WorldWideScience

Sample records for solar tracking mechanism

  1. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  2. Solar tracking mechanism in two axes; Mecanismo de seguimiento solar en dos ejes

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Benitez, Juan Rafael; Ramos Berumen, Carlos; Beltran Adan, Jose; Lagunas Mendoza, Javier [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jlagunas@iie.org.mx; rramirez@iie.org.mx; cramos@iie.org.mx

    2010-11-15

    The Instituto de Investigaciones Electricas (IIE) has been interested in the Parabolic Dish technology for electricity generation in Mexico, then through its Non Conventional Energy Department has dedicated special tasks concerning to the knowledge and development of such technology. The structural component, reflective surface support and the tracking system which allows concentrate the solar energy into the receiver have been designed and manufactured. For the mechanical device and control of the solar tracking have been projected a set with servomotors, an electronic control as well as an interface for the equipment configuration and follow-up. In order for getting the following of the apparent movement of the sun, information on the sun paths through the year was analyzed and in consequence elevation and azimuth angles were determined. Using that approaches, for fixing the sun position sensors are not used and then only the control algorithm and the electronic device developed at the IIE were implemented. In this paper the sun tracking system and the electronic control device are presented. [Spanish] La tecnologia de plato parabolico para la generacion de electricidad en Mexico, ha sido de gran interes para el Instituto de Investigaciones Electricas, por lo que a traves de la Gerencia de Energias No Convencionales se ha avocado a la tarea de conocer y desarrollar esta tecnologia. Se ha disenado y fabricado la parte estructural, la base de la superficie reflejante y el sistema de seguimiento que permite concentrar la energia solar en el receptor. Para el mecanismo y control del seguidor solar se ha propuesto un mecanismo que utiliza servomotores, un control electronico asi como una interfaz para configurar el equipo y monitorear sus variables. Para lograr el seguimiento del movimiento aparente del sol se analizo la informacion en literatura de las trayectorias del sol a lo largo del ano, logrando asi determinar los angulos de altitud y azimut para acotar el

  3. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  4. Dynamic kirigami structures for integrated solar tracking

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  5. Solar tracking system

    Science.gov (United States)

    White, P. R.; Scott, D. R. (Inventor)

    1981-01-01

    A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.

  6. Prototype of a control board solar tracking mechanism on a shaft; Prototipo de una tarjeta de control del mecanismo de seguimiento solar en un eje

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Berumen, Carlos; Ramirez Benitez, Juan Rafael; Lopez Perez, Manuel de Jesus; Beltran Adan, Jose; Lagunas Mendoza, Javier [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-11-15

    A solar concentrator prototype of Parabolic Trough (PT) for solar process heat generation has been designed, manufactured and put into operation by the Instituto de Investigaciones Electricas. By means of a sun tracking mechanism controlled by an automatic device, the PT is moving from East to West during the day then this way the solar energy is focused continually over the lineal receiver. Such movement is reached thanks to the electronic module fitted with special software. In this paper, the design of an electronic module based on calculation algorithm of the sun position along the day and over the year which controls the PT sun tracking is presented. The main purpose of the development is to integrate a control system which is using the algorithm of low cost (it was tested in a commercial system with success). [Spanish] El Instituto de Investigaciones Electricas (IIE) ha disenado, fabricado y puesto en operacion un prototipo de concentrador solar de canal parabolico para la generacion de calor de proceso. La tecnologia termosolar a concentracion de canal parabolica mantiene el concentrador moviendose de este a oeste durante el dia, enfocando continuamente el sol en el receptor lineal, mediante un mecanismo y un control automatico que permite el seguimiento aparente del sol. Se ha desarrollado el software para el control del mecanismo de seguimiento solar. En este articulo se presenta el diseno de un modulo electronico que controla el mecanismo de seguimiento solar de un canal parabolico, el cual tiene sus bases en un algoritmo que calcula la posicion del sol durante todo el dia y a lo largo del ano. El proposito principal es integrar un sistema de control de bajo costo, que utilice el algoritmo desarrollado por el IIE, el cual fue probado con exito en un sistema comercial para el seguimiento solar de un canal parabolico.

  7. Tracking system for solar collectors

    Science.gov (United States)

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  8. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  9. Equations for solar tracking.

    Science.gov (United States)

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.

  10. Equations for Solar Tracking

    Directory of Open Access Journals (Sweden)

    Alain Cornet

    2012-03-01

    Full Text Available Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.

  11. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  12. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  13. Design of a Solar Tracking Interactive Kiosk

    Science.gov (United States)

    Greene, Nathaniel R.; Brunskill, Jeffrey C.

    2017-01-01

    A two-axis solar tracker and its interactive kiosk were designed by an interdisciplinary team of students and faculty. The objective was to develop a publicly accessible kiosk that would facilitate the study of energy usage and production on campus. Tracking is accomplished by an open-loop algorithm, microcontroller, and ham radio rotator. Solar…

  14. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Chong, K.K.; Wong, C.W. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Off Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur (Malaysia)

    2009-03-15

    Azimuth-elevation and tilt-roll tracking mechanism are among the most commonly used sun-tracking methods for aiming the solar collector towards the sun at all times. It has been many decades that each of these two sun-tracking methods has its own specific sun-tracking formula and they are not interrelated. In this paper, the most general form of sun-tracking formula that embraces all the possible on-axis tracking methods is presented. The general sun-tracking formula not only can provide a general mathematical solution, but more significantly it can improve the sun-tracking accuracy by tackling the installation error of the solar collector. (author)

  15. Design and Implementation of Dual Axis Solar Tracking system

    OpenAIRE

    Sirigauri N,; Raghav S

    2015-01-01

    Solar energy is a promising technology that can have huge long term benefits. Solar cells convert the solar energy into electrical energy. Solar tracking system is the most suited technology to improve the efficiency and enhance the performance by utilizing maximum solar energy through the solar cell. In hardware development we utilize LDR’s as sensors and two servomotors to direct the position of the solar panel. The software part is implemented on a code written using an Arduino...

  16. Design, Construction and Effectiveness Analysis of Hybrid Automatic Solar Tracking System for Amorphous and Crystalline Solar Cells

    OpenAIRE

    Bhupendra Gupta

    2013-01-01

    - This paper concerns the design and construction of a Hybrid solar tracking system. The constructed device was implemented by integrating it with Amorphous & Crystalline Solar Panel, three dimensional freedom mechanism and microcontroller. The amount of power available from a photovoltaic panel is determined by three parameters, the type of solar tracker, materials of solar panel and the intensity of the sunlight. The objective of this paper is to present analysis on the use of two differ...

  17. Optical performance of vertical axis three azimuth angles tracked solar panels

    International Nuclear Information System (INIS)

    Ma, Yi; Li, Guihua; Tang, Runsheng

    2011-01-01

    In this work, a new sun-tracking concept was proposed, and the optical performance of solar panels with such sun-tracking system was theoretically investigated based on the developed mathematical method and monthly horizontal radiation. The mechanism of the proposed sun-tracking technique is that the azimuth angle of solar panels is daily adjusted three times at three fixed positions: eastward, southward and westward in the morning, noon, and afternoon, respectively, by rotating solar panels about the vertical axis (3A sun-tracking, in short). The analysis indicated that the tilt-angle of solar panels, β 3A , azimuth angle of solar panels in the morning and afternoon from due south, φ a , and solar hour angle when the azimuth angle adjustment was made in the morning and afternoon, ω a , were three key parameters affecting the optical performance of such tracked solar panels. Calculation results showed that, for 3A tracked solar panels with a yearly fixed tilt-angle, the maximum annual collectible radiation was above 92% of that on a solar panel with full 2-axis sun-tracking; whereas for those with the tilt-angle being seasonally adjusted, it was above 95%. Results also showed that yearly or seasonally optimal values of β 3A , φ a and ω a for maximizing annual solar gain were related to site latitudes, and empirical correlations for a quick estimation of optimal values of these parameters were proposed based on climatic data of 32 sites in China.

  18. Optical performance of inclined south-north axis three-positions tracked solar panels

    International Nuclear Information System (INIS)

    Zhong, Hao; Li, Guihua; Tang, Runsheng; Dong, Wenli

    2011-01-01

    In this work, the optical performance of solar panels with a new sun-tracking technique was theoretically investigated based on the proposed mathematical method and monthly horizontal radiation. The mechanism of the investigated sun-tracking is that the attitude angle of solar panels is daily adjusted three times at three fixed positions: eastward, southward, and westward in the morning, noon, and afternoon, respectively, by rotating solar panels about the inclined south-north axis (ISNA-3P sun-tracking). Calculation results showed that, for ISNA-3P tracked solar panels with a yearly fixed tilt-angle of the ISNA, the maximum annual collectible radiation on ISNA-3P tracked solar panels was about 93% of that on a solar panel with 2-axis sun-tracking; whereas for those with the ISNA being yearly adjusted four times at three fixed tilt-angles, it was about 96%. Results also indicated that the attempt to further increase the annual solar gain on ISNA-3P tracked solar panels by seasonally optimizing design of the sun-tracking system for maximizing solar gain in each of four seasons was not efficient, and thus not advisable in practical applications. Optimal parametric designs of such sun-tracking system for maximizing the annual solar gain on solar panels in different cases were also presented. -- Research highlights: → The paper presented a new sun-tracking technique (ISNA-3P) for possible applications in PV generating systems. → Algorithms to estimate daily collectible radiation on the fixed, 2-axis and ISNA-3P tracked solar panels were proposed based on solar geometry and monthly horizontal radiation. → A detailed theoretical study on the optical performance of such tracked solar panels in terms of R 3P-0 and R 3P-2 , the ratios of maximum annual solar gain to that on fixed and 2-axis tracked solar panels; optimal parameters affecting the optical performance of the systems were presented in the different cases. → Results showed that such sun-tracking system

  19. New Low Cost Structure for Dual Axis Mount Solar Tracking System Using Adaptive Solar Sensor

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2010-01-01

    A solar tracking system is designed to optimize the operation of solar energy receivers. The objective of this paper is proposing a new tracking system structure with two axis. The success strategy of this new project focuses on the economical analysis of solar energy. Therefore it is important...... to determine the most cost effective design, to consider the costs of production and maintenance, and operating. The proposed tracking system uses a new solar sensor position with an adaptive feature....

  20. Design and construction of a solar energy tracking device | Ndinechi ...

    African Journals Online (AJOL)

    A solar tracking device using PIC16F873 microcontroller was developed to solve the problem of adjustment of solar panels for optimum solar reception. MPLAB software was used to develop sets of instructions in an assembly language. The choice of PIC16F873 microcontroller stemmed from its flexibility in producing a ...

  1. Thermal evaluation of a sun tracking solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    El-Tous, Yousif; Al-Mofleh, Anwar [Department of Electrical Engineering, Faculty of Engineering Technology, Al-Balqa' Applied University, P.O. Box 15008, Amman (Jordan); Badran, Omar. O. [Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Appllied University, P.O. Box 15008, Amman (Jordan)

    2012-07-01

    Solar energy is one of many important types of renewable energy. Jordan is of great needs for renewable energy systems applications since it depends totally in generation of its required energy on imported oil. This study is an experimental work of tracking system developed for enhancing the solar heating using solar cooker. An electronic sun tracking device was used for rotating the solar heater with the movement of the sun. A comparison between fixed and sun tracked cooker showed that the use of sun tracking increased the heating temperature by 36% due to the increase in radiation concentration and using internal mirror reflectors. The programming method used for tracking control works efficiently in all weather conditions regardless of the presence of clouds. It can be used as backup control circuit in which relays are the essential control devices.

  2. MICROCONTROLLER BASED SOLAR-TRACKING SYSTEM AND ITS IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Okan BİNGÖL

    2006-02-01

    Full Text Available In this paper, a new micro-controller based solar-tracking system is proposed, implemented and tested. The scheme presented here can be operated as independent of the geographical location of the site of setting up. The system checks the position of the sun and controls the movement of a solar panel so that radiation of the sun comes normally to the surface of the solar panel. The developed-tracking system tracks the sun both in the azimuth as well as in the elevation plane. PC based system monitoring facility is also included in the design.

  3. Design and Implementation of PLC-Based Automatic Sun tracking System for Parabolic Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Wang Jinping

    2016-01-01

    Full Text Available A sun-tracking system for parabolic trough solar concentrators (PTCs is a control system used to orient the concentrator toward the sun always, so that the maximum energy can be collected. The work presented here is a design and development of PLC based sun tracking control system for PTC. Sun tracking control system consists of a Programmable Logic Controller (PLC and a single axis hydraulic drives tracking control system. Hydraulic drives and the necessary tracking angle algorithm have been designed and developed to perform the technical tasks. A PLC unit was employed to control and monitor the mechanical movement of the PTC and to collect and store data related to the tracking angle of PTC. It is found that the tracking error of the system is less than 0.6°. Field experience shows that tracking algorithm act stable and reliable and suit for PTCs.

  4. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  5. Optical losses due to tracking on solar thermal collectors

    DEFF Research Database (Denmark)

    Sallaberry, Fabienne; Pujol-Nadal, Ramn; Peres, Bengt

    2017-01-01

    For a wide range of operational temperatures, the solar thermal collectors can use optical concentration systems to optimize their efficiency. However, as optical concentration relies on direct solar radiation, it is necessary to use a solar tracker following the sun direction to maximize...... the amount of useful solar radiation received. The selection of the appropriate tracking systems matching the optical concentration factor is essential to achieve optimal collector efficiency. Otherwise, the concentrator would experience high optical losses due to the inadequate focusing of the direct solar...... radiation onto its receiver, regardless of its quality. This paper gives the state-of-the-art of the methodologies available to characterize the tracking error of a concentrating collector, a summary of different previous studies done in this subject and of the standardization regarding the tracking...

  6. Direct tracking error characterization on a single-axis solar tracker

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; Pujol-Nadal, Ramon; Larcher, Marco; Rittmann-Frank, Mercedes Hannelore

    2015-01-01

    Highlights: • The solar tracker of a small-size parabolic trough collector was tested. • A testing procedure for the tracking error characterization of a single-axis tracker was proposed. • A statistical analysis on the tracking error distribution was done regarding different variables. • The optical losses due to the tracking error were calculated based on a ray-tracing simulation. - Abstract: The solar trackers are devices used to orientate solar concentrating systems in order to increase the focusing of the solar radiation on a receiver. A solar concentrator with a medium or high concentration ratio needs to be orientated correctly by an accurate solar tracking mechanism to avoid losing the sunrays out from the receiver. Hence, to obtain an appropriate operation, it is important to know the accuracy of a solar tracker in regard to the required precision of the concentrator in order to maximize the collector optical efficiency. A procedure for the characterization of the accuracy of a solar tracker is presented for a single-axis solar tracker. More precisely, this study focuses on the estimation of the positioning angle error of a parabolic trough collector using a direct procedure. A testing procedure, adapted from the International standard IEC 62817 for photovoltaic trackers, was defined. The results show that the angular tracking error was within ±0.4° for this tracker. The optical losses due to the tracking were calculated using the longitudinal incidence angle modifier obtained by ray-tracing simulation. The acceptance angles for various transversal angles were analyzed, and the average optical loss, due to the tracking, was 0.317% during the whole testing campaign. The procedure presented in this work showed that the tracker precision was adequate for the requirements of the analyzed optical system.

  7. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her; Wang, Jiunn-Cherng

    2012-01-01

    was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI

  8. Track treeing mechanism and its application

    International Nuclear Information System (INIS)

    Li Boyang

    1993-01-01

    Based on electrostriction and fracture mechanics, experiment observation and data-processing, two models (restriction among tree tracks and induction of tree track onto stress concentrated spots) and factors (restriction and induction) are proposed; The existence of four types of plastic zone (spot-block pz, single crack isolate pz, transition from isolate to block pz and crack-block pz) and two types of annex (plastic zone and crack zone) are pointed out. The development regularities of Gp (diameter of plastic zone), G(diameter of tree track), S(tree track density) and total areal of tree track (SG 2 ) in two basic experiments (H=H+dH, H=Hc H-field strength) are described by using four basic formulae. (author)

  9. Development of Non-Tracking Solar Thermal Technology

    Science.gov (United States)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  10. Tracking strategy for photovoltaic solar systems in high latitudes

    International Nuclear Information System (INIS)

    Quesada, Guillermo; Guillon, Laura; Rousse, Daniel R.; Mehrtash, Mostafa; Dutil, Yvan; Paradis, Pierre-Luc

    2015-01-01

    Highlights: • In cloudy conditions tracking the sun is ineffective. • A methodology to estimate a theoretical threshold for solar tracking was developed. • A tracking strategy to maximize electricity production was proposed. - Abstract: Several studies show that from about 20% to 50% more solar energy can be recovered by using photovoltaic systems that track the sun rather than systems set at a fixed angle. For overcast or cloudy days, recent studies propose the use of a set position in which each photovoltaic panel faces toward the zenith (horizontal position). Compared to a panel that follows the sun’s path, this approach claims that a horizontal panel increases the amount of solar radiation captured and subsequently the quantity of electricity produced. The present work assesses a solar tracking photovoltaic panel hourly and seasonally in high latitudes. A theoretical method based on an isotropic sky model was formulated, implemented, and used in a case study analysis of a grid-connected photovoltaic system in Montreal, Canada. The results obtained, based on the definition of a critical hourly global solar radiation, were validated numerically and experimentally. The study confirmed that a zenith-set sun tracking strategy for overcast or mostly cloudy days in summer is not advantageous

  11. Tracking Control of Nonlinear Mechanical Systems

    NARCIS (Netherlands)

    Lefeber, A.A.J.

    2000-01-01

    The subject of this thesis is the design of tracking controllers for certain classes of mechanical systems. The thesis consists of two parts. In the first part an accurate mathematical model of the mechanical system under consideration is assumed to be given. The goal is to follow a certain

  12. The dual-axis solar tracking system efficiency improving via the drive power consumption optimization

    International Nuclear Information System (INIS)

    Rambhowan, Y.; Oree, V.

    2014-01-01

    A major drawback with active dual-axis solar tracking systems is that the power used by the driving mechanism is often drawn from the output power of the solar panel itself. The net energy gain of the photo-voltaic panel is therefore less than its maximum value. This work presents a novel design which uses a three-fold strategy to minimize the power consumed by the tracking mechanism whilst maintaining the power out-put of the photovoltaic panel near its optimal value. The results reveal that the improved tracking system has a significant energy gain of about 43.6% as compared to a fixed photovoltaic panel. Experiments further show that an increase of 1.6% in energy output is achieved over conventional precise dual-axis tracking system. (author)

  13. Self-tracking solar concentrator with an acceptance angle of 32°.

    Science.gov (United States)

    Zagolla, Volker; Dominé, Didier; Tremblay, Eric; Moser, Christophe

    2014-12-15

    Solar concentration has the potential to decrease the cost associated with solar cells by replacing the receiving surface aperture with cheaper optics that concentrate light onto a smaller cell aperture. However a mechanical tracker has to be added to the system to keep the concentrated light on the size reduced solar cell at all times. The tracking device itself uses energy to follow the sun's position during the day. We have previously shown a mechanism for self-tracking that works by making use of the infrared energy of the solar spectrum, to activate a phase change material. In this paper, we show an implementation of a working 53 x 53 mm(2) self-tracking system with an acceptance angle of 32° ( ± 16°). This paper describes the design optimizations and upscaling process to extend the proof-of-principle self-tracking mechanism to a working demonstration device including the incorporation of custom photodiodes for system characterization. The current version demonstrates an effective concentration of 3.5x (compared to 8x theoretical) over 80% of the desired acceptance angle. Further improvements are expected to increase the efficiency of the system and open the possibility to expand the device to concentrations as high as 200x (C(geo) = 400x, η = 50%, for a solar cell matched spectrum).

  14. Innovative Solar Tracking Concept by Rotating Prism Array

    Directory of Open Access Journals (Sweden)

    Héctor García

    2014-01-01

    Full Text Available Solar energy has become one of the most promising renewable energies and is the most widely used nowadays. In order to achieve an optimum performance, both photovoltaic and solar thermal applications are required to track the position of the sun throughout the day and year in the most effective way possible to avoid a high negative impact on the system efficiency. The present paper attempts to describe a novel semipassive solar tracking concentrator (SPSTC in which, in order to track the sun, two independent arrays of polymethyl methacrylate (PMMA prisms are implemented to refract sunlight by rotating said prisms, thus being able to redirect solar radiation as desired. The first set is responsible for eliminating one of the directional components of the solar radiation; the task is achieved by rotating the prisms within the array at a specific angle. The second set deals with another of the sunlight’s directional components, transforming its direction into a completely perpendicular pattern to the array. Having downward vertical radiation makes it possible to implement a stationary Fresnel lens to concentrate the solar radiation for any application desired. The system is designed and validated using simulation software to prove the feasibility of the concept.

  15. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel high accurate sensorless dual-axis solar tracker. • It has the advantages of both sensor based and sensorless solar trackers. • It does not have the disadvantages of sensor based and sensorless solar trackers. • Tracking error of only 0.11° that is less than the tracking errors of others. • An increase of 28.8–43.6% depending on the seasons in the energy efficiency. - Abstract: In this study, a novel high accurate sensorless dual-axis solar tracker controlled by the maximum power point tracking unit available in almost all photovoltaic systems is proposed. The maximum power point tracking controller continuously calculates the maximum output power of the photovoltaic module/panel/array, and uses the altitude and azimuth angles deviations to track the sun direction where the greatest value of the maximum output power is extracted. Unlike all other sensorless solar trackers, the proposed solar tracking system is a closed loop system which means it uses the actual direction of the sun at any time to track the sun direction, and this is the contribution of this work. The proposed solar tracker has the advantages of both sensor based and sensorless dual-axis solar trackers, but it does not have their disadvantages. Other sensorless solar trackers all are open loop, i.e., they use offline estimated data about the sun path in the sky obtained from solar map equations, so low exactness, cloudy sky, and requiring new data for new location are their problems. A photovoltaic system has been built, and it is experimentally verified that the proposed solar tracking system tracks the sun direction with the tracking error of 0.11° which is less than the tracking errors of other both sensor based and sensorless solar trackers. An increase of 28.8–43.6% depending on the seasons in the energy efficiency is the main advantage of utilizing the proposed solar tracking system.

  16. Solar tracking control tower; Steuerungstechnik folgt der Sonne

    Energy Technology Data Exchange (ETDEWEB)

    Leu, Andreas [Jetter AG, Ludwigsburg (Germany). Bereich technisches Marketing und Seminare

    2010-11-15

    The ''Gemue-Dome'' building at Waldzimmern is a unique industrial building. The research, development and innovation center has a rotary control tower equipped with solar cells which automatically tracks the sun. This automation task was a challenge for the control and power supply sections. (orig.)

  17. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  18. A simple tracking system to monitor solar PV panels

    International Nuclear Information System (INIS)

    Bentaher, H.; Kaich, H.; Ayadi, N.; Ben Hmouda, M.; Maalej, A.; Lemmer, U.

    2014-01-01

    Highlights: • We designed and constructed a solar tracking system based on light-dependent resistors (LDRs). • A study was made to determine the optimal angle of LDRs inducing the best precision of the device. • An experimental system was built to test different values of the angle between LDRs. • Results showed a good agreement between the experience and the predicted values. • The obtained results are useful for the design of new trackers based on the use of LDRs. - Abstract: The solar tracking systems are a center of interest of a big number of researchers from the fifties. The deflection of sun rays on a solar photovoltaic panel can reduce its power output until 50%. For concentrators solar trackers are master parts of the systems. A simple tracking system based on light dependent resistors was locally constructed, tested and optimized. Good agreement was recorded between numerical optimization results and experimental ones. These results are useful for the design and construction of new sun trackers

  19. Maximizing Output Power of a Solar Panel via Combination of Sun Tracking and Maximum Power Point Tracking by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Mohsen Taherbaneh

    2010-01-01

    Full Text Available In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panel I-V curves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.

  20. Designing and manufacturing of solar imaging and tracking system

    Directory of Open Access Journals (Sweden)

    Mehrdad Hosseini

    2017-11-01

    Full Text Available Abstract – in this study, designing and manufacturing of solar imaging and tracking system in order to research and spectroscopy applications are investigated. The device has the ability to be used as a Telescope, spectroscope, spectrophotometer and spectrohelioscope. The results obtained from this device are used in the various field of research such as absorption spectra of the surface of the sun, transit of planets in front of the sun, Doppler effects, evaluation of the Fraunhofer lines, plot of intensity versus wavelength and studying of Solar Flares. In this research, design and manufacture of the device, along with some of the results, are reported.

  1. The design and development of a solar tracking unit

    Science.gov (United States)

    Jones, I. W.; Miller, J. B.

    1984-01-01

    The solar tracking unit was developed to support the Laser Heterodyne Spectrometer (LHS) airborne instrument, but has application to a general class of airborne solar occultation research instruments. The unit consists of a mirror mounted on two gimbals, one of which is hollow. The mirror reflects a 7.6 cm (3.0 in.) diameter beam of sunlight through the hollow gimbal into the research instrument optical axis. A portion of the reflected sunlight is directed into a tracking telescope which uses a four quadrant silicon detector to produce the servo error signals. The colinearity of the tracker output beam and the research instrument optical axis is maintained to better than + or - 1 arc-minute. The unit is microcomputer controlled and is capable of stand alone operation, including automatic Sun acquisition or operation under the control of the research instrument.

  2. Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hubbell, R.; Lowder, T.; Mendelsohn, M.; Cory, K.

    2012-09-01

    This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite this limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.

  3. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    Science.gov (United States)

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  4. Image motion compensation by area correlation and centroid tracking of solar surface features

    International Nuclear Information System (INIS)

    Nein, M.E.; Mcintosh, W.R.; Cumings, N.P.

    1983-07-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz

  5. Image motion compensation by area correlation and centroid tracking of solar surface features

    Science.gov (United States)

    Nein, M. E.; Mcintosh, W. R.; Cumings, N. P.

    1983-01-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated; mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz.

  6. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  7. Phototropic solar tracking in sunflower plants: an integrative perspective

    Science.gov (United States)

    Kutschera, Ulrich; Briggs, Winslow R.

    2016-01-01

    Background One of the best-known plant movements, phototropic solar tracking in sunflower (Helianthus annuus), has not yet been fully characterized. Two questions are still a matter of debate. (1) Is the adaptive significance solely an optimization of photosynthesis via the exposure of the leaves to the sun? (2) Is shade avoidance involved in this process? In this study, these concepts are discussed from a historical perspective and novel insights are provided. Scope and Methods Results from the primary literature on heliotropic growth movements led to the conclusion that these responses cease before anthesis, so that the flowering heads point to the East. Based on observations on 10-week-old plants, the diurnal East–West oscillations of the upper fifth of the growing stem and leaves in relation to the position of the sun (inclusive of nocturnal re-orientation) were documented, and photon fluence rates on the leaf surfaces on clear, cloudy and rainy days were determined. In addition, the light–response curve of net CO2 assimilation was determined on the upper leaves of the same batch of plants, and evidence for the occurrence of shade-avoidance responses in growing sunflower plants is summarized. Conclusions. Only elongating, vegetative sunflower shoots and the upper leaves perform phototropic solar tracking. Photon fluence response and CO2 assimilation measurements cast doubt on the ‘photosynthesis-optimization hypothesis’ as the sole explanation for the evolution of these plant movements. We suggest that the shade-avoidance response, which maximizes light-driven CO2 assimilation, plays a major role in solar tracking populations of competing sunflower plants, and an integrative scheme of these growth movements is provided. PMID:26420201

  8. Maximum power point tracking of partially shaded solar photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, Shubhajit; Saha, Hiranmay [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University (India)

    2010-09-15

    The paper presents the simulation and hardware implementation of maximum power point (MPP) tracking of a partially shaded solar photovoltaic (PV) array using a variant of Particle Swarm Optimization known as Adaptive Perceptive Particle Swarm Optimization (APPSO). Under partially shaded conditions, the photovoltaic (PV) array characteristics get more complex with multiple maxima in the power-voltage characteristic. The paper presents an algorithmic technique to accurately track the maximum power point (MPP) of a PV array using an APPSO. The APPSO algorithm has also been validated in the current work. The proposed technique uses only one pair of sensors to control multiple PV arrays. This result in lower cost and higher accuracy of 97.7% compared to earlier obtained accuracy of 96.41% using Particle Swarm Optimization. The proposed tracking technique has been mapped onto a MSP430FG4618 microcontroller for tracking and control purposes. The whole system based on the proposed has been realized on a standard two stage power electronic system configuration. (author)

  9. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  10. Mechanism of track formation by charged particles in inorganic and organic solid-state track detectors

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.; Streubel, G.

    1979-01-01

    Knowledge of the individual phases of track formation mechanism is necessary in some applications of solid-state track detectors. The generation of latent tracks is described by energy transfer processes of the charged particles along their paths using several different models. Etchability of the latent tracks is discussed on the basis of some distinct criteria taking into account different fractions of energy release by the primary and secondary particles during track generation. If these etchability criteria for latent tracks are fulfilled, visual particle tracks can be produced by a chemical etching process. Etch pit formation depends on the etching conditions. The geometrical parameters of the etching pits are given on the basis of known etching rates. Evaluation of individual particle tracks or determination of track density yields results depending on both the properties of the particles and the etching conditions. Determination of particle energy and particle fluence is discussed as an example. (author)

  11. Effect of Tracking Error of Double-Axis Tracking Device on the Optical Performance of Solar Dish Concentrator

    Directory of Open Access Journals (Sweden)

    Jian Yan

    2018-01-01

    Full Text Available In this paper, a flux distribution model of the focal plane in dish concentrator system has been established based on ray tracking method. This model was adopted for researching the influence of the mirror slope error, solar direct normal irradiance, and tracking error of elevation-azimuth tracking device (EATD on the focal spot characteristics (i.e., flux distribution, geometrical shape, centroid position, and intercept factor. The tracking error transmission law of the EATD transferred to dish concentrator was also studied. The results show that the azimuth tracking error of the concentrator decreases with the increase of the concentrator elevation angle and it decreases to 0 mrad when the elevation angle is 90°. The centroid position of focal spot along x-axis and y-axis has linear relationship with azimuth and elevation tracking error of EATD, respectively, which could be used to evaluate and calibrate the tracking error of the dish concentrator. Finally, the transmission law of the EATD azimuth tracking error in solar heliostats is analyzed, and a dish concentrator using a spin-elevation tracking device is proposed, which can reduce the effect of spin tracking error on the dish concentrator. This work could provide fundamental for manufacturing precision allocation of tracking devices and developing a new type of tracking device.

  12. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.

    Science.gov (United States)

    Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter

    2013-03-01

    Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.

  13. Optical performance of inclined south-north single-axis tracked solar panels

    International Nuclear Information System (INIS)

    Li, Zhimin; Liu, Xinyue; Tang, Runsheng

    2010-01-01

    To investigate optical performance of the inclined south-north single-axis (ISN-axis, in short) tracked solar panels, a mathematical procedure to estimate the annual collectible radiation on fixed and tracked panels was suggested based on solar geometry and monthly horizontal radiation. For solar panels tracking about ISN-axis, the yearly optimal tilt-angle of ISN-axis for maximizing annual solar gain was about 3 o deviating from the site latitude in most of China except in areas with poor solar resources, and the maximum annual collectible radiation on ISN-axis tracked panels was about 97-98% of that on dual-axis tracked panels; whereas for ISN-axis tracked panels with the tilt-angle of ISN-axis being adjusted four times in a year at three fixed tilt-angles, the annual collectible radiation was almost close to that on dual-axis tracked panels, the optimum date of tilt-angle adjustment of ISN-axis was 23 days from the equinoxes, and the optimum tilt-angle adjustment value for each adjustment was about 22 o . Compared to fixed south-facing solar panels inclined at an optimal tilt-angle, the increase in the annual solar gain due to using ISN-axis sun tracking was above 30% in the areas with abundant solar resources and less than 20% in the areas with poor solar resources.

  14. Performance of a photovoltaic panel connected to a solar tracking; Desempenho de um painel fotovoltaico acoplado a um rastreador solar

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Alcione Rodrigo; Souza, Samuel N. Melegari de; Ricieri, Reinaldo Prandini [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil)], Email: artessaro@pop.com.br; Ferruzi, Yuri [Faculdade Assis Gurgacz (FAG), Cascavel, PR (Brazil)

    2006-07-01

    The used photovoltaic panels currently, still possess low an efficiency, around 8,84%. As this efficiency is characteristic of the photovoltaic plate, it was used in this research, a different system of the conventional. This differentiated system nothing more is that a mechanism that makes with that the photovoltaic panel if puts into motion of form to always keep its perpendicular photovoltaic cells to the sun. Of ownership of two monocrystals photovoltaic panels, of same mark and model, it was possible to mount two systems of solar capitation. One of them, installed of the form established in the memorandum of understanding, directed northward geographic to an inclination of 37 deg in relation to the ground, and the other panel mounted in top of a tracking mechanism, that tends to keep the perpendicular photovoltaic cell to the solar rays. The chain samples and tension, had been extracted, in the two systems, conventional and dredge, in intervals of time of forty minutes, being effected in the period of the eight hours of the morning until the six hours of the afternoon, tantalizing 16 samples. The ambient temperature also was collected in these intervals of time. The results had been more satisfactory in the tracking system, more evidenced an energy exploitation of 20,74% and an efficiency of 2,052% than in the system with the conventionally mounted photovoltaic module. (author)

  15. ANALISIS PERBANDINGAN OUTPUT DAYA LISTRIK PANEL SURYA SISTEM TRACKING DENGAN SOLAR REFLECTOR

    Directory of Open Access Journals (Sweden)

    I B Kd Surya Negara

    2016-03-01

    Full Text Available Indonesia merupakan negara beriklim tropis yang memiliki intensitas radiasi matahari yang sangat besar dan intensitas radiasi tersebut berpotensi untuk dikembangkan menjadi Pembangkit Listrik Tenaga Surya. Efisiensi dari panel surya saat ini masih perlu pertimbangan lebih lanjut. Efisiensi panel surya yang rendah ini, berpengaruh pada hasil output daya listrik yang dihasilkan. Upaya untuk meningkatkan output daya listrik panel surya, yaitu dengan sistem tracking dan solar reflector. Penelitian ini bertujuan untuk mengetahui output daya listrik yang lebih maksimal. Metode dalam penelitian ini menggunakan sistem tracking yang pergerakannya berdasarkan waktu dan menggunakan solar reflector dengan cermin datar dan sudut reflector yang berbeda. Hasil dari perbandingan sistem tracking dengan solar reflector yaitu solar reflector menghasilkan output daya listrik lebih besar dibandingan dengan sistem tracking, dimana solar reflector menghasilkan output daya listrik sebesar 0.1224 Watt dan sistem tracking sebesar 0.1136 Watt.

  16. Dual-Axis Solar Tracking System for Maximum Power Production in PV Systems

    Directory of Open Access Journals (Sweden)

    Muhd.Ikram Mohd. Rashid

    2015-12-01

    Full Text Available The power developed in a solar energy system depends fundamentally upon the amount of sunlight captured by the photovoltaic modules/arrays. This paper describes a simple electro-mechanical dual axis solar tracking system designed and developed in a study. The control of the two axes was achieved by the pulses generated from the data acquisition (DAQ card fed into four relays. This approach was so chosen to effectively avoid the error that usually arises in sensor-based methods. The programming of the mathematical models of the solar elevation and azimuth angles was done using Borland C++ Builder. The performance and accuracy of the developed system was evaluated with a PV panel at latitude 3.53o N and longitude 103.5o W in Malaysia. The results obtained reflect the effectiveness of the developed tracking system in terms of the energy yield when compared with that generated from a fixed panel. Overall, 20%, 23% and 21% additional energy were produced for the months of March, April and May respectively using the tracker developed in this study.

  17. Beam tracking strategies for studies of kinetic scales in the solar wind with THOR-CSW

    Science.gov (United States)

    De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Anciaux, Michel; Maggiolo, Romain

    2016-04-01

    Modern plasma spectrometers for monitoring the solar wind attempt to intelligently track the energy and direction of the solar wind beam in order to obtain solar wind velocity distributions more efficiently. Such beam tracking strategies offer some benefits, but also have their limitations and drawbacks. Benefits include an improved resolution and/or a faster velocity distribution function acquisition time. Limitations are due to instrument characteristics that tend to be optimized for a particular range of particle energies and arrival directions. A drawback is the risk to miss an important part of the velocity distribution or to lose track of the beam altogether. A comparison is presented of different beam tracking strategies under consideration for the THOR-CSW instrument in order to highlight a number of design decisions and their impact on the acquired velocity distributions. The gain offered by beam tracking in terms of increased time resolution turns out to be essential for studies of solar wind physics at kinetic scales.

  18. Seasonal and circadian biases in bird tracking with solar GPS-tags

    OpenAIRE

    Silva, Rafa; Afán, Isabel; Gil, Juan A.; Bustamante, Javier

    2017-01-01

    Global Positioning System (GPS) tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new "battery drain bias" currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus), tracked for several years...

  19. Evaluation of a tracking flat-plate solar collector in Brazil

    International Nuclear Information System (INIS)

    Maia, Cristiana B.; Ferreira, André G.; Hanriot, Sérgio M.

    2014-01-01

    The continuing research for an alternative power source due to the perceived scarcity of fuel fossils has, in recent years, given solar energy a remarkable edge. Nevertheless, the Earth's daily and seasonal movement affects the intensity of the incident solar radiation. Devices can track the sun in order to ensure optimum positions with regard to incident solar radiation, maximizing the absorbed solar energy, and the useful energy gain. In this paper, a mathematical model is developed to estimate the solar radiation absorbed, the useful energy gain, and the efficiency of a flat-plate solar collector in Brazil. The results for a sun tracking flat-plate solar collector were compared to fixed devices. The full tracking system with rotation about two axes presented higher absorbed energy, when compared to the rotation about a single axe and to a fixed collector. Also, it was shown that the tilt angle for a fixed solar collector does not cause significant variations in the useful energy gain or in the absorbed solar radiation, for the same azimuth angle. - Highlights: • A model was developed for solar radiation based on experimental data for K T . • Useful energy gain and efficiency of a flat-plate solar collector were evaluated for a one-year period. • Several sun tracking systems were compared to fixed devices. • Tilt angle for a fixed device does not significantly affect the useful energy gain

  20. A Two-Dimensional Solar Tracking Stationary Guidance Method Based on Feature-Based Time Series

    Directory of Open Access Journals (Sweden)

    Keke Zhang

    2018-01-01

    Full Text Available The amount of satellite energy acquired has a direct impact on operational capacities of the satellite. As for practical high functional density microsatellites, solar tracking guidance design of solar panels plays an extremely important role. Targeted at stationary tracking problems incurred in a new system that utilizes panels mounted in the two-dimensional turntable to acquire energies to the greatest extent, a two-dimensional solar tracking stationary guidance method based on feature-based time series was proposed under the constraint of limited satellite attitude coupling control capability. By analyzing solar vector variation characteristics within an orbit period and solar vector changes within the whole life cycle, such a method could be adopted to establish a two-dimensional solar tracking guidance model based on the feature-based time series to realize automatic switching of feature-based time series and stationary guidance under the circumstance of different β angles and the maximum angular velocity control, which was applicable to near-earth orbits of all orbital inclination. It was employed to design a two-dimensional solar tracking stationary guidance system, and a mathematical simulation for guidance performance was carried out in diverse conditions under the background of in-orbit application. The simulation results show that the solar tracking accuracy of two-dimensional stationary guidance reaches 10∘ and below under the integrated constraints, which meet engineering application requirements.

  1. Tracking Solar Type II Bursts with Space Based Radio Interferometers

    Science.gov (United States)

    Hegedus, Alexander M.; Kasper, Justin C.; Manchester, Ward B.

    2018-06-01

    The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window for the first time. One application is observing type II bursts tracking solar energetic particle acceleration in Coronal Mass Ejections (CMEs). In this work we create a simulated data processing pipeline for several space based radio interferometer (SBRI) concepts and evaluate their performance in the task of localizing these type II bursts.Traditional radio astronomy software is hard coded to assume an Earth based array. To circumvent this, we manually calculate the antenna separations and insert them along with the simulated visibilities into a CASA MS file for analysis. To create the realest possible virtual input data, we take a 2-temperature MHD simulation of a CME event, superimpose realistic radio emission models from the CME-driven shock front, and propagate the signal through simulated SBRIs. We consider both probabilistic emission models derived from plasma parameters correlated with type II bursts, and analytical emission models using plasma emission wave interaction theory.One proposed SBRI is the pathfinder mission SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input. An interferometer on the lunar surface would be a stable alternative that avoids noise sources that affect orbiting arrays, namely the phase noise from positional uncertainty and atmospheric 10s-100s kHz noise. Using Digital Elevation Models from laser altimeter data, we test different sets of locations on the lunar surface to find near optimal configurations for tracking type II bursts far from the sun. Custom software is used to model the response of different array configurations over the lunar year

  2. Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector

    International Nuclear Information System (INIS)

    Huang, B.J.; Sun, F.S.

    2007-01-01

    A new PV design, called 'one axis three position sun tracking PV module', with low concentration ratio reflector was proposed in the present study. Every PV module is designed with a low concentration ratio reflector and is mounted on an individual sun tracking frame. The one axis tracking mechanism adjusts the PV position only at three fixed angles (three position tracking): morning, noon and afternoon. This 'one axis three position sun tracking PV module' can be designed in a simple structure with low cost. A design analysis was performed in the present study. The analytical results show that the optimal stopping angle β in the morning or afternoon is about 50 o from the solar noon position and the optimal switching angle that controls the best time for changing the attitude of the PV module is half of the stopping angle, i.e. θ H = β/2, and both are independent of the latitude. The power generation increases by approximately 24.5% as compared to a fixed PV module for latitude φ o . The analysis also shows that the effect of installation misalignment away from the true south direction is negligible ( o . An experiment performed in the present study indicates that the PV power generation can increase by about 23% using low concentration (2X) reflectors. Hence, combining with the power output increase of 24.5%, by using one axis three position tracking, the total increase in power generation is about 56%. The economic analysis shows that the price reduction is between 20% and 30% for the various market prices of flat plate PV modules

  3. Design, construction and operation of spherical solar cooker with automatic sun tracking system

    International Nuclear Information System (INIS)

    Abu-Malouh, Riyad; Abdallah, Salah; Muslih, Iyad M.

    2011-01-01

    In this work, the effect of two axes tracking on a solar cooking system was studied. A dish was built to concentrate solar radiation on a pan that is fixed at the focus of the dish. The dish tracks the sun using a two axes sun tracking system. This system was built and tested. Experimental results obtained show that the temperature inside the pan reached more than 93 o C in a day where the maximum ambient temperature was 32 o C. This temperature is suitable for cooking purposes and this was achieved by using the two axes sun tracking system.

  4. Efficiency of liquid flat-plate solar energy collector with solar tracking system

    Directory of Open Access Journals (Sweden)

    Chekerovska Marija

    2015-01-01

    Full Text Available An extensive testing programme is performed on a solar collector experimental set-up, installed on a location in Shtip (Republic of Macedonia, latitude 41º 45’ and longitude 22º 12’, in order to investigate the effect of the sun tracking system implementation on the collector efficiency. The set-up consists of two flat plate solar collectors, one with a fixed surface tilted at 30о towards the South, and the other one equipped with dual-axis rotation system. The study includes development of a 3-D mathematical model of the collectors system and a numerical simulation programme, based on the computational fluid dynamics (CFD approach. The main aim of the mathematical modelling is to provide information on conduction, convection and radiation heat transfer, so as to simulate the heat transfer performances and the energy capture capabilities of the fixed and moving collectors in various operating modes. The feasibility of the proposed method was confirmed by experimental verification, showing significant increase of the daily energy capture by the moving collector, compared to the immobile collector unit. The comparative analysis demonstrates a good agreement between the experimental and numerically predicted results at different running conditions, which is a proof that the presented CFD modelling approach can be used for further investigations of different solar collectors configurations and flow schemes.

  5. Design factors of sensors for the optical tracking systems of solar concentrators

    International Nuclear Information System (INIS)

    Klychev, Sh. I.; Fazylov, A. K.; Orlov, S. A.; Burbo, A. V.

    2011-01-01

    Basic diagrams for the sensors of the optical tracking systems of solar concentrators are considered, the design factors that determine their accuracy are analyzed, a new sensor design is suggested, and its optimal parameters are determined. (authors)

  6. Fixed Nadir Focus Concentrated Solar Power Applying Reflective Array Tracking Method

    Science.gov (United States)

    Setiawan, B.; DAMayanti, A. M.; Murdani, A.; Habibi, I. I. A.; Wakidah, R. N.

    2018-04-01

    The Sun is one of the most potential renewable energy develoPMent to be utilized, one of its utilization is for solar thermal concentrators, CSP (Concentrated Solar Power). In CSP energy conversion, the concentrator is as moving the object by tracking the sunlight to reach the focus point. This method need quite energy consumption, because the unit of the concentrators has considerable weight, and use large CSP, means the existence of the usage unit will appear to be wider and heavier. The addition of weight and width of the unit will increase the torque to drive the concentrator and hold the wind gusts. One method to reduce energy consumption is direct the sunlight by the reflective array to nadir through CSP with Reflective Fresnel Lens concentrator. The focus will be below the nadir direction, and the position of concentrator will be fixed position even the angle of the sun’s elevation changes from morning to afternoon. So, the energy concentrated maximally, because it has been protected from wind gusts. And then, the possibility of dAMage and changes in focus construction will not occur. The research study and simulation of the reflective array (mechanical method) will show the reflective angle movement. The distance between reflectors and their angle are controlled by mechatronics. From the simulation using fresnel 1m2, and efficiency of solar energy is 60.88%. In restriction, the intensity of sunlight at the tropical circles 1KW/peak, from 6 AM until 6 PM.

  7. Optical losses due to tracking error estimation for a low concentrating solar collector

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; García de Jalón, Alberto; Torres, José-Luis; Pujol-Nadal, Ramón

    2015-01-01

    Highlights: • A solar thermal collector with low concentration and one-axis tracking was tested. • A quasi-dynamic testing procedure for IAM was defined for tracking collector. • The adequation between the concentrator optics and the tracking was checked. • The maximum and long-term optical losses due to tracking error were calculated. - Abstract: The determination of the accuracy of a solar tracker used in domestic hot water solar collectors is not yet standardized. However, while using optical concentration devices, it is important to use a solar tracker with adequate precision with regard to the specific optical concentration factor. Otherwise, the concentrator would sustain high optical losses due to the inadequate focusing of the solar radiation onto its receiver, despite having a good quality. This study is focused on the estimation of long-term optical losses due to the tracking error of a low-temperature collector using low-concentration optics. For this purpose, a testing procedure for the incidence angle modifier on the tracking plane is proposed to determinate the acceptance angle of its concentrator even with different longitudinal incidence angles along the focal line plane. Then, the impact of maximum tracking error angle upon the optical efficiency has been determined. Finally, the calculation of the long-term optical error due to the tracking errors, using the design angular tracking error declared by the manufacturer, is carried out. The maximum tracking error calculated for this collector imply an optical loss of about 8.5%, which is high, but the average long-term optical loss calculated for one year was about 1%, which is reasonable for such collectors used for domestic hot water

  8. Designing and Simulation of a Two-Axis Solar Tracking System by Exact Relations of Solar Angles

    Directory of Open Access Journals (Sweden)

    Faezeh Esmaili Ranjbar

    2013-01-01

    Full Text Available In this study, a system has been designed and simulated to track sunlight, which identifies sun location based on the exact relations of solar angles and without any optical sensor. In fact the relations which have been used in this study are far more accurate compared to similar cases, because of using the "equation of time" and reducing the tracking time of every 15 minutes. In this system, an economical micro-controller has been used to generate the necessary orders to control system and two stepper motors for powering solar array. By adding a real-time clock IC (RTC to angle differentiation circuit, dynamic plane has improved.

  9. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  10. Performance Evaluation of Dual-axis Tracking System of Parabolic Trough Solar Collector

    Science.gov (United States)

    Ullah, Fahim; Min, Kang

    2018-01-01

    A parabolic trough solar collector with the concentration ratio of 24 was developed in the College of Engineering; Nanjing Agricultural University, China with the using of the TracePro software an optical model built. Effects of single-axis and dual-axis tracking modes, azimuth and elevating angle tracking errors on the optical performance were investigated and the thermal performance of the solar collector was experimentally measured. The results showed that the optical efficiency of the dual-axis tracking was 0.813% and its year average value was 14.3% and 40.9% higher than that of the eat-west tracking mode and north-south tracking mode respectively. Further, form the results of the experiment, it was concluded that the optical efficiency was affected significantly by the elevation angle tracking errors which should be kept below 0.6o. High optical efficiency could be attained by using dual-tracking mode even though the tracking precision of one axis was degraded. The real-time instantaneous thermal efficiency of the collector reached to 0.775%. In addition, the linearity of the normalized efficiency was favorable. The curve of the calculated thermal efficiency agreed well with the normalized instantaneous efficiency curve derived from the experimental data and the maximum difference between them was 10.3%. This type of solar collector should be applied in middle-scale thermal collection systems.

  11. Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control

    International Nuclear Information System (INIS)

    Sidek, M.H.M.; Azis, N.; Hasan, W.Z.W.; Ab Kadir, M.Z.A.; Shafie, S.; Radzi, M.A.M.

    2017-01-01

    This paper presents a study on an automated positioning open-loop dual-axis solar tracking system. The solar tracker was designed and fabricated using standard cylindrical aluminium hollow and Polyuthrene (PE). The control system of the solar tracker was governed by Micro Controller Unit (MCU) with auxiliary devices which includes encoder and Global Positioning System (GPS). The sun path trajectory algorithm utilizing the astronomical equation and GPS information was also embedded in the system. The power generation performance of the dual-axis solar tracking system was compared with the fixed-tilted Photovoltaic (PV) system. It is found that the solar tracker is able to position itself automatically based on sun path trajectory algorithm with an accuracy of ±0.5°. The embedded Proportional Integral Derivative (PID) positioning system improves the tracking of elevation and azimuth angles with minimum energy consumption. It is reveals that the proposed solar tracker is able generate 26.9% and 12.8% higher power than fixed-tilted PV system on a clear and heavy overcast conditions respectively. Overall, the open-loop dual-axis solar tracker can be deployed automatically at any location on the earth with minimal configurations and is suitable for mobile solar tracking system. - Highlights: • Self-positioning dual-axis solar tracking system. • Precise control of elevation and azimuth angle. • Sun path trajectory based on astronomical equation and GPS. • Can achieve up to 26.9% higher power than fixed-tilted PV system under clear weather condition.

  12. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  13. Comparison of the optics of non-tracking and novel types of tracking solar thermal collectors for process heat applications up to 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Grass, C.; Schoelkopf, W.; Staudacher, L.; Hacker, Z. [Bavarian Centre for Applied Energy Research, ZAE Bayern Division 4, Garching (Germany)

    2004-03-01

    Evacuated CPC (compound parabolic concentrator) collectors with non-tracking reflectors are compared with two novel tracking collectors: a parabolic trough and an evacuated tube collector with integrated tracking reflector. Non-tracking low concentrating CPC collectors are mostly mounted in east-west direction with a latitude dependent slope angle. They are suitable at most for working temperatures up to 200-250 {sup o}C. We present a tracking evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5.7{sup o} at geometrical concentration ratio of 3.2. Losses of well constructed evacuated tube collectors (heat conductivity through the manifolds inside the thermally insulated terminating housing are low) are dominated by radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 350 {sup o}C. At temperatures of 300 {sup o}C we expect with anti-reflective coating of the glass tube and a selective absorber coating efficiencies of 0.65. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype, equipped with a standard glass tube and a black paint absorber coating, was tested at ZAE Bayern. The optical efficiency was measured to be 0.71. This tube-collector is compared by ray-tracing with non-tracking market available tube-collectors with geometrical concentration ratios up to 1.1 and with a low cost parabolic trough collector of Industrial Solar Technology (IST

  14. Follow the sun - solar tracking; Immer der Sonne nach

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Fred

    2013-10-01

    The new personal use solar system MSS of Deger Energie (Horb am Neckar, Germany) allows a wide autonomy in the power supply. For commercial customers too. [German] Das neue Solarsystem MSS (Maximum Solar Speicher) von Deger Energie in Horb am Neckar erlaubt weitgehende Autonomie in der Stromversorgung. Auch fuer Gewerbekunden.

  15. Mechanical modelling and application of vibroacoustic isolators in railway tracks

    Directory of Open Access Journals (Sweden)

    Zbiciak Artur

    2017-01-01

    Full Text Available The paper presents systematization and description of vibroacoustic isolators used in railway tracks (due to track structure type, with special attention paid to resilient mats. As in the second part of the paper the state-space mechanical model of a system with Under-Ballast Mat is formulated. Also some numerical problems arising from the mass matrix singularity are discussed. The poles of the system were calculated by using Matlab. Moreover, the influence of various parameters on the system’s insertion loss and its transmissibility was visualized in figures.

  16. Decrease of the solar flare/solar wind flux ratio in the past several aeons from solar neon and tracks in lunar soil plagioclases

    International Nuclear Information System (INIS)

    Wieler, R.; Etique, Ph.; Signer, P.; Poupeau, G.

    1982-08-01

    The He, Ne, and Ar concentrations and isotopic compositions of mineral separates of six lunar subsurface samples and of two regolith breccias which were exposed to the sun as early as 2 - 3 billion years ago are determined. The results are compared with our noble gas data obtained previously on mineral separates of lunar surface soil samples most of which contain recently implanted solar gases. The mean solar flare track densities were determined on aliquots of several of the plagioclase separates analyzed for noble gases. Solar wind retentive mafic minerals and ilmenites show that a possible secular increase of the 20 Ne/ 22 Ne ratio in the solar wind during the last 2 - 3 Ga. is 20 Ne/ 22 Ne of approximately 11.3 - 11.8, reported for solar flare Ne retained in plagioclase separates from lunar soils. The solar flare track data and the Ne data independently show that plagioclases exposed to the sun over the last 10 8 years recorded a lower mean ratio of solar flare to solar wind intensities than samples exposed about 1 - 3 billion years ago. On the basis of track data these ratios are estimated to differ by a factor approximately 2. (Author) [pt

  17. Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.

    Science.gov (United States)

    Tombu, Michael; Seiffert, Adriane E

    2011-04-01

    People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.

  18. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor.

    Science.gov (United States)

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-11-25

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  19. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor

    Directory of Open Access Journals (Sweden)

    Ching-Chuan Wei

    2016-11-01

    Full Text Available Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi. Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  20. Automated identification and tracking of polar-cap plasma patches at solar minimum

    Directory of Open Access Journals (Sweden)

    R. Burston

    2014-03-01

    Full Text Available A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS, inverts slant total electron content (TEC data from ground-based Global Navigation Satellite System (GNSS receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

  1. Modeling of Maximum Power Point Tracking Controller for Solar Power System

    Directory of Open Access Journals (Sweden)

    Aryuanto Soetedjo

    2012-09-01

    Full Text Available In this paper, a Maximum Power Point Tracking (MPPT controller for solar power system is modeled using MATLAB Simulink. The model consists of PV module, buck converter, and MPPT controller. The contribution of the work is in the modeling of buck converter that allowing the input voltage of the converter, i.e. output voltage of PV is changed by varying the duty cycle, so that the maximum power point could be tracked when the environmental changes. The simulation results show that the developed model performs well in tracking the maximum power point (MPP of the PV module using Perturb and Observe (P&O Algorithm.

  2. Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator.

    Science.gov (United States)

    Liu, Yuxiao; Huang, Ran; Madsen, Christi K

    2014-10-20

    A two-axis tracking scheme designed for tracker and a translation stage is discussed. The translation stage is used for adjusting positions for seasonal sun movement. It has two-dimensional x-y tracking instead of horizontal movement x-only. This tracking method is compatible with planar waveguide solar concentrators. A prototype system with 50x concentration shows >75% optical efficiency throughout the year in simulation and >65% efficiency experimentally. This efficiency can be further improved by the use of anti-reflection layers and a larger waveguide refractive index.

  3. DESIGN AND DEVELOPMENT OF A LARGE SIZE NON-TRACKING SOLAR COOKER

    Directory of Open Access Journals (Sweden)

    N. M. NAHAR

    2009-09-01

    Full Text Available A large size novel non-tracking solar cooker has been designed, developed and tested. The cooker has been designed in such a way that the width to length ratio for reflector and glass window is about 4 so that maximum radiation falls on the glass window. This has helped in eliminating azimuthal tracking that is required in simple hot box solar cooker towards the Sun every hour because the width to length ratio of reflector is 1. It has been found that stagnation temperatures were 118.5oC and 108oC in large size non-tracking solar cooker and hot box solar cooker respectively. It takes about 2 h for soft food and 3 h for hard food. The cooker is capable of cooking 4.0 kg of food at a time. The efficiency of the large size non-tracking solar cooker has been found to be 27.5%. The cooker saves 5175 MJ of energy per year. The cost of the cooker is Rs. 10000.00 (1.0 US$ = Rs. 50.50. The payback period has been calculated by considering 10% annual interest, 5% maintenance cost and 5% inflation in fuel prices and maintenance cost. The payback period is least, i.e. 1.58 yr., with respect to electricity and maximum, i.e. 4.89 yr., with respect to kerosene. The payback periods are in increasing order with respect to fuel: electricity, coal, firewood, liquid petroleum gas, and kerosene. The shorter payback periods suggests that the use of large size non-tracking solar cooker is economical.

  4. Double lens collimator solar feedback sensor and master slave configuration: Development of compact and low cost two axis solar tracking system for CPV applications

    KAUST Repository

    Burhan, Muhammad

    2016-08-31

    The conventional CPV systems, as big unit design, are only suitable to be installed in the open regions, like desert areas. This gigantic system design restricts their use on the rooftop of commercial and residential buildings, unlike the conventional PV systems. This paper proposes a compact but highly accurate and cheap two axis solar tracking system, designed for CPV system field operation. The proposed system is designed and verified for tracking accuracy requirement of 0.3 degrees, and has maximum capability of as high as 0.1 degrees tracking accuracy. High tracking accuracy is ensured using in-house built double lens collimator solar feedback sensor, within a fraction of the cost of commercial solar tracking sensors. A hybrid tracking algorithm is developed in C-programming using astronomical and optical solar tracking methods. As compact CPV system design demands larger number of tracking units, for same power capacity of system. Therefore, a master slave control configuration is also proposed for the CPV field operation. Only master tracker will be equipped with the expensive tracking devices, while the required tracking information will be sent to all of the slave trackers using wireless communication through ZigBee devices. With detailed optical design, simulation and control strategy, a prototype of the proposed CPV tracking system is developed, experimentally investigated and verified for tracking accuracy for outdoor operation at the rooftop. (C) 2016 Elsevier Ltd. All rights reserved.

  5. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  6. Development of Intelligent Fuzzy Controller for a Two-Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Cong-Hui Huang

    2016-05-01

    Full Text Available This paper proposes the development of a two-axis sun tracking solar energy system using fuzzy logic as intelligent quality policy. To achieve maximum efficiency for solar panels, it is necessary to follow the sun’s path in the sky. Therefore, the architecture for the two-axis sun tracking solar energy system uses software to control the hardware. The hardware comprises (i solar cells; (ii lead-acid batteries; (iii a gear box; (iv a stepping motor; and (v a light detection circuit, while the software comprises (i a detection system; (ii a fuzzy tracking controller; and (iii a database system. A fuzzy logic controller is designed as the software architecture of the system to decide the timing for tracking the sun. The nearest position that results in receiving direct sunlight is obtained from the database. Our system is fully automatic in a changing environment and takes into account meteorological changes and the effects of the external environment arising from a malfunction. This approach reduces the number of starting motors and results in smaller energy loss in cloudy, cloud mask, or unstable weather conditions.

  7. A parabolic solar cooker with automatic two axes sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Al-Soud, Mohammed S.; Akayleh, Ali; Hrayshat, Eyad S. [Electrical Engineering Department, Faculty of Engineering, Tafila Technical University, P.O. Box 66, Tafila 66110 (Jordan); Abdallah, Essam [Mechanical Engineering Department, FET, AL-Balqa Applied University, Amman (Jordan); Abdallah, Salah [Mechanical and Industrial Engineering Department, Applied Science University (Jordan)

    2010-02-15

    A parabolic solar cooker with automatic two axes sun tracking system was designed, constructed, operated and tested to overcome the need for frequent tracking and standing in the sun, facing all concentrating solar cookers with manual tracking, and a programmable logic controller was used to control the motion of the solar cooker. The results of the continuous test - performed for three days from 8:30 h to 16:30 h in the year 2008 - showed that the water temperature inside the cooker's tube reached 90 C in typical summer days, when the maximum registered ambient temperature was 36 C. It was also noticed that the water temperature increases when the ambient temperature gets higher or when the solar intensity is abundant. This is in favor of utilizing this cooker in many developing countries, which are characterized by high solar insulations and high temperatures. Besides cooking, the proposed cooker could be utilized for warming food, drinks as well as to pasteurize water or milk. (author)

  8. Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions

    OpenAIRE

    P. Selvam; S. Senthil Kumar

    2016-01-01

    Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit c...

  9. Analytical synthesis for four–bar mechanisms used in a pseudo–equatorial solar tracker

    Directory of Open Access Journals (Sweden)

    Juan Manuel González Mendoza

    2013-09-01

    Full Text Available Photovoltaic energy production systems generate electricity without emitting pollutants into the atmosphere and do so from a free, unlimited resource. The highest level of energy conversion from the photovoltaic panels can be obtained by placing them perpendicular to the sun’s rays falling on their surface; this is done by installing solar tracking systems. This work proposes the use of two four-bar mechanisms as the driving force for a solar tracker; we propose the use of analytical synthesis for such mechanisms. This procedure is aimed at optimising the transmission angle, increasing mechanical advantage and decreasing driving torque. A mathematical model was used to prove synthesis results and a prototype of the solar tracker was built.

  10. Seasonal and circadian biases in bird tracking with solar GPS-tags.

    Directory of Open Access Journals (Sweden)

    Rafa Silva

    Full Text Available Global Positioning System (GPS tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new "battery drain bias" currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus, tracked for several years with solar GPS tags, to evaluate the causes and triggers of fix and data retrieval loss biases. We compare two models of solar GPS tags using different data retrieval systems (Argos vs GSM-GPRS, and programmed with different duty cycles. Neither of the models was able to accomplish the duty cycle programed initially. Fix and data retrieval loss rates were always greater than expected, and showed non-random gaps in GPS locations. Number of fixes per month of tracking was a bad criterion to identify tags with smaller biases. Fix-loss rates were four times higher due to battery drain than due to poor GPS satellite geometry. Both tag models were biased due to the uneven solar energy available for the recharge of the tag throughout the annual cycle, resulting in greater fix-loss rates in winter compared to summer. In addition, we suggest that the bias found along the diurnal cycle is linked to a complex three-factor interaction of bird flight behavior, topography and fix interval. More fixes were lost when vultures were perching compared to flying, in rugged versus flat topography. But long fix-intervals caused greater loss of fixes in dynamic (flying versus static situations (perching. To conclude, we emphasize the importance of evaluating fix-loss bias in current tracking projects, and deploying GPS tags that allow remote duty cycle updates so that the most appropriate fix and data retrieval intervals can be selected.

  11. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  12. Optimized concentrating/passive tracking solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sterne, K E; Johnson, A L; Grotheer, R H

    1979-01-01

    A concentrating solar collector having about half the material cost of other collectors with similar performance is described. The selected design is a Compound Parabolic Concentrator (CPC) which concentrates solar energy throughout the year without requiring realignment. Output is a fluid heated to 100/sup 0/C with good efficiency. The optical design of the reflector surface was optimized, yielding a 2.0:1 concentration ratio with a 60/sup 0/C acceptance angle and a low profile. Double glazing was chosen consisting of a polyester film outer glazing and an inner glazing of glass tubes around the absorbers. The selectively coated steel absorber tubes are connected in series with flexible plastic tubing. Much development effort went into the materials for the reflector subassembly. A laminate of metalized plastic film over plaster was chosen for the reflective surface. The reflector is rigidized by attaching filled epoxy header plates at each end. Aluminum side rails and an insulating back complete the structure. The finished design resulted in a material cost of $21.40 per square meter in production quantities. Performance testing of a prototype produced a 50% initial efficiency rating. This is somewhat lower than expected, and is due to materials and processes used in the prototype for the outer glazing, reflective surface and absorber coating. However, the efficiency curve drops only slightly with increasing temperature differential, showing the inherent advantage of the concentrator over flat plate collectors.

  13. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    Xiaodi, Xue; Hongfei, Zheng; Kaiyan, He; Zhili, Chen; Tao, Tao; Guo, Xie

    2010-01-01

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m 2 , the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  14. Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels

    International Nuclear Information System (INIS)

    Lubitz, William David

    2011-01-01

    Hourly typical meteorological year (TMY3) data was utilized with the Perez radiation model to simulate solar radiation on fixed, azimuth tracking and two axis tracking surfaces at 217 geographically diverse temperate latitude sites across the contiguous United States of America. The optimum tilt angle for maximizing annual irradiation on a fixed south-facing panel varied from being equal to the latitude at low-latitude, high clearness sites, to up to 14 o less than the latitude at a north-western coastal site with very low clearness index. Across the United States, the optimum tilt angle for an azimuth tracking panel was found to be on average 19 o closer to vertical than the optimum tilt angle for a fixed, south-facing panel at the same site. Azimuth tracking increased annual solar irradiation incident on a surface by an average of 29% relative to a fixed south-facing surface at optimum tilt angle. Two axis tracking resulted in an average irradiation increase of 34% relative to the fixed surface. Introduction of manual surface tilt changes during the year produced a greater impact for non-tracking surfaces than it did for azimuth tracking surfaces. Even monthly tilt changes only resulted in an average annual irradiation increase of 5% for fixed panels and 1% for azimuth tracked surfaces, relative to using a single optimized tilt angle in each case. In practice, the decision whether to manually tilt panels requires balancing the added cost in labor and the panel support versus the extra energy generation and the cost value of that energy. A spreadsheet file is available that gives individual results for each of the 217 simulated sites.

  15. Design Of Single-Axis And Dual-Axis Solar Tracking Systems Protected Against High Wind Speeds

    Directory of Open Access Journals (Sweden)

    Mai Salaheldin Elsherbiny

    2017-09-01

    Full Text Available Solar energy is rapidly gaining ground as an important mean of expanding renewable energy use. Solar tracking is employed in order to maximize collected solar radiation by a photovoltaic panel. In this paper we present a prototype for Automatic solar tracker that is designed using Arduino UNO with Wind sensor to Cease Wind effect on panels if wind speed exceeds certain threshold. The Proposed solar tracker tracks the location of the sun anywhere in any time by calculating the position of the sun. For producing the maximum amount of solar energy a solar panel must always be perpendicular to the source of light. Because the sun motion plane varies daily and during the day it moves from east to west one needs two axis tracking to follow the suns position. Maximum possible power is collected when two axis tracking is done. However two axis tracking is relatively costly and complex. A compromise between maximum power collection and system simplicity is obtained by single axis tracking where the plane North south axis is fixed while the east west motion is accomplished. This work deals with the design of both single and two axis tracking systems. Automatic trackers is also compared to Fixed one in terms of Energy generated Efficiency Cost and System reliability.

  16. Implementation of FPGA-Based Charge Control for a Self-Sufficient Solar Tracking Power Supply System

    Directory of Open Access Journals (Sweden)

    Jui-Ho Chen

    2016-02-01

    Full Text Available This study used a field-programmable gate array (FPGA with a Xilinx Spartan-3 FPGA to implement Reflex charge control in a dual-axis solar tracking system with maximum power point tracking (MPPT. The chaos embedded particle swarm optimization method was used to search for the optimum gain constants of the PI controller and the Reflex charging frequency. This scheme not only increases the output power of solar panels but also has a significant effect on switching loss and oscillation of solar charging. The experiment results showed that the proposed method can also significantly improve temperature rise, and that charging efficiency is also better than it is in a traditional charge mode. The results also showed that charging power was enough for solar tracking and the requirements of the charging system. The most significant contribution of this paper is that the scheme can be applied to any active solar tracking and charging system.

  17. Solar concentrator with integrated tracking and light delivery system with collimation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  18. Solar concentrator with integrated tracking and light delivery system with summation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  19. Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument

    Science.gov (United States)

    De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent

    2017-04-01

    We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.

  20. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  1. Effects of Power Tracking Algorithms on Lifetime of Power Electronic Devices Used in Solar Systems

    Directory of Open Access Journals (Sweden)

    Canras Batunlu

    2016-10-01

    Full Text Available In photovoltaic solar energy systems, power management algorithms (PMAs, usually called maximum power point tracking (MPPT algorithms, are widely used for extracting maximum available power at every point in time. However, tracking the maximum power has negative effects on the availability of solar energy systems. This is due, mainly, to the created disturbances and thermal stresses on the associated power electronic converters (PECs. This work investigates the effects of PMA on the lifetime consumption, thermal stresses and failures on DC-DC converters used in solar systems. Firstly theoretical analysis and modelling of photovoltaic solar systems including converter’s electro thermal characteristics were developed. Subsequently, experiments on photovoltaic solar systems were carried out using two different PMAs, namely, perturb and observe (P&O and incremental conductance (IC. Real-time data was collected, under different operating conditions, including thermal behavior using thermal imaging camera and dSPACE. Converters’ thermal cycling was found to be approximately 3 °C higher with the IC algorithm. The steady state temperature was 52.7 °C, for the IC while it was 42.6 °C for P&O. Although IC algorithm offers more accurate power management tool, it causes more severe thermal stresses which, in this study, has led to approximately 1.4 times greater life consumption compared to P&O.

  2. A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller

    Science.gov (United States)

    Wageh, S.; Farooq, W. A.; Tataroğlu, A.; Dere, A.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Yakuphanoglu, F.

    2017-12-01

    The structural, optical and photoelectrical properties of the fabricated Al/PbS/p-Si/Al photodiode based on PbS nanocrystallites were investigated. The PbS nanocrystallites were characterized by X-ray diffraction (XRD), UV-VIS-NIR, Infrared and Raman spectroscopy. The XRD diffraction peaks show that the prepared PbS nanostructure is in high crystalline state. Various electrical parameters of the prepared photodiode were analyzed from the electrical characteristics based on I-V and C-V-G. The photodiode has a high rectification ratio of 5.85×104 at dark and ±4 V. Moreover, The photocurrent results indicate a strong photovoltaic behavior. The frequency dependence of capacitance and conductance characteristics was attributed to depletion region behavior of the photodiode. The diode was used to control solar panel power automatic tracking controller in dual axis. The fabricated photodiode works as a photosensor to control Solar tracking systems.

  3. Neural mechanisms tracking popularity in real-world social networks.

    Science.gov (United States)

    Zerubavel, Noam; Bearman, Peter S; Weber, Jochen; Ochsner, Kevin N

    2015-12-08

    Differences in popularity are a key aspect of status in virtually all human groups and shape social interactions within them. Little is known, however, about how we track and neurally represent others' popularity. We addressed this question in two real-world social networks using sociometric methods to quantify popularity. Each group member (perceiver) viewed faces of every other group member (target) while whole-brain functional MRI data were collected. Independent functional localizer tasks were used to identify brain systems supporting affective valuation (ventromedial prefrontal cortex, ventral striatum, amygdala) and social cognition (dorsomedial prefrontal cortex, precuneus, temporoparietal junction), respectively. During the face-viewing task, activity in both types of neural systems tracked targets' sociometric popularity, even when controlling for potential confounds. The target popularity-social cognition system relationship was mediated by valuation system activity, suggesting that observing popular individuals elicits value signals that facilitate understanding their mental states. The target popularity-valuation system relationship was strongest for popular perceivers, suggesting enhanced sensitivity to differences among other group members' popularity. Popular group members also demonstrated greater interpersonal sensitivity by more accurately predicting how their own personalities were perceived by other individuals in the social network. These data offer insights into the mechanisms by which status guides social behavior.

  4. Silicon-based tracking system: Mechanical engineering and design

    International Nuclear Information System (INIS)

    Miller, W.O.; Gamble, M.T.; Thompson, T.C.; Woloshun, K.A.; Reid, R.S.; Hanlon, J.A.; Michaud, F.D.; Dransfield, G.D.; Ziock, H.J.; Palounek, A.P.

    1992-01-01

    The Silicon Tracking System (STS) is composed of silicon strip detectors arranged by both in a cylindrical array and an array of flat panels about the interaction region. The cylindrical array is denoted the central region and the flat panel arrays, which are normal to the beam axis, we denoted the forward regions. The overall length of the silicon array is 5.16 m and the maximum diameter is 0.93 m. The Silicon Tracking System Conceptual Design Report, should be consulted for the body of analysis performed to quantify the present design concept. For the STS to achieve its physics goals, the mechanical structures and services must support 17 m 2 of silicon detectors and stabilize their positions to within 5 μm, uniformly cool the detector the system to O degrees C and at the same time potentially remove up to 13 kW of waste heat generated by the detector electronics, provide up to 3400 A of current to supply the 6.5 million electronics channels, and supply of control and data transmission lines for those channels. These objectives must be achieved in a high ionizing radiation environment, using virtually no structural mass and only low-Z materials. The system must be maintainable during its 10 year operating life

  5. Track structure model for damage to mammalian cell cultures during solar proton events

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.

    1992-01-01

    Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.

  6. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as ...

    Indian Academy of Sciences (India)

    tribpo

    solar dynamo mechanism that generates electric current and magnetic field by plasma flows ... rotating body in the Universe. We also mention a list ... verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, ...

  7. Control system for solar tracking based on artificial vision; Sistema de control para seguimiento solar basado en vision artificial

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco Ramirez, Jesus Horacio; Anaya Perez, Maria Elena; Benitez Baltazar, Victor Hugo [Universidad de onora, Hermosillo, Sonora (Mexico)]. E-mail: jpacheco@industrial.uson.mx; meanaya@industrial.uson.mx; vbenitez@industrial.uson.mx

    2010-11-15

    This work shows how artificial vision feedback can be applied to control systems. The control is applied to a solar panel in order to track the sun position. The algorithms to calculate the position of the sun and the image processing are developed in LabView. The responses obtained from the control show that it is possible to use vision for a control scheme in closed loop. [Spanish] El presente trabajo muestra la manera en la cual un sistema de control puede ser retroalimentado mediante vision artificial. El control es aplicado en un panel solar para realizar el seguimiento del sol a lo largo del dia. Los algoritmos para calcular la posicion del sol y para el tratamiento de la imagen fueron desarrollados en LabView. Las respuestas obtenidas del control muestran que es posible utilizar vision para un esquema de control en lazo cerrado.

  8. Stability and degradation mechanisms in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Bernhard

    2012-04-26

    This thesis deals with stability improvements and the investigation of degradation mechanisms in organic solar cells. Organic solar cells have been in the focus of extensive academic research for over almost two decades and are currently entering the market in small scale applications. For successful large scale applications, next to the improvement of the power conversion efficiency, the stability of organic solar cells has to be increased. This thesis is dedicated to the investigation of novel materials and architectures to study stability-related issues and degradation mechanisms in order to contribute to the basic understanding of the working principles of organic solar cells. Here, impedance spectroscopy, a frequency domain technique, is used to gain information about stability and degradation mechanisms in organic solar cells. In combination with systematic variations in the preparation of solar cells, impedance spectroscopy gives the possibility to differentiate between interface and bulk dominated effects. Additionally, impedance spectroscopy gives access to the dielectric properties of the device, such as capacitance. This offers among other things the opportunity to probe the charge carrier concentration and the density of states. Another powerful way of evaluation is the combination of experimentally obtained impedance spectra with equivalent circuit modelling. The thesis presents results on novel materials and solar cell architectures for efficient hole and electron extraction. This indicates the importance of knowledge over interlayers and interfaces for improving both the efficiency and stability of organic solar cells.

  9. A mechanism for solar ultraviolet flux variability

    International Nuclear Information System (INIS)

    Schatten, K.H.; Heath, D.F.

    1981-01-01

    Solar UV emission observed by a filter photometer on Nimbus IV from 1969 to 1973 is examined in an attempt to understand the short term (27 day) and secular variability. Two models are discussed to explain the variations - a calcium plage model and a chromospheric network (faculae and spicule) structure model. Both relate to the remnant magnetic fields of active regions. An association between UV brightenings and the large scale magnetic field has been found consistent with the network model. An increase in UV emittance can be achieved by raising the effective chromospheric temperature closer to a photospheric level. If the Sun's luminosity is constant on these time intervals the enhanced UV radiation could be partially offset by an overall decrease in photospheric temperature as measured by Livingston in visible photospheric profiles. Total solar luminosity may then show less variability, however, the UV to visible luminosity variation may have significant planetary influences. Lockwood and Thompson (1979) report a relation between solar activity and planetary albedos, and Schatten (1979) discussed a long-suspected relationship between solar activity and the Great Red Spot appearance. (orig.)

  10. A methodology for calculating photovoltaic field output and effect of solar tracking strategy

    International Nuclear Information System (INIS)

    Hu, Yeguang; Yao, Yingxue

    2016-01-01

    Highlights: • A new methodology for calculating PV field output is proposed. • The reduction of diffuse radiation and albedo due to shading is considered. • The shadow behavior is accurately analyzed at a cell level. • Several simplified measures are taken to reduce the calculation work. • The field outputs with different solar tracking strategies are compared. - Abstract: This paper proposes an effective methodology for calculating the photovoltaic field output. A combination of two methods is first presented for optical performance calculation: point projection method for direction radiation, and Monte Carlo ray-tracing method for both diffuse radiation and albedo radiation. Based on the optical calculation, an accurate output of the photovoltaic field can be obtained through a cell-level simulation of PV system. Several simplified measures are taken to reduce the large amount of calculation work. The proposed methodology has been validated for accurate and fast calculation of field output. With the help of the developed code, this paper deals with the performance comparison between four typical tracking strategies. Through the comparative analysis, the field output is proved to be related to the tracking strategy. For a regular photovoltaic field, the equatorial and elevation-rolling tracking show the superior performance in annual field output to the azimuth-elevation and rolling-elevation tracking. A reasonable explanation for this difference has been presented in this paper.

  11. The collective acceleration mechanism of solar cosmic rays

    International Nuclear Information System (INIS)

    Gershtein, S.S.

    1978-01-01

    The collective acceleration mechanism of protons and nuclei in solar flares, which lies in the fact that nuclei are trapped by electron bunches moving along the opened lines of force of the decreasing magnetic field of solar sports, is discussed. The proposed mechanism explains in a natural way the electron and nucleus energy ratio observed during flares. Electron acceleration in the current layers up to energies of the order of a MeV is discussed as a mechanism of electron pulsed injection. The collective acceleration mechanism can be realized at a comparatively small density of accelerated electrons nsub(e) approximately equal to 10 2 10 4 cm -3

  12. Effect of track maintenance on mechanical properties of a dirt racetrack: a preliminary study.

    Science.gov (United States)

    Peterson, M L; McIlwraith, C W

    2008-09-01

    When Thoroughbred racehorses experience catastrophic injuries, the track surface is often discussed as a factor. The present study investigated the mechanical properties of the surface and found that significant changes in a track occur during routine maintenance. Questions regarding the relative importance of track variability and hardness require further investigation.

  13. Composite metal oxide semiconductor based photodiodes for solar panel tracking applications

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Ahmed A., E-mail: aghamdi90@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Dere, A. [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Tataroğlu, A. [Department of Physics, Faculty of Science, Gazi University, Ankara (Turkey); Arif, Bilal [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Yakuphanoglu, F. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Farooq, W.A. [Physics and Astronomy Department, College of Science, King Saud University, Riyadh (Saudi Arabia)

    2015-11-25

    The Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O composite films were synthesized by the sol gel method to fabricate photodiodes. The transparent metal oxide Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O thin films were grown on p-Si substrates by spin coating technique. Electrical characterization of the p-Si/AZO:Cu{sub 2}O photodiodes was performed by current–voltage and capacitance–conductance–voltage characteristics under dark and various illumination conditions. The transient photocurrent of the diodes increases with increase in illumination intensity. The photoconducting mechanism of the diodes is controlled by the continuous distribution of trap levels. The photocapacitance and photoconductivity of the diodes are decreased with increasing Cu{sub 2}O content. The series resistance–voltage behavior confirms the presence of the interface states in the interface of the diodes. The photoresponse properties of the diodes indicate that the p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes can be used as a photosensor in solar panel tracking applications. - Highlights: • Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O composite films were synthesized by the sol gel method. • p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes were fabricated. • p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes can be used in the optoelectronic applications.

  14. An Automated Algorithm for Identifying and Tracking Transverse Waves in Solar Images

    Science.gov (United States)

    Weberg, Micah J.; Morton, Richard J.; McLaughlin, James A.

    2018-01-01

    Recent instrumentation has demonstrated that the solar atmosphere supports omnipresent transverse waves, which could play a key role in energizing the solar corona. Large-scale studies are required in order to build up an understanding of the general properties of these transverse waves. To help facilitate this, we present an automated algorithm for identifying and tracking features in solar images and extracting the wave properties of any observed transverse oscillations. We test and calibrate our algorithm using a set of synthetic data, which includes noise and rotational effects. The results indicate an accuracy of 1%–2% for displacement amplitudes and 4%–10% for wave periods and velocity amplitudes. We also apply the algorithm to data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and find good agreement with previous studies. Of note, we find that 35%–41% of the observed plumes exhibit multiple wave signatures, which indicates either the superposition of waves or multiple independent wave packets observed at different times within a single structure. The automated methods described in this paper represent a significant improvement on the speed and quality of direct measurements of transverse waves within the solar atmosphere. This algorithm unlocks a wide range of statistical studies that were previously impractical.

  15. Correlation tracking study for meter-class solar telescope on space shuttle. [solar granulation

    Science.gov (United States)

    Smithson, R. C.; Tarbell, T. D.

    1977-01-01

    The theory and expected performance level of correlation trackers used to control the pointing of a solar telescope in space using white light granulation as a target were studied. Three specific trackers were modeled and their performance levels predicted for telescopes of various apertures. The performance of the computer model trackers on computer enhanced granulation photographs was evaluated. Parametric equations for predicting tracker performance are presented.

  16. Mechanical Alterations during 800-m Self-Paced Track Running.

    Science.gov (United States)

    Girard, Olivier; Millet, Gregoire P; Micallef, Jean-Paul

    2017-04-01

    We assessed the time course of running mechanical alterations during an 800-m. On a 200-m indoor track, 18 physical education students performed an 800-m self-paced run. Once per lap, ground reaction forces were measured by a 5-m-long force platform system, and used to determine running kinetics/kinematics and spring-mass characteristics. Compared with 100 m (19.4±1.8 km.h -1 ) running velocity progressively decreased at 300, 500 m but levelled-off at 700 m marks (-5.7±4.6, -10.4±8.3, and -9.1±13.5%, respectively; Ppush-off forces (-5.1±7.2%, P0.05) and leg compression (+2.8±3.9%; P>0.05) remained unchanged, whereas centre of mass vertical displacement (+24.0±7.0%; P0.05). During an 800 m by physical education students, highest running velocity was achieved early during the run, with a progressive decrease in the second half of the trial. While vertical ground force characteristics remained unchanged, non-specialist runners produced lower peak braking and push-off forces, in turn leading to shorter stride length. Spring-mass model characteristics changed toward lower vertical stiffness values, whereas leg stiffness did not change. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Two non-tracking solar collectors: Design criteria and performance analysis

    International Nuclear Information System (INIS)

    Ratismith, Wattana; Inthongkhum, Anusorn; Briggs, John

    2014-01-01

    Highlights: • A collector module designed to capture solar radiation efficiently is proposed. • Two different compound parabolic trough designs are examined and tested. • A novel design with a flat base trough and vertical absorber operates efficiently in direct and diffuse sunlight. - Abstract: We propose fixed (non-tracking) configurations of solar light collector modules which are designed to operate efficiently throughout the day, i.e. for varying incident angles of direct sunlight, and in conditions of diffuse solar irradiation. We present two trough designs of compound parabolic collector (CPC) type. One, a more conventional double-parabolic trough, has the absorber plate perpendicular to the vertical axis of the trough cross-section. The other, of a new flat-base shape, has the absorber plate parallel. The collectors have two novel features appropriate to non-tracking. The first is a smoothing of the power output over the day by the simple expedient of arranging three troughs tilted at different angles. The second is the original design of the flat-base trough allowing optimal interception of the caustic surfaces of this non-focussing device. By ray-tracing analysis of the different trough shapes and absorber plate orientation, we emphasise the design criteria for achievement of a high intercept factor throughout the day without tracking and demonstrate the superiority of the flat-base collector over the double-parabolic design. In test experiments we show that the high temperatures (≈180 °C) necessary for some industrial process heat applications can be achieved. Also test results of the efficiency of the proposed systems are presented which indicate that the flat-base trough with vertical absorber plate is superior to the double-parabolic trough with horizontal absorber plate

  18. Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT Technique

    Directory of Open Access Journals (Sweden)

    Wiedjaja A.

    2014-03-01

    Full Text Available Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT, particularly the perturb and observe (P&O algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.

  19. Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power

    Science.gov (United States)

    Soeder, James F.; Button, Robert M.

    1999-01-01

    A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak

  20. Right ventricular mechanics in hypertrophic cardiomyopathy using feature tracking

    Science.gov (United States)

    Badran, Hala Mahfouz; Soliman, Mahmood; Hassan, Hesham; Abdelfatah, Raed; Saadan, Haythem; Yacoub, Magdi

    2013-01-01

    Objectives: Right ventricular (RV) mechanics in hypertrophic cardiomyopathy (HCM) are poorly understood. We investigate global and regional deformation of the RV in HCM and its relationship to LV phenotype, using 2D strain vector velocity imaging (VVI). Methods: 100 HCM patients (42% females, 41 ± 19 years) and 30 control patients were studied using VVI. Longitudinal peak systolic strain (ϵsys), strain rate (SR), time to peak (ϵ) (TTP), displacement of RV free wall (RVFW) and septal wall were analyzed. Similar parameters were quantified in LV septal, lateral, anterior and inferior segments. Intra-V-delay was defined as SD of TTP. Inter-V-delay was estimated from TTP difference between the most delayed LV segment & RVFW. Results: ϵsys and SR of both RV & LV, showed loss of base to apex gradient and significant decline in HCM (p < 0.001). Deformation variables estimated from RVFW were strongly correlated with each other (r = 0.93, p < 0.0001). Both were directly related to LV ϵsys, SRsys, SRe, ejection fraction (EF)%, RVFW displacement (P < 0.001) and inversely related to age, positive family history (p < 0.004, 0.005), RV wall thickness, maximum wall thickness (MWT), intra-V-delay, LA volume (P < 0.0001), LVOT gradient (p < 0.02, 0.005) respectively. ROC curves were constructed to explore the cut-off point that discriminates RV dysfunction. Global and RVFW ϵsys: − 19.5% shows 77, 70% sensitivity & 97% specificity, SRsys: − 1.3s− 1 shows 82, 70% sensitivity & 30% specificity. Multivariate analyses revealed that RVFW displacement (β = − 0.9, p < 0.0001) and global LV SRsys (β = 5.9, p < 0.0001) are independent predictors of global RV deformation. Conclusions: Impairment of RV deformation is evident in HCM using feature tracking. It is independently influenced by LV mechanics and correlated to the severity of LV phenotype. RVFW deformation analysis and global RV assessment are comparable. PMID:24689019

  1. Introduction to the mechanics of the solar system

    CERN Document Server

    Kurth, Rudolf

    2013-01-01

    Introduction to the Mechanics of the Solar System introduces the reader to the mechanics of the solar system and covers topics ranging from the periods of the planets to their flattening and its effects on the orbits of satellites. Kepler's three laws of planetary motion are also discussed, along with the law of gravity; the two-body problem; and perturbations in the motions of the moon and the planets. This book is comprised of four chapters and begins with an analysis of the kinematics of a single planet, focusing on the work of Johannes Kepler, particularly his determination of the orbits o

  2. Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Raúl Gregor

    2015-01-01

    Full Text Available The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

  3. Maximum power point tracking: a cost saving necessity in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering

    1992-12-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).

  4. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models

    Science.gov (United States)

    Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Cantiello, Matteo; Paxton, Bill; Johnson, Benjamin D.

    2016-06-01

    This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages (5≤slant {log}({Age}) [{year}]≤slant 10.3), masses (0.1≤slant M/{M}⊙ ≤slant 300), and metallicities (-2.0≤slant [{{Z}}/{{H}}]≤slant 0.5). The models are self-consistently and continuously evolved from the pre-main sequence (PMS) to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the PMS to the end of core helium burning for -4.0≤slant [{{Z}}/{{H}}]\\lt -2.0. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.

  5. Tracking instrument and control for solar concentrators. Final technical report, October 1979-January 1981

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J; Kuhlman, J

    1981-01-31

    The tracker uses a single photo sensor, and a rotating aperature to obtain tracking accuracies better than 1.5 mrads (0.1 degs). Peak signal detection is used to eliminate tracking of false sources, i.e., clouds, etc. A prism is employed to obtain an extended field of view (150 degs axially - 360 degs radially). The tracker digitally measures the Suns displacement angle relative to the concentrator axis, and repositions it incrementally. This arrangement permits the use of low cost non-servo motors. The local controller contains microprocessor based electronics, incorporating digital signal processing. A single controller may be time shared by a maximum of sixteen trackers, providing a high performance, cost effective solar tracking system, suitable for both line and point focus concentrators. An installation may have the local controller programmed as a standalone unit or slaved to a central controller. When used with a central controller, dynamic data monitoring and logging is available, together with the ability to change system modes and parameters, as desired.

  6. Tractive performance evaluation of seafloor tracked trencher based on laboratory mechanical measurements

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-03-01

    Full Text Available To evaluate the tractive performance of tracked trencher on seafloor surface, a new shear stress-displacement empirical model was proposed for saturated soft-plastic soil (SSP model. To validate the SSP model, a test platform, where track segment shear test can be performed in seafloor soil simulacrum (bentonite water mixture, was built. Series shear tests were carried out. Test results indicate that the SSP model can describe the mechanical behavior of track segment with good approximation in seafloor soil simulacrum. Through analyzing the main external forces applied to seafloor tracked trencher during the uniform linear trenching process, a drawbar pull prediction model was deduced with the SSP model. A tracked walking mechanism of the seafloor tracked trencher prototype was built, and verification tests were carried out. Test results indicate that this prediction model was feasible and effective; moreover, from another side, this conclusion also proved that the SSP model was effective.

  7. Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations

    Science.gov (United States)

    Kocher, Manan; Landi, Enrico; Lepri, Susan. T.

    2018-06-01

    In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.

  8. Simulation model of ANN based maximum power point tracking controller for solar PV system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)

    2011-02-15

    In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)

  9. Novel Deployment Mechanism for Conventional Solar Array Enhancement

    Directory of Open Access Journals (Sweden)

    Hodgetts Paul A.

    2017-01-01

    Full Text Available A novel mechanism is described, by which flexible blankets could be deployed from existing solar panel designs. These blankets could be covered with flexible cells, or they could be reflective films to form a concentrator array. Either way, the performance of an existing array design could be enhanced.

  10. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  11. Design and Development of NEA Scout Solar Sail Deployer Mechanism

    Science.gov (United States)

    Sobey, Alexander R.; Lockett, Tiffany Russell

    2016-01-01

    The 6U (approx.10 cm x 20 cm x 30 cm) cubesat Near Earth Asteroid (NEA) Scout1, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System, will utilize a solar sail as its main method of propulsion throughout its approx.3-year mission to a Near Earth Asteroid. Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems, advance solutions, and build confidence in the final design product. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.

  12. Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system

    Directory of Open Access Journals (Sweden)

    S. Shabaan

    2018-05-01

    Full Text Available Solar photovoltaic (PV systems are a clean and naturally replenished energy source. PV panels have a unique point which represents the maximum available power and this point depend on the environmental conditions such as temperature and irradiance. A maximum power point tracking (MPPT is therefore necessary for maximum efficiency. In this paper, a study of MPPT for PV water pumping system based on adaptive neuro-fuzzy inference system (ANFIS is discussed. A comparison between the performance of the system with and without MPPT is carried out under varying irradiation and temperature conditions. ANFIS based controller shows fast response with high efficiency at all irradiance and temperature levels making it a powerful technique for non-linear systems as PV modules. Keywords: MPPT, ANFIS, Boost converter, PMDC pump

  13. Development of an Embedded Solar Tracking System with LabVIEW Motion Control

    International Nuclear Information System (INIS)

    Oh, Seung Jin; Hyun, Jun Ho; Oh, Won Jong; Kim, Yeong Min; Lee, Yoon Joon; Chun, Won Gee

    2010-01-01

    Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device such as a hydraulic pump, linear actuator, or an electric motor. The motion control is widely used in the packaging, printing, textile, semiconductor production, and power plants. National Instruments LabVIEW is a graphical programming language that has its roots in automation control and data acquisition. Its graphical representation, similar to a process flow diagram, was created to provide an intuitive programming environment for scientist and engineers. Crystal River Nuclear Plant engineers developed automated testing system of nuclear plant control modules in an aging nuclear power plant using LabVIEW to improve performance and reliability and reduce cost. In this study, an embedded two-axis solar tracking system was developed using LabVIEW motion control module

  14. Plasmonic Solar Cells: From Rational Design to Mechanism Overview.

    Science.gov (United States)

    Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha

    2016-12-28

    Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.

  15. Testing an attachment method for solar-powered tracking devices on a long-distance migrating shorebird

    NARCIS (Netherlands)

    Chan, Y.-C; Brugge, M.; Tibbitts, T.L.; Dekinga, A.; Porter, R.; Klaassen, R.H.G.; Piersma, T.

    2016-01-01

    Small solar-powered satellite transmitters andGPS data loggers enable continuous, multi-year, and globaltracking of birds. What is lacking, however, are reliablemethods to attach these tracking devices to small migratorybirds so that (1) flight performance is not impacted and (2)tags are retained

  16. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2014-08-01

    Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.

  17. Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers

    Science.gov (United States)

    Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.

    2018-05-01

    This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption

  18. Record of the solar corpuscular radiation in minerals from lunar soils - A comparative study of noble gases and tracks

    International Nuclear Information System (INIS)

    Wieler, R.; Etique, P.

    1980-01-01

    A comparative study is made of trapped light noble gases and solar flare tracks in mineral separates from lunar soils in an investigation aimed at detecting possible temporal variations of the ratio between solar flare and solar wind activity. He, Ne, Ar and solar flare tracks are measured on plagioclase separates of 12 surface soils and two Apollo 15 drill core samples, and track density histograms are compared with gas concentration distributions obtained from aliquot samples. Results show that solar wind Ar is probably well retained in all minerals. He, Ne, and Ar are not saturated macroscopically, and semi-microscopic or microscopic saturation is very rare for Ar, even in gas-rich plagioclase populations. All grains contain trapped noble gases, even in relatively gas-poor mineral populations, and for clean minerals in the size range of 150-200 microns, the time between the first and last surface exposure is in the order of 10 to the 7th to 10 to the 8th years

  19. Solar flare and galactic cosmic ray tracks in lunar samples and meteorites - What they tell us about the ancient sun

    International Nuclear Information System (INIS)

    Crozaz, G.

    1980-01-01

    Evidence regarding the past activity of the sun in the form of nuclear particle tracks in lunar samples and meteorites produced by heavy ions in galactic cosmic rays and solar flares is reviewed. Observations of track-rich grains found in deep lunar cores and meteorite interiors are discussed which demonstrate the presence of solar flare activity for at least the past 4 billion years, and the similarity of track density profiles from various lunar and meteoritic samples with those in a glass filter from Surveyor 3 exposed at the lunar surface for almost three years is presented as evidence of the relative constancy of the solar flare energy spectrum over the same period. Indications of a heavy ion enrichment in solar flares are considered which are confirmed by recent satellite measurements, although difficult to quantify in lunar soil grains. Finally, it is argued that, despite previous claims, there exists as yet no conclusive evidence for either a higher solar activity during the early history of the moon or a change in galactic cosmic ray intensity, average composition or spectrum over the last 50 million years

  20. STUDY AND REALIZATION OF DEVICE OF SOLAR SENSITIVE TRACKING FOR A PROTOTYPE OF CYLINDRO-PARABOLIC CONCENTRATOR

    Directory of Open Access Journals (Sweden)

    A. Gama

    2015-08-01

    Full Text Available After the realization of a new prototype of concentrator through, we have study the realization of a sun tracking system in order to assure the best system efficiency throughout the day. We started in the first step by the blind sun tracking where we have acquired the good results. In this paper we try to speak about the realization of a new system of sun tracking who is the sensitive sun tracking. In this sort of tracking we have used a special telescope, like a sensitive element in for the detection of sun position. An electronic Card based PIC microcontroller is realized to pilot the mechanic system of the san tracking. In order to controlled the prototype we have put on a chain of data acquisition. The results were compared with the results of the blind sun tracking system and the stationary position, it was noted that the results were better this time and the efficiency is very important.

  1. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P; Henaut, J

    2014-01-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved

  2. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    Science.gov (United States)

    Zhu, D.; Henaut, J.; Beeby, S. P.

    2014-11-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.

  3. A Simple Approach in Estimating the Effectiveness of Adapting Mirror Concentrator and Tracking Mechanism for PV Arrays in the Tropics

    Directory of Open Access Journals (Sweden)

    M. E. Ya’acob

    2014-01-01

    Full Text Available Mirror concentrating element and tracking mechanism has been seriously investigated and widely adapted in solar PV technology. In this study, a practical in-field method is conducted in Serdang, Selangor, Malaysia, for the two technologies in comparison to the common fixed flat PV arrays. The data sampling process is measured under stochastic weather characteristics with the main target of calculating the effectiveness of PV power output. The data are monitored, recorded, and analysed in real time via GPRS online monitoring system for 10 consecutive months. The analysis is based on a simple comparison of the actual daily power generation from each PV generator with statistical analysis of multiple linear regression (MLR and analysis of variance test (ANOVA. From the analysis, it is shown that tracking mechanism generates approximately 88 Watts (9.4% compared to the mirror concentrator which generates 144 Watts (23.4% of the cumulative dc power for different array configurations at standard testing condition (STC references. The significant increase in power generation shows feasibilities of implying both mechanisms for PV generators and thus contributes to additional reference in PV array design.

  4. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

    Science.gov (United States)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel

    2014-01-01

    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  5. Adaptive Sliding-Mode Tracking Control for a Class of Nonholonomic Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2013-01-01

    Full Text Available This paper investigates the problem of finite-time tracking control for nonholonomic mechanical systems with affine constraints. The control scheme is provided by flexibly incorporating terminal sliding-mode control with the method of relay switching control and related adaptive technique. The proposed relay switching controller ensures that the output tracking error converges to zero in a finite time. As an application, a boat on a running river is given to show the effectiveness of the control scheme.

  6. Design and implementation of a microcontroller-based maximum power point tracking fuzzy solar-charge controller

    Energy Technology Data Exchange (ETDEWEB)

    Qazalbash, A.A.; Iqbal, T.; Shafiq, M.Z. [National Univ. of Sciences and Technology, Rawalpindi (Pakistan). Dept. of Electrical Engineering

    2007-07-01

    Photovoltaic (PV) solar arrays are particularly useful for electrical power generation in remote, off-grid areas in developing countries. However, PV arrays offer a small power to area ratio, resulting in the need for more PV arrays which increases the cost of the system. In order to improve the profitability of PV arrays, the power extraction from available PV array systems must be maximized. This paper presented an analysis, modeling and implementation of an efficient solar charge controller. It was shown that the maximum power of a photovoltaic system depends largely on temperature and insolation. A perturb and observe algorithm was used for maximum power point tracking (MPPT). MPPT maximizes the efficiency of a solar PV system. A solar charge controller determines the optimal values of output current and voltage of converters to maximize power output for battery charging. In order to improve performance and implement the perturb and observe algorithm, the authors designed a fuzzy rule-based system in which a solar charge controller worked with a PWM controlled DC-DC converter for battery charging. The system was implemented on a low-cost PIC microcontroller. Results were better than conventional techniques in power efficiency. Swift maximum power point tracking was obtained. 13 refs., 1 tab., 11 figs.

  7. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    Science.gov (United States)

    Langfellner, J.; Gizon, L.; Birch, A. C.

    2015-09-01

    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period

  8. Optimized reflectors for non-tracking solar collectors with tubular absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Muschaweck, Julius [Optics and Energy Consulting, Munich (Germany); Spirkl, Wolfgang [Ludwig-Maximilians Univ., Sektion Physik, Munich (Germany); Timinger, Andreas [Optics and Energy Consulting, Munich (Germany); ZAE Bayern, Solar Thermal and Biomass Dept., Munich (Germany); Benz, Nikolaus; Doerfler, Michael; Gut, Martin [ZAE Bayern, Solar Thermal and Biomass Dept., Munich (Germany); Kose, Erwin [microtherm Energietecjnik GmbH, Lods, 25 (France)

    2000-07-01

    We present an approach to find optimal reflector shapes for non-tracking solar collectors under practical constraints. We focus on cylindrical absorbers and reflectors with translational symmetry. Under idealised circumstances, edge ray reflectors are well known to be optimal. However, it is not clear how optimal reflectors should be shaped in order to obtain maximum utilisable energy for given operating temperatures under practical constraints like reflectivity less than unity, real radiation data, size limits, and gaps between the reflector and the absorber. For a prototype collector with a symmetric edge ray reflector and a tubular absorber, we derive from calorimetric measurements under outdoor conditions the optical efficiency as a function of the incidence angle. Using numerical optimisation and raytracing, we compare truncated symmetric edge ray reflectors, truncated asymmetric edge ray reflectors and free forms parametrized by Bezier splines. We find that asymmetric edge ray reflectors are optimal. For reasonable operating conditions, truncated asymmetric edge ray reflectors allow much better land use and easily adapt to a large range of roof tilt angles with marginal changes in collector construction. Except near the equator, they should increase the yearly utilisable energy per absorber tube by several percent as compared to the prototype collector with symmetric reflectors. (Author)

  9. COMPARISON OF SOLAR SURFACE FLOWS INFERRED FROM TIME-DISTANCE HELIOSEISMOLOGY AND COHERENT STRUCTURE TRACKING USING HMI/SDO OBSERVATIONS

    International Nuclear Information System (INIS)

    Švanda, Michal; Roudier, Thierry; Rieutord, Michel; Burston, Raymond; Gizon, Laurent

    2013-01-01

    We compare measurements of horizontal flows on the surface of the Sun using helioseismic time-distance inversions and coherent structure tracking of solar granules. Tracking provides two-dimensional horizontal flows on the solar surface, whereas the time-distance inversions estimate the full three-dimensional velocity flows in the shallow near-surface layers. Both techniques use Helioseismic and Magnetic Imager observations as input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the three-dimensional time-distance inversion.

  10. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation

    Directory of Open Access Journals (Sweden)

    Spencer Dunaway

    2018-04-01

    Full Text Available Human skin exposed to solar ultraviolet radiation (UVR results in a dramatic increase in the production of reactive oxygen species (ROS. The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs. Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.

  11. Single-axle, double-axis solar tracker

    Science.gov (United States)

    Brantley, L. W.; Lawson, B. D.

    1979-01-01

    Solar concentrator tracking mechanism consisting of angular axle and two synchronized drive motors, follows seasonal as well as diurnal changes in earth's orientation with respect to incoming sunlight.

  12. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting

    International Nuclear Information System (INIS)

    Yan, Wentao; Ge, Wenjun; Qian, Ya; Lin, Stephen; Zhou, Bin; Liu, Wing Kam; Lin, Feng; Wagner, Gregory J.

    2017-01-01

    Metallic powder bed-based additive manufacturing technologies have many promising attributes. The single track acts as one fundamental building unit, which largely influences the final product quality such as the surface roughness and dimensional accuracy. A high-fidelity powder-scale model is developed to predict the detailed formation processes of single/multiple-track defects, including the balling effect, single track nonuniformity and inter-track voids. These processes are difficult to observe in experiments; previous studies have proposed different or even conflicting explanations. Our study clarifies the underlying formation mechanisms, reveals the influence of key factors, and guides the improvement of fabrication quality of single tracks. Additionally, the manufacturing processes of multiple tracks along S/Z-shaped scan paths with various hatching distance are simulated to further understand the defects in complex structures. The simulations demonstrate that the hatching distance should be no larger than the width of the remelted region within the substrate rather than the width of the melted region within the powder layer. Thus, single track simulations can provide valuable insight for complex structures.

  13. Tracking control mechanisms for positioning automatic CRD exchanger

    International Nuclear Information System (INIS)

    Koizumi, Akira; Takada, Satoshi.

    1984-01-01

    Purpose: To enable completely automatic positioning for the automatic CRD (control rod drives) exchanger, as well as shorten the time for the exchanging operation and save the operator's labour. Constitution: Images of a target attached to the lower flange face of CRD are picked up by a fiber scope mounted to a mounting head. The images are converted through I.T.V. into electrical signals, passed through a cable and then sent to a pattern recognition mechanism. The position for the images of the target is calculated and the calculated position is sent to a drive control section, where the position for the images of the target is compared with a reference position for the images (exactly aligned position) and the moving amount of the mounting head is calculated to move the driving section and thereby complete the positioning. (Kawakami, Y.)

  14. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    Science.gov (United States)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  15. The Mechanism for Energy Buildup in the Solar Corona

    Science.gov (United States)

    Antiochos, Spiro; Knizhnik, Kalman; DeVore, Richard

    2017-10-01

    Magnetic reconnection and helicity conservation are two of the most important basic processes determining the structure and dynamics of laboratory and space plasmas. The most energetic dynamics in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The origin of these explosions is that the lowest-lying magnetic flux in the Sun's corona undergoes the continual buildup of stress and free energy that can be released only through explosive ejection. We perform MHD simulations of a coronal volume driven by quasi-random boundary flows designed to model the processes by which the solar interior drives the corona. Our simulations are uniquely accurate in preserving magnetic helicity. We show that even though small-scale stress is injected randomly throughout the corona, the net result of magnetic reconnection is a coherent stressing of the lowest-lying field lines. This highly counter-intuitive result - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions. It is likely to be a mechanism that is ubiquitous throughout laboratory and space plasmas. This work was supported by the NASA LWS and SR Programs.

  16. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    Science.gov (United States)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  17. Multi-Track Friction Stir Lap Welding of 2024 Aluminum Alloy: Processing, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Shengke Zou

    2016-12-01

    Full Text Available Friction stir lap welding (FSLW raises the possibility of fabricating high-performance aluminum components at low cost and high efficiency. In this study, we mainly applied FSLW to fabricate multi-track 2024 aluminum alloy without using tool tilt angle, which is important for obtaining defect-free joint but significantly increases equipment cost. Firstly, systematic single-track FSLW experiments were conducted to attain appropriate processing parameters, and we found that defect-free single-track could also be obtained by the application of two-pass processing at a rotation speed of 1000 rpm and a traverse speed of 300 mm/min. Then, multi-track FSLW experiments were conducted and full density multi-track samples were fabricated at an overlapping rate of 20%. Finally, the microstructure and mechanical properties of the full density multi-track samples were investigated. The results indicated that ultrafine equiaxed grains with the grain diameter about 9.4 μm could be obtained in FSLW samples due to the dynamic recrystallization during FSLW, which leads to a yield strength of 117.2 MPa (17.55% higher than the rolled 2024-O alloy substrate and an elongation rate of 31.05% (113.84% higher than the substrate.

  18. An Adaptive Neural Mechanism with a Lizard Ear Model for Binaural Acoustic Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2016-01-01

    expensive algorithms. We present a novel bioinspired solution to acoustic tracking that uses only two microphones. The system is based on a neural mechanism coupled with a model of the peripheral auditory system of lizards. The peripheral auditory model provides sound direction information which the neural...

  19. A Mobility-Aware Adaptive Duty Cycling Mechanism for Tracking Objects during Tunnel Excavation

    Directory of Open Access Journals (Sweden)

    Taesik Kim

    2017-02-01

    Full Text Available Tunnel construction workers face many dangers while working under dark conditions, with difficult access and egress, and many potential hazards. To enhance safety at tunnel construction sites, low latency tracking of mobile objects (e.g., heavy-duty equipment and construction workers is critical for managing the dangerous construction environment. Wireless Sensor Networks (WSNs are the basis for a widely used technology for monitoring the environment because of their energy-efficiency and scalability. However, their use involves an inherent point-to-point delay caused by duty cycling mechanisms that can result in a significant rise in the delivery latency for tracking mobile objects. To overcome this issue, we proposed a mobility-aware adaptive duty cycling mechanism for the WSNs based on object mobility. For the evaluation, we tested this mechanism for mobile object tracking at a tunnel excavation site. The evaluation results showed that the proposed mechanism could track mobile objects with low latency while they were moving, and could reduce energy consumption by increasing sleep time while the objects were immobile.

  20. Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism.

    Directory of Open Access Journals (Sweden)

    Bineng Zhong

    Full Text Available To achieve effective visual tracking, a robust feature representation composed of two separate components (i.e., feature learning and selection for an object is one of the key issues. Typically, a common assumption used in visual tracking is that the raw video sequences are clear, while real-world data is with significant noise and irrelevant patterns. Consequently, the learned features may be not all relevant and noisy. To address this problem, we propose a novel visual tracking method via a point-wise gated convolutional deep network (CPGDN that jointly performs the feature learning and feature selection in a unified framework. The proposed method performs dynamic feature selection on raw features through a gating mechanism. Therefore, the proposed method can adaptively focus on the task-relevant patterns (i.e., a target object, while ignoring the task-irrelevant patterns (i.e., the surrounding background of a target object. Specifically, inspired by transfer learning, we firstly pre-train an object appearance model offline to learn generic image features and then transfer rich feature hierarchies from an offline pre-trained CPGDN into online tracking. In online tracking, the pre-trained CPGDN model is fine-tuned to adapt to the tracking specific objects. Finally, to alleviate the tracker drifting problem, inspired by an observation that a visual target should be an object rather than not, we combine an edge box-based object proposal method to further improve the tracking accuracy. Extensive evaluation on the widely used CVPR2013 tracking benchmark validates the robustness and effectiveness of the proposed method.

  1. Dual-Axis Solar Tracking System for Maximum Power Production in ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: The power developed in a solar energy system depends fundamentally upon the ... for power generation. ... determined because they are functions of the solar angles that ..... able to withstand the weight and the blowing wind.

  2. Deformation mechanisms of a porous structure of the poly(ethylene terephthalate) nuclear track membrane

    International Nuclear Information System (INIS)

    Ovchinnikov, V.V.

    1989-01-01

    The deformation mechanisms of a porous structure of the nuclear track membrane made of poly(ethylene terephthalate) are investigated in the temperature range from 333 to 473 K. It is shown that the pore size of the membrane can both decrease and increase. The analytical equation based on the Alfrey mechanical approach to the relaxation deformation of polymers describes the experimental data satisfactorily over the whole range of temperatures and pore radii of the membranes. 21 refs.; 5 figs.; 3 tabs

  3. Design and Development of Mechanical Structure and Control System for Tracked Trailing Mobile Robot

    OpenAIRE

    Hongchuan Xu; Jianxing Ren; Rui Zhu; Zhiwei Chen

    2013-01-01

    Along with the science and technology unceasing progress, the uses of tracing robots become more and more widely. Tracked tracing robot was adopted as the research object in this paper, mechanical structure and control system of robot was designed and developmented. In mechanical structure design part, structure designed and positioned  were completed, including design of robot body, wheel, underpan, transmission structure and the positioning of batteries, control panel, sensors, etc, and the...

  4. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    Science.gov (United States)

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  5. Usefulness of the Pain Tracking Technique in Acute Mechanical Low Back Pain

    Directory of Open Access Journals (Sweden)

    Tania Bravo Acosta

    2015-01-01

    Full Text Available Objective. To evaluate the usefulness of the pain tracking technique in acute mechanical low back pain. Method. We performed an experimental prospective (longitudinal explanatory study between January 2011 and September 2012. The sample was randomly divided into two groups. Patients were assessed at the start and end of the treatment using the visual analogue scale and the Waddell test. Treatment consisted in applying the pain tracking technique to the study group and interferential current therapy to the control group. At the end of treatment, cryotherapy was applied for 10 minutes. The Wilcoxon signed-rank test and the Mann Whitney test were used. They were performed with a predetermined significance level of p≤0.05. Results. Pain was triggered by prolonged static posture and intense physical labor and intensified through trunk movements and when sitting and standing. The greatest relief was reported in lateral decubitus position and in William’s position. The majority of the patients had contracture. Pain and disability were modified with the rehabilitation treatment in both groups. Conclusions. Both the pain tracking and interferential current techniques combined with cryotherapy are useful treatments for acute mechanical low back pain. The onset of analgesia is faster when using the pain tracking technique.

  6. Mount for continuously orienting a collector dish in a system adapted to perform both diurnal and seasonal solar tracking

    Science.gov (United States)

    Brantley, L. W., Jr.; Lawson, B. D. (Inventor)

    1977-01-01

    A collector dish is continuously oriented toward the sun in a system adapted to perform both diurnal and seasonal solar tracking. The mount is characterized by a rigid, angulated axle having a linear midportion supporting a collector dish, and oppositely extended end portions normally related to the midportion of the axle and received in spaced journals. The longitudinal axis of symmetry for the midportion of the axle is coincident with a seasonal axis while the axes of the journals are coincident with a diurnal axis paralleling the earth's polar axis. Drive means are provided for periodically displacing the axle about the diurnal axis at a substantially constant rate, while other drive means are provided for periodically indexing the dish through 1 deg about the seasonal axis whereby the position of the dish relative to the axle is varied for accommodating seasonal tracking as changes in the angle of inclination of the polar axis occurs.

  7. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    Science.gov (United States)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  8. Cu2ZnSnS4 solar cells: Physics and technology by alternative tracks

    DEFF Research Database (Denmark)

    Crovetto, Andrea

    things: i) alternative solar absorbers (notably, Cu2SnS3) that are chemically related to CZTS and that have similar selling points; ii) other materials included in the device stack of CZTS solar cells. Here I list what I believe the main highlights of my work are. First, we achieve the highest reported...... power conversion eciency (5.2%) for a CZTS solar cell using pulsed laser deposition as a fabrication method for CZTS precursors. This is thanks to to joint work of PhD student Andrea Cazzaniga, PhD student Chang Yan (University of New South Wales, Australia) and myself. Perhaps more importantly, we...... finally understand, albeit very roughly, the "rules of the game" for successful pulsed laser deposition of high-quality chalcogenide precursors for solar cells. This kind of understanding is not evident in the existing literature and is mostly the result of the work of PhD student Andrea Cazzaniga. Second...

  9. Unsteady flow challenges tracking performance at vortex shedding frequencies without disrupting lift mechanisms

    Science.gov (United States)

    Matthews, Megan; Sponberg, Simon

    2017-11-01

    Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.

  10. Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Popovich, V.A.

    2013-01-01

    Due to pressure from the photovoltaic industry to decrease the cost of solar cell production, there is a tendency to reduce the thickness of silicon wafers. Unfortunately, wafers contain defects created by the various processing steps involved in solar cell production, which significantly reduce the

  11. Consumer sleep tracking devices: a review of mechanisms, validity and utility.

    Science.gov (United States)

    Kolla, Bhanu Prakash; Mansukhani, Subir; Mansukhani, Meghna P

    2016-05-01

    Consumer sleep tracking devices such as fitness trackers and smartphone apps have become increasingly popular. These devices claim to measure the sleep duration of their users and in some cases purport to measure sleep quality and awaken users from light sleep, potentially improving overall sleep. Most of these devices appear to utilize data generated from in-built accelerometers to determine sleep parameters but the exact mechanisms and algorithms are proprietary. The growing literature comparing these devices against polysomnography/actigraphy shows that they tend to underestimate sleep disruptions and overestimate total sleep times and sleep efficiency in normal subjects. In this review, we evaluate the current literature comparing the accuracy of consumer sleep tracking devices against more conventional methods used to measure sleep duration and quality. We discuss the current technology that these devices utilize as well as summarize the value of these devices in clinical evaluations and their potential limitations.

  12. 太阳时单轴跟踪光伏电池位置控制器%Single-axis Tracking Solar Time Photovoltaic Position Controller

    Institute of Scientific and Technical Information of China (English)

    赵爱明; 田雷雷; 陈宝远; 黄旭

    2012-01-01

    针对现有太阳能光伏系统发电效率低的缺陷,根据太阳能板的发电机理,采用太阳时跟踪控制的方法以及跟踪误差的加权补偿算法,建立了日时跟踪算法的数学模型;并根据数学模型,设计制作了单轴跟踪控制系统,通过模拟实验测试,该装置可提高太阳能利用率30%.%To remedy the defect of low power generation efficiency in existing solar energy photovoltaic systems , we applied the power generation principle of solar panel, taking the method of solar time tracking control and the weighted compensation of the tracking error, and established a mathematical model of solar time tracking algorithm. By which, we made a uniaxial tracking control system. Through the simulation test, this equipment can improve the utilization rate of solar energy by 30%.

  13. Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino

    Science.gov (United States)

    Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.

    2018-05-01

    the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.

  14. Solar radiation - to - power generation models for one-axis tracking PV system with on-site measurements from Eskisehir, Turkey

    Science.gov (United States)

    Filik, Tansu; Başaran Filik, Ümmühan; Nezih Gerek, Ömer

    2017-11-01

    In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV) panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey) region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times), which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general) characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.

  15. The stellar and solar tracking system of the Geneva Observatory gondola

    Science.gov (United States)

    Huguenin, D.

    1974-01-01

    Sun and star trackers have been added to the latest version of the Geneva Observatory gondola. They perform an image motion compensation with an accuracy of plus or minus 1 minute of arc. The structure is held in the vertical position by gravity; the azimuth is controlled by a torque motor in the suspension bearing using solar or geomagnetic references. The image motion compensation is performed by a flat mirror, located in front of the telescope, controlled by pitch and yaw servo-loops. Offset pointing is possible within the solar disc and in a 3 degree by 3 degree stellar field. A T.V. camera facilitates the star identification and acquisition.

  16. [U.S. renewable fuel standard implementation mechanism and market tracking].

    Science.gov (United States)

    Kang, Liping; Earley, Robert; An, Feng; Zhang, Yu

    2013-03-01

    U.S. Renewable Fuel Standard (RFS) is a mandatory policy for promoting the utilization of biofuels in road transpiration sector in order to reduce the country's dependency on foreign oil and greenhouse gas emissions. U.S. Environmental Protection Agency (EPA) defines the proportion of renewable fuels according to RFS annual target, and requests obligated parties such like fossil fuel refiner, blenders and importer in the U.S. to complete Renewable Volume Obligation (RVO) every year. Obligated parties prove they have achieved their RVO through a renewable fuels certification system, which generates Renewable Identification Numbers (RINs) for every gallon of qualified renewable fuels produced or imported into U.S., RINs is a key for tracking renewable fuel consumption, which in turn is a key for implementing the RFS in the U.S., separated RINs can be freely traded in market and obligated parties could fulfill their RVO through buying RINs from other stakeholders. This briefing paper highlights RFS policy implementing mechanism and marketing tracking, mainly describes importance of RINs, and the method for generating and tracking RINs by both government and fuels industry participants.

  17. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  18. Improvement of maximum power point tracking perturb and observe algorithm for a standalone solar photovoltaic system

    International Nuclear Information System (INIS)

    Awan, M.M.A.; Awan, F.G.

    2017-01-01

    Extraction of maximum power from PV (Photovoltaic) cell is necessary to make the PV system efficient. Maximum power can be achieved by operating the system at MPP (Maximum Power Point) (taking the operating point of PV panel to MPP) and for this purpose MPPT (Maximum Power Point Trackers) are used. There are many tracking algorithms/methods used by these trackers which includes incremental conductance, constant voltage method, constant current method, short circuit current method, PAO (Perturb and Observe) method, and open circuit voltage method but PAO is the mostly used algorithm because it is simple and easy to implement. PAO algorithm has some drawbacks, one is low tracking speed under rapid changing weather conditions and second is oscillations of PV systems operating point around MPP. Little improvement is achieved in past papers regarding these issues. In this paper, a new method named 'Decrease and Fix' method is successfully introduced as improvement in PAO algorithm to overcome these issues of tracking speed and oscillations. Decrease and fix method is the first successful attempt with PAO algorithm for stability achievement and speeding up of tracking process in photovoltaic system. Complete standalone photovoltaic system's model with improved perturb and observe algorithm is simulated in MATLAB Simulink. (author)

  19. CSIR’s single axis tracking solar PV plant performance analysis

    CSIR Research Space (South Africa)

    Simelane, Sengiphile N

    2017-06-01

    Full Text Available on expanding the energy system in order to meet demand while becoming less carbon intensive. This paper describes CSIR's initiative in addressing these concerns. This is achieved by making the campus energy autonomous by supplying power from solar, wind...

  20. Solar Market Analytics, Roadmapping, and Tracking NY (SMART NY) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Case, Tria [City University of New York; Reilly, Laurie [City University of New York; Kling, Alison [Con Edison, formerly City University of New York

    2014-05-15

    This is the final report, including links to Working Group reports and an attached Working Group report for SunShot Initiative Rooftop Solar Challenge I, from Sustainable CUNY of the City University of New York, on behalf of New York City

  1. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen; Wang, Xudong; Wang, Zhong Lin

    2009-01-01

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies

  2. Control of Hyperbolic Heat Transfer Mechanisms Application to the Distributed Concentrated Solar Collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2017-04-01

    This dissertation addresses the flow control problem in hyperbolic heat transfer mechanisms. It raises in concentrated distributed solar collectors to enhance their production efficiency under the unpredictable variations of the solar energy and the external disturbances. These factors which are either locally measured (the solar irradiance) or inaccessible for measurement (the collectors’ cleanliness) affect the source term of the distributed model and represent a major difficulty for the control design. Moreover, the temperature in the collector can only be measured at the boundaries. In this dissertation, we propose new adaptive control approaches to provide the adequate level of heat while coping with the unpredictable varying disturbances. First, we design model based control strategies for a better efficiency, in terms of accuracy and response time, with a relatively reduced complexity. Second, we enhance the controllers with on-line adaptation laws to continuously update the efficient value of the external conditions. In this study, we approach the control problem using both, the infinite dimensional model (late lumping) and a finite dimensional approximate representation (early lumping). For the early lumping approach, we introduce a new reduced order bilinear approximate model for system analysis and control design. This approximate state representation is then used to derive a nonlinear state feedback resorting to Lyapunov stability theory. To compensate for the external disturbances and the approximation uncertainties, an adaptive controller is developed based on a phenomenological representation of the system dynamics. For the late lumping approach, we propose two PDE based controllers by stabilization of the reference tracking error distributed profile. The control laws are explicitly defined as functions of the available measurement. The first one is obtained using a direct approach for error stabilization while the second one is derived through a

  3. Effect of silicon solar cell processing parameters and crystallinity on mechanical strength

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, V.A.; Yunus, A.; Janssen, M.; Richardson, I.M. [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); Bennett, I.J. [Energy Research Centre of the Netherlands, Solar Energy, PV Module Technology, Petten (Netherlands)

    2011-01-15

    Silicon wafer thickness reduction without increasing the wafer strength leads to a high breakage rate during subsequent handling and processing steps. Cracking of solar cells has become one of the major sources of solar module failure and rejection. Hence, it is important to evaluate the mechanical strength of solar cells and influencing factors. The purpose of this work is to understand the fracture behavior of silicon solar cells and to provide information regarding the bending strength of the cells. Triple junctions, grain size and grain boundaries are considered to investigate the effect of crystallinity features on silicon wafer strength. Significant changes in fracture strength are found as a result of metallization morphology and crystallinity of silicon solar cells. It is observed that aluminum paste type influences the strength of the solar cells. (author)

  4. Design of the Mechanical Components of a Dual Axis Solar Tracker

    OpenAIRE

    Romero Llanas, Amador

    2013-01-01

    This work is about the design of a solar tracker with the objective of following the sun throughout the day. In order to achieve that objective, the solar tracker has two degrees of freedom. The different mechanical components necessary to build the structure has been designed, calculated and verified. Apart from that, the whole structure has been drawn using the 3D mechanical CAD program SolidWorks. The plans have been drawn too.

  5. Mechanical integration of the detector components for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Vasylyev, Oleg; Niebur, Wolfgang [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter experiment (CBM) at FAIR is designed to explore the QCD phase diagram in the region of high net-baryon densities. The central detector component, the Silicon Tracking System (STS) is based on double-sided micro-strip sensors. In order to achieve the physics performance, the detector mechanical structures should be developed taking into account the requirements of the CBM experiments: low material budget, high radiation environment, interaction rates, aperture for the silicon tracking, detector segmentation and mounting precision. A functional plan of the STS and its surrounding structural components is being worked out from which the STS system shape is derived and the power and cooling needs, the connector space requirements, life span of components and installation/repair aspects are determined. The mechanical integration is at the point of finalizing the design stage and moving towards production readiness. This contribution shows the current processing state of the following engineering tasks: construction space definition, carbon ladder shape and manufacturability, beam-pipe feedthrough structure, prototype construction, cable routing and modeling of the electronic components.

  6. On the track of gravity modes: study of the dynamics of the solar core

    International Nuclear Information System (INIS)

    Mathur, Savita

    2007-01-01

    This thesis is dedicated to the study of the dynamics of the solar radiative zone through gravity modes. Though the core represents more than 50% of the solar mass, we still do not have an accurate vision of the rotation profile in the very inner part of the Sun. To understand the evolution of stars, we try to put constraints on dynamic processes. Several paths have been followed in this thesis to tackle this issue: solar modeling, the study of a new instrument, observations and inversions of the rotation. The necessity of the detection of gravity modes is driven by the will for a better comprehension of the solar dynamics. With a technological prototype built at the CEA (GOLF-NG), we want to validate a few technical points and prepare the scientific mission which aim will be to detect these gravity modes. We studied first the photodetector and then the whole instrument response. We show the feasibility of the instrument. The observation of the resonance in all the channels proves that it works the way we expected. However, before this mission takes place, the analysis of GOLF data enabled us to detect one gravity-mode candidate as well as the signature of dipole gravity modes. This work benefited from a more theoretical approach on the prediction of gravity-mode frequencies. We show the influence of several physical processes and quantities. Finally, as the dynamical processes in the Sun are not well constrained, we tried to understand the impact of the introduction of one and several gravity modes on the inferred rotation profiles. We also tried to give constraints on the observations so that we could obtain some information on the rotation profile in the core. (author) [fr

  7. Differences between the CME fronts tracked by an expert, an automated algorithm, and the Solar Stormwatch project

    Science.gov (United States)

    Barnard, L.; Scott, C. J.; Owens, M.; Lockwood, M.; Crothers, S. R.; Davies, J. A.; Harrison, R. A.

    2015-10-01

    Observations from the Heliospheric Imager (HI) instruments aboard the twin STEREO spacecraft have enabled the compilation of several catalogues of coronal mass ejections (CMEs), each characterizing the propagation of CMEs through the inner heliosphere. Three such catalogues are the Rutherford Appleton Laboratory (RAL)-HI event list, the Solar Stormwatch CME catalogue, and, presented here, the J-tracker catalogue. Each catalogue uses a different method to characterize the location of CME fronts in the HI images: manual identification by an expert, the statistical reduction of the manual identifications of many citizen scientists, and an automated algorithm. We provide a quantitative comparison of the differences between these catalogues and techniques, using 51 CMEs common to each catalogue. The time-elongation profiles of these CME fronts are compared, as are the estimates of the CME kinematics derived from application of three widely used single-spacecraft-fitting techniques. The J-tracker and RAL-HI profiles are most similar, while the Solar Stormwatch profiles display a small systematic offset. Evidence is presented that these differences arise because the RAL-HI and J-tracker profiles follow the sunward edge of CME density enhancements, while Solar Stormwatch profiles track closer to the antisunward (leading) edge. We demonstrate that the method used to produce the time-elongation profile typically introduces more variability into the kinematic estimates than differences between the various single-spacecraft-fitting techniques. This has implications for the repeatability and robustness of these types of analyses, arguably especially so in the context of space weather forecasting, where it could make the results strongly dependent on the methods used by the forecaster.

  8. Modern plastic solar cells : materials, mechanisms and modeling

    NARCIS (Netherlands)

    Chiechi, Ryan C.; Havenith, Remco W.A.; Hummelen, Jan C.; Koster, L. Jan Anton; Loi, Maria A.

    2013-01-01

    We provide a short review of modern 'plastic' solar cells, a broad topic that spans materials science, physics, and chemistry. The aim of this review is to provide a primer for non-experts or researchers in related fields who are curious about this rapidly growing field of interdisciplinary

  9. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells

    Science.gov (United States)

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-11-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.

  10. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  11. Quiescent and Eruptive Prominences at Solar Minimum: A Statistical Study via an Automated Tracking System

    Science.gov (United States)

    Loboda, I. P.; Bogachev, S. A.

    2015-07-01

    We employ an automated detection algorithm to perform a global study of solar prominence characteristics. We process four months of TESIS observations in the He II 304Å line taken close to the solar minimum of 2008-2009 and mainly focus on quiescent and quiescent-eruptive prominences. We detect a total of 389 individual features ranging from 25×25 to 150×500 Mm2 in size and obtain distributions of many of their spatial characteristics, such as latitudinal position, height, size, and shape. To study their dynamics, we classify prominences as either stable or eruptive and calculate their average centroid velocities, which are found to rarely exceed 3 km/s. In addition, we give rough estimates of mass and gravitational energy for every detected prominence and use these values to estimate the total mass and gravitational energy of all simultaneously existing prominences (1012 - 1014 kg and 1029 - 1031 erg). Finally, we investigate the form of the gravitational energy spectrum of prominences and derive it to be a power-law of index -1.1 ± 0.2.

  12. Application of one-axis sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Sefa, Ibrahim; Demirtas, Mehmet; Colak, Ilhami [Gazi University, Faculty of Technical Education, Department of Electrical Education, GEMEC-Gazi Electric Machines and Control Group, Ankara (Turkey)

    2009-11-15

    This paper introduces design and application of a novel one-axis sun tracking system which follows the position of the sun and allows investigating effects of one-axis tracking system on the solar energy in Turkey. The tracking system includes a serial communication interface based on RS 485 to monitor whole processes on a computer screen and to plot data as graphic. In addition, system parameters such as the current, the voltage and the panel position have been observed by means of a microcontroller. The energy collected is measured and compared with a fixed solar system for the same solar panel. The results show that the solar energy collected on the tracking system is considerably much efficient than the fixed system. The tracking system developed in this study provides easy installation, simple mechanism and less maintenance. (author)

  13. Application of one-axis sun tracking system

    International Nuclear Information System (INIS)

    Sefa, Ibrahim; Demirtas, Mehmet; Colak, Ilhami

    2009-01-01

    This paper introduces design and application of a novel one-axis sun tracking system which follows the position of the sun and allows investigating effects of one-axis tracking system on the solar energy in Turkey. The tracking system includes a serial communication interface based on RS 485 to monitor whole processes on a computer screen and to plot data as graphic. In addition, system parameters such as the current, the voltage and the panel position have been observed by means of a microcontroller. The energy collected is measured and compared with a fixed solar system for the same solar panel. The results show that the solar energy collected on the tracking system is considerably much efficient than the fixed system. The tracking system developed in this study provides easy installation, simple mechanism and less maintenance.

  14. Mechanical engineering and design of silicon-based particle tracking devices

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Gamble, M.T.; Reid, R.S.; Woloshun, K.A.; Dransfield, G.D.; Ziock, H.J.

    1990-01-01

    The Mechanical Engineering and Electronics Division of the Los Alamos National Laboratory has been investigating silicon-based particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, thermal, and materials issues have been addressed. This paper discussed detector structural integrity and stability, including detailed finite element models of the silicon chip support and predictive methods used in designing with advanced composite materials. Electronic thermal loading and efficient dissipation of such energy using heat pipe technology has been investigated. The use of materials whose coefficients of thermal expansion are engineered to match silicon or to be near zero, as appropriate, have been explored. Material analysis and test results from radiation, chemical, and static loading are compared with analytical predictions and discussed. 1 ref., 2 figs., 1 tab

  15. Discussion of mechanical design for pressured cavity-air-receiver in solar power tower system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhilin; Zhang, Yaoming; Liu, Deyou; Wang, Jun; Liu, Wei [Hohai Univ., Nanjing (China). New Materials and Energy Sources Research and Exploitation Inst.

    2008-07-01

    In 2005, Hohai university and Nanjing Chunhui science and technology Ltd. of China, cooperating with Weizmann Institute of Science and EDIG Ltd. of Israel, built up a 70kWe solar power tower test plant in Nanjing, Jiangsu province, China, which was regarded as the first demonstration project to demonstrate the feasibility of solar power tower system in China. The system consists of heliostats field providing concentrated sunlight, a solar tower with a height of 33 meter, a pressured cavity-air-receiver transforming solar energy to thermal energy, a modified gas turbine adapting to solar power system, natural gas subsystem for solar-hybrid generation, cooling water subsystem for receiver and CPC, controlling subsystem for whole plant, et al. In this system, air acts as actuating medium and the system works in Brayton cycle. Testing results show that solar power tower system is feasible in China. To promote the development of solar powered gas turbine system and the pressured cavity-air-receiver technology in China, it is necessary to study the mechanical design for pressured Cavity-air-receiver. Mechanical design of pressured cavity-air-receiver is underway and some tentative principles for pressured cavity-air-receiver design, involving in power matching, thermal efficiency, material choosing, and equipment security and machining ability, are presented. At the same time, simplified method and process adapted to engineering application for the mechanical design of pressured cavity-air-receiver are discussed too. Furthermore, some design parameters and appearance of a test sample of pressured cavity-air-receiver designed in this way is shown. It is appealed that, in China, the research in this field should be intensified and independent knowledge patents for pivotal technological equipments such as receiver in solar power tower system should be formed. (orig.)

  16. Tracking a Solar Wind Dynamic Pressure Pulses' Impact Through the Magnetosphere Using the Heliophysics System Observatory

    Science.gov (United States)

    Vidal-Luengo, S.; Moldwin, M.

    2017-12-01

    During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed "cavity" and reacts to solar wind dynamic pressure pulses more simply than during southward IMF conditions. Effects of solar wind dynamic pressure have been observed as geomagnetic lobe compressions depending on the characteristics of the pressure pulse and the spacecraft location. One of the most important aspects of this study is the incorporation of simultaneous observations by different missions, such as WIND, CLUSTER, THEMIS, MMS, Van Allen Probes and GOES as well as magnetometer ground stations that allow us to map the magnetosphere response at different locations during the propagation of a pressure pulse. In this study we used the SYM-H as an indicator of dynamic pressure pulses occurrence from 2007 to 2016. The selection criteria for events are: (1) the increase in the index must be bigger than 10 [nT] and (2) the rise time must be in less than 5 minutes. Additionally, the events must occur under northward IMF and at the same time at least one spacecraft has to be located in the magnetosphere nightside. Using this methodology we found 66 pressure pulse events for analysis. Most of them can be classified as step function pressure pulses or as sudden impulses (increase followed immediately by a decrease of the dynamic pressure). Under these two categories the results show some systematic signatures depending of the location of the spacecraft. For both kind of pressure pulse signatures, compressions are observed on the dayside. However, on the nightside compressions and/or South-then-North magnetic signatures can be observed for step function like pressure pulses, meanwhile for the sudden impulse kind of pressure pulses the magnetospheric response seems to be less global and more dependent on the local conditions.

  17. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  18. Mechanical stability of roll-to-roll printed solar cells under cyclic bending and torsion

    DEFF Research Database (Denmark)

    Finn, Mickey; Martens, Christian James; Zaretski, Aliaksandr V.

    2018-01-01

    The ability of printed organic solar cells (OSCs) to survive repeated mechanical deformation is critical to large-scale implementation. This paper reports an investigation into the mechanical stability of OSCs through bending and torsion testing of whole printed modules. Two types of modules...

  19. ULF Wave Activity in the Magnetosphere: Resolving Solar Wind Interdependencies to Identify Driving Mechanisms

    Science.gov (United States)

    Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.

    2018-04-01

    Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bzstill account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.

  20. Carrier loss mechanisms in textured crystalline Si-based solar cells

    OpenAIRE

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-01-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the optical and physical limiting factors of the state-of-the-art solar cells with ~20% efficiencies have been revealed. In the established method, the carrier loss mechanisms are characterized from the external quantum efficiency (EQE) analysis with very low computational cost. In particula...

  1. Study on Two-segment Electric-mechanical Composite Braking Strategy of Tracked Vehicle Hybrid Transmission System

    OpenAIRE

    Ma, Tian; Gai, Jiangtao; Ma, Xiaofeng

    2010-01-01

    In order to lighten abrasion of braking system of hybrid electric tracked vehicle, according to characteristic of hybrid electric transmission, electric-mechanical composite braking method was proposed. By means of analyzing performance of electric braking and mechanical braking and three-segment composite braking strategy, two-segment electric-mechanical composite braking strategy was put forward in this paper. Simulation results of Matlab/Simulink indicated that the two-segment electric-mec...

  2. Mechanism on radiation degradation of Si space solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Hisamatsu, Tadashi; Matsuda, Sumio

    1998-01-01

    Radiation testing of Si n + -p-p + structure space solar cells has revealed an anomalous increase in short-circuit current Isc, followed by an abrupt decrease and cell failure, induced by high fluence electron and proton irradiations. A model to explain these phenomena by expressing the change in carrier concentration p of the base region is proposed in addition to the well-known model where Isc is decreased by minority-carrier lifetime reduction with irradiation. Change in carrier concentration causes broadening the depletion layer to contribute increase in the generated photocurrent and increase in recombination-generation current in the depletion layer, and increase in the resistivity of the base layer to result in the abrupt decrease of Isc and failure of the solar cell. Type conversion from p-type to n-type in base layer has been confirmed by EBIC (electron-beam induced current) and spectral response measurements. Moreover, origins of radiation-induced defects in heavily irradiated Si and generation of deep donor defects have also been examined by using DLTS (deep level transient spectroscopy) analysis. (author)

  3. Magnetic solar and economic cycles: mechanism of close connection

    Directory of Open Access Journals (Sweden)

    Vladimir Alekseyevich Belkin

    2013-03-01

    Full Text Available In the article on extensivestatistical material over long periods of timeshows therelationship of the magneticradiation from thesun cycles and cycles of key macroeconomic indicators, namely, GDP, the level of stagflation (an index print including seasonal cycles, the cycles Kuznets and Kondratieff cycles. The authorexplains this relationship on the basis of theresults of scientificexperimentsconducted by the Institute of Space Research of the Russian Academy of Sciences. As a result of these experiments a negative effect of magnetic storms on the mental and physical well-being, which, as the author shows, leads to decrease in labor productivity and gross domestic product has been proved. Therefore, cyclic geomagnetic disturbances are the main cause of cyclicity of main economic indicators. Thus, it is possible to develop economic forecasts based on astrophysical predictions of solar activity and geomagnetic disturbances. The author has developed some of them. Identifying strong direct relationship of long waves of stagflation in the U.S. and long (large cycles of solar activity, and the identification of a strong geomagnetic feedback seasonal and economic cycles in the U.S. economy, and Russia are considered to be the scientific innovation of the article.

  4. TURBULENT DYNAMICS IN SOLAR FLARE SHEET STRUCTURES MEASURED WITH LOCAL CORRELATION TRACKING

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D. E., E-mail: mckenzie@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)

    2013-03-20

    High-resolution observations of the Sun's corona in extreme ultraviolet and soft X-rays have revealed a new world of complexity in the sheet-like structures connecting coronal mass ejections (CMEs) to the post-eruption flare arcades. This article presents initial findings from an exploration of dynamic flows in two flares observed with Hinode/XRT and SDO/AIA. The flows are observed in the hot ({approx}> 10 MK) plasma above the post-eruption arcades and measured with local correlation tracking. The observations demonstrate significant shears in velocity, giving the appearance of vortices and stagnations. Plasma diagnostics indicate that the plasma {beta} exceeds unity in at least one of the studied events, suggesting that the coronal magnetic fields may be significantly affected by the turbulent flows. Although reconnection models of eruptive flares tend to predict a macroscopic current sheet in the region between the CME and the flare arcade, it is not yet clear whether the observed sheet-like structures are identifiable as the current sheets or 'thermal halos' surrounding the current sheets. Regardless, the relationship between the turbulent motions and the embedded magnetic field is likely to be complicated, involving dynamic fluid processes that produce small length scales in the current sheet. Such processes may be crucial for triggering, accelerating, and/or prolonging reconnection in the corona.

  5. Kinetics and mechanism of the formation and etching of particle tracks in polyethylene-terephthalate

    International Nuclear Information System (INIS)

    Lueck, H.B.

    1982-05-01

    The physical and chemical processes initiated by a particle passing through a polymer are reviewed. Particular attention is devoted to the processes in PETP. The influence of the material parameters and environmental effects on the subsequent reactions in PETP is discussed. Models of the mechanism and kinetics of the alkaline degradation on the surface and in the etch channel are presented. The character and the effect of the relevant species has been taken into consideration. The mechanism of the photo-oxidative sensitivity enhancement is discussed. The models mentioned above are taken as a basis to interpret the empirical response function. It is shown, that the response function can be applied to bulk-irradiated polymers as well. Treeing in electrically stressed particle tracks assisted by an etchant can be attributed to the electrostatic pressure. However, the differences in the behaviour of the structures give evidence, that the formation of craze structures and bubbles in the presence of a nonetching electrolyte is the result of the electroosmotic pressure. (author)

  6. Thermal and mechanical damping of solar p-modes

    International Nuclear Information System (INIS)

    Goldreich, P.; Kumar, P.

    1991-01-01

    Nonadiabatic effects associated with the transfer of energy and with turbulent stresses add small imaginary parts, ω-i(1) and ω-i(2), to solar p-mode eigenfrequencies. Numerical calculations have shown that these quite different processes make comparable contributions to ω-i at frequencies well below the acoustic cutoff at ω-ac. Analytic expressions are derived which reveal the connection between ω-i(1) and ω-i(2). The estimates yield ω-i proportional to omega exp 8 for omega much less than omega-ac in good agreement with the numerical calculations. However, the observed line width is proportional to omega exp 4.2 at low frequencies. It is suspected that there is an unmodeled component of perturbed convective energy transport or of turbulent viscosity that makes an important contribution to ω-i at omega much less than ω-ac. 8 refs

  7. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-05

    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  8. The influence of parachute-resisted sprinting on running mechanics in collegiate track athletes.

    Science.gov (United States)

    Paulson, Sally; Braun, William A

    2011-06-01

    The influence of parachute-resisted sprinting on running mechanics in collegiate track athletes. The aim of this investigation was to compare the acute effects of parachute-resisted (PR) sprinting on selected kinematic variables. Twelve collegiate sprinters (mean age 19.58 ± 1.44 years, mass 69.32 ± 14.38 kg, height 1.71 ± 9.86 m) ran a 40-yd dash under 2 conditions: PR sprint and sprint without a parachute (NC) that were recorded on a video computer system (60 Hz). Sagittal plane kinematics of the right side of the body was digitized to calculate joint angles at initial ground contact (IGC) and end ground contact (EGC), ground contact (GC) time, stride rate (SR), stride length (SL), and the times of the 40-yd dashes. The NC 40-yd dash time was significantly faster than the PR trial (p 0.05). This study suggests that PR sprinting does not acutely affect GC time, SR, SL and upper extremity or lower extremity joint angles during weight acceptance (IGC) in collegiate sprinters. However, PR sprinting increased shoulder flexion by 23.5% at push-off and decreased speed by 4.4%. While sprinting with the parachute, the athlete's movement patterns resembled their mechanics during the unloaded condition. This indicates the external load caused by PR did not substantially overload the runner, and only caused a minor change in the shoulder during push-off. This sports-specific training apparatus may provide coaches with another method for training athletes in a sports-specific manner without causing acute changes to running mechanics.

  9. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate

    OpenAIRE

    Dong, Buwen; Sutton, Rowan T.; Woollings, Tim; Hodges, Kevin

    2013-01-01

    The summertime variability of the extratropical storm track over the Atlantic sector and its links to European climate have been analysed for the period 1948–2011 using observations and reanalyses. The main results are as follows. (1) The dominant mode of the summer storm track density variability is characterized by a meridional shift of the storm track between two distinct paths and is related to a bimodal distribution in the climatology for this region. It is also closely related to the Su...

  10. Procedural Learning and Associative Memory Mechanisms Contribute to Contextual Cueing: Evidence from fMRI and Eye-Tracking

    Science.gov (United States)

    Manelis, Anna; Reder, Lynne M.

    2012-01-01

    Using a combination of eye tracking and fMRI in a contextual cueing task, we explored the mechanisms underlying the facilitation of visual search for repeated spatial configurations. When configurations of distractors were repeated, greater activation in the right hippocampus corresponded to greater reductions in the number of saccades to locate…

  11. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen

    2009-04-29

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogenerator. Our study demonstrates a new approach for concurrently harvesting multiple types of energies using an integrated hybrid cell so that the energy resources can be effectively and complementary utilized whenever and wherever one or all of them is available. © 2009 American Chemical Society.

  12. Modelling of auctioning mechanism for solar photovoltaic capacity

    Science.gov (United States)

    Poullikkas, Andreas

    2016-10-01

    In this work, a modified optimisation model for the integration of renewable energy sources for power-generation (RES-E) technologies in power-generation systems on a unit commitment basis is developed. The purpose of the modified optimisation procedure is to account for RES-E capacity auctions for different solar photovoltaic (PV) capacity electricity prices. The optimisation model developed uses a genetic algorithm (GA) technique for the calculation of the required RES-E levy (or green tax) in the electricity bills. Also, the procedure enables the estimation of the level of the adequate (or eligible) feed-in-tariff to be offered to future RES-E systems, which do not participate in the capacity auctioning procedure. In order to demonstrate the applicability of the optimisation procedure developed the case of PV capacity auctioning for commercial systems is examined. The results indicated that the required green tax, in order to promote the use of RES-E technologies, which is charged to the electricity customers through their electricity bills, is reduced with the reduction in the final auctioning price. This has a significant effect related to the reduction of electricity bills.

  13. Mechanical design of a low cost parabolic solar dish concentrator

    Directory of Open Access Journals (Sweden)

    Hamza Hijazi

    2016-03-01

    Full Text Available The objective of this research was to design a low cost parabolic solar dish concentrator with small-to moderate size for direct electricity generation. Such model can be installed in rural areas which are not connected to governmental grid. Three diameters of the dish; 5, 10 and 20 m are investigated and the focal point to dish diameter ratio is set to be 0.3 in all studied cases. Special attention is given to the selection of the appropriate dimensions of the reflecting surfaces to be cut from the available sheets in the market aiming to reduce both cutting cost and sheets cost. The dimensions of the ribs and rings which support the reflecting surface are optimized in order to minimize the entire weight of the dish while providing the minimum possible total deflection and stresses in the beams. The study applies full stress analysis of the frame of the dish using Autodesk Inventor. The study recommends to use landscape orientation for the reflective facets and increase the ribs angle and the distance between the connecting rings. The methodology presented is robust and can be extended to larger dish diameters.

  14. 太阳能抽水泵的自动追光控制系统研究%The Automatic Tracking Control System about Pumps by Solar Energy

    Institute of Scientific and Technical Information of China (English)

    蔺金元; 剡文杰

    2012-01-01

    在西部偏远的农村,阳光充足,太阳能要比电能更容易获得,农业用水可以采用太阳能抽水泵。介绍了一种自动追光控制系统,可以用它来辅助抽水泵的太阳能供电系统,控制步进电机去带动太阳能电池板自动旋转,使电池板能够保持在太阳能转换效率最高的位置,能够使太阳能抽水泵更加充分利用太阳能资源。%In the western countryside,solar energy is sufficient,solar energy is obtained more easily than power.Agricultural water can use solar water pumps.An automatic tracking system which can automatically tracksolar is introduced in this paper.The system is used for pumps that have solar power supply systems,then the battery plate which is driven by the stepper motor can rotate according to the value of absorption power.Thus,the battery plate can be always in the position which is available to absorb maximum power.The solar energy water pump can use solar energy more fully by this system.

  15. Possible mechanism of solar noise storm generation in meter wavelength

    International Nuclear Information System (INIS)

    Genkin, L.G.; Erukhimov, L.M.; Levin, B.N.

    1989-01-01

    Fluctuation plasma mechanism of noise storm generation is proposed. The sporadic formation of density irregularities in plasma (Langmuir) turbulence region is shown to be the result of thermal stratification of plasma. The noise storm type 1 bursts in their typical parameters are like radio emission due to plasma turbulence conversion on this structures

  16. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  17. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    Science.gov (United States)

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  18. A novel experimental mechanics method for measuring the light pressure acting on a solar sail membrane

    Science.gov (United States)

    Shi, Aiming; Jiang, Li; Dowell, Earl H.; Qin, Zhixuan

    2017-02-01

    Solar sail is a high potential `sailing craft' for interstellar exploration. The area of the first flight solar sail demonstrator named "IKAROS" is 200 square meters. Future interplanetary missions will require solar sails at least on the order of 10000 square meters (or larger). Due to the limitation of ground facilities, the size of experimental sample should not be large. Furthermore the ground experiments have to be conducted in gravitational field, so the gravity effect must be considered in a ground test. To obtain insight into the solar sail membrane dynamics, a key membrane flutter (or limit cycle oscillations) experiment with light forces acting on it must be done. But one big challenge is calibrating such a tiny light force by as a function of the input power. In this paper, a gravity-based measuring method for light pressure acting on membrane is presented. To explain the experimental principle, an ideal example of a laser beam with expanders and a metal film is studied. Based on calculations, this experimental mechanics method for calibrating light pressure with an accuracy of 0.01 micro-Newton may be realized by making the light force balance the gravity force on the metal films. This gravity-based measuring method could not only be applied to study the dynamics characteristics of solar sail membrane structure with different light forces, but could also be used to determine more accurate light forces/loads acting on solar sail films and hence to enhance the determination of the mechanical properties of the solar sail membrane structure.

  19. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Mechanical vibration compensation method for 3D+t multi-particle tracking in microscopic volumes.

    Science.gov (United States)

    Pimentel, A; Corkidi, G

    2009-01-01

    The acquisition and analysis of data in microscopic systems with spatiotemporal evolution is a very relevant topic. In this work, we describe a method to optimize an experimental setup for acquiring and processing spatiotemporal (3D+t) data in microscopic systems. The method is applied to a three-dimensional multi-tracking and analysis system of free-swimming sperm trajectories previously developed. The experimental set uses a piezoelectric device making oscillate a large focal-distance objective mounted on an inverted microscope (over its optical axis) to acquire stacks of images at a high frame rate over a depth on the order of 250 microns. A problem arise when the piezoelectric device oscillates, in such a way that a vibration is transmitted to the whole microscope, inducing undesirable 3D vibrations to the whole set. For this reason, as a first step, the biological preparation was isolated from the body of the microscope to avoid modifying the free swimming pattern of the microorganism due to the transmission of these vibrations. Nevertheless, as the image capturing device is mechanically attached to the "vibrating" microscope, the resulting acquired data are contaminated with an undesirable 3D movement that biases the original trajectory of these high speed moving cells. The proposed optimization method determines the functional form of these 3D oscillations to neutralize them from the original acquired data set. Given the spatial scale of the system, the added correction increases significantly the data accuracy. The optimized system may be very useful in a wide variety of 3D+t applications using moving optical devices.

  1. 基于环境因素与模糊识别的太阳自动跟踪控制策略%Solar auto-tracking control strategy based on environmental factors and fuzzy identification

    Institute of Scientific and Technical Information of China (English)

    王林军; 门静; 许立晓; 张东; 邓煜; 吕耀平; 陈艳娟

    2015-01-01

    . Considering that the disadvantages of solar energy are ever-changing solar radiation direction and unstable solar energy, dish solar thermal power generation uses an auto-tracking system to improve the utilization ratio of solar energy for an solar automatic tracking system can keep the incident sunlight parallel to the collector. A dish solar thermal power generation system works out of doors, environmental factors have a great influence on the system’s running stability and tracking accuracy, and affects the choice of tracking mode. The auto-tracking modes can be classified into:program tracking mode, photoelectric tracking mode, and hybrid tracking mode. Program tracking mode uses a computer to calculate the sun’s azimuth and latitude, can work under all-weather condition, and has high adaptability, but it has a cumulative error in the tracking process. The photoelectric mode has higher tracking accuracy for it has feedback information. It works well in the sunny day, but bad weather (especially the rainy and cloudy day) has a serious effect on it. A solar auto-tracking system usually adopts a hybrid tracking mode which is a combination of the program tracking mode and the photoelectric mode. A photoelectric sensor, as the information feedback component of a control system, can modify the cumulative error of the procedure, the tracking system would track reliably in the complicated and changeable weather. These two tracking modes make up for each other, as a result, the tracking system’s precision and stability would be further improved and guaranteed. As an auto-tracking system works, the tracking mode changes as the intensity value reaches the intensity threshold, then the controller will choose a tracking mode automatically. Considering that the environmental factors affect the tracking system, this paper mainly analyses intensity, intensity change, and wind speed which have a serious effect on the system’s operational stability and tracking accuracy. It uses

  2. Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, J.; Kusano, K.; Inoue, S.; Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601 (Japan)

    2017-06-20

    In order to understand the flare trigger mechanism, we conduct three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles are imposed into the photospheric boundary of the Nonlinear Force-free Field model of Active Region (AR) NOAA 10930 on 2006 December 13, to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an AR, can effectively trigger a flare. These bipole fields can be classified into two groups based on their orientation relative to the polarity inversion line: the so-called opposite polarity, and reversed shear structures, as suggested by Kusano et al. We also investigate the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation, taking into account both the large-scale magnetic structure and small-scale magnetic disturbance (such as emerging fluxes), is a good way to discover a flare-producing AR, which can be applied to space weather prediction.

  3. Measurements and Simulations on the Mechanisms of Efficiency Losses in HIT Solar Cells

    Directory of Open Access Journals (Sweden)

    Silvio Pierro

    2015-01-01

    Full Text Available We study the electrical and the optical behavior of HIT solar cell by means of measurements and optoelectrical simulations by TCAD simulations. We compare the HIT solar cell with a conventional crystalline silicon solar cell to identify the strengths and weaknesses of the HIT technology. Results highlight different mechanisms of electrical and optical efficiency losses caused by the presence of the amorphous silicon layer. The higher resistivity of the a-Si layers implies a smaller distance between the metal lines that causes a higher shadowing. The worst optical coupling between the amorphous silicon and the antireflective coating implies a slight increase of reflectivity around the 600 nm wavelength.

  4. Mechanical design of a low concentration ratio solar array for a space station application

    Science.gov (United States)

    Biss, M. S.; Hsu, L.

    1983-01-01

    This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.

  5. TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Gibson, S. E., E-mail: lzh@umich.edu [NCAR/HAO, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2013-08-20

    Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make it timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier

  6. Research and application of devices for synchronously tracking the sun

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ming; Sun, Youhong; Wang, Qinghua; Wu, Xiaohan [Jilin Univ. Changchun (China). College of Construction Engineering

    2008-07-01

    This paper introduces a concept of apparent motion orbit of the sun, and put forward the theory of synchronous (linear) tracking the sun. Using solarium mechanism to trail the running path of solar hour angel, and using modified sine function framework to trace solar apparent declination path, and then connect these two mechanisms with linear transmission chain. More than 45%{proportional_to}122% electricity can be output by the synchronous tracking photovoltaic (PV) devices compare with those fixed PV ones with the same area between the spring equinox to the summer solstice. The 17m{sup 2} heat collector of synchronous tracking, its static wind-driven power consumption is less than 3.5W (0.2W/m{sup 2}), and the gale consumption is less than 7W(0.34W/m{sup 2}). The apparatus can be utilized widely in solar power, heating, lighting systems and other solar energy utilization. (orig.)

  7. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate

    International Nuclear Information System (INIS)

    Dong, Buwen; Sutton, Rowan T; Woollings, Tim; Hodges, Kevin

    2013-01-01

    The summertime variability of the extratropical storm track over the Atlantic sector and its links to European climate have been analysed for the period 1948–2011 using observations and reanalyses. The main results are as follows. (1) The dominant mode of the summer storm track density variability is characterized by a meridional shift of the storm track between two distinct paths and is related to a bimodal distribution in the climatology for this region. It is also closely related to the Summer North Atlantic Oscillation (SNAO). (2) A southward shift is associated with a downstream extension of the storm track and a decrease in blocking frequency over the UK and northwestern Europe. (3) The southward shift is associated with enhanced precipitation over the UK and northwestern Europe and decreased precipitation over southern Europe (contrary to the behaviour in winter). (4) There are strong ocean–atmosphere interactions related to the dominant mode of storm track variability. The atmosphere forces the ocean through anomalous surface fluxes and Ekman currents, but there is also some evidence consistent with an ocean influence on the atmosphere, and that coupled ocean–atmosphere feedbacks might play a role. The ocean influence on the atmosphere may be particularly important on decadal timescales, related to the Atlantic Multidecadal Oscillation (AMO). (letter)

  8. Exploring Transduction Mechanisms of Protein Transduction Domains (PTDs in Living Cells Utilizing Single-Quantum Dot Tracking (SQT Technology

    Directory of Open Access Journals (Sweden)

    Yasuhiro Suzuki

    2012-01-01

    Full Text Available Specific protein domains known as protein transduction domains (PTDs can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs, we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT, to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  9. Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas

    International Nuclear Information System (INIS)

    Dong, Yue

    2014-01-01

    This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling

  10. Solar project description for Zien Mechanical Contractors-I single family residence, Milwaukee, Wisconsin

    Science.gov (United States)

    Beers, D.

    1980-02-01

    The Zien Mechanical site is a single family residence located in Milwaukee, Wisconsin. The home has two separate solar energy systems: an air system for space heating and cooling; a liquid system to preheat the potable hot water. The space heating and cooling system design and operation modes are described. The space heating system is designed to apply approximately 44 percent of the space heating requirements for the 1388 square foot residence. Engineering drawings are provided and the performance evaluation instrumentation is described.

  11. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.

    Science.gov (United States)

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min

    2017-05-31

    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.

  12. Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors

    International Nuclear Information System (INIS)

    Daili, Yacine; Gaubert, Jean-Paul; Rahmani, Lazhar

    2015-01-01

    Highlights: • A new maximum power point tracking algorithm for small wind turbines is proposed. • This algorithm resolves the problems of the classical perturb and observe method. • The proposed method has been tested under several wind speed profiles. • The validity of the new algorithm has been confirmed by the experimental results. - Abstract: This paper proposes a modified perturbation and observation maximum power point tracking algorithm for small wind energy conversion systems to overcome the problems of the conventional perturbation and observation technique, namely rapidity/efficiency trade-off and the divergence from peak power under a fast variation of the wind speed. Two modes of operation are used by this algorithm, the normal perturbation and observation mode and the predictive mode. The normal perturbation and observation mode with small step-size is switched under a slow wind speed variation to track the true maximum power point with fewer fluctuations in steady state. When a rapid change of wind speed is detected, the algorithm tracks the new maximum power point in two phases: in the first stage, the algorithm switches to the predictive mode in which the step-size is auto-adjusted according to the distance between the operating point and the estimated optimum point to move the operating point near to the maximum power point rapidly, and then the normal perturbation and observation mode is used to track the true peak power in the second stage. The dc-link voltage variation is used to detect rapid wind changes. The proposed algorithm does not require either knowledge of system parameters or of mechanical sensors. The experimental results confirm that the proposed algorithm has a better performance in terms of dynamic response and efficiency compared with the conventional perturbation and observation algorithm

  13. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    Science.gov (United States)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  14. Protective mechanisms and acclimation to solar ultraviolet-b radiation in oenothera stricta. Final report

    International Nuclear Information System (INIS)

    Robberecht, R.; Caldwell, M.M.

    1981-12-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated

  15. HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Roussev, Ilia I. [Division of Geosciences, National Science Foundation Arlington, Virginia (United States); Schmieder, Brigitte, E-mail: leini@ynao.ac.cn [Observatoire de Paris, LESIA, Meudon (France)

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.

  16. Three-dimensional Speckle Tracking Echocardiography in Light Chain Cardiac Amyloidosis: Examination of Left and Right Ventricular Myocardial Mechanics Parameters.

    Science.gov (United States)

    Urbano-Moral, Jose Angel; Gangadharamurthy, Dakshin; Comenzo, Raymond L; Pandian, Natesa G; Patel, Ayan R

    2015-08-01

    The study of myocardial mechanics has a potential role in the detection of cardiac involvement in patients with amyloidosis. This study aimed to characterize 3-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics in light chain amyloidosis and examine their relationship with brain natriuretic peptide. In patients with light chain amyloidosis, left ventricular longitudinal and circumferential strain (n=40), and right ventricular longitudinal strain and radial displacement (n=26) were obtained by 3-dimensional-speckle tracking echocardiography. Brain natriuretic peptide levels were determined. All myocardial mechanics measurements showed differences when compared by brain natriuretic peptide level tertiles. Left and right ventricular longitudinal strain were highly correlated (r=0.95, P<.001). Left ventricular longitudinal and circumferential strain were reduced in patients with cardiac involvement (-9±4 vs -16±2; P<.001, and -24±6 vs -29±4; P=.01, respectively), with the most prominent impairment at the basal segments. Right ventricular longitudinal strain and radial displacement were diminished in patients with cardiac involvement (-9±3 vs -17±3; P<.001, and 2.7±0.8 vs 3.8±0.3; P=.002). On multivariate analysis, left ventricular longitudinal strain was associated with the presence of cardiac involvement (odds ratio = 1.6; 95% confidence interval, 1.04 to 2.37; P=.03) independent of the presence of brain natriuretic peptide and troponin I criteria for cardiac amyloidosis. Three-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics are increasingly altered as brain natriuretic peptide increases in light chain amyloidosis. There appears to be a strong association between left ventricular longitudinal strain and cardiac involvement, beyond biomarkers such as brain natriuretic peptide and troponin I. Copyright © 2015 Sociedad Española de Cardiología. Published by

  17. A transient thermodynamic model for track formation in amorphous semi-conductors: a possible mechanism

    International Nuclear Information System (INIS)

    Dufour, C.; Toulemonde, M.; Paumier, E.; Lesellier de Chezelles, B.; Delignon, V.

    1991-01-01

    Latent tracks have been observed in amorphous semi-conductors after heavy ion irradiation in the electronic stopping power regime. A transient thermodynamic model is developed including energy diffusion on the electron gas and on the atomic lattice and energy exchange between these two systems. A set of two non linear differential equations is solved numerically in cylindrical geometry in order to predict the radii of the latent tracks observed in amorphous germanium and silicon. A good agreement is obtained for the two materials using the same set of input parameters for the energy diffusion on the electronic system and the same coupling constant for the energy exchange between electron and lattice atoms despite the large differences in the macroscopic lattice thermodynamical parameters of the two materials

  18. Use of fission track for deciphering the dissolution mechanism of silicates glasses

    International Nuclear Information System (INIS)

    Petit, J.C.; Brousse, C.

    1985-09-01

    Polished sections of silicate glasses containing latent or pre-etched fission tracks have been subjected to corrosion in deionized water or NaCl brines at 20, 50 and 100 0 C. The evolution of glass surface helps deciphering among reported dissolution models. We show that ion-exchange is dominant in simple glasses while in complex ones, dissolution involves several steps including an in-situ transformation of the pristine material and a reprecipitation of dissolved species

  19. A trigger mechanism for the emerging flux model of solar flares

    International Nuclear Information System (INIS)

    Tur, T.J.; Priest, E.R.

    1978-01-01

    The energetics of a current sheet that forms between newly emerging flux and an ambient field are considered. As more and more flux emerges, so the sheet rises in the solar atmosphere. The various contributions to the thermal energy balance in the sheet approximated and the resulting equation solved for the internal temperature of the sheet. It is found that, for certain choices of the ambient magnetic field strength and velocity, the internal temperature increases until, when the sheet reaches some critical height, no neighbouring equilibrium state exists. The temperature than increases rapidly, seeking a hotter branch of the solution curve. During this dynamic heating the threshold temperature for the onset of plasma microinstabilities may be attained. It is suggested that this may be a suitable trigger mechanism for the recently proposed 'emerging flux' model of a solar flare. (Auth.)

  20. Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells

    Science.gov (United States)

    Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.

    2010-12-01

    We present a device characterization study for hydrazine-processed kesterite Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with a focus on pinpointing the main loss mechanisms limiting device efficiency. Temperature-dependent study and time-resolved photoluminescence spectroscopy on these cells, in comparison to analogous studies on a reference Cu(In,Ga)(Se,S)2 (CIGS) cell, reveal strong recombination loss at the CZTSSe/CdS interface, very low minority-carrier lifetimes, and high series resistance that diverges at low temperature. These findings help identify the key areas for improvement of these CZTSSe cells in the quest for a high-performance indium- and tellurium-free solar cell.

  1. Influence of the mechanical properties of sputtered Mo solar cell back contacts on laser scribing

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Christof; Schuele, Manuel; Quaschning, Volker; Stegemann, Bert; Fink, Frank [University of Applied Sciences (HTW) Berlin, Wilhelminenhofstr. 75A, 12459 Berlin (Germany); Endert, Heinrich [Newport Spectra-Physics GmbH, Ruhlsdorfer Strasse 95, 14532 Stahnsdorf (Germany); Bonse, Joern [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Rau, Bjoern; Schlatmann, Rutger [PVcomB - Competence Centre Thin-Film and Nanotechnology for Photovoltaics Berlin, Schwarzschildstr. 3, 12489 Berlin (Germany)

    2012-07-01

    In thin-film photovoltaics complete laser structuring of the solar modules is aimed to perform appropriate monolithic serial interconnection. We have studied the laser ablation behavior of sputtered molybdenum back contacts for chalcopyrite solar cells. The properties of these Mo layer are sensitive to the sputter conditions. The process pressure influences the mechanical layer properties and, thus, contributes directly to the quality of the laser scribes. Precise, reliable and reproducible laser scribing requires the proper adaptation of the laser parameters to the material properties. In our study it was achieved by comprehensive analysis of the laser matter interaction and by detailed determination of the ablation thresholds as a function of the Mo layer thickness and ductility for different laser wavelengths and pulse durations, accompanied by thermal modeling.

  2. Molecular action mechanisms of solar infrared radiation and heat on human skin.

    Science.gov (United States)

    Akhalaya, M Ya; Maksimov, G V; Rubin, A B; Lademann, J; Darvin, M E

    2014-07-01

    The generation of ROS underlies all solar infrared-affected therapeutic and pathological cutaneous effects. The signaling pathway NF-kB is responsible for the induced therapeutic effects, while the AP-1 for the pathological effects. The different signaling pathways of infrared-induced ROS and infrared-induced heat shock ROS were shown to act independently multiplying the influence on each other by increasing the doses of irradiation and/or increasing the temperature. The molecular action mechanisms of solar infrared radiation and heat on human skin are summarized and discussed in detail in the present paper. The critical doses are determined. Protection strategies against infrared-induced skin damage are proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inter-provincial clean development mechanism in China: A case study of the solar PV sector

    International Nuclear Information System (INIS)

    Jacques, David A.; Guan, Dabo; Geng, Yong; Xue, Bing; Wang, Xiaoguang

    2013-01-01

    With ever growing urgency, climate change mitigation is fast becoming a priority for China. A successful policy of implementing and expanding sustainable development and the use of renewable energy is therefore vital. As well as long-term and near-term targets for installed capacity of renewable energy, in its 12th five-year plan, China has created strict and ambitious carbon intensity targets for each province. This study proposes an inter-provincial clean development mechanism to assist in meeting these targets. This mechanism will create potential co-benefits of assisting in sustainable development in lesser developed provinces, increasing local air quality and supporting the growth of China's renewable energy sector. This paper also highlights the potential that this inter-provincial clean development mechanism has in accelerating the growth of the domestic solar photovoltaics (PV) sector, for which the market in China is still in its infancy. - Highlights: ► We recognise the necessity for each province in China to reduce its GHG emissions. ► We assess the potential of a national scale a CDM style mechanism for China. ► We consider the effect that the national CDM could have on solar PV in China

  4. Development and performance test of a solar tracker

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, T.H.; Hasib, Z.M. [Bangladesh Univ. of Engineering and Technology, Dhaka (Bangladesh). Dept. of Mechanical Engineering

    2010-07-01

    This paper discussed the development of a low-cost solar tracker device designed for use in developing countries. Expert control sensors and input-output interfaces were integrated with a tracking mechanism to increase the energy generation efficiency of the solar panel. Light sensing devices were used to automatically track the sun's rays. The controller sensors were integrated with the tracking mechanism. The control system was implemented on a microcontroller-based embedded system. A graphical user interface (GUI) was incorporated with a commercial software program in order to make the system more user-friendly. Performance tests demonstrated that the tracking system increases the amount of power that the solar panels could obtain. The efficiency of the panels increased by between 18 and 23 percent. Operators were able to control the movement of individual solar panels from a control room. The system also alerted operators of environmental damage to the panels. 12 refs., 2 tabs., 13 figs.

  5. Possible biophysical mechanism of the effect of the solar activity on the human central nervous system

    Science.gov (United States)

    Mikhailova, G. A.; Mikhailov, Y. M.

    Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the

  6. Innovative business models and financing mechanisms for distributed solar PV (DSPV) deployment in China

    International Nuclear Information System (INIS)

    Zhang, Sufang

    2016-01-01

    The Chinese government has in recent years put in place a large number of incentive policies for distributed solar PV (DSPV). However, some of these policies have not been well performed due to many constraints, particularly the lack of innovative business models and financing mechanisms. This paper looks into this issue through the approach of combining literature review and interactive research, including interactions with managers from China's policy and commercial banks and PV projects. A comprehensive literature review on DSPV business models and financing mechanisms are firstly reviewed. Then the rapid evolving business models and financing mechanisms in the United States are examined, which provides some insights for China. Subsequent to this, the existing innovative business models and financing mechanisms for DSPV deployment in China and challenges facing them are discussed. Built on this discussion, policy recommendations are provided at the end of the paper. This study provides some insights for renewable energy policy makers in China as well as in other countries. - Highlights: •Reviewed literature on DSPV business models and financing mechanisms. •Presented the US DSPV business models and financing mechanisms. •Examined China's DSPV business models and financing mechanisms. •Made policy recommendations for DSPV deployment in China.

  7. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  8. CO2 emissions mitigation potential of solar home systems under clean development mechanism in India

    International Nuclear Information System (INIS)

    Purohit, Pallav

    2009-01-01

    The Government of India has taken several initiatives for promotion of solar energy systems in the country during the last two decades. A variety of policy measures have been adopted which include provision of financial and fiscal incentives to the potential users of solar energy systems however, only 0.4 million solar home systems (SHSs) have been installed so far that is far below their respective potential. One of the major barriers is the high costs of investments in these systems. The clean development mechanism (CDM) of the Kyoto Protocol provides industrialized (Annex-I) countries with an incentive to invest in emission reduction projects in developing (non-Annex-I) countries to achieve a reduction in carbon dioxide (CO 2 ) emissions at lowest cost that also promotes sustainable development in the host country. SHSs could be of interest under the CDM because they directly displace greenhouse gas (GHG) emissions while contributing to sustainable rural development, if developed correctly. In this study an attempt has been made to estimate the CO 2 mitigation potential of SHSs under CDM in India.

  9. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Lepri, Susan T.; Zurbuchen, Thomas H.

    2015-01-01

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space

  10. The formation mechanism for printed silver-contacts for silicon solar cells.

    Science.gov (United States)

    Fields, Jeremy D; Ahmad, Md Imteyaz; Pool, Vanessa L; Yu, Jiafan; Van Campen, Douglas G; Parilla, Philip A; Toney, Michael F; van Hest, Maikel F A M

    2016-04-01

    Screen-printing provides an economically attractive means for making Ag electrical contacts to Si solar cells, but the use of Ag substantiates a significant manufacturing cost, and the glass frit used in the paste to enable contact formation contains Pb. To achieve optimal electrical performance and to develop pastes with alternative, abundant and non-toxic materials, a better understanding the contact formation process during firing is required. Here, we use in situ X-ray diffraction during firing to reveal the reaction sequence. The findings suggest that between 500 and 650 °C PbO in the frit etches the SiNx antireflective-coating on the solar cell, exposing the Si surface. Then, above 650 °C, Ag(+) dissolves into the molten glass frit - key for enabling deposition of metallic Ag on the emitter surface and precipitation of Ag nanocrystals within the glass. Ultimately, this work clarifies contact formation mechanisms and suggests approaches for development of inexpensive, nontoxic solar cell contacting pastes.

  11. Solar Village in Malaysia – A Route Map for Financing Mechanism

    Directory of Open Access Journals (Sweden)

    Ahmad Nur Azfahani

    2016-01-01

    Full Text Available Malaysia’s development has been largely financed from its fossil fuels resources that come principally from the South China Sea. This has enabled electricity to be distributed equitably throughout society and improved the quality of life for people in Malaysia. However, the depletion of fossil fuel resources and the international conflict over South China Sea territorial ownership may leads to inadequacy of supply in the future, and may give direct impact to people in the rural areas. Malaysia’s greatest potential for solar energy comes from photovoltaics (PVs and the large roofs of village houses offer significant potential to contribute electricity both nationally and to the local communities. However, this technology is still unfamiliar to the people living in local villages due to the subsidised electricity by TNB and high capital costs of PV systems. This paper investigates whether establishing a “solar village” is feasible in Malaysia. Through a cost feasibility analysis, the potential of harnessing solar electricity for local villages in Malaysia has been demonstrated. A novel mechanism has been presented that allows rural households to own PV panels, rent the grid cables and to share surplus electricity within the community through a three (3 way financing routes map.

  12. Structural mechanics of the solar-A Soft X-ray Telescope

    Science.gov (United States)

    Jurcevich, B. K.; Bruner, M. E.; Gowen, K. F.

    1992-01-01

    The Soft X-ray Telescope (SXT) is one of four major instruments that constitute the payload of the NASA-Japanese mission YOHKOH (formerly known as Solar-A), scheduled to be launched in August, 1991. This paper describes the design of the SXT, the key system requirements, and the SXT optical and structural systems. Particular attention is given to the design considerations for stiffness and dimensional stability, temperature compensation, and moisture sensitivyty control. Consideration is also given to the X-ray mirror, the aspect telescope, the entrance filters, the mechanical structure design, the aft support plate and mount, the SXT finite element model, and other subsystems.

  13. Cleaning Robot for Solar Panels in Solar Power Station

    Science.gov (United States)

    Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan

    2016-05-01

    The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.

  14. Track treeing mechanism and plastic zone in solid Part 1: Initial development of plastic zone

    International Nuclear Information System (INIS)

    Li Boyang

    2008-01-01

    After neutron exposure and chemical etching in advance, latent tracks of recoil nucleon develop into pits on CR39 surface. During electrochemical etching, plastic zone is formed at top of pits. Some pits develop into tree cracks in the initial stage of plastic zone development. Physical and mathematical model of crack and plastic zone is proposed; parameter of development free path of plastic zone is presented. Based on integration of elementary theories the stress analysis is build up; based on analyses of measured parameters, a set of common relations between parameters is obtained. Integrate parameter analysis and stress analysis, depth of plastic zone development, law and phenomenon in experimental data can be interpreted completely

  15. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2017-09-10

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  16. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    International Nuclear Information System (INIS)

    Montes-Solís, María; Arregui, Iñigo

    2017-01-01

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  17. Mechanical and experimental study on freeze proof solar powered adsorption cooling tube using active carbon/methanol working pair

    International Nuclear Information System (INIS)

    Zhao Huizhong; Zhang Min; Liu Zhenyan; Liu Yanling; Ma Xiaodong

    2008-01-01

    The freeze proof solar cooling tube, which can produce cooling capacity with the refrigerant temperature below 0 deg. C using solar light as energy and active carbon-methanol as working pair, was firstly designed and made in this research. This paper focused on mechanical and experimental study on a freeze proof solar powered adsorption cooling tube. The following experimental results could be concluded: at the solar radiation value between 15.3 and 17.1 MJ m -2 , the highest adsorbent bed temperature is below 110 deg. C. The freeze proof solar cooling tube's cooling capacity was about 87-99 kJ, and the coefficient of performance (COP) was more than 0.11 when the evaporation temperature was about -4 deg. C

  18. Theory on the mechanism of distal action of transcription factors: looping of DNA versus tracking along DNA

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, R, E-mail: rmurugan@gmail.co [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2010-10-15

    In this paper, we develop a theory on the mechanism of distal action of the transcription factors, which are bound at their respective cis-regulatory enhancer modules on the promoter-RNA polymerase II (PR) complexes to initiate the transcription event in eukaryotes. We consider both the looping and tracking modes of their distal communication and calculate the mean first passage time that is required for the distal interactions of the complex of enhancer and transcription factor with the PR via both these modes. We further investigate how this mean first passage time is dependent on the length of the DNA segment (L, base-pairs) that connects the cis-regulatory binding site and the respective promoter. When the radius of curvature of this connecting segment of DNA is R that was induced upon binding of the transcription factor at the cis-acting element and RNAPII at the promoter in cis-positions, our calculations indicate that the looping mode of distal action will dominate when L is such that L > 2{pi}R and the tracking mode of distal action will be favored when L < 2{pi}R. The time required for the distal action will be minimum when L = 2{pi}R where the typical value of R for the binding of histones will be R {approx} 16 bps and L {approx} 10{sup 2} bps. It seems that the free energy associated with the binding of the transcription factor with its cis-acting element and the distance of this cis-acting element from the corresponding promoter of the gene of interest is negatively correlated. Our results suggest that the looping and tracking modes of distal action are concurrently operating on the transcription activation and the physics that determines the timescales associated with the looping/tracking in the mechanism of action of these transcription factors on the initiation of the transcription event must put a selection pressure on the distribution of the distances of cis-regulatory modules from their respective promoters of the genes. The computational analysis

  19. Theory on the mechanism of distal action of transcription factors: looping of DNA versus tracking along DNA

    International Nuclear Information System (INIS)

    Murugan, R

    2010-01-01

    In this paper, we develop a theory on the mechanism of distal action of the transcription factors, which are bound at their respective cis-regulatory enhancer modules on the promoter-RNA polymerase II (PR) complexes to initiate the transcription event in eukaryotes. We consider both the looping and tracking modes of their distal communication and calculate the mean first passage time that is required for the distal interactions of the complex of enhancer and transcription factor with the PR via both these modes. We further investigate how this mean first passage time is dependent on the length of the DNA segment (L, base-pairs) that connects the cis-regulatory binding site and the respective promoter. When the radius of curvature of this connecting segment of DNA is R that was induced upon binding of the transcription factor at the cis-acting element and RNAPII at the promoter in cis-positions, our calculations indicate that the looping mode of distal action will dominate when L is such that L > 2πR and the tracking mode of distal action will be favored when L 2 bps. It seems that the free energy associated with the binding of the transcription factor with its cis-acting element and the distance of this cis-acting element from the corresponding promoter of the gene of interest is negatively correlated. Our results suggest that the looping and tracking modes of distal action are concurrently operating on the transcription activation and the physics that determines the timescales associated with the looping/tracking in the mechanism of action of these transcription factors on the initiation of the transcription event must put a selection pressure on the distribution of the distances of cis-regulatory modules from their respective promoters of the genes. The computational analysis of the upstream sequences of promoters of various genes in the human and mouse genomes for the presence of putative cis-regulatory elements for a set of known transcription factors using

  20. Addressing the statistical mechanics of planet orbits in the solar system

    Science.gov (United States)

    Mogavero, Federico

    2017-10-01

    The chaotic nature of planet dynamics in the solar system suggests the relevance of a statistical approach to planetary orbits. In such a statistical description, the time-dependent position and velocity of the planets are replaced by the probability density function (PDF) of their orbital elements. It is natural to set up this kind of approach in the framework of statistical mechanics. In the present paper, I focus on the collisionless excitation of eccentricities and inclinations via gravitational interactions in a planetary system. The future planet trajectories in the solar system constitute the prototype of this kind of dynamics. I thus address the statistical mechanics of the solar system planet orbits and try to reproduce the PDFs numerically constructed by Laskar (2008, Icarus, 196, 1). I show that the microcanonical ensemble of the Laplace-Lagrange theory accurately reproduces the statistics of the giant planet orbits. To model the inner planets I then investigate the ansatz of equiprobability in the phase space constrained by the secular integrals of motion. The eccentricity and inclination PDFs of Earth and Venus are reproduced with no free parameters. Within the limitations of a stationary model, the predictions also show a reasonable agreement with Mars PDFs and that of Mercury inclination. The eccentricity of Mercury demands in contrast a deeper analysis. I finally revisit the random walk approach of Laskar to the time dependence of the inner planet PDFs. Such a statistical theory could be combined with direct numerical simulations of planet trajectories in the context of planet formation, which is likely to be a chaotic process.

  1. Mechanical integration studies for the CLIC vertex and inner tracking detectors

    CERN Document Server

    Villarejo Bermudez, M.A.; Gerwig, H.

    2015-01-01

    Since the publication of the CLIC Conceptual Design Report, work has proceeded in order to establish a preliminary mechanical design for the innermost CLIC detector region. This note proposes a design for the main Carbon-Fibre Reinforced Polymer (CFRP) structural elements of the inner detectors, for the beam pipe and their supports. It also describes an assembly sequence for the integration of the sensors and the mechanical components. Mechanical simulations of different structural elements and a material budget estimation are appended. Details of a proposed cabling layout for all the subdetectors are included.

  2. Optoelectronic enhancement of monocrystalline silicon solar cells by porous silicon-assisted mechanical grooving

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, Mohamed; Mohamed, Seifeddine Belhadj; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-03-15

    One of the most important factors influencing silicon solar cells performances is the front side reflectivity. Consequently, new methods for efficient reduction of this reflectivity are searched. This has always been done by creating a rough surface that enables incident light of being absorbed within the solar cell. Combination of texturization-porous silicon surface treatment was found to be an attractive technical solution for lowering the reflectivity of monocrystalline silicon (c-Si). The texturization of the monocrystalline silicon wafer was carried out by means of mechanical grooving. A specific etching procedure was then applied to form a thin porous silicon layer enabling to remove mechanical damages. This simple and low cost method reduces the total reflectivity from 29% to 7% in the 300 - 950 nm wavelength range and enhances the diffusion length of the minority carriers from 100 {mu}m to 790 {mu}m (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-02-11

    For semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.

  4. Operating Mechanisms of Mesoscopic Perovskite Solar Cells through Impedance Spectroscopy and J-V Modeling.

    Science.gov (United States)

    Zarazúa, Isaac; Sidhik, Siraj; Lopéz-Luke, Tzarara; Esparza, Diego; De la Rosa, Elder; Reyes-Gomez, Juan; Mora-Seró, Iván; Garcia-Belmonte, Germà

    2017-12-21

    The performance of perovskite solar cell (PSC) is highly sensitive to deposition conditions, the substrate, humidity, and the efficiency of solvent extraction. However, the physical mechanism involved in the observed changes of efficiency with different deposition conditions has not been elucidated yet. In this work, PSCs were fabricated by the antisolvent deposition (AD) and recently proposed air-extraction antisolvent (AAD) process. Impedance analysis and J-V curve fitting were used to analyze the photogeneration, charge transportation, recombination, and leakage properties of PSCs. It can be elucidated that the improvement in morphology of perovskite film promoted by AAD method leads to increase in light absorption, reduction in recombination sites, and interstitial defects, thus enhancing the short-circuit current density, open-circuit voltage, and fill factor. This study will open up doors for further improvement of device and help in understanding its physical mechanism and its relation to the deposition methods.

  5. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    Science.gov (United States)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  6. Mechanical characterization of sportive tracks made with materials recycled from end-of-life tyres

    OpenAIRE

    Morales-Gámiz, F. J.; Escriba, S.; García-Villena, S. A.; Bermejo, J. M.; Saiz, L.

    2015-01-01

    Congreso celebrado en la Escuela de Arquitectura de la Universidad de Sevilla desde el 24 hasta el 26 de junio de 2015. The European Framework Directive 2008/98/EC on waste established as priority reuse and recycling before other recovery alternatives. In this normative reference, one the main waste flows identified are the end-of-life tyres, as a material whose mechanical properties could provide advantage in the construction of new structures. This paper presents the mechanical character...

  7. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  8. Mechanical dispersion and global longitudinal strain by speckle tracking echocardiography: Predictors of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Candan, Ozkan; Gecmen, Cetin; Bayam, Emrah; Guner, Ahmet; Celik, Mehmet; Doğan, Cem

    2017-06-01

    In this study, we investigated whether mechanical dispersion which reflects electrical abnormality and other echocardiographic and clinic parameters predict appropriate ICD shock in patients undergone ICD implantation for hypertrophic cardiomyopathy. Sixty-three patients who received ICD implantation for primary or secondary prevention were included in the study. Patients' clinical, electrocardiographic, 2D classic, and speckle tracking echocardiographic data were collected. Mechanical dispersion was defined as the standard deviation of time to peak negative strain in 18 left ventricular segments. Appropriate ICD therapy was defined as cardioversion or defibrillation due to ventricular tachycardia or fibrillation. Patients were divided into two groups as occurrence or the absence of appropriate ICD therapy. A total of 17 (26.9%) patients were observed to have an appropriate ICD therapy during follow-up periods. In patients who performed appropriate ICD therapy, a larger left atrial volume index, higher sudden cardiac death (SCD)-Risk Score, longer mechanical dispersion, and decreased global longitudinal peak strain (GLPS) were observed. In multivariate logistic regression analysis, including (GLPS, mechanical dispersion, LAVi, and SCD-Risk Score) was used to determine independent predictors of occurrence of appropriate ICD therapy during the follow-up. Mechanical dispersion, GLPS, and SCD-Risk Score were found to be independent predictors of occurrence of appropriate ICD therapy. Mechanical dispersion, GLPS, and SCD-Risk Score were found to be predictive for appropriate ICD therapy in patients receiving ICD implantation. Readily measurable mechanical dispersion and GLPS could be helpful to distinguish patients at high risk who could optimally benefit from ICD therapy. © 2017, Wiley Periodicals, Inc.

  9. Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors

    International Nuclear Information System (INIS)

    Hong, Chih-Ming; Chen, Chiung-Hsing; Tu, Chia-Sheng

    2013-01-01

    Highlights: ► This paper presents MPPT based control for optimal wind energy capture using RBFN. ► MPSO is adopted to adjust the learning rates to improve the learning capability. ► This technique can maintain the system stability and reach the desired performance. ► The EMF in the rotating reference frame is utilized in order to estimate speed. - Abstract: This paper presents maximum-power-point-tracking (MPPT) based control algorithms for optimal wind energy capture using radial basis function network (RBFN) and a proposed torque observer MPPT algorithm. The design of a high-performance on-line training RBFN using back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller for the sensorless control of a permanent magnet synchronous generator (PMSG). The MPSO is adopted in this study to adapt the learning rates in the back-propagation process of the RBFN to improve the learning capability. The PMSG is controlled by the loss-minimization control with MPPT below the base speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. Then the observed disturbance torque is feed-forward to increase the robustness of the PMSG system

  10. On the Design of Energy-Efficient Location Tracking Mechanism in Location-Aware Computing

    Directory of Open Access Journals (Sweden)

    MoonBae Song

    2005-01-01

    Full Text Available The battery, in contrast to other hardware, is not governed by Moore's Law. In location-aware computing, power is a very limited resource. As a consequence, recently, a number of promising techniques in various layers have been proposed to reduce the energy consumption. The paper considers the problem of minimizing the energy used to track the location of mobile user over a wireless link in mobile computing. Energy-efficient location update protocol can be done by reducing the number of location update messages as possible and switching off as long as possible. This can be achieved by the concept of mobility-awareness we propose. For this purpose, this paper proposes a novel mobility model, called state-based mobility model (SMM to provide more generalized framework for both describing the mobility and updating location information of complexly moving objects. We also introduce the state-based location update protocol (SLUP based on this mobility model. An extensive experiment on various synthetic datasets shows that the proposed method improves the energy efficiency by 2 ∼ 3 times with the additional 10% of imprecision cost.

  11. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  12. TRACKING THE SOLAR CYCLE THROUGH IBEX OBSERVATIONS OF ENERGETIC NEUTRAL ATOM FLUX VARIATIONS AT THE HELIOSPHERIC POLES

    Energy Technology Data Exchange (ETDEWEB)

    Reisenfeld, D. B.; Janzen, P. H. [University of Montana, Missoula, MT 59812 (United States); Bzowski, M., E-mail: dan.reisenfeld@umontana.edu, E-mail: paul.janzen@umontana.edu, E-mail: bzowski@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences, (CBK PAN), Bartycka 18A, 00-716, Warsaw (Poland); and others

    2016-12-20

    With seven years of Interstellar Boundary Explorer ( IBEX ) observations, from 2009 to 2015, we can now trace the time evolution of heliospheric energetic neutral atoms (ENAs) through over half a solar cycle. At the north and south ecliptic poles, the spacecraft attitude allows for continuous coverage of the ENA flux; thus, signal from these regions has much higher statistical accuracy and time resolution than anywhere else in the sky. By comparing the solar wind dynamic pressure measured at 1 au with the heliosheath plasma pressure derived from the observed ENA fluxes, we show that the heliosheath pressure measured at the poles correlates well with the solar cycle. The analysis requires time-shifting the ENA measurements to account for the travel time out and back from the heliosheath, which allows us to estimate the scale size of the heliosphere in the polar directions. We arrive at an estimated distance to the center of the ENA source region in the north of 220 au and in the south a distance of 190 au. We also find a good correlation between the solar cycle and the ENA energy spectra at the poles. In particular, the ENA flux for the highest IBEX energy channel (4.3 keV) is quite closely correlated with the areas of the polar coronal holes, in both the north and south, consistent with the notion that polar ENAs at this energy originate from pickup ions of the very high speed wind (∼700 km s{sup −1}) that emanates from polar coronal holes.

  13. A novel open-loop tracking strategy for photovoltaic systems.

    Science.gov (United States)

    Alexandru, Cătălin

    2013-01-01

    This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system.

  14. A Novel Open-Loop Tracking Strategy for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Cătălin Alexandru

    2013-01-01

    Full Text Available This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system.

  15. Development of a solar array drive mechanism for micro-satellite platforms

    Science.gov (United States)

    Galatis, Giorgos; Guo, Jian; Buursink, Jeroen

    2017-10-01

    Photovoltaic solar array (PVSA) systems are the most widely used method for spacecraft power generation. However, in many satellite missions, the optimum orientation of the PVSA system is not always compatible with that of the payload orientation. Many methods, have been examined in the past to overcome this problem. Up to date, the most widely used active method for large costly satellites is the Solar Array Drive Mechanism (SADM). The SADM serves as the interface between the satellite body and the PVSA subsystem, enabling the decoupling of their spatial orientation. Nonetheless, there exists a research and development gap for such systems regarding low cost micro-satellites. During the literature study of this paper, individual orbital parameters of various micro-satellites have been extracted and compared to the rotational freedom of the corresponding SADMs used. The findings demonstrated that the implemented SADMs are over designed. It is therefore concluded that these components are not tailored made for each spacecraft mission individually, but rather, exhibit a generic design to full fill a majority of mission profiles and requirements. Motivated by the above analysis, the cardinal objective of the current research is to develop a low cost mechanism that will be precisely tailored for the use of a low Earth orbit (LEO) micro-satellite platform orbiting in altitudes of 500 - 1000km . The design of the mechanism may vary from the existing miniaturized SADMs. For example, the preliminary analysis of the current research suggests, that the conventional use of the slip ring system as the electronic transfer unit can be replaced by a seMI Orientation Unit (MIOU). Systems engineering tools for concept generation and selection have been used. In addition, simulation and mathematical modelling have been implemented on component and system level, to accurately predict the behaviour of the system under various modes of operation. The production and system testing of

  16. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior

    Directory of Open Access Journals (Sweden)

    Alex Gomez-Marin

    2010-03-01

    Full Text Available Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg’s vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.

  17. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    Science.gov (United States)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  18. Numerical computation of solar neutrino flux attenuated by the MSW mechanism

    Science.gov (United States)

    Kim, Jai Sam; Chae, Yoon Sang; Kim, Jung Dae

    1999-07-01

    We compute the survival probability of an electron neutrino in its flight through the solar core experiencing the Mikheyev-Smirnov-Wolfenstein effect with all three neutrino species considered. We adopted a hybrid method that uses an accurate approximation formula in the non-resonance region and numerical integration in the non-adiabatic resonance region. The key of our algorithm is to use the importance sampling method for sampling the neutrino creation energy and position and to find the optimum radii to start and stop numerical integration. We further developed a parallel algorithm for a message passing parallel computer. By using an idea of job token, we have developed a dynamical load balancing mechanism which is effective under any irregular load distributions

  19. Scalable Production of Mechanically Robust Antireflection Film for Omnidirectional Enhanced Flexible Thin Film Solar Cells.

    Science.gov (United States)

    Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong

    2017-09-01

    Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.

  20. Mechanical grooving of oxidized porous silicon to reduce the reflectivity of monocrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zarroug, A.; Dimassi, W.; Ouertani, R.; Ezzaouia, H. [Laboratoire de Photovoltaique, Centre des Recherches et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2012-10-15

    In this work, we are interested to use oxidized porous silicon (ox-PS) as a mask. So, we display the creating of a rough surface which enhances the absorption of incident light by solar cells and reduces the reflectivity of monocrystalline silicon (c-Si). It clearly can be seen that the mechanical grooving enables us to elaborate the texturing of monocrystalline silicon wafer. Results demonstrated that the application of a PS layer followed by a thermal treatment under O2 ambient easily gives us an oxide layer of uniform size which can vary from a nanometer to about ten microns. In addition, the Fourier transform infrared (FTIR) spectroscopy investigations of the PS layer illustrates the possibility to realize oxide layer as a mask for porous silicon. We found also that this simple and low cost method decreases the total reflectivity (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Numerical Simulation of a Mechanically Stacked GaAs/Ge Solar Cell

    Directory of Open Access Journals (Sweden)

    S. Enayat Taghavi Moghaddam

    2017-06-01

    Full Text Available In this paper, GaAs and Ge solar cells have been studied and simulated separately and the inner characteristics of each have been calculated including the energy band structure, the internal field, carrier density distribution in the equilibrium condition (dark condition and the voltage-current curve in the sun exposure with the output power of each one. Finally, the output power of these two mechanically stacked cells is achieved. Drift-diffusion model have been used for simulation that solved with numerically method and Gummel algorithm. In this simulation, the final cells exposed to sun light in a standard AM 1.5 G conditions and temperatures are 300° K. The efficiency of the proposed structure is 9.47%. The analytical results are compared with results of numerical simulations and the accuracy of the method used is shown.

  2. A One-Structure-Based Multieffects Coupled Nanogenerator for Simultaneously Scavenging Thermal, Solar, and Mechanical Energies.

    Science.gov (United States)

    Ji, Yun; Zhang, Kewei; Yang, Ya

    2018-02-01

    Rapid advances in various energy harvesters impose the challenge on integrating them into one device structure with synergetic effects for full use of the available energies from the environment. Here, a multieffect coupled nanogenerator based on ferroelectric barium titanate is reported. It promotes the ability to simultaneously scavenging thermal, solar, and mechanical energies. By integration of a pyroelectric nanogenerator, a photovoltaic cell, and a triboelectric-piezoelectric nanogenerator in one structure with only two electrodes, multieffects interact with each other to alter the electric output, and a complementary power source with peak current of ≈1.5 µA, peak voltage of ≈7 V, and platform voltage of ≈6 V is successfully achieved. Compared with traditional hybridized nanogenerators with stacked architectures, the one-structure-based multieffects coupled nanogenerator is smaller, simpler, and less costly, showing prospective in practical applications and represents a new trend of all-in-one multiple energy scavenging.

  3. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults.

    Science.gov (United States)

    Kocabay, Gonenc; Muraru, Denisa; Peluso, Diletta; Cucchini, Umberto; Mihaila, Sorina; Padayattil-Jose, Seena; Gentian, Denas; Iliceto, Sabino; Vinereanu, Dragos; Badano, Luigi P

    2014-08-01

    Two-dimensional speckle-tracking echocardiography is a novel tool to assess myocardial function. The purpose of this study was to evaluate left ventricular myocardial strain and rotation parameters by two-dimensional speckle-tracking echocardiography in a large group of healthy adults across a wide age range to establish their reference values and to assess the influence of age, sex, and hemodynamic factors. Transthoracic echocardiograms were acquired in 247 healthy volunteers (139 women, 44 years [standard deviation, 16 years old] (range, 18-80 years). We measured longitudinal, circumferential, and radial peak systolic strain values, and left ventricular rotation and twist. Average values of global longitudinal, radial, and circumferential strain were -21.5% (standard deviation, 2.0%), 40.1% (standard deviation, 11.8%) and -22.2% (standard deviation, 3.4%), respectively. Longitudinal strain was significantly more negative in women, whereas radial and circumferential strain and rotational parameters were similar in both sexes. Accordingly, lower limits of normality for the strain components were -16.9% in men and -18.5% in women for longitudinal strain, and -15.4% for circumferential and 24.6% for radial strain, irrespective of sex. Longitudinal strain values were more negative at the base than at apical segments. Mean rotational values were -6.9° (standard deviation, 3.5°) for the base, 13.0° (standard deviation, 6.5°) for apical rotation, and 20.0° (standard deviation, 7.3°) for net twist. We report the comprehensive assessment of normal myocardial deformation and rotational mechanics in a large cohort of healthy volunteers. We found that women have more negative longitudinal strain, accounting for their higher left ventricular ejection fraction. Availability of reference values for these parameters may foster their implementation in the clinical routine. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  4. A fast-track preliminary thermo-mechanical design of oil export pipelines from P-56 platform

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Rafael F.; Mendonca, Salete M. de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Franco, Luciano D.; Walker, Alastair; El-Gebaly, Sherif H. [INTECSEA, Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The oil export pipelines of Marlim Sul field Module 3, Campus Basin, offshore Brazil, will operate in high pressure and temperature conditions, and will be laid on seabed crossing ten previously laid pipelines along the routes. In terms of thermo-mechanical design, these conditions turn out to be great challenges. In order to obtain initial results and recommendations for detail design, a preliminary thermo-mechanical design of pipelines was carried out as a fast-track design before the bid. This way, PETROBRAS can assess and emphasize the susceptibility of these lines to lateral buckling and pipeline walking behavior. Therefore, PETROBRAS can present a preliminary mitigation strategy for lateral buckling showing solutions based on displacement controlled criteria and by introducing buckle initiation along the pipeline using distribution buoyancy. Besides that, axial displacements and loads at the pipeline ends can be furnished also in order to provide a basis for the detailed design. The work reported in this paper follows the SAFEBUCK JIP methodology and recommendation, which were used to determine the allowable strain and maximum allowable VAS (Virtual Anchor Spacing) considered in the buckling mitigation strategy. The paper presents also the formation of uncontrolled buckles on the seabed and the propensity for pipeline walking in its sections between buckles. The buckling mitigation strategy established in this preliminary design confirms that the oil pipeline specifications are adequate to maintain integrity during design life. (author)

  5. Influence of Positive End-Expiratory Pressure on Myocardial Strain Assessed by Speckle Tracking Echocardiography in Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Federico Franchi

    2013-01-01

    Full Text Available Purpose. The effects of mechanical ventilation (MV on speckle tracking echocardiography- (STE-derived variables are not elucidated. The aim of the study was to evaluate the effects of positive end-expiratory pressure (PEEP ventilation on 4-chamber longitudinal strain (LS analysis by STE. Methods. We studied 20 patients admitted to a mixed intensive care unit who required intubation for MV and PEEP titration due to hypoxia. STE was performed at three times: (T1 PEEP = 5 cmH2O; (T2 PEEP = 10 cmH2O; and (T3 PEEP = 15 cmH2O. STE analysis was performed offline using a dedicated software (XStrain MyLab 70 Xvision, Esaote. Results. Left peak atrial-longitudinal strain (LS was significantly reduced from T1 to T2 and from T2 to T3 (. Right peak atrial-LS and right ventricular-LS showed a significant reduction only at T3 (. Left ventricular-LS did not change significantly during titration of PEEP. Cardiac chambers’ volumes showed a significant reduction at higher levels of PEEP (. Conclusions. We demonstrated for the first time that incremental PEEP affects myocardial strain values obtained with STE in intubated critically ill patients. Whenever performing STE in mechanically ventilated patients, care must be taken when PEEP is higher than 10 cmH2O to avoid misinterpreting data and making erroneous decisions.

  6. An efficient incremental learning mechanism for tracking concept drift in spam filtering.

    Directory of Open Access Journals (Sweden)

    Jyh-Jian Sheu

    Full Text Available This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email's header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these association rules. Our systematic method has the following major advantages: (1 Checking only the header sections of emails, which is different from those spam filtering methods at present that have to analyze fully the email's content. Meanwhile, the email filtering accuracy is expected to be enhanced. (2 Regarding the solution to the problem of concept drift, we propose a window-based technique to estimate for the condition of concept drift for each unknown email, which will help our filtering method in recognizing the occurrence of spam. (3 We propose an incremental learning mechanism for our filtering method to strengthen the ability of adapting to the dynamic environment.

  7. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy

    KAUST Repository

    Chen, Jun

    2016-09-12

    Developing lightweight, flexible, foldable and sustainable power sources with simple transport and storage remains a challenge and an urgent need for the advancement of next-generation wearable electronics. Here, we report a micro-cable power textile for simultaneously harvesting energy from ambient sunshine and mechanical movement. Solar cells fabricated from lightweight polymer fibres into micro cables are then woven via a shuttle-flying process with fibre-based triboelectric nanogenerators to create a smart fabric. A single layer of such fabric is 320 μm thick and can be integrated into various cloths, curtains, tents and so on. This hybrid power textile, fabricated with a size of 4 cm by 5 cm, was demonstrated to charge a 2 mF commercial capacitor up to 2 V in 1 min under ambient sunlight in the presence of mechanical excitation, such as human motion and wind blowing. The textile could continuously power an electronic watch, directly charge a cell phone and drive water splitting reactions. In light of concerns about global warming and energy crises, searching for renewable energy resources that are not detrimental to the environment is one of the most urgent challenges to the sustainable development of human civilization1,2,3. Generating electricity from natural forces provides a superior solution to alleviate expanding energy needs on a sustainable basis4,5,6,7,8,9. With the rapid advancement of modern technologies, developing lightweight, flexible, sustainable and stable power sources remains both highly desirable and a challenge10,11,12,13,14,15,16. Solar irradiance and mechanical motion are clean and renewable energy sources17,18,19,20,21,22,23,24. Fabric-based materials are most common for humans and fibre-based textiles can effectively accommodate the complex deformations induced by body motion25,26,27,28,29,30,31,32. A smart textile that generates electrical power from absorbed solar irradiance and mechanical motion could be an important

  8. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  9. A viable CDM model for solar water heaters; CDM-Clean Development Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    It is a well known fact that solar water Heaters (SWH) replace fossil fuels and they do not represent business as usual scenario. Therefore use of this appliance can qualify to be considered as Clean Development Mechanism (CDM) project. However a single solar water heater is a very small unit to be able to generate sufficient Certified Emission Reductions (CERs) to pursue it as a CDM project. Even if the project is considered at the level of local venders or at the level of a company engaged in manufacturing SWH, the CERs still remain very small. The study examines the size of the project from the perspective of its viability as a CDM project and also explores other related issues such as additionality requirement, selection of methodology, baseline calculations, approach for stakeholders' comments, potential bundlers, monitoring and verification, and required policy interventions. Bank of Maharashtra (BOM), a commercial bank in India engaged in financing Solar Water Heaters (SWH), was considered as the base for the study. The CERs were calculated considering Electricity and LPG as the baseline. For the purpose of sensitivity analysis, various price bands for CERs (between US$ 15-25/CER) were considered. The analysis was carried out with bundling of SWH at BOM level, and at the Association of Banks (AOB) / Ministry level (in which case SWH financed by several banks are bundled). Recently approved Programme of Activities (PoA) approach was also considered in the analysis. The analysis clearly indicated that: 1) The CDM project with bundling at an individual bank level with about 8600 installations, though cash surplus, would generate the cash just to meet its own sustainability. But it is a very small project. 2) Bundling of installations by various banks, through an entity such as Association of Banks, would be a viable and sustainable CDM project due to benefits arising out of scale of economy. 3) The profitability of the CDM project would improve further if

  10. Tracking implementation and (un)intended consequences: a process evaluation of an innovative peripheral health facility financing mechanism in Kenya.

    Science.gov (United States)

    Waweru, Evelyn; Goodman, Catherine; Kedenge, Sarah; Tsofa, Benjamin; Molyneux, Sassy

    2016-03-01

    In many African countries, user fees have failed to achieve intended access and quality of care improvements. Subsequent user fee reduction or elimination policies have often been poorly planned, without alternative sources of income for facilities. We describe early implementation of an innovative national health financing intervention in Kenya; the health sector services fund (HSSF). In HSSF, central funds are credited directly into a facility's bank account quarterly, and facility funds are managed by health facility management committees (HFMCs) including community representatives. HSSF is therefore a finance mechanism with potential to increase access to funds for peripheral facilities, support user fee reduction and improve equity in access. We conducted a process evaluation of HSSF implementation based on a theory of change underpinning the intervention. Methods included interviews at national, district and facility levels, facility record reviews, a structured exit survey and a document review. We found impressive achievements: HSSF funds were reaching facilities; funds were being overseen and used in a way that strengthened transparency and community involvement; and health workers' motivation and patient satisfaction improved. Challenges or unintended outcomes included: complex and centralized accounting requirements undermining efficiency; interactions between HSSF and user fees leading to difficulties in accessing crucial user fee funds; and some relationship problems between key players. Although user fees charged had not increased, national reduction policies were still not being adhered to. Finance mechanisms can have a strong positive impact on peripheral facilities, and HFMCs can play a valuable role in managing facilities. Although fiduciary oversight is essential, mechanisms should allow for local decision-making and ensure that unmanageable paperwork is avoided. There are also limits to what can be achieved with relatively small funds in

  11. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, J E; Enache-Pommer, E; Aydil, E S [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455 (United States)], E-mail: aydil@umn.edu

    2008-03-05

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes through hydrothermal oxidation in NaOH. Next, the Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes by ion exchange. Finally, the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} sheets, which exfoliate and spiral into nanotubes. The Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes are immersed in HCl solution to replace the Na{sup +} ions with H{sup +} ions. During the topotactic transformation of H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes to anatase TiO{sub 2} nanowires, the sheets made of edge bonded TiO{sub 6} octahedra in the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO{sub 2} nanowire films were suitable for use as dye-sensitized solar cell photoanodes.

  12. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Boercker, J E; Enache-Pommer, E; Aydil, E S

    2008-01-01

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na 2 Ti 2 O 4 (OH) 2 nanotubes through hydrothermal oxidation in NaOH. Next, the Na 2 Ti 2 O 4 (OH) 2 nanotubes were converted to H 2 Ti 2 O 4 (OH) 2 nanotubes by ion exchange. Finally, the H 2 Ti 2 O 4 (OH) 2 nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na 2 Ti 2 O 4 (OH) 2 sheets, which exfoliate and spiral into nanotubes. The Na 2 Ti 2 O 4 (OH) 2 nanotubes are immersed in HCl solution to replace the Na + ions with H + ions. During the topotactic transformation of H 2 Ti 2 O 4 (OH) 2 nanotubes to anatase TiO 2 nanowires, the sheets made of edge bonded TiO 6 octahedra in the H 2 Ti 2 O 4 (OH) 2 nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO 2 nanowire films were suitable for use as dye-sensitized solar cell photoanodes

  13. Solar-induced chlorophyll fluorescence tracks the trend of canopy stomatal conductance and transpiration at diurnal and seasonal scales

    Science.gov (United States)

    Zhang, Y.; Shan, N.; Ju, W.; Chen, J.

    2017-12-01

    Transpiration is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface. Plant stomata function as a control interface for regulating photosynthetic uptake of CO2 and transpiration, strongly linked to plant productivity. Stomatal conductance is fundamental to larger-scale regional prediction of carbon-water cycles and their feedbacks to climate. The widely used Ball-Berry model coupled photosynthesis to a semi-empirical model of stomatal conductance. However large uncertainties remain in simulation of carbon assimilation rate in ecosystem and regional scales. The strong correlations of solar-induced fluorescence (SIF) and GPP have been demonstrated and provides an important opportunity to accurately monitor photosynthetic activity and water exchange. In this presentation, we compared both canopy-observed SIF and satellite-derived SIF with tower-based canopy stomatal conductance from hourly to 8-day scales in forest and cropland ecosystem. Using the model of stomatal conductance based on SIF, the transpiration was estimated at hourly and daily scales and compared with flux tower measurements. The results showed that the seasonal pattern of canopy stomatal conductance agreed better with SIF compared to NDVI and their relationship was higher during sunny days for forest ecosystem. Canopy stomatal conductance correlated with both tower-observed SIF and SIF from the Global Ozone Monitoring Experiment-2. Estimation of transpiration from SIF performed well in both forest and cropland ecosystem. This remotely sensed approaches from SIF for modelling stomatal conductance opens a new era to analysis and simulation of coupled carbon and water cycles under climate change.

  14. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    Science.gov (United States)

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  15. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter

    Directory of Open Access Journals (Sweden)

    Yibo Feng

    2015-05-01

    Full Text Available We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF, the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  16. Dielectric compound parabolic concentrating solar collector with frustrated total internal reflection absorber

    Science.gov (United States)

    Hull, J. R.

    Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.

  17. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Borrok, David M., E-mail: dborrok@utep.edu [Department of Geological Sciences, University of Texas, El Paso, TX 79968 (United States); Wanty, Richard B.; Ian Ridley, W.; Lamothe, Paul J. [US Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Kimball, Briant A. [US Geological Survey, 2329 W. Orton Cir., Salt Lake City, UT 84119 (United States); Verplanck, Philip L.; Runkel, Robert L. [US Geological Survey, Denver Federal Center, Denver, CO 80225 (United States)

    2009-07-15

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, {delta}{sup 56}Fe and {delta}{sup 66}Zn isotopic signatures of filtered stream water samples varied by {approx}3.5 per mille and 0.4 per mille, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in {delta}{sup 56}Fe were linked to redox and precipitation reactions occurring in the stream, while changes in {delta}{sup 66}Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0 per mille) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4 per mille). Acidic drainage from mine wastes contributed heavier dissolved Fe ({approx}+0.5 per mille) and lighter Zn ({approx}+0.2 per mille) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe ({delta}{sup 56}Fe {approx} 0 per mille) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds.

  18. Speckle-Tracking Echocardiography in Dogs With Patent Ductus Arteriosus: Effect of Percutaneous Closure on Cardiac Mechanics.

    Science.gov (United States)

    Spalla, I; Locatelli, C; Zanaboni, A M; Brambilla, P; Bussadori, C

    2016-05-01

    Patent ductus arteriosus (PDA) is 1 of the most common congenital heart defects in dogs and percutaneous closure is effective in achieving ductal closure; PDA closure is associated with abrupt hemodynamic changes. A marked decrease in standard parameters of systolic function as assessed by M- or B-mode echocardiography after PDA closure was identified in previous studies. Speckle tracking echocardiography can provide further insight into the effect of PDA closure on cardiac mechanics in dogs affected by PDA. Twenty-five client-owned dogs with PDA. Prospective study. Dogs were recruited over a 2-year period. Complete echocardiographic evaluation was performed before and 24 hours after PDA closure, including standard (end-diastolic volumes indexed to body surface area in B- and M-mode [EDVIB /M ], end-systolic volumes indexed to body surface area in B- and M-mode [ESVIB /M ], allometric scaling in diastole [AlloD] and systole [AlloS], pulmonary flow to systemic flow [Qs/Qp], ejection fraction [EF], and fractional shortening [FS]), and advanced speckle-tracking echocardiography (STE): global longitudinal, radial, circumferential and transverse strain (S), and strain rate (SR). Patent ductus arteriosus closure was associated with statistically significant decreases in EDVIM /B and ESVIM /B , AlloD and AlloS, SI, EF, and FS. A statistically significant decrease in the absolute values of radial, transverse, and circumferential S and SR was observed, whereas longitudinal S and SR did not change significantly. Patent ductus arteriosus closure by percutaneous approach is associated with marked decreases of conventional echocardiographic parameters as a result of the changes in loading conditions, but no evidence of systolic dysfunction was identified by means of STE, as none of the S and SR values were below reference ranges. In the short term, contractility is enhanced in the long axis (long S/SR values were not statistically different before and after closure) and

  19. Process and Information Tracking of Polycrystalline silicon Ingot for Solar Cell%铸锭多晶硅电池生产流程及信息跟踪

    Institute of Scientific and Technical Information of China (English)

    焦富强; 乔卉莹

    2014-01-01

    Si-based photovoltaic materials account for a large proportion in the field of new energy, in which polycrystalline silicon ingot for solar cell is the main type. Many procedures must be used for production of the poly-crystalline silicon solar cell, therefore, accurate recording and tracking information of stuff and procedures play an im-portant role in technical improvement. In this paper, process and information tracking of every procedure in produc-tion of polycrystalline silicon solar cell are discussed, and easy encountered problems in information tracking are ana-lyzed.%在新能源开发利用领域硅基光伏材料占有较大比重,其中铸锭多晶硅光伏电池是当前太阳能电池的主要品种。生产多晶硅电池需要经历众多的加工工序,准确有序记录和跟踪物料流向及各工序相关信息是工艺研究和技术改进的基础。就铸锭多晶硅电池片生产流程及各工序信息跟踪问题进行了论述,并对实施信息跟踪时易出现的问题进行了分析。

  20. Development of Chemical and Mechanical Cleaning Procedures for Genesis Solar Wind Samples

    Science.gov (United States)

    Schmeling, M.; Jurewicz, A. J. G.; Gonzalez, C.; Allums, K. K.; Allton, J. H.

    2018-01-01

    The Genesis mission was the only mission returning pristine solar material to Earth since the Apollo program. Unfortunately, the return of the spacecraft on September 8, 2004 resulted in a crash landing shattering the solar wind collectors into smaller fragments and exposing them to desert soil and other debris. Thorough surface cleaning is required for almost all fragments to allow for subsequent analysis of solar wind material embedded within. However, each collector fragment calls for an individual cleaning approach, as contamination not only varies by collector material but also by sample itself.

  1. Financial mechanism for PV solar home systems market development. An Indian case study

    International Nuclear Information System (INIS)

    Painuly, J.P.

    2005-01-01

    Rural electrification through grid extension has not made electricity available to the rural households in India, where still approximately seventy percent of them have no access to electricity. These households continue to rely on less efficient and polluting energy sources, typically biomass for cooking and heating and kerosene for lighting. Even though some of them are connected to grid, problems of capacity shortages and inconsistent quality plague the power supply, especially in rural and semi urban areas in most parts of India. Despite high initial costs, Solar Home Systems (SHS) emerge as an attractive option in the context of costly or unreliable alternatives and escalating grid power tariffs. Barrier to the growth of SHS market include a lack of access to financing, awareness, and risk perception associated with the technology, new to the customers of SHS and financing community. To address these barriers, consultations with stakeholders were held, that included manufacturers, financing institutions, and others. An intervention was designed based on the discussions and a credit facility created in partnership with two banks having wide reach to the potential customers in Karnataka State of India. The facility provides loan to the customers and a small subsidy to buy down high cost of the credit, which is designed to reduce over the three-year operation of the facility, with a target to reach market rates of interest at the end of the project. Technical support, awareness raising strategies and training were included as a part of the overall strategy. The credit facility was launched between April and June 2003 by the two partner banks. Early indications on sales have been very encouraging and the facility has already surpassed the target of 5000 SHS sales in two years within a year. Feedback mechanisms such as customer surveys, new initiatives to reach the poor households, and ongoing consultations with stakeholders etc. are also part of the market

  2. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    OpenAIRE

    Cisneros, Jesus

    2010-01-01

    The objective of this thesis is to perform a preliminary optical assessment of the external compound parabolic concentrator (XCPC) component in three concentrating solar thermal units. Each solar thermal unit consists an optical element (the non-imaging concentrating reflector) and a thermal element (the evacuated glass tube solar absorber). The three concentrating solar thermal units discussed in this work are DEWAR 58, a direct flow all-glass dewar, DEWAR 47 an indirect flow ...

  3. Engineering Stable Interfaces for Printed Solar Cells by Rationalizing Material Induced Loss Mechanisms

    OpenAIRE

    Zhang, Hong

    2016-01-01

    Solar energy is almost infinitely available and a clean energy source of the future. Organic solar cells (OSCs) are continuously drawing attention from both the academic and industrial communities and considered as a promising candidate for renewable energy sources of the next generation due to their non-toxicity, low-costs, high sustainability and especially their light weight and compatibility with flexible substrates. This dissertation targets on the development and understanding of high e...

  4. Solar orbiter/PHI full disk telescope entrance window mechanical mount

    Science.gov (United States)

    Barandiaran, J.; Zuluaga, P.; Fernandez, A. B.; Vera, I.; Garranzo, D.; Nuñez, A.; Bastide, L.; Royo, M. T.; Alvarez, A.

    2017-11-01

    PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, and polarization sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft (spacecraft (S/C)). PHI will consist of two telescopes: The High Resolution Telescope (HRT)[1] and the Full Disk Telescope (FDT). The HRT and the FDT will view the Sun through entrance windows located in the S/C heat shield. These windows act as heat rejecting filters with a transmission band of about 30 nm width centered on the science wavelength, such that the total transmittance (integral over the filter curve weighted with solar spectrum, including white leakage plus transmission profile of the pass band) does not exceed 4% of the total energy falling onto the window [2][3]. The HREW filter has been designed by SELEX in the framework of an ESA led technology development activity under original ESTEC contract No. 20018/06/NL/CP[4], and extensions thereof. For FDT HREW SLEX will provide the windows and it coatings. The HREW consists of two parallel-plane substrate plates (window 1 & window 2)[5] made of SUPRASIL 300 with a central thickness of 9 mm and a wedge of 30 arcsec each. These two substrates are each coated on both sides with four different coatings. These coatings and the choice of SUPRASIL help to minimize the optical absorptivity in the substrate and to radiatively decouple the HREW, which is expected to run at high temperatures during perihelion passages, from the PHI instrument cavity. The temperature distribution of the HREW is driven by two main factors: the mechanical mounting of the substrates to the feedthrough, and the radiative environment within the heat-shield/feedthrough assembly. The mechanical mount must ensure the correct integration of both suprasil substrates in its correct position and minimize the loads in windows due to thermal induced deformations and launching vibration environment. All the

  5. A Non-Intrusive Cyber Physical Social Sensing Solution to People Behavior Tracking: Mechanism, Prototype, and Field Experiments.

    Science.gov (United States)

    Jia, Yunjian; Zhou, Zhenyu; Chen, Fei; Duan, Peng; Guo, Zhen; Mumtaz, Shahid

    2017-01-13

    Tracking people's behaviors is a main category of cyber physical social sensing (CPSS)-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS) and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi)-based tracking method. To show the feasibility, we target tracking people's access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC)-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people's access behaviors can be correctly tracked within a one-second delay.

  6. A Non-Intrusive Cyber Physical Social Sensing Solution to People Behavior Tracking: Mechanism, Prototype, and Field Experiments

    Directory of Open Access Journals (Sweden)

    Yunjian Jia

    2017-01-01

    Full Text Available Tracking people’s behaviors is a main category of cyber physical social sensing (CPSS-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi-based tracking method. To show the feasibility, we target tracking people’s access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people’s access behaviors can be correctly tracked within a one-second delay.

  7. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  8. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  9. Component Energy Efficiencies in a Novel Linear to Rotary Motion Inter-conversion Hydro-mechanism Running a Solar Tracker

    Directory of Open Access Journals (Sweden)

    Kant Eliab Kanyarusoke

    2018-01-01

    Full Text Available A new mechanism interconverting linear and rotary motion was investigated for energy transfers among its components. It employed a gear-rack set, a Hooke coupling and a specially designed bladder-valve system that regulated the motion. The purpose was to estimate individual component mechanical efficiencies as they existed in the prototype so that future reengineering of the mechanism could be properly targeted. Theoretical modelling of the mechanism was first done to obtain equations for efficiencies of the key components. Two-stage experimentation followed when running a solar tracker. The first stage produced data for inputting into the model to determine the efficiencies’ theoretical variation with the Hooke coupling shaft angle. The second one verified results of the Engineering Equation Solver (EES software solutions of the model. It was found that the energy transfer to focus on was that between the Hooke coupling and the output shaft because its efficiency was below 4%

  10. Intermittently-visual Tracking Experiments Reveal the Roles of Error-correction and Predictive Mechanisms in the Human Visual-motor Control System

    Science.gov (United States)

    Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji

    Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

  11. Recombination mechanisms in highly efficient thin film Zn(S,O)/Cu(In,Ga)S2 based solar cells

    Science.gov (United States)

    Merdes, S.; Sáez-Araoz, R.; Ennaoui, A.; Klaer, J.; Lux-Steiner, M. Ch.; Klenk, R.

    2009-11-01

    Progress in fabricating Cu(In,Ga)S2 based solar cells with Zn(S,O) buffer is presented. An efficiency of 12.9% was achieved. Using spectral response, current-voltage and temperature dependent current-voltage measurements, current transport in this junction was studied and compared to that of a highly efficient CdS/Cu(In,Ga)S2 solar cell with a special focus on recombination mechanisms. Independently of the buffer type and despite the difference in band alignment of the two junctions, interface recombination is found to be the main recombination channel in both cases. This was unexpected since it is generally assumed that a cliff facilitates interface recombination while a spike suppresses it.

  12. A Novel Energy-Efficient Multi-Sensor Fusion Wake-Up Control Strategy Based on a Biomimetic Infectious-Immune Mechanism for Target Tracking.

    Science.gov (United States)

    Zhou, Jie; Liang, Yan; Shen, Qiang; Feng, Xiaoxue; Pan, Quan

    2018-04-18

    A biomimetic distributed infection-immunity model (BDIIM), inspired by the immune mechanism of an infected organism, is proposed in order to achieve a high-efficiency wake-up control strategy based on multi-sensor fusion for target tracking. The resultant BDIIM consists of six sub-processes reflecting the infection-immunity mechanism: occurrence probabilities of direct-infection (DI) and cross-infection (CI), immunity/immune-deficiency of DI and CI, pathogen amount of DI and CI, immune cell production, immune memory, and pathogen accumulation under immunity state. Furthermore, a corresponding relationship between the BDIIM and sensor wake-up control is established to form the collaborative wake-up method. Finally, joint surveillance and target tracking are formulated in the simulation, in which we show that the energy cost and position tracking error are reduced to 50.8% and 78.9%, respectively. Effectiveness of the proposed BDIIM algorithm is shown, and this model is expected to have a significant role in guiding the performance improvement of multi-sensor networks.

  13. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  14. EU COST Action MP1307 - Unravelling the degradation mechanisms of emerging solar cell technologies

    NARCIS (Netherlands)

    Aernouts, Tom; Brunetti, Francesca; De La Fuente, Jesus; Espinosa, Nieves; Urbina, Antonio; Fonrodona, Marta; Lira-Cantu, Monica; Galagan, Yulia; Hoppe, Harald; Katz, Eugene; Ramos, Marta; Riede, Moritz; Vandewal, Koen; Veenstra, Sjoerd; Von Hauff, Elizabeth

    2016-01-01

    Organic and hybrid perovskite based solar cells have a huge potential to significantly contribute to a clean electricity supply of the future. However, so far they exhibit complex and hierarchical degradation paths and their understanding can only be acquired through the application of complementary

  15. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells

    NARCIS (Netherlands)

    Neugebauer, H.; Brabec, C.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    Degradation studies of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV), fullerenes ((6,6)-phenyl C-61-butyric acid methyl ester (PCBM) and C-60), and mixtures, which are the photoactive components in plastic solar cells, are shown. The degradation processes of the

  16. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher; Dauskardt, Reinhold

    2014-01-01

    important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion

  17. Solar stove as a mechanism of appropriate energy by the low-income population in Sergipe, Brazil; Fogao solar como mecanismo de apropriacao de energia pela populacao de baixa renda em Sergipe

    Energy Technology Data Exchange (ETDEWEB)

    Brazil, Osiris Ashton Vital; Silva, Maria Susana [Sergipe Parque Tecnologico (SERGIPETEC), Aracaju, SE (Brazil); Araujo, Paulo Mario Machado de; Doria, Mary Barreto; Claudia Andrade, Leao Ana [Instituto de Tecnologia e Pesquisa (LEM/ITP), Aracaju, Sergipe (Brazil). Lab. de Energia e Materiais; Teixeira, Olivio [Universidade Federal do Sergipe (UFS), Aracaju, SE (Brazil)

    2008-07-01

    This work presents the experience from the realization of social workshops technology of construction and use of the solar stove box type in Sergipe State. The workshops were realized in 2007 and in the beginning from 2008 like mechanisms to appropriate the low income family to the use of the solar energy. The workshops accompanying enables to analyze the dynamic and propose betterments in the construction process of the innovation. The incentive to the solar stove use is justified by the fact of low income population frequently use logs like energetic for cook. The reached results in the workshops made possible the discussion of the mechanism from appropriation of the solar stove by the population in the government State action optic. (author)

  18. The case for a single-axis tracking solar PV array system to mitigate against the time-of-use tariff

    CSIR Research Space (South Africa)

    Szewczuk, S

    2016-08-01

    Full Text Available peak tariff is from 6:00pm to 8:00pm. A fixed-axis PV system generates peak electricity when the sun is overhead of the PV array. A single-axis PV tracking system allows for maximum production of electricity by tracking the sun soon after it appears...

  19. Tracking integration in concentrating photovoltaics using laterally moving optics.

    Science.gov (United States)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2011-05-09

    In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.

  20. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior

    International Nuclear Information System (INIS)

    Wei, Pei; Wei, Zhengying; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong

    2017-01-01

    Highlights: • The thermal behavior of AlSi10Mg molten pool was analyzed. • The SLM-processed sample with a relatively low surface roughness was obtained. • Effects of parameters on surface topography of scan track were investigated. • Effects of parameters on microstructure of parts were investigated. • Optimum processing parameters for AlSi10Mg SLM was obtained. - Abstract: This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.

  1. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Pei; Wei, Zhengying, E-mail: zywei@mail.xjtu.edu.cn; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong

    2017-06-30

    Highlights: • The thermal behavior of AlSi10Mg molten pool was analyzed. • The SLM-processed sample with a relatively low surface roughness was obtained. • Effects of parameters on surface topography of scan track were investigated. • Effects of parameters on microstructure of parts were investigated. • Optimum processing parameters for AlSi10Mg SLM was obtained. - Abstract: This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.

  2. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells.

    Science.gov (United States)

    Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole

    2017-03-01

    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young's modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain-subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.

  3. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Claudia Hengst

    2017-03-01

    Full Text Available The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells during fabrication in a roll-to-roll process or under service.

  4. Lessons Learned in the Flight Qualification of the S-NPP and NOAA-20 Solar Array Mechanisms

    Science.gov (United States)

    Helfrich, Daniel; Sexton, Adam

    2018-01-01

    Deployable solar arrays are the energy source used on almost all Earth orbiting spacecraft and their release and deployment are mission-critical; fully testing them on the ground is a challenging endeavor. The 8 meter long deployable arrays flown on two sequential NASA weather satellites were each comprised of three rigid panels almost 2 meters wide. These large panels were deployed by hinges comprised of stacked constant force springs, eddy current dampers, and were restrained through launch by a set of four releasable hold-downs using shape memory alloy release devices. The ground qualification testing of such unwieldy deployable solar arrays, whose design was optimized for orbital operations, proved to be quite challenging and provides numerous lessons learned. A paperwork review and follow-up inspection after hardware storage determined that there were negative torque margins and missing lubricant, this paper will explain how these unexpected issues were overcome. The paper will also provide details on how the hinge subassemblies, the fully-assembled array, and mechanical ground support equipment were subsequently improved and qualified for a follow-on flight with considerably less difficulty. The solar arrays built by Ball Aerospace Corp. for the Suomi National Polar Partnership (S-NPP) satellite and the Joint Polar Satellite System (JPSS-1) satellite (now NOAA-20) were both successfully deployed on-obit and are performing well.

  5. Mechanism of biphasic charge recombination and accumulation in TiO2 mesoporous structured perovskite solar cells.

    Science.gov (United States)

    Wang, Hao-Yi; Wang, Yi; Yu, Man; Han, Jun; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping; Qin, Yujun

    2016-04-28

    Organic-inorganic halide perovskite solar cells are becoming the next big thing in the photovoltaic field owing to their rapidly developing photoelectric conversion performance. Herein, mesoporous structured perovskite devices with various perovskite grain sizes are fabricated by a sequential dropping method, and the charge recombination dynamics is investigated by transient optical-electric measurements. All devices exhibit an overall power conversion efficiency around 15%. More importantly, a biphasic trap-limited charge recombination process is proposed and interpreted by taking into account the specific charge accumulation mechanism in perovskite solar cells. At low Fermi levels, photo-generated electrons predominately populate in the perovskite phase, while at high Fermi levels, most electrons occupy traps in mesoporous TiO2. As a result, the dynamics of charge recombination is, respectively, dominated by the perovskite phase and mesoporous TiO2 in these two cases. The present work would give a new perspective on the charge recombination process in meso-structured perovskite solar cells.

  6. Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation

    Science.gov (United States)

    Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.

    2017-10-01

    The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.

  7. Concentrating solar power plant investment and operation decisions under different price and support mechanisms

    International Nuclear Information System (INIS)

    Kost, Christoph; Flath, Christoph M.; Möst, Dominik

    2013-01-01

    The dispatch opportunities provided by storage-enhanced Concentrating Solar Power (CSP) plants have direct implications on the investment decisions as not only nameplate capacity but also the storage capacity and the solar multiple play a crucial role for the viability of the plant investment. By integrating additional technical aspects and operation strategies, this paper extends the optimization model proposed by Madaeni et al., How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power. Using a mixed integer maximization approach the paper yields both the optimal layout decision and the operation of CSP plants. Subsequently, the economic value of CSP storage is analyzed via energy modeling of a Spanish plant location under the respective wholesale market prices as well as the local feed-in tariff. The analysis shows that investment incentives for CSP plants with storage need to appropriately account for the interdependency between the price incentives and the plant operating strategy. As the resulting revenue characteristics influence the optimal size of solar field and storage differing operating strategies also give rise to differing optimal plant layouts. Most noteworthy, the current Spanish support scheme offers only limited incentives for larger thermal storage capacity. - Highlights: • Dispatch opportunities of CSP have direct implications on both investment and operational decisions. • Valuation approach with a single mixed integer maximization problem. • Profitability of CSP plants under the premium feed-in tariff in Spain was assessed. • Layout decision and storage size are influenced by remuneration scheme. • Discuss alternative remuneration schemes for “dispatchable” RE technologies

  8. The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell

    KAUST Repository

    Peters, Craig H.

    2011-10-11

    Degradation in a high efficiency polymer solar cell is caused by the formation of states in the bandgap. These states increase the energetic disorder in the system. The power conversion efficiency loss does not occur when current is run through the device in the dark but occurs when the active layer is photo-excited. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Basic mechanisms study for MIS solar cell structures on GaAs

    Science.gov (United States)

    Fonash, S. J.

    1978-01-01

    The solar cell structure examined is the MIS configuration on (n) GaAs. The metal room temperature oxide/(n) GaAs materials system was studied. Metals with electronegativities varying from 2.4 (Au) to 1.5 (Al) were used as the upper electrode. The thinnest metallization that did not interfere with the measurement techniques (by introducing essentially transmission line series resistance problems across a device) was used. Photovoltaic response was not optimized.

  10. Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design.

    Science.gov (United States)

    Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J

    2012-10-01

    The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.

  11. CO Self-Shielding as a Mechanism to Make O-16 Enriched Solids in the Solar Nebula

    Science.gov (United States)

    Nuth, Joseph A. III; Johnson, Natasha M.; Hill, Hugh G. M.

    2014-01-01

    Photochemical self-shielding of CO has been proposed as a mechanism to produce solids observed in the modern, O-16 depleted solar system. This is distinct from the relatively O-16 enriched composition of the solar nebula, as demonstrated by the oxygen isotopic composition of the contemporary sun. While supporting the idea that self-shielding can produce local enhancements in O-16 depleted solids, we argue that complementary enhancements of O-16 enriched solids can also be produced via CO-16 based, Fischer-Tropsch type (FTT) catalytic processes that could produce much of the carbonaceous feedstock incorporated into accreting planetesimals. Local enhancements could explain observed O-16 enrichment in calcium-aluminum-rich inclusions (CAIs), such as those from the meteorite, Isheyevo (CH/CHb), as well as in chondrules from the meteorite, Acfer 214 (CH3). CO selfshielding results in an overall increase in the O-17 and O-18 content of nebular solids only to the extent that there is a net loss of CO-16 from the solar nebula. In contrast, if CO-16 reacts in the nebula to produce organics and water then the net effect of the self-shielding process will be negligible for the average oxygen isotopic content of nebular solids and other mechanisms must be sought to produce the observed dichotomy between oxygen in the Sun and that in meteorites and the terrestrial planets. This illustrates that the formation and metamorphism of rocks and organics need to be considered in tandem rather than as isolated reaction networks.

  12. CO Self-Shielding as a Mechanism to Make 16O-Enriched Solids in the Solar Nebula

    Directory of Open Access Journals (Sweden)

    Joseph A. Nuth, III

    2014-05-01

    Full Text Available Photochemical self-shielding of CO has been proposed as a mechanism to produce solids observed in the modern, 16O-depleted solar system. This is distinct from the relatively 16O-enriched composition of the solar nebula, as demonstrated by the oxygen isotopic composition of the contemporary sun. While supporting the idea that self-shielding can produce local enhancements in 16O-depleted solids, we argue that complementary enhancements of 16O-enriched solids can also be produced via C16O-based, Fischer-Tropsch type (FTT catalytic processes that could produce much of the carbonaceous feedstock incorporated into accreting planetesimals. Local enhancements could explain observed 16O enrichment in calcium-aluminum-rich inclusions (CAIs, such as those from the meteorite, Isheyevo (CH/CHb, as well as in chondrules from the meteorite, Acfer 214 (CH3. CO self-shielding results in an overall increase in the 17O and 18O content of nebular solids only to the extent that there is a net loss of C16O from the solar nebula. In contrast, if C16O reacts in the nebula to produce organics and water then the net effect of the self-shielding process will be negligible for the average oxygen isotopic content of nebular solids and other mechanisms must be sought to produce the observed dichotomy between oxygen in the Sun and that in meteorites and the terrestrial planets. This illustrates that the formation and metamorphism of rocks and organics need to be considered in tandem rather than as isolated reaction networks.

  13. Development of a solar tracker for photovoltaic applications; Desenvolvimento de um rastreador solar para aplicacoes fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Daniel Rizzo; Lacerda Filho, Adilio Flauzino de; Resende, Ricardo C. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. Engenharia Agricola], E-mail: daniel.carvalho@ufv.br; Possi, Maurilio A [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Ciencia da Computacao; Ferreira, Ana Paula S [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Fitotecnia

    2012-11-01

    In this work are presented the design, construction and relevant results related to the production of electricity using a photovoltaic panel attached to the solar tracking mechanism. The objective was to develop a tracking device with high accuracy, reliable, low cost, high efficiency and easy operation, aiming at the possibility of residential, agricultural and industrial use of solar photovoltaic technologies with high efficiency of conversion. Was evaluated the performance of the tracker, comparing it to a fixed system and based on results analyzed, was observed a significant increase in energy production of photovoltaic panel attached to the tracking system, in relation to the fixed system the slope of the local latitude. Its performance was satisfactory, electromechanical structure requires no maintenance during the trial even when exposed to various weather conditions. The system showed great potential for application, usability and effectivity. (author)

  14. Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications

    OpenAIRE

    James Dunia; Bakari M. M. Mwinyiwiwa

    2013-01-01

    Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converter...

  15. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to

  16. Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    Deep level transient spectroscopy and the Shockley-Read-Hall recombination theory are used to identify the defect responsible for reverse annealing in 2 ohm-cm n+/p silicon solar cells. This defect, with energy level at Ev + 0.30 eV, has been tentatively identified as a boron-oxygen-vacancy complex. It has been also determined by calculation that the removal of this defect could result in significant annealing at temperatures as low as 200 C for 2 ohm-cm and lower resistivity cells.

  17. Characterization of Organic Solar Cell Devices and their Interfaces under Degradation: Imaging, Electrical and Mechanical Methods

    DEFF Research Database (Denmark)

    Corazza, Michael

    Renewable energies are a critical and necessary technological development deeply connected to human evolution and even survival. The extraordinary technological development of the past century brought tremendous changes to the planet which, despite the scepticism of some, are indubitably affecting...... the natural ecosystem and maybe even the destiny of Earth. Human evolution does not mean only advanced technological development, but also deeper consciousness and responsibility for the next generations to come. Everything on Earth exists because of the Sun: heat, wind, life... everything. Therefore, solar...

  18. Is Q for Quantum? From Quantum Mechanics to Formation of the Solar System

    Science.gov (United States)

    Wilson, T. L.; Mittlefehldt, D. W.

    2006-01-01

    The realization in 1985 that fullerenes exist in nature [1] as a third form of carbon-carbon clustering, continues to inspire new areas of research. In particular, the study of closed-cage endohedral fullerenes [2-6] is of scientific interest because of its potential application in a number of promising fields from medical imaging to astrophysics. One of these is to provide a possible chronometer for studying the age and origin of certain astromaterials in the solar system. Fullerenes are closed carbon cages that are fundamentally related to a long-standing debate over the "Q-Phase" origin of planetary noble gases in carbonaceous chondrites [7]. Although Q-phase has been identified as the carrier of planetary noble gases [8- 10], its physical nature has not been explained. Our limited understanding of it is based primarily on the laboratory chemical processing which it survives as well as the fact that it must have been widely distributed in the solar nebula [11]. Yet as important as it might be while preoccupying some 30 years of research, the question of what actually is Q-phase remains unresolved.

  19. Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection

    International Nuclear Information System (INIS)

    Narasimhan, Vinayak; Jiang, Dongyue; Park, Sung-Yong

    2016-01-01

    Highlights: • We present an arrayed tunable prism panel enabling wide tracking and high solar concentration. • A microfluidic technology allows a low-cost, lightweight and precise solar tracking system. • Our prism panel enables high solar concentration up to 2032× factor. • Various liquid prism configurations (stacked prism arrays) and optical materials are considered. • Their impacts on solar beam steering, reflection losses and beam concentration are studied. - Abstract: We present the design and optical analyses of an arrayed microfluidic tunable prism panel that enables wide solar tracking and high solar concentration while minimizing energy loss. Each of the liquid prism modules is implemented by a microfluidic (i.e. non-mechanical) technology based on electrowetting for adaptive solar beam steering. Therefore the proposed platform offers a low-cost, lightweight and precise solar tracking system while obviating the need for bulky and heavy mechanical moving parts essentially required for a conventional motor-driven solar tracker. In this paper, various liquid prism configurations in terms of design (single, double, triple and quad-stacked prism arrays) as well as optical materials are considered and their impact on optical performance aspects such as solar beam steering, reflection losses and beam concentration is studied. Our system is able to achieve a wide solar tracking covering the whole-day movement of the Sun and a reflection loss below 4.4% with a Rayleigh’s film for a quad-stacked prism configuration. Furthermore, an arrayed prism panel is proposed to increase the aperture area and thus allows for the collection of large amounts of sunlight. Our simulation study based on the optical design software, ZEMAX, indicates that the prism panel is capable of high solar concentration up to 2032× factor even without conventional solar tracking devices. We also deal with dispersion characteristics of the materials and their corresponding effect on

  20. Design, construction and performance evaluation of aBox type solar cooker with a glazing wiper mechanism

    Directory of Open Access Journals (Sweden)

    Zeleke Ademe

    2018-01-01

    Full Text Available This research work describes the performance evaluation of a double-glazed box-type solar oven with three reflectors and with a vapor wiper mechanism fabricated using locally available materials. The box cooker has external box dimensions of 600 mm × 600 mm × 250 mm and pyramidal internal box dimensions of 460 mm × 460 mm top face and 300 mm × 300 mm bottom face with depth of 150 mm. The thermal performance was tested as per the ASAE International Test procedure and Bureau of Indian Standards (BIS for testing the thermal performance of a box-type solar cooker. The obtained test results after employing required calculations were figures of merit F1 = 0.123 Km2/W, F2 = 0.540, the standard cooking power P50 = 36 W and the cumulative efficiency to be 22%, whereas with the application of the wiper mechanism, it was found that F1 = 0.123, F2 = 0.827, the standard cooking power (P50 = 51 W, and the cumulative efficiency to be 31.4%. The standard boiling time of 1.43 kg of water was calculated to be 53.54 and 88.84 minutes for the cooker with and without the application of wiper mechanism respectively. The thermal distribution of the cooker was modeled using interior box geometry as a boundary condition with ANSYS 15.0. The temperature distribution inside the box was simulated and the maximum wall temperature was found to be 139 ℃. This was lower than the experimental results by 22 ℃. The method of modeling and simulation of the cooker with and without a wiper mechanism is similar except for the variation of the transmittance of the glass due to shading of vapor which can be deducted from the cumulative efficiency for the latter case. The results show that using the vapor wiper mechanism increases the cumulative efficiency by 9.4% and reduces the boiling time by 35.3 minutes. Finally, the techno-economic analysis shows that the cooker with a vapor wiper mechanism has a good reliability for outdoor cooking of food and is economically feasible.

  1. Recording of heavy ion tracks in silicates. Application to the determination of the abundance of ultra-heavy elements in old solar cosmic radiation

    International Nuclear Information System (INIS)

    Duraud, J.-P.

    1978-12-01

    The aim of this thesis is to determine the abundance A(Z) and energy spectrum of the elements of atomic number Z present in cosmic radiation, by means of fossil traces recorded in moon and meteorite minerals. The difficulties due amongst other things to natural annealing are examined in detail in part one, of this paper, the outcome being a thorough study of the processes responsible for the formation, chemical attack and annealing of heavy ion tracks. Part two describes an original approach used here and consisting of a combined analysis as a function of annealing for a given track, of the microscopic structure of the latent track and its attack rate. Part three uses the new rules established beforehand to propose a new method of studying the UH ion (Z>30) to VH ion (20 [fr

  2. Task 9 recommended practice guides - Executive summaries. Financing mechanisms for solar home systems in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-15

    This Practice Guide issued by the Photovoltaic Power Systems (PVPS) group of the International Energy Agency (IEA) summarises how insufficient financing, the low incomes of the potential clients in remote rural areas and the high initial investment costs for the Solar Home System (SHS) are the factors responsible for insufficient progress in this area. The findings of the study such as access to finance, subsidies, formal and informal intermediaries and alternative financing solutions are discussed. SHS operating costs, possible higher priorities for other commodities and other market-driven factors are discussed. The report notes that most other reports concentrate more on technical and institutional rather than on the underlying financing schemes and associated data. Recommendations made deal with political aspects as well as technical, financial and awareness issues.

  3. A quantum-mechanical study of ZnO and TiO2 based dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Giancarlo [Chemical Engineering and Materials Science Department, Politecnico of Torino, Torino (Italy); Mallia, Giuseppe; Liborio, Leandro [Imperial College London, Thomas Young Centre, Chemistry Department, London (United Kingdom); Harrison, Nicholas M. [Imperial College London, Thomas Young Centre, Chemistry Department, London (United Kingdom); STFC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom)

    2010-07-01

    Since the pioneering work of Regan and Graetzel, a great attention has been paid to dye sensitized solar cell (DSC) as cheap, effective and environmentally benign candidates for a new generation solar power devices. Optimization of the DSC is still a challenging task as it is a highly complex interacting molecular system. Surface properties of the oxide and in particular proper sensitization with dye molecules may highly affect the efficiency of these cells. Aim of this study is to address the binding of cathecol and isonicotinic acid to oxide surfaces usually employed in DSC, namely ZnO and TiO{sub 2}, in terms of geometry, stability, electronic structure and band alignment. To this end, we employ quantum mechanical simulations based on hybrid density functional theory. Our analysis helps understanding whether the difference between ZnO and TiO{sub 2} in photoeletricity generation efficiency is due to the changes in the bonding geometry of the dye anchoring groups or to electronic effects.

  4. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.

    Science.gov (United States)

    Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A

    2014-04-14

    ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tube collector with integrated tracking parabolic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Grass, C.; Benz, N.; Hacker, Z.; Timinger, A. [ZAE Bayern, Bavarian Centre for Applied Energy Research, Muenchen (Germany)

    2000-07-01

    Low concentrating CPC collectors usually do not track the sun and are mounted in east-west direction with a latitude dependent slope angle. They are most suitable for maximum working temperatures up to 200 250 deg. C. We present a novel evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5 deg. at a geometrical concentration ratio of 3.2. The losses of evacuated tube collectors are dominated by the radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 400 deg. C. At temperatures of 300 deg. C we expect efficiencies of 65 %. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype was tested at the ZAE Bayern. The optical efficiency was measured to be 75 %. (au)

  6. Solar flare irradiation records in Antarctic meteorites

    International Nuclear Information System (INIS)

    Goswami, J.N.

    1981-01-01

    Observations of solar flare heavy nuclei tracks in eight Antartic meteorite samples are reported. Two of these were interior specimens from an L-3 chondrite which contained track-rich grains (olivine) indicating their exposure to solar flare irradiation before compaction of the meteorite. Preliminary noble gas data also indicate the presence of solar-type gases. (U.K.)

  7. Control Mechanisms of the Electron Heat Flux in the Solar Wind: Observations in Comparison to Numerical Simulations

    Science.gov (United States)

    Stverak, S.; Hellinger, P.; Landi, S.; Travnicek, P. M.; Maksimovic, M.

    2017-12-01

    Recent understanding of the heat transport and dissipation in the expanding solar wind propose number of complex control mechanisms down to the electron kinetic scales. We investigate the evolution of electron heat flux properties and constraints along the expansion using in situ observations from Helios spacecraft in comparison to numerical kinetic simulations. In particular we focus on the roles of Coulomb collisions and wave-particle interactions in shaping the electron velocity distribution functions and thus controlling the heat transported by the electron heat flux. We show the general evolution of the electron heat flux to be driven namely by the Coulomb collisions. Locally we demonstrate the wave-particle interactions related to the kinetic plasma instabilities to be providing effective constraints in case of extreme heat flux levels.

  8. The influence of mechanical vibrations of railway and car traffics on the radon exhalation using track detector technique

    International Nuclear Information System (INIS)

    Moharram, B.M.

    2000-01-01

    The influence of train and car traffic vibrations on the radon concentration (CRn) increase near the railway tracks and the heavy traffic roads. It was estimated along the railway road, and perpendicular directions using CR-39 detectors. The special radius of the influence is about 32 m, while the related value for car traffics is found to be about 25 m. The base line of radon concentration in soil gas and radon exhalation are estimated in the whole area, far from the center of traffic roads by a distance (> 100 m) in different different directions and found to be 0.6 Bq/L and 1.25 x 10 4 Bq m -2 respectively.It is easy to detect that the average ratio between the radon concentration at its higher level and its base line, which is regular concentration of radon in the ordinary positions far from the effect of traffics, is about 1.18 for railway traffics. While the related value to vehicle traffic is about 1.23, which is higher than that of railway traffic because the ground is stimulated per minutely

  9. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling

    Science.gov (United States)

    Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji

    2015-01-01

    Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548

  10. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenchao; Yao, Yao, E-mail: yaoyao@fudan.edu.cn; Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  11. Silver powder effectiveness and mechanism of silver paste on silicon solar cells

    International Nuclear Information System (INIS)

    Tsai, Jung-Ting; Lin, Shun-Tian

    2013-01-01

    Highlights: ► Optimizing the silver paste in 80–85 wt.%. ► Optimizing its particle size in 1–1.5 μm spherical powder. ► The sheet resistance is 4 mΩ/sq during the 860 °C sintering process. ► Redox reaction cause Ag crystallites to grow on the interface. ► A thin layer of silicon oxide (75–150 nm) was formed. - Abstract: Since the silver paste plays a major role in the mass production of silicon solar cells, this work has succeeded in optimizing the silver paste in 80–85 wt.% and optimizing its particle size in 1–1.5 μm spherical powder. As the firing temperature is increased, the growth trend of silver grain is improved. The result of this work has showed that the lowest sheet resistance is 4 mΩ/sq during the 860 °C sintering process. The scanning electron microscope (SEM) observation has showed that the formation of silver oxide is formed during the melting process of glass and triggered redox reaction of Ag crystallites to grow on the interface. It has proven by transmission electron microscope (TEM) that a thin layer of silicon oxide (75–150 nm) was formed, respectively.

  12. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    Science.gov (United States)

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. What Are We Tracking ... and Why?

    Science.gov (United States)

    Suarez-Sola, I.; Davey, A.; Hourcle, J. A.

    2008-12-01

    What Are We Tracking ... and Why? It is impossible to define what adequate provenance is without knowing who is asking the question. What determines sufficient provenance information is not a function of the data, but of the question being asked of it. Many of these questions are asked by people not affiliated with the mission and possibly from different disciplines. To plan for every conceivable question would require a significant burden on the data systems that are designed to answer the mission's science objectives. Provenance is further complicated as each system might have a different definition of 'data set'. Is it the raw instrument results? Is it the result of numerical processing? Does it include the associated metadata? Does it include packaging? Depending on how a system defines 'data set', it may not be able to track provenance with sufficient granularity to ask the desired question, or we may end up with a complex web of relationships that significantly increases the system complexity. System designers must also remember that data archives are not a closed system. We need mechanisms for tracking not only the provenance relationships between data objects and the systems that generate them, but also from journal articles back to the data that was used to support the research. Simply creating a mirror of the data used, as done in other scientific disciplines, is unrealistic for terabyte and petabyte scale data sets. We present work by the Virtual Solar Observatory on the assignment of identifiers that could be used for tracking provenance and compare it to other proposed standards in the scientific and library science communities. We use the Solar Dynamics Observatory, STEREO and Hinode missions as examples where the concept of 'data set' breaks many systems for citing data.

  14. Testing for Dark Matter Trapped in the Solar System

    Science.gov (United States)

    Krisher, Timothy P.

    1996-01-01

    We consider the possibility of dark matter trapped in the solar system in bound solar orbits. If there exist mechanisms for dissipating excess kinetic energy by an amount sufficient for generating bound solar orbits, then trapping of galactic dark matter might have taken place during formation of the solar system, or could be an ongoing process. Possible locations for acumulation of trapped dark matter are orbital resonances with the planets or regions in the outer solar system. It is posible to test for the presence of unseen matter by detecting its gravitational effects. Current results for dynamical limits obtained from analyses of planetary ephemeris data and spacecraft tracking data are presented. Possible future improvements are discussed.

  15. DOE Solar Energy Technologies Program Peer Review Technical Track: Nanostructures and Quantum Dots Project Name: Center for Nanoscale Energy Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Schulz; Philip R. Boudjouk

    2009-03-09

    Some major accomplishments of the program are: (1) First crystal structures of Si{sub 6}H{sub 12}-related molecules; (2) PECVD of both a-Si and alloys (i.e., SiN and SiO{sub x}) using Si{sub 6}H{sub 12}; (3) Establishment of a system that couples a printing methodology with laser annealing; and (4) Developed schematics and electrical models for power-point tracking system and filed invention disclosure.

  16. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells.

    Science.gov (United States)

    Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2015-02-24

    Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.

  17. Hole-Collection Mechanism in Passivating Metal-Oxide Contacts on Si Solar Cells: Insights From Numerical Simulations

    KAUST Repository

    Vijayan, Ramachandran Ammapet

    2018-02-14

    Silicon heterojunction solar cells enable high conversion efficiencies, thanks to their passivating contacts which consist of layered stacks of intrinsic and doped amorphous silicon. However, such contacts may reduce the photo current, when present on the illuminated side of the cell. This motivates the search for wider bandgap contacting materials, such as metal oxides. In this paper, we elucidate the precise impact of the material parameters of MoO$_{x}$ on device characteristics, based on numerical simulations. The simulation results allow us to propose design principles for hole-collecting induced junctions. We find that if MoO$_{x}$ has a sufficiently high electron affinity ($\\\\ge\\\\! \\\\text{{5.7 eV}}$), direct band-to-band tunneling is the dominant transport mechanism; whereas if it has a lower electron affinity ($ <\\\\! \\\\text{{5.7 eV}}$), trap-assisted tunneling dominates, which might introduce additional series resistance. At even lower electron affinity, S-shaped J–V curves may appear for these solar cells, which are found to be due to an insufficient trap state density in the MoO$_{x}$ film in contrast to the expectation of better performance at low trap density. These traps may assist carrier transport when present near the conduction band edge of the MoO$_{x}$ film. Our simulations predict that performance optimization for the MoO$_{x}$ film has to target either 1) a high electron affinity and a moderate doping density film or, 2) if the electron affinity is lower than the optimum value, a high defect density not exceeding the doping density inside the film.

  18. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand

    Science.gov (United States)

    Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T. W.; Mae, Y.; Arai, T.; Tanaka, M.

    2016-03-01

    Regeneration of a tissue fragment of freshwater polyp Hydra is accompanied by significant morphological fluctuations, suggesting the generation of active forces. In this study, we utilized a two fingered micro-robotic hand to gain insights into the mechanics of regenerating tissues. Taking advantage of a high force sensitivity (˜1 nN) of our micro-hand, we non-invasively acquired the bulk elastic modulus of tissues by keeping the strain levels low (ɛ < 0.15). Moreover, by keeping the strain at a constant level, we monitored the stress relaxation of the Hydra tissue and determined both viscous modulus and elastic modulus simultaneously, following a simple Maxwell model. We further investigated the correlation between the frequency of force fluctuation and that of morphological fluctuation by monitoring one "tweezed" tissue and the other "intact" tissue at the same time. The obtained results clearly indicated that the magnitude and periodicity of the changes in force and shape are directly correlated, confirming that our two fingered micro-hand can precisely quantify the mechanics of soft, dynamic tissue during the regeneration and development in a non-invasive manner.

  19. Design of tracking photovoltaic systems with a single vertical axis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E. [Ciudad Universitaria, Madrid (Spain). Instituto de Energeia Solar; Perez, M. [Pol Industrial La Nava, Naavarrsa (Spain). Alternativas Energeticas Solares; Ezpeleta, A. [Energia Hidroelectrica Navarra, Pamplona (Spain); Acedo, J. [Ingeteam SA, Pamplona (Spain)

    2002-07-01

    Solar tracking is used in large grid-connected photovoltaic plants to maximise solar radiation collection and, hence, to reduce the cost of delivered electricity. In particular, single vertical axis tracking, also called azimuth tracking, allows for energy gains up to 40%, compared with optimally tilted fully static arrays. This paper examines the theoretical aspects associated with the design of azimuth tracking, taking into account shadowing between different trackers and back-tracking features. Then, the practical design of the trackers installed at the 1.4 MW Tudela PV plant is presented and discussed. Finally, this tracking alternative is compared with the more conventional fully stationary approach. (author)

  20. Particle tracking

    International Nuclear Information System (INIS)

    Mais, H.; Ripken, G.; Wrulich, A.; Schmidt, F.

    1986-02-01

    After a brief description of typical applications of particle tracking in storage rings and after a short discussion of some limitations and problems related with tracking we summarize some concepts and methods developed in the qualitative theory of dynamical systems. We show how these concepts can be applied to the proton ring HERA. (orig.)

  1. Timber tracking

    DEFF Research Database (Denmark)

    Düdder, Boris; Ross, Omry

    2017-01-01

    Managing and verifying forest products in a value chain is often reliant on easily manipulated document or digital tracking methods - Chain of Custody Systems. We aim to create a new means of tracking timber by developing a tamper proof digital system based on Blockchain technology. Blockchain...

  2. Oxidative Stress State Is Associated with Left Ventricular Mechanics Changes, Measured by Speckle Tracking in Essential Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Luis Antonio Moreno-Ruíz

    2015-01-01

    Full Text Available The oxidative stress state is characterized by an increase in oxygen reactive species that overwhelms the antioxidant defense; we do not know if these pathological changes are correlated with alterations in left ventricular mechanics. The aim was correlating the oxidative stress state with the left ventricular global longitudinal strain (GLS and the left ventricular end diastolic pressure (LVEDP. Twenty-five patients with essential hypertension and 25 controls paired by age and gender were studied. All of the participants were subjected to echocardiography and biochemical determination of oxidative stress markers. The hypertensive patients, compared with control subjects, had significantly (p<0.05 higher levels of oxidized proteins (5.03±1.05 versus 4.06±0.63 nmol/mg, lower levels of extracellular superoxide dismutase (EC-SOD activity (0.045±0.02 versus 0.082±0.02 U/mg, higher LVEDP (16.2±4.5 versus 11.3±1.6 mm Hg, and lower GLS (−12% versus −16%. Both groups had preserved ejection fraction and the results showed a positive correlation of oxidized proteins with GLS (r=0.386, p=0.006 and LVEDP (r=0.389, p=0.005; we also found a negative correlation of EC-SOD activity with GLS (r=-0.404, p=0.004 and LVEDP (r=-0.347, p=0.014.

  3. Development of Dye-Sensitized Solar Cells with Sputtered N-Doped TiO2 Thin Films: From Modeling the Growth Mechanism of the Films to Fabrication of the Solar Cells

    OpenAIRE

    Duarte, D. A.; Massi, M.; da Silva Sobrinho, A. S.

    2014-01-01

    In this paper, nitrogen-doped TiO2 thin films were deposited by DC reactive sputtering at different doping levels for the development of dye-sensitized solar cells. The mechanism of film growth during the sputtering process and the effect of the nitrogen doping on the structural, optical, morphological, chemical, and electronic properties of the TiO2 were investigated by numerical modeling and experimental methods. The influence of the nitrogen doping on the working principle of the prototype...

  4. Orrery a story of mechanical solar systems, clocks, and English nobility

    CERN Document Server

    Buick, Tony

    2014-01-01

    To find the true story of the orrery, this book takes the reader to the vibrant, tumultous London of the 1600s. A mechanical model that shows the movements of the Moon and planets, the orrery takes its name from the Boyle family – the Earls of Orrery. Here is the fascinating story of the origins of this intricate device. Orreries are found everywhere. They appear in paintings, on the side of royal clocks, in stately home hallways, and of course, in museums all over the world. Scientific instruments to demonstrate the movements of the planets and predict their positions using measuring devices, they were devised largely by clockmakers, but many others played a role too and are given due credit. The story of the Boyles is not just relevant to a tiny corner of Ireland, but spans history. “Orrery” highlights the process of discovery and humankind’s universal fascination with the heavens, providing a fascinating example of the relationship between innovative thinking (invention) and precision enginee...

  5. Mechanism of Thermal Reversal of the (Fulvalene)tetracarbonyldiruthenium Photoisomerization: Toward Molecular Solar-Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Y; Srinivasan, V; Meier, S K; Vollhardt, K P; Grossman, J C

    2010-02-18

    In the currently intensifying quest to harness solar energy for the powering of our planet, most efforts are centered around photoinduced generic charge separation, such as in photovoltaics, water splitting, other small molecule activation, and biologically inspired photosynthetic systems. In contrast, direct collection of heat from sunlight has received much less diversified attention, its bulk devoted to the development of concentrating solar thermal power plants, in which mirrors are used to focus the sun beam on an appropriate heat transfer material. An attractive alternative strategy would be to trap solar energy in the form of chemical bonds, ideally through the photoconversion of a suitable molecule to a higher energy isomer, which, in turn, would release the stored energy by thermal reversal. Such a system would encompass the essential elements of a rechargeable heat battery, with its inherent advantages of storage, transportability, and use on demand. The underlying concept has been explored extensively with organic molecules (such as the norbornadiene-quadricyclane cycle), often in the context of developing photoswitches. On the other hand, organometallic complexes have remained relatively obscure in this capacity, despite a number of advantages, including expanded structural tunability and generally favorable electronic absorption regimes. A highly promising organometallic system is the previously reported, robust photo-thermal fulvalene (Fv) diruthenium couple 1 {l_reversible} 2 (Scheme 1). However, although reversible and moderately efficient, lack of a full, detailed atom-scale understanding of its key conversion and storage mechanisms have limited our ability to improve on its performance or identify optimal variants, such as substituents on the Fv, ligands other than CO, and alternative metals. Here we present a theoretical investigation, in conjunction with corroborating experiments, of the mechanism for the heat releasing step of 2 {yields} 1 and

  6. Mechanism of the relations between the changes of the geomagnetic field, solar corpuscular radiation, atmospheric circulation, and climate

    International Nuclear Information System (INIS)

    Bucha, Vaclav

    1980-01-01

    The correlations between geomagnetic, climatic, and meteorological phenomena were investigated with the object of demonstrating the function of the geomagnetic pole and changes of its position in controlling the climate and weather. A tentative model has been proposed to enable one to understand the causes of the generation of glacial and interglacial periods, as well as the causes which effect changes of climate (Bucha, 1976a). The analyses of various types of geomagnetic and atmospheric manifestations have disclosed certain associations. The coincidence in the occurrence of increased spectral densities with regard to geomagnetic activity and the variations of atmospheric pressure over the geomagnetic pole shows the relation between their periodicities. The results imply that the changes in the intensity of corpuscular radiation, indicated by geomagnetic activity, affect the temperature and pressure patterns over the geomagnetic pole and polar region significantly, so that a pronounced modification of the general circulation may take place, as shown schematically (Bucha, 1976b). As a result of investigating the relations between the variations of geomagnetic activity and meteorological factors a mechanism of solar-terrestrial relationships and a model of the changes of atmospheric circulation in the Northern Hemisphere are proposed; this provides a probable explanation of the causes of the fluctuation of the climate, of dry and cold periods and of differing vegetation conditions in various years in dependence on the intensity of geomagnetic activity (Bucha, 1976b, 1977a). (author)

  7. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  8. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  9. Making tracks

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    In many modern tracking chambers, the sense wires, rather than being lined up uniformly, are grouped into clusters to facilitate the pattern recognition process. However, with higher energy machines providing collisions richer in secondary particles, event reconstruction becomes more complicated. A Caltech / Illinois / SLAC / Washington group developed an ingenious track finding and fitting approach for the Mark III detector used at the SPEAR electron-positron ring at SLAC (Stanford). This capitalizes on the detector's triggering, which uses programmable logic circuits operating in parallel, each 'knowing' the cell patterns for all tracks passing through a specific portion of the tracker (drift chamber)

  10. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  11. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  12. Technology computer aided design of 29.5% efficient perovskite/interdigitated back contact silicon heterojunction mechanically stacked tandem solar cell for energy-efficient applications

    Science.gov (United States)

    Pandey, Rahul; Chaujar, Rishu

    2017-04-01

    A 29.5% efficient perovskite/SiC passivated interdigitated back contact silicon heterojunction (IBC-SiHJ) mechanically stacked tandem solar cell device has been designed and simulated. This is a substantial improvement of 40% and 15%, respectively, compared to the transparent perovskite solar cell (21.1%) and Si solar cell (25.6%) operated individually. The perovskite solar cell has been used as a top subcell, whereas 250- and 25-μm-thick IBC-SiHJ solar cells have been used as bottom subcells. The realistic technology computer aided design analysis has been performed to understand the physical processes in the device and to make reliable predictions of the behavior. The performance of the top subcell has been obtained for different acceptor densities and hole mobility in Spiro-MeOTAD along with the impact of counter electrode work function. To incorporate the effect of material quality, the influence of carrier lifetimes has also been studied for perovskite top and IBC-SiHJ bottom subcells. The optical and electrical behavior of the devices has been obtained for both standalone as well as tandem configuration. Results reported in this study reveal that the proposed four-terminal tandem device may open a new door for cost-effective and energy-efficient applications.

  13. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.

    Science.gov (United States)

    Lin, Kae-Long; Huang, Long-Sheng; Shie, Je-Lueng; Cheng, Ching-Jung; Lee, Ching-Hwa; Chang, Tien-Chin

    2013-01-01

    This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization. The results indicate that increasing the amount of solar panel waste glass resulted in a decrease in the water absorption rate and an increase in the compressive strength of the solar panel waste glass bricks. The 24-h absorption rate and compressive strength of the solar panel waste glass brick made from samples containing 30% solar panel waste glass sintered at 1000 degrees C all met the Chinese National Standard (CNS) building requirements for first-class brick (compressive strengths and water absorption of the bricks were 300 kg cm(-2) and 10% of the brick, respectively). The addition of solar panel waste glass to the mixture reduced the degree of firing shrinkage. The salt crystallization test and wet-dry tests showed that the addition of solar panel waste glass had highly beneficial effects in that it increased the durability of the bricks. This indicates that solar panel waste glass is indeed suitable for the partial replacement of clay in bricks.

  14. mechanical sun mechanical sun-tracking techn tracking techn power

    African Journals Online (AJOL)

    User

    the maximum possible power. In order maximum power output from PV cells, the sunlig angle of ... means of a DC motor controlled by an intelligent drive unit that receive sors. .... be extracted using MPPT (MMPPT or electronic. MPPT) and ...

  15. Solar Stereoscopy and Tomography

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2011-10-01

    Full Text Available We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007--2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs are not included.

  16. Why tracks

    International Nuclear Information System (INIS)

    Burchart, J.; Kral, J.

    1979-01-01

    A comparison is made of two methods of determining the age of rocks, ie., the krypton-argon method and the fission tracks method. The former method is more accurate but is dependent on the temperature and on the grain size of the investigated rocks (apatites, biotites, muscovites). As for the method of fission tracks, the determination is not dependent on grain size. This method allows dating and the determination of uranium concentration and distribution in rocks. (H.S.)

  17. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  18. Solar Heating of Buildings and Domestic Hot Water. Revision.

    Science.gov (United States)

    1980-05-01

    tracking mechanism and can collect only direct radiation. Figure 2-9(c) shows a compound parabolic mirror collector . The design of the mirrors allow the...linear-trough, fresnel lens tube collector (c compound parabolic mirror IFigurc 2-9. Cirnicntrating coll’ectors lr solar cncrgy. Direct radiation is...the parabolic trough, the linear-trough fresnel lens, and the compound parabolic mirror. -Figure 2-9(a) shows a linear concentrating or parabolic

  19. Mechanism study of the electrical performance change of silicon concentrator solar cells immersed in de-ionized water

    International Nuclear Information System (INIS)

    Han Xinyue; Wang Yiping; Zhu Li; Xiang Haijun; Zhang Hui

    2012-01-01

    Highlights: ► Factors for performance degradation of silicon CPV cells in DI water were investigated. ► Long term immersion results showed no significant degradation on bare silicon CPV cell in 65° C DI water. ► Isc, not Voc of tabbed cells decreased with exposure time, notably under sunlight. ► The occurrence of galvanic corrosion on tabbed CPV cells has been confirmed. ► Performance recovery of tabbed cells after cleaning indicated that the cells are not damaged after long-time immersion. - Abstract: Direct de-ionized (DI) water immersion cooling has been verified to be an effective method of managing the operating temperature of silicon solar cells under concentration. However, the stable electrical performance is difficult to be achieved. Possible factors from bare cell self, materials for tabbing cells were investigated in this study for understanding the degradation mechanism. Long term immersion results showed that no significant degradation on bare cells operated in DI water at 65 °C. When cells were tabbed using lead-based solder and flux, the short circuit current (I sc ) of cells decreased with exposure time, notably under sunlight, but it was not observed for cell open circuit voltage (V oc ). The epoxy tabbed cells test also demonstrated that the tabbed cells without lead-based solder and flux involved were also found drop in I sc , but with slower rate. The presence of lead and tin black oxides on the lead based-soldered tabbed cells and red deposition on the epoxy tabbed cells confirmed the occurrence of galvanic corrosion. However, particular cleaning recovers the I–V towards its initial values for the former tabbed cells, and partial recovery for the latter tabbed cells, which indicates that the cells are not damaged after long-time DI water immersion.

  20. Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin films

    International Nuclear Information System (INIS)

    Rahman, M. Mahbubur; Jiang, Zhong-Tao; Zhou, Zhi-feng; Xie, Zonghan; Yin, Chun Yang; Kabir, Humayun; Haque, Md. Mahbubul; Amri, Amun; Mondinos, Nicholas; Altarawneh, Mohammednoor

    2016-01-01

    Quaternary sputtered TiAlSiN coatings were investigated for their high temperature structural stability, surface morphology, mechanical behaviors, surface chemical bonding states, solar absorptance and thermal emittance for possible solar selective surface applications. The TiAlSiN films were synthesized, via unbalanced magnetron sputtered technology, on AISI M2 steel substrate and annealed at 500 °C - 800 °C temperature range. SEM micrographs show nanocomposite-like structure with amorphous grain boundaries. Nanoindentation analyses indicate a decrease of hardness, plastic deformation and constant yield strength for the coatings. XPS analysis show mixed Ti, Al and Si nitride and oxide as main coating components but at 800 °C the top layer of the coatings is clearly composed of only Ti and Al oxides. Synchrotron radiation XRD (SR-XRD) results indicate various Ti, Al and Si nitride and oxide phases, for the above annealing temperature range with a phase change occurring with the Fe component of the substrate. UV–Vis spectroscopy, FTIR spectroscopy studies determined a high solar selectivity, s of 24.6 for the sample annealed at 600 °C. Overall results show good structural and morphological stability of these coatings at temperatures up to 800 °C with a very good solar selectivity for real world applications. - Highlights: • TiAlSiN sputtered coatings were characterized for solar selective applications. • In situ synchrotron radiation XRD were studies show the occurrence of multiple stable phases. • A high selectivity of 24.63 has been achieved for the coatings annealed at 700 °C. • Existence of XRD phases were also confirmed by XPS measurements. • At high temperature annealing the mechanical properties of films were governed by the utmost surfaces of the films.

  1. Hole-Collection Mechanism in Passivating Metal-Oxide Contacts on Si Solar Cells: Insights From Numerical Simulations

    KAUST Repository

    Vijayan, Ramachandran Ammapet; Essig, Stephanie; De Wolf, Stefaan; Ramanathan, Bairava Ganesh; Loper, Philipp; Ballif, Christophe; Varadharajaperumal, Muthubalan

    2018-01-01

    Silicon heterojunction solar cells enable high conversion efficiencies, thanks to their passivating contacts which consist of layered stacks of intrinsic and doped amorphous silicon. However, such contacts may reduce the photo current, when present

  2. Solar sail deployment experiment

    OpenAIRE

    Shimose, Shigeru; 下瀬 滋

    2006-01-01

    Solar Sail move by receiving momentum of photons in sunlight. This paper presents results of some Spin-Stabilized Solar Sail deployment experiment. ISAS has successfully deployed, for the first time in the world, the polyimide Solar Sail taking advantage of centrifugal force in space. Based on this result, the new deployment mechanism is being developed which retracts the 50 m diameter sail.

  3. Parabolic solar concentrator

    Science.gov (United States)

    Tecpoyotl-Torres, M.; Campos-Alvarez, J.; Tellez-Alanis, F.; Sánchez-Mondragón, J.

    2006-08-01

    In this work we present the basis of the solar concentrator design, which has is located at Temixco, Morelos, Mexico. For this purpose, this place is ideal due to its geographic and climatic conditions, and in addition, because it accounts with the greatest constant illumination in Mexico. For the construction of the concentrator we use a recycled parabolic plate of a telecommunications satellite dish (NEC). This plate was totally covered with Aluminum. The opening diameter is of 332 cm, the focal length is of 83 cm and the opening angle is of 90°. The geometry of the plate guaranties that the incident beams, will be collected at the focus. The mechanical treatment of the plate produces an average reflectance of 75% in the visible region of the solar spectrum, and of 92% for wavelengths up to 3μm in the infrared region. We obtain up to 2000°C of temperature concentration with this setup. The reflectance can be greatly improved, but did not consider it as typical practical use. The energy obtained can be applied to conditions that require of those high calorific energies. In order to optimize the operation of the concentrator we use a control circuit designed to track the apparent sun position.

  4. Solar engineering 1994

    International Nuclear Information System (INIS)

    Klett, D.E.; Hogan, R.E.; Tanaka, Tadayoshi

    1994-01-01

    This volume of 83 papers constitutes the Proceedings of the 1994 International Solar Energy Conference held March 27--30, 1994 in San Francisco, California. The Conference was jointly sponsored by the Solar Energy Division of the American Society of Mechanical Engineers, The Japan Society of Mechanical Engineers and the Japan Solar Energy Society. This is the fourth cooperation between ASME, JSME and JSES in cosponsoring the International Solar Energy Conference. The papers cover a wide range of solar technologies from low temperature solar ponds and desalinization to high temperature concentrators for space applications and central receivers for terrestrial power generation. Other topics covered include solar detoxification of hazardous waste, dish Stirling systems, solar cooling, photovoltaics, building energy analysis and conservation, simulation, and testing and measurement techniques. All papers were indexed separately for the data base

  5. Tracking Code for Microwave Instability

    International Nuclear Information System (INIS)

    Heifets, S.; SLAC

    2006-01-01

    To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability

  6. Reactive granular optics for passive tracking of the sun

    Science.gov (United States)

    Frenkel, I.; Niv, A.

    2017-08-01

    The growing need for cost-effective renewable energy sources is hampered by the stagnation in solar cell technology, thus preventing a substantial reduction in the module and energy-production price. Lowering the energy-production cost could be achieved by using modules with efficiency. One of the possible means for increasing the module efficiency is concentrated photovoltaics (CPV). CPV, however, requires complex and accurate active tracking of the sun that reduces much of its cost-effectiveness. Here, we propose a passive tracking scheme based on a reactive optical device. The optical reaction is achieved by a new kind of light activated mechanical force that acts on micron-sized particles. This optical force allows the formation of granular disordered optical media that can be switched from being opaque to become transparent based on the intensity of light it interacts with. Such media gives rise to an efficient passive tracking scheme that when combined with an external optical cavity forms a new solar power conversion approach. Being external to the cell itself, this approach is indifferent to the type of semiconducting material that is used, as well as to other aspects of the cell design. This, in turn, liberates the cell layout from its optical constraints thus paving the way to higher efficiencies at lower module price.

  7. Quantitative Effectiveness Analysis of Solar Photovoltaic Policies, Introduction of Socio-Feed-in Tariff Mechanism (SocioFIT) and its Implementation in Turkey

    Science.gov (United States)

    Mustafaoglu, Mustafa Sinan

    Some of the main energy issues in developing countries are high dependence on non-renewable energy sources, low energy efficiency levels and as a result of this high amount of CO2 emissions. Besides, a common problem of many countries including developing countries is economic inequality problem. In the study, solar photovoltaic policies of Germany, Japan and the USA is analyzed through a quantitative analysis and a new renewable energy support mechanism called Socio Feed-in Tariff Mechanism (SocioFIT) is formed based on the analysis results to address the mentioned issues of developing countries as well as economic inequality problem by using energy savings as a funding source for renewable energy systems. The applicability of the mechanism is solidified by the calculations in case of an implementation of the mechanism in Turkey.

  8. Online Tracking

    Science.gov (United States)

    ... can disable blocking on those sites. Tagged with: computer security , cookies , Do Not Track , personal information , privacy June ... email Looking for business guidance on privacy and ... The Federal Trade Commission (FTC) is the nation’s consumer protection agency. The FTC works to prevent fraudulent, deceptive ...

  9. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  10. Dissimilar mechanism of executing hole transfer by WO{sub 3} and MoO{sub 3} nanoparticles in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eung-Kyu; Kim, Jae-Hyoung; Kim, Ji-Hwan; Park, Min-Ho; Lee, Dong-Hoon; Kim, Yong-Sang, E-mail: yongsang@skku.edu

    2015-07-31

    We investigated the effect of metal oxide nanoparticles (NPs) in poly (3,4 ethylenedioxythiophence):poly (styrene-sulfonate) layer for the light harvestation in poly (3-hexylthiophene):[6,6]-pheny-C{sub 61}-butyric acid methyl ester organic solar cells. The role of tungsten trioxide nanoparticles (WO{sub 3}) and molybdenum trioxide nanoparticles (MoO{sub 3}) in enhancing the efficiency of solar cells was compared. Due to the difference in the energy band structure of the two nanoparticles, the WO{sub 3} NPs acted as a hole blocking layer, whereas MoO{sub 3} NPs helped in the hole transfer. The solar cell with WO{sub 3} NPs at 1.5 wt% concentration showed a power conversion efficiency of 4.22% under AM 1.5G illumination and the device blended with 2 wt% of MoO{sub 3} NPs showed a power conversion efficiency of 4.40%. We measured various electrical properties including, electrochemical impedance spectroscopy and recombination mechanisms using the light intensity dependent current–voltage measurement of organic solar cell. - Highlights: • An organic solar cell was fabricated with WO{sub 3} or MoO{sub 3} NPs mixed PEDOT:PSS layer. • The effects of metallic NPs in PEDOT:PSS light harvesting system was investigated. • WO{sub 3} NPs acted as a hole blocking layer and MoO{sub 3} NPs helped in hole transporting. • The MoO{sub 3} NPs gave higher performance, reduced charge recombination and low resistance.

  11. Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells

    International Nuclear Information System (INIS)

    Zhang, Yi; Sun, Song; Kang, Rui; Zhang, Jun; Zhang, Ningning; Yan, Wenhao; Xie, Wei; Ding, Jianjun; Bao, Jun; Gao, Chen

    2015-01-01

    Graphical abstract: - Highlights: • Bottom-mounted luminescent solar concentrators on dye-doped plates were studied. • The mechanism of transport process was proposed. • The fabricated luminescent solar concentrator achieved a gain of 1.38. • Power conversion efficiency of 5.03% was obtained with cell area coverage of 27%. • The lowest cost per watt of $1.89 was optimized with cell area coverage of 18%. - Abstract: Luminescent solar concentrators offer an attractive approach to concentrate sunlight economically without tracking, but the narrow absorption band of luminescent materials hinders their further development. This paper describes bottom-mounted luminescent solar concentrators on dye-doped polymethylmethacrylate plates that absorb not only the waveguided light but also the transmitted sunlight and partial fluorescent light in the escape cone. A series of bottom-mounted luminescent solar concentrators with size of 78 mm × 78 mm × 7 mm were fabricated and their gain and power conversion efficiency were investigated. The transport process of the waveguided light and the relationship between the bottom-mounted cells were studied to optimize the performance of the device. The bottom-mounted luminescent solar concentrator with cell area coverage of 9% displayed a cell gain of 1.38, to our best knowledge, which is the highest value for dye-doped polymethylmethacrylate plate luminescent solar concentrators. Power conversion efficiency as high as 5.03% was obtained with cell area coverage of 27%. Furthermore, the bottom-mounted luminescent solar concentrator was found to have a lowest cost per watt of $1.89 with cell area coverage of 18%. These results suggested that the fabricated bottom-mounted luminescent solar concentrator may have a potential in low-cost building integrated photovoltaic application

  12. Economic and Environmental Performances of Small-Scale Rural PV Solar Projects under the Clean Development Mechanism: The Case of Cambodia

    Directory of Open Access Journals (Sweden)

    Ellen De Schepper

    2015-09-01

    Full Text Available The two core objectives of the Clean Development Mechanism (CDM are cost-effective emission reduction and sustainable development. Despite the potential to contribute to both objectives, solar projects play a negligible role under the CDM. In this research, the greenhouse gas mitigation cost is used to evaluate the economic and environmental performances of small-scale rural photovoltaic solar projects. In particular, we compare the use of absolute and relative mitigation costs to evaluate the attractiveness of these projects under the CDM. We encourage the use of relative mitigation costs, implying consideration of baseline costs that render the projects profitable. Results of the mitigation cost analysis are dependent on the baseline chosen. To overcome this drawback, we complement the analysis with a multi-objective optimization approach, which allows quantifying the trade-off between economic and environmental performances of the optimal technologies without requiring a baseline.

  13. Robotic vehicle with multiple tracked mobility platforms

    Science.gov (United States)

    Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  14. Workshop on past and present solar radiation: the record in meteoritic and lunar regolith material

    International Nuclear Information System (INIS)

    Pepin, R.O.; Mckay, D.S.

    1986-01-01

    The principal question addressed in the workshop was the extent to which asteroidal and lunar regoliths have collected and preserved, in meteoritic regolith breccias and in lunar soils and regolith breccias, a record of the flux, energy, and compositional history of the solar wind and solar flares. Six central discussion topics were identified. They are: (1)Trapped solar wind and flare gases, tracks, and micrometeorite pits in regolith components; (2)Comparison between lunar regolith breccias, meteoritic regolith breccias, and the lunar soil; (3)The special role of regolith breccias and the challenge of dating their times of compaction; (4)Implications of the data for the flux and compositional history of solar particle emission, composition, and physical mechanisms in the solar source regions, and the composition of the early nebula; (5)How and to what extent have records of incident radiation been altered in various types of grains; (6) Future research directions

  15. A Novel Solar Tracker Based on Omnidirectional Computer Vision

    Directory of Open Access Journals (Sweden)

    Zakaria El Kadmiri

    2015-01-01

    Full Text Available This paper presents a novel solar tracker system based on omnidirectional vision technology. The analysis of acquired images with a catadioptric camera allows extracting accurate information about the sun position toward both elevation and azimuth. The main advantages of this system are its wide field of tracking of 360° horizontally and 200° vertically. The system has the ability to track the sun in real time independently of the spatiotemporal coordinates of the site. The extracted information is used to control the two DC motors of the dual-axis mechanism to achieve the optimal orientation of the photovoltaic panels with the aim of increasing the power generation. Several experimental studies have been conducted and the obtained results confirm the power generation efficiency of the proposed solar tracker.

  16. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  17. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  18. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  20. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  2. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  3. New enhancement mechanism of the transitions in the Earth of the solar and atmospheric neutrinos crossing the Earth core

    International Nuclear Information System (INIS)

    Petcov, S.T.

    1999-01-01

    It is shown that the ν 2 → ν e and ν μ → ν e (ν e → ν μ(τ) ) transitions respectively of the solar and atmospheric neutrinos in the Earth in the case of ν e - ν μ(τ) mixing in vacuum, are strongly enhanced by a new type of resonance when the neutrinos cross the Earth core. The resonance is operative at small mixing angles but differs from the MSW one. It is in many respects similar to the electron paramagnetic resonance taking place in a specific configuration of two magnetic fields. The conditions for existence of the new resonance include, in particular, specific constraints on the neutrino oscillation lengths in the Earth mantle and in the Earth core, thus the resonance is a 'neutrino oscillation length resonance'. It leads also to enhancement of the ν 2 → ν e and ν e → ν s transitions in the case of ν e - ν s mixing and of the ν-bar s (or ν μ → ν s ) transitions at small mixing angles. The presence of the neutrino oscillation length resonance in the transitions of solar and atmospheric neutrinos traversing the Earth core has important implications for current and future solar and atmospheric neutrino experiments, and more specifically, for the interpretation of the results of the Super-Kamiokande experiment

  4. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  5. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    Science.gov (United States)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  6. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  7. Tracking telecommuting

    Energy Technology Data Exchange (ETDEWEB)

    Stastny, P.

    2007-03-15

    Many employees are now choosing to work from home using laptops and telephones. Employers in the oil and gas industry are now reaping a number of benefits from their telecommuting employees, including increased productivity; higher levels of employee satisfaction, and less absenteeism. Providing a telecommunication option can prove to be advantageous for employers wishing to hire or retain employees. Telecommuting may also help to reduce greenhouse gas (GHG) emissions. This article provided details of Teletrips Inc., a company that aids in the production of corporate social responsibility reports. Teletrips provides reports that document employee savings in time, vehicle depreciation maintenance, and gasoline costs. Teletrips currently tracks 12 companies in Calgary, and plans to grow through the development of key technology partnerships. The company is also working with the federal government to provide their clients with emission trading credits, and has forged a memorandum of understanding with the British Columbia government for tracking emissions. Calgary now openly supports telecommuting and is encouraging businesses in the city to adopt telecommuting on a larger scale. It was concluded that the expanding needs for road infrastructure and the energy used by cars to move workers in and out of the city are a massive burden to the city's tax base. 1 fig.

  8. INNER TRACKING

    CERN Document Server

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The Objective for 2006 was to complete all of the CMS Tracker sub-detectors and to start the integration of the sub-detectors into the Tracker Support Tube (TST). The Objective for 2007 is to deliver to CMS a completed, installed, commissioned and calibrated Tracking System (Silicon Strip and Pixels) aligned to < 100µ in April 2008 ready for the first physics collisions at LHC. In November 2006 all of the sub-detectors had been delivered to the Tracker Integration facility (TIF) at CERN and the tests and QA procedures to be carried out on each sub-detector before integration had been established. In December 2006, TIB/TID+ was integrated into TOB+, TIB/TID- was being prepared for integration, and TEC+ was undergoing tests at the final tracker operating temperature (-100 C) in the Lyon cold room. In February 2007, TIB/TID- has been integrated into TOB-, and the installation of the pixel support tube and the services for TI...

  9. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lim, Joo Ho; Yu, Jae Su

    2016-11-09

    We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

  10. Task 9. Photovoltaic deployment in developing countries. Financing mechanisms for solar home systems in developing countries. The role of financing in the dissemination process

    Energy Technology Data Exchange (ETDEWEB)

    Scheutzlich, T.; Pertz, K.; Klinghammer, W.; Scholand, M.; Wisniwski, S.

    2002-09-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the implementation of Solar Home Systems in developing countries. The objective of Task 9 is to increase the successful deployment of PV systems in developing countries. This paper takes a look at financing mechanisms for Solar Home Systems (SHS). The lack of financial services for users of SHS is often regarded as the main barrier for their commercial dissemination and is often the justification for donor assisted programmes. This study attempts to shed some light on the question whether commercial SHS dissemination in remote rural areas could be made easier if financial services were made available. The authors state that the thesis is based on the fact that carefully designed, target-group-oriented financial services may speed up the widespread dissemination of SHS. Financial mechanisms for the stimulation of SHS and how their commercialisation can be achieved are among the topics discussed.

  11. Silicon Tracking Upgrade at CDF

    International Nuclear Information System (INIS)

    Kruse, M.C.

    1998-04-01

    The Collider Detector at Fermilab (CDF) is scheduled to begin recording data from Run II of the Fermilab Tevatron in early 2000. The silicon tracking upgrade constitutes both the upgrade to the CDF silicon vertex detector (SVX II) and the new Intermediate Silicon Layers (ISL) located at radii just beyond the SVX II. Here we review the design and prototyping of all aspects of these detectors including mechanical design, data acquisition, and a trigger based on silicon tracking

  12. Design, construction, and measurement of a large solar powered thermoacoustic cooler

    Science.gov (United States)

    Chen, Reh-Lin

    2001-07-01

    A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.

  13. Solar-Electrochemical Power System for a Mars Mission

    Science.gov (United States)

    Withrow, Colleen A.; Morales, Nelson

    1994-01-01

    This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.

  14. HelioTrope: An innovative and efficient prototype for solar power production

    Directory of Open Access Journals (Sweden)

    Papageorgiou George

    2014-01-01

    Full Text Available The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.

  15. E6 based mechanism for the generation of fermion electric dipole moments: An application to the solar neutrino puzzle

    International Nuclear Information System (INIS)

    Grifols, J.A.

    1987-01-01

    We discuss the electric dipole moments (EDM) of fermions generated by CP-violating phases associated to the new Yukawa couplings involving heavy matter E 6 fields predicted in the framework of superstring theories. While for neutron and electron it is not strictly necessary to resort to a superstring scenario to get a substantial EDM, in the neutrino case a sizeable EDM is a distinctive feature of the superstring. We thus focus on the neutrino EDM and discuss its relevance for the solution of the solar neutrino problem. (orig.)

  16. Solarbus Solar Array Innovative Light Weight Mechanical Architecture with Thin Lateral Panels Deployed with Shape Memory Alloy Regulator

    Science.gov (United States)

    D'Abrigeon, Laurent; Carpine, Anne; Laduree, Gregory

    2005-05-01

    The standard ALCATEL SOLAR ARRAY PLANAR CONCEPT on the TELECOM market today on flight is named SOLARBUS.This concept is:• 3 to 10 identical panels covered with Si Hi-η celltechnology.• A central mast constitute by 3 to 4 panels and 1yoke linked together by hinges and synchronizedby cables.• From 2 to 6 lateral panelsThis concept is able to fit with the customer requirements in order to have a competitive "global offer at system level" (mass to power ratio 48-50 W/Kg)But, for the near future, in line with the market trend, and based on the previous experience, an improvement of the SOLARBUS Solar Array concept in term of W/kg/€ is essential in order to maintain the competitiveness of the global ALCATEL offer at system level.In order to increase the W/Kg performance Alcatel has developed a new architecture named Lightweight Panel Structure (LPS). The objectives of this new structure are :• To decrease the kg/m2 ratio • To be compatible of all promising cells technology including Si Hi-n, GaAs, GaAs+ small reflectors. This new architecture is based on the fact that during the 3 major life phases of a Solar Array (Launch/Deployment/Deployed orbital life), the structural needs are more important for the central panels than for the lateral panels.So two different panels have been designed :• Central panels (named LPS1)• Lateral panels (named LPS2)The stowing configuration as been adapted : 2 thin lateral panels LPS2 between 2 structural central panels LPS1, and local bumpers to transfer the loads from LPS2 to LPS1.Also one of the more stringent loads applied to the panels are corresponding to deployment loads. In order to limit the mass of reinforcement of the panels, a deployment speed regulator shall be used. In the frame of the new generation of solar arrays, Alcatel has developed a new actuator based on shape memory alloy torsional rod. This light weight component is directly connected to heaters lines and is able to provide great actuation torque

  17. Intelligent Sun Tracking for a CPV Power Plant

    International Nuclear Information System (INIS)

    Maqsood, Ishtiaq; Emziane, Mahieddine

    2010-01-01

    The output of a solar panel is strongly dependent on the amount of perpendicular light flux falling on its surface, and a tracking system tries to parallel the vector area of the solar panel surface to the incident solar flux. We present a tracking technique based on a two-axis sun sensor which can be used to increase the power output from a number of CPV arrays connected together in a solar power plant. The outdoor testing procedure of the developed two-axis sun sensor is discussed. The detail of the algorithm used together with the related sun tracking equipment is also presented and discussed for the new two axes sun tracking system.

  18. Tracking Porters

    DEFF Research Database (Denmark)

    Bruun, Maja Hojer; Krause-Jensen, Jakob; Saltofte, Margit

    2015-01-01

    . In this chapter, we argue that although anthropology has its specific methodology – including a myriad of ethnographic data-gathering tools, techniques, analytical approaches and theories – it must first and foremost be understood as a craft. Anthropology as craft requires a specific ‘anthropological sensibility......’ that differs from the standardized procedures of normal science. To establish our points we use an example of problem-based project work conducted by a group of Techno-Anthropology students at Aalborg University, we focus on key aspects of this craft and how the students began to learn it: For two weeks...... the students followed the work of a group of porters. Drawing on anthropological concepts and research strategies the students gained crucial insights about the potential effects of using tracking technologies in the hospital....

  19. Fibre tracking

    International Nuclear Information System (INIS)

    Gaillard, J.M.

    1994-03-01

    A large-size scintillating plastic fibre tracking detector was built as part of the upgrade of the UA2 central detector at the SPS proton-antiproton collider. The cylindrical fibre detector of average radius of 40 cm consisted of 60000 plastic fibres with an active length of 2.1 m. One of the main motivations was to improve the electron identification. The fibre ends were bunched to be coupled to read-out systems of image intensifier plus CCD, 32 in total. The quality and the reliability of the UA2 fibre detector performance exceeded expectations throughout its years of operation. A few examples of the use of image intensifiers and of scintillating fibres in biological instrumentation are described. (R.P.) 11 refs., 15 figs., 2 tabs

  20. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  1. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking

    Science.gov (United States)

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works. PMID:27327657

  2. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking.

    Directory of Open Access Journals (Sweden)

    Yajie Wang

    Full Text Available Currently, tracking in photovoltaic (PV systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.

  3. Intelligent Photovoltaic Systems by Combining the Improved Perturbation Method of Observation and Sun Location Tracking.

    Science.gov (United States)

    Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie

    2016-01-01

    Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.

  4. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  5. Investigation Performance and Mechanisms of Inverted Polymer Solar Cells by Pentacene Doped P3HT : PCBM

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The inverted polymer solar cells (PSCs with pentacene-doped P3HT : PCBM absorption layers were fabricated. It was demonstrated that the pentacene doping modulated the electron mobility and the hole mobility in the resulting absorption layer. Furthermore, by varying the doping content, the optimal carrier mobility balance could be obtained. In addition, the pentacene doping led to an improvement in the crystallinity of the resulting films and made an enhancement in the light absorption, which was partly responsible for the performance improvement of the solar cells. Using the space-charge-limited current (SCLC method, it was determined that the balanced carrier mobility (μh/μe=1.000 was nearly achieved when a pentacene doping ratio of 0.065 by weight was doped into the P3HT : PCBM : pentacene absorption layer. Compared with the inverted PSCs without the pentacene doping, the short circuit current density and the power conversion efficiency of the inverted PSCs with the pentacene doping ratio of 0.065 were increased from 9.73 mA/cm2 to 11.26 mA/cm2 and from 3.39% to 4.31%, respectively.

  6. Solar Neutrinos

    Directory of Open Access Journals (Sweden)

    V. Antonelli

    2013-01-01

    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  7. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  8. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye.

    Science.gov (United States)

    Hong, Deyi; Zang, Weili; Guo, Xiao; Fu, Yongming; He, Haoxuan; Sun, Jing; Xing, Lili; Liu, Baodan; Xue, Xinyu

    2016-08-24

    High piezo-photocatalytic efficiency of degrading organic pollutants has been realized from CuS/ZnO nanowires using both solar and mechanical energy. CuS/ZnO heterostructured nanowire arrays are compactly/vertically aligned on stainless steel mesh by a simple two-step wet-chemical method. The mesh-supported nanocomposites can facilitate an efficient light harvesting due to the large surface area and can also be easily removed from the treated solution. Under both solar and ultrasonic irradiation, CuS/ZnO nanowires can rapidly degrade methylene blue (MB) in aqueous solution, and the recyclability is investigated. In this process, the ultrasonic assistance can greatly enhance the photocatalytic activity. Such a performance can be attributed to the coupling of the built-in electric field of heterostructures and the piezoelectric field of ZnO nanowires. The built-in electric field of the heterostructure can effectively separate the photogenerated electrons/holes and facilitate the carrier transportation. The CuS component can improve the visible light utilization. The piezoelectric field created by ZnO nanowires can further separate the photogenerated electrons/holes through driving them to migrate along opposite directions. The present results demonstrate a new water-pollution solution in green technologies for the environmental remediation at the industrial level.

  9. Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    Science.gov (United States)

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2015-09-14

    The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.

  10. Tracking Boulders

    Science.gov (United States)

    2006-01-01

    13 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a trough in the Sirenum Fossae region. On the floor and walls of the trough, large -- truck- to house-sized -- boulders are observed at rest. However, there is evidence in this image for the potential for mobility. In the central portion of the south (bottom) wall, a faint line of depressions extends from near the middle of the wall, down to the rippled trough floor, ending very near one of the many boulders in the area. This line of depressions is a boulder track; it indicates the path followed by the boulder as it trundled downslope and eventually came to rest on the trough floor. Because it is on Mars, even when the boulder is sitting still, this once-rolling stone gathers no moss. Location near: 29.4oS, 146.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  11. INNER TRACKING

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The successful commissioning of ~ 25% of the Silicon Strip Tracker was completed in the Tracker Integration Facility (TIF) at CERN in July 2007 and the Tracker has since been prepared for moving and installation into CMS at P5. The Tracker was ready to move on schedule in September 2007. The Installation of the Tracker cooling pipes and LV cables between Patch Panel 1 (PP1) on the inside the CMS magnet cryostat, and the cooling plants and power system racks on the balconies has been completed. The optical fibres from PP1 to the readout FEDs in the USC have been installed, together with the Tracker cable channels, in parallel with the installation of the EB/HB services. All of the Tracker Safety, Power, DCS and the VME Readout Systems have been installed at P5 and are being tested and commissioned with CMS. It is planned to install the Tracker into CMS before Christmas. The Tracker will then be connected to the pre-installed services on Y...

  12. INNER TRACKING

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The successful commissioning of ~ 25% of the Silicon Strip Tracker was completed in the Tracker Integration Facility (TIF) at CERN on 18 July 2007 and the Tracker has since been prepared for moving and installation into CMS at P5. The Tracker will be ready to move on schedule in September 2007. The Installation of the Tracker cooling pipes and LV cables between Patch Panel 1 (PP1) on the inside the CMS magnet cryostat, and the cooling plants and power system racks on the balconies has been completed. The optical fibres from PP1 to the readout FEDs in the USC will be installed in parallel with the installation of the EB/HB services, and will be completed in October. It is planned to install the Tracker into CMS at the end of October, after the completion of the installation of the EB/HB services. The Tracker will then be connected to the pre-installed services on YB0 and commissioned with CMS in December. The FPix and BPix continue to make ...

  13. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-01-01

    the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a

  14. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  15. Effects of the capping ligands, linkers and oxide surface on the electron injection mechanism of copper sulfide quantum dot-sensitized solar cells.

    Science.gov (United States)

    Suárez, Javier Amaya; Plata, Jose J; Márquez, Antonio M; Sanz, Javier Fdez

    2017-06-07

    Quantum dot-sensitized solar cells, QDSCs, are a clean and effective alternative to fossil fuels to reduce CO 2 emissions. However, the different components that constitute the QDSCs and the difficulty of isolating experimentally their effects on the performance of the whole system slow down the development of more efficient devices. In this work, DFT calculations are combined with a bottom-up approach to differentiate the effect of each component on the electronic structure and absorption spectra. First, Cu 2 S QDs were built including a U parameter to effectively describe the localization of electrons. The effect of capping agents is addressed using ligands with different electron-donating/withdrawing groups. The role of linkers and their adsorption on the oxide surface are also examined. Finally, we propose a main indirect electron injection mechanism based on the position of the peaks of the spectra.

  16. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell.

    Science.gov (United States)

    Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee

    2012-08-14

    Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.

  17. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  18. Installation package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  19. Tracking Clean Energy Progress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  20. Investigation of recombinatoric loss mechanisms in Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Robin; Klinkert, Torben; Parisi, Juergen; Riedel, Ingo [Thin Film Photovoltaics, Energy- and Semiconductor Research Laboratory, University of Oldenburg, D-26111 Oldenburg (Germany); Schaeffler, Raymund; Dimmler, Bernhard [Wuerth Solar GmbH and Co. KG, Alfred-Leikam-Strasse 25, D-74523 Schwaebisch-Hall (Germany)

    2011-07-01

    Today solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGSe) present the highest lab scale efficiency among all thin-film technologies. The performance of elementary cells in photovoltaic modules might however be different due to thicker conductive ZnO:Al window layers, missing anti-reflection coating and occasionally less defined absorber formation on large scales. One approach to improve the elementary cell efficiency is to fine-tune the absorber composition and the in-depth band gap grading. In this work we investigated CIGSe samples with varied absorber composition in order to quantify the minority carrier collection efficiency (CE). CE is directly related to the electron diffusion length L{sub D,n} and the characteristics of the space charge region (SCR). L{sub D,n} was deduced by relating the inverse internal quantum efficiency to the penetration depth of incident photons and the SCR characteristics were obtained from capacitance-profiling of the samples. Based on these results we discuss the different photovoltaic performance observed for samples with varied CIGSe absorber composition.

  1. Tracking a major interplanetary disturbance

    International Nuclear Information System (INIS)

    Tappin, S.J.; Hewish, A.; Gapper, G.R.

    1983-01-01

    The severe geomagnetic storm which occurred during 27-29 August 1978 was remarkable because it arrived unexpectedly and was not related to a solar flare or long-lived coronal hole. Observations on 900 celestial radio sources show that the storm was associated with a large-scale region causing enhanced interplanetary scintillation which enveloped the Earth at the same time. The disturbance was first detected on 26 August, when the outer boundary had reached a distance of about 0.8 a.u. from the Sun and it was tracked until 30 August. The enhancement was followed by a fast solar wind stream and its shape suggests that it was a compression zone caused by the birth of the stream. (author)

  2. Solar water lifter

    Energy Technology Data Exchange (ETDEWEB)

    Bazarov, B A; Gonchar, V I; Maymerdangulyyev, G; Orekhova, N P; Ryabikov, S V; Strevkov, D S; Tereshin, V D; Yurin, Ye M

    1982-01-01

    A water lifter is described which contains a pump, whose piston is kinematically connected to the drive element made of material with thermal-mechanical memory of the shape in the hot state, and a solar heater.

  3. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  4. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  5. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  6. Development of Dye-Sensitized Solar Cells with Sputtered N-Doped TiO2 Thin Films: From Modeling the Growth Mechanism of the Films to Fabrication of the Solar Cells

    Directory of Open Access Journals (Sweden)

    D. A. Duarte

    2014-01-01

    Full Text Available In this paper, nitrogen-doped TiO2 thin films were deposited by DC reactive sputtering at different doping levels for the development of dye-sensitized solar cells. The mechanism of film growth during the sputtering process and the effect of the nitrogen doping on the structural, optical, morphological, chemical, and electronic properties of the TiO2 were investigated by numerical modeling and experimental methods. The influence of the nitrogen doping on the working principle of the prototypes was investigated by current-voltage relations measured under illuminated and dark conditions. The results indicate that, during the film deposition, the control of the oxidation processes of the nitride layers plays a fundamental role for an effective incorporation of substitutional nitrogen in the film structure and cells built with nitrogen-doped TiO2 have higher short-circuit photocurrent in relation to that obtained with conventional DSSCs. On the other hand, DSSCs built with nondoped TiO2 have higher open-circuit voltage. These experimental observations indicate that the incorporation of nitrogen in the TiO2 lattice increases simultaneously the processes of generation and destruction of electric current.

  7. Deployed Base Solar Power (BRIEFING SLIDES)

    Science.gov (United States)

    2009-09-01

    various time intervals. Data Acquisitions and Components:  FieldPoint  Current, Voltage, and Power Transducers  POA Pyranometers  Solar...Tracking Pyranometer  Weather Station  kWh Meter Parameters being monitored:  Solar Module Temperatures  Ambient Temperature  Wind Speed  Wind

  8. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  9. Novel technique for solar power illumination using plastic optical fibres

    Science.gov (United States)

    Munisami, J.; Kalymnios, D.

    2008-09-01

    Plastic Optical Fibres (POF) were developed almost 3 decades ago. They are mainly used for short haul data communications (up to 1 km with data rates up to 1 Gbps). Over the years, POF has found applications in many other areas including solar energy transport for illumination. In such an application, light is collected from the sun and is directed into a space which needs to be illuminated. The use of fibres and more specifically POF, in daylighting systems, started only a few years ago. Several approaches have been investigated and we have seen the development of a few commercial products. The market however, has not really taken off for these technologies simply because of their enormous price tags. It is important to note that the use of POF in these designs has been limited to the function of POF as the transmission medium only. We propose a novel solar illumination technique using POF as both the light collecting/concentrating mechanism and the transmission medium. By modifying the structure of the fibre, solar light can be directed into the fibre by using an analogous process to fibre side emission but, in the reverse. We shall report on the solar light capturing efficiency of POF as modified by several types of external imperfections introduced onto the fibre. One major advantage of our proposed approach lies in the fact that we aim to eliminate at least one of the two axes of sun tracking that is currently used in existing solar illumination systems.

  10. Artificial Neural Network In Maximum Power Point Tracking Algorithm Of Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Modestas Pikutis

    2014-05-01

    Full Text Available Scientists are looking for ways to improve the efficiency of solar cells all the time. The efficiency of solar cells which are available to the general public is up to 20%. Part of the solar energy is unused and a capacity of solar power plant is significantly reduced – if slow controller or controller which cannot stay at maximum power point of solar modules is used. Various algorithms of maximum power point tracking were created, but mostly algorithms are slow or make mistakes. In the literature more and more oftenartificial neural networks (ANN in maximum power point tracking process are mentioned, in order to improve performance of the controller. Self-learner artificial neural network and IncCond algorithm were used for maximum power point tracking in created solar power plant model. The algorithm for control was created. Solar power plant model is implemented in Matlab/Simulink environment.

  11. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.

    Science.gov (United States)

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-14

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.

  12. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements.

    Science.gov (United States)

    Badano, Luigi P; Cucchini, Umberto; Muraru, Denisa; Al Nono, Osama; Sarais, Cristiano; Iliceto, Sabino

    2013-03-01

    Since there is insufficient data available about the inter-vendor consistency of three-dimensional (3D) speckle-tracking (STE) measurements, we undertook this study to (i) assess the inter-vendor consistency of 3D LV global strain values obtained using two different scanners; (ii) identify the sources of inter-vendor inconsistencies, if any; and (iii) compare their respective intrinsic variability. Sixty patients (38 ± 12 years, 64% males) with a wide range of LV end-diastolic volumes (from 74 to 205 ml) and ejection fractions (from 17 to 70%) underwent two 3D LV data set acquisitions using VividE9 and Artida ultrasound systems. Global longitudinal (Lε), radial (Rε), circumferential (Cε) and area (Aε) strain values were obtained offline using the corresponding 3D STE softwares. Despite being significantly different, Lε showed the closest values between the two platforms (bias = 1.5%, limits of agreement (LOA) from -2.9 to -5.9%, P < 0.05). Artida produced significantly higher values of both Cε and Aε than VividE9 (bias = 6.6, LOA: -14.1 to 0.9%, and bias = 6.0, LOA = -28.2-8.6%, respectively, P < 0.001). Conversely, Rε values obtained with Artida were significantly lower than those measured using VividE9 platform (bias = -24.2, LOA: 1.5-49.9, P < 0.001). All strain components showed good reproducibility (intra-class correlation coefficients: 0.82-0.98), except for Rε by Artida, which showed only a moderate reproducibility. Apart from Lε, the inter-vendor agreement of Rε, Cε and Aε measured with Artida and VividE9 was poor. Reference values should be specific for each system and baseline and follow-up data in longitudinal studies should be obtained using the same 3D STE platform.

  13. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  14. Classifications of track structures

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1984-01-01

    When ionizing particles interact with matter they produce random topological structures of primary activations which represent the initial boundary conditions for all subsequent physical, chemical and/or biological reactions. There are two important aspects of research on such track structures, namely their experimental or theoretical determination on one hand and the quantitative classification of these complex structures which is a basic pre-requisite for the understanding of mechanisms of radiation actions. This paper deals only with the latter topic, i.e. the problems encountered in and possible approaches to quantitative ordering and grouping of these multidimensional objects by their degrees of similarity with respect to their efficiency in producing certain final radiation effects, i.e. to their ''radiation quality.'' Various attempts of taxonometric classification with respect to radiation efficiency have been made in basic and applied radiation research including macro- and microdosimetric concepts as well as track entities and stopping power based theories. In this paper no review of those well-known approaches is given but rather an outline and discussion of alternative methods new to this field of radiation research which have some very promising features and which could possibly solve at least some major classification problems

  15. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  16. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence

    KAUST Repository

    Gerhard, Marina

    2016-04-27

    In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. The mechanical properties of fluoride salts at elevated temperatures. [candidate thermal energy storage materials for solar dynamic systems

    Science.gov (United States)

    Raj, S. V.; Whittenberger, J. D.

    1989-01-01

    The deformation behavior of CaF2 and LiF single crystals compressed in the 111 and the 100 line directions, respectively, are compared with the mechanical properties of polycrystalline LiF-22 (mol pct) CaF2 eutectic mixture in the temperature range 300 to 1275 K for strain rates varying between 7 x 10 to the -7th and 0.2/s. The true stress-strain curves for the single crystals were found to exhibit three stages in an intermediate range of temperatures and strain rates, whereas those for the eutectic showed negative work-hardening rates after a maximum stress. The true stress-strain rate data for CaF2 and LiF-22 CaF2 could be represented by a power-law relation with the strain rate sensitivities lying between 0.05 and 0.2 for both materials. A similar relation was found to be unsatisfactory in the case of LiF.

  18. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence

    KAUST Repository

    Gerhard, Marina; Gehrig, Dominik; Howard, Ian A.; Arndt, Andreas P.; Bilal, Mü henad; Rahimi-Iman, Arash; Lemmer, Uli; Laquai, Fré dé ric; Koch, Martin

    2016-01-01

    In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials

    International Nuclear Information System (INIS)

    Pantzas, K.; Abid, M.; Voss, P.L.; Ougazzaden, A.; Patriarche, G.; Orsal, G.; Gautier, S.; Moudakir, T.; Gorge, V.; Djebbour, Z.

    2012-01-01

    In this paper we report on a spontaneous 2D/3D transition observed in InGaN alloys after 60 nm of growth. This transition is responsible for the formation of a stack of distinct InGaN layers. The driving mechanism is shown to be lateral fluctuations of the indium composition, that arise to accommodate the increasing strain energy of the InGaN layer. Three distinct stages of growth have been identified. First, a homogeneous, 2D InGaN layer forms, pseudomorphically strained on the underlying GaN. Then, at around 30 nm large lateral fluctuations of the indium composition are observed and a second pseudomorphic layer, composed of indium-rich and indium-poor clusters, is formed. Finally induces a 2D/3D transition at 60 nm and a 3D InGaN layer is formed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Optical, geometric and thermal study for solar parabolic concentrator efficiency improvement under Tunisia environment: A case study

    International Nuclear Information System (INIS)

    Skouri, Safa; Ben Salah, Mohieddine; Bouadila, Salwa; Balghouthi, Moncef; Ben Nasrallah, Sassi

    2013-01-01

    Highlights: • Design and construction of solar parabolic concentrator. • Photogrammetry study of SPC. • Slope error and optical efficiency of SPC. • Reflector materials of SPC. • Programmed tracking solar system. - Abstract: Renewable energy generation is becoming more prevalent today. It is relevant to consider that solar concentration technologies contribute to provide a real alternative to the consumption of fossil fuels. The purpose of this work is the characterization of a solar parabolic solar concentrator (SPC) designed, constructed and tested in the Research and Technologies Centre of Energy in Tunisia (CRTEn) in order to improve the performance of the system. Photogrammetry measurement used to analyze the slope errors and to determine hence determining the geometric deformation of the SPC system, which presents an average slope error around 0.0002 and 0.0073 mrad respectively in the center and in the extremities. An optimization of the most performed reflector material has been done by an experimental study of three types of reflectors. A two axes programmed tracking system realized, used and tested in this study. An experimental study is carried out to evaluate the solar parabolic concentrator thermal efficiency after the mechanical and the optical SPC optimization. The thermal energy efficiency varies from 40% to 77%, the concentrating system reaches an average concentration factor around 178

  1. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  2. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  3. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  4. Application of new control strategy for sun tracking

    International Nuclear Information System (INIS)

    Rubio, F.R.; Ortega, M.G.; Gordillo, F.; Lopez-Martinez, M.

    2007-01-01

    The application of high concentration solar cells technology allows a significant increase in the amount of energy collected by solar arrays per unit area. However, to make it possible, more severe specifications on the sun pointing error are required. In fact, the performance of solar cells with concentrators decreases drastically if this error is greater than a small value. These specifications are not fulfilled by simple tracking systems due to different sources of errors (e.g., small misalignments of the structure with respect to geographical north) that appear in practice in low cost, domestic applications. This paper presents a control application of a sun tracker that is able to follow the sun with high accuracy without the necessity of either a precise procedure of installation or recalibration. A hybrid tracking system that consists of a combination of open loop tracking strategies based on solar movement models and closed loop strategies using a dynamic feedback controller is presented. Energy saving factors are taken into account, which implies that, among other factors, the sun is not constantly tracked with the same accuracy, to prevent energy overconsumption by the motors. Simulation and experimental results with a low cost two axes solar tracker are exposed, including a comparison between a classical open loop tracking strategy and the proposed hybrid one

  5. Insights into the Mechanism of a Covalently Linked Organic Dye-Cobaloxime Catalyst System for Dye-Sensitized Solar Fuel Devices.

    Science.gov (United States)

    Pati, Palas Baran; Zhang, Lei; Philippe, Bertrand; Fernández-Terán, Ricardo; Ahmadi, Sareh; Tian, Lei; Rensmo, Håkan; Hammarström, Leif; Tian, Haining

    2017-06-09

    A covalently linked organic dye-cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye-sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time-resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye-catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye-catalyst system on the photocathode is proposed on the basis of this study. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  7. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  8. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-01-01

    persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc

  9. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  10. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  11. Solar Ready: An Overview of Implementation Practices

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

    2012-01-01

    This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

  12. Report of the Central Tracking Group

    International Nuclear Information System (INIS)

    Cassel, D.G.; Hanson, G.G.

    1986-10-01

    Issues involved in building a realistic central tracking system for a general-purpose 4π detector for the SSC are addressed. Such a central tracking system must be capable of running at the full design luminosity of 10 33 cm -2 s -1 . Momentum measurement was required in a general-purpose 4π detector. Limitations on charged particle tracking detectors at the SSC imposed by rates and radiation damage are reviewed. Cell occupancy is the dominant constraint, which led us to the conclusion that only small cells, either wires or straw tubes, are suitable for a central tracking system at the SSC. Mechanical problems involved in building a central tracking system of either wires or straw tubes were studied, and our conclusion was that it is possible to build such a large central tracking system. Of course, a great deal of research and development is required. We also considered central tracking systems made of scintillating fibers or silicon microstrips, but our conclusion was that neither is a realistic candidate given the current state of technology. We began to work on computer simulation of a realistic central tracking system. Events from interesting physics processes at the SSC will be complex and will be further complicated by hits from out-of-time bunch crossings and multiple interactions within the same bunch crossing. Detailed computer simulations are needed to demonstrate that the pattern recognition and tracking problems can be solved

  13. Advanced Tracking of Vehicles

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Li, K.-J.; Pakalnis, Stardas

    2005-01-01

    efficient tracking techniques. More specifically, while almost all commercially available tracking solutions simply offer time-based sampling of positions, this paper's techniques aim to offer a guaranteed tracking accuracy for each vehicle at the lowest possible costs, in terms of network traffic...

  14. In-orbit attitude actuation using solar panels

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2008-06-01

    Full Text Available A specific technique is developed to wield the internal disturbance torque caused by the solar panel actuation for spacecraft attitude control tasks. This work is the maiden work towards integrating the attitude control and the solar tracking tasks, forming a combined attitude and solar tracking system. The feasibility of this concept for spacecraft is proven and eventually the combined concept is validated. A technical proof is presented corresponding to the end-to-end system demonstration. The investigation starts with the determination of the solar tracking constraints. Then, the mathematical models describing the attitude and solar tracking are established, and eventually the onboard architecture is implemented. The numerical treatments using MatlabTM were performed to evaluate the developed onboard architecture. The simulation results are discussed especially from the attitude control standpoint. The integrated system complies very well with the reference mission requirements.

  15. Energetic solar particles

    International Nuclear Information System (INIS)

    Biswas, M.

    1975-01-01

    In this review, some of the important aspects of energetic solar particles and their relation to solar physics are discussed. The major aspects of solar cosmic ray studies currently under investigation are identified and attention is focussed on the problems of the physical processes in the sun which may be responsible for these phenomena. The studies of the composition and energy spectra of solar cosmic ray nuclei are related to the basic problem of particle acceleration process in sun and to the composition of elements in solar atmosphere. The composition of higher energy (>20 MeV/amu) multiply charged nuclei of He, C, N, O, Ne, Mg, Si and Fe give information on the abundance of elements in the solar atmosphere. At lower energies (approximately 1-10 MeV/amu), the abundances of these elements show enhancements relative to solar abundances and these enhancements are believed to be due to particle acceleration mechanisms operative in the sun which are not fully understood at present. Studies of the relative abundances of H 2 , H 3 and He 3 isotopes and Li, Be, B nuclei in the solar cosmic rays can also be studied. The question of the relationship of the accelerated particles in the sun to the optical flare phenomena is discussed. Further studies of different aspects of these phenomena may give important clues to a wide ranging phenomena in the active sun. The observational methods employed for these studies are mentioned. (A.K.)

  16. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  17. Tracks: Nurses and the Tracking Network

    Centers for Disease Control (CDC) Podcasts

    This podcast highlights the utility of the National Environmental Public Health Tracking Network for nurses in a variety of work settings. It features commentary from the American Nurses Association and includes stories from a public health nurse in Massachusetts.

  18. SOHO hunts elusive solar prey

    Science.gov (United States)

    1995-10-01

    limited by inclement weather conditions and atmospheric distortion of the Sun’s signal, and of course they cannot observe the Sun at night. Although the weather problem has been removed in orbit around the Earth, observations are still periodically interrupted when an Earth-orbiting spacecraft enters our planet’s shadow. In contrast, SOHO will provide the first long, clean uninterrupted views of the Sun. Science Objectives SOHO will look beyond the visible soar disk, observing through new windows from the centre of the Sun to the Earth. It will examine three regions - the hidden interior of the Sun, the hot transparent solar atmosphere, and the eternal solar wind of charged particles and magnetic fields that continuously flow outward from the Sun. The twelve instruments on board SOHO are designed to study one or two of these regions in a different, yet complimentary way. Their combined data will link events in the Sun’s atmosphere and solar wind changes taking place deep within the Sun. The SOHO mission has three principle scientific objectives: 1. Study of the structure and dynamics of the solar interior 2. Study of the heating mechanisms of the Sun's million-degree atmosphere, or solar corona 3. Investigation of the solar wind, its origin and its acceleration processes. "Never before have solar physicists had the opportunity to work with such a comprehensive observatory giving them access literally to the whole Sun", said Martin C. E. Huber, the Head of ESA's Space Science Department. Taking the pulse of the Sun SOHO wil illuminate the unseen depths of the Sun by recording widespread throbbing motions of the Sun's visible "surface", or photosphere. These oscillations are caused by sounds that are trapped inside the Sun. On striking the surface and rebounding back down, the sound waves cause the gases there to move up and down. Sound waves that penetrate deep within the Sun produce global surface oscillations with longer periods of up to a few hours; smaller

  19. Tracks: Nurses and the Tracking Network

    Centers for Disease Control (CDC) Podcasts

    2012-06-06

    This podcast highlights the utility of the National Environmental Public Health Tracking Network for nurses in a variety of work settings. It features commentary from the American Nurses Association and includes stories from a public health nurse in Massachusetts.  Created: 6/6/2012 by National Center for Environmental Health (NCEH)/Division of Environmental Hazards and Health Effects (DEHHE)/Environmental Health Tracking Branch (EHTB).   Date Released: 6/6/2012.

  20. Formation Mechanisms of the Spring-Autumn Asymmetry of the Midlatitudinal NmF2 under Daytime Quiet Geomagnetic Conditions at Low Solar Activity

    Science.gov (United States)

    Pavlov, A. V.; Pavlova, N. M.

    2018-05-01

    Formation mechanism of the spring-autumn asymmetry of the F2-layer peak electron number density of the midlatitudinal ionosphere, NmF2, under daytime quiet geomagnetic conditions at low solar activity are studied. We used the ionospheric parameters measured by the ionosonde and incoherent scatter radar at Millstone Hill on March 3, 2007, March 29, 2007, September 12, 2007, and September 18, 1984. The altitudinal profiles of the electron density and temperature were calculated for the studied conditions using a one-dimensional, nonstationary, ionosphere-plasmasphere theoretical model for middle geomagnetic latitudes. The study has shown that there are two main factors contributing to the formation of the observed spring-autumn asymmetry of NmF2: first, the spring-autumn variations of the plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity, and, second, the difference between the composition of the neutral atmosphere under the spring and autumn conditions at the same values of the universal time and the ionospheric F2-layer peak altitude. The seasonal variations of the rate of O+(4S) ion production, which are associated with chemical reactions with the participation of the electronically excited ions of atomic oxygen, does not significantly affect the studied NmF2 asymmetry. The difference in the degree of influence of O+(4S) ion reactions with vibrationally excited N2 and O2 on NmF2 under spring and autumn conditions does not significantly change the spring-autumn asymmetry of NmF2.

  1. Using a Fuzzy Light Sensor to Improve the Efficiency of Solar Panels

    Science.gov (United States)

    Suryono; Suseno, Jatmiko Endro; Sulistiati, Ainie Khuriati Riza; Prahara, Tahan

    2018-02-01

    Solar panel efficiency can be increased by improving the quality of photovoltaic material, the effectiveness of electronic circuit, and the light source tracking model. This research is aimed at improving the quality of solar panels by tracking light source using a fuzzy logic sensor. A fuzzy light sensor property is obtained from two LDR (light dependent resistor) light sensors installed in parallel to each other and is given a light separator in between them. Both sensors are mounted on a solar panel. Sensor output is acquired using a 12 bit ADC from an ATSAM3XE microcontroller and is then sent to a computer using WIFI radio. A PID (Proportional-Integral-Derivative) control algorithm is used to manage the position of the solar panel in line with the input given by the fuzzy light sensor. This control mechanism works based on the margin of fuzzy membership from both sensors that is used to move a motor DC that in turn moves the solar panel. Experimental results show a characteristically symmetrical fuzzy membership of both sensors with a reflected correlation of R=0.9981 after gains from both sensors are arranged with a program. Upon being tested in the field, this system was capable of improving the performance of solar panels in gaining power compared to their original fixed position. The discrepancy was evident when the angle of incoming sunlight approached both 0° and 180°. Further calculations of data acquired by the fuzzy light sensor show increased solar panel power efficiency by up to 5.6%.

  2. Two axes sun tracking system with PLC control

    International Nuclear Information System (INIS)

    Abdallah, Salah; Nijmeh, Salem

    2004-01-01

    In this paper, an electromechanical, two axes sun tracking system is designed and constructed. The programming method of control with an open loop system is employed where the programmable logic controller is used to control the motion of the sun tracking surface. An experimental study was performed to investigate the effect of using two axes tracking on the solar energy collected. The collected energy was measured and compared with that on a fixed surface tilted at 32 deg. towards the south. The results indicate that the measured collected solar energy on the moving surface was significantly larger than that on a fixed surface. The two axes tracking surface showed a better performance with an increase in the collected energy of up to 41.34% compared with the fixed surface

  3. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  4. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  5. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  6. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  7. Update on a Solar Magnetic Catalog Spanning Four Solar Cycles

    Science.gov (United States)

    Vargas-Acosta, Juan Pablo; Munoz-Jaramillo, Andres; Vargas Dominguez, Santiago; Werginz, Zachary; DeLuca, Michael D.; Longcope, Dana; Harvey, J. W.; Windmueller, John; Zhang, Jie; Martens, Petrus C.

    2017-08-01

    Bipolar magnetic regions (BMRs) are the cornerstone of solar cycle propagation, the building blocks that give structure to the solar atmosphere, and the origin of the majority of space weather events. However, in spite of their importance, there is no homogeneous BMR catalog spanning the era of systematic solar magnetic field measurements. Here we present the results of an ongoing project to address this deficiency applying the Bipolar Active Region Detection (BARD) code to magnetograms from the 512 Channel of the Kitt Peak Vaccum Telescope, SOHO/MDI, and SDO/HMI.The BARD code automatically identifies BMRs and tracks them as they are rotated by differential rotation. The output of the automatic detection is supervised by a human observer to correct possible mistakes made by the automatic algorithm (like incorrect pairings and tracking mislabels). Extra passes are made to integrate fragmented regions as well as to balance the flux between BMR polarities. At the moment, our BMR database includes nearly 10,000 unique objects (detected and tracked) belonging to four separate solar cycles (21-24).

  8. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  9. 钙钛矿太阳电池的工作机理及性能的主要影响因素%Perovskite Solar Cells:Work Mechanism and Major Factors Affecting Their Performances

    Institute of Scientific and Technical Information of China (English)

    钱柳; 丁黎明

    2015-01-01

    Hybrid organic-inorganic perovskites were first introduced to photovoltaic community in 2009 . In subsequent years, the power conversion efficiency has increased from 3. 8% to ~20%, leaving dye-sensitized solar cells and bulk-heterojunction solar cells far behind. “Perovskite” is a crystal possessing the same crystal structure as calcium titanate, namely, ABX3 . Perovskites have unique properties, like broad absorption spec-tra, high absorption coefficient, ambipolar charge transport, long exciton lifetime and very low binding energy of exciton. Currently, the architecture of perovskite solar cells has been simplified from meso-structured solar cells to planar-heterojunction solar cells, getting closer to the low-cost, high-efficiency target for practical application. Many innovative researches are pushing the application of this new photovoltaic material to the cli-max . This review summarizes the working mechanism of perovskite solar cells and expounds several key factors affecting device performance, i. e. components, crystallization and morphology, transport layers, electrode materials and planted bulk-heterojunction. However, we should note that perovskites have some drawbacks im-peding its commercialization. Perovskites are sensitive to oxygen and water vapor, making the solar cells un-stable in the ambient;it is challenging to prepare large films because the morphology of perovskite film is diffi-cult to control;the use of the toxic metal, lead, will also undermine the credit earned by their outstanding photovoltaic performance. It is very important for us to understand those mechanism and factors affecting de-vice performance, and to find approaches to deal with instability, toxicity, and bad morphology.%本文综合评述了钙钛矿太阳电池的重要研究成果,解释了其工作机理并总结了影响电池性能的关键因素:钙钛矿化学组成、结晶与形貌、传输层、电极和体异质结等。对钙钛矿太阳电池的未来发展进行了展望。

  10. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  11. Two-Axis Solar Heat Collection Tracker System for Solar Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung-Chieh Cheng

    2013-01-01

    Full Text Available An experimental study was performed to investigate the effect of using a continuous operation two-axes tracking on the solar heat energy collected. This heat-collection sun tracking which LDR (light dependent resistor sensors installed on the Fersnel lens was used to control the tracking path of the sun with programming method of control with a closed loop system. The control hardware was connected to a computer through Zigbee wireless module and it also can monitor the whole tracking process information on a computer screen. An experimental study was performed to investigate the effect of using two-axes tracking on the solar heat energy collected. The results indicate that sun tracking systems are being increasingly employed to enhance the efficiency of heat collection by polar-axis tracking of the sun. Besides, the heating power was also measured by designed power measurement module at the different focal length of Fresnel lens, and the design of shadow mask of LDR sensors is an important factor for solar photothermal applications. Moreover, the results also indicated that the best time to obtain the largest solar irradiation power is during 11:00 –13:00  in Taiwan.

  12. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  13. Solar receiver with integrated optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2012-10-01

    The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.

  14. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    Science.gov (United States)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  15. An artificial retina for fast track finding

    International Nuclear Information System (INIS)

    Ristori, Luciano

    2000-01-01

    A new approach is proposed for fast track finding in position-sensitive detectors. The basic working principle is modeled on what is widely believed to be the low-level mechanism used by the eye to recognize straight edges. A number of receptors are tuned such that each one responds to a different range of track orientations, each track actually fires several receptors and an estimate of the orientation is obtained through interpolation. The feasibility of a practical device based on this principle and its possible implementation using currently available digital logic is discussed

  16. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    into the charge transport mechanism and trap distribution in these composites [3]. An advantage of investigating solar cell technology based on organic materials rather than silicon is that silicon photovoltaics requires high-purity silicon, whereas the material demands of organic technology are not nearly so strict. Work by researchers in Denmark and Germany highlights the simplicity and tolerance to ambient conditions of organic photovoltaic fabrication in the demonstration of a nanostructured polymer solar cell made from a thermocleavable polymer material and zinc oxide nanoparticles. All the manipulations during device preparation could be carried out in air at around 20 °C and 35% humidity [4]. A possible route to enhancing cell performance is through the improvment of the transport efficiency. Researchers in Taiwan demonstrate how effectively this can be implemented in a hybrid device comprising TiO2 nanorods and poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) [5]. In addition, inorganic semiconductor nanocrystals that have tunable optical bandgaps can be combined with organic semiconductors for the fabrication of hybrid photovoltaic devices with broad spectral sensitivity. A collaboration of researchers in the UK and the US has now developed a near-infrared sensitive hybrid photovoltaic system with PbS nanocrystals and C60. The reported improvement in device performance is attributed to increased carrier mobility of the PbS nanocrystal film [6]. In this issue, Patrick G Nicholson and Fernando A Castro from the National Physical Laboratory in the UK present a topical review on the principles and techniques for the characterization of organic photovoltaics [7]. The review presents a comprehensive picture of the current state-of-the-art understanding of the working mechanisms behind organic solar cells, and also describes electronic morphological considerations relevant to optimizing the devices, as well as different nanoscale techniques for

  17. Coupled solar still, solar heater

    Energy Technology Data Exchange (ETDEWEB)

    Davison, R R; Harris, W B; Moor, D H; Delyannis, A; Delyannis, E [eds.

    1976-01-01

    Computer simulation of combinations of solar stills and solar heaters indicates the probable economic advantage of such an arrangement in many locations if the size of the heater is optimized relative to that of the still. Experience with various low cost solar heaters is discussed.

  18. Solar thermoelectric generator

    Science.gov (United States)

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  19. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  20. Solar activity variations of equatorial spread F occurrence and sustenance during different seasons over Indian longitudes: Empirical model and causative mechanisms

    Science.gov (United States)

    Madhav Haridas, M. K.; Manju, G.; Arunamani, T.

    2018-05-01

    A comprehensive analysis using nearly two decades of ionosonde data is carried out on the seasonal and solar cycle variations of Equatorial Spread F (ESF) irregularities over magnetic equatorial location Trivandrum (8.5°N, 77°E). The corresponding Rayleigh Taylor (RT) instability growth rates (γ) are also estimated. A seasonal pattern of ESF occurrence and the corresponding γ is established for low solar (LSA), medium solar (MSA) and high solar (HSA) activity periods. For LSA, it is seen that the γ maximizes during post sunset time with comparable magnitudes for autumnal equinox (AE), vernal equinox (VE) and winter solstice (WS), while for summer solstice (SS) it maximizes in the post-midnight period. Concurrent responses are seen in the ESF occurrence pattern. For MSA, γ maximizes during post-sunset for VE followed by WS and AE while SS maximises during post-midnight period. The ESF occurrence for MSA is highest for VE (80%), followed by AE (70%), WS (60%) and SS (50%). In case of HSA, maximum γ occurs for VE followed by AE, WS and SS. The concurrent ESF occurrence maximizes for VE and AE (90%), WS and SS at 70%. The solar cycle variation of γ is examined. γ shows a linear variation with F10.7 cm flux. Further, ESF percentage occurrence and duration show an exponential and linear variation respectively with γ. An empirical model on the solar activity dependence of ESF occurrence and sustenance time over Indian longitudes is arrived at using the database spanning two solar cycles for the first time.