end to make an impression on the surface of a specimen under constant load. The steady state velocity of the indenter is found to have the same stress and temperature dependence as the conventional unidirectional creep test using bulk specimens. This thesis examines impression creep tests of eutectic Sn-Ag. A testing program and apparatus was developed constructed based on a servo hydraulic test frame. The apparatus is capable of a load resolution of 0.01N with a stability of plus/minus 0.1N, and a displacement resolution of 0.05 microns with a stability of plus/minus 0.1 microns. Samples of eutectic Sn-Ag solder were reflowed to develop the microstructure used in microelectronic packaging. Creep tests were conducted at various stresses and temperatures and showed that coarse microstructures creep more rapidly than the microstructures in the tested regime.

  12. Processing and Characterization of NiTi Shape Memory Alloy Particle Reinforced Sn-In Solders

    National Research Council Canada - National Science Library

    Chung, Kohn C

    2006-01-01

    .... In previous work, it was proposed that reinforcement of solder by NiTi shape memory alloy particles to form smart composite solder reduces the inelastic strain of the solder and hence, may enhance...

  13. Appendix to the report from the low-residue soldering task force: Phase 2 results

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.; Anderson, D.J.; Huffman, D.D. [and others

    1995-12-01

    The LRSTF report for Phase I of its evaluation of low-residue soldering was issued in June 1995. This Appendix summarizes the results of follow-on testing performed in Phase II and compares electrical test results for both phases. Deliberate decisions were made by the LRSTF in Phase I to challenge the design guideline limits in MILSTD-275, Printed Wiring for Electronic Equipment The LRSTF considered this approach to produce a ``worst case`` design and provide useful information about the robustness of LR soldering processes. As such, good design practices were sometimes deliberately violated in designing the LRSTF board. This approach created some anomalies for both LR boards and RMA/cleaned controls. Phase II testing verified that problems that affected both RMA/cleaned and LR boards in Phase I were design related.

  14. Characterizing performances of solder paste printing process at flexible manufacturing lines

    International Nuclear Information System (INIS)

    Siew, Jit Ping; Low, Heng Chin; Teoh, Ping Chow

    2015-01-01

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter

  15. Characterizing performances of solder paste printing process at flexible manufacturing lines

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Jit Ping; Low, Heng Chin [University of Science Malaysia, 11800 Minden, Penang (Malaysia); Teoh, Ping Chow [Wawasan Open University, 54 Jalan Sultan Ahmad Shah, 10050 Penang (Malaysia)

    2015-02-03

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter.

  16. Effect of Solder Flux Residues on Corrosion of Electronics

    DEFF Research Database (Denmark)

    Hansen, Kirsten Stentoft; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Flux from ‘No Clean’ solder processes can cause reliability problems in the field due to aggressive residues, which may be electrical conducting or corrosive in humid environments. The solder temperature during a wave solder process is of great importance to the amount of residues left on a PCBA...... testing and use in the field, consequences and recommendations are given. Failures, caused by harsh[1] customer environments, are not covered in this paper....

  17. Mechanical properties of soldered joints of niobium base alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.

    1980-01-01

    Mechanical properties of soldered joints of niobium alloys widely distributed in industry: VN3, VN4, VN5A, VN5AE, VN5AEP etc., 0.6-1.2 mm thick are investigated. It is found out that the usage of zirconium-vanadium, titanium-tantalum solders for welding niobium base alloys permits to obtain soldered joints with satisfactory mechanical properties at elevated temperatures

  18. Evaluation on the characteristics of tin-silver-bismuth solder

    Science.gov (United States)

    Xia, Z.; Shi, Y.; Chen, Z.

    2002-02-01

    Tin-silver-bismuth solder is characterized by its lower melting point, good wetting behavior, and good mechanical property for which it is expected to be a new lead-free solder to replace tin-lead solder. In this article, Sn-3.33Ag-4.83Bi solder was investigated concerning its physical, spreading, and mechanical properties under specific conditions. Cooling curves and DSC results showed that it was close to eutectic composition (m.p. 210° 212 °C). Coefficiency of thermal expansion (CTE) of this solder, between that of PCBs and copper substrates, was beneficial to alleviate the thermal mismatch of the substrates. It was also a good electrical and thermal conductor. Using a rosin-based, mildly activated (RMA) flux, a spreading test indicated that SnAgBi solder paste had good solderability. Meanwhile, the solder had high tensile strength and fracture energy. Its fracture mechanism was a mixture of ductile and brittle fracture morphology. The metallographic and EDAX analyses indicated that it was composed of a tin-based solid solution and some intermetallic compound (IMC) that could strengthen the substrate. However, these large needle-like IMCs would cut the substrate and this resulted in the decreasing of the toughness of the solder.

  19. Performance of operating and advanced light water reactor designs. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-10-01

    Nuclear power can provide security of energy supply, stable energy costs, and can contribute to greenhouse gas reduction. To fully realize these benefits, a continued and strong focus must be maintained on means for assuring the economic competitiveness of nuclear power relative to alternatives. Over the past several years, considerable improvements have been achieved in nuclear plant performance. Worldwide, the average energy availability factor has increased from 66 per cent in 1980 to 81 per cent in 1999, with some utilities achieving significantly higher values. This is being achieved through integrated programmes including personnel training and quality assurance, improvements in plant system and component design and plant operation, by various means to reduce outage duration for maintenance and refuelling and other scheduled shutdowns, and by reducing the number of forced outages. Application of technical means for achieving high performance of nuclear power plants is an important element for assuring their economic competitiveness. For the current plants, proper management includes development and application of better technologies for inspection, maintenance and repair. For future plants, the opportunity exists during the design phase to incorporate design features and technologies for achieving high performance. This IAEA Technical Committee meeting (TCM) provided a forum for information exchange on design features and technologies incorporated into LWR plants commissioned within the last 15-20 years, and into evolutionary LWR designs still under development, for achieving performance improvements with due regard to stringent safety requirements and objectives. It also addressed on-going technology development expected to achieve further improvements and/or significant cost reductions. The TCM was attended by 32 participants from 14 Member States: Argentina, Bulgaria, Czech Republic, Finland, France, Germany, Hungary, Japan, Republic of Korea, Mexico

  20. Reliability Study of Solder Paste Alloy for the Improvement of Solder Joint at Surface Mount Fine-Pitch Components

    Directory of Open Access Journals (Sweden)

    Mohd Nizam Ab. Rahman

    2014-12-01

    Full Text Available The significant increase in metal costs has forced the electronics industry to provide new materials and methods to reduce costs, while maintaining customers’ high-quality expectations. This paper considers the problem of most electronic industries in reducing costly materials, by introducing a solder paste with alloy composition tin 98.3%, silver 0.3%, and copper 0.7%, used for the construction of the surface mount fine-pitch component on a Printing Wiring Board (PWB. The reliability of the solder joint between electronic components and PWB is evaluated through the dynamic characteristic test, thermal shock test, and Taguchi method after the printing process. After experimenting with the dynamic characteristic test and thermal shock test with 20 boards, the solder paste was still able to provide a high-quality solder joint. In particular, the Taguchi method is used to determine the optimal control parameters and noise factors of the Solder Printer (SP machine, that affects solder volume and solder height. The control parameters include table separation distance, squeegee speed, squeegee pressure, and table speed of the SP machine. The result shows that the most significant parameter for the solder volume is squeegee pressure (2.0 mm, and the solder height is the table speed of the SP machine (2.5 mm/s.

  1. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    This document reports the position and recommendations of the NRC Piping Review Committee, Task Group on Seismic Design. The Task Group considered overlapping conservation in the various steps of seismic design, the effects of using two levels of earthquake as a design criterion, and current industry practices. Issues such as damping values, spectra modification, multiple response spectra methods, nozzle and support design, design margins, inelastic piping response, and the use of snubbers are addressed. Effects of current regulatory requirements for piping design are evaluated, and recommendations for immediate licensing action, changes in existing requirements, and research programs are presented. Additional background information and suggestions given by consultants are also presented.

  2. Laser-activated protein solder for peripheral nerve repair

    Science.gov (United States)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  3. Soldering of copper-clad niobium--titanium superconductor composite

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Woodhouse, J.J.; Easton, D.S.

    1977-04-01

    When superconductivity is applied to various electrical devices, the joining of the superconducting material and the performance of the joints are generally crucial to the successful operation of the system. Although many techniques are being considered for joining composite superconductors, soldering is the most common. We determined the wetting and flow behavior of various solder and flux combinations on a copper-clad Nb-Ti composite, developed equipment and techniques for soldering and inspection of lap joints, and determined the shear strength of joints at temperatures down to -269 0 C (4 0 K). We studied 15 solders and 17 commercial and experimental fluxes in the wettability and flow tests. A resistance unit was built for soldering test specimens. A series of samples soldered with 80 Pb-20 Sn, 83 Pb-15 Sn-2 Sb, 97.5 Pb-1.5 Ag-1 Sn, 80 In-15 Pb-5 Ag, or 25 In-37.5 Pb-37.5 Sn (wt percent) was inspected by three nondestructive techniques. Through-transmission ultrasound gave the best correlation with nonbond areas revealed in peel tests. Single-lap shear specimens soldered with 97.5 Pb-1.5 Ag-1 Sn had the highest strength (10.44 ksi, 72 MPa) and total elongation (0.074 in., 1.88 mm) at -269 0 C (4 0 K) of four solders tested

  4. Evaluating print performance of Sn-Ag-Cu lead-free solder pastes used in electronics assembly process

    Science.gov (United States)

    Mallik, S.; Bauer, R.; Hübner, F.; Ekere, N. N.

    2011-01-01

    Solder paste is the most widely used interconnection material in the electronic assembly process for attaching electronic components/devices directly onto the surface of printed circuit boards, using stencil printing process. This paper evaluates the performance of three different commercially available Sn-Ag-Cu solder pastes formulated with different particle size distributions (PSD), metal content and alloy composition. A series of stencil printing tests were carried out using a specially designed stencil of 75 μm thickness and apertures of 300×300 μm2 dimension and 500 μm pitch sizes. Solder paste printing behaviors were found related to attributes such as slumping and surface tension and printing performance was correlated with metal content and PSD. The results of the study should benefit paste manufacturers and SMT assemblers to improve their products and practices.

  5. Integration of environmentally compatible soldering technologies for waste minimization

    International Nuclear Information System (INIS)

    Hosking, F.M.

    1992-01-01

    There has been a concentrated effort throughout the international microelectronics industry to phase out chlorofluorocarbon (CFC) materials and alleviate the serious problem of ozone depletion created by the release of CFCS. The development of more environmentally compatible manufacturing technologies is the cornerstone of this effort. Alternative materials and processes for cleaning and soldering have received special attention. Electronic. soldering typically utilizes rosin-based fluxes to promote solder wettability. Flux residues must be removed from the soldered parts when high product reliability is essential. Halogenated or CFC solvents have been the principle chemicals used to clean the residues. With the accelerated push to eliminate CFCs in the US by 1995, CFC-free solvents, aqueous-based cleaning, water soluble or ''no clean'' fluxes, and fluxless soldering technologies are being developed and quickly integrated into manufacturing practice. Sandia's Center for Solder Science and Technology has been ch g a variety of fluxless and alternative soldering technologies for DOE's waste minimization program. The work has focused on controlled atmosphere, laser, and ultrasonic fluxless soldering, protective metallic and organic coatings, and fluxes which have water soluble or low solids-based chemistries. With the increasing concern that Pb will also be banned from electronic soldering, Sandia has been characterizing the wetting, aging, and mechanical properties of Pb-fire solder alloys. The progress of these integrated studies will be discussed. Their impact on environmentally compatible manufacturing will be emphasized. Since there is no universal solution to the various environmental, safety, and health issues which currently face industry, the proposed technologies offer several complementary materials and processing options from which one can choose

  6. Microstructurally Adaptive Constitutive Relations and Reliability Assessment Protocols for Lead Free Solder

    Science.gov (United States)

    2015-05-05

    under bump metallurgy and solder joint geometry on Sn grain morphology in Pb free solder joints were examined. SnAgCu solder joints were examined for...free solder interconnects”, Sci. Technol. Weld . Join. 13, 732 (2008). [3.25] Terashima, S., Takahama, K., Nozaki, M., and Tanaka, M. Recrystallization

  7. Characterization of lead-free solders for electronic packaging

    Science.gov (United States)

    Ma, Hongtao

    The characterization of lead-free solders, especially after isothermal aging, is very important in order to accurately predict the reliability of solder joints. However, due to lack of experimental testing standards and the high homologous temperature of solder alloys (Th > 0.5T m even at room temperature), there are very large discrepancies in both the tensile and creep properties provided in current databases for both lead-free and Sn-Pb solder alloys. In this research, mechanical measurements of isothermal aging effects and the resulting changes in the materials behavior of lead-free solders were performed. A novel specimen preparation procedure was developed where the solder uniaxial test specimens are formed in high precision rectangular cross-section glass tubes using a vacuum suction process. Using specimens fabricated with the developed procedure, isothermal aging effects and viscoplastic material behavior evolution have been characterized for 95.5Sn-4.0Ag-0.5Cu (SAC405) and 96.5Sn-3.0Ag-0.5Cu (SAC305) lead-free solders, which are commonly used as the solder ball alloy in lead-free BGAs and other components. Analogous tests were performed with 63Sn-37Pb eutectic solder samples for comparison purposes. Up to 40% reduction in tensile strength was observed for water quenched specimens after two months of aging at room temperature. Creep deformation also increased dramatically with increasing aging durations. Microstructural changes during room temperature aging were also observed and recorded for the solder alloys and correlated with the observed mechanical behavior changes. Aging effects at elevated temperatures for up to 6 months were also investigated. Thermal aging caused significant tensile strength loss and deterioration of creep deformation. The thermal aging results also showed that after an initial tensile strength drop, the Sn-Pb eutectic solder reached a relatively stable stage after 200 hours of aging. However, for SAC alloy, both the tensile and

  8. Effect of solder bump size on interfacial reactions during soldering between Pb-free solder and Cu and Ni/ Pd/ Au surface finishes

    International Nuclear Information System (INIS)

    NorAkmal, F.; Ourdjini, A.; Azmah Hanim, M.A.; Siti Aisha, I.; Chin, Y.T.

    2007-01-01

    Flip chip technology provides the ultimate in high I/ O-density and count with superior electrical performance for interconnecting electronic components. Therefore, the study of the intermetallic compounds was conducted to investigate the effect of solder bumps sizes on several surface finishes which are copper and Electroless Nickel/ Electroless Palladium/ Immersion Gold (ENEPIG) which is widely used in electronics packaging as surface finish for flip-chip application nowadays. In this research, field emission scanning electron microscopy (FESEM) analysis was conducted to analyze the morphology and composition of intermetallic compounds (IMCs) formed at the interface between the solder and UBM. The IMCs between the SAC lead-free solder with Cu surface finish after reflow were mainly (Cu, Ni) 6 Sn 5 and Cu 6 Sn 5 . While the main IMCs formed between lead-free solder on ENEPIG surface finish are (Ni, Cu) 3 Sn 4 and Ni 3 Sn 4 . The results from FESEM with energy dispersive x-ray (EDX) have revealed that isothermal aging at 150 degree Celsius has caused the thickening and coarsening of IMCs as well as changing them into more spherical shape. The thickness of the intermetallic compounds in both finishes investigated was found to be higher in solders with smaller bump size. From the experimental results, it also appears that the growth rate of IMCs is higher when soldering on copper compared to ENEPIG finish. Besides that, the results also showed that the thickness of intermetallic compounds was found to be proportional to isothermal aging duration. (author)

  9. Soldering formalism in noncommutative field theory: a brief note

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2004-01-01

    In this Letter, I develop the soldering formalism in a new domain--the noncommutative planar field theories. The soldering mechanism fuses two distinct theories showing opposite or complimentary properties of some symmetry, taking into account the interference effects. The above mentioned symmetry is hidden in the composite (or soldered) theory. In the present work it is shown that a pair of noncommutative Maxwell-Chern-Simons theories, having opposite signs in their respective topological terms, can be consistently soldered to yield the Proca model (Maxwell theory with a mass term) with corrections that are at least quadratic in the noncommutativity parameter. We further argue that this model can be thought of as the noncommutative generalization of the Proca theory of ordinary spacetime. It is well known that abelian noncommutative gauge theory bears a close structural similarity with non-abelian gauge theory. This fact is manifested in a non-trivial way if the present Letter is compared with existing literature, where soldering of non-abelian models are discussed. Thus the present work further establishes the robustness of the soldering programme. The subtle role played by gauge invariance (or the lack of it), in the above soldering process, is revealed in an interesting way

  10. Utilization of Pb-free solders in MEMS packaging

    Science.gov (United States)

    Selvaduray, Guna S.

    2003-01-01

    Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

  11. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  12. Safety related design and economic aspects of HTGRs. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    The purpose of the Technical Committee Meeting (TCM) was to provide the opportunity to review the status of design and development activities associated with safety related and economic aspects of HTGRs, and to identify pathways which may provide the opportunity for international cooperation in addressing these issues. The HTGR, as a nuclear heat source for the safe, economic and efficient production of electricity and high temperature industrial processes has, within the past few years, become a significantly increasing influence in the future of nuclear power. Nuclear test facilities with the capability of achieving core outlet temperatures to 950 deg. C are presently under construction in China and Japan. These plants will be utilized to support HTGR research and development activities, including electricity generation via the gas turbine and validation of high temperature process heat applications. Also, major development programmes focusing on the generation of electricity through the direct cycle gas turbine are in progress by ESKOM, the state electric utility of South Africa, and by a consortium of organizations from the Russian Federation, USA, France and Japan. Other national programmes focusing on research and development of the HTGR are underway including the Netherlands, where an evaluation is being completed on a heat and power co-generation plant utilizing a small direct cycle HTR; in Germany, where the primary focus is centered on basic issues of reactor safety and innovative reactor technology; in Indonesia with the evaluation of process heat applications such as coal liquefaction, hydrogen production and high temperature reforming of methane; and in the USA with the recent re-introduction of national support for the HTGR specifically directed to the burning of weapons plutonium. The status information presented in several of the papers is as of the time of drafting. Thus other later material should be referenced for more current status information

  13. Safety related design and economic aspects of HTGRs. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-04-01

    The purpose of the Technical Committee Meeting (TCM) was to provide the opportunity to review the status of design and development activities associated with safety related and economic aspects of HTGRs, and to identify pathways which may provide the opportunity for international cooperation in addressing these issues. The HTGR, as a nuclear heat source for the safe, economic and efficient production of electricity and high temperature industrial processes has, within the past few years, become a significantly increasing influence in the future of nuclear power. Nuclear test facilities with the capability of achieving core outlet temperatures to 950 deg. C are presently under construction in China and Japan. These plants will be utilized to support HTGR research and development activities, including electricity generation via the gas turbine and validation of high temperature process heat applications. Also, major development programmes focusing on the generation of electricity through the direct cycle gas turbine are in progress by ESKOM, the state electric utility of South Africa, and by a consortium of organizations from the Russian Federation, USA, France and Japan. Other national programmes focusing on research and development of the HTGR are underway including the Netherlands, where an evaluation is being completed on a heat and power co-generation plant utilizing a small direct cycle HTR; in Germany, where the primary focus is centered on basic issues of reactor safety and innovative reactor technology; in Indonesia with the evaluation of process heat applications such as coal liquefaction, hydrogen production and high temperature reforming of methane; and in the USA with the recent re-introduction of national support for the HTGR specifically directed to the burning of weapons plutonium. The status information presented in several of the papers is as of the time of drafting. Thus other later material should be referenced for more current status information

  14. Solder bond requirement for large, built-up, high-performance conductors

    International Nuclear Information System (INIS)

    Willig, R.L.

    1981-01-01

    Some large built-up conductors fabricated for large superconducting magnets are designed to operate above the maximum recovery current. Because the stability of these conductors is sensitive to the quality of the solder bond joining the composite superconductor to the high-conductivity substrate, a minimum bond requirement is necessary. The present analysis finds that the superconductor is unstable and becomes abruptly resistive when there are temperature excursions into the current sharing region of a poorly bonded conductor. This abrupt transition, produces eddy current heating in the vicinity of the superconducting filaments and causes a sharp reduction in the minimum propagating zone (MPZ) energy. This sensitivity of the MPZ energy to the solder bond contact area is used to specify a minimum bond requirement. For the superconducting MHD magnet built for the Component Development Integration Facility (CDIF), the minimum bonded surface area is .68 cm/sup 2//cm which is 44% of the composite perimeter. 5 refs

  15. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  16. Manipulation and soldering of carbon nanotubes using atomic force microscope

    International Nuclear Information System (INIS)

    Kashiwase, Yuta; Ikeda, Takayuki; Oya, Takahide; Ogino, Toshio

    2008-01-01

    Manipulation of carbon nanotubes (CNTs) by an atomic force microscope (AFM) and soldering of CNTs using Fe oxide nanoparticles are described. We succeeded to separate a CNT bundle into two CNTs or CNT bundles, to move the separated CNT to a desirable position, and to bind it to another bundle. For the accurate manipulation, load of the AFM cantilever and frequency of the scan were carefully selected. We soldered two CNTs using an Fe oxide nanoparticle prepared from a ferritin molecule. The adhesion forces between the soldered CNTs were examined by an AFM and it was found that the CNTs were bound, though the binding force was not strong

  17. Design measures for prevention and mitigation of severe accidents at advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-06-01

    Over 8500 reactor-years of operating experience have been accumulated with the current nuclear energy systems. New generations of nuclear power plants are being developed, building upon this background of experience. During the last decade, requirements for equipment specifically intended to minimize releases of radioactive material to the environment in the event of a core melt accident have been introduced, and designs for new plants include measures for preventing and mitigating a range of severe accident scenarios. The IAEA Technical Committee Meeting on Impact of Severe Accidents on Plant Design and Layout of Advanced Water Cooled Reactors was jointly organized by the Department of Nuclear Energy and the Department of Nuclear Safety to review measures which are being incorporated into advanced water cooled reactor designs for preventing and mitigating severe accidents, the status of experimental and analytical investigations of severe accident phenomena and challenges which support design decisions and accident management procedures, and to understand the impact of explicitly addressing severe accidents on the cost of nuclear power plants. This publication is intended to provide an objective source of information on this topic. It includes 14 papers presented at the Technical Committee meeting held in Vienna between 21-25 October 1996. It also includes a Summary and Findings of the Working Groups. The papers were grouped in three sections. A separate abstract was prepared for each paper

  18. Effect of soldering techniques and gap distance on tensile strength of soldered Ni-Cr alloy joint.

    Science.gov (United States)

    Lee, Sang-Yeob; Lee, Jong-Hyuk

    2010-12-01

    The present study was intended to evaluate the effect of soldering techniques with infrared ray and gas torch under different gap distances (0.3 mm and 0.5 mm) on the tensile strength and surface porosity formation in Ni-Cr base metal alloy. Thirty five dumbbell shaped Ni-Cr alloy specimens were prepared and assigned to 5 groups according to the soldering method and the gap distance. For the soldering methods, gas torch (G group) and infrared ray (IR group) were compared and each group was subdivided by corresponding gap distance (0.3 mm: G3 and IR3, 0.5 mm: G5, IR5). Specimens of the experimental groups were sectioned in the middle with a diamond disk and embedded in solder blocks according to the predetermined distance. As a control group, 7 specimens were prepared without sectioning or soldering. After the soldering procedure, a tensile strength test was performed using universal testing machine at a crosshead speed 1 mm/min. The proportions of porosity on the fractured surface were calculated on the images acquired through the scanning electronic microscope. Every specimen of G3, G5, IR3 and IR5 was fractured on the solder joint area. However, there was no significant difference between the test groups (P > .05). There was a negative correlation between porosity formation and tensile strength in all the specimens in the test groups (P tensile strength of joints and porosity formations between the gas-oxygen torch soldering and infrared ray soldering technique or between the gap distance of 0.3 mm and 0.5 mm.

  19. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  20. Development of a soft-soldering system for aluminum

    Science.gov (United States)

    Falke, W. L.; Lee, A. Y.; Neumeier, L. A.

    1983-03-01

    The method employs application of a thin nickel copper alloy coating to the substrate, which enables the tin lead solders to wet readily and spread over the areas to be joined. The aluminum substrate is mechanically or chemically cleaned to facilitate bonding to a minute layer of zinc that is subsequently applied, with an electroless zincate solution. The nickel copper alloy (30 to 70 pct Ni) coating is then applied electrolytically over the zinc, using immersion cell or brush coating techniques. Development of acetate electrolytes has permitted deposition of the proper alloys coatings. The coated areas can then be readily joined with conventional tin lead solders and fluxs. The joints so formed are ductile, strong, and relatively corrosion resistant, and exhibit strengths equivalent to those formed on copper and brass when the same solders and fluxes are used. The method has also been employed to soft solder magnesium alloys.

  1. Development of gold based solder candidates for flip chip assembly

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders...

  2. Strength of joints brazed with two-phase solders

    International Nuclear Information System (INIS)

    Shnyakin, N.S.; Parfenova, L.V.; Ekatova, A.S.; Prilepskaya, I.V.

    1976-01-01

    Dependence of the structure and strength of soldered joints upon a gap size in case of 1Kh18N10T stainless steel soldering with a double-phase solder of Ni-Zn-Cu system is described. Butt and lap joints have been subjected to soldering with gas-flame and induction heating. The optimum conditions of the solder crystallization are determined with wedge-gap samples. The studies show that the character of distribution of a fusible β-phase in metal depends upon a gap size. With gaps up to 0.1 mm the β-phase enriched with a fusible component (zinc) runs as a continuous thin interlayer in the middle of the seam. As a result of zinc evaporation from the β-phase this interlayer becomes internally oxidized. After the sample is broken an oxidized fracture gives one the impression of a poor fusion in the middle part of the joint. The ultimate strength of butt joints is 15-20 kgf/sq.mm. A value of thermal expansion of 1Kh18N10T steel samples, 1-5 mm thick, has been experimentally determined for butt soldering. The elongation of two halves of the sample is measured by an indicator and proved to be 0.89 mm for a 50x50x2 mm sample at a soldering temperature of 1.100 deg C. The paper presents methods for the calculation of an optimal gap value for butt soldering with a local gas-flame and induction heating

  3. Characteristics of solder joints under fatigue loads using piezomechanical actuation

    Science.gov (United States)

    Shim, Dong-Jin; Spearing, S. Mark

    2003-07-01

    Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.

  4. Laser Soldering of Rat Skin Using a Controlled Feedback System

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Nourbakhsh

    2009-03-01

    Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.

  5. Tensile strength of two soldered alloys (Minalux and Verabond2

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Rezaee S

    2002-07-01

    Full Text Available Recently. Minalux alloy, a base metal free from Be, has been presented on the market while no special soldering has been recommended for it. On the other hand, based on the manufacturer's claim, this alloy is similar to Verabond2. The aim of this study was to investigate the tensile strength of Minalux and Verabond2, soldered by Verasolder. Twelve standard dambble shape samples, with the length of 18 mm and the diameter of 3mm, were prepared from each alloy. Six samples of each alloy were divided into two pieces with carboradom disk. Soldering gap distance was 0.3mm, measured by a special jig and they were soldered by Verasolder alloy. Six other samples, of both Iranian and foreign unsoldered alloys were considered as control group. Then samples were examined under tensile force and their tensile strength was recorded. Two- way variance analysis showed that the tensile strength of Minalux alloy and Verabond2 were not statistically significant (Verasoler 686, Minalux 723, but after soldering, such difference became significant (Minalux 308, Verabond2 432. Verabond2 showed higher tensile strength after soldering.

  6. Features of Pd-Ni-Fe solder system for vacuum brazing of low alloy steels

    International Nuclear Information System (INIS)

    Radzievskij, V.N.; Kurochko, R.S.; Lotsmanov, S.N.; Rymar', V.I.

    1975-01-01

    The brazing solder of the Pd-Ni-Fe alloyed with copper and lithium, in order to decrease the melting point and provide for a better spreading, when soldered in vacuum ensures a uniform strength of soldered joints with the base metal of low-alloyed steels of 34KHNIM-type. The properties of low-alloyed steel joints brazed with the Pd-Ni-Fe-system solder little depend on the changes in the soldering parameters. The soldered joint keeps a homogeneous structure after all the stages of heat treatment (annealing, quenching and tempering)

  7. Lead-free solder technology transfer from ASE Americas

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    1999-10-19

    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a

  8. Characterizing the Soldering Alloy Type In–Ag–Ti and the Study of Direct Soldering of SiC Ceramics and Copper

    Directory of Open Access Journals (Sweden)

    Roman Koleňák

    2018-04-01

    Full Text Available The aim of the research was to characterize the soldering alloy In–Ag–Ti type, and to study the direct soldering of SiC ceramics and copper. The In10Ag4Ti solder has a broad melting interval, which mainly depends on its silver content. The liquid point of the solder is 256.5 °C. The solder microstructure is composed of a matrix with solid solution (In, in which the phases of titanium (Ti3In4 and silver (AgIn2 are mainly segregated. The tensile strength of the solder is approximately 13 MPa. The strength of the solder increased with the addition of Ag and Ti. The solder bonds with SiC ceramics, owing to the interaction between active In metal and silicon infiltrated in the ceramics. XRD analysis has proven the interaction of titanium with ceramic material during the formation of the new minority phases of titanium silicide—SiTi and titanium carbide—C5Ti8. In and Ag also affect bond formation with the copper substrate. Two new phases were also observed in the bond interphase—(CuAg6In5 and (AgCuIn2. The average shear strength of a combined joint of SiC–Cu, fabricated with In10Ag4Ti solder, was 14.5 MPa. The In–Ag–Ti solder type studied possesses excellent solderability with several metallic and ceramic materials.

  9. Water channel reactor fuels and fuel channels: Design, performance, research and development. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes/fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes/fuel channels for the above types of water channel reactors. Refs, figs, tabs.

  10. Water channel reactor fuels and fuel channels: Design, performance, research and development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes/fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes/fuel channels for the above types of water channel reactors

  11. Review Committee report on the conceptual design of the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    1993-04-01

    This report discusses the following topics on the conceptual design of the Tokamak Physics Experiment: Role and mission of TPX; overview of design; physics design assessment; engineering design assessment; evaluation of cost, schedule, and management plans; and, environment safety and health

  12. Thermal decomposition of solder flux activators under simulated wave soldering conditions

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    /methodology/approach: Changes in the chemical structure of the activators were studied using Fourier transform infrared spectroscopy technique and were correlated to the exposure temperatures within the range of wave soldering process. The amount of residue left on the surface was estimated using standardized acid-base...... titration method as a function of temperature, time of exposure and the substrate material used. Findings: The study shows that there is a possibility of anhydride-like species formation during the thermal treatment of fluxes containing weak organic acids (WOAs) as activators (succinic and DL...

  13. Mechanical properties of Bi-In-Zn/ Cu solder joint system

    International Nuclear Information System (INIS)

    Ervina Efzan Mohd Noor; Mohammed Noori Ridha; Ahmad Badri Ismail; Nurulakmal Mohd Sharif; Kuan Yew Cheong; Tadashi Ariga; Zuhailawati Hussain

    2009-01-01

    Full text: In recent years, the pollution of environment from lead (Pb) and Pb-containing compounds in microelectronic devices attracts more and more attentions in academia and industry; the lead-free solder alloys begin to replace the lead-based solders in packaging process of some devices and components. In this works, microstructure and mechanical properties of different reflow temperature (80, 100, 120 and 140 degree Celsius) for solder joints on shear strength of Bi-In-Zn lead free solder with low melting temperature of 60 degree Celsius on Cu solder joint has been investigated. This paper will compared the mechanical properties of the Bi-In-Zn lead-free solder alloys with current lead-free solder, Sn-Ag-Cu solder alloy. The fracture surface analyses have been observed by Optical Microscope and were investigated by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) and proved it by X-ray diffraction (XRD). (author)

  14. Correlation Between Pin Misalignment and Crack Length in THT Solder Joints

    Directory of Open Access Journals (Sweden)

    Molnar A.

    2017-06-01

    Full Text Available In this manuscript, correlations were searched for between pin misalignments relative to PCB bores and crack propagation after cyclic thermal shock tests in THT solder joints produced from lead-free solder alloys. In total, 7 compositions were examined including SAC solders with varying Ag, Cu and Ni contents. The crack propagation was initiated by cyclic thermal shock tests with 40°C / +125°C temperature profiles. Pin misalignments relative to the bores were characterized with three attributes obtained from one section of the examined solder joints. Cracks typically originated at the solder/pin or solder/bore interfaces and propagated within the solder. It was shown that pin misalignments did not have an effect on crack propagation, thus, the solder joints’ lifetime.

  15. Chemical wiring and soldering toward all-molecule electronic circuitry.

    Science.gov (United States)

    Okawa, Yuji; Mandal, Swapan K; Hu, Chunping; Tateyama, Yoshitaka; Goedecker, Stefan; Tsukamoto, Shigeru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2011-06-01

    Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction "chemical soldering". First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed. © 2011 American Chemical Society

  16. Commentary: Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    Menovsky, T.; Beek, J.F.; Gemert, M.J.C. van

    1999-01-01

    Full text: Laser tissue welding is the process of using laser energy to join tissues without sutures or with a reduced number of sutures. Recently, diode lasers have been added to the list of fusion lasers (Lewis and Uribe 1993, Reali et al 1993). Typically, for tissue welding, deep penetrating diode lasers emitting at 800-810 nm are used, in combination with a strong absorbing protein solder containing the dye indocyanine green. Indocyanine green has a maximum absorption coefficient at 805 nm and binds preferentially with proteins (Sauda et al 1986). The greatest advantage of diode lasers is their compact size, easy use and low cost. In this issue of Physics in Medicine and Biology (pp 983-1002, 'Photothermal effects of laser tissue soldering'), in an in vitro study, McNally et al investigate the optimal laser settings and welding temperatures in relation to the tensile strength and thermal damage of bovine aorta specimens. An interesting statement in their introduction is that the low strength of laser produced anastomoses can lead to aneurysm formation. The increased chance of aneurysm formation may merely be due to the thermal effect of the laser on the vascular wall, especially on the adventitia and media layers, which become necrotic after thermal injury. Subsequent haemodynamic stress exerted on a damaged vascular wall is a significant contributing factor for aneurysmal initiation. Also interesting is the remark that 'by the application of wavelength-specific chromophores in tissue welding ... the requirement for precise focusing and aiming of the laser beam may be removed'. Though perhaps not yet fully justified, this statement, if true, would facilitate surgical procedures. While the experiments are conducted in a proper manner, the use of bovine aorta specimens, which were stored at -70 deg. C and subsequently thawed for the tissue welding experiments, may not be the most appropriate for studying tissue effects or tensile strength measurements, as the

  17. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near combustible...

  18. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  19. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering with...

  20. A Corrosion Investigation of Solder Candidates for High-Temperature Applications

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Ambat, Rajan

    2009-01-01

    The step soldering approach is being employed in the Multi-Chip module (MCM) technology. High lead containing alloys is one of the solders currently being used in this approach. Au-Sn and Au-Ge based candidate alloys have been proposed as alternative solders for this application. In this work...

  1. Influence of Co and W powders on viscosity of composite solders during soldering of specially shaped diamond-abrasive tools

    Science.gov (United States)

    Sokolov, E. G.; Aref’eva, S. A.; Svistun, L. I.

    2018-03-01

    The influence of Co and W powders on the structure and the viscosity of composite solders Sn-Cu-Co-W used for the manufacture of the specially shaped diamond tools has been studied. The solders were obtained by mixing the metallic powders with an organic binder. The mixtures with and without diamonds were applied to steel rollers and shaped substrates. The sintering was carried out in a vacuum at 820 ° C with time-exposure of 40 minutes. The influence of Co and W powders on the viscosity solders was evaluated on the basis of the study of structures and according to the results of sintering specially shaped diamond tools. It was found that to provide the necessary viscosity and to obtain the uniform diamond-containing layers on the complex shaped surfaces, Sn-Cu-Co-W solder should contain 27–35 vol % of solid phase. This is achieved with a total solder content of 24–32 wt % of cobalt powder and 7 wt % of tungsten powder.

  2. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.

    1998-10-15

    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  3. Soldering Technology (6th) Proceedings of Annual Seminar, 17-18 February 1982.

    Science.gov (United States)

    1982-02-01

    aspect oF health and safety during this presentation. We are hoping that the work conducted by Van 2 Der Molen in the USA will clarify this issue. FLUX... Der Molen , PROC. OF 5th ANNUAL SEMINAR SOLDERING TECHNOLOGY, Naval Weapons Centre, China Lake, California, February 1981. 3. Burge, Perks, O’Brien...developed a new and innovative solution, which we believe to be a significant advance in the state of the art. In this new design (Fig.l) a FM DER

  4. Automation of experimental research of waveguide paths induction soldering

    Science.gov (United States)

    Tynchenko, V. S.; Petrenko, V. E.; Kukartsev, V. V.; Tynchenko, V. V.; Antamoshkin, O. A.

    2018-05-01

    The article presents an automated system of experimental studies of the waveguide paths induction soldering process. The system is a part of additional software for a complex of automated control of the technological process of induction soldering of thin-walled waveguide paths from aluminum alloys, expanding its capabilities. The structure of the software product, the general appearance of the controls and the potential application possibilities are presented. The utility of the developed application by approbation in a series of field experiments was considered and justified. The application of the experimental research system makes it possible to improve the process under consideration, providing the possibility of fine-tuning the control regulators, as well as keeping the statistics of the soldering process in a convenient form for analysis.

  5. Optimization of the soldering process by the DMAIC methodology

    Directory of Open Access Journals (Sweden)

    Michał Zasadzień

    2016-06-01

    Full Text Available The chapter presents the use of the DMAIC method for the analysis and improvement of the process of soldering pins in a plug connecting a bundle of wires to the board of a controller; a part of the steering system of a car. The main problem in the soldering process, that is an unsatisfactory share of bad soldered connections between the board and the plug and the instability of that number, was identified by means of a five-phase improvement process. Key points and main causes of the defect were pointed out, and process improvement measures were suggested. Due to the analysis conducted and the correct implementation of improvement measures the share of defective connections has been decreased twofold.

  6. Drinking Water Contamination Due To Lead-based Solder

    Science.gov (United States)

    Garcia, N.; Bartelt, E.; Cuff, K. E.

    2004-12-01

    The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.

  7. Bottom-up nanoarchitecture of semiconductor nano-building blocks by controllable in situ SEM-FIB thermal soldering method

    KAUST Repository

    Zhang, Xuan

    2017-08-10

    Here we demonstrate that the building blocks of semiconductor WO3 nanowires can be controllably soldered together by a novel nano-soldering technique of in situ SEM-FIB thermal soldering, in which the soldering temperature can precisely remain in an optimal range to avoid a strong thermal diffusion.

  8. Bottom-up nanoarchitecture of semiconductor nano-building blocks by controllable in situ SEM-FIB thermal soldering method

    KAUST Repository

    Zhang, Xuan; Zheng, Xiujun; Zhang, Hong; Zhang, Junli; Fu, Jiecai; Zhang, Qiang; Peng, Chaoyi; Bai, Feiming; Zhang, Xixiang; Peng, Yong

    2017-01-01

    Here we demonstrate that the building blocks of semiconductor WO3 nanowires can be controllably soldered together by a novel nano-soldering technique of in situ SEM-FIB thermal soldering, in which the soldering temperature can precisely remain in an optimal range to avoid a strong thermal diffusion.

  9. Thermomechanical behavior of tin-rich (lead-free) solders

    Science.gov (United States)

    Sidhu, Rajen Singh

    In order to adequately characterize the behavior of ball-grid-array (BGA) Pb-free solder spheres in electronic devices, the microstructure and thermomechanical behavior need to be studied. Microstructure characterization of pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-3.9Ag-0.7Cu alloys was conducted using optical microscopy, scanning electron microscopy, transmission electron microscopy, image analysis, and a novel serial sectioning 3D reconstruction process. Microstructure-based finite-element method (FEM) modeling of deformation in Sn-3.5Ag alloy was conducted, and it will be shown that this technique is more accurate when compared to traditional unit cell models for simulating and understanding material behavior. The effect of cooling rate on microstructure and creep behavior of bulk Sn-rich solders was studied. The creep behavior was evaluated at 25, 95, and 120°C. Faster cooling rates were found to increase the creep strength of the solders due to refinement of the solder microstructure. The creep behavior of Sn-rich single solder spheres reflowed on Cu substrates was studied at 25, 60, 95, and 130°C. Testing was conducted using a microforce testing system, with lap-shear geometry samples. The solder joints displayed two distinct creep behaviors: (a) precipitation-strengthening (Sn-3.5Ag and Sn-3.9Ag-0.7Cu) and (b) power law creep accommodated by grain boundary sliding (GBS) (Sn and Sn-0.7Cu). The relationship between microstructural features (i.e. intermetallic particle size and spacing), stress exponents, threshold stress, and activation energies are discussed. The relationship between small-length scale creep behavior and bulk behavior is also addressed. To better understand the damage evolution in Sn-rich solder joints during thermal fatigue, the local damage will be correlated to the cyclic hysteresis behavior and crystal orientations present in the Sn phase of solder joints. FEM modeling will also be utilized to better understand the macroscopic and local

  10. Memorial Camels and Design by Committee: St Andrews Black Saturday Memorials

    Directory of Open Access Journals (Sweden)

    SueAnne Ware

    2015-02-01

    Full Text Available This paper examines a work in progress, the St Andrews Bushfire Memorial, which commemorates victims of the 7 February 2009 bushfires in Victoria, Australia. The paper’s intent is threefold: to describe and reflect on a current and ongoing memorial design project; to frame this project within a larger series of design discourses; and to examine the processes by which this memorial, but also many other grassroots or ‘bottom-up’ memorials, come into being. By examining the design process, I aim to open up various memorialisation and consultation methods for review. More importantly, however, by framing this project in contemporary discussions regarding socially engaged design practices, I offer a critique of the dictator–democrat binaries mentioned above and offer another way forward.

  11. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  12. High-Temperature Lead-Free Solder Alternatives: Possibilities and Properties

    DEFF Research Database (Denmark)

    High-temperature solders have been widely used as joining materials to provide stable interconnections that resist a severe thermal environment and also to facilitate the drive for miniaturization. High-lead containing solders have been commonly used as high-temperature solders. The development...... of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health and environmental concerns associated with lead usage. Unfortunately, limited choices are available as high-temperature lead-free solders. This work outlines...... the criteria for the evaluation of a new high-temperature lead-free solder material. A list of potential ternary high-temperature lead-free solder alternatives based on the Au-Sn and Au-Ge systems is proposed. Furthermore, a comprehensive comparison of the high-temperature stability of microstructures...

  13. Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yanghua [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xia_yanghua@hotmail.com; Xie Xiaoming [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2008-04-24

    The reliability of lead-free electronic assemblies under thermal cycling was investigated. Thin small outline package (TSOP) devices with FeNi leads were reflow soldered on FR4 PCB (printed circuit board) with Sn3.0Ag0.5Cu (wt%) solder. The effects of different PCB finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) were studied. The results show that OSP finish reveals better performance than its ENIG counterparts. The crack originates at the fringe of heel fillet in both cases. The propagation of crack in the ENIG case is along the device/solder interface, while in the case of OSP, the crack extends parallel to the solder/PCB interface. When the OSP finishes are employed, many Cu6Sn5 precipitates form inside the bulk solder and have a strengthening effect on the solder joint, resulting in better reliability performance as compared to those with ENIG finishes.

  14. Soldering and brazing safety guide: A handbook on space practice for those involved in soldering and brazing

    Science.gov (United States)

    This manual provides those involved in welding and brazing with effective safety procedures for use in performance of their jobs. Hazards exist in four types of general soldering and brazing processes: (1) cleaning; (2) application of flux; (3) application of heat and filler metal; and (4) residue cleaning. Most hazards during those operations can be avoided by using care, proper ventilation, protective clothing and equipment. Specific process hazards for various methods of brazing and soldering are treated. Methods to check ventilation are presented as well as a check of personal hygiene and good maintenance practices are stressed. Several emergency first aid treatments are described.

  15. Microstructural effects on constitutive and fatigue fracture behavior of TinSilverCopper solder

    Science.gov (United States)

    Tucker, Jonathon P.

    As microelectronic package construction becomes more diverse and complex, the need for accurate, geometry-independent material constitutive and failure models increases. Evaluations of packages based on accelerated environmental tests (such as accelerated thermal cycling or power cycling) only provide package-dependent reliability information. In addition, extrapolations of such test data to life predictions under field conditions are often empirical. Besides geometry, accelerated environmental test data must account for microstructural factors such as alloy composition or isothermal aging condition, resulting in expensive experimental variation. In this work, displacement-controlled, creep, and fatigue lap shear tests are conducted on specially designed SnAgCu test specimens with microstructures representative to those found in commercial microelectronic packages. The data are used to develop constitutive and fatigue fracture material models capable of describing deformation and fracture behavior for the relevant temperature and strain rate ranges. Furthermore, insight is provided into the microstructural variation of solder joints and the subsequent effect on material behavior. These models are appropriate for application to packages of any geometrical construction. The first focus of the thesis is on Pb-mixed SnAgCu solder alloys. During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of SnPb and SnAgCu often result from either mixed assemblies or rework. Three alloys of 1, 5 and 20 weight percent Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn37Pb components mixed with Sn3.0Ag0.5Cu. Displacement-controlled (constant strain rate) and creep tests were performed at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. Rate-dependent constitutive models for Pb

  16. It Begins at Home: Bishops Committee Designates January as "Poverty in America" Awareness Month.

    Science.gov (United States)

    Vitillo, Robert J.

    2000-01-01

    States that the Catholic Campaign for Human Development has designated January as Poverty Awareness month, suggesting that the 29th of January be used to help the needy. Lists things people can do on this day. Reports that 32.3 million people living in the United States are living in poverty, a number largely made up of minorities, children,…

  17. IAEA Technical committee meeting on methods used in design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    Vitikainen, E.; Silfverberg, P.

    1985-01-01

    The meeting was held in Espoo, Finland and hosted by the Technical Research Centre of Finland (VTT), and was arranged to report and discuss design methods, licensing practise, operational experience as well as economic aspects connectied with spent fuel storage. This report contains session summaries by the session chairmen and the papers presented at the meeting

  18. Design of Phase I Combination Trials: Recommendations of the Clinical Trial Design Task Force of the NCI Investigational Drug Steering Committee

    Science.gov (United States)

    Paller, Channing J.; Bradbury, Penelope A.; Ivy, S. Percy; Seymour, Lesley; LoRusso, Patricia M.; Baker, Laurence; Rubinstein, Larry; Huang, Erich; Collyar, Deborah; Groshen, Susan; Reeves, Steven; Ellis, Lee M.; Sargent, Daniel J.; Rosner, Gary L.; LeBlanc, Michael L.; Ratain, Mark J.

    2014-01-01

    Anticancer drugs are combined in an effort to treat a heterogeneous tumor or to maximize the pharmacodynamic effect. The development of combination regimens, while desirable, poses unique challenges. These include the selection of agents for combination therapy that may lead to improved efficacy while maintaining acceptable toxicity, the design of clinical trials that provide informative results for individual agents and combinations, and logistical and regulatory challenges. The phase 1 trial is often the initial step in the clinical evaluation of a combination regimen. In view of the importance of combination regimens and the challenges associated with developing them, the Clinical Trial Design (CTD) Task Force of the National Cancer Institute (NCI) Investigational Drug Steering Committee developed a set of recommendations for the phase 1 development of a combination regimen. The first two recommendations focus on the scientific rationale and development plans for the combination regimen; subsequent recommendations encompass clinical design aspects. The CTD Task Force recommends that selection of the proposed regimens be based on a biological or pharmacological rationale supported by clinical and/or robust and validated preclinical evidence, and accompanied by a plan for subsequent development of the combination. The design of the phase 1 clinical trial should take into consideration the potential pharmacokinetic and pharmacodynamic interactions as well as overlapping toxicity. Depending on the specific hypothesized interaction, the primary endpoint may be dose optimization, pharmacokinetics, and/or pharmacodynamic (i.e., biomarker). PMID:25125258

  19. Horizon shells and BMS-like soldering transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)

    2016-03-07

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  20. Effects of PCB thickness on adjustable fountain wave soldering

    Indian Academy of Sciences (India)

    hybrid circuit assembly, component lead tinning, and wire tinning. .... The mesh model was built and optimized with 599920 hybrid nodes as shown in figure 9. ... conducted to track the fluid motions of the two phases (i.e., molten solder and air).

  1. Committee Report of the BEPC-II Project Design Review May 13-15, 2002, SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Traci M.

    2002-08-26

    As part of the US-China Cooperative Program in High Energy Physics for the year 2002, a BEPC-II Upgrade Review meeting was held at SLAC, May 13-15, 2002. The upgrade is aimed at improving the luminosity and performance of the BEPC facility at IHEP in Beijing, China with major upgrades to the injector linac, storage ring, and detector. This review addresses mainly the accelerator related issues. Prior to the review, an updated Draft Design Report was made available to the review team. Most important technical change since April 2001 has been a change from a single-ring configuration to a doublering. The goal of the review is to determine whether BEPC-II, if built as described, will meet the operations and physics goals. The charge to the review team is attached as Appendix A.

  2. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Directory of Open Access Journals (Sweden)

    Yee Mei Leong

    2016-06-01

    Full Text Available Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag content solder SAC105 (Sn-1.0Ag-0.5Cu because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al addition (0.1–0.5 wt.% to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.

  3. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Science.gov (United States)

    Leong, Yee Mei; Haseeb, A.S.M.A.

    2016-01-01

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1–0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface. PMID:28773645

  4. AGU Committees

    Science.gov (United States)

    Administrative Committees are responsible for those functions required for the overall performance or well-being of AGU as an organization. These committees are Audit and Legal Affairs, Budget and Finance*, Development, Nominations*, Planning, Statutes and Bylaws*, Tellers.Operating Committees are responsible for the policy direction and operational oversight of AGU's primary programs. The Operating Committees are Education and Human Resources, Fellows*, Information Technology, International Participation*, Meetings, Public Affairs, Public Information, Publications*.

  5. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Ptensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    Science.gov (United States)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  7. Advanced fuel pellet materials and designs for water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2004-10-01

    This meeting was the second IAEA meeting on this subject. The first was held in 1996 in Tokyo, Japan. They are all part of a cooperative effort through the Technical Working Group on Water Reactor Fuel Performance and Technology (TWGFPT) of IAEA, with a series of three further meetings organized by CEA, France and co-sponsored by the IAEA and OECD/NEA. In the seven years since the first meeting took place, the demands on fuel duties have increased, with higher burnup, longer fuel cycles and higher temperatures. This places additional demands on fuel performance to comply with safety requirements. Criteria relative to fuel components, i.e. pellets and fuel rod column, require limiting of fission gas release and pellet-cladding interaction (PCI). This means that fuel components should maintain the composite of rather contradictory properties from the beginning until the end of its in-pile operation. Fabrication and design tools are available to influence, and to some extent, to ensure desirable in-pile fuel properties. Discussion of these tools was one of the objectives of the meeting. The second objective was the analysis of fuel characteristics at high burnup and the third and last objective was the discussion of specific feature of MOX and urania gadolinia fuels. Sixty specialists in the field of fuel fabrication technology attended the meeting from 18 countries. Twenty-five papers were presented in five sessions covering all relevant topics from the practices and modelling of fuel fabrication technology to its optimization. Eight papers were presented in session 'Optimization of fuel fabrication technology' which all were devoted to fuel fabrication technology. They mostly treated methods for optimizing fuel manufacturing processes, but gave also a good overview on nuclear fabrication needs and capabilities in different countries. During Session 'UO 2 , MOX and UO 2 -Gd 2 O 3 pellets with additives', six papers were presented in this session, which dealt mainly

  8. Advanced Fuel Pellet Materials and Fuel Rod Design for Water Cooled Reactors. Proceedings of a Technical Committee Meeting

    International Nuclear Information System (INIS)

    2010-10-01

    The economics of current nuclear power plants have improved through increased fuel burnup and longer fuel cycles, i.e. increasing the effective time that fuel remains in the reactor core and the amount of energy it generates. Efficient consumption of fissile material in the fuel element before it is discharged from the reactor means that less fuel is required over the reactor's life cycle, which results in lower amounts of fresh fuel, lower spent fuel storage costs, and less waste for ultimate disposal. Better utilization of fissile nuclear materials, as well as more flexible power manoeuvring, place challenging operational demands on materials used in reactor components, and first of all, on fuel and cladding materials. It entails increased attention to measures ensuring desired in-pile fuel performance parameters that require adequate improvements in fuel material properties and fuel rod designs. These are the main reasons that motivated the IAEA Technical Working Group on Fuel Performance and Technology (TWG-FPT) to recommend the organization of a Technical Committee Meeting on Advanced Fuel Pellet Materials and Fuel Rod Designs for Power Reactors. The proposal was supported by the IAEA TWGs on Advanced Technologies for Light and Heavy Water-Cooled Reactors (TWG-LWR and TWG-HWR), and the meeting was held at the invitation of the Government of Switzerland at the Paul Scherrer Institute in Villigen, from 23 to 26 November 2009. This was the third IAEA meeting on these subjects (the first was held in 1996 in Tokyo, Japan, and the second in 2003 in Brussels, Belgium), which reflects the continuous interest in the above issues among Member States. The purpose of the meeting was to review the current status in the development of fuel pellet materials and to explore recent improvements in fuel rod designs for light and heavy water cooled power reactors. The meeting was attended by 45 specialists representing fuel vendors, nuclear utilities, research and development

  9. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  10. Electromigration-induced cracks in Cu/Sn3.5Ag/Cu solder reaction couple at room temperature

    International Nuclear Information System (INIS)

    He Hongwen; Xu Guangchen; Guo Fu

    2009-01-01

    Electromigration (EM) behavior of Cu/Sn 3.5 Ag/Cu solder reaction couple was investigated with a high current density of 5 x 10 3 A/cm 2 at room temperature. One dimensional structure, copper wire/solder ball/copper wire SRC was designed and fabricated to dissipate the Joule heating induced by the current flow. In addition, thermomigration effect was excluded due to the symmetrical structure of the SRC. The experimental results indicated that micro-cracks initially appeared near the cathode interface between solder matrix and copper substrate after 474 h current stressing. With current stressing time increased, the cracks propagated and extended along the cathode interface. It should be noted that the continuous Cu 6 Sn 5 intermetallic compounds (IMCs) layer both at the anode and at the cathode remained their sizes. Interestingly, tiny cracks appeared at the root of some long column-type Cu 6 Sn 5 at the cathode interface due to the thermal stress.

  11. Economical surface treatment of die casting dies to prevent soldering in high pressure casting

    International Nuclear Information System (INIS)

    Fraser, D.T.; Jahedi, M.Z.

    2001-01-01

    This paper describes the use of a gas oxidation treatment of H13 tool steel to develop a compact iron oxide layer at the surface of core pins to prevent soldering in high pressure die casting. The performance of oxide layers in the protection of die steel against soldering during high pressure die casting was tested in a specially designed die using removable core pins and Al-11 Si-3 Cu casting alloy. The gas oxidation treatment can be applied at low temperatures and to large areas of the die surface. In addition this process is very cost effective compared to other coating processes such as physical vapour deposition (PVD), or thermo-reactive diffusion (TRD) coatings. This work demonstrated that surface treatment producing pure magnetite (Fe 3 O 4 ) layers are more protective than oxide layers containing a combination of Fe 3 O 4 (magnetite) and Fe 3 O 3 (haematite). The magnetite layer acts as a barrier between the die steel/casting alloy interface and prevents the formation of inter-metallic phases. Optical microscopy and scanning electron microscope were used to determine the thickness of the oxide layer, while X-ray diffraction was performed to determine the oxide phase structure

  12. The metallurgical approach on the solder voids behaviour in surface mount devices

    International Nuclear Information System (INIS)

    Mohabattul Zaman Bukhari

    1996-01-01

    Solder voids are believed to cause poor heat dissiption in the Surface Mount devices and reduce the reliability of the devices at higher operating services. There are a lot of factors involved in creating voids such as gas/flux entrapment, wettability, outgasseous, air bubbles in the solder paste, inconsistency of solder coverage and improper metal scheme selection. This study was done to observe the behaviour of the solder voids in term of flux entrapmentt and wettability. It is believed that flux entrapment and wettability are verify this hypothesis. Two types of metal scheme were chosen which are Nickel (Ni) plated and Tin (Sn) plated heatsink. X-ray techniques such as Radiographic Inspection Analysis and EDAX were used to detect the minute solder voids. The solder voids observed on the heatsinks and Copper shims after the reflow process are believed to be a non contact voids that resulted from some portion of the surface not wetting properly

  13. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Science.gov (United States)

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  14. Electrochemical Behavior of Sn-9Zn- xTi Lead-Free Solders in Neutral 0.5M NaCl Solution

    Science.gov (United States)

    Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki

    2018-05-01

    Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn- xTi ( x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density ( i corr) and much higher total resistance ( R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn- xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.

  15. Interfacial reaction of Sn-based solder joint in the package system

    Science.gov (United States)

    Gu, Huandi

    In this thesis, I report a study on the effect of the solder size on intermetallic layer formation by comparing the morphology change and growth rate of two different size solder joint aged at a same temperature for different aging time. The layer thickness and microstructure were analyzed using scanning electron microscopy (SEM). Photoshop was used to measure the thickness of intermetallic compound. Two different size of solder joints with composition of Sn-Ag-Cu (305) were used.

  16. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  17. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  18. Laser tissue welding mediated with a protein solder

    Science.gov (United States)

    Small, Ward, IV; Heredia, Nicholas J.; Celliers, Peter M.; Da Silva, Luiz B.; Eder, David C.; Glinsky, Michael E.; London, Richard A.; Maitland, Duncan J.; Matthews, Dennis L.; Soltz, Barbara A.

    1996-05-01

    A study of laser tissue welding mediated with an indocyanine green dye-enhanced protein solder was performed. Freshly obtained sections of porcine artery were used for the experiments. Sample arterial wall thickness ranged from two to three millimeters. Incisions approximately four millimeters in length were treated using an 805 nanometer continuous- wave diode laser coupled to a one millimeter diameter fiber. Controlled parameters included the power delivered by the laser, the duration of the welding process, and the concentration of dye in the solder. A two-color infrared detection system was constructed to monitor the surface temperatures achieved at the weld site. Burst pressure measurements were made to quantify the strengths of the welds immediately following completion of the welding procedure.

  19. Quality Analysis of Welded and Soldered Joints of Cu-Nb Microcomposite Wires

    Directory of Open Access Journals (Sweden)

    Nikolaj VIŠNIAKOV

    2011-03-01

    Full Text Available Quality analysis of welded and soldered joints of Cu-Nb microcomposite wires has been performed. Quality and mechanical characteristics of joints as ultimate tensile stress limit and elongation at break were measured with an universal testing machine and controlled visually using an optical microscope. Two wires joints were soldered with silver and copper solders and put into steel and copper sleeve respectively. Another two wires joints were soldered with silver solder and welded without any reinforcement. Joints soldered with the silver solder and steel sleeve have demonstrated the best mechanical characteristics: ultimate tensile stress limit of 650 MPa and elongation at break of 0.85 %. Joints soldered with the copper sleeve have no advantages comparing with the soldered butt joint. Ultimate tensile stress limit and elongation at break were in 300 MPa - 350 MPa and in 0.35 % - 0.45 % ranges respectively. Two welded joints had ultimate tensile stress limit of 470 MPa and elongation at break of 0.71 %. In all joints the microstructure of Nb filaments was destroyed and mechanical properties have been specified by mechanical strength of copper and sleeve materials only.http://dx.doi.org/10.5755/j01.ms.17.1.242

  20. Reliability of soldered joints for automotive electronic devices; Denso buhin ni okeru handa setsugo no shinraisei

    Energy Technology Data Exchange (ETDEWEB)

    Kita, T; Mukaibo, N; Ando, K; Moriyama, M [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    Concerning the tin and lead eutectic solder, we have evaluated the reliability of three factors of intermetallic compound layer, creep and vibration which cause solder degradation. First, the stress factor was extracted from investigating the mechanism of degradation, and the best acceleration test method was fixed. Next, the acceleration test was executed to find the stress dependency and the tendency of solder degradation was modeled numerically. While the environmental stress frequency was obtained and they were put together by using a minor method, which enabled us to predict the life span of solder on the market with precision. 5 refs., 13 figs.

  1. The effect of graphene on the intermetallic and joint strength of Sn-3.5Ag lead-free solder

    Science.gov (United States)

    Mayappan, R.; Salleh, A.; Andas, J.

    2017-09-01

    Solder has been widely used in electronic industry as interconnection for electronic packaging. European Union and Japan have restricted the use of Sn-Pb solder as it contains lead which can harmful to human health and environment. Due to this, many researches have been done in order to find a suitable replacement for the lead solder. Although many lead-free solders are available, the Sn-3.5Ag solder with the addition of graphene seem to be a suitable candidate. In this study, a 0.07 wt% graphene nanosheet was added into the Sn-3.5Ag solder and this composite solder was prepared under powder metallurgy method. The solder was reacted with copper substrate at 250 °C for one minute. For joint strength analysis, two copper strips were soldered together. The solder joint was aged at temperature 100 °C for 500 hours. Scanning Electron Microscope (SEM) was used to observe the interfacial reaction and Instron machine was used to determine the joint strength. Cu6Sn5 intermetallic layer was formed at the interface between the Cu substrate and the solders. Composite solder showed the retardation of the intermetallic growth compared to the plain solder. The thickness value of the intermetallic was used to calculate the growth rate the IMC. The graphene nanosheets added solder has lower growth rate which is 3.86 × 10-15 cm2/s compared to the plain solder 7.15 × 10-15 cm2/s. Shear strength analysis show that the composite solder has higher joint compared to the plain solder.

  2. Influence of Difference Solders Volume on Intermetallic Growth of Sn-4.0Ag-0.5Cu/ENEPIG

    Directory of Open Access Journals (Sweden)

    Saliza Azlina O.

    2016-01-01

    Full Text Available In recent years, portable electronic packaging products such as smart phones, tablets, notebooks and other gadgets have been developed with reduced size of component packaging, light weight, high speed and with enhanced performance. Thus, flip chip technology with smaller solder sphere sizes that would produce fine solder joint interconnections have become essential in order to fulfill these miniaturization requirements. This study investigates the interfacial reactions and intermetallics formation during reflow soldering and isothermal aging between Sn-4.0Ag-0.5Cu (SAC405 and electroless nickel/immersion palladium/immersion gold (EN(PEPIG. Solder diameters of 300 μm and 700 μm were used to compare the effect of solder volume on the solder joint microstructure. The solid state isothermal aging was performed at 125°C starting from 250 hours until 2000 hours. The results revealed that only (Cu,Ni6Sn5 IMC was found at the interface during reflow soldering while both (Cu,Ni6Sn5 and (Ni,Cu3Sn4 IMC have been observed after aging process. Smaller solder sizes produced thinner IMC than larger solder joints investigated after reflow soldering, whereas the larger solders produced thinner IMC than the smaller solders after isothermal aging. Aging duration of solder joints has been found to be increase the IMC’s thickness and changed the IMC morphologies to spherical-shaped, compacted and larger grain size.

  3. Natural circulation data and methods for advanced water cooled nuclear power plant designs. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The complex set of physical phenomena that occur in a gravity environment when a geometrically distinct heat sink and heat source are connected by a fluid flow path can be identified as natural circulation (NC). No external sources of mechanical energy for the fluid motion are involved when NC is established. Within the present context, natural convection is used to identify the phenomena that occur when a heat source is put in contact with a fluid. Therefore, natural convection characterizes a heat transfer regime that constitutes a subset of NC phenomena. This report provides the presented papers and summarizes the discussions at an IAEA Technical Committee Meeting (TCM) on Natural Circulation Data and Methods for innovative Nuclear Power Plant Design. While the planned scope of the TCM involved all types of reactor designs (light water reactors, heavy water reactors, gas-cooled reactors and liquid metal-cooled reactors), the meeting participants and papers addressed only light water reactors (LWRs) and heavy water reactors (HWRs). Furthermore, the papers and discussion addressed both evolutionary and innovative water cooled reactors, as defined by the IAEA. The accomplishment of the objectives of achieving a high safety level and reducing the cost through the reliance on NC mechanisms, requires a thorough understanding of those mechanisms. Natural circulation systems are usually characterized by smaller driving forces with respect to the systems that use an external source of energy for the fluid motion. For instance, pressure drops caused by vertical bends and siphons in a given piping system, or heat losses to environment are a secondary design consideration when a pump is installed and drives the flow. On the contrary, a significant influence upon the overall system performance may be expected due to the same pressure drops and thermal power release to the environment when natural circulation produces the coolant flow. Therefore, the level of knowledge for

  4. Natural circulation data and methods for advanced water cooled nuclear power plant designs. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-04-01

    The complex set of physical phenomena that occur in a gravity environment when a geometrically distinct heat sink and heat source are connected by a fluid flow path can be identified as natural circulation (NC). No external sources of mechanical energy for the fluid motion are involved when NC is established. Within the present context, natural convection is used to identify the phenomena that occur when a heat source is put in contact with a fluid. Therefore, natural convection characterizes a heat transfer regime that constitutes a subset of NC phenomena. This report provides the presented papers and summarizes the discussions at an IAEA Technical Committee Meeting (TCM) on Natural Circulation Data and Methods for innovative Nuclear Power Plant Design. While the planned scope of the TCM involved all types of reactor designs (light water reactors, heavy water reactors, gas-cooled reactors and liquid metal-cooled reactors), the meeting participants and papers addressed only light water reactors (LWRs) and heavy water reactors (HWRs). Furthermore, the papers and discussion addressed both evolutionary and innovative water cooled reactors, as defined by the IAEA. The accomplishment of the objectives of achieving a high safety level and reducing the cost through the reliance on NC mechanisms, requires a thorough understanding of those mechanisms. Natural circulation systems are usually characterized by smaller driving forces with respect to the systems that use an external source of energy for the fluid motion. For instance, pressure drops caused by vertical bends and siphons in a given piping system, or heat losses to environment are a secondary design consideration when a pump is installed and drives the flow. On the contrary, a significant influence upon the overall system performance may be expected due to the same pressure drops and thermal power release to the environment when natural circulation produces the coolant flow. Therefore, the level of knowledge for

  5. Laser beam soldering of micro-optical components

    Science.gov (United States)

    Eberhardt, R.

    2003-05-01

    MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.

  6. Scalable Manufacturing of Solderable and Stretchable Physiologic Sensing Systems.

    Science.gov (United States)

    Kim, Yun-Soung; Lu, Jesse; Shih, Benjamin; Gharibans, Armen; Zou, Zhanan; Matsuno, Kristen; Aguilera, Roman; Han, Yoonjae; Meek, Ann; Xiao, Jianliang; Tolley, Michael T; Coleman, Todd P

    2017-10-01

    Methods for microfabrication of solderable and stretchable sensing systems (S4s) and a scaled production of adhesive-integrated active S4s for health monitoring are presented. S4s' excellent solderability is achieved by the sputter-deposited nickel-vanadium and gold pad metal layers and copper interconnection. The donor substrate, which is modified with "PI islands" to become selectively adhesive for the S4s, allows the heterogeneous devices to be integrated with large-area adhesives for packaging. The feasibility for S4-based health monitoring is demonstrated by developing an S4 integrated with a strain gauge and an onboard optical indication circuit. Owing to S4s' compatibility with the standard printed circuit board assembly processes, a variety of commercially available surface mount chip components, such as the wafer level chip scale packages, chip resistors, and light-emitting diodes, can be reflow-soldered onto S4s without modifications, demonstrating the versatile and modular nature of S4s. Tegaderm-integrated S4 respiration sensors are tested for robustness for cyclic deformation, maximum stretchability, durability, and biocompatibility for multiday wear time. The results of the tests and demonstration of the respiration sensing indicate that the adhesive-integrated S4s can provide end users a way for unobtrusive health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparison of best estimate methods for judging design margins of advanced water-cooled reactors. Proceedings of a IAEA technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Technical Committee Meeting on Significance of design and Operational Margins for advanced Water Cooled Reactor Systems were: to provide an international forum for presentation and discussion of recent results on best estimate methods for judging design margins of mentioned reactors; to identify and describe the technical features of best estimate methods for predicting margins and to provide input for a status report on a comparison of best estimate methods for assessing margins in different countries and organisations. Participants from thirteen countries presented fifteen papers describing their methods, state of art and experiences. Each of those is presented here by a separate abstract

  8. Comparison of best estimate methods for judging design margins of advanced water-cooled reactors. Proceedings of a IAEA technical committee meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The objectives of the Technical Committee Meeting on Significance of design and Operational Margins for advanced Water Cooled Reactor Systems were: to provide an international forum for presentation and discussion of recent results on best estimate methods for judging design margins of mentioned reactors; to identify and describe the technical features of best estimate methods for predicting margins and to provide input for a status report on a comparison of best estimate methods for assessing margins in different countries and organisations. Participants from thirteen countries presented fifteen papers describing their methods, state of art and experiences. Each of those is presented here by a separate abstract Refs, figs, tabs

  9. Progress in design, research and development and testing of safety systems for advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-04-01

    The meeting covered the following topics: Developments in design of safety-related heat removal components and systems for advanced water cooled reactors; status of test programmes on heat removal components and systems of new designs; range of validity and extrapolation of test results for the qualification of design/licensing computer models and codes for advanced water cooled reactors; future needs and trends in testing of safety systems for advanced water cooled reactors. Tests of heat removal safety systems have been conducted by various groups supporting the design, testing and certification of advanced water cooled reactors. The Technical Committee concluded that the reported test results generally confirm the predicted performance features of the advanced designs. Refs, figs, tabs

  10. Progress in design, research and development and testing of safety systems for advanced water cooled reactors. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The meeting covered the following topics: Developments in design of safety-related heat removal components and systems for advanced water cooled reactors; status of test programmes on heat removal components and systems of new designs; range of validity and extrapolation of test results for the qualification of design/licensing computer models and codes for advanced water cooled reactors; future needs and trends in testing of safety systems for advanced water cooled reactors. Tests of heat removal safety systems have been conducted by various groups supporting the design, testing and certification of advanced water cooled reactors. The Technical Committee concluded that the reported test results generally confirm the predicted performance features of the advanced designs. Refs, figs, tabs.

  11. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting, or...

  12. Tissue soldering with biodegradable polymer films: in-vitro investigation of hydration effects on weld strength

    Science.gov (United States)

    Sorg, Brian S.; Welch, Ashley J.

    2001-05-01

    Previous work demonstrated increased breaking strengths of tissue repaired with liquid albumin solder reinforced with a biodegradable polymer film compared to unreinforced control specimens. It was hypothesized that the breaking strength increase was due to reinforcement of the liquid solder cohesive strength. Immersion in a moist environment can decrease the adhesion of solder to tissue and negate any strength benefits gained from reinforcement. The purpose of this study was to determine if hydrated specimens repaired with reinforced solder would still be stronger than unreinforced controls. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with 806-nm diode laser light. A poly(DL-lactic- co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). The repaired tissues were immersed in phosphate buffered saline for time periods of 1 and 2 days. The breaking strengths of all of the hydrated specimens decreased compared to the acute breaking strengths. However, the reinforced specimens still had larger breaking strengths than the unreinforced controls. These results indicate that reinforcement of a liquid albumin solder may have the potential to improve the breaking strength in a clinical setting.

  13. Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš; Andersson, D.; Hoo, N.; Pearce, J.; Watson, A.; Dinsdale, A.; Mucklejohn, S.

    2012-01-01

    Roč. 21, č. 5 (2012), s. 629-637 ISSN 1059-9495 Institutional support: RVO:68081723 Keywords : lead-free soldering, * materials for high-temperature LF * new technologies for HT lead-free soldering Subject RIV: BJ - Thermodynamics Impact factor: 0.915, year: 2012

  14. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    Science.gov (United States)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  15. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  16. Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

    Science.gov (United States)

    Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu

    2017-08-01

    Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

  17. Corrosion Reliability of Lead-free Solder Systems Used in Electronics

    DEFF Research Database (Denmark)

    Li, Feng; Verdingovas, Vadimas; Medgyes, Balint

    2017-01-01

    humidity/temperature cycling tests on soldered surface insulation resistance (SIR) comb pattern. Complimentary microstructural and phase analysis of solder alloys has been carried out using the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) methods...

  18. Reliability and microstructure of lead-free solder joints in industrial electronics after accelerated thermal aging

    NARCIS (Netherlands)

    Scaltro, F.; Biglari, M.H.; Kodentsov, A.; Yakovleva, O.; Brom, E.

    2009-01-01

    The reliability of lead-free (LF) solder joints in surface-mounted device components (SMD) has been investigated after thermo-cycle testing. Kirkendall voids have been observed at the interface component/solder together with the formation of fractures. The evolution, the morphology and the elemental

  19. Investigation of moisture uptake into printed circuit board laminate and solder mask materials

    DEFF Research Database (Denmark)

    Conseil, Helene; Gudla, Visweswara Chakravarthy; Borgaonkar, Shruti

    2017-01-01

    with different solder mask materials and exposed to saturated water vapour and liquid water. The solder masks are characterised for their microstructure and constituent phases using scanning electron microscopy and X-ray diffraction. The observations are correlated with themoisture absorption characteristic...

  20. Properties and Microstructures of Sn-Bi-X Lead-Free Solders

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-01-01

    Full Text Available The Sn-Bi base lead-free solders are proposed as one of the most popular alloys due to the low melting temperature (eutectic point: 139°C and low cost. However, they are not widely used because of the lower wettability, fatigue resistance, and elongation compared to traditional Sn-Pb solders. So the alloying is considered as an effective way to improve the properties of Sn-Bi solders with the addition of elements (Al, Cu, Zn, Ga, Ag, In, Sb, and rare earth and nanoparticles. In this paper, the development of Sn-Bi lead-free solders bearing elements and nanoparticles was reviewed. The variation of wettability, melting characteristic, electromigration, mechanical properties, microstructures, intermetallic compounds reaction, and creep behaviors was analyzed systematically, which can provide a reference for investigation of Sn-Bi base solders.

  1. A deviation from standard design? Clinical trials, research ethics committees, and the regulatory co-construction of organizational deviance.

    Science.gov (United States)

    Hedgecoe, Adam

    2014-02-01

    Focusing on the high-profile drug disaster at London's Northwick Park Hospital in 2006, this article explores how such an event can be seen as an example of organizational deviance co-constructed between the company running the research and the research ethics committee which approved the trial. This deviance was the result of the normalization of a specific dosing practice in the broader regulatory field, allowing the researchers and regulators to take a risky dosing strategy for granted as best practice. Drawing on the work of Diane Vaughan, this article uses interview data with researchers and members of the research ethics committee concerned as well as documentary material, to show how work group cultures between regulators and those they are intended to oversee are maintained, and how the culturally embedded assumptions of such work groups can result in organizational and regulatory deviance.

  2. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder

    International Nuclear Information System (INIS)

    Li Guangdong; Shi Yaowu; Hao Hu; Xia Zhidong; Lei Yongping; Guo Fu

    2010-01-01

    In the present work, the effect of phosphorus on the creep fatigue properties of Sn-Cu eutectic lead-free solder was carried out. The experimental results show that the melting temperature was almost not changed with adding small amount of P element. However, the addition of trace P element led to the decrease in the property of creep fatigue. The fractography analysis by a scanning electron microscopy (SEM) shows that ductile fracture was the dominant failure behavior in the process of creep fatigue test of Sn0.7Cu and Sn0.7Cu0.005P specimens. It should be pointed out that there is significant difference in the fractographs between the joints of Sn0.7Cu solder and Sn0.7Cu0.005P solder. In the fractograph of Sn0.7Cu solder joint, the microstructure is prolonged along testing direction, and the dimples were more than the fractograph of Sn0.7Cu0.005P solder joint. In addition, the voids could be found on the Sn0.7Cu0.005P solder joint, and trace P addition may increase the rate of forming void of Sn0.7Cu solder joint. The voids can potentially lead to crack initiation or propagation sites in the solder joint. As a result, the creep fatigue of solder joint containing P such as Sn0.7Cu0.005P offers worse property compared to Sn0.7Cu solder joint.

  3. Physical properties of lead free solders in liquid and solid state

    Energy Technology Data Exchange (ETDEWEB)

    Mhiaoui, Souad

    2007-04-17

    The European legislation prohibits the use of lead containing solders in Europe. However, lead free solders have a higher melting point (typical 20%) and their mechanical characteristics are worse. Additional problems are aging and adhesion of the solder on the electronic circuits. Thus, research activities must focus on the optimization of the properties of Sn-Ag-Cu based lead free solders chosen by the industry. Two main objectives are treated in this work. In the center of the first one is the study of curious hysteresis effects of metallic cadmium-antimony alloys after thermal cycles by measuring electronic transport phenomena (thermoelectric power and electrical resistivity). The second objective, within the framework of ''cotutelle'' between the universities of Metz and of Chemnitz and supported by COST531, is to study more specifically lead free solders. A welding must well conduct electricity and well conduct and dissipate heat. In Metz, we determined the electrical conductivity, the thermoelectric power and the thermal conductivity of various lead free solders (Sn-Ag-Cu, Sn-Cu, Sn-Ag, Sn-Sb) as well in the liquid as well in the solid state. The results have been compared to classical lead-tin (Pb-Sn) solders. In Chemnitz we measured the surface tension, the interfacial tension and the density of lead free solders. We also measured the viscosity of these solders without and with additives, in particular nickel. These properties were related to the industrial problems of wettability and spreadability. Lastly, we solidified alloys under various conditions. We observed undercooling. We developed a technique of mixture of nanocrystalline powder with lead free solders ''to sow'' the liquid bath in order to obtain ''different'' solids which were examined using optical and electron microscopy. (orig.)

  4. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder

    Energy Technology Data Exchange (ETDEWEB)

    Li Guangdong, E-mail: liguangdong@emails.bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China); Shi Yaowu; Hao Hu; Xia Zhidong; Lei Yongping; Guo Fu [College of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2010-02-18

    In the present work, the effect of phosphorus on the creep fatigue properties of Sn-Cu eutectic lead-free solder was carried out. The experimental results show that the melting temperature was almost not changed with adding small amount of P element. However, the addition of trace P element led to the decrease in the property of creep fatigue. The fractography analysis by a scanning electron microscopy (SEM) shows that ductile fracture was the dominant failure behavior in the process of creep fatigue test of Sn0.7Cu and Sn0.7Cu0.005P specimens. It should be pointed out that there is significant difference in the fractographs between the joints of Sn0.7Cu solder and Sn0.7Cu0.005P solder. In the fractograph of Sn0.7Cu solder joint, the microstructure is prolonged along testing direction, and the dimples were more than the fractograph of Sn0.7Cu0.005P solder joint. In addition, the voids could be found on the Sn0.7Cu0.005P solder joint, and trace P addition may increase the rate of forming void of Sn0.7Cu solder joint. The voids can potentially lead to crack initiation or propagation sites in the solder joint. As a result, the creep fatigue of solder joint containing P such as Sn0.7Cu0.005P offers worse property compared to Sn0.7Cu solder joint.

  5. Transected sciatic nerve repair by diode laser protein soldering.

    Science.gov (United States)

    Fekrazad, Reza; Mortezai, Omid; Pedram, MirSepehr; Kalhori, Katayoun Am; Joharchi, Khojasteh; Mansoori, Korosh; Ebrahimi, Roja; Mashhadiabbas, Fatemeh

    2017-08-01

    Despite advances in microsurgical techniques, repair of peripheral nerve injuries (PNI) is still a major challenge in regenerative medicine. The standard treatment for PNI includes suturing and anasthomosis of the transected nerve. The objective of this study was to compare neurorraphy (nerve repair) using standard suturingto diode laser protein soldering on the functional recovery of transected sciatic nerves. Thirty adult male Fischer-344 Wistar rats were randomly assigned to 3 groups: 1. The control group, no repair, 2. the standard of care suture group, and 3. The laser/protein solder group. For all three groups, the sciatic nerve was transected and the repair was done immediately. For the suture repair group, 10.0 prolene suture was used and for the laser/protein solder group a diode laser (500mW output power) in combination with bovine serum albumen and indocyanine green dye was used. Behavioral assessment by sciatic functional index was done on all rats biweekly. At 12weeks post-surgery, EMG recordings were done on all the rats and the rats were euthanized for histological evaluation of the sciatic nerves. The one-way ANOVA test was used for statistical analysis. The average time required to perform the surgery was significantly shorter for the laser-assisted nerve repair group compared to the suture group. The EMG evaluation revealed no difference between the two groups. Based on the sciatic function index the laser group was significantly better than the suture group after 12weeks (pneurorraphy using standard suturing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  7. Pressure brazing of ceramics to metals with copper solder

    International Nuclear Information System (INIS)

    Pavlova, M.A.; Metelkin, I.I.

    1986-01-01

    The effect on the quality of joints brazed with copper of different non metallized aluminooxide dielectrics with metals and alloys of a series of technological parameters (temperature, pressure, holding, and medium) in the course of pressure brazing is investigated. It is shown that in case of brazing with kovar and nickel the character of dependences is identical, however in all cases the joints with nickel are more durable. For the ceramics - molybdenum system characterized by weak interaction with copper solder kinetic dependences have no maximum and only under holding of more than 20 min the constant strength of 150-190 MPa is attained

  8. Albumin solder covalently bound to a polymer membrane: New approach to improve binding strength in laser tissue soldering in-vitro.

    Science.gov (United States)

    Hiebl, B; Ascher, L; Luetzow, K; Kratz, K; Gruber, C; Mrowietz, C; Nehring, M E; Lendlein, A; Franke, R-P; Jung, F

    2018-01-01

    Laser tissue soldering (LTS) based on indocyanine green (ICG)-mediated heat-denaturation of proteins might be a promising alternative technique for micro-suturing, but up to now the problem of too weak shear strength of the solder welds in comparison to sutures is not solved. Earlier reports gave promising results showing that solder supported by carrier materials can enhance the cohesive strength of the liquid solder. In these studies, the solder was applied to the carriers by dip coating. Higher reliability of the connection between the solder and the carrier material is expected when the solder is bound covalently to the carrier material. In the present study a poly(ether imide) (PEI) membrane served as carrier material and ICG-supplemented albumin as solder substrate. The latter was covalently coupled to the carrier membrane under physiological conditions to prevent structural protein changes. As laser source a diode continuous-wave laser emitting at 808 nm with intensities between 250 mW and 1500 mW was utilized. The albumin functionalized carrier membrane was placed onto the tunica media of explanted pig thoracic aortae forming an overlapping area of approximately 0.5×0.5 cm2. All tests were performed in a dry state to prevent laser light absorption by water. Infrared spectroscopy, spectro-photometrical determination of the secondary and primary amine groups after acid orange II staining, contact angle measurements, and atomic force microscopy proved the successful functionalization of the PEI membrane with albumin. A laser power of 450 mW LTS could generate a membrane-blood vessel connection which was characterized by a shear strength of 0.08±0.002 MPa, corresponding to 15% of the tensile strength of the native blood vessel. Theoretically, an overlapping zone of 4.1 mm around the entire circumference of the blood vessel could have provided shear strength of the PEI membrane-blood vessel compound identical to the tensile strength of the native

  9. Development of Pb-Free Nanocomposite Solder Alloys

    Directory of Open Access Journals (Sweden)

    Animesh K. Basak

    2018-04-01

    Full Text Available As an alternative to conventional Pb-containing solder material, Sn–Ag–Cu (SAC based alloys are at the forefront despite limitations associated with relatively poor strength and coarsening of grains/intermetallic compounds (IMCs during aging/reflow. Accordingly, this study examines the improvement of properties of SAC alloys by incorporating nanoparticles in it. Two different types of nanoparticles were added in monolithic SAC alloy: (1 Al2O3 or (2 Fe and their effect on microstructure and thermal properties were investigated. Addition of Fe nanoparticles leads to the formation of FeSn2 IMCs alongside Ag3Sn and Cu6Sn5 from monolithic SAC alloy. Addition of Al2O3 nano-particles do not contribute to phase formation, however, remains dispersed along primary β-Sn grain boundaries and act as a grain refiner. As the addition of either Fe or Al2O3 nano-particles do not make any significant effect on thermal behavior, these reinforced nanocomposites are foreseen to provide better mechanical characteristics with respect to conventional monolithic SAC solder alloys.

  10. Impurity Effects in Electroplated-Copper Solder Joints

    Directory of Open Access Journals (Sweden)

    Hsuan Lee

    2018-05-01

    Full Text Available Copper (Cu electroplating is a mature technology, and has been extensively applied in microelectronic industry. With the development of advanced microelectronic packaging, Cu electroplating encounters new challenges for atomic deposition on a non-planar substrate and to deliver good throwing power and uniform deposit properties in a high-aspect-ratio trench. The use of organic additives plays an important role in modulating the atomic deposition to achieve successful metallic coverage and filling, which strongly relies on the adsorptive and chemical interactions among additives on the surface of growing film. However, the adsorptive characteristic of organic additives inevitably results in an incorporation of additive-derived impurities in the electroplated Cu film. The incorporation of high-level impurities originating from the use of polyethylene glycol (PEG and chlorine ions significantly affects the microstructural evolution of the electroplated Cu film, and the electroplated-Cu solder joints, leading to the formation of undesired voids at the joint interface. However, the addition of bis(3-sulfopropyl disulfide (SPS with a critical concentration suppresses the impurity incorporation and the void formation. In this article, relevant studies were reviewed, and the focus was placed on the effects of additive formula and plating parameters on the impurity incorporation in the electroplated Cu film, and the void formation in the solder joints.

  11. A flip chip process based on electroplated solder bumps

    Science.gov (United States)

    Salonen, J.; Salmi, J.

    1994-01-01

    Compared to wire bonding and TAB, flip chip technology using solder joints offers the highest pin count and packaging density and superior electrical performance. The chips are mounted upside down on the substrate, which can be made of silicon, ceramic, glass or - in some cases - even PCB. The extra processing steps required for chips are the deposition of a suitable thin film metal layer(s) on the standard Al pad and the formation of bumps. Also, the development of new fine line substrate technologies is required to utilize the full potential of the technology. In our bumping process, bump deposition is done by electroplating, which was chosen for its simplicity and economy. Sputter deposited molybdenum and copper are used as thin film layers between the aluminum pads and the solder bumps. A reason for this choice is that the metals can be selectively etched after bumping using the bumps as a mask, thus circumventing the need for a separate mask for etching the thin film metals. The bumps are electroplated from a binary Pb-Sn bath using a thick liquid photoresist. An extensively modified commercial flip chip bonder is used for alignment and bonding. Heat assisted tack bonding is used to attach the chips to the substrate, and final reflow joining is done without flux in a vacuum furnace.

  12. Temperature-controlled laser-soldering system and its clinical application for bonding skin incisions

    Science.gov (United States)

    Simhon, David; Gabay, Ilan; Shpolyansky, Gregory; Vasilyev, Tamar; Nur, Israel; Meidler, Roberto; Hatoum, Ossama Abu; Katzir, Abraham; Hashmonai, Moshe; Kopelman, Doron

    2015-12-01

    Laser tissue soldering is a method of repairing incisions. It involves the application of a biological solder to the approximated edges of the incision and heating it with a laser beam. A pilot clinical study was carried out on 10 patients who underwent laparoscopic cholecystectomy. Of the four abdominal incisions in each patient, two were sutured and two were laser soldered. Cicatrization, esthetical appearance, degree of pain, and pruritus in the incisions were examined on postoperative days 1, 7, and 30. The soldered wounds were watertight and healed well, with no discharge from these wounds or infection. The total closure time was equal in both methods, but the net soldering time was much shorter than suturing. There was no difference between the two types of wound closure with respect to the pain and pruritus on a follow-up of one month. Esthetically, the soldered incisions were estimated as good as the sutured ones. The present study confirmed that temperature-controlled laser soldering of human skin incisions is clinically feasible, and the results obtained were at least equivalent to those of standard suturing.

  13. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.

    Science.gov (United States)

    Sorg, B S; Welch, A J

    2001-01-01

    Previous research introduced the concept of using biodegradable polymer film reinforcement of a liquid albumin solder for improvement of the tensile strength of repaired incisions in vitro. In this study, the effect of creating small pores in the PLGA films on the weld breaking strength is studied. Additionally, the effect of hydration on the strength of the reinforced welds is investigated. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with an 806-nm CW diode laser. A poly(DL-lactic-co-glycolic acid) (PLGA) film was used to reinforce the solder (the controls had solder but no reinforcement). Breaking strengths were measured acutely and after hydration in saline for 1 and 2 days. The data were analyzed by ANOVA (P < 0.05) and multiple comparisons of means were performed using the Newman-Keuls test. The creation of pores in the PLGA films qualitatively improved the film flexibility without having an apparent adverse effect on the breaking strength, while the actual technique of applying the film and solder had more of an effect. The acute maximum average breaking strengths of some of the film reinforced specimens (114.7 g-134.4 g) were significantly higher (P < 0.05) than the acute maximum average breaking strength of the unreinforced control specimens (68.3 g). Film reinforced specimens were shown to have a statistically significantly higher breaking strength than unreinforced controls after 1- and 2-day hydration. Reinforcement of liquid albumin solders in laser-assisted incision repair appears to have advantages over conventional methods that do not reinforce the cohesive strength of the solder in terms of acute breaking strength and after immersion in moist environments for short periods of time. Using a film with the solder applied to one surface only may be advantageous over other techniques.

  14. The influence of silver content on structure and properties of Sn–Bi–Ag solder and Cu/solder/Cu joints

    Energy Technology Data Exchange (ETDEWEB)

    Šebo, P. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava 3 (Slovakia); Švec, P. Sr., E-mail: Peter.Svec@savba.sk [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janičkovič, D.; Illeková, E. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia); Zemánková, M. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava 3 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine); Sidorov, V. [Ural State Pedagogical University, Cosmonavtov 26, 620017 Ekaterinburg (Russian Federation); Švec, P. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia)

    2013-06-01

    The effect of silver content on structure and properties of Sn{sub 100−x}Bi{sub 10}Ag{sub x} (x=3–10 at%) lead-free solder and Cu–solder–Cu joints was investigated. The microstructure of the solder in both bulk and rapidly solidified ribbon forms was analyzed by scanning electron microscopy (SEM) and X-ray diffraction. The peculiarities in melting kinetic, studied by differential scanning calorimetry (DSC), and silver influence on it are described and discussed. The wetting of a copper substrate was examined by the sessile drop method in the temperature range of 553–673 K in air and deoxidizing gas (N{sub 2}+10%H{sub 2}) at atmospheric pressure. Cu–solder–Cu joints were also prepared in both atmospheres, and their shear strength was measured by the push-off method. The produced solders consisted of tin, bismuth and Ag{sub 3}Sn phases. The product of the interaction between the solder and the copper substrate consists of two phases: Cu{sub 3}Sn, which is adjacent to the substrate, and a Cu{sub 6}Sn{sub 5} phase. The wetting angle in air increased slightly as the silver concentration in the solder increased. Wetting of the copper substrate in N{sub 2}+10H{sub 2} gas shows the opposite tendency: the wetting angle slightly decreased as the silver content in the solder increased. The shear strength of the joints prepared in air (using flux) tends to decrease with increasing production temperature and increasing silver content in the solder. The equivalent decrease in the shear strength of the joints prepared in N{sub 2}+10H{sub 2} is more apparent.

  15. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    Science.gov (United States)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases

  16. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    Directory of Open Access Journals (Sweden)

    Xiuyun Zhou

    2015-10-01

    Full Text Available In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT. Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  17. Contamination profile on typical printed circuit board assemblies vs soldering process

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Purpose – The purpose of this paper was to analyse typical printed circuit board assemblies (PCBAs) processed by reflow, wave or selective wave soldering for typical levels of process-related residues, resulting from a specific or combination of soldering processes. Typical solder flux residue...... structure was identified by Fourier transform infrared spectroscopy, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode set-up. Localized extraction of residue was carried...

  18. Contamination profile of Printed Circuit Board Assemblies in relation to soldering types and conformal coating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition......, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined...

  19. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting

    DEFF Research Database (Denmark)

    Domkin, Konstantin; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    of the die lifetime based on a quantitative analysis of die soldering in the framework of the numerical simulations of the die-casting process. Full 3D simulations of the process, including the filling. solidification, and the die cooling, are carried out using the casting simulation software MAGMAsoft....... The resulting transient temperature fields on the die surface and in the casting are then post-processed to estimate the die soldering. The present work deals only with the metallurgical/chemical kind of soldering which occurs at high temperatures and involves formation and growth of intermetallic layers...

  20. Eddy current quality control of soldered current-carrying busbar splices of superconducting magnets

    CERN Document Server

    Kogan, L; Savary, F; Principe, R; Datskov, V; Rozenfel'd, E; Khudjakov, B

    2015-01-01

    The eddy current technique associated with a U-shaped transducer is studied for the quality control of soldered joints between superconducting busbars ('splices'). Two other quality control techniques, based on X-rays and direct measurement of the electrical resistance, are also studied for comparison. A comparative analysis of the advantages and disadvantages of these three methods in relation to the quality control of soldered superconducting busbar cables enclosed in copper shells is used for benchmarking. The results of inspections with the U-shaped eddy current transducer carried out on several sample joints presenting different types of soldering defects show the potential of this type of nondestructive (ND) quality control technique.

  1. 78 FR 70391 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2013-11-25

    ... of the International Maritime Organization's (IMO) Sub- Committee on Ship Design and Construction to... vessels --Carriage of more than 12 industrial personnel on board vessels engaged in international voyages...

  2. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn- xAg-0.7Cu

    Science.gov (United States)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-12-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  3. A review on solder reflow and flux application for flip chip

    Science.gov (United States)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Visvanathan, Susthitha Menon; Retnasamy, Vithyacharan

    2017-09-01

    This paper encompassed of the evolution and key findings, critical technical challenges, solutions and bonding equipment of solder reflow in flip chip bonding. Upon scrutinizing researches done by others, it can be deduced that peak temperature, time above liquidus, soak temperature, soak time, cooling rate and reflow environment played a vital role in achieving the desired bonding profile. In addition, flux is also needed with the purpose of removing oxides/contaminations on bump surface as well as to promote wetting of solder balls. Electromigration and warpage are the two main challenges faced by solder reflow process which can be overcome by the advancement in under bump metallization (UBM) and substrate technology. The review is ended with a brief description of the current equipment used in solder reflow process.

  4. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  5. Laser welding of vas deferens in rodents: initial experience with fluid solders.

    Science.gov (United States)

    Trickett, R I; Wang, D; Maitz, P; Lanzetta, M; Owen, E R

    1998-01-01

    This study evaluates the use of sutureless laser welding for vasovasostomy. In 14 rodents, the left vas deferens underwent vasovasostomy using an albumin-based solder applied to the adventitia of the vas deferens. The solder contained the dye, indocyanine green, to allow selective absorption and denaturation by a fiber-coupled 800-nm diode laser. The right vas deferens served as a control, receiving conventional layered microsurgical repair. We used a removable 4/0 nylon stent and microclamps to appose the vas deferens during repair, with no need for stay sutures. The mean time to perform laser solder repair (23.5 min) and conventional repair (23.3 min) were not significantly different (P=0.91). However, examination after 8 weeks showed that granuloma formation (G) and patency (P) rates for the conventional suture technique (G, 14%; P, 93%) were significantly better than observed for the laser solder technique (G, 57%; P, 50%).

  6. Effects of rework on adhesion of Pb-In soldered gold thick films

    International Nuclear Information System (INIS)

    Gehman, R.W.; Becka, G.A.; Losure, J.A.

    1982-02-01

    The feasibility of repeatedly reworking Pb-In soldered joints on gold thick films was evaluated. Nailhead adhesion tests on soldered thick films typically resulted in failure within the bulk solder (50 In-50 Pb). Average strengths increased with each rework, and the failure mode changed. An increase in metalization lift-off occurred with successive reworks. An investigation was initiated to determine why these changes occurred. Based on this work, the thick film adhesion to the substrate appeared to be lowered by indium reduction of cadmium oxide and by formation of a weak, brittle intermetallic compound, Au 9 In 4 . It was concluded that two solder reworks could be conducted without significant amounts of metallization lift-off during nailhead testing

  7. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  8. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  9. The creep behavior of In-Ag eutectic solder joints

    International Nuclear Information System (INIS)

    Reynolds, H.L.; Kang, S.H.; Morris, J.W. Jr.; Univ. of California, Berkeley, CA

    1999-01-01

    The addition of 3 wt.% Ag to In results in a eutectic composition with improved mechanical properties while only slightly lowering the melting temperature. Steady-state creep properties of In-Ag eutectic solder joints have been measured using constant load tests at 0, 30, 60, and 90 C. Constitutive equations are derived to describe the creep behavior. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Two parallel mechanisms were observed for the In-Ag eutectic joints. The high-stress mechanism is a bulk mechanism with a thermal dependence dominated by the thermal dependence of creep in the In-rich matrix. The low-stress mechanism is a grain boundary mechanism. Results of this work are discussed with regard to creep behavior of typical eutectic systems

  10. Nanoconstruction by welding individual metallic nanowires together using nanoscale solder

    International Nuclear Information System (INIS)

    Peng, Y; Inkson, B J; Cullis, A G

    2010-01-01

    This work presents a new bottom-up nanowelding technique enabling building blocks to be assembled and welded together into complex 3D nanostructures using nanovolumes of metal solder. The building blocks of gold nanowires, (Co 72 Pt 28 /Pt) n multilayer nanowires, and nanosolder Sn 99 Au 1 alloy nanowires were successfully fabricated by a template technique. Individual metallic nanowires were picked up and assembled together. Conductive nanocircuits were then welded together using similar or dissimilar nanosolder material. At the weld sites, nanoscale volumes of a chosen metal are deposited using nanosolder of a sacrificial nanowire, which ensures that the nanoobjects to be bonded retain their structural integrity. The whole nanowelding process is clean, controllable and reliable, and ensures both mechanically strong and electrically conductive contacts.

  11. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-01

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a ''press'' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation

  12. Effects of voids on thermal-mechanical reliability of lead-free solder joints

    Directory of Open Access Journals (Sweden)

    Benabou Lahouari

    2014-06-01

    Full Text Available Reliability of electronic packages has become a major issue, particularly in systems used in electrical or hybrid cars where severe operating conditions must be met. Many studies have shown that solder interconnects are critical elements since many failure mechanisms originate from their typical response under thermal cycles. In this study, effects of voids in solder interconnects on the electronic assembly lifetime are estimated based on finite element simulations.

  13. Investigation into mechanical properties of joints of heterogeneous materials brazed with high-temperature solders

    International Nuclear Information System (INIS)

    Lomenko, V.I.; Merkushev, V.P.; Borodina, L.M.; Sycheva, T.S.; Tokhtina, O.A.; Frolov, N.N.

    1988-01-01

    Mechanical properties of copper joints with copper, 12Kh18M10T steel and KhD50 composite obtained by vacuum brazing by copper-titanium solder as compared with properties of joints brazed by PSr 72 and PMFOTsr 6-4-0.03 solders in hydrogen are studied. Dependences of joints strength on temperature of contact - reactive vacuum brazing are obtained. Possible applications of joints of dissimilar materials in electrovacuum devices subjected to the effect of dynamic loadings are established

  14. Dye-enhanced protein solders and patches in laser-assisted tissue welding.

    Science.gov (United States)

    Small, W; Heredia, N J; Maitland, D J; Da Silva, L B; Matthews, D L

    1997-01-01

    This study examines the use of dye-enhanced protein bonding agents in 805 nm diode laser-assisted tissue welding. A comparison of an albumin liquid solder and collagen solid-matrix patches used to repair arteriotomies in an in vitro porcine model is presented. Extrinsic bonding media in the form of solders and patches have been used to enhance the practice of laser tissue welding. Preferential absorption of the laser wavelength has been achieved by the incorporation of chromophores. Both the solder and the patch included indocyanine green dye (ICG) to absorb the 805 nm continuous-wave diode laser light used to perform the welds. Solder-mediated welds were divided into two groups (high power/short exposure and low power/long exposure), and the patches were divided into three thickness groups ranging from 0.1 to 1.3 mm. The power used to activate the patches was constant, but the exposure time was increased with patch thickness. Burst pressure results indicated that solder-mediated and patched welds yielded similar average burst strengths in most cases, but the patches provided a higher success rate (i.e., more often exceeded 150 mmHg) and were more consistent (i.e., smaller standard deviation) than the solder. The strongest welds were obtained using 1.0-1.3 mm thick patches, while the high power/short exposure solder group was the weakest. Though the solder and patches yielded similar acute weld strengths, the solid-matrix patches facilitated the welding process and provided consistently strong welds. The material properties of the extrinsic agents influenced their performance.

  15. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.; Anderson, D.J. [Sandia National Labs., Albuquerque, NM (United States); Burress, R.V. [SEHO (United States)] [and others

    1995-06-01

    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The test data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.

  16. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Wilfred [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Yusoff, Wan Yusmawati Wan [Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  17. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    Directory of Open Access Journals (Sweden)

    Enrico Mick

    2015-07-01

    Full Text Available Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm made of alumina toughened zirconia (ATZ, as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM and energy-dispersive X-ray (EDX analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings.

  18. Wall-slip effects in SnAgCu solder pastes used in electronics assembly applications

    International Nuclear Information System (INIS)

    Mallik, S.; Ekere, N.N.; Durairaj, R.; Marks, A.E.; Seman, A.

    2009-01-01

    Solder paste is the most important strategic bonding material used in the assembly of surface mount components in electronics manufacturing. As the trend towards miniaturisation of electronic products continues, there is an increasing demand for better understanding of the flow and deformation that is, the rheological behaviour of solder paste formulations. Wall slip plays an important role in characterising the flow behaviour of solder paste materials. The problem of wall slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. In rheological measurements, slip effects can generally be avoided by using roughened surfaces for measuring geometries. In this paper, a novel technique is developed to study the effect of wall slip in the rheological measurements of lead-free solder paste. The viscosity and oscillatory data obtained for three different solder paste samples (from measuring geometries of different surface roughness) have been analysed and compared. In viscosity measurements, slip effects were dominant at low shear rates and the use of serrated surfaces was found to be quite effective in minimizing slip effects. Oscillatory measurements were also affected by roughening the surfaces of measuring geometries.

  19. Rheological characterisation and printing performance of Sn/Ag/Cu solder pastes

    International Nuclear Information System (INIS)

    Durairaj, R.; Ramesh, S.; Mallik, S.; Seman, A.; Ekere, N.

    2009-01-01

    Lead-free solder paste printing process accounts for majority of the assembly defects in the electronic manufacturing industry. The study investigates rheological behaviour and stencil printing performance of the lead-free solder pastes (Sn/Ag/Cu). Oscillatory stress sweep test was carried out to study the visco-elastic behaviour of the lead-free solder pastes. The visco-elastic behaviour of the paste encompasses solid and liquid characteristic of the paste, which could be used to study the flow behaviour experienced by the pastes during the stencil printing process. From this study, it was found that the solid characteristics (G') is higher than the liquid characteristic (G'') for the pastes material. In addition, the results from the study showed that the solder paste with a large G' = G'' has a higher cohesiveness resulting in poor withdrawal of the paste during the stencil printing process. The phase angles (δ) was used to correlate the quality of the dense suspensions to the formulation of solder paste materials. This study has revealed the value of having a rheological measurement for explaining and characterising solder pastes for stencil printing. As the demand for lead free pastes increases rheological measurements can assist with the formulation or development of new pastes.

  20. Study on interfacial reaction between lead-free solders and alternative surface finishes

    International Nuclear Information System (INIS)

    Siti Rabiatul Aisha; Ourdjini, A.; Saliza Osman

    2007-01-01

    This study investigates the interfacial reactions occurring during reflow soldering between Sn-Ag-Cu lead-free solder and two surface finishes: electroless nickel/ immersion gold (ENIG) and immersion silver (IAg). The study focuses on interfacial reactions evolution and growth kinetics of intermetallic compounds (IMC) formed during soldering and isothermal ageing at 150 degree Celsius for up to 2000 hours. Optical and scanning electron microscopy were used to measure IMC thickness and examine the morphology of IMC respectively, whereas the IMC phases were identified by energy dispersive X-ray analysis (EDX). The results showed that the IMC formed on ENIG finish is thinner compared to that formed on IAg finish. For IAg surface finish, Cu 6 Sn 5 IMCs with scallop morphology are formed at the solder/ surface finish interface after reflow while a second IMC, Cu 3 Sn was formed between the copper and Cu 6 Sn 5 IMC after the isothermal ageing treatment. For ENIG surface finish both (Cu,Ni) 6 Sn 5 and (Ni,Cu) 3 Sn 4 are formed after soldering. Isothermal aging of the solder joints formed on ENIG finish was found to have a significant effect on the morphology of the intermetallics by transforming to more spherical and denser morphology in addition to increase i their thickness with increased ageing time. (author)

  1. Comparative shear tests of some low temperature lead-free solder pastes

    Science.gov (United States)

    Branzei, Mihai; Plotog, Ioan; Varzaru, Gaudentiu; Cucu, Traian C.

    2016-12-01

    The range of electronic components and as a consequence, all parts of automotive electronic equipment operating temperatures in a vehicle is given by the location of that equipment, so the maximum temperature can vary between 358K and 478K1. The solder joints could be defined as passive parts of the interconnection structure of automotive electronic equipment, at a different level, from boards of electronic modules to systems. The manufacturing costs reduction necessity and the RoHS EU Directive3, 7 consequences generate the trend to create new Low-Temperature Lead-Free (LTLF) solder pastes family9. In the paper, the mechanical strength of solder joints and samples having the same transversal section as resistor 1206 case type made using the same LTLF alloys into Vapour Phase Soldering (VPS) process characterized by different cooling rates (slow and rapid) and two types of test PCBs pads finish, were benchmarked at room temperature. The presented work extends the theoretical studies and experiments upon heat transfer in VPSP in order to optimize the technology for soldering process (SP) of automotive electronic modules and could be extended for home and modern agriculture appliances industry. The shear forces (SF) values of the LTLF alloy samples having the same transversal section as resistor 1206 case type will be considered as references values of a database useful in the new solder alloy creation processes and their qualification for automotive electronics domain.

  2. Investigation on solder joint strength of nickel tin-plated and CRS tabs with PCB

    International Nuclear Information System (INIS)

    Luay Hussain

    2002-01-01

    Failure analysis on easily peels off Nickel and CRS steel tabs from PCB was carried out. Nickel Tin plated tabs, CRS steel tabs and tube were joined to the PCB using reflow/ convection soldering, in an oven. The solder paste composition is Sn36/Pb35/Ag2. Peel test was conducted and it was found that many tabs could be easily peeled off with low force. Porosities which varies from 0.4 mm to < 0.01mm in diameter, developed during soldering process and solidification was noted. It was found, the number, size and position of these porosities inside the solder layer on both parts of the tabs affect the peel strength. Scanning Electron Microscopy study and EDX analysis were carried out. It was found that the low peel strength values were due to the combination of generation and development of porosities during soldering process which act as stress concentrators and the evolution (growth) of eutectic Sn/Pb and Sn/Ni/Cu brittle grainy phase. Large eutectic microstructure with brittle Sn-Ni-Cu grainy phase enhances the failure with low peeling forces. Sample showing no feature of Sn/Ni/Cu grain gave high peeling strength value. Solder reflow, an important process, can result in strength enhancement (if it was controlled for example in a furnace). (Author)

  3. Organizing Committee Advisory Committee 187

    Indian Academy of Sciences (India)

    Organizing Committee. V M Datar (Chairman). Bhabha Atomic Research Centre, Mumbai, India. D C Biswas (Convener). Bhabha Atomic Research Centre, Mumbai, India. K Mahata (Secretary). Bhabha Atomic Research Centre, Mumbai, India. Z Ahmed. Bhabha Atomic Research Centre, Mumbai, India. P V Bhagwat.

  4. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2015-01-01

    Full Text Available SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.

  5. An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation

    Science.gov (United States)

    Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.

    2004-12-01

    The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.

  6. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    OpenAIRE

    Sun, Lei; Zhang, Liang

    2015-01-01

    SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth) and nanoparti...

  7. Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy

    Science.gov (United States)

    Tikale, Sanjay; Prabhu, K. Narayan

    2018-05-01

    The effect of Al2O3 nanoparticles reinforcement on melting behavior, microstructure evolution at the interface and joint shear strength of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder alloy subjected to multiple reflow cycles was investigated. The reinforced SAC305 solder alloy compositions were prepared by adding Al2O3 nanoparticles in different weight fractions (0.05, 0.1, 0.3 and 0.5 wt.%) through mechanical dispersion. Cu/solder/Cu micro-lap-shear solder joint specimens were used to assess the shear strength of the solder joint. Differential scanning calorimetry was used to investigate the melting behavior of SAC305 solder nanocomposites. The solder joint interfacial microstructure was studied using scanning electron microscopy. The results showed that the increase in melting temperature (T L) and melting temperature range of the SAC305 solder alloy by addition of Al2O3 nanoparticles were not significant. In comparison with unreinforced SAC305 solder alloy, the reinforcement of 0.05-0.5 wt.% of Al2O3 nanoparticles improved the solder wettability. The addition of nanoparticles in minor quantity effectively suppressed the Cu6Sn5 IMC growth, improved the solder joint shear strength and ductility under multiple reflow cycles. However, the improvement in solder properties was less pronounced on increasing the nanoparticle content above 0.1 wt.% of the solder alloy.

  8. Nuclear Safety advisory committee (NSAC)

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA convened the 16th NSAC meeting in 1999. The Committee listened to the report by the NNSA relating to the fault of core barrel at the QNPP. And also the NNSA convened the 17th NSAC meeting in Beijing. The Committee listened to the report by the NNSA relating to the review and assessment on the application of CP at the JTNPP and discussed on the granting of CP and the related license conditions at the JTNPP. The Sub-Committee of NSAC of the NNSA on siting convened and enlarged meeting for a consulting with the domestic experts on the issue of seismic response spectrum in design at the JTNPP

  9. The critical oxide thickness for Pb-free reflow soldering on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. Key [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Assembly Test Global Materials, Intel Microelectronics Asia Ltd, B1, No. 205, Tun-Hwa North Road, 10595 Taipei, Taiwan (China); Chen, Y.J.; Li, C.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Kao, C.R., E-mail: crkao@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China)

    2012-06-01

    Oxidation is an undesirable effect of reflow soldering. Non-wetting occurs when the oxide layer grows above the critical thickness. Characterizing the critical oxide thickness for soldering is challenging due to oxide's nano-scale thickness and irregular topographic surface. In this paper, the critical copper oxide thickness was characterized by Time-of-Flight Secondary Ion Mass Spectrometry, Scanning Electron Microscopy, Energy-Dispersive X-ray spectroscopy, and Transmission Electron Microscopy. Copper substrates were coated with an Organic-Solderable-Preservative (OSP) layer and baked at 150 Degree-Sign C and 85% Relative Humidity for different amounts of time. The onset of the non-wetting phenomenon occurred when the oxide thickness reached 18 {+-} 5 nm. As the oxide grew beyond this critical thickness, the percentage of non-wetting solder joint increased exponentially. The growth of the oxide thickness followed a parabolic rate law. The rate constant of oxidation was 0.6 Multiplication-Sign 10{sup -15} cm{sup 2} min{sup -1}. Oxidation resulted from interdiffusion of copper and oxygen atoms through the OSP and oxide layers. The oxidation mechanism will be presented and discussed. - Highlights: Black-Right-Pointing-Pointer Critical oxide thickness for Pb free solder on Cu substrate is 18 {+-} 5 nm. Black-Right-Pointing-Pointer Above the critical oxide, non-wet solder joint increases exponentially. Black-Right-Pointing-Pointer A maximum 13-nm oxide thickness is suggested for good solder joint. Black-Right-Pointing-Pointer Initial growth of oxide thickness is logarithmic and then parabolic after 12 nm. Black-Right-Pointing-Pointer Thick oxide (360-560 nm) is formed as pores shorten the oxidation path.

  10. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  11. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Devasenathipathy, Shankar; Swan, Johanna; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.

  12. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs.

  13. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs

  14. Improvement of the auto wire feeder machine in a de-soldering process

    Directory of Open Access Journals (Sweden)

    Niramon Nonkhukhetkhong

    2016-10-01

    Full Text Available This paper presents the methodology of the de-soldering process for rework of disk drive Head Stack Assembly (HSA units. The auto wire feeder is a machine that generates Tin (Sn on the product. This machine was determined to be one of the major sources of excess Sn on the HSA. The defect rate due to excess Sn is more than 30%, which leads to increased processing time and cost to perform additional cleaning steps. From process analysis, the major causes of excess Sn are as follows: 1 The machine cannot cut the wire all the way into the flux core area; 2 The sizes and types of soldering irons are not appropriate for the unit parts; and, 3 There are variations introduced into the de-soldering process by the workforce. This paper proposes a methodology to address all three of these causes. First, the auto wire feeder machine in the de-solder process will be adjusted in order to cut wires into flux core. Second, the types of equipment and material used in de-soldering will be optimized. Finally, a new standard method for operators, which can be controlled more easily, will be developed in order to reduce defects due to workforce related variation. After these process controls and machine adjustments were implemented, the overall Sn related problems were significantly improved. Sn contamination was reduced by 41% and cycle time was reduced by an average of 15 seconds.

  15. Electromigration-induced back stress in critical solder length for three-dimensional integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y. T.; Hsu, H. H.; Wu, Albert T., E-mail: atwu@ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli City 320, Taiwan (China)

    2014-01-21

    Because of the miniaturization of electronic devices, the reliability of electromigration has become a major concern when shrinking the solder dimensions in flip-chip joints. Fast reaction between solders and electrodes causes intermetallic compounds (IMCs) to form, which grow rapidly and occupy entire joints when solder volumes decrease. In this study, U-grooves were fabricated on Si chips as test vehicles. An electrode-solder-electrode sandwich structure was fabricated by using lithography and electroplating. Gaps exhibiting well-defined dimensions were filled with Sn3.5Ag solders. The gaps between the copper electrodes in the test sample were limited to less than 15 μm to simulate microbumps. The samples were stressed at various current densities at 100 °C, 125 °C, and 150 °C. The morphological changes of the IMCs were observed, and the dimensions of the IMCs were measured to determine the kinetic growth of IMCs. Therefore, this study focused on the influence of back stress caused by microstructural evolution in microbumps.

  16. In vitro conjunctival incision repair by temperature-controlled laser soldering.

    Science.gov (United States)

    Norman, Galia; Rabi, Yaron; Assia, Ehud; Katzir, Abraham

    2009-01-01

    The common method of closing conjunctival incisions is by suturing, which is associated with several disadvantages. It requires skill to apply and does not always provide a watertight closure, which is required in some operations (e.g., glaucoma filtration). The purpose of the present study was to evaluate laser soldering as an alternative method for closing conjunctival incisions. Conjunctival incisions of 20 ex vivo porcine eyes were laser soldered using a temperature-controlled fiberoptic laser system and an albumin mixed with indocyanine green as a solder. The control group consisted of five repaired incisions by a 10-0 nylon running suture. The leak pressure of the repaired incisions was measured. The mean leak pressure in the laser-soldered group was 132 mm Hg compared to 4 mm Hg in the sutured group. There was no statistically significant difference in both the incision's length and distance from the limbus between the groups, before and after the procedure, indicating that there was no severe thermal damage. These preliminary results clearly demonstrate that laser soldering may be a useful method for achieving an immediate watertight conjunctival wound closure. This procedure is faster and easier to apply than suturing.

  17. Effect of temperature and flux concentration on soldering of base metal.

    Science.gov (United States)

    Lee, S Y; Lin, C T; Wang, M H; Tseng, H; Huang, H M; Dong, D R; Pan, L C; Shih, Y H

    2000-12-01

    The present study used the acoustic emission (AE) technique to evaluate interactions among soldering temperature, flux treatment, and the resultant ultimate tensile strength (UTS). Scanning electron microscopy (SEM) was used to examine fracture surfaces of the solder joints. Specimens were cast from removable partial denture alloy and then placed in a jig with a gap distance of 1.0 mm. A high-frequency soldering machine with an optical pyrometer was used for soldering at 1150 degrees C and 1200 degrees C, respectively. The flux concentrations were 67% and 75%. The soldered specimens were subjected to tensile test at a crosshead speed of 0.05 mm/min. During testing, acoustic emissions in the frequency range of 100--1200 kHz were collected, filtered, recorded, and processed by a sensing device. The results were analysed by ANOVA and Tukey LSD test. UTS at different temperatures showed no significant difference according to either mechanical or acoustic results. But in the 1200 degrees C group, the UTSs and AE counts showed significant differences (Pacoustic signals within the elastic deformation zone, while the 67% flux subgroup produced similar signals within the plastic deformation zone, either beyond the 0.2% yield point or before fracture.

  18. Nano-soldering of magnetically aligned three-dimensional nanowire networks

    International Nuclear Information System (INIS)

    Gao Fan; Gu Zhiyong

    2010-01-01

    It is extremely challenging to fabricate 3D integrated nanostructures and hybrid nanoelectronic devices. In this paper, we report a simple and efficient method to simultaneously assemble and solder nanowires into ordered 3D and electrically conductive nanowire networks. Nano-solders such as tin were fabricated onto both ends of multi-segmented nanowires by a template-assisted electrodeposition method. These nanowires were then self-assembled and soldered into large-scale 3D network structures by magnetic field assisted assembly in a liquid medium with a high boiling point. The formation of junctions/interconnects between the nanowires and the scale of the assembly were dependent on the solder reflow temperature and the strength of the magnetic field. The size of the assembled nanowire networks ranged from tens of microns to millimeters. The electrical characteristics of the 3D nanowire networks were measured by regular current-voltage (I-V) measurements using a probe station with micropositioners. Nano-solders, when combined with assembling techniques, can be used to efficiently connect and join nanowires with low contact resistance, which are very well suited for sensor integration as well as nanoelectronic device fabrication.

  19. Effects of Fe2NiO4 nanoparticles addition into lead free Sn–3.0Ag–0.5Cu solder pastes on microstructure and mechanical properties after reflow soldering process

    International Nuclear Information System (INIS)

    Chellvarajoo, Srivalli; Abdullah, M.Z.; Samsudin, Z.

    2015-01-01

    Highlights: • Fe 2 NiO 4 nanoparticles added into SAC 305 by mechanical mixing to form nanocomposite solder paste. • Nanoparticles in the composite solder travels with flux to the outermost surface after reflow. • The intermetallics compound reduced with the addition of nanoparticles into solder paste. • The hardness increased with the addition of limited percentage of nanoparticles into SAC 305. - Abstract: This study investigates the effects of the addition of Fe 2 NiO 4 nanoparticles into a SAC-305 lead-free solder paste. Iron, nickel, and oxide nano-elements were mixed with Pb-free solder alloying elements to produce a new form of nanocomposite solder paste, which can be a promising material in electronic packaging. The SAC-305 was mechanically added with 0.5, 1.5, and 2.5 wt.% of Fe 2 NiO 4 nanoparticles. The migration of nanoparticles in the nanocomposite solder paste to the outermost surface was clarified using the copper ‘sandwich’ method, which was performed after the reflow soldering process. Varying amounts of nanoparticles in the SAC-305 affected the IMC thickness and mechanical properties of the nanocomposite solder paste. The IMC thickness was reduced by 29.15%, 42.37%, and 59.00% after adding 0.5, 1.5, and 2.5 wt.% of Fe 2 NiO 4 nanoparticles in the SAC-305, respectively. However, via nanoindentation method, the hardness of the nanocomposite solder was improved by 44.07% and 56.82% after adding 0.5 and 1.5 wt.% of Fe 2 NiO 4 nanoparticles, respectively. If the addition of Fe 2 NiO 4 nanoparticle exceeded 1.5 wt.%, the hardness increased infinitely

  20. Reliability of Pb free solder alloys. Physical and mechanical properties; Pb free handa no shinraisei. Butsuri kikaiteki shinraisei

    Energy Technology Data Exchange (ETDEWEB)

    Sanji, M; Yoshino, M; Ishikawa, J; Takenaka, O [Denso Corp., Aichi (Japan)

    1997-10-01

    Properties of 19 different Pb free solders have been evaluated in comparison with Sn-37Pb eutectic solder. Pb free solders without Bi were on the same level as Sn-37Pb in tensile strength and elongation, and those with Bi had higher strength and lower elongation than Sn-37Pb. As the Bi content increased, strength was higher, and elongation was lower. In torsion fatigue tests, fatigue life of Pb free solders without Bi was longer than Sn-37Pb. The relationships of Coffin-Manson rule and Basquin rule with fatigue life was applicable to Pb free solder. Fatigue life of those is inferred from their tensile strength. 7 refs., 13 figs., 1 tab.

  1. In-situ study of electromigration-induced grain rotation in Pb-free solder joint by synchrotron microdiffraction

    International Nuclear Information System (INIS)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2008-01-01

    The rotation of Sn grains in Pb-free flip chip solder joints hasn't been reported in literature so far although it has been observed in Sn strips. In this letter, we report the detailed study of the grain orientation evolution induced by electromigration by synchrotron based white beam X-ray microdiffraction. It is found that the grains in solder joint rotate more slowly than in Sn strip even under higher current density. On the other hand, based on our estimation, the reorientation of the grains in solder joints also results in the reduction of electric resistivity, similar to the case of Sn strip. We will also discuss the reason why the electric resistance decreases much more in strips than in the Sn-based solders, and the different driving force for the grain growth in solder joint and in thin film interconnect lines

  2. In-situ study of electromigration-induced grain rotation in Pb-free solder joint by synchrotron microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2008-10-31

    The rotation of Sn grains in Pb-free flip chip solder joints hasn't been reported in literature so far although it has been observed in Sn strips. In this letter, we report the detailed study of the grain orientation evolution induced by electromigration by synchrotron based white beam X-ray microdiffraction. It is found that the grains in solder joint rotate more slowly than in Sn strip even under higher current density. On the other hand, based on our estimation, the reorientation of the grains in solder joints also results in the reduction of electric resistivity, similar to the case of Sn strip. We will also discuss the reason why the electric resistance decreases much more in strips than in the Sn-based solders, and the different driving force for the grain growth in solder joint and in thin film interconnect lines.

  3. 78 FR 56703 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Science.gov (United States)

    2013-09-13

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... Green Building Advisory Committee Meeting (the Committee) and the schedule for a series of conference..., Designated Federal Officer, [[Page 56704

  4. Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution

    Science.gov (United States)

    Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).

  5. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  6. Instantaneous fluxless bonding of Au with Pb-Sn solder in ambient atmosphere

    International Nuclear Information System (INIS)

    Lee, T.K.; Zhang, Sam; Wong, C.C.; Tan, A.C.

    2005-01-01

    A fluxless bonding technique has been developed as a method of flip-chip bonding for microelectronic packaging. The fluxless bonding technique can be achieved instantaneously in an ambient environment between metallic stud bumps and predefined molten solder. This paper describes the mechanics of the bonding action and verifies the effectiveness of this bonding method through wetting balance tests and scanning electron microscope and energy dispersive x-ray analysis. This technique has been demonstrated by using a gold stud bump to break the tin oxide layer over molten solder. This allows for a fast, solid liquid interdiffusion between gold (Au) and the fresh molten eutectic lead-tin (Pb-Sn) solder for joint formation during solidification. This bonding method has been successfully tested with 130-μm-pitch flip-chip bond pads on a joint-in-via flex substrate architecture

  7. Dissolution ad uptake of cadmium from dental gold solder alloy implants

    International Nuclear Information System (INIS)

    Bergman, B.; Bergman, M.; Soeremark, R.

    1977-01-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium ( 115 Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3 d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of 115 Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver. (author)

  8. SINGLE IMAGE CAMERA CALIBRATION IN CLOSE RANGE PHOTOGRAMMETRY FOR SOLDER JOINT ANALYSIS

    Directory of Open Access Journals (Sweden)

    D. Heinemann

    2016-06-01

    Full Text Available Printed Circuit Boards (PCB play an important role in the manufacturing of electronic devices. To ensure a correct function of the PCBs a certain amount of solder paste is needed during the placement of components. The aim of the current research is to develop an real-time, closed-loop solution for the analysis of the printing process where solder is printed onto PCBs. Close range photogrammetry allows for determination of the solder volume and a subsequent correction if necessary. Photogrammetry is an image based method for three dimensional reconstruction from two dimensional image data of an object. A precise camera calibration is indispensable for an accurate reconstruction. In our certain application it is not possible to use calibration methods with two dimensional calibration targets. Therefore a special calibration target was developed and manufactured, which allows for single image camera calibration.

  9. Comparison of implant-abutment interface misfits after casting and soldering procedures.

    Science.gov (United States)

    Neves, Flávio Domingues das; Elias, Gisele Araújo; da Silva-Neto, João Paulo; de Medeiros Dantas, Lucas Costa; da Mota, Adérito Soares; Neto, Alfredo Júlio Fernandes

    2014-04-01

    The aim of this study was to compare vertical and horizontal adjustments of castable abutments after conducting casting and soldering procedures. Twelve external hexagonal implants (3.75 × 10 mm) and their UCLA abutments were divided according their manufacturer and abutment type: PUN (plastic UCLA, Neodent), PUC (plastic UCLA, Conexão), PU3i (plastic UCLA, Biomet 3i), and PUTN (plastic UCLA with Tilite milled base, Neodent). Three infrastructures of a fixed partial implant-supported bridge with 3 elements were produced for each group. The measurements of vertical (VM) and horizontal (HM) misfits were obtained via scanning electron microscopy after completion of casting and soldering. The corresponding values were determined to be biomechanically acceptable to the system, and the results were rated as a percentage. Statistical analysis establishes differences between groups by chi-square after procedures, and McNeman's test was applied to analyze the influence of soldering over casting (α ≤ .05). For the values of VM and HM, respectively, when the casting process was complete, it was observed that 83.25% and 100% (PUTN), 33.3% and 27.75% (PUN), 33.3% and 88.8% (PUC), 33.3% and 94.35% (PU3i) represented acceptable values. After completing the requisite soldering, acceptable values were 50% and 94.35% (PUTN), 16.6% and 77.7% (PUN), 38.55% and 77.7% (PUC), and 27.75% and 94.35% (PU3i). Within the limitations of this study, it can be concluded that the premachined abutments presented more acceptable VM values. The HM values were within acceptable limits before and after the soldering procedure for most groups. Further, the soldering procedure resulted in an increase of VM in all groups.

  10. In-vitro Investigations of Skin Closure using Diode Laser and Protein Solder Containing Gold Nanoshells

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Nourbakhsh

    2010-12-01

    Full Text Available Introduction: Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nanoshells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nanoshells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after placing 50 μl of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns, and scan velocity (Vs were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nanoshell concentrations. In addition, at constant laser irradiance (I, the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to st = 1610 g/cm2 at I ~ 60 Wcm-2, T ~ 65ºC, Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nanoshells can be used as an indocyanine green dye (ICG alterative for laser tissue soldering.  Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  11. Mechanical performances of lead-free solder joint connections with applications in the aerospace domain

    Directory of Open Access Journals (Sweden)

    Georgiana PADURARU

    2016-03-01

    Full Text Available The paper presents some theoretical and experimental aspects regarding the tribological performances of lead-free solder joint connections, with application in the aerospace domain. In order to highlight the mechanical and tribological properties of solder joint in correlation with different pad finishes, there were made some mechanical determinations using a dedicated Share Test System. The theoretical model highlights the link between the experimental results and the influence of gravitational acceleration on the mechanical and functional integrity of the electronic assemblies that works in vibration environment. The paper novelty is provided by the interdisciplinary experiment that offers results that can be used in the mechanical, tribological, electronical and aerospace domains.

  12. A Feasibility Study of Lead Free Solders for Level 1 Packaging Applications

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    An attempt has been made to determine the lead free ternary combinations that satisfied the solidification requirement for a solder used in level 1 packaging applications, using the CALPHAD approach. The segregation profiles of the promising candidates were analyzed after scrutinizing the equilib......An attempt has been made to determine the lead free ternary combinations that satisfied the solidification requirement for a solder used in level 1 packaging applications, using the CALPHAD approach. The segregation profiles of the promising candidates were analyzed after scrutinizing...

  13. A review of typical thermal fatigue failure models for solder joints of electronic components

    Science.gov (United States)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  14. Physics of Failure as a Basis for Solder Elements Reliability Assessment in Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    description of the reliability. A physics of failure approach is applied. A SnAg solder component used in power electronics is used as an example. Crack propagation in the SnAg solder is modeled and a model to assess the accumulated plastic strain is proposed based on a physics of failure approach. Based...... on the proposed model it is described how to find the accumulated linear damage and reliability levels for a given temperature loading profile. Using structural reliability methods the reliability levels of the electrical components are assessed by introducing scale factors for stresses....

  15. Aging treatment characteristics of solder bump joint for high reliability optical module

    International Nuclear Information System (INIS)

    Kim, Kyung-Seob; Yu, Chung-Hee; Yang, Jun-Mo

    2004-01-01

    The joint strength and fracture surfaces of Sn-37 mass% Pb and Au stud bumps for photo diode packages after isothermal aging testing were studied experimentally. Al/Au stud bumps and Cu/Sn-37 mass% Pb solders were adopted, and aged for up to 900 h to analyze the effect of intermetallic compound (IMC). The joint strength decreased with aging time. The diffraction patterns of Cu 6 Sn 5 , scallop-shaped IMCs, and planar-shaped Cu 3 Sn were characterized using transmission electron microscopy (TEM). The formation of Kirkendall voids and the growth of IMCs at the solder were found to be a possible mechanism for joint strength reduction

  16. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    Science.gov (United States)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  17. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    International Nuclear Information System (INIS)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. (review)

  18. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  19. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  20. Incorporation of Interfacial Intermetallic Morphology in Fracture Mechanism Map for Sn-Ag-Cu Solder Joints

    Science.gov (United States)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-01-01

    A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

  1. The thermodynamic database COST MP0602 for materials for high-temperature lead-free soldering

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš; Dinsdale, A.; Watson, A.; Vřešťál, J.; Zemanová, Adéla; Brož, P.

    2012-01-01

    Roč. 48, č. 3 (2012), s. 339-346 ISSN 1450-5339 R&D Projects: GA MŠk LD11024 Institutional support: RVO:68081723 Keywords : CALPHAD method * lead-free solders * thermodynamic database Subject RIV: BJ - Thermodynamics Impact factor: 1.435, year: 2012

  2. Circuit reliability boosted by soldering pins of disconnect plugs to sockets

    Science.gov (United States)

    Pierce, W. B.

    1964-01-01

    Where disconnect pins must be used for wiring and testing a circuit, improved system reliability is obtained by making a permanent joint between pins and sockets of the disconnect plug. After the circuit has been tested, contact points may be fused through soldering, brazing, or welding.

  3. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

  4. Fatigue damage modeling in solder interconnects using a cohesive zone approach

    NARCIS (Netherlands)

    Abdul-Baqi, A.J.J.; Schreurs, P.J.G.; Geers, M.G.D.

    2005-01-01

    The objective of this work is to model the fatigue damage process in a solder bump subjected to cyclic loading conditions. Fatigue damage is simulated using the cohesive zone methodology. Damage is assumed to occur at interfaces modeled through cohesive zones in the material, while the bulk material

  5. Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy

    Directory of Open Access Journals (Sweden)

    Abdoul-Aziz Bogno

    2015-01-01

    Full Text Available The properties and performance of lead-free solder alloys such as fluidity and wettability are defined by the alloy composition and solidification microstructure. Rapid solidification of metallic alloys is known to result in refined microstructures with reduced microsegregation and improved mechanical properties of the final products as compared to normal castings. The rapidly solidified Sn-based solders by melt spinning were shown to be suitable for soldering with low temperature and short soldering duration. In the present study, rapidly solidified Sn–0.7 wt.%Cu droplets generated by impulse atomization (IA were achieved as well as directional solidification under transient conditions at lower cooling rate. This paper reports on a comparative study of the rapidly solidified and the directionally solidified samples. Different but complementary characterization techniques were used to fully analyze the solidification microstructures of the samples obtained under the two cooling regimes. These include X-ray diffractometry (XRD and scanning electron microscopy (SEM. In order to compare the tensile strength and elongation to fracture of the directionally solidified ingot and strip castings with the atomized droplet, compaction and extrusion of the latter were carried out. It was shown that more balanced and superior tensile mechanical properties are available for the hot extruded samples from compacted as-atomized Sn–0.7 wt.%Cu droplets. Further, elongation-to-fracture was 2–3× higher than that obtained for the directionally solidified samples.

  6. Development of high melting point, environmentally friendly solders, using the calphad approach

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2008-01-01

    An attempt has been made using the CALPHAD approach via Thermo-Calc to explore the various possible chemical compositions that adhere to the melting criterion i.e. 270-350 degrees C, required to replace the traditionally used high lead content solders for first level packaging applications. Vario...... tension have also been considered. Special focus has been given to toxicity related issues since the main ideology of looking for an alternative to high lead containing solders is not related to technical issues but due to environmental concerns.......An attempt has been made using the CALPHAD approach via Thermo-Calc to explore the various possible chemical compositions that adhere to the melting criterion i.e. 270-350 degrees C, required to replace the traditionally used high lead content solders for first level packaging applications. Various...... of promising solder alloy candidates. The ternary combinations that satisfied the primary solidification requirement were scrutinized taking into account the commercial interests i.e. availability, cost-effectiveness, recyclability and toxicity issues. Technical issues like manufacturability and surface...

  7. Electrochemical migration of lead-free solder alloys in Na2SO4 environment

    DEFF Research Database (Denmark)

    Medgyes, Balint; Ádám, Sándor; Tar, Lajos

    2017-01-01

    The effect of sulphate ion concentration on electrochemical migration of lead-free solder alloys was investigated with the use of water drop tests, by applying an in-situ optical and electrical inspection system. According to the Mean-Time-To-Failure (MTTF) values it was found that in the case of...

  8. Hypospadias repair using laser tissue soldering (LTS): preliminary results of a prospective randomized study

    Science.gov (United States)

    Kirsch, Andrew J.; Cooper, Christopher S.; Canning, Douglas A.; Snyder, Howard M., III; Zderic, Stephen A.

    1998-07-01

    Purpose: The purpose of this study was to evaluate laser tissue soldering using an 808 nm diode laser and wavelength- matched human albumin solder for urethral surgery in children. Methods: Currently, 30 boys, ages 3 months to 8 years were randomized to standard suturing (n equals 22) or 'sutureless' laser hypospadias repair (n equals 18). Laser soldering was performed with a human albumin solder doped with indocyanine green dye (2.5 mg/ml) using a laser power output of 0.5 W, pulse duration of 0.5 sec, and interval of 0.1 sec. Power density was approximately 16 W/cm2. In the laser group, sutures were used for tissue alignment only. At the time of surgery, neourethral and penile lengths, operative time for urethral repair, and number of sutures/throws were measured. Postoperatively, patients were examined for complications of wound healing, stricture, or fistula formation. Results: Mean age, severity of urethral defect, type of repair, and neourethra length were equivalent between the two groups. Operative time was significantly faster for laser soldering in both simple (1.6 plus or minus 0.21 min, p less than 0.001) and complex (5.4 plus or minus 0.28 min, p less than 0.0001) hypospadias repairs compared to controls (10.6 plus or minus 1.4 min and 27.8 plus or minus 2.9 min, respectively). The mean number of sutures used in the laser group for simple and complex repairs (3.3 plus or minus 0.3 and 8.1 plus or minus 0.64, respectively) were significantly (p less than 0.0001) less than for controls (8.2 plus or minus 0.84 and 20 plus or minus 2.3, respectively). Followup was between 3 months and 14 months. The overall complication rate in the laser group (11%) was lower than the controls (23%). However, statistical significance (p less than 0.05) was achieved only for the subgroup of patients undergoing simple repairs (LTS, 100% success versus suturing, 69% success). Conclusions: These preliminary results indicate that laser tissue soldering for hypospadias repair

  9. Activities of the research committee

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Shirai, T.; Nakagawa, M.; Osugi, T.; Ikeda, Y.; Ishida, T.; Shimazaki, J. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-01-01

    The department of Nuclear Energy System serves as a secretarial of the following four research committees organized by JAERI; Japanese Nuclear Data Committee, Atomic and Molecular Data Research Committee, Research Committee on Reactor Physics and Research Committee on Marine Reactors. The purpose and the expected task of each committee are summarized here. The detailed activities of each committee are presented in this paper. (author)

  10. Decomposition of no-clean solder flux systems and their effects on the corrosion reliability of electronics

    DEFF Research Database (Denmark)

    Conseil, Helene; Verdingovas, Vadimas; Jellesen, Morten Stendahl

    2016-01-01

    No-clean flux systems are used today for the soldering of electronic printed circuit board assemblies assuming that all the aggressive substances of the flux will vanish during the soldering process i.e. evaporate, decompose or being enclosed safely in the residues. However this is not true in most...... that the fluxes do not decompose fully within the temperature regime of the soldering process, leaving behind significant level of weak organic acid residues. The residue depending on the type and amount can be can be very aggressive towards the corrosion on the printed circuit board assemblies. The glutaric acid...

  11. Laser solder welding of articular cartilage: tensile strength and chondrocyte viability.

    Science.gov (United States)

    Züger, B J; Ott, B; Mainil-Varlet, P; Schaffner, T; Clémence, J F; Weber, H P; Frenz, M

    2001-01-01

    The surgical treatment of full-thickness cartilage defects in the knee joint remains a therapeutic challenge. Recently, new techniques for articular cartilage transplantation, such as mosaicplasty, have become available for cartilage repair. The long-term success of these techniques, however, depends not only on the chondrocyte viability but also on a lateral integration of the implant. The goal of this study was to evaluate the feasibility of cartilage welding by using albumin solder that was dye-enhanced to allow coagulation with 808-nm laser diode irradiation. Conventional histology of light microscopy was compared with a viability staining to precisely determine the extent of thermal damage after laser welding. Indocyanine green (ICG) enhanced albumin solder (25% albumin, 0.5% HA, 0.1% ICG) was used for articular cartilage welding. For coagulation, the solder was irradiated through the cartilage implant by 808-nm laser light and the tensile strength of the weld was measured. Viability staining revealed a thermal damage of typically 500 m in depth at an irradiance of approximately 10 W/cm(2) for 8 seconds, whereas conventional histologies showed only half of the extent found by the viability test. Heat-bath investigations revealed a threshold temperature of minimum 54 degrees C for thermal damage of chondrocytes. Efficient cartilage bonding was obtained by using bovine albumin solder as adhesive. Maximum tensile strength of more than 10 N/cm(2) was achieved. Viability tests revealed that the thermal damage is much greater (up to twice) than expected after light microscopic characterization. This study shows the feasibility to strongly laser weld cartilage on cartilage by use of a dye-enhanced albumin solder. Possibilities to reduce the range of damage are suggested. Copyright 2001 Wiley-Liss, Inc.

  12. Fluxless flip-chip bonding using a lead-free solder bumping technique

    Science.gov (United States)

    Hansen, K.; Kousar, S.; Pitzl, D.; Arab, S.

    2017-09-01

    With the LHC exceeding the nominal instantaneous luminosity, the current barrel pixel detector (BPIX) of the CMS experiment at CERN will reach its performance limits and undergo significant radiation damage. In order to improve detector performance in high luminosity conditions, the entire BPIX is replaced with an upgraded version containing an additional detection layer. Half of the modules comprising this additional layer are produced at DESY using fluxless and lead-free bumping and bonding techniques. Sequential solder-jetting technique is utilized to wet 40-μm SAC305 solder spheres on the silicon-sensor pads with electroless Ni, Pd and immersion Au (ENEPIG) under-bump metallization (UBM). The bumped sensors are flip-chip assembled with readout chips (ROCs) and then reflowed using a flux-less bonding facility. The challenges for jetting low solder volume have been analyzed and will be presented in this paper. An average speed of 3.4 balls per second is obtained to jet about 67 thousand solder balls on a single chip. On average, 7 modules have been produced per week. The bump-bond quality is evaluated in terms of electrical and mechanical properties. The peak-bump resistance is about 17.5 mΩ. The cross-section study revealed different types of intermetallic compounds (IMC) as a result of interfacial reactions between UBM and solder material. The effect of crystalline phases on the mechanical properties of the joint is discussed. The mean shear strength per bump after the final module reflow is about 16 cN. The results and sources of yield loss of module production are reported. The achieved yield is 95%.

  13. Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends

    Science.gov (United States)

    Coyle, Richard J.; Sweatman, Keith; Arfaei, Babak

    2015-09-01

    Thermal fatigue is a major source of failure of solder joints in surface mount electronic components and it is critically important in high reliability applications such as telecommunication, military, and aeronautics. The electronic packaging industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu alloys first established as replacements for eutectic SnPb. This paper discusses the results from Pb-free solder joint reliability programs sponsored by two industry consortia. The characteristic life in accelerated thermal cycling is reported for 12 different Pb-free solder alloys and a SnPb control in 9 different accelerated thermal cycling test profiles in terms of the effects of component type, accelerated thermal cycling profile and dwell time. Microstructural analysis on assembled and failed samples was performed to investigate the effect of initial microstructure and its evolution during accelerated thermal cycling test. A significant finding from the study is that the beneficial effect of Ag on accelerated thermal cycling reliability (measured by characteristic lifetime) diminishes as the severity of the accelerated thermal cycling, defined by greater ΔT, higher peak temperature, and longer dwell time increases. The results also indicate that all the Pb-free solders are more reliable in accelerated thermal cycling than the SnPb alloy they have replaced. Suggestions are made for future work, particularly with respect to the continued evolution of alloy development for emerging application requirements and the value of using advanced analytical methods to provide a better understanding of the effect of microstructure and its evolution on accelerated thermal cycling performance.

  14. 77 FR 2133 - Debt Management Advisory Committee Meeting

    Science.gov (United States)

    2012-01-13

    ..., pursuant to 5 U.S.C. App. 2, Sec. 10(a)(2), that a meeting will be held at the Hay-Adams Hotel, 16th Street... management advisory committee: Treasury Borrowing Advisory Committee of the Securities Industry and Financial... his designate that the Committee discuss particular issues and conduct a working session. Following...

  15. 78 FR 62941 - Debt Management Advisory Committee Meeting

    Science.gov (United States)

    2013-10-22

    ..., pursuant to 5 U.S.C. App. 2, Sec. 10(a)(2), that a meeting will be held at the Hay-Adams Hotel, 16th Street... management advisory committee: Treasury Borrowing Advisory Committee of The Securities Industry and Financial... his designate that the Committee discuss particular issues and conduct a working session. Following...

  16. 78 FR 22034 - Debt Management Advisory Committee Meeting

    Science.gov (United States)

    2013-04-12

    ..., pursuant to 5 U.S.C. App. 2, Sec. 10(a)(2), that a meeting will be held at the Hay-Adams Hotel, 16th Street... management advisory committee: Treasury Borrowing Advisory Committee of The Securities Industry and Financial... his designate that the Committee discuss particular issues and conduct a working session. Following...

  17. Education of ethics committee members: experiences from Croatia.

    NARCIS (Netherlands)

    Borovecki, A.; Have, H.A.M.J. ten; Oreskovic, S.

    2006-01-01

    OBJECTIVES: To study knowledge and attitudes of hospital ethics committee members at the first workshop for ethics committees in Croatia. DESIGN: Before/after cross-sectional study using a self administered questionnaire. SETTING: Educational workshop for members of hospital ethics committees,

  18. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    Science.gov (United States)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  19. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  20. Effect of rare earth Ce on the fatigue life of SnAgCu solder joints in WLCSP device using FEM and experiments

    International Nuclear Information System (INIS)

    Zhang, Liang; Han, Ji-guang; Guo, Yong-huan; He, Cheng-wen

    2014-01-01

    With the addition of 0.03 wt% rare earth Ce, in our previous works, the properties of SnAgCu solder were enhanced obviously. Based on the Garofalo–Arrhenius creep constitutive model, finite element method was used to simulate the stress–strain response during thermal cycle loading, and combined with the fatigue life prediction models, the fatigue life of SnAgCu/SnAgCuCe solder joints was calculated respectively, which can demonstrate the effect of the rare earth Ce on the fatigue life of SnAgCu solder joints. The results indicated that the maximum stress–strain can be found on the top surface of the corner solder joint, and the warpage of the PCB substrate occurred during thermal cycle loading. The trends obtained from modeling results have a good agreement with the experimental data reported in the literature for WLCSP devices. In addition, the stress–strain of SnAgCuCe solder joints is lower than that of SnAgCu solder joints. The thermal fatigue lives of solder joints calculated based on the creep model and creep strain energy density model show that the fatigue life of SnAgCuCe solder joints is higher than the SnAgCu solder joints. The fatigue life of SnAgCuCe solder joints can be enhanced significantly with the addition of Ce, is 30.2% higher than that of SnAgCu solder joints, which can be attributed to the CeSn 3 particles formed resisting the motion of dislocation; moreover, the refinement of microstructure and the IMC sizes also contribute to the enhancement of fatigue life, which elucidates that SnAgCuCe solder can be utilized in electronic industry with high reliability replacing the SnAgCu solder

  1. 75 FR 18487 - Committee Termination and Committee Establishment-Department of Defense Federal Advisory Committees

    Science.gov (United States)

    2010-04-12

    ... School and the Naval War College. The Designated Federal Officer, at that time, may provide additional... Postgraduate School and the Naval War College; and that effective April 30, 2010, it will terminate the Board..., Deputy Advisory Committee Management Officer for the Department of Defense, 703-601-6128. SUPPLEMENTARY...

  2. The Effect of Reflow on Wettability of Sn 96.5 Ag 3 Cu 0.5 Solder

    Directory of Open Access Journals (Sweden)

    Zoltán Weltsch

    2012-11-01

    Full Text Available Surface conditions on Printed Circuit Board (PCB final finishes have an important impact on the wetting behaviour with lead-free solder. The improvement of wettability in liquid Sn 96.5 Ag 3 Cu 0.5 Solder alloy on PCB substrate was measured with a sessile drop method at 523 K temperature. Wetting properties was determined in normal atmospheric air and inert atmosphere. The wetting angles increasing with the number of reflows both atmosphere. The effect of the atmosphere has a huge importance of the oxidation which manifests itself of the measured wetting angles. One of the most important factors to the wetting properties is the amount of oxygen in the soldering atmosphere. Using the inert atmosphere is crucial to Pb-free solders, particularly after reflows.

  3. The Audit Committee. AGB Effective Committee Series

    Science.gov (United States)

    Staisloff, Richard L.

    2011-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  4. The Investment Committee. Effective Committees. Board Basics.

    Science.gov (United States)

    Biggs, John H.

    1997-01-01

    The investment committee of the college or university governing board is charged with determining, overseeing, and assessing the policies and processes by which institutional funds are invested. The committee has fiduciary duty to ensure that the terms of investment of donors' gifts are met and to maximize investment returns within an appropriate…

  5. 75 FR 61454 - Electricity Advisory Committee

    Science.gov (United States)

    2010-10-05

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee AGENCY: Department of Energy, Office of.... FOR FURTHER INFORMATION CONTACT: David Meyer, Designated Federal Officer, Office of Electricity... following electronic file formats are acceptable: Microsoft Word (.doc), Corel Word Perfect (.wpd), Adobe...

  6. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    Science.gov (United States)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  7. Effect of Surface Finish of Substrate on Mechanical Reliability of in-48SN Solder Joints in Moems Package

    OpenAIRE

    Koo, Ja-Myeong; Jung, Seung-Boo

    2007-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920); International audience; Interfacial reactions and shear properties of the In-48Sn (in wt.%) ball grid array (BGA) solder joints after bonding were investigated with four different surface finishes of the substrate over an underlying Cu pad: electroplated Ni/Au (hereafter E-NG), electroless Ni/immersion Au (hereafter ENIG), immersion Ag (hereafter I-Ag) and organic solderability preservative (hereafte...

  8. A FPGA implementation of solder paste deposit on printed circuit boards errors detector based in a bright and contrast algorithm

    OpenAIRE

    De Luca-Pennacchia, A.; Sánchez-Martínez, M. Á.

    2007-01-01

    Solder paste deposit on printed circuit boards (PCB) is a critical stage. It is known that about 60% of functionality defects in this type of boards are due to poor solder paste printing. These defects can be diminished by means of automatic optical inspection of this printing. Actually, this process is implemented by image processing software with its inherent high computational time cost. In this paper we propose to implement a high parallel degree image comparison algorithm suitable to be ...

  9. Advisory Committee Handbook.

    Science.gov (United States)

    Black Hawk Coll., Moline, IL.

    An advisory committee is generally comprised of persons outside the education profession who have specialized knowledge in a given area. The committee advises, makes recommendations, and gives service to the college and its students, instructors, and administrators. At Black Hawk College, there are four types of advisory committees: community,…

  10. Effect of trace elements on the interface reactions between two lead-free solders and copper or nickel substrates

    Directory of Open Access Journals (Sweden)

    Soares D.

    2007-01-01

    Full Text Available Traditional Sn-Pb solder alloys are being replaced, because of environmental and health concerns about lead toxicity. Among some alternative alloy systems, the Sn-Zn and Sn-Cu base alloy systems have been studied and reveal promising properties. The reliability of a solder joint is affected by the solder/substrate interaction and the nature of the layers formed at the interface. The solder/substrate reactions, for Sn-Zn and Sn-Cu base solder alloys, were evaluated in what concerns the morphology and chemical composition of the interface layers. The effect of the addition of P, at low levels, on the chemical composition of the layers present at the interface was studied. The phases formed at the interface between the Cu or Ni substrate and a molten lead-free solder at 250ºC, were studied for different stage times and alloy compositions. The melting temperatures, of the studied alloys, were determined by Differential Scanning Calorimetry (DSC. Identification of equilibrium phases formed at the interface layer, and the evaluation of their chemical composition were performed by Scanning Electron Microscopy (SEM/EDS. Different interface characteristics were obtained, namely for the alloys containing Zn. The obtained IML layer thickness was compared, for both types of alloy systems.

  11. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    International Nuclear Information System (INIS)

    Yang, Ming; Ko, Yong-Ho; Bang, Junghwan; Kim, Taek-Soo; Lee, Chang-Woo; Li, Mingyu

    2017-01-01

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  12. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Ko, Yong-Ho [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Bang, Junghwan [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Kim, Taek-Soo [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Chang-Woo, E-mail: cwlee@kitech.re.kr [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Li, Mingyu, E-mail: myli@hit.edu.cn [Shenzhen Key Laboratory of Advanced Materials, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China)

    2017-02-15

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  13. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  14. Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods

    International Nuclear Information System (INIS)

    Gao Fan; Rajathurai, Karunaharan; Cui, Qingzhou; Zhou, Guangwen; NkengforAcha, Irene; Gu Zhiyong

    2012-01-01

    Lead-free nanosolders have shown promise in nanowire and nanoelectronics assembly. Among various important parameters, melting is the most fundamental property affecting the assembly process. Here we report that the melting behavior of tin and tin/silver nanowires and nanorods can be significantly affected by the surface oxide of nanosolders. By controlling the nanosolder reflow atmosphere using a flux, the surface oxide of the nanowires/nanorods can be effectively removed and complete nanosolder melting can be achieved. The complete melting of the nanosolders leads to the formation of nanoscale to microscale spherical solder balls, followed by Ostwald ripening phenomenon. The contact angle of the microscale solder balls formed on Si substrate was measured by direct electron microscopic imaging. These results provide new insights into micro- and nanoscale phase transition and liquid droplet coalescence from nanowires/nanorods to spheroids, and are relevant to nanoscale assembly and smaller ball grid array formation.

  15. Recovery of Tin and Nitric Acid from Spent Solder Stripping Solutions

    International Nuclear Information System (INIS)

    Ahn, Jae-Woo; Ryu, Seong-Hyung; Kim, Tae-young

    2015-01-01

    Spent solder-stripping solutions containing tin, copper, iron, and lead in nitric acid solution, are by-products of the manufacture of printed-circuit boards. The recovery of these metals and the nitric acid, for re-use has economic and environmental benefits. In the spent solder-stripping solution, a systematic method to determine a suitable process for recovery of valuable metals and nitric acid was developed. Initially, more than 90% of the tin was successfully recovered as high-purity SnO 2 by thermal precipitation at 80 ℃ for 3 hours. About 94% of the nitric acid was regenerated effectively from the spent solutions by diffusion dialysis, after which there remained copper, iron, and lead in solution. Leakage of tin through the anion-exchange membrane was the lowest (0.026%), whereas Pb-leakage was highest (4.26%). The concentration of the regenerated nitric acid was about 5.1 N.

  16. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Virginia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Irusta, Silvia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Balas, Francisco [Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Instituto de Carboquímica – Consejo Superior de Investigaciones Científicas (ICB-CSIC), 50018 Zaragoza (Spain); Santamaria, Jesus, E-mail: Jesus.Santamaria@unizar.es [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain)

    2013-07-15

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10{sup 6} particles/cm{sup 3}) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals.

  17. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    International Nuclear Information System (INIS)

    Gómez, Virginia; Irusta, Silvia; Balas, Francisco; Santamaria, Jesus

    2013-01-01

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10 6 particles/cm 3 ) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals

  18. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  19. Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint

    Science.gov (United States)

    Mokhtari, Omid; Nishikawa, Hiroshi

    2014-11-01

    In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.

  20. Finite Element-Assisted Assessment of the Thermo-cyclic Characteristics of Leads Soldered with SnAgCu(+Bi,In) Alloys

    Science.gov (United States)

    Lis, Adrian; Nakanishi, Kohei; Matsuda, Tomoki; Sano, Tomokazu; Minagawa, Madoka; Okamoto, Masahide; Hirose, Akio

    2017-07-01

    Solder joints between leads and printed circuit boards in thin small outline packages were produced with conventional Sn1.0Ag0.7Cu (SAC107) and Sn3.0Ag0.7Cu (SAC305) solders as well as various solder alloys with gradually increasing amounts of Bi (up to 3.0 wt.%) and In (up to 1.0 wt.%) within the SAC107 base solder. The reliability of soldered leads in temperature cycle (TC) tests improved most with solder alloys containing both Bi (1.6 wt.%) and In (0.5 wt.%). Microindentation and electron probe microanalysis mappings revealed that the effect originates from a combination of solution and precipitation strengthening of the initial SAC alloy. The distribution of inelastic strain accumulation (ISA), as a measure for degradation, was determined in the solder joints by finite element calculations. It was shown that defects in the solder proximal to the lead (60-75 μm), which was underpinned by similar cracking characteristics along the lead-solder interface. The ISA was confirmed to be lower in SAC+Bi/In alloys owing to their enhanced elasto-plastic properties. Moreover, the addition of a thin Cu coating on the leads could improve the joint reliability, as suggested by the calculation of the ISA and the acceleration factor.

  1. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  2. Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint

    Science.gov (United States)

    Darbandi, Payam

    Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes

  3. Current redistribution in cables made of insulated, soldered, or oxidized strands

    International Nuclear Information System (INIS)

    Turck, B.

    1979-07-01

    Current redistributions are compared in cables made of insulated strands, soldered, or oxidized strands and insulated strands with periodic joints. After discussing the different current redistributions in the cases of a rapidly changing current and a dc current, several particular situations are investigated: what happens if a strand is broken, or if a local normal zone appears that does not affect all the strands equally, the detection of this normal zone, and the influence of short circuits between strands

  4. Life cycle assessment (LCA of lead-free solders from the environmental protection aspect

    Directory of Open Access Journals (Sweden)

    Mitovski Aleksandra M.

    2009-01-01

    Full Text Available Life-cycle assessment (LCA presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA and life-cycle impact assessment (LCIA, are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu, BSA (Bi-Sb-Ag and SABC (Sn-Ag-Bi-Cu respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including

  5. Study of silicon chip soldering in high-power transistor housing

    Directory of Open Access Journals (Sweden)

    Vasily S. Anosov

    2017-09-01

    We experimentally assessed the effect of outer housing layer materials and back side chip metallization. For lead-silver soldering of silicon chips, the best housing is that with a nickel outer layer rather than with a gold-plated one, because the resultant thermal resistance is lower and the absence of gold makes the technology cheaper. We obtained a 0.6 K/W thermal resistance for a 24 mm2 chip area.

  6. Tool and Fixture Design

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Mark W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    In a manufacturing process, a need is identified and a product is created to fill this need. While design and engineering of the final product is important, the tools and fixtures that aid in the creation of the final product are just as important, if not more so. Power supplies assembled at the TA-55 PF-5 have been designed by an excellent engineering team. The task in PF-5 now is to ensure that all steps of the assembly and manufacturing process can be completed safely, reliably, and in a quality repeatable manner. One of these process steps involves soldering fine wires to an electrical connector. During the process development phase, the method of soldering included placing the power supply in a vice in order to manipulate it into a position conducive to soldering. This method is unacceptable from a reliability, repeatability, and ergonomic standpoint. To combat these issues, a fixture was designed to replace the current method. To do so, a twelve step engineering design process was used to create the fixture that would provide a solution to a multitude of problems, and increase the safety and efficiency of production.

  7. 75 FR 70933 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-11-19

    ...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... of Committee: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committees... appropriate clinical study design for thromboxane receptor antagonists for prevention of cardiovascular events...

  8. Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants

    Science.gov (United States)

    Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai

    2018-06-01

    With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.

  9. Liver repair and hemorrhage control by using laser soldering of liquid albumin in a porcine model.

    Science.gov (United States)

    Wadia, Y; Xie, H; Kajitani, M

    2000-01-01

    We evaluated laser soldering by using liquid albumin for welding liver injuries. Major liver trauma has a high mortality because of immediate exsanguination and a delayed morbidity from septicemia, peritonitis, biliary fistulae, and delayed secondary hemorrhage. Eight laceration (6 x 2 cm) and eight nonanatomic resection injuries (raw surface, 6 x 2 cm) were repaired. An 805-nm laser was used to weld 50% liquid albumin-indocyanine green solder to the liver surface, reinforcing it with a free autologous omental scaffold. The animals were heparinized and hepatic inflow occlusion was used for vascular control. All 16 soldering repairs were evaluated at 3 hours. All 16 laser mediated liver repairs had minimal blood loss as compared with the suture controls. No dehiscence, hemorrhage, or bile leakage was seen in any of the laser repairs after 3 hours. Laser fusion repair of the liver is a reliable technique to gain hemostasis on the raw surface as well as weld lacerations. Copyright 2000 Wiley-Liss, Inc.

  10. Investigation of Sn-Pb solder bumps of prototype photo detectors for the LHCb experiment

    CERN Document Server

    Delsante, M L; Arnau-Izquierdo, G

    2004-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). LHCb is one of the dedicated LHC experiments, allowing high energy proton-proton collisions to be exploited. This paper presents the results of the metallurgic studies carried out on Sn-Pb solder bumps of prototype vacuum photo detectors under development for LHCb, and in particular for the ring imaging Cherenkov-hybrid photo diode (RICH-HPD) project. These detectors encapsulate, in a vacuum tube, an assembly made of two silicon chips bonded together by a matrix of solder bumps. Each bump lies on a suitable system of under-bump metallic layers ensuring mechanical and electrical transition between the chip pad and the solder alloy. During manufacturing of the detector, bump-bonded (BB) assemblies are exposed to severe heat cycles up to 400 degree C inducing, in the present fabrication process, a clear degradation of electrical connectivity. Several investigations such as microstructural observati...

  11. Multi-layer SiC ceramics/Mo joints brazed using high-temperature solders

    International Nuclear Information System (INIS)

    Olesinska, W.; Kesik, J.

    2003-01-01

    The paper presents the results of studies on joining SiC ceramics with molybdenum, with the ceramic surface being activated by titanium, chromium or copper. Titanium or chromium were deposited by the sputtering technique, and copper - by the electro-chemical method. The microstructures of the SiC/Mo joints brazed with the CuMn13Ni3 solder and copper in a nitrogen atmosphere were examined and the results discussed. The joints, in which the ceramic surface was activated in addition with chromium, do not contain mechanical defects caused by the joining process, and the ceramic surface is covered with a continuous layer of the solder. A phase analysis of the interface surface identified an MeSiC phase. The mechanical strength of the joints in which the ceramic surface was modified by the Ti, Cr and Cu layers was markedly greater than that of the joints brazed directly to the uncoated ceramics with the use of active solders. (author)

  12. Laser Soldering and Thermal Cycling Tests of Monolithic Silicon Pixel Chips

    CERN Document Server

    Strand, Frode Sneve

    2015-01-01

    An ALPIDE-1 monolithic silicon pixel sensor prototype has been laser soldered to a flex printed circuit using a novel interconnection technique using lasers. This technique is to be optimised to ensure stable, good quality connections between the sensor chips and the FPCs. To test the long-term stability of the connections, as well as study the effects on hit thresholds and noise in the sensor, it was thermally cycled in a climate chamber 1200 times. The soldered connections showed good qualities like even melting and good adhesion on pad/flex surfaces, and the chip remained in working condition for 1080 cycles. After this, a few connections failed, having cracks in the soldering tin, rendering the chip unusable. Threshold and noise characteristics seemed stable, except for the noise levels of sector 2 in the chip, for 1000 cycles in a temperature interval of "10^{\\circ}" and "50^{\\circ}" C. Still, further testing with wider temperature ranges and more cycles is needed to test the limitations of the chi...

  13. Reinforcement of high-risk anastomoses using laser-activated protein solders: a clinical study

    Science.gov (United States)

    Libutti, Steven K.; Bessler, Marc; Chabot, J.; Bass, Lawrence S.; Oz, Mehmet C.; Auteri, Joseph S.; Kirsch, Andrew J.; Nowygrod, Roman; Treat, Michael R.

    1993-07-01

    Anastomotic leakage or breakdown can result in catastrophic complications and significantly increased post-operative morbidity and mortality. Certain anastomoses are subject to a higher incidence of disruption and are therefore termed high risk. In an attempt to decrease the risk of anastomotic leaks, we reinforced sutured anastomoses with a laser activated protein solder in patients undergoing esophagojejunostomies (n equals 2), lung transplantation (n equals 2), and pancreaticojejunostomies (Whipple procedure, n equals 5). The protein solder was composed of 1.0 ml of a 25% human albumin solution, 1.0 ml of sodium hyaluronate, and 0.1 ml of Cardiogreen dye. This composition was applied to the sutured anastomosis and activated with an 860 nm pulsed diode laser. Drains were placed when appropriate and patients were followed for up to 10 months post-operatively and assessed for clinical signs of anastomotic leaks. Results to data demonstrated that there were no immediate complications as a result of the procedure. Operative time was not significantly lengthened. There were no cases of clinically significant leakage from any of the reinforced anastomoses. Laser activated protein solders may help to reduce the incidence of leakage in high risk anastomoses. Large numbers of patients and longer follow-up is needed however, to draw significant conclusions.

  14. Liver repair and hemorrhage control using laser soldering of liquid albumin in a porcine model

    Science.gov (United States)

    Wadia, Yasmin; Xie, Hua; Kajitani, Michio; Gregory, Kenton W.; Prahl, Scott A.

    2000-05-01

    The purpose of this study was to evaluate laser soldering using liquid albumin for welding liver lacerations and sealing raw surfaces created by segmental resection of a lobe. Major liver trauma has a high mortality due to immediate exsanguination and a delayed morbidity and mortality from septicemia, peritonitis, biliary fistulae and delayed secondary hemorrhage. Eight laceration injuries (6 cm long X 2 cm deep) and eight non-anatomical resection injuries (raw surface 6 cm X 2 cm) were repaired. An 805 nm laser was used to weld 53% liquid albumin-ICG solder to the liver surface, reinforcing it with a free autologous omental scaffold. The animals were heparinized to simulate coagulation failure and hepatic inflow occlusion was used for vascular control. For both laceration and resection injuries, eight soldering repairs each were evaluated at three hours. A single suture repair of each type was evaluated at three hours. All 16 laser mediated liver repairs were accompanied by minimal blood loss as compared to the suture controls. No dehiscence, hemorrhage or bile leakage was seen in any of the laser repairs after three hours. In conclusion laser fusion repair of the liver is a quick and reliable technique to gain hemostasis on the cut surface as well as weld lacerations.

  15. Dissolution and uptake of cadmium from dental gold solder alloy implants

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, B; Bergman, M; Soeremark, R [Umeaa Univ. (Sweden); Karolinska Institutet, Stockholm (Sweden))

    1977-01-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium (/sup 115/Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3 d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of /sup 115/Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver.

  16. Interfacial microstructures and solder joint strengths of the Sn-8Zn-3Bi and Sn-9Zn-lAl Pb-free solder pastes on OSP finished printed circuit boards

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-T. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China); Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195 Section 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan (China); Hsi, C.-S. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw; Chang, T.-C.; Liang, M.-K. [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195 Section 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan (China)

    2008-07-14

    Two kinds of lead-free solders, Sn-8Zn-3Bi and Sn-9Zn-lAl, were used to mount passive components onto printed circuit boards via a re-flow soldering process. The samples were stored at 150 deg. C for 200, 400, 600, 800, and 1100 h. The microstructures of the samples after aged at 150 deg. C for various times were characterized using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and the analyzed of solder joint shear strengths. The joint strength between Sn-8Zn-3Bi and Cu pad was about 4.0 {+-} 0.3 kg, while the strength between Sn-9Zn-lAl and Cu pad had values of 2.6 {+-} 0.1 kg. Both kinds of solder joints exhibited reduced strengths with increasing aging times. After aging at 150 deg. C for 1100 h, the joints strengths of Sn-8Zn-3Bi and Sn-9Zn-lAl were 1.8 {+-} 0.3 and 1.7 {+-} 0.3 kg, respectively. Both the Sn-8Zn-3Bi and Sn-9Zn-lAl joints showed brittle fracture behaviors. A flat layer of Cu{sub 5}Zn{sub 8} intermetallic compound (IMC) was formed between Sn-8Zn-3Bi solder and Cu pad after reflow. When the aging time was increased to 400 h, Zn-depletion and formation of Cu{sub 6}Sn{sub 5} IMC were observed in the solders due to the interaction between the tin and zinc compounds. The interaction between Sn-9Zn-lAl solder and Cu pad had similar behavior, however, Cu{sub 6}Sn{sub 5} IMC formed in Sn-9Zn-lAl solder when after aging at 150 deg. C for 600 h. As the aging time increased, both types of solders generated clear IMC spalling layers with large and continuous voids. Those voids substantially decreased the joint strength.

  17. 78 FR 69991 - Advisory Committee; Veterinary Medicine Advisory Committee; Termination

    Science.gov (United States)

    2013-11-22

    .... FDA-2013-N-1380] Advisory Committee; Veterinary Medicine Advisory Committee; Termination AGENCY: Food... announcing the termination of the Veterinary Medicine Advisory Committee. This document removes the Veterinary Advisory Committee from the Agency's list of standing advisory committees. DATES: This rule is...

  18. [Responsibilities of ethics committees].

    Science.gov (United States)

    von Bergmann, K

    2000-05-01

    Increasing numbers of clinical research projects are submitted to ethical committees (institutional review boards) for approval. New therapeutic developments have to be evaluated by these committees to protect patients/volunteers. Thus, the responsibility of ethical committees is increasing. The "Nürnberger Kodex" and the "Declaration of Helsinki" are the background for these evaluations. According to the German drug law the physician is obligated by law to submit the protocol to such a committee. In addition, local state physician authorities require such a procedure. Important considerations during the review process besides ethical aspects are the informed consent, which should be written in an understandable form, and the obligations of the insurance.

  19. Consensus, contracts, and committees.

    Science.gov (United States)

    Moreno, J D

    1991-08-01

    Following a brief account of the puzzle that ethics committees present for the Western Philosophical tradition, I will examine the possibility that social contract theory can contribute to a philosophical account of these committees. Passing through classical as well as contemporary theories, particularly Rawls' recent constructivist approach, I will argue that social contract theory places severe constraints on the authority that may legitimately be granted to ethics committees. This, I conclude, speaks more about the suitability of the theory to this level of analysis than about the ethics committee phenomenon itself.

  20. The effect of micro alloying on the microstructure evolution of Sn-Ag-Cu lead-free solder

    Science.gov (United States)

    Werden, Jesse

    The microelectronics industry is required to obtain alternative Pb-free soldering materials due to legal, environmental, and technological factors. As a joining material, solder provides an electrical and mechanical support in electronic assemblies and therefore, the properties of the solder are crucial to the durability and reliability of the solder joint and the function of the electronic device. One major concern with new Pb-free alternatives is that the microstructure is prone to microstructural coarsening over time which leads to inconsistent properties over the device's lifetime. Power aging the solder is a common method of stabilizing the microstructure for Pb-based alloys, however, it is unclear if this will be an appropriate solution to the microstructural coarsening of Pb-free solders. The goal of this work is to develop a better understanding of the coarsening process in new solder alloys and to suggest methods of stabilizing the solder microstructure. Microalloying is one potential solution to the microstructural coarsening problem. This experiment consists of a microstructural coarsening study of SAC305 in which each sample has been alloyed with one of three different solutes, directionally solidified at 100microm/s, and then aged at three different temperatures over a total period of 20 days. There are several important conclusions from this experiment. First, the coarsening kinetics of the intermetallics in the ternary eutectic follow the Ostwald ripening model where r3 in proprotional to t for each alloying constituent. Second, the activation energy for coarsening was found to be 68.1+/-10.3 kJ/mol for the SAC305 samples, Zn had the most significant increase in the activation energy increasing it to 88.8+/-34.9 kJ/mol for the SAC+Zn samples, Mn also increased the activation energy to 83.2+/-20.8 kJ/mol for the SAC+Mn samples, and Sb decreased the activation energy to 48.0+/-3.59 kJ/mol for the SAC+Sb samples. Finally, it was found that the

  1. Interfacial Reaction and IMC Growth of an Ultrasonically Soldered Cu/SAC305/Cu Structure during Isothermal Aging

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2018-01-01

    Full Text Available In order to accelerate the growth of interfacial intermetallic compound (IMC layers in a soldering structure, Cu/SAC305/Cu was first ultrasonically spot soldered and then subjected to isothermal aging. Relatively short vibration times, i.e., 400 ms and 800 ms, were used for the ultrasonic soldering. The isothermal aging was conducted at 150 °C for 0, 120, 240, and 360 h. The evolution of microstructure, the IMC layer growth mechanism during aging, and the shear strength of the joints after aging were systemically investigated. Results showed the following. (i Formation of intermetallic compounds was accelerated by ultrasonic cavitation and streaming effects, the thickness of the interfacial Cu6Sn5 layer increased with aging time, and a thin Cu3Sn layer was identified after aging for 360 h. (ii The growth of the interfacial IMC layer of the ultrasonically soldered Cu/SAC305/Cu joints followed a linear function of the square root of the aging time, revealing a diffusion-controlled mechanism. (iii The tensile shear strength of the joint decreased to a small extent with increasing aging time, owing to the combined effects of IMC grain coarsening and the increase of the interfacial IMC. (iv Finally, although the fracture surfaces and failure locations of the joint soldered with 400 ms and 800 ms vibration times show similar characteristics, they are influenced by the aging time.

  2. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    Science.gov (United States)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  3. CO2 temperature-controlled laser soldering of pig trachea incisions in vitro using flexible albumin bands

    Science.gov (United States)

    Sharvit, Dan; Vasilyev, Tamar; Vasserman, Irena; Simhon, David; Kariv, Naam; DeRowe, Ari; Katzir, Abraham

    2005-04-01

    Resection of a segment of the trachea is a procedure applied for the removal of cervical tumors invading the trachea, or for the treatment of severe tracheal stenosis. The current method of anastomosis is based on multiple sutures. The main drawbacks of this method are: 1) A long procedure time, 2) An air leakage, and 3) An inflammatory response to the sutures. In this study we evaluated the feasibility and effectiveness of the use of temperature controlled CO2 laser soldering of incisions in pig tracheas in vitro. A transverse incision was made in a separated pig trachea. A flexible albumin band was prepared and was laser soldered with albumin solder to the outer surface of the trachea, covering the incision. The soldered trachea ends were sealed and the burst pressure was measured. In a series of in vitro experiments, the mean burst pressure was found to be 230 mm Hg. These preliminary results demonstrated that laser soldering using a flexible albumin band may be a useful method for sealing an incision in the trachea.

  4. Electrical Resistance of Nb$_{3}$Sn/Cu Splices Produced by Electromagnetic Pulse Technology and Soft Soldering

    CERN Document Server

    Schoerling, D; Scheuerlein, C; Atieh, S; Schaefer, R

    2011-01-01

    The electrical interconnection of Nb$_{3}$Sn/Cu strands is a key issue for the construction of Nb$_{3}$Sn based damping ring wigglers and insertion devices for third generation light sources. We compare the electrical resistance of Nb$_{3}$Sn/Cu splices manufactured by solid state welding using Electromagnetic Pulse Technology (EMPT) with that of splices produced by soft soldering with two different solders. The resistance of splices produced by soft soldering depends strongly on the resistivity of the solder alloy at the operating temperature. By solid state welding splice resistances below 10 nOhm can be achieved with 1 cm strand overlap length only, which is about 4 times lower than the resistance of Sn96Ag4 soldered splices with the same overlap length. The comparison of experimental results with Finite Element simulations shows that the electrical resistance of EMPT welded splices is determined by the resistance of the stabilizing copper between the superconducting filaments and confirms that welding of ...

  5. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    Science.gov (United States)

    Boesenberg, Adam J.; Anderson, Iver E.; Harringa, Joel L.

    2012-07-01

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic ( T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2- μm to 5- μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  6. 77 FR 27832 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2012-05-11

    ... organizations --Relations with non-governmental organizations --World Maritime Day --International Maritime... DEPARTMENT OF STATE [Public Notice: 7879] Shipping Coordinating Committee; Notice of Committee...-second Session of the International Maritime Organization (IMO) Technical Co-operation Committee (TCC 62...

  7. Report of the Department of Energy (DOE) Office of Energy Research Review Committee on the site-specific conceptual design of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1990-09-01

    After it was established in early 1989, the Superconducting Super Collider Laboratory (SSCL) began to prepare a detailed site-specific SSC conceptual design, including cost and schedule estimates. As detailed in the SSC Site-Specific Conceptual Design Report (SCDR), this design builds upon the design in the March 1986 SSC Conceptual Design Report (CDR) and takes into account characteristics of the SSC site, results of continuing magnet R ampersand D, and advances in accelerator design

  8. Human research ethics committees in technical universities.

    Science.gov (United States)

    Koepsell, David; Brinkman, Willem-Paul; Pont, Sylvia

    2014-07-01

    Human research ethics has developed in both theory and practice mostly from experiences in medical research. Human participants, however, are used in a much broader range of research than ethics committees oversee, including both basic and applied research at technical universities. Although mandated in the United States, the United Kingdom, Canada, and Australia, non-medical research involving humans need not receive ethics review in much of Europe, Asia, Latin America, and Africa. Our survey of the top 50 technical universities in the world shows that, where not specifically mandated by law, most technical universities do not employ ethics committees to review human studies. As the domains of basic and applied sciences expand, ethics committees are increasingly needed to guide and oversee all such research regardless of legal requirements. We offer as examples, from our experience as an ethics committee in a major European technical university, ways in which such a committee provides needed services and can help ensure more ethical studies involving humans outside the standard medical context. We provide some arguments for creating such committees, and in our supplemental article, we provide specific examples of cases and concerns that may confront technical, engineering, and design research, as well as outline the general framework we have used in creating our committee. © The Author(s) 2014.

  9. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Arafat, M.M., E-mail: arafat_mahmood@yahoo.com; Johan, Mohd Rafie, E-mail: mrafiej@um.edu.my

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  10. Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu–Sn intermetallic compounds in soldering reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-Ying; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2014-11-14

    A new multilayer metallization, ENEPIG (Electroless Ni(P)/Electroless Pd/Immersion Au) with ultrathin Ni(P) deposit (ultrathin-ENEPIG), was designed to be used in high frequency electronic packaging in this study because of its ultra-low electrical impedance. Sequential interfacial microstructures of commercial Sn–3.0Ag–0.5Cu solders reflowed on ultarthin-ENEPIG with Ni(P) deposit thickness ranged from 4.79 μm to 0.05 μm were first investigated. Accelerated thermal aging test was then conducted to evaluate the long-term thermal stabilization of solder joints. The results showed that P-rich intermetallic compound (IMC) layer formed when the Ni(P) thickness was greater than a critical vale (about 0.18 μm). Besides, it is interesting to mention that the growth of (Cu,Ni){sub 6}Sn{sub 5} and (Cu,Ni){sub 3}Sn IMCs was suppressed with the formation of P-rich layer, i.e., Ni{sub 3}P and Ni{sub 2}Sn{sub 1+x}P{sub 1−x} phase, even though the electroless-plated Ni(P) layer was exhausted at initial stage of reflow process. The atomic Cu flux in solder joints without P-rich layer was calculated to be several times larger than that with P-rich layer formation after calculation, which implies that the P-rich layer and ultrathin Ni(P) deposit in ENEPIG served as diffusion barrier against rapid Cu diffusion. - Highlights: • Microstructures in ultrathin-ENEPIG with various Ni(P) thickness are investigated. • P-rich IMC layer formed when the Ni(P) thickness is greater than 0.18 μm. • Secondary (Cu,Ni){sub 6}Sn{sub 5} formed when the Ni(P) thickness is between 0.18 and 0.31 μm. • Cu diffusion flux without P-rich layer is larger than those with P-rich layer. • P-rich layer in ultrathin-ENEPIG exhibits good diffusion barrier characteristic.

  11. Committee on Science

    Science.gov (United States)

    SCIENCE ADVISOR WASHINGTON, DC -- Today, House Science Committee Chairman Sherwood Boehlert (R-NY23) and Advisor nominee Dr. John H. Marburger. The Senate Commerce Committee has scheduled a nomination hearing for this afternoon, and Boehlert and Grucci have been invited to testify. Dr. Marburger was nominated

  12. LOCAL ORGANIZING COMMITTEE

    Indian Academy of Sciences (India)

    Prof. B. B. P. Gupta

    INDIAN ACADEMY OF SCIENCES. Bengaluru. 83rd ANNUAL MEETING. 3–5 November 2017, NEHU, Shillong. LOCAL ORGANIZING COMMITTEE. Local Organizing Committee. 1. Prof. S. K. Srivastava. Chairman. Vice-Chancellor, NEHU, Shillong. 2. Prof. B. B. P. Gupta. Organising Secretary. Department of Zoology ...

  13. ITER technical advisory committee meeting

    International Nuclear Information System (INIS)

    Fujiwara, M.

    1999-01-01

    The ITER Technical Advisory Committee (TAC) meeting took place on December 20-22, 1999 at the Naka Joint Work Site. The objective of this meeting was to review the document 'Technical Basis for ITER-FEAT Outline Design (ODR)' issued by the Director on December 10. It was also aimed at providing the ITER Meeting scheduled for January 19-20, 2000 in Tokyo with a technical assessment of ODR and recommendations for the optimization of the anticipated plasma performance and engineering design, based on the guidelines approved by the Council in June 1998 and recommendations of the last TAC meeting

  14. Numerical prediction of mechanical properties of Pb-Sn solder alloys containing antimony, bismuth and or silver ternary trace elements

    Science.gov (United States)

    Gadag, Shiva P.; Patra, Susant

    2000-12-01

    Solder joint interconnects are mechanical means of structural support for bridging the various electronic components and providing electrical contacts and a thermal path for heat dissipation. The functionality of the electronic device often relies on the structural integrity of the solder. The dimensional stability of solder joints is numerically predicted based on their mechanical properties. Algorithms to model the kinetics of dissolution and subsequent growth of intermetallic from the complete knowledge of a single history of time-temperature-reflow profile, by considering equivalent isothermal time intervals, have been developed. The information for dissolution is derived during the heating cycle of reflow and for the growth process from cooling curve of reflow profile. A simple and quick analysis tool to derive tensile stress-strain maps as a function of the reflow temperature of solder and strain rate has been developed by numerical program. The tensile properties are used in modeling thermal strain, thermal fatigue and to predict the overall fatigue life of solder joints. The numerical analysis of the tensile properties as affected by their composition and rate of testing, has been compiled in this paper. A numerical model using constitutive equation has been developed to evaluate the interfacial fatigue crack growth rate. The model can assess the effect of cooling rate, which depends on the level of strain energy release rate. Increasing cooling rate from normalizing to water-quenching, enhanced the fatigue resistance to interfacial crack growth by up to 50% at low strain energy release rate. The increased cooling rates enhanced the fatigue crack growth resistance by surface roughening at the interface of solder joint. This paper highlights salient features of process modeling. Interfacial intermetallic microstructure is affected by cooling rate and thereby affects the mechanical properties.

  15. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  16. In-vitro investigations of skin closure using diode laser and protein solder containing gold nano shells

    International Nuclear Information System (INIS)

    Nourbakhsh, M. S.; Etrati Khosroshahi, M.

    2011-01-01

    Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nano shells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nano shells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nano shells were prepared. A full thickness incision of 2*20 mm 2 was made on the surface and after placing 50 μ1 of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nano shell concentrations. In addition, at constant laser irradiance (I), the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to σt = 1610 g/cm 2 at I ∼ 60 W cm-2, T ∼ 65 d egree C , Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nano shells can be used as an indocyanine green dye alterative for laser tissue soldering. Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  17. Pesticide Program Dialogue Committee (PPDC)

    Science.gov (United States)

    The Pesticide Program Dialogue Committee, a permanent, broadly representative advisory committee, meets with EPA on a regular basis to discuss pesticide regulatory, policy, and program implementation issues.

  18. In situ investigation of SnAgCu solder alloy microstructure

    International Nuclear Information System (INIS)

    Pietrikova, Alena; Bednarcik, Jozef; Durisin, Juraj

    2011-01-01

    Research highlights: → In situ X-ray diffraction investigation enabled detailed analysis of the melting and solidification process of the SAC305 alloy. → It was found that the SAC305 solder melts at 230 deg. C. When cooling from 240 deg. C the SAC305 alloy solidifies at the temperature of 214 deg. C. During solidification β-Sn and Cu 6 Sn 5 is also formed. Formation of Ag 3 Sn occurs at 206 deg. C and the remaining amount of alloy crystallizes approximately at 160 deg. C. → Furthermore, observation of the thermal expansion behaviour of the β-Sn tetragonal unit cell revealed linear dependence of the unit cell volume on temperature. The unit cell parameters a and c also increase linearly with the temperature. Despite the fact that the c parameter is substantially smaller than parameter a, it exhibits a significantly higher linear thermal expansion coefficient. Comparison between data obtained during heating and cooling indicates that the thermal expansion coefficient is slightly greater in the case of cooling. - Abstract: In situ X-ray diffraction experiments, using synchrotron radiation, were employed to analyze microstructure evolution of the 96.5Sn3Ag0.5Cu (wt.%)-SAC305 lead-free solder alloy during heating (30-240 deg. C), isothermal dwell (240 deg. C) and cooling (240-30 deg. C). The special emphasis was placed on the study of the melting and solidification processes, explaining formation, distribution and the order of crystallization of the crystal phases (β-Sn, intermetallic compounds) in the solder alloy. Furthermore, thermal expansion behaviour of the main constituent phase β-Sn was analyzed prior to melting and after the consequent solidification.

  19. Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy

    DEFF Research Database (Denmark)

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo

    2018-01-01

    and metallic electrodes. In this paper, we investigate the joining of ZnSb to Ni and Ag electrodes using a commercial solder alloy S-Bond 400 and hot-pressing technique. Ti and Cr layers are also introduced as a diffusion barrier and microstructure at the interfaces is observed by scanning electron microscopy....... We found that S-bond 400 solder reacts with Ag and Ni electrodes to form different alloys at the interfaces. Cr layer was found to be broken after joining, resulting in a thicker reaction/diffusion layer at the interface, while Ti layer was preserved....

  20. Damage Model for Reliability Assessment of Solder Joints in Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    environmental factors. Reliability assessment for such type of products conventionally is performed by classical reliability techniques based on test data. Usually conventional reliability approaches are time and resource consuming activities. Thus in this paper we choose a physics of failure approach to define...... damage model by Miner’s rule. Our attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Based on the proposed method it is described how to find the damage level for a given temperature loading profile. The proposed method is discussed...

  1. Decomposition studies of no-clean solder flux systems in connection with corrosion reliability of electronics

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Verdingovas, Vadimas

    2013-01-01

    with specific soldering process and parameters, while most important factors are the flux chemistry and its decomposition characteristics. Active parts of the flux residue can cause increased water absorption due to their hygroscopic nature and in solution they will increase leakage current and corrosion...... the contaminated PCBA parts to varying humidity and measuring the resulting leakage current. Results revealed a significant influence of flux chemistry including the amount of WOAs, while aggressiveness of the residue seems to vary with content and type of WOAs, and their nature of decomposition....

  2. Control of microstructure in soldered, brazed, welded, plated, cast or vapor deposited manufactured components

    Science.gov (United States)

    Ripley, Edward B.; Hallman, Russell L.

    2015-11-10

    Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.

  3. Improved Switching Characteristics of Fast Power MOSFETs Applying Solder Bump Technology

    Directory of Open Access Journals (Sweden)

    Sibylle Dieckerhoff

    2008-01-01

    Full Text Available The impact of a reduced package stray inductance on the switching performance of fast power MOSFETs is discussed applying advanced 3D packaging technologies. Starting from an overview over new packaging approaches, a solder bump technology using a flexible PI substrate is exemplarily chosen for the evaluation. Measurement techniques to determine the stray inductance are discussed and compared with a numerical solution based on the PEEC method. Experimental results show the improvement of the voltage utilization while there is only a slight impact on total switching losses.

  4. In situ TEM observation of microcrack nucleation and propagation in pure tin solder

    International Nuclear Information System (INIS)

    Ding Ying; Wang Chunqing; Li, Mingyu; Wang Weiqiang

    2006-01-01

    Microcrack nucleation and propagation behavior in pure tin solder was investigated by using transmission electron microscopy (TEM) through in situ tensile test. Observation results showed that fracture process was completed in this visco-plastic material by connecting discontinuous cracks or voids. Depending on remarkable vacancy diffusion ability, microvoids were nucleated and developed in the dislocation free zone (DFZ) or super thinned area ahead of crack tip under local high stress concentration. The cracks were linked with each other by mutual dislocation emission which expedites the propagation of crack tips effectively

  5. Rapidly quenched amorphous and microcrystalline solders for atomic power industry

    International Nuclear Information System (INIS)

    Kalin, V.A.; Fedotov, V.T.; Sevryukov, O.N.; Grigor'ev, A.E.; Skuratov, L.A.; Sulaberidze, V.Sh.; Yurchenko, A.D.; Sokolov, V.F.; Rodionov, V.A.

    1996-01-01

    The possibility of using strip amorphous brazing alloys STEMET on Ni, Cu, Ti or Al base to braze various materials (stainless steels - zirconium, ceramics - metal, copper alloys, titanium alloys, cermets, molybdenum, beryllium) is under study. Experimental bench is designed and brazing regimes are developed for various dissimilar materials. Mechanical and corrosion tests of brazed joints show that rapidly quenching STEMET type brazing alloys are promising materials for manufacturing components of irradiating devices [ru

  6. Progress in resolving open design issues from the ODR. Report by the Director. ITER technical advisory committee meeting, 25-27 June 2000, St. Petersburg

    International Nuclear Information System (INIS)

    2000-01-01

    This report presents progress in resolving open design issues from the ITER-FEAT Outline Design Report and is not repeating the ODR information but concentrates on the specific issues and the progress towards their resolution. It includes some aspects of the Physics analysis (inductive operation scenario and sensitivity analysis, ion heating, possibility of high Q and ignition operation, divertor physics), Magnets (TF coil loads, inductive flux generation, conductor design issues), Vessel/in Vessel (manifolding of blanket coolant, vacuum vessel design development, design implications of divertor material choice), Buildings and Plant services, Operation and Safety

  7. 76 FR 66912 - Marine Protected Areas Federal Advisory Committee; Public Meeting

    Science.gov (United States)

    2011-10-28

    ... Protected Areas Federal Advisory Committee (Committee) in New Orleans, Louisiana. DATES: The meeting will be... Yeager, Designated Federal Officer, MPA FAC, National Marine Protected Areas Center, 1305 East West... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) Marine Protected...

  8. Strain Hardening Cement Composites Structural Design and Performance State-of-the-Art Report of the RILEM Technical Committee 208-HFC, SC3

    CERN Document Server

    Kanda, Tetsushi

    2013-01-01

    Strain Hardening Cement Composites, SHCC hereafter, demonstrate excellent mechanical behavior showing tensile strain hardening and multiple fine cracks. This strain hardening behavior improves the durability of concrete structures employing SHCC and the multiple fine cracks enhance structural performance. Reliable tensile performance of SHCC enables us to design structures explicitly accounting for SHCC’s tensile properties. Reinforced SHCC elements (R/SHCC) indicate large energy absorbing performance under large seismic excitation. Against various types of loads, R/SHCC elements can be designed by superimposing re-bar performance and SHCC’s tensile performance.  This report focuses on flexural design, shear design, FE modeling and anti-seismic design of R/SHCC elements as well as application examples.  Establishing design methods for new materials usually leads to exploring application areas and this trend should be demonstrated by collecting actual application examples of SHCC in structures.

  9. Standing Concertation Committee

    CERN Document Server

    HR Department

    2010-01-01

    Main issues examined at the meeting of 2 October 2009 The October 2009 meeting of the Standing Concertation Committee was entirely devoted to preparation of TREF’s meeting on 21-22 October. The Committee took note of, discussed and agreed on clarifications needed to some of the documents and presentations that the Management intended to submit and/or present to TREF on the following subjects: Equal opportunities The Committee took note of a preliminary report on equal opportunities at CERN drawn up by D. Chromek-Burckhart, the Equal Opportunities Officer, and T. Smith, Chairman of the Equal Opportunities Advisory Panel, containing in particular a proposal for a new process for resolving harassment conflicts. Technical analysis of the CERN Health Insurance Scheme - Actuary’s Report The Committee took note of a presentation by P. Charpentier, Chairman of the CERN Health Insurance Supervisory Board (CHIS Board), on the 2009 actuarial report on the CERN Health Insurance Scheme (CHIS). Th...

  10. Standing Concertation Committee

    CERN Document Server

    HR Department

    2008-01-01

    ORDINARY MEETING ON 27 FEBRUARY 2008 The main items discussed at the meetings of the Standing Concertation Committee on 27 February 2008 included: Short-term Saved Leave Scheme The Committee noted that, by the end of February 2008, some 600 staff had enrolled in the short-term saved leave scheme: approx. 58% had signed up for 1 slice, 14% for two slices, 5% for three slices and 23% for four slices. Administrative Circular No. 4 (Rev. 4) - Unemployment Insurance Scheme The Committee agreed to recommend the Director-General to approve Administrative Circular No. 4 (Rev. 4) - Unemployment Insurance Scheme. Administrative Circular No. 30 (Rev. 2) - Financial benefits upon taking up appointment and termination of contract The Committee agreed to recommend the Director-General to approve Administrative Circular No. 30 (Rev. 2) - Financial Benefits upon taking up appointment and termination of contract. Progressive Retirement Programme The Progressive Retirement Programme (PR...

  11. Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution

    Science.gov (United States)

    Choudhury, Soud Farhan; Ladani, Leila

    2016-07-01

    As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.

  12. Soldered Power Arm: An Easy and Effective Method for Intrusion and Retraction of Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Ketan K Vakil

    2014-01-01

    Full Text Available The orthodontic correction of deep overbite can be achieved with several mechanisms that will result in true intrusion of anterior teeth, extrusion of posterior teeth, or a combination of both. For the orthodontic correction of bimaxillary dentoalveolar protrusion with deep bite, there are several treatment modalities like segmented arch approach, retraction and intrusion utility arches, temporary anchorage devices. Though not a novel therapeutic concept, the use of miniscrew implants to obtain absolute anchorage has recently become very popular in clinical orthodontic approaches. To allow the use of sliding mechanics for bodily retraction with intrusion of anterior teeth, we devised a soldered power arm (SPA on standard molar tube. It is simple, stable, precise and effective in cases where anterior teeth need to be simultaneously retracted and intruded. A power arm can be readily fabricated from 20 gauge stainless steel wire and soldered on the molar buccal tube so as to avoid any distortion or loosening of power arm from molar tube during the course of the treatment. The SPA works efficiently with the molar being stabilized in all three planes of space. The resultant force vector is directed more apically toward the center of resistance of the anchor unit, which resulted in the treatment outcome of retraction and intrusion of the anterior teeth and correction of the deep bite.

  13. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-En, E-mail: ceho1975@hotmail.com; Lee, Pei-Tzu; Chen, Chih-Nan; Yang, Cheng-Hsien

    2016-08-15

    The electromigration effect on the three-dimensional integrated circuits (3D-IC) scale solder joints with a Cu/Sn(25–50 μm)/Cu configuration was investigated using a field-emission scanning electron microscope (FE–SEM) combined with electron backscatter diffraction (EBSD) analysis system. Electron current stressing for a few days caused the pronounced accumulation of Cu{sub 6}Sn{sub 5} in specific Sn grain boundaries (GBs). The EBSD analysis indicated that both the β-Sn crystallographic orientation and GB orientation play dominant roles in this accumulation. The dependencies of the Cu{sub 6}Sn{sub 5} accumulation on the two above factors (i.e., Sn grain orientation and GB orientation) can be well rationalized via a proposed mathematic model based on the Huntington and Grone's electromigration theory with the Cu anisotropic diffusion data in a β-Sn lattice. - Highlights: • Anisotropic Cu electromigration in the 3D-IC scale microelectronic solder joints. • Pronounced accumulation of Cu{sub 6}Sn{sub 5} intermetallic in specific Sn grain boundaries. • A linear dependence of Cu{sub 6}Sn{sub 5} accumulation over the current stressing time. • β-Sn and grain boundary orientations are the dominant factors in Cu{sub 6}Sn{sub 5} accumulation.

  14. Interactions of Cu-substrates with titanium-alloyed Sn-Zn solders

    Directory of Open Access Journals (Sweden)

    Soares D.

    2006-01-01

    Full Text Available The interactions of copper substrate with titanium-alloyed Sn-Zn eutectic solders have been studied. Two series of experiments have been performed. The first one consisted in differential thermal analyses of Sn-Zn nearly eutectic alloys containing from 1.3 to 2.2 wt. % Ti. Diffusion couples consisted of Cu-wires and Sn-Zn-Ti liquid solders, produced at 250 and 275 OC have been prepared in the second series,. The contact times were up to 3600 s. The contact zones have been characterized by optical and scanning electron microscope. Two layers have been found along the interfaces solid/liquid. The first and the second layers are identical, respectively, with γ and ε phases of the Cu-Zn system. No changes of the chemical compositions were detected for the tested temperatures and reaction times. Continuous parabolic growth of the total diffusion zone thickness with the time of diffusion is observed. The growth is due mainly to one the formed layers (γ while the thickness of the ε-phase layer, stays almost constant for all tested diffusion times and temperatures.

  15. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis

    International Nuclear Information System (INIS)

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-01-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme. -- Highlights: ► We model the life cycle flows for solder-containing metals in Japan. ► The Japanese shift to lead-free solders progresses rapidly for a decade. ► Substitution for lead in solders slows down during the late life cycle stages. ► The deceleration of substitution precludes a reduction in lead emissions to air.

  16. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    Science.gov (United States)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  17. Mechanism of Solder Joint Cracks in Anisotropic Conductive Films Bonding and Solutions: Delaying Hot-Bar Lift-Up Time and Adding Silica Fillers

    Directory of Open Access Journals (Sweden)

    Shuye Zhang

    2018-01-01

    Full Text Available Micron sizes solder metallurgical joints have been applied in a thin film application of anisotropic conductive film and benefited three general advantages, such as lower joint resistance, higher power handling capability, and reliability, when compared with pressure based contact of metal conductor balls. Recently, flex-on-board interconnection has become more and more popular for mobile electronic applications. However, crack formation of the solder joint crack was occurred at low temperature curable acrylic polymer resins after bonding processes. In this study, the mechanism of SnBi58 solder joint crack at low temperature curable acrylic adhesive was investigated. In addition, SnBi58 solder joint cracks can be significantly removed by increasing the storage modulus of adhesives instead of coefficient of thermal expansion. The first approach of reducing the amount of polymer rebound can be achieved by using an ultrasonic bonding method to maintain a bonding pressure on the SnBi58 solder joints cooling to room temperature. The second approach is to increase storage modulus of adhesives by adding silica filler into acrylic polymer resins to prevent the solder joint from cracking. Finally, excellent acrylic based SnBi58 solder joints reliability were obtained after 1000 cycles thermal cycling test.

  18. Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.N., E-mail: prabhukn_2002@yahoo.co.in [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India); Deshapande, Parashuram; Satyanarayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Effect of cooling rate on tensile and impact properties of Sn-9Zn alloy was assessed. Black-Right-Pointing-Pointer Both DBTT and UTS of the solder alloy increased with increase in cooling rate. Black-Right-Pointing-Pointer An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile-brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn-9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 Degree-Sign C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the

  19. Effect of cooling rate during solidification of Sn–9Zn lead-free solder alloy on its microstructure, tensile strength and ductile–brittle transition temperature

    International Nuclear Information System (INIS)

    Prabhu, K.N.; Deshapande, Parashuram; Satyanarayan

    2012-01-01

    Highlights: ► Effect of cooling rate on tensile and impact properties of Sn–9Zn alloy was assessed. ► Both DBTT and UTS of the solder alloy increased with increase in cooling rate. ► An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile–brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn–9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 °C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the DBTT.

  20. Interfacial Microstructure and Shear Strength of Brazed Cu-Cr-Zr Alloy Cylinder and Cylindrical Hole by Au Based Solder

    Directory of Open Access Journals (Sweden)

    Zaihua Li

    2017-07-01

    Full Text Available Au-Ge-Ni solder was chosen for brazing of the Cu-Cr-Zr alloy cylinder and a part with a cylindrical hole (sleeve below 550 °C. The Au based solder was first sintered on the surface of the cylinder and then brazed to the inner surface of the sleeve. The effects of the heating process, the temperature and the holding time at the temperature on the microstructure of the sintered layer on the surface of the cylinder, the brazed interfacial microstructure, and the brazed shear strength between the cylinder and the sleeve were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy analysis, and tensile shear tests. By approach of side solder melt feeding and brazing under proper parameters, the voids and micro cracks due to a lack of enough solder melt feeding are greatly lessened and the brazed shear strength of 100 MPa is ensured even with large clearances around 0.01 mm.

  1. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints

    International Nuclear Information System (INIS)

    Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.

    2010-01-01

    The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 μm) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.

  2. In-situ Investigation of Lead-free Solder Alloy Formation Using a Hot-plate Microscope

    DEFF Research Database (Denmark)

    Bergmann, René; Tang, Peter Torben; Hansen, Hans Nørgaard

    2007-01-01

    This work presents the advantages of using a hot-plate microscope for investigation of new (high-temperature) lead- free solders as in-situ analysis tool and preparation equipment. A description of the equipment and the preparation method is given and some examples are outlined. The formation...

  3. 78 FR 63279 - Third Meeting: RTCA Tactical Operations Committee (TOC)

    Science.gov (United States)

    2013-10-23

    ... Operations Committee (TOC) AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation... hereby given for a meeting of the Tactical Operations Committee (TOC). The agenda will include the following: November 19, 2013 Opening of Meeting/Introduction of TOC Members Official Statement of Designated...

  4. 77 FR 51970 - Renewal of Missile Defense Advisory Committee

    Science.gov (United States)

    2012-08-28

    ... limitation also applies to any DoD authorized subcommittees. The Secretary of Defense, based upon the... required to be in attendance at all Committee and subcommittee meetings for the entire duration of each and... Designated Federal Officer shall attend the entire duration of the Committee or subcommittee meeting. The...

  5. Design of Ag-Ge-Zn braze/solder alloys: Experimental thermodynamics and surface properties

    Directory of Open Access Journals (Sweden)

    Delsante S.

    2017-01-01

    Full Text Available The experimental investigation of the Ag-Ge-Zn phase diagram was performed by using combined microstructural and Differential Scanning Calorimeter (DSC analyses. The samples were subjected to thermal cycles by a heat-flux DSC apparatus with heating and cooling rate of 0.5 or 0.3°C/min. The microstructure of the samples, both after annealing and after DSC analysis, was studied by optical and scanning electron microscopy coupled with EDS (Energy Dispersive Spectroscopy analysis. Considering the slow heating and cooling rate adopted, the isothermal section at room temperature was established. No ternary compounds were observed. On the basis of the experimental investigations the invariant reactions were identified. Combining the thermodynamic data on the Ag-Ge, Ag-Zn and Ge-Zn liquid phases by means of Butler’s model the surface tension of Ag-Ge-Zn alloys was calculated.

  6. ITER technical advisory committee meeting

    International Nuclear Information System (INIS)

    Fujiwara, M.

    2001-01-01

    The 17th Meeting of the ITER Technical Advisory Committee (TAC-17) was held on February 19-22, the ITER Garching Work Site in Germany. The objective of the meeting was to review the Draft Final Design Report of ITER-FEAT and assess the ability of the self-consistent overall design both to satisfy the technical objectives previously defined and to meet the cost limitations. TAC-17 was also organized to confirm that the design and critical elements, with emphasis on the key recommendations made at previous TAC meetings, are such as to extend the confidence in starting ITER construction. It was also intended to provide the ITER Council, scheduled to meet on 27 and 28 February in Toronto, with a technical assessment and key recommendations of the above mentioned report

  7. Second meeting of the ITER Preparatory Committee

    International Nuclear Information System (INIS)

    Drew, M.

    2003-01-01

    The committee charged to oversee the ITER ITA (ITER transitional arrangements) the ITER preparatory committee, held its second meeting on 24 September at the JET facilities at Culham, UK. Dr. Umberto Finzi of the European Commission was chairman. This meeting was also the first since the succession by Dr. Yasuo Shimomura to Dr. Robert Aymar as Interim Project Leader (IPL). Welcoming Dr. Shimomura in his new capacity, the Committee paid tribute to the outstanding contributions of his predecessor to the definition, design and promotion of ITER, and expressed the gratitude of all Participants to Dr. Aymar and its best wishes for future success in his new appointment.The technical activities of the ITA were the main focus of the Committee's discussions. The Committee took note of the IPL's Status Report on ITA Technical Activities and endorsed the IPL's proposals for the top level structure of the International Team, including the designation of Dr. Pietro Barabaschi as Deputy to the IPL. The Committee took note of the IPL's proposals on Participants' contributions to the ITA and of the Participants' stated intentions and expectations in this regard. Several Delegations pointed out that access to necessary resources would depend strongly on progress made towards the Agreement. All Participants were invited, in the shared interests of the project, to respond constructively to the specific technical areas where the IPL reported a lack of resources. Following a presentation from the IT on Project Management Tools, the Committee expressed support, in general, for the proposed strategy designed to provide the current team with the CAD and Data Management elements necessary to prepare for an efficient start of ITER construction, and asked the IT Leader to report on an estimate and time profile of expenditure during the period to mid-2004. The Committee supported the proposals to re-establish the ITER Test Blanket Working. The Committee agreed that the phasing of planned

  8. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  9. Standing Concertation Committee

    CERN Document Server

    HR Department

    2009-01-01

    Main points examined at the meeting of 24 June 2009 Results of the 2009 MARS exercise The Committee took note of the results of the 2009 MARS exercise presented by the Head of the HR Department, expressing satisfaction for the early availability of the statistics and for the fact that the analysis of the results covered the last three years. Status report on the work on the five-yearly review The Committee took note of a presentation by P. Gildemyn on the data collection procedure for the 2010 five-yearly review (staff, fellows, associate members of the personnel, CHIS) and of the proposed work schedule. Implications for employment conditions of the discussions at the Finance Committee and Council on 17 and 18 June 2009 The Chairman briefly reported on the discussions at the meetings of the Finance Committee and Council in June 2009, on the 2010-2014 medium-term plan and the 2010 preliminary draft budget, as well as on the modified strategy and goals for 2009. The Committee ...

  10. 77 FR 24494 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Science.gov (United States)

    2012-04-24

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... agenda for the May 9, 2012, meeting of the Green Building Advisory Committee Meeting (the Committee). The... Sandler, Designated Federal Officer, Office of Federal High-Performance Green Buildings, Office of...

  11. 76 FR 48174 - Wind Turbine Guidelines Advisory Committee; Announcement of Public Teleconference and Webcast

    Science.gov (United States)

    2011-08-08

    ...] Wind Turbine Guidelines Advisory Committee; Announcement of Public Teleconference and Webcast AGENCY..., the U.S. Fish and Wildlife Service (Service), will host a Wind Turbine Guidelines Advisory Committee... London, Wind Turbine Guidelines Advisory Committee Alternate Designated Federal Officer. [FR Doc. 2011...

  12. 76 FR 38677 - Wind Turbine Guidelines Advisory Committee; Announcement of Public Meeting and Webcast

    Science.gov (United States)

    2011-07-01

    ...] Wind Turbine Guidelines Advisory Committee; Announcement of Public Meeting and Webcast AGENCY: Fish and... Wildlife Service (Service), will host a Wind Turbine Guidelines Advisory Committee (Committee) meeting in... are filled. Date: June 27, 2011. Rachel London, Alternate Designated Federal Officer, Wind Turbine...

  13. Report on research cooperation for developing a simple operation type electronics design and production supporting system in fiscal 1998 (committee activity report); 1998 nendo 'kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku' ni kansuru hokokusho. Iinkai katsudo kiroku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research cooperation is being promoted on a simple operation type electronics design and production supporting information system to assist the information using efforts in Asian countries. The cooperation is made jointly with five countries, namely, China, Indonesia, Malaysia, Singapore and Thailand. Fiscal 1998, falling under the final fiscal year, summarized the achievements and the committee activities. In order to promote research and development of automobiles and the components thereof, the WG-I, composed of committee members having professional knowledge, has deliberated specific research and development items, promotion of the research and development, technical problems, and promotion of joint research and development with other countries. The WG-II has made similar discussions on household electric appliances and the components thereof. The MATIC technical committee is composed of chiefs of the working groups and the responsible persons for system development. The committee discussed technical problems common to the working groups in promoting the projects, and made deliberations and adjustments on methods for promoting the research cooperation among the overseas countries. The cooperation promoting committee is composed of Japanese researchers and representatives of research institutes in other countries, and discussed how to move forward and adjust the research cooperation themes. (NEDO)

  14. Report on research cooperation for developing a simple operation type electronics design and production supporting system in fiscal 1998 (committee activity report); 1998 nendo 'kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku' ni kansuru hokokusho. Iinkai katsudo kiroku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research cooperation is being promoted on a simple operation type electronics design and production supporting information system to assist the information using efforts in Asian countries. The cooperation is made jointly with five countries, namely, China, Indonesia, Malaysia, Singapore and Thailand. Fiscal 1998, falling under the final fiscal year, summarized the achievements and the committee activities. In order to promote research and development of automobiles and the components thereof, the WG-I, composed of committee members having professional knowledge, has deliberated specific research and development items, promotion of the research and development, technical problems, and promotion of joint research and development with other countries. The WG-II has made similar discussions on household electric appliances and the components thereof. The MATIC technical committee is composed of chiefs of the working groups and the responsible persons for system development. The committee discussed technical problems common to the working groups in promoting the projects, and made deliberations and adjustments on methods for promoting the research cooperation among the overseas countries. The cooperation promoting committee is composed of Japanese researchers and representatives of research institutes in other countries, and discussed how to move forward and adjust the research cooperation themes. (NEDO)

  15. Measurement of erosion of stainless steel by molten lead-free solder using micro-focus x-ray CT system

    International Nuclear Information System (INIS)

    Nishikawa, Hiroshi; Takemoto, Tadashi; Kang, Songai

    2009-01-01

    The severe erosion damage, which is caused by a molten lead-free solder, of wave solder equipment made into stainless steel has been encountered in operation. Then, the higher maintenance frequency and reduced life time of wave solder machine component is a serious issue in a manufacturing process. In this study, the evaluation method of erosion of stainless steel by molten lead-free solders was investigated using micro-focus X-ray systems for fluoroscopic and computed tomography (CT). As a result, it was found that the fluoroscopic image could truly reconstruct the cross-shape of the stainless steel sample after immersion test without destruction. In the case of X-ray systems for fluoroscopic and CT used in this study, three-dimensional data can be obtained. Therefore, it was possible to easily check the whole picture of the test sample after immersion test and to decide the maximum erosion depth of test sample. (author)

  16. 75 FR 27614 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2010-05-17

    ... Environment Protection Committee. --Consideration of the report of the Maritime Safety Committee... Session of the International Maritime Organization (IMO) Council to be held at the IMO headquarters in... HNS Convention. --World Maritime University: --IMO International Maritime Law Institute: --Protection...

  17. 77 FR 76164 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2012-12-26

    ... atmospheric pollution --Development of international measures for minimizing the transfer of invasive aquatic... pollution hazards of chemicals and preparation of consequential amendments --Additional guidelines for... DEPARTMENT OF STATE [Public Notice 8133] Shipping Coordinating Committee; Notice of Committee...

  18. Study on Mitigation Method of Solder Corrosion for Crystalline Silicon Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Ju-Hee Kim

    2014-01-01

    Full Text Available The corrosion of 62Sn36Pb2Ag solder connections poses serious difficulties for outdoor-exposed photovoltaic (PV modules, as connection degradation contributes to the increase in series resistance (RS of PV modules. In this study, we investigated a corrosion mitigation method based on the corrosion mechanism. The effect of added sacrificial metal on the reliability of PV modules was evaluated using the oxidation-reduction (redox reaction under damp heat (DH conditions. Experimental results after exposure to DH show that the main reason for the decrease in power was a drop in the module’s fill factor. This drop was attributed to the increase of RS. The drop in output power of the PV module without added sacrificial metal is greater than that of the sample with sacrificial metal. Electroluminescence and current-voltage mapping analysis also show that the PV module with sacrificial metal experienced less degradation than the sample without sacrificial metal.

  19. Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

    DEFF Research Database (Denmark)

    Sopousek, J.; Palcut, Marián; Hodúlová, Erika

    2010-01-01

    The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching...... to room temperature. The samples were analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry...

  20. Determination of Te in soldering tin using continuous flowing electrochemical hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jiang Xianjuan; Gan Wuer; Han Suping; He Youzhao

    2008-01-01

    An electrochemical hydride generation system was developed for the detection of Te by coupling an electrochemical hydride generator with atomic fluorescence spectrometry. Since TeH 2 is unstable and easily decomposes in solution, a reticular W filament cathode was used in the present system. The TeH 2 generated on the cathode surface was effectively driven out by sweeping gas from the cathode chamber. In addition, a low temperature electrochemical cell (10 deg. C) was applied to reduce the decomposition of TeH 2 in solution. The limit of detection (LOD) was 2.2 ng ml -1 and the relative standard deviation (RSD) was 3.9% for nine consecutive measurements of standard solution. This method was successfully employed for determination of Te in soldering tin material

  1. Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Handwerker, Carol A.

    2018-01-01

    The limited number of independent β-Sn grain orientations that typically form during solidification of Sn-based solders and the resulting large β-Sn grain size have major effects on overall solder performance and reliability. This study analyzes whether additions of Al to Sn-Cu and Sn-Cu-Ag alloys can be used to change the grain size, morphology, and twinning structures of atomized (as-solidified) and re-melted (reflowed) β-Sn dendrites as determined using scanning electron microscopy and electron backscatter diffraction for as-solidified and reflow cycled (20-250°C, 1-5 cycles) Sn-Cu-Al and Sn-Ag-Cu-Al drip atomized spheres (260 μm diameter). The resulting microstructures were compared to as-solidified and reflow cycled Sn-Ag-Cu spheres (450 μm diameter) as well as as-solidified Sn-Ag-Cu, Sn-Cu, and Sn-Ag microstructures from the literature. Previous literature observations reporting reductions in undercooling and β-Sn grain size with Al micro-alloying additions could not be correlated to the presence of the Cu9Al4 phase or Al solute. The as-solidified spheres displayed no change in β-Sn dendrite structure or grain size when compared to non-Al-modified alloys, and the reflow cycled spheres produced high undercoolings (22-64°C), indicating a lack of potent nucleation sites. The current findings highlighted the role of Ag in the formation of the interlaced twinning structure and demonstrated that with deliberate compositional choices, formation of the alloy's β-Sn grain structure (cyclical twinning versus interlaced twinning) could be influenced, in both the as-solidified and reflow cycled states, though still not producing the fine-grain sizes and multiple orientations desired for improved thermomechanical properties.

  2. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Yao [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hon, Min-Hsiung [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2014-01-05

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag{sub 3}Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn{sub 3}. No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging.

  3. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    International Nuclear Information System (INIS)

    Liu, Chih-Yao; Hon, Min-Hsiung; Wang, Moo-Chin; Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long

    2014-01-01

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag 3 Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn 3 . No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging

  4. 78 FR 32698 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2013-05-31

    ... DEPARTMENT OF STATE [Public Notice 8340] Shipping Coordinating Committee; Notice of Committee... Technical Co-operation Committee --Protection of vital shipping lanes --Periodic review of administrative... of the Organization since the twenty-eighth regular session of the Assembly --External relations...

  5. 75 FR 43156 - Federal Advisory Committee; Missile Defense Advisory Committee

    Science.gov (United States)

    2010-07-23

    ... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; Missile Defense Advisory Committee AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice of closed meeting. SUMMARY: Under the... Defense announces that the Missile Defense Advisory Committee will meet on August 4 and 5, 2010, in...

  6. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu 6 Sn 5 from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux

  7. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  8. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    Science.gov (United States)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  9. Fourteenth meeting of the ITER management advisory committee

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    1998-01-01

    Following the Director's report on the progress made in the ITER Engineering Design Activities, the ITER Management Advisory Committee reviewed the Task Status Summary, Work Program and Task Agreements for EDA Extension, Joint Fund and a schedule of ITER meetings

  10. 76 FR 43688 - Committee Meeting via Conference Call

    Science.gov (United States)

    2011-07-21

    ...) should notify Genevieve Swift, PCPID Executive Administrative Assistant, at Edith.Swift@acf.hhs.gov , or... Taylor Roach, President's Committee for People with Intellectual Disabilities, The Aerospace Center... universally designed technologies. Dated: July 15, 2011. Laverdia Taylor Roach, Director, President's...

  11. 77 FR 42751 - National Advisory Committee Notice of Meeting

    Science.gov (United States)

    2012-07-20

    ... discussions regarding the Quality Framework. The meeting is open to the public and will be held online via....php?i=PW8938916&p=7666886&t=c Contact: Geretta Wood, Committee Management Officer and Designated...

  12. CCCT - NCTN Steering Committees - Pediatric and Adolescent Tumor

    Science.gov (United States)

    The Pediatric and Adolescent Solid Tumor Steering Committee addresses the design, prioritization and evaluation of concepts for large phase 2 and phase 3 clinical trials in extracranial solid tumors of children and youth.

  13. 75 FR 11104 - Del Norte Resource Advisory Committee (RAC)

    Science.gov (United States)

    2010-03-10

    ... Schools and Community Self-Determination Act (Pub. L. 110-343) and in compliance with the Federal Advisory...; (4) discussion of Committee member and Designated Federal Official roles and (5) review operational...

  14. 75 FR 44757 - Yavapai County Resource Advisory Committee

    Science.gov (United States)

    2010-07-29

    ... and Community Self-Determination Act (Pub. L. 110- 343) and in compliance with the Federal Advisory... Act, roles of members, guidelines for Title II, and the Federal Advisory Committee Act. DATES: The... Designated Federal [[Page 44758

  15. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  16. Expert Committee on College Libraries

    OpenAIRE

    Joy, V. P.; Raman Nair, R.; Ayub, M.

    1994-01-01

    Importance of library and information services in higher education was emphasized in India by many committees of Government of India from 1917 including Calcutta University Commission under Sir Michael Saddler, University Education Commission (1949) chaired by Dr. S. Radhakrishnan, Ranganathan Committee (1958), Education Commission (1966) chaired by D.S. Kothari, as well as Sen Committee, Mehrotra Committee etc of UGC. But as education being a State subject; union government could not go beyo...

  17. SENIOR STAFF ADVANCEMENT COMMITTEE (SSAC)

    CERN Document Server

    2000-01-01

    Composition and mandateThe Senior Staff Advancement Committee is composed of members nominated ad persona by the Director-General.The Committee examines proposals from Divisions concerning promotions to grade 13 in Career Path IX, changes of career path to Career Path IX and advancements to the exceptional grade in Career path VIII.The Director-General may consult the Committee on any matter related to senior staff careers.The Committee makes its recommendations to the Director-General.

  18. Plasma Science Committee (PLSC)

    International Nuclear Information System (INIS)

    1990-01-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences--National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues. This report discusses ion of the PLSC work

  19. Design procedures for the use of composites in strengthening of reinforced concrete structures state-of-the-art report of the RILEM Technical Committee 234-DUC

    CERN Document Server

    Sena-Cruz, José

    2016-01-01

    This book analyses the current knowledge on structural behaviour of RC elements and structures strengthened with composite materials (experimental, analytical and numerical approaches for EBR and NSM), particularly in relation to the above topics, and the comparison of the predictions of the current available codes/recommendations/guidelines with selected experimental results. The book shows possible critical issues (discrepancies, lacunae, relevant parameters, test procedures, etc.) related to current code predictions or to evaluate their reliability, in order to develop more uniform methods and basic rules for design and control of FRP strengthened RC structures. General problems/critical issues are clarified on the basis of the actual experiences, detect discrepancies in existing codes, lacunae in knowledge and, concerning these identified subjects, provide proposals for improvements. The book will help to contribute to promote and consolidate a more qualified and conscious approach towards rehabilitation...

  20. Rebuilding a Research Ethics Committee

    Science.gov (United States)

    Biggs, John S. G.; Marchesi, August

    2013-01-01

    The principal ethics committee in Australia's Capital, Canberra, underwent a major revision in the last three years based on changes debated in the literature. Committee or Board structure varies widely; regulations determining minimum size and membership differ between countries. Issues such as the effectiveness of committee management,…

  1. Recommendations on the Nature and Level of U.S. Participation in the International Thermonuclear Experimental Reactor Extension of the Experimental Reactor Extension of the Engineering Design Activities. Panel Report To Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The DOE Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to 'address the topic of U. S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction.' (Attachment 1: DOE Charge, September 1996). Given that there is expected to be a transition period of three to five years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to 'include the U.S. role in an interim period between the EDA and construction.' (Attachment 2: DOE Expanded Charge, May 1997). This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirety. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.

  2. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders

    Energy Technology Data Exchange (ETDEWEB)

    Linch, Heidi Sue [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study investigates effects of aging in air and argon at 170 C on Cu coupons which were pretinned with 75Sn-25Pb, 8Sn-92Pb, and 5Sn-95Pb solders. Coatings were applied using electroplating or hot dipping techniques. The coating thickness was controlled between 3 to 3μm and the specimens were aged for 0 hours, 2 hours, 24 hours and 2 weeks. Wetting balance tests were used to evaluate the wettability of the test specimens. Microstructural development was evaluated using X-ray diffraction, energy dispersive X-ray and Auger spectroscopy, as well as optical and scanning electron microscopy. The wetting behavior of the test specimens is interpreted with respect to observed microstructural changes and as a function of aging time, solder composition, and processing conditions.

  3. Tin-silver and tin-copper alloys for capillarity joining-soft soldering-of copper piping

    International Nuclear Information System (INIS)

    Duran, J.; Amo, J. M.; Duran, C. M.

    2001-01-01

    It is studied the influence of the type of alloy used as filling material on the defects of the soldering joints in copper piping installations, which induce the fluid leak of the systems. The different eutectic temperatures and solidus-liquidus ranges of these alloys, require the setting of the soldering heat input in each case to obtain the suitable capillarity features and alloying temperatures to achieve for the correct formation of the bonding. Most defects in the joints are demonstrated to be generated by bad dossification of thermal inputs, which led depending on the filler alloy used to variations in its fluidity that may produce penetration failures in the bonds or insufficient consistency for the filling of the joints. (Author) 7 refs

  4. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    Science.gov (United States)

    Barbagallo, C.; Malgioglio, G. L.; Petrone, G.; Cammarata, G.

    2017-05-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers.

  5. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    International Nuclear Information System (INIS)

    Barbagallo, C; Petrone, G; Cammarata, G; Malgioglio, G L

    2017-01-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers. (paper)

  6. Aging effects on fracture behavior of 63Sn37Pb eutectic solder during tensile tests under the SEM

    International Nuclear Information System (INIS)

    Ding Ying; Wang Chunqing; Li Mingyu; Bang Hansur

    2004-01-01

    This study investigates the influence of aging treatment on fracture behavior of Sn-Pb eutectic solder alloys at different loading rate regime during tensile tests under the scanning electron microscope. In high homologous temperature, the solder exhibit the creep behavior that could be confirmed through the phenomena of grain boundary sliding (GBS) to both as-cast and aged specimens. Owing to the large grain scale after high temperature storage, boundary behavior was limited to some extent for the difficulty in grain rotation and boundary migration. Instead, drastic intragranular deformation occurred. Also, the phase coarsening weakened the combination between lead-rich phase and tin matrix. Consequently, surface fragmentation was detected for the aged specimens. Furthermore, the fracture mechanism changed from intergranular dominated to transgranular dominated with increasing loading rate to both specimens during early stage

  7. 75 FR 66423 - Seventh Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications

    Science.gov (United States)

    2010-10-28

    ..., Administrative Remarks by Special Committee Leadership Designated Federal Official (DFO): Mr. Brent Phillips Co... Session User Services and Applications Definition Wednesday Afternoon--Reconvene Plenary Profiles WG...

  8. Influence of intermetallic growth on the mechanical properties of Zn–Sn–Cu–Bi/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Fei; Yao, Jia; Liang, Jingwei; Qiu, Xiaoming, E-mail: qiuxm13@163.com

    2015-11-15

    The formation of intermetallic reaction layers and their influence on shear strength and fractography was investigated between the Zn–Sn–Cu–Bi (ZSCB) and Cu substrate during the liquid state reaction at 450 °C after 10–90 s. Results showed that reliable solder joints could be obtained at 450 °C after 15–30 s of wetting, accompanied by the creation of scallop ε-CuZn{sub 5}, flat γ-Cu{sub 5}Zn{sub 8} and β-CuZn intermetallic layers in ZSCB/Cu interface. However, with excess increase of soldering time, a transient intermetallic ε-CuZn{sub 4} phase was nuclear and grew at ε-CuZn{sub 5}/γ-Cu{sub 5}Zn{sub 8} interface, which apparently deteriorated the shear strength of solder joints from 76.5 MPa to 51.6 MPa. The sensitivity of the fracture proportion was gradually transformed from monotonic ε-CuZn{sub 5} to the mixture of ε-CuZn{sub 4} and ε-CuZn{sub 5} intermetallic cleavage. Furthermore, the growth mechanism of ε-CuZn{sub 4} intermetallic phase at the ZSCB/Cu interface was discussed. - Highlights: • There are four interfacial intermetallic layers formed at the Zn–Sn–Cu–Bi/Cu interface. • The growth mechanism of ε-CuZn{sub 4} intermetallic phase was discussed. • The wetting time of Zn–Sn–Cu–Bi solder in contact with Cu substrate is a key parameter.

  9. Behavior of Sn-0.7Cu-xZn lead free solder on physical properties and micro structure

    Science.gov (United States)

    Siahaan, Erwin

    2017-09-01

    The issues to substitute Tin-Lead Solders is concerning the health and environmental hazards that is caused by lead, and also legislative actions around the world regarding lead toxicity, which has prompted the research community to attempt to replace solder alloys for the traditional Sn-Pb alloys lead which has been used by industrial worker throughout history because it is easily extracted and refined at a relatively low energy cost and also has a range of useful properties. Traditional industry lead has been used in soldering materials for electronic applications because it has low melting point and a soft, malleable nature, when combined with tin at the eutectic composition which causes the alloy to flow easily in the liquid state and solidifies over a very small range of temperature. One of the potential candidate to replace tin-lead solder is Sn-Cu-Zn eutectic alloy as it has a lower melting temperature. Consequently, it is of interest to determine what reactions can occur in ternary systems derived from the Sn-Cu-Zn eutectic. One such system is Sn-0.7Cu-xZn. The specimen was elaborated on physical properties. The chemical content was analyzed by using Shimadzu XRD and melting point was analyzed by using Differential Scanning Calorimeter ( DSC ). The results has shown that the highest addition of Zinc content (15%Zn) will decrease the melting temperatur to 189°C compared to Sn-Pb at 183°C Increasing the amount of Zn on Sn0.7Cu-xZn alloys will decrease Cu3Sn intermetallic coumpound.

  10. Decision Making in Liver Transplant Selection Committees

    Science.gov (United States)

    Volk, Michael L; Biggins, Scott W; Huang, Mary Ann; Argo, Curtis K; Fontana, Robert J; Anspach, Renee R

    2011-01-01

    Background In order to receive a liver transplant, patients must first be placed on the waiting list – a decision made in most transplant centers by a multidisciplinary committee. The function of these committees has never been studied. Objectives To describe decision making in liver transplant committees and identify opportunities for process improvement. Design Observational multi-center Setting We observed 63 meetings and interviewed 50 committee members at 4 liver transplant centers. Study Subjects Transplant committee members. Measurements Recorded transcripts and field notes were analyzed using standard qualitative sociological methods. Results While the structure of meetings varied by center, the process was uniform and involved reviewing possible reasons for patient exclusion using primarily inductive reasoning. Stated justifications for excluding patients were a) too well, b) non-hepatic comorbidities or advanced age, c) too sick in the setting of advanced liver disease, d) substance abuse, or e) other psychosocial barriers. Dominant themes identified included members’ angst over deciding who lives and dies, a high correlation between psychosocial barriers to transplant and patients’ socioeconomic status, and the influence of external forces on decision making. Consistently identified barriers to effective group decision making were: 1) unwritten center policies, and 2) confusion regarding advocacy versus stewardship roles. Limitations The use of qualitative methods provides broad understanding but limits specific inferences. These four centers may not be reflective of every transplant center nationwide. Conclusion The difficult decisions made by these committees are reasonably consistent and always well-intentioned, but might be improved by more explicit written policies and clarifying roles. This process may help inform resource allocation in other areas of medicine. Primary funding source The Greenwall Foundation. PMID:22007044

  11. Sutureless liver repair and hemorrhage control using laser-mediated fusion of human albumin as a solder.

    Science.gov (United States)

    Wadia, Y; Xie, H; Kajitani, M

    2001-07-01

    Major liver trauma has a high mortality because of immediate exsanguination and a delayed morbidity from septicemia, peritonitis, biliary fistulae, and delayed secondary hemorrhage. We evaluated laser soldering using liquid albumin for welding liver injuries. Fourteen lacerations (6 x 2 cm) and 13 nonanatomic resection injuries (raw surface, 8 x 2 cm) were repaired. An 805-nm laser was used to weld 53% liquid albumin-indocyanine green solder to the liver surface, reinforcing it by welding a free autologous omental scaffold. The animals were heparinized and hepatic inflow occlusion was used for vascular control. For both laceration and resection injuries, 16 soldering repairs were evaluated acutely at 3 hours. Eleven animals were evaluated chronically, two at 2 weeks and nine at 4 weeks. All 27 laser mediated-liver repairs had minimal blood loss compared with the suture controls. No dehiscence, hemorrhage, or bile leakage was seen in any of the laser repairs after 3 hours. All 11 chronic repairs healed without complication. This modality effectively seals the liver surface, joins lacerations with minimal thermal injury, and works independently of the patient's coagulation status.

  12. The micro-droplet behavior of a molten lead-free solder in an inkjet printing process

    International Nuclear Information System (INIS)

    Tsai, M H; Chou, H H; Hwang, W S

    2009-01-01

    An experimental investigation on the droplet formation of molten Sn3.0 wt%Ag0.5 wt%Cu alloy by an inkjet printing process was conducted. The printing process used a piezoelectric print head with a nozzle orifice diameter of 50 µm. Micro-droplets of a molten lead-free solder were ejected at 230 °C. The print head was driven by a bipolar pulse 40 V in amplitude. The major variables for this study were two pulse times; t rise /t finalrise and t fall , as well as N 2 back-pressure in the molten solder reservoir. Under various printing conditions, extrusion of the liquid column, contraction of liquid thread and pinch-off of liquid thread at nozzle exit were observed by monitoring the dynamics of the molten solder droplet ejection process. The droplet formation was found to be insensitive to t rise and t finalrise in the range of 250–1000 µs. The behavior of droplet formation was, however, significantly affected by the transfer rate, t fall , in the range of 30–60 µs and t fall of 50 µs yielded the most desirable condition of single droplet formation. The N 2 back-pressure was also found to be critical, where a back pressure between 10 and 21 kPa could give the desirable single-droplet formation condition

  13. The Effect of Wetting Gravity Regime on Shear Strength of SAC and Sn-Pb Solder Lap Joints

    Science.gov (United States)

    Sona, Mrunali; Prabhu, K. Narayan

    2017-09-01

    The failure of solder joints due to imposed stresses in an electronic assembly is governed by shear bond strength. In the present study, the effect of wetting gravity regime on single-lap shear strength of Sn-0.3Ag-0.7Cu and Sn-2.5Ag-0.5Cu solder alloys reflowed between bare copper substrates as well as Ni-coated Cu substrates was investigated. Samples were reflowed for 10 s, T gz (time corresponding to the end of gravity regime) and 100 s individually and tested for single-lap shear strength. The single-lap shear test was also carried out on eutectic Sn-Pb/Cu- and Sn-Pb/Ni-coated Cu specimens to compare the shear strength values obtained with those of lead-free alloys. The eutectic Sn-Pb showed significantly higher ultimate shear strength on bare Cu substrates when compared to Sn-Ag-Cu alloys. However, SAC alloys reflowed on nickel-coated copper substrate exhibited higher shear strength when compared to eutectic Sn-Pb/Ni-coated Cu specimens. All the substrate/solder/substrate lap joint specimens that were reflowed for the time corresponding to the end of gravity regime exhibited maximum ultimate shear strength.

  14. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations.

    Science.gov (United States)

    Mick, Enrico; Markhoff, Jana; Mitrovic, Aurica; Jonitz, Anika; Bader, Rainer

    2013-09-11

    Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations-consisting mainly of SiO₂, Al₂O₃, K₂O and Na₂O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa) was found for the three different coatings. The obtained roughness (R z ) amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm) or adhesive strength (57.2 ± 5.8 MPa). In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  15. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations

    Directory of Open Access Journals (Sweden)

    Rainer Bader

    2013-09-01

    Full Text Available Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations—consisting mainly of SiO2, Al2O3, K2O and Na2O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa was found for the three different coatings. The obtained roughness (Rz amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm or adhesive strength (57.2 ± 5.8 MPa. In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  16. 77 FR 32639 - HIT Standards Committee and HIT Policy Committee; Call for Nominations

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES HIT Standards Committee and HIT Policy Committee; Call for... Health Information Technology Policy Committee (HITPC). Name of Committees: HIT Standards Committee and HIT Policy Committee. General Function of the Committees: The HITSC is charged to provide...

  17. Standing Concertation Committee

    CERN Multimedia

    HR Department

    2009-01-01

    Ordinary Meeting on 11 May 2009 The meeting of the Standing Concertation Committee held on 11 May 2009 was entirely dedicated to the preparation of the TREF meeting on 19 & 20 May 2009. The Committee took note, discussed and agreed on some clarifications on a number of documents and presentations that the Management planned to submit and/or present to TREF on the following subjects: • Personnel statistics 2008: J. Purvis presented the Personnel Statistics for 2008 prepared by HR Department. In line with the previous year, key messages were firstly, a general reduction in staff (2544 to 2400, - 6%), secondly, a reduction in administrative services personnel (from 422 to 387, - 8%) and thirdly, a marked increase in the number of Users and Unpaid Associates (from 8369 to 9140, + 9%) • Five-Yearly Review 2010: A series of draft documents were submitted for discussion, comprising an introductory document explaining the statutory basis for the following four document...

  18. Standing Concertation Committee

    CERN Multimedia

    HR Department

    2009-01-01

    The main items discussed at the meetings of the Standing Concertation Committee in the first quarter of 2009 included: Merit Appraisal and Recognition Scheme (MARS) 2009 exercise The committee took note of 2009 MARS ceiling guidelines giving the advancement budget by career path and amounting to approx 1.80% of the basic salary bill. To this will be added 250 steps CERN-wide, financed by savings from implementation of the international indemnity for 2007, 2008 and the first half of 2009. The specific Senior Staff Guidelines, including the proposed number of promotions from Career Path E to F, were also noted. The guidelines with respect to step distribution were also noted: the minima and maxima remain the same as in previous years. Compliance with the guidelines will continue to be monitored closely (more details, including a frequently asked questions section). It was also noted that Financial Awards (awards for extraordinary service and responsibility allowances) may b...

  19. Committees and sponsors

    Science.gov (United States)

    2011-10-01

    International Advisory Committee Richard F CastenYale, USA Luiz Carlos ChamonSão Paulo, Brazil Osvaldo CivitareseLa Plata, Argentina Jozsef CsehATOMKI, Hungary Jerry P DraayerLSU, USA Alfredo Galindo-UribarriORNL & UT, USA James J KolataNotre Dame, USA Jorge López UTEP, USA Joseph B NatowitzTexas A & M, USA Ma Esther Ortiz IF-UNAM Stuart PittelDelaware, USA Andrés SandovalIF-UNAM Adam SzczepaniakIndiana, USA Piet Van IsackerGANIL, France Michael WiescherNotre Dame, USA Organizing Committee Libertad Barrón-Palos (Chair)IF-UNAM Roelof BijkerICN-UNAM Ruben FossionICN-UNAM David LizcanoININ Sponsors Instituto de Ciencias Nucleares, UNAMInstituto de Física, UNAMInstituto Nacional de Investigaciones NuclearesDivisión de Física Nuclear de la SMFCentro Latinoamericano de Física

  20. Regulatory Review Committee update

    Energy Technology Data Exchange (ETDEWEB)

    Steele, T. [Polishuk, Camman and Steele, London ON (Canada)

    2001-07-01

    The Committee's objectives, current membership and current issues are reviewed. Each current issue, notably the consultation process with the Ministry of Natural Resources, appeal of Ministry actions, orphan wells/security deposits, oilfield fluid disposal and labour code practices review are discussed in some detail. Dissatisfaction with the current appeals process to the Ministry is highlighted, along with a search for an all encompassing solution. The orphan well problem also received considerable attention, with similar demands for a comprehensive solution.

  1. Annex 5. Monitoring committee

    OpenAIRE

    2013-01-01

    Head of monitoring committee: the Research Commission of the govern­ment of French Polynesia. Panel members Representatives of the following organisations: IRD centre in Papeete Oceanologic Center of the Pacific/Ifremer Investment Promotion Authority Environment Division EPIC Vanille Institut Louis-Malardé Gepsun “Natural Substances process engineering” technology platform (cf. Abbreviations) Fisheries Division Economic Affairs Division External Trade Division Development of Industry and the...

  2. Environment Committee report

    International Nuclear Information System (INIS)

    Greenhalgh, Geoffrey.

    1986-01-01

    The findings of the House of Commons Environment Committee (March 1986) on radioactive waste are examined. The report includes 43 recommendations and conclusions, many of which are directed at improving public acceptance of nuclear power, rather than constituting an attack on the nuclear industry. Some of the major topics considered in the report include: waste disposal, waste classification, waste disposal policy, discharges, reprocessing, and public acceptance. (UK)

  3. Standing Concertation Committee

    CERN Multimedia

    2007-01-01

    Ordinary meeting on 30 January 2007 The main items discussed at the meeting of the Standing Concertation Committee on 30 January 2007 included: Administrative Circular No. 26: with the introduction of the merit recognition system in the framework of the 5-yearly review of CERN employment conditions, Administrative Circular No. 26 has been revised. The committee took note of the revised document which is being finalized for submission to the Director-General for approval in the near future. Technical analysis of CERN Health Insurance Scheme: the Committee was informed that a group has been set up by the Director-General to analyse the financial situation of the CERN Health Insurance Scheme in the short and long term, and to propose measures to ensure that the Scheme remains in financial balance, with adequate cover, over the medium term. The group's terms of reference and membership were communicated. Voluntary programmes It was announced that the programmes: 'part-time work as a pre-retirement measure...

  4. Standing Concertation Committee

    CERN Multimedia

    2007-01-01

    ORDINARY MEETING ON 30 JANUARY 2007 The main items discussed at the meeting of the Standing Concertation Committee on 30 January 2007 included: Administrative Circular No. 26: with the introduction of the merit recognition system in the framework of the 5-yearly review of CERN employment conditions, Administrative Circular No. 26 has been revised. The Committee took note of the revised document which is being finalized for submission to the Director-General for approval in the near future. Technical analysis of CERN Health Insurance Scheme: the Committee was informed that a group has been set up by the Director-General to analyse the financial situation of the CERN Health Insurance Scheme in the short and long term, and to propose measures to ensure that the Scheme remains in financial balance, with adequate cover, over the medium term. The group's terms of reference and membership were communicated. Voluntary programmes It was announced that the programmes: 'part-time work as a pre-retirement mea...

  5. Standing Concertation Committee

    CERN Document Server

    HR Department

    2007-01-01

    ORDINARY MEETING ON 27 FEBRUARY 2007 The main items discussed at the meeting of the Standing Concertation Committee on 27 February 2007 included: Saved Leave Scheme (SLS): It was announced that a Management/Staff Association working group had been set up to discuss the Saved Leave Scheme (SLS): Members : M. Büttner, E. Chiaveri (chair), Ph. Defert, D. Klem, M. Vitasse, J.-M. Saint-Viteux. It was noted that the Staff Association was launching a questionnaire on SLS and distributed to all members of the personnel. Merit Recognition Guidelines: In the context of the new Merit Appraisal and Recognition Scheme (MARS), the committee took note of the CERN-wide 2007 Merit Recognition Guidelines, including the Frequently Asked Questions on HR Department's dedicated website. Information on CERN's medium and long-term plans (MTP-LTP)/Contract renewals/ External mobility The Committee took note of the information provided on CERN's MTP-LTP and of documentation distributed at the meeting by the Staff ...

  6. 76 FR 38658 - President's Committee for People With Intellectual Disabilities; Notice of Committee Meeting via...

    Science.gov (United States)

    2011-07-01

    ...) should notify Genevieve Swift, PCPID Executive Administrative Assistant, at Edith.Swift@acf.hhs.gov , or... contact Laverdia Taylor Roach, President's Committee for People with Intellectual Disabilities, The... universally designed technologies. Dated: June 27, 2011. Laverdia Taylor Roach, PCPID. [FR Doc. 2011-16604...

  7. Processing and characterization of device solder interconnection and module attachment for power electronics modules

    Science.gov (United States)

    Haque, Shatil

    This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module's critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si3N 4 passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices. The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si3N4 passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the

  8. An evaluation of the spring finger solder joints on SA1358-10 and SA2052-4 connector assemblies (MC3617,W87)

    International Nuclear Information System (INIS)

    Kilgo, Alice C.; Vianco, Paul Thomas; Hlava, Paul Frank; Zender, Gary L.

    2006-01-01

    The SA1358-10 and SA2052-4 circular JT Type plug connectors are used on a number of nuclear weapons and Joint Test Assembly (JTA) systems. Prototype units were evaluated for the following specific defects associated with the 95Sn-5Sb (Sn-Sb, wt.%) solder joint used to attach the beryllium-copper (BeCu) spring fingers to the aluminum (Al) connector shell: (1) extended cracking within the fillet; (2) remelting of the solder joint during the follow-on, soldering step that attached the EMR adapter ring to the connector shell (and/or soldering the EMR shell to the adapter ring) that used the lower melting temperature 63Sn-37Pb (Sn-Pb) alloy; and (3) spalling of the Cd (Cr) layer overplating layer from the fillet surface. Several pedigrees of connectors were evaluated, which represented older fielded units as well as those assemblies that were recently constructed at Kansas City Plant. The solder joints were evaluated that were in place on connectors made with the current soldering process as well as an alternative induction soldering process for attaching the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely reflected the different extents to which the connector was mated to its counterpart assembly. In all cases, the spring finger solder joints on the SA1358-10 connectors were remelted as a result of the subsequent EMR adapter ring attachment process. Spalling of the Cd (Cr) overplating layer was also observed for these connectors, which was a consequence of the remelting activity. On the other hand, the SA2052-4 connector did not exhibit evidence of

  9. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  10. Setup Time Reduction On Solder Paste Printing Machine – A Case Study

    Directory of Open Access Journals (Sweden)

    Rajesh Dhake

    2013-06-01

    Full Text Available Lean manufacturing envisages the reduction of the seven deadly wastes referred to as MUDA. Setup time forms a major component of the equipment downtime. It leads to lower machine utilization and restricts the output and product variety. This necessitates the requirement for quick setups. Single Minute Exchange of Die philosophy (a lean manufacturing tool here after referred as “SMED” is one of the important tool which aims at quick setups driving smaller lot sizes, lower production costs, improve productivity in terms of increased output, increased utilization of machine and labor hours, make additional capacity available (often at bottleneck resources, reduce scrap and rework, and increase flexibility[3]. This paper focuses on the application of Single Minute Exchange of Die[1] and Quick Changeover Philosophy[2] for reducing setup time on Solder Past Printing Machine (bottleneck machine in a electronic speedo-cluster manufacturing company. The four step SMED philosophy was adopted to effect reduction in setup time. The initial step was gathering information about the present setup times and its proportion to the total productive time. A detailed video based time study of setup activities was done to classify them into external and internal setup activities in terms of their need (i.e. preparation, replacement or adjustment, time taken and the way these could be reduced, simplified or eliminated. The improvements effected were of three categories viz., mechanical, procedural and organizational. The paper concludes by comparing the present and proposed (implemented methods of setup procedures.

  11. A wireless intraocular pressure monitoring device with a solder-filled microchannel antenna

    International Nuclear Information System (INIS)

    Varel, Çağdaş; Shih, Yi-Chun; Otis, Brian P; Böhringer, Karl F; Shen, Tueng S

    2014-01-01

    This paper presents the prototype of an intraocular pressure sensor as a major step toward building a device that can be permanently implanted during cataract surgery. The implantation will proceed through an incision of 2–3 mm using an injector, during which the complete device must be folded into a cross-section of 2 mm × 1 mm. The device uses radio frequency (RF) for wireless power and data transfer. The prototype includes an antenna, an RF chip and a pressure sensor assembled on a printed circuit board with several circuit components used for testing and calibration. The antenna is fabricated and integrated with the circuit using a fabrication method employing solder-filled microchannels embedded in an elastomer. The monitoring device is powered at 2.716 GHz from a distance of 1–2 cm. The prototype has undergone electrical and mechanical tests for antenna and sensor performance. The flexible antenna can withstand a stress of 33.4 kPa without any electrical disconnection. It did not show a significant increase in electrical resistance after 50 bending cycles with a maximum applied stress of 116 kPa. Transmitted pressure data shows an averaged sensitivity of 16.66 Hz (mm-Hg) –1 . (paper)

  12. Leaching Studies for Copper and Solder Alloy Recovery from Shredded Particles of Waste Printed Circuit Boards

    Science.gov (United States)

    Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Fatmehsari, Davoud Haghshenas

    2018-06-01

    Printed circuit boards (PCBs) comprise various metals such as Cu, Sn, and Pb, as well as platinum group metals. The recovery of metals from PCBs is important not only due to the waste treatment but also for recycling of valuable metals. In the present work, the leaching process of Cu, Sn, and Pb from PCBs was studied using fluoroboric acid and hydrogen peroxide as the leaching agent and oxidant, respectively. Pertinent factors including concentration of acid, temperature, liquid-solid ratio, and concentration of oxidizing agent were evaluated. The results showed 99 pct of copper and 90 pct solder alloy were dissolved at a temperature of 298 K (25 °C) for 180 minutes using 0.6 M HBF4 for the particle size range of 0.15 to 0.4 mm. Moreover, solid/liquid ratio had insignificant effect on the recovery of metals. Kinetics analysis revealed that the chemical control regime governs the process with activation energy 41.25 and 38.9 kJ/mol for copper and lead leaching reactions, respectively.

  13. Thermodynamic assessment of the Sn-Co lead-free solder system

    Science.gov (United States)

    Liu, Libin; Andersson, Cristina; Liu, Johan

    2004-09-01

    The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.

  14. Leaching Studies for Copper and Solder Alloy Recovery from Shredded Particles of Waste Printed Circuit Boards

    Science.gov (United States)

    Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Fatmehsari, Davoud Haghshenas

    2018-03-01

    Printed circuit boards (PCBs) comprise various metals such as Cu, Sn, and Pb, as well as platinum group metals. The recovery of metals from PCBs is important not only due to the waste treatment but also for recycling of valuable metals. In the present work, the leaching process of Cu, Sn, and Pb from PCBs was studied using fluoroboric acid and hydrogen peroxide as the leaching agent and oxidant, respectively. Pertinent factors including concentration of acid, temperature, liquid-solid ratio, and concentration of oxidizing agent were evaluated. The results showed 99 pct of copper and 90 pct solder alloy were dissolved at a temperature of 298 K (25 °C) for 180 minutes using 0.6 M HBF4 for the particle size range of 0.15 to 0.4 mm. Moreover, solid/liquid ratio had insignificant effect on the recovery of metals. Kinetics analysis revealed that the chemical control regime governs the process with activation energy 41.25 and 38.9 kJ/mol for copper and lead leaching reactions, respectively.

  15. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  16. Inductive Soldering of the Junctions of the Main Superconducting Busbars of the LHC

    CERN Document Server

    Jacquemod, A; Schauf, F; Skoczen, Blazej; Tock, J P

    2004-01-01

    The Large Hadron Collider (LHC) is the next world-facility for the high energy physics community, presently under construction at CERN, Geneva. The LHC will bring into collisions intense beams of protons and ions. The main components of the LHC are the twin-aperture high-field superconducting cryomagnets that will be installed in the existing 26.7-km long tunnel. They are powered in series by superconducting Nb-Ti cables. Along the machine, about 60 000 joints between superconducting cables must be realised in-situ during the installation. Ten thousands of them, rated at 13 000 A, are involved in the powering scheme of the main dipoles and quadrupoles. To meet the requirements of the cryogenic budget, an electrical resistance at operating temperature (1.9 K) lower than 0.6 nW has to be achieved. The induction soldering technology was selected for this purpose. After a brief introduction to the LHC project, the constraints and requirements are listed. Then, the applied solution is detailed. The splices of the ...

  17. Coal liquefaction committee report for fiscal 1981; 1981 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    For the assurance of smooth progress of coal technology development endeavors, the New Energy and Industrial Technology Development Organization (NEDO) has installed coal technology development committees (general committee on coal technologies, coal liquefaction committee, plant materials committee, coal type survey committee, total system committee, and coal gasification committee). The coal liquefaction committee deliberates and evaluates liquefaction technology and propels forward smoothly the efforts to develop the technology. Under the coal liquefaction committee, there are four subcommittees, which are the 1st subcommittee (primary liquefaction subcommittee), 2nd subcommittee (solid/liquid separation subcommittee), 3rd subcommittee (secondary hydrogenation subcommittee), and the 4th subcommittee (brown coal liquefaction subcommittee). The 2nd and 3rd subcommittees deal with common tasks as they were studied in fiscal 1980. The 1st subcommittee incorporates into itself the old subcommittees that respectively worked on the three liquefaction processes (the direct hydrogenation process, the solvent extraction process, and the Solvolysis process), and is designed to provide a site for information exchange. A brown coal liquefaction committee is incorporated into the coal liquefaction committee as the 4th subcommittee. This report is a compilation of the agendas of the respective subcommittees of the coal liquefaction committee. (NEDO)

  18. Effect of laser wavelength and protein solder concentration on acute tissue repair using laser welding: initial results in a canine ureter model.

    Science.gov (United States)

    Wright, E J; Poppas, D P

    1997-01-01

    Successful tissue approximation can be performed using low power laser energy combined with human albumin solder. In vitro studies were undertaken to investigate the acute repair strengths achieved using different laser wavelengths. Furthermore, we evaluated the change in repair strength with that resulted from changes in protein solder concentration. Intraluminal bursting pressure following ureterotomy repair was measured for the following laser wavelengths: 532, 808, 1,320, 2,100, and 10,600 nm. The tissue absorption characteristics of the 808-nm diode and the KTP-532-nm lasers required the addition of the exogenous chromophores indocyanine green and fluorescein, respectively. A 40% human albumin solder was incorporated in the repair of a 1.0-cm longitudinal defect in the canine ureter. Following determination of an optimal welding wavelength, human albumin solder of varying concentrations (25%, 38%, 45%, and 50%) were prepared and tested. The 1,320-nm YAG laser achieved the highest acute bursting pressure and was the most effective in this model. Of the concentrations of albumin tested, 50% human albumin yielded the greatest bursting pressures. We conclude that of the laser wavelengths evaluated, the 1,320-nm YAG achieves the strongest tissue weld in the acute ex vivo dog ureter model. In addition, when this laser system is used, the acute strength of a photothermal weld appears to be directly proportional to the concentration of human albumin solder in the range of 25 to 50%.

  19. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

    Science.gov (United States)

    Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom

    2006-10-01

    Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

  20. Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder

    Science.gov (United States)

    Zhang, Xudong; Hu, Xiaowu; Jiang, Xiongxin; Li, Yulong

    2018-04-01

    The formation and growth of intermetallic compound (IMC) layer at the interface between Sn3.0Ag0.5Cu (SAC305) solder and Cu- xNi ( x = 0, 0.5, 1.5, 5, 10 wt%) substrate during reflowing and aging were investigated. The soldering was conducted at 270 °C using reflowing method, following by aging treatment at 150 °C for up to 360 h. The experimental results indicated that the total thickness of IMC increased with increasing aging time. The scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were observed between SAC305 solder and purely Cu substrate. As the content of Ni element in Cu substrate was 0.5% or 1.5%, the scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were still found between solder and Cu-Ni substrate and the total thickness of IMC layer decreased with the increasing Ni content. Besides, when the Ni content was up to 5%, the long prismatic (Cu,Ni)6Sn5 phase was the only product between solder and substrate and the total thickness of IMC layer increased significantly. Interestingly, the total thickness of IMC decreased slightly as the Ni addition was up to 10%. In the end, the grains of interfacial IMC layer became coarser with aging time increasing while the addition of Ni in Cu substrate could refine IMC grains.

  1. The Incentive Effect of Scores: Randomized Evidence from Credit Committees

    OpenAIRE

    Daniel Paravisini; Antoinette Schoar

    2013-01-01

    We design a randomized controlled trial to evaluate the adoption of credit scoring with a bank that uses soft information in small businesses lending. We find that credit scores improve the productivity of credit committees, reduce managerial involvement in the loan approval process, and increase the profitability of lending. Credit committee members' effort and output also increase when they anticipate the score becoming available, indicating that scores improve incentives to use existing in...

  2. Business ethics in ethics committees?

    Science.gov (United States)

    Boyle, P

    1990-01-01

    The "Ethics committees" column in this issue of the Hastings Center Report features an introduction by Cynthia B. Cohen and four brief commentaries on the roles hospital ethics committees may play in the making of institutional and public health care policy in the 1990s. The pros and cons of a broader, more public role for ethics committees in reconciling the business and patient care aspects of health care delivery are debated by Cohen in "Ethics committees as corporate and public policy advocates," and by Philip Boyle in this article. Boyle is an associate for ethical studies at The Hastings Center.

  3. 76 FR 5160 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Science.gov (United States)

    2011-01-28

    ... FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital Age AGENCY: Federal Communications Commission. ACTION: Notice of... Committee on Diversity for Communications in the Digital Age (``Diversity Committee''). ADDRESSES: A copy of...

  4. 76 FR 64348 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Science.gov (United States)

    2011-10-18

    ... FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital Age AGENCY: Federal Communications Commission. ACTION: Notice of... Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide...

  5. 77 FR 57085 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Science.gov (United States)

    2012-09-17

    ... FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital Age AGENCY: Federal Communications Commission. ACTION: Notice of... Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide...

  6. 77 FR 6113 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Science.gov (United States)

    2012-02-07

    ... FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital Age AGENCY: Federal Communications Commission. ACTION: Notice of... Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide...

  7. 78 FR 21354 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Science.gov (United States)

    2013-04-10

    ... FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital Age AGENCY: Federal Communications Commission. ACTION: Notice of... Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide...

  8. 76 FR 19176 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2011-04-06

    ...) Maritime Safety Committee (MSC 89) to be held May 11-20, 2011. The primary matters to be considered at MSC... --Technical assistance sub-programme in maritime safety and security --Capacity-building for the... business --Report of the Maritime Safety Committee Members of the public may attend these two meetings up...

  9. 78 FR 29201 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2013-05-17

    ... the International Maritime Organization's (IMO) Marine Safety Committee to be held at the IMO... session of the Sub-Committee) Technical co-operation activities relating to maritime safety and security... amendments to mandatory instruments Measures to enhance maritime security Goal-based new ship construction...

  10. 78 FR 32699 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2013-05-31

    ... Session of the International Maritime Organization's (IMO) Sub-Committee on Safety of Navigation to be... --Report to the Maritime Safety Committee Members of the public may attend this meeting up to the seating... system ``BeiDou'' in the maritime field --International Telecommunication Union (ITU) matters, including...

  11. 77 FR 47491 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2012-08-08

    ... to the Maritime Safety Committee Members of the public may attend this meeting up to the seating... Session of the International Maritime Organization's (IMO) Sub-Committee on Dangerous Goods, Solid Cargoes... --Amendment 37-14 to the International Maritime Dangerous Goods (IMDG) Code and supplements, including...

  12. 77 FR 57638 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2012-09-18

    ... the International Maritime Organization's (IMO) Marine Safety Committee to be held at the IMO... seventeenth session of the Sub-Committee); Technical co-operation activities relating to maritime safety and... amendments to mandatory instruments; Measures to enhance maritime security; Goal-based new ship construction...

  13. 78 FR 58596 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2013-09-24

    ... DEPARTMENT OF STATE [Public Notice 8481] Shipping Coordinating Committee; Notice of Committee... --External relations --Report on the status of the Convention and membership of the Organization --Report on... performs functions --Supplementary agenda items, if any The agenda items for A 28, to be considered include...

  14. 75 FR 63888 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2010-10-18

    ... Work Methods and Organization of Work of the Legal Committee --Any other business --Consideration of... for the ninety-seventh Session of the International Maritime Organization's (IMO) Legal Committee to... Pollution Damage, 2001 --Consideration of a proposal to amend the limits of liability of the 1996 Protocol...

  15. 76 FR 12787 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2011-03-08

    ... --Any other business. --The public should be aware that Legal Committee has received a proposal to... the International Maritime Organization's (IMO) Legal Committee to be held at the IMO headquarters in... treatment of seafarers in the event of a maritime accident; --Consideration of a proposal to amend the...

  16. [The Editorial Advisory Committee].

    Science.gov (United States)

    Reyes, H

    1996-12-01

    Since 1970, Revista Médica de Chile applies the peer review system as a main step in the selection and improvement of the manuscripts to be published. Over 150 experts participate in this process annually, reviewing up to 5 manuscripts per year. The final decision with regards to to the acceptability of a manuscript remains a responsibility of the Editor. The reviewers are selected by the Editor and his Associates among clinical investigators, prominent subspecialits and basic scientists, according to the nature of the manuscript. Most of them work in Chile. Their names are published and their confidential work is acknowledged in a special chronicle published in the Revista once a year. A small number of these reviewers appears in every issue of the journal identified as Members of its Editorial Advisory Committee. They have been selected by the Editors among those reviewers who deal with a greater number of manuscripts and also those experienced specialists whose opinion is requested when an exceptional conflict of opinions is raised by the authors and their reviewers. After 5 to 10 years of a highly praised collaboration, the previous Committee has been changed and new names were included, starting in this issue of Revista Médica de Chile.

  17. STANDING CONCERTATION COMMITTEE

    CERN Multimedia

    2003-01-01

    ORDINARY MEETING ON 29 SEPTEMBER 2003 Original: English This meeting was devoted to the main topics summarised below. 1 Follow-up from the meetings of TREF and the Finance Committee in September 2003 The last meeting of TREF had been devoted to presentations and clarifications on the 5-Yearly Review process. The content and planning of the 2005 Review are matters for the next Management, which will be presented to TREF next year. Underlining that due account has to be taken of the limited resources available to conduct such an exercise, the Staff Association stated that it looks forward to the concertation process at the SCC in preparing the next 5-Yearly Review to define an optimum set of topics in order to ensure that CERN can attract, retain and motivate the personnel that it needs to remain a centre of excellence. The Chairman of the SCC recalled that an information document on the Cost-Variation Index for 2004 had been transmitted to the Finance Committee last September and that complete information o...

  18. Microstructure and mechanical properties of Sn-9Zn-xAl2O3 nanoparticles (x=0–1) lead-free solder alloy: First-principles calculation and experimental research

    International Nuclear Information System (INIS)

    Xing, Wen-qing; Yu, Xin-ye; Li, Heng; Ma, Le; Zuo, Wei; Dong, Peng; Wang, Wen-xian; Ding, Min

    2016-01-01

    This paper studies microstructure and mechanical properties of Sn-9Zn-x Al 2 O 3 nanoparticles (x=0–1) lead-free solder alloy. The interface structure, interface energy and electronic properties of Al 2 O 3 /Sn9Zn interface are investigated by first-principle calculation. On the experimental part, in comparison with the plain Sn-9Zn solder, the Al 2 O 3 nanoparticles incorporated into the solder matrix can inhibit the growth of coarse dendrite Sn-Zn eutectic structure and refine grains of the composite solders during the solidification process of the alloys. Moreover, the microhardness and average tensile strength of the solders with addition of Al 2 O 3 nanoparticles increased with the increasing weight percentages of Al 2 O 3 nanoparticles. These improved mechanical properties can be attributed to the microstructure developments and the dispersed Al 2 O 3 nanoparticles.

  19. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    This publication is unique in its demystification and operationalization of the complex and elusive nature of the design process. The publication portrays the designer’s daily work and the creative process, which the designer is a part of. Apart from displaying the designer’s work methods...... and design parameters, the publication shows examples from renowned Danish design firms. Through these examples the reader gets an insight into the designer’s reality....

  20. The variation of grain structure and the enhancement of shear strength in SAC305-0.1Ni/OSP Cu solder joint

    Energy Technology Data Exchange (ETDEWEB)

    Fleshman, Collin; Chen, Wei-Yu; Chou, Tzu-Ting [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Huang, Jia-Hong [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China)

    2017-03-01

    In this study, the slow speed shear test in both Sn-3.0Ag-0.5Cu (wt%)/OSP Cu and Sn-3.0Ag-0.5Cu-0.1Ni (wt%)/OSP Cu assembly with the ball heights of 300 μm and the corresponding grain structures were investigated. With the aid of Electron Back Scattering Diffraction (EBSD) analysis, single grain structure was observed in Sn-3.0Ag-0.5Cu/OSP Cu. Besides, Ni was found to control the grain structure in Sn-3.0Ag-0.5Cu-0.1Ni solder balls, showing multiple grains with partially interlaced structure. The grain variation resulted from larger undercooling caused by smaller ball size and Ni-dopant induced tiny intermetallic compounds (IMCs). IMCs serve as heterogeneous nucleation sites for β-tin and thus alter the grain structure of solder balls. The results of shear test reveal that the peak force of solder joints was efficiently enhanced by the addition of Ni. The enhancement of mechanical strength was attributed to the modification of grain structure by the introduction of Ni dopant. It is believed that the smaller grains, tiny intermetallic compounds, and the oriented interlaced area in Ni-doped solder joints became energy barriers for propagation of cracks and dislocations. It is demonstrated that Ni-doped solder joints tend to exhibit better mechanical reliability in advanced electronic packaging. - Highlights: • The grain structure and slow speed shear test performance were investigated. • Doping Ni into solder induce interlaced grain structure. • Interlaced structure can enhance mechanical reliability in BGA packaging.

  1. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X = Bi, In) solders with Cu substrate

    International Nuclear Information System (INIS)

    Hodulova, Erika; Palcut, Marian; Lechovic, Emil; Simekova, Beata; Ulrich, Koloman

    2011-01-01

    Highlights: → In substitutes Sn in intermetallic compounds formed at the Cu-solder interface. → Bi and In decrease the parabolic rate constant of Cu 3 Sn layer growth. → In increases the parabolic rate constant of Cu 6 Sn 5 layer growth. → High In concentrations should be avoided since they may lead to a pre-mature solder joint degradation. - Abstract: The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 deg. C for 5 s. The joints were subsequently aged at temperatures of 130-170 deg. C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu 3 Sn and Cu 6 Sn 5 . Cu 6 Sn 5 is formed during soldering. Cu 3 Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu 3 Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu 6 (Sn,In) 5 instead of Cu 6 Sn 5 , with a higher rate constant. The mechanism of the Cu 6 (Sn,In) 5 layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.

  2. 76 FR 29722 - Elko Resource Advisory Committee

    Science.gov (United States)

    2011-05-23

    ... (Pub. L. 110-343) (the Act) and operates in compliance with the Federal Advisory Committee Act. The...- Determination Act; (2) Review roles of RAC committee members and Committee Chairman; (3) Overview of project...

  3. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  4. Influence of Poly(ethylene glycol) Degradation on Voiding Sporadically Occurring in Solder Joints with Electroplated Cu

    Science.gov (United States)

    Wafula, F.; Yin, L.; Borgesen, P.; Andala, D.; Dimitrov, N.

    2012-07-01

    This paper presents a comprehensive study of the effect of poly(ethylene glycol) (PEG) degradation on the void formation known to take place sporadically at the interface between electroplated Cu and Pb-free solder. Thorough chemical analysis of our plating solution, carried out at different times of the deposition process by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, reveals a dramatic shift in the peaks to lower mass range with time. Scanning electron microscopy cross-sectional images of solder joints with Cu samples that have been plated at different times in the course of solution aging show a decrease in void formation. A decreasing magnitude of the deposition overpotential also seen during aging suggests that, breaking down to lower-molecular-weight fragments, PEG loses its suppression effect and likely has lower impact on the voiding propensity. This indirect correlation is confirmed further by the use of plating solutions containing PEG with preselected molecular weight. We also report on the effect of the surface area-to-solution volume ratio on PEG degradation studied by comparative experiments performed in a 50-mL bath with a rotating disc electrode and in a larger cell (Hull cell) with volume of 267 mL. The results show that, at fixed charge per unit volume, PEG degrades at a greatly accelerated rate in the Hull cell featuring higher electrode surface-to-solution volume ratio. Analysis of solder joints with accordingly grown Cu layers suggests that the voiding decreases faster with the accelerated rate of PEG degradation.

  5. Committees review activities at December meetings

    Science.gov (United States)

    The Education and Human Resources Committee reported having approved participation in the Association for Women Geoscientist's (AWG) national survey. During the summer of 1983 the AWG designed a 75-question survey targeted to women but also applicable to men. The survey consisted of five sections (in addition to such demographics as age, salary, education, job area, and society membership): feelings and attitude toward job, career/family balance, sexual harassment and discrimination, opinions on national energy and conservation policy, and attitude toward AWG. The questionnaire was mailed to AWG members (just over 1000) and to AGU female members (about 1300). Survey participants were asked to give copies to their male colleagues to create a comparison group. About 25% of the 800 responses were from men. The responses were split about 50/50 between AWG and AGU members. The Education and Human Resources Committee will have the results from the survey presented at their next meeting in Cincinnati, May 15.

  6. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2010-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The changes in microstructure and microhardness associated with the addition of low melting point metals namely In, Sb and Sn to the Au......-Ge-In and Au-Ge-Sn combinations was determined to be the classic solid solution strengthening. The Au-Ge-Sb combination was primarily strengthened by the refined (Ge) dispersed phase. The aging temperature had a significant influence on the microhardness in the case of the Au-Ge-Sn candidate alloy...

  7. Study of 3D solder-paste profilometer by dual digital fringe projection

    Science.gov (United States)

    Juan, Yi-Hua; Yih, Jeng-Nan; Cheng, Nai-Jen

    2013-09-01

    In a 3D profilometer by the fringe projection, the shadow will be produced inevitably, thus the fringes cannot be detected in the region of the shadow. In addition, a smooth surface or a metal surface produces the specular reflection, and then, no projection fringe can be recorded in the region of oversaturation on CCD. This paper reveals a proposed system for improved these defects and shows some preliminary improved 3D profiles by the proposed dual fringe projection. To obtain the profile of sample hided in the shadow and the oversaturation, this study used the dual-projection system by two projectors. This system adopted two different directions of fringe projection and illuminates them alternately, therefore, the shadow and the oversaturation produced in their corresponding locations. Two raw 3D profiles obtained from taking the dual-projection by the four-step phase-shift. A set of algorithms used to identify the pixels of the shadow and the oversaturation, and create an error-map. According to the error-map to compensate, two 3D profiles merged into an error-reduced 3D profile. We used the solder paste as a testing sample. After comparatively analyzing the 3D images obtained by our measurement system and by a contact stylus profilometer, the result shows that our measurement system can effectively reduce the error caused by shadows and oversaturation. Fringe projection system by using a projector is a non-contact, full field and quickly measuring system. The proposed dual-projection by dual-projectors can effectively reduce the shadow and the oversaturation errors and enhance the scope of application of the 3D contour detection, especially in the detection of precision structure parts with specular reflection.

  8. Committees and organizers

    Science.gov (United States)

    2011-07-01

    Chairman:Jozef Spałek (Kraków) Program Committee:Stephen Blundell (Oxford), J Michael D Coey (Dublin), Dominique Givord (Grenoble), Dariusz Kaczorowski (Wrocław), Roman Micnas (Poznań), Marek Przybylski (Halle), Ludiwig Schultz (Dresden), Vladimir Sechovsky (Prague), Jozef Spałek (Kraków), Henryk Szymczak (Warszawa), Manuel Vázquez (Madrid) Publication Committee:Dariusz Kaczorowski, Robert Podsiadły, Jozef Spałek, Henryk Szymczak, Andrzej Szytuła Local committee:Maria Bałanda, Anna Majcher, Robert Podsiadły, Michał Rams, Andrzej Ślebarski, Krzysztof Tomala Editors of the Proceedings:Jozef Spałek, Krzysztof Tomala, Danuta Goc-Jagło, Robert Podsiadły, Michał Rams, Anna Majcher Plenary, semi-plenary and tutorial speakers:Ernst Bauer (Wien)Stephen Blundell (Oxford)J Michael D Coey (Dublin)Russell P Cowburn (London)Burkard Hillebrands (Kaiserslautern)Claudine Lacroix (Grenoble)Lluís Mañosa (Barcelona)María del Carmen Muñoz (Madrid)Bernard Raveau (Caen)Pedro Schlottmann (Tallahassee)Frank Steglich (Dresden)Oliver Waldmann (Freiburg) Invited speakers within symposia: R Ahuja (Uppsala)A Kirilyuk (Nijmegen) M Albrecht (Vienna)L Theil Kuhn (Roskilde) K Bärner (Göttingen)J Liu (Dresden) U Bovensiepen (Duisburg)G Lorusso (Modena) V Buchelnikov (Chelyabinsk)M M Maska (Katowice) B Chevalier (Bordeaux)Y Mukovskii (Moscow) O Chubykalo-Fesenko (Madrid)M Pannetier-Lecoeur (Saclay) A V Chumak (Kaiserslautern)G Papavassiliou (Athens) J M D Coey (Dublin)K R Pirota (Campinas) B Dabrowski (DeKalb)P Przyslupski (Warszawa) S Das (Aveiro)M Reiffers (Košice) A del Moral (Zaragoza)K Sandeman (London) V E Demidov (Muenster)D Sander (Halle) B Djafari-Rouhani (Lille)M Sawicki (Sendai/Warsaw) H A Dürr (Menlo Park)J Schaefer (Würzburg) J Fassbender (Dresden)H Schmidt (Wetzikon) J Fontcuberta (Barcelona)J Spałek (Kraków) V Garcia (Orsay)L Straka (Helsinki) J N Gonçalves (Aveiro)A Szewczyk (Warszawa) M E Gruner (Duisburg)Y Taguchi (Wako) G Gubbiotti (Perugia)A Thiaville

  9. 21 CFR 14.22 - Meetings of an advisory committee.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Meetings of an advisory committee. 14.22 Section... of, and with an agenda approved by, the designated Federal employee or alternate. No meeting may be held in the absence of the designated Federal employee. (1) If any matter is added to the agenda after...

  10. 77 FR 28923 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2012-05-16

    ... Session of the International Maritime Organization's (IMO) Sub-Committee on Safety of Navigation to be... --Election of Chairman and Vice-Chairman for 2013 --Any other business --Report to the Maritime Safety...

  11. Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders

    Science.gov (United States)

    Mohammadi, A.; Mahmudi, R.

    2018-02-01

    Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.

  12. Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

    Directory of Open Access Journals (Sweden)

    John D. Sørensen

    2011-12-01

    Full Text Available Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components, it is necessary to understand the physics of their failure and be able to develop reliability prediction models. Such a model is proposed in this paper for an IGBT power electronic module. IGBTs are critical components in wind turbine converter systems. These are multilayered devices where layers are soldered to each other and they operate at a thermal-power cycling environment. Temperature loadings affect the reliability of soldered joints by developing cracks and fatigue processes that eventually result in failure. Based on Miner’s rule a linear damage model that incorporates a crack development and propagation processes is discussed. A statistical analysis is performed for appropriate model parameter selection. Based on the proposed model, a layout for component life prediction with crack movement is described in details.

  13. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    International Nuclear Information System (INIS)

    Chang, T.-C.; Chou, S.-M.; Hon, M.-H.; Wang, M.-C.

    2006-01-01

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 ± 0.31 to 12.32 ± 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time

  14. Methodology for Analyzing Strain States During In-Situ Thermomechanical Cycling in Individual Lead Free Solder Joints Using Synchrotron Radiation

    International Nuclear Information System (INIS)

    Zhou, Bite; Bieler, Thomas R.; Lee, Tae-Kyu; Liu, Kuo-Chuan

    2009-01-01

    To examine how a lead-free solder joint deforms in a thermal cycling environment, both the elastic and plastic stress and strain behavior must be understood. Methods to identify evolution of the internal strain (stress) state during thermal cycling are described. A slice of a package containing a single row of solder joints was thermally cycled from 0 C to 100 C with a period of about 1 h with concurrent acquisition of transmission Laue patterns using synchrotron radiation. These results indicated that most joints are single crystals, with some being multicrystals with no more than a few Sn grain orientations. Laue patterns were analyzed to estimate local strains in different crystal directions at different temperatures during a thermal cycle. While the strains perpendicular to various crystal planes all vary in a similar way, the magnitude of strain varies. The specimens were subsequently given several hundred additional thermal cycles and measured again to assess changes in the crystal orientations. These results show that modest changes in crystal orientations occur during thermal cycling.

  15. Introduction and Committees

    Science.gov (United States)

    Angelova, Maia; Zakrzewski, Wojciech; Hussin, Véronique; Piette, Bernard

    2011-03-01

    This volume contains contributions to the XXVIIIth International Colloquium on Group-Theoretical Methods in Physics, the GROUP 28 conference, which took place in Newcastle upon Tyne from 26-30 July 2010. All plenary and contributed papers have undergone an independent review; as a result of this review and the decisions of the Editorial Board most but not all of the contributions were accepted. The volume is organised as follows: it starts with notes in memory of Marcos Moshinsky, followed by contributions related to the Wigner Medal and Hermann Weyl prize. Then the invited talks at the plenary sessions and the public lecture are published followed by contributions in the parallel and poster sessions in alphabetical order. The Editors:Maia Angelova, Wojciech Zakrzewski, Véronique Hussin and Bernard Piette International Advisory Committee Michael BaakeUniversity of Bielefeld, Germany Gerald DunneUniversity of Connecticut, USA J F (Frank) GomesUNESP, Sao Paolo, Brazil Peter HanggiUniversity of Augsburg, Germany Jeffrey C LagariasUniversity of Michigan, USA Michael MackeyMcGill University, Canada Nicholas MantonCambridge University, UK Alexei MorozovITEP, Moscow, Russia Valery RubakovINR, Moscow, Russia Barry SandersUniversity of Calgary, Canada Allan SolomonOpen University, Milton Keynes, UK Christoph SchweigertUniversity of Hamburg, Germany Standing Committee Twareque AliConcordia University, Canada Luis BoyaSalamanca University, Spain Enrico CeleghiniFirenze University, Italy Vladimir DobrevBulgarian Academy of Sciences, Bulgaria Heinz-Dietrich DoebnerHonorary Member, Clausthal University, Germany Jean-Pierre GazeauChairman, Paris Diderot University, France Mo-Lin GeNankai University. China Gerald GoldinRutgers University, USA Francesco IachelloYale University, USA Joris Van der JeugtGhent University, Belgium Richard KernerPierre et Marie Curie University, France Piotr KielanowskiCINVESTAV, Mexico Alan KosteleckyIndiana University, USA Mariano del Olmo

  16. Growth kinetics of the intermetallic phase in diffusion-soldered (Cu-5 at.%Ni)/Sn/(Cu-5 at.%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Miernik, K.; Wojewoda-Budka, J.; Szyszkiewicz, K.; Filipek, R.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2013-01-01

    A stereological analysis was carried out in order to obtain the kinetics parameters of the (Cu1-xNix)6Sn5 growth in the diffusion soldered (Cu–5 at.%Ni)/Sn/(Cu–5 at.%Ni) interconnections where previously anomalous fast growth of this phase was described. The n-parameter in the equation x = ktn was

  17. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    Directory of Open Access Journals (Sweden)

    Jinhua Mi

    2014-01-01

    Full Text Available Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA and fine-pitch ball grid array (FBGA interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products.

  18. 39 CFR 5.2 - Committee procedure.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Committee procedure. 5.2 Section 5.2 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE COMMITTEES (ARTICLE V) § 5.2 Committee procedure. Each committee establishes its own rules of procedure, consistent with...

  19. 29 CFR 1960.37 - Committee organization.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Committee organization. 1960.37 Section 1960.37 Labor... MATTERS Occupational Safety and Health Committees § 1960.37 Committee organization. (a) For agencies which... organization of the agency and its collective bargaining configuration. The agency shall form committees at the...

  20. 50 CFR 453.05 - Committee meetings.

    Science.gov (United States)

    2010-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS ENDANGERED SPECIES EXEMPTION PROCESS ENDANGERED SPECIES COMMITTEE § 453.05 Committee meetings. (a) The committee shall meet at the call of the... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE...

  1. 75 FR 36698 - Committee Management Renewals

    Science.gov (United States)

    2010-06-28

    .... Committees Committee on Equal Opportunities in Science and Engineering, 1173 Advisory Committee for Computer and Information Science and Engineering, 1115 Advisory Committee for GPRA Performance Assessment..., and Transport Systems, 1189 Proposal Review Panel for Chemistry, 1191 Proposal Review Panel for Civil...

  2. Effect of nano Co reinforcements on the structure of the Sn-3.0Ag-0.5Cu solder in liquid and after reflow solid states

    Energy Technology Data Exchange (ETDEWEB)

    Yakymovych, Andriy, E-mail: yakymovych@univie.ac.at [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria); Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Mudry, Stepan; Shtablavyi, Ihor [Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Ipser, Herbert [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria)

    2016-09-15

    Sn-Ag-Cu (SAC) alloys are commonly recognized as lead-free solders employed in the electronics industry. However, some disadvantages in mechanical properties and their higher melting temperatures compared to Pb-Sn solders prompt new research relating to reinforcement of existing SAC solders. One of the ways to reinforce these solder materials is the formation of composites with nanoparticles as filler materials. Accordingly, this study presents structural features of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} solders with up to 0.8 wt% nano Co. The effect of nano-sized Co particles was investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD) in both liquid and solid states, and scanning electron microscopy (SEM). The experimental data of DTA are compared with available literature data for bulk Sn-3.0Ag-0.5Cu alloy to check the capability of minor nano-inclusions to decrease the melting temperature of the SAC solder. The combination of structural data in liquid and solid states provides important information about the structural transformations of liquid Sn-3.0Ag-0.5Cu alloys caused by minor Co additions and the phase formation during crystallization. Furthermore, scanning electron microscopy has shown the mutual substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases, respectively. - Highlights: • Differential thermal analysis of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} alloys. • Structural transformations of liquid Sn-3.0Ag-0.5Cu solder by minor Co additions. • Structure data of the solid quaternary (Sn-3.0Ag-0.5Cu){sub 100−x}(Co){sub x} alloys. • Substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases.

  3. FY 1986 report on the committee of the Coal Gasification Committee; 1986 nendo sekitan gaska iinkai hon'iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The paper reported on activities of the committee of the Coal Gasification Committee in FY 1986. In the 1st Committee Meeting, after selecting the chairperson, report/discussion were made about the outline of the FY 1986 coal gasification technology development plan. The distributed data were the outline of the development of an entrained bed coal gasification power plant, outline of the development of a 40t/d fluidized bed coal gasification plant, outline of the design of a 1,000t/d 100,000KW-class demonstrative plant, outline of the development of coal utilization hydrogen production technology, and outline of the development of high-calorie gas production technology. In the 2nd Committee Meeting, report/discussion were made about activities of each section of the committee and the state of progress of the development of coal gasification technology. The distributed data were those on the development of an entrained bed coal gasification power plant, development of a 40t/d fluidized bed coal gasification plant, design of a 1,000t/d 100,000KW-class demonstrative plant, and development of coal utilization hydrogen production technology (design/construction of pilot plant, study using small equipment). (NEDO)

  4. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    Design - proces & metode iBog®  er enestående i sit fokus på afmystificering og operationalisering af designprocessens flygtige og komplekse karakter. Udgivelsen går bag om designerens daglige arbejde og giver et indblik i den kreative skabelsesproces, som designeren er en del af. Udover et bredt...... indblik i designerens arbejdsmetoder og designparametre giver Design - proces & metode en række eksempler fra anerkendte designvirksomheder, der gør det muligt at komme helt tæt på designerens virkelighed....

  5. Report From the International Linear Collider Technical Review Committee

    International Nuclear Information System (INIS)

    Loew, Gregory A.

    2003-01-01

    The International Linear Collider Technical Review Committee (ILC-TRC), formed in 1994, was reconvened in February 2001 by the International Committee for Future Accelerators (ICFA) to assess the current technical status of all electron-positron linear collider designs at hand in the world: TESLA, JLC-C, JLC-X/NLC and CLIC. The ILC-TRC worked for exactly two years and submitted its report to ICFA in February 2003. This paper presents the motivation behind the study, the charge to the committee and its organization, a table of machine parameters for 500 GeV c.m. energy and later upgrades to higher energies, the methodology used to assess the designs, and a ranked list of R and D tasks still deemed necessary between now and the time any one of the projects is selected by the HEP community and begins construction. Possible future developments are briefly discussed

  6. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy

    Science.gov (United States)

    Sungkhaphaitoon, Phairote; Plookphol, Thawatchai

    2018-02-01

    In this study, we investigated the effects produced by the addition of antimony (Sb) to Sn-3.0Ag-0.5Cu-based solder alloys. Our focus was the alloys' microstructural, mechanical, and thermal properties. We evaluated the effects by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The results showed that a part of the Sb was dissolved in the Sn matrix phase, and the remaining one participated in the formation of intermetallic compounds (IMCs) of Ag3(Sn,Sb) and Cu6(Sn,Sb)5. In the alloy containing the highest wt pct Sb, the added component resulted in the formation of SnSb compound and small particle pinning of Ag3(Sn,Sb) along the grain boundary of the IMCs. Our tests of the Sn-3.0Ag-0.5Cu solder alloys' mechanical properties showed that the effects produced by the addition of Sb varied as a function of the wt pct Sb content. The ultimate tensile strength (UTS) increased from 29.21 to a maximum value of 40.44 MPa, but the pct elongation (pct EL) decreased from 48.0 to a minimum 25.43 pct. Principally, the alloys containing Sb had higher UTS and lower pct EL than Sb-free solder alloys due to the strengthening effects of solid solution and second-phase dispersion. Thermal analysis showed that the alloys containing Sb had a slightly higher melting point and that the addition amount ranging from 0.5 to 3.0 wt pct Sb did not significantly change the solidus and liquidus temperatures compared with the Sb-free solder alloys. Thus, the optimal concentration of Sb in the alloys was 3.0 wt pct because the microstructure and the ultimate tensile strength of the SAC305 solder alloys were improved.

  7. Design

    Science.gov (United States)

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  8. 78 FR 11155 - Advisory Committee on Supply Chain Competitiveness: Notice of Public Meeting

    Science.gov (United States)

    2013-02-15

    ... Competitiveness: Notice of Public Meeting AGENCY: International Trade Administration, U.S. Department of Commerce... discussion for a public meeting of the Advisory Committee on Supply Chain Competitiveness (Committee). DATES... infrastructure and a national freight policy designed to support U.S. export and growth competitiveness, foster...

  9. 78 FR 19460 - Marine Protected Areas Federal Advisory Committee; Public Meeting

    Science.gov (United States)

    2013-04-01

    ... meeting via web conference call of the Marine Protected Areas Federal Advisory Committee (Committee). The..., Acting Designated Federal Officer, MPA FAC, National Marine Protected Areas Center, 1305 East West... Interior on implementation of Section 4 of Executive Order 13158, on marine protected areas. Matters to be...

  10. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    International Nuclear Information System (INIS)

    Dana, W.P.

    1995-12-01

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  11. Analysis of a short beam with application to solder joints: could larger stand-off heights relieve stress?

    Science.gov (United States)

    Suhir, Ephraim

    2015-08-01

    Physically meaningful and easy-to-use analytical (mathematical) stress model is developed for a short beam with clamped and known-in-advance offset ends. The analysis is limited to elastic deformations. While the classical Timoshenko short-beam theory seeks the beam's deflection caused by the combined bending and shear deformations for the given loading, an inverse problem is considered here: the lateral force is sought for the given ends offset. In short beams this force is larger than in long beams, since, in order to achieve the given displacement (offset), the applied force has to overcome both bending and shear resistance of the beam. It is envisioned that short beams could adequately mimic the state of stress in solder joint interconnections, including ball-grid-array (BGA) systems, with large, compared to conventional joints, stand-off heights. When the package/printed-circuit-board (PCB) assembly is subjected to the change in temperature, the thermal expansion (contraction) mismatch of the package and the PCB results in an easily predictable relative displacement (offset) of the ends of the solder joint. This offset can be determined from the known external thermal mismatch strain (determined as the product of the difference in the coefficients of thermal expansion and the change in temperature) and the position of the joint with respect to the mid-cross-section of the assembly. The maximum normal and shearing stresses could be viewed as suitable criteria of the beam's (joint's) material long-term reliability. It is shown that these stresses can be brought down by employing beam-like joints, i.e., joints with an increased stand-off height compared to conventional joints. It is imperative, of course, that, if such joints are employed, there is still enough interfacial real estate, so that the BGA bonding strength is not compromised. On the other hand, owing to the lower stress level, reliability assurance might be much less of a challenge than in the case of

  12. 78 FR 39289 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Science.gov (United States)

    2013-07-01

    ... for Communications in the Digital Age AGENCY: Federal Communications Commission. ACTION: Notice of... Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide... committees, Supplier Diversity, Market Entry Barriers, Unlicensed Devices and EEO Enforcement will report on...

  13. 11 CFR 105.2 - Place of filing; Senate candidates, their principal campaign committees, and committees...

    Science.gov (United States)

    2010-01-01

    ... principal campaign committee or by any other political committee(s) that supports only candidates for... with the Secretary of the Senate, even if the communication refers to a Senate candidate. [68 FR 420...

  14. The calculus of committee composition.

    Directory of Open Access Journals (Sweden)

    Eric Libby

    Full Text Available Modern institutions face the recurring dilemma of designing accurate evaluation procedures in settings as diverse as academic selection committees, social policies, elections, and figure skating competitions. In particular, it is essential to determine both the number of evaluators and the method for combining their judgments. Previous work has focused on the latter issue, uncovering paradoxes that underscore the inherent difficulties. Yet the number of judges is an important consideration that is intimately connected with the methodology and the success of the evaluation. We address the question of the number of judges through a cost analysis that incorporates the accuracy of the evaluation method, the cost per judge, and the cost of an error in decision. We associate the optimal number of judges with the lowest cost and determine the optimal number of judges in several different scenarios. Through analytical and numerical studies, we show how the optimal number depends on the evaluation rule, the accuracy of the judges, the (cost per judge/(cost per error ratio. Paradoxically, we find that for a panel of judges of equal accuracy, the optimal panel size may be greater for judges with higher accuracy than for judges with lower accuracy. The development of any evaluation procedure requires knowledge about the accuracy of evaluation methods, the costs of judges, and the costs of errors. By determining the optimal number of judges, we highlight important connections between these quantities and uncover a paradox that we show to be a general feature of evaluation procedures. Ultimately, our work provides policy-makers with a simple and novel method to optimize evaluation procedures.

  15. Nuclear Safety Research Review Committee

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1990-01-01

    The Nuclear Safety Research Review Committee has had a fundamental difficulty because of the atmosphere that has existed since it was created. It came into existence at a time of decreasing budgets. For any Committee the easiest thing is to tell the Director what additional to do. That does not really help him a lot in this atmosphere of reduced budgets which he reviewed for you on Monday. Concurrently the research arm of Nuclear Regulatory Commission has recognized that the scope of its activity needed to be increased rather than decreased. In the last two-and-a-half-year period, human factors work was reinstated, radiation and health effects investigations were reinvigorated, research in the waste area was given significant acceleration. Further, accident management came into being, and the NRC finally got back into the TMI-2 area. So with all of those activities being added to the program at the same time that the research budget was going down, the situation has become very strained. What that leads to regarding Committee membership is a need for technically competent generalists who will be able to sit as the Division Directors come in, as the contractors come in, and sort the wheat from the chaff. The Committee needs people who are interested in and have a broad perspective on what regulatory needs are and specifically how safety research activities can contribute to them. The author summarizes the history of the Committee, the current status, and plans for the future

  16. Fusion Policy Advisory Committee (FPAC)

    International Nuclear Information System (INIS)

    1990-09-01

    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan

  17. installation of the ITER committee industry. Participants guide

    International Nuclear Information System (INIS)

    2006-01-01

    ITER is an international project to design and build an experimental fusion reactor based on the tokamak concept. This guide presents the ITER project and objectives and the associated organizations in France, the recommendations and actions for ITER, the industrial mobilization, the industrial committee and its members, technological sheets for the enterprises and the statistical document of the SESSI. (A.L.B.)

  18. 76 FR 73631 - Farm, Ranch, and Rural Communities Committee

    Science.gov (United States)

    2011-11-29

    ... FURTHER INFORMATION CONTACT: Alicia Kaiser, Designated Federal Officer, kaiser.alicia@epa.gov , (202) 564... comments may be submitted and will be provided to the Committee. Please send all written comments to Alicia... disabilities, please contact Alicia Kaiser at (202) 564-7273 or kaiser.alicia@epa.gov . To request [[Page 73632...

  19. Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2011-01-01

    Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components, it is nec......Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components...... to each other and they operate at a thermal-power cycling environment. Temperature loadings affect the reliability of soldered joints by developing cracks and fatigue processes that eventually result in failure. Based on Miner’s rule a linear damage model that incorporates a crack development...

  20. Migration of Sn and Pb from Solder Ribbon onto Ag Fingers in Field-Aged Silicon Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Wonwook Oh

    2015-01-01

    Full Text Available We investigated the migration of Sn and Pb onto the Ag fingers of crystalline Si solar cells in photovoltaic modules aged in field for 6 years. Layers of Sn and Pb were found on the Ag fingers down to the edge of the solar cells. This phenomenon is not observed in a standard acceleration test condition for PV modules. In contrast to the acceleration test conditions, field aging subjects the PV modules to solar irradiation and moisture condensation at the interface between the solar cells and the encapsulant. The solder ribbon releases Sn and Pb via repeated galvanic corrosion and the Sn and Pb precipitate on Ag fingers due to the light-induced plating under solar irradiation.