WorldWideScience

Sample records for solar thermal industrial

  1. Assessment of industry views on international business prospects for solar thermal technology

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, J.C.

    1984-09-01

    This report contains a review of solar thermal industry viewpoints on their prospects for developing international business. The report documents the industry's current involvement in foreign markets, view of foreign competition in overseas applications, and view of federal R and D and policy requirements to strengthen international business prospects. The report is based on discussions with equipment manufacturers and system integrators who have a product or service with potential international demand. Interviews with manufacturers and system integrators were conducted by using a standard format for interview questions. The use of a standard format for questions provided a basis for aggregating similar views expressed by US companies concerning overseas business prospects. A special effort was made to gather responses from the entire solar thermal industry, including manufacturers of line-focus, point-focus, and central receiver systems. General, technical, economic, institutional, and financial findings are provided in this summary. In addition, Pacific Northwest Laboratory (PNL) recommendations are provided (based upon advice from the Solar Thermal Review Panel) for activities to improve US solar thermal business prospects overseas.

  2. Survey of active solar thermal collectors, industry and markets in Canada : final report

    International Nuclear Information System (INIS)

    2005-08-01

    A survey of the solar thermal industry in Canada was presented. The aim of the survey was to determine the size of the Canadian solar thermal industry and market. Data were used to derive thermal energy output as well as avoided greenhouse gas (GHG) emissions from solar thermal systems. The questionnaire was distributed to 268 representatives. Results revealed annual sales of 24.2, 26.4 and 37.5 MW TH in 2002, 2003, and 2004 respectively, which represented over 50 per cent growth in the operating base during the 3 year survey period. Sales of all collector types grew substantially during the 3 year period, and survey respondents anticipated 20 per cent growth in both 2005 and 2006. Approximately 10 per cent of all sales were exported during 2002-2004. Unglazed liquid collectors constituted the majority of collector types sold in Canada, almost all of which were sold into the residential sector for swimming pool heating. The majority of air collectors were sold into the industrial/commercial and institutional (I/CI) sectors for use in space heating. Sales of liquid glazed and evacuated tube collectors were split between the residential and I/CI sectors. Residential sales were primarily for domestic water heating. In 2004, 23 per cent of sales in the residential sector were for combination domestic hot water and space heating applications, an indication of strong growth. Results of the survey indicated that the solar thermal market in Quebec differed from other regions, with more than double the annual per capita revenue of any other region as a result of greater market penetration of unglazed air collectors. Calculations of the GHG emissions avoided due to active solar thermal systems were made based on historical estimates of solar thermal installations. A model was developed to calculate an operating base by collector type from 1979 to the present. The model showed that many of the systems installed during the 1980s were decommissioned during the 1990s, and that

  3. Perspectives for solar thermal applications in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Leu, Tzong-Shyng; Chung, Kung-Ming

    2016-01-01

    Taiwan has long depended on imported fossil energy. The government is thus actively promoting the use of renewable energy. Since 2000, domestic installations of solar water heaters have increased substantially because of the long-term subsidies provided for such systems. However, data on the annual installation area of solar collectors in recent years indicated that the solar thermal industry in Taiwan has reached a bottleneck. The long-term policy providing subsidies must thus be revised. It is proposed that future thermal applications in Taiwan should focus on building-integrated solar thermal, photovoltaic/thermal, and industrial heating processes. Regarding building-integrated solar thermal systems, the current subsidy model can be continued (according to area of solar collectors); nevertheless, the application of photovoltaic/thermal and industrial heating systems must be determined according to the thermal output of such systems. - Highlights: •The long-term subsidization for solar water heaters has lost effectiveness. •Solar thermal applications include BIST, PV/T and industrial heating process. •A performance-based subsidy policy should be implemented.

  4. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    After the bad year of 2002, the european solar thermal market returned to double-digit growth rate in 2003: 22%. Nevertheless, the sector still has not recovered the growth rate it had in the early 2000 and European Commission targets are still far from being reached. This paper presents the thermal solar industry barometer. Data on the evolution of annually installed surfaces in the european union since 1993, the cumulated capacity of thermal collectors installed in the European Union, the estimation of the annual energy production associated to european solar thermal capacities and the main companies of the European Union thermal solar sector are presented and discussed. (A.L.B.)

  5. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  6. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  7. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  8. Survey of active solar thermal collectors, industry and markets in Canada : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-01

    A survey of the solar thermal industry in Canada was presented. The aim of the survey was to determine the size of the Canadian solar thermal industry and market. Data were used to derive thermal energy output as well as avoided greenhouse gas (GHG) emissions from solar thermal systems. The questionnaire was distributed to 268 representatives. Results revealed annual sales of 24.2, 26.4 and 37.5 MW{sub TH} in 2002, 2003, and 2004 respectively, which represented over 50 per cent growth in the operating base during the 3 year survey period. Sales of all collector types grew substantially during the 3 year period, and survey respondents anticipated 20 per cent growth in both 2005 and 2006. Approximately 10 per cent of all sales were exported during 2002-2004. Unglazed liquid collectors constituted the majority of collector types sold in Canada, almost all of which were sold into the residential sector for swimming pool heating. The majority of air collectors were sold into the industrial/commercial and institutional (I/CI) sectors for use in space heating. Sales of liquid glazed and evacuated tube collectors were split between the residential and I/CI sectors. Residential sales were primarily for domestic water heating. In 2004, 23 per cent of sales in the residential sector were for combination domestic hot water and space heating applications, an indication of strong growth. Results of the survey indicated that the solar thermal market in Quebec differed from other regions, with more than double the annual per capita revenue of any other region as a result of greater market penetration of unglazed air collectors. Calculations of the GHG emissions avoided due to active solar thermal systems were made based on historical estimates of solar thermal installations. A model was developed to calculate an operating base by collector type from 1979 to the present. The model showed that many of the systems installed during the 1980s were decommissioned during the 1990s, and

  9. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  10. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  11. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    Science.gov (United States)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  12. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes

    International Nuclear Information System (INIS)

    Motte, Fabrice; Falcoz, Quentin; Veron, Emmanuel; Py, Xavier

    2015-01-01

    Highlights: • ESEM and XRD characterizations have been performed. • Compatibility of these ceramics with the conventional binary Solar Salt is tested at 500 °C. • Tested ceramics have relevant properties to store thermal energy up to 1000 °C. • Feasibility of using ceramics as filler materials in thermocline is demonstrated. - Abstract: This paper demonstrates the feasibility of using several post-industrial ceramics as filler materials in a direct thermocline storage configuration. The tested ceramics, coming from several industrial processes (asbestos containing waste treatment, coal fired power plants or metallurgic furnaces) demonstrate relevant properties to store thermal energy by sensible heat up to 1000 °C. Thus, they represent at low-cost a promising, efficient and sustainable approach for thermal energy storage. In the present study, the thermo-chemical compatibility of these ceramics with the conventional binary Solar Salt is tested at medium temperature (500 °C) under steady state. In order to determine the feasibility of using such ceramics as filler material, Environmental Scanning Electron Microscopy (ESEM) and X-Ray Diffraction (XRD) characterizations have been performed to check for their chemical and structural evolution during corrosion tests. The final objective is to develop a molten salt thermocline direct storage system using low-cost shaped ceramic as structured filler material. Most of the tested ceramics present an excellent corrosion resistance in molten Solar Salt and should significantly decrease the current cost of concentrated solar thermal energy storage system

  13. Thoughts and suggestions on development of China solar industry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ming [Chinese Renewable Energy Society (China)

    2008-07-01

    This paper discussed the seven extremenesses of solar thermal utilization industry, twelve problems faced by solar thermal utilization and four prejudices of public awareness on the use of solar thermal industry. At the same time, this paper also introduced the experience and lesson of foreign countries in renewable energy development, the gladness and worries about ''RENEWABLE ENERGY LAW'' and there appeals to improve the environment in the development of the solar energy industry. (orig.)

  14. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  15. Uses of solar thermal energy in food industry; Einsatzmoeglichkeiten von Solarthermie in der Lebensmittelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Wuerzburg (Germany)

    2007-07-01

    In Germany solar thermal plants are well established in the field of domestic hot water production and space heating while the wide field of industrial process heat is not yet developed. Approximately one third of the industrial process heat demand - in food industry it is almost the total demand - is in the temperature range below 200 C and thus particularly suited. Relevant processes are washing, cooking, pasteurisation, sterilisation, concentration, heat treatment and drying. Today's solar collectors can provide heat at temperatures below 100 C economically but also for temperatures up to 200 C some types are available and several products are under development. In most cases system integration could be quite simple resulting in simple control units and low system costs. Because of the weather dependency of solar radiation typically heat storage is required. New storage concepts based on phase change materials show promising solutions for this problem. Big solar systems show significant lower specific system costs compared to typical small solar systems. However pilot projects are still missing accompanied by an intensive monitoring program to realise available knowledge and to gain operating experiences. (orig.)

  16. Market development for active solar thermal systems (ASTS) in the institutional, commercial and industrial (ICI) sectors

    International Nuclear Information System (INIS)

    2000-01-01

    The market potential for active solar thermal systems in the institutional, commercial and industrial sectors of the Canadian economy was investigated, the objective being to identify markets and to prepare action plans as the foundation for developing these markets by Natural Resources Canada and the industry. In the process of researching the market, barriers to market development in these sectors of the economy were also identified as well as actions to overcome these barriers. Nine potential applications were modelled to determine their energy, economic and environmental performance. Of these four attractive applications have been selected for more detailed treatment. Separate action plans have been developed for Natural Resources Canada, the Canadian Solar Industries Association and the active solar thermal industry. The close cooperation of all three partners is considered essential for a successful marketing effort. A marketing plan which gives due consideration to the product, planning, packaging, price and promotion, is also considered to be a vital ingredient, as is a meticulous follow-up on 'leads' created by exposure to the target market. Solarwall'TM' for preheating of ventilation air to new school buildings and solar domestic hot water heating for camp grounds have been identified as the most attractive candidates for marketing at this time. Highlights of marketing plans for these two options are included for purposes of illustrating the essential ingredients of marketing plans. 1 fig

  17. Design optimization of a multi-temperature solar thermal heating system for an industrial process

    International Nuclear Information System (INIS)

    Allouhi, A.; Agrouaz, Y.; Benzakour Amine, Mohammed; Rehman, S.; Buker, M.S.; Kousksou, T.; Jamil, A.; Benbassou, A.

    2017-01-01

    Highlights: •Integration of solar thermal energy into an industrial activity is presented. •Hot water is required at four temperatures and load profiles. •Design optimization based on the LCC method is introduced. •Annual performance of centralized system is discussed. •Sensitivity analysis based on economic variables is investigated. -- Abstract: Presently, great challenges are being faced by the industrial sector in terms of energy management and environmental protection. Utilization of solar energy to meet a portion of heat demand in various industries constitutes tremendous economic opportunities for developing countries such as Morocco. Therefore, this paper introduces an optimization procedure and simulation of a centralized solar heating system providing hot water to four processes with different temperature levels and load profiles. As a case study, a Casablanca based Moroccan milk processing company is evaluated and the life cycle cost method is practiced to select the optimal size of the main design parameters for decision-making. It was found that 400 m 2 of evacuated tube collectors tilted at an angle of 30° and connected to a 2000 l storage tank can lead to a maximum life cycle saving cost of 179 kUSD for a total annual heat demand of 528.23 MWh. In this optimal configuration, the overall annual solar fraction is found to be 41% and the payback period of 12.27 years attained. The system has the potential to reduce around 77.23 tons of CO 2 equivalents of greenhouse gas emissions annually. The economic competitiveness of the solar thermal heating plant can be considerably improved with higher inflation rates and lower initial investments.

  18. Solar thermal power meeting - Proceedings

    International Nuclear Information System (INIS)

    2011-07-01

    This document summarizes the presentations and debates of the first edition of the Solar thermal power meeting. Content: 1 - Opening talk (Jean-Louis BAL, SER); 2 - Solar thermal power, European and global road-maps (Cedric Philibert, IEA; Mariangels Perez Latorre, Estela); 3 - first round-table on the international development of solar energy (Philippe Lorec, DGEC France; Said Mouline, Aderee Morocco; Obaid Amrane, Masen Morocco; Kawther Lihidheb, ANME Tunisia; Abdelaziz Boumahra, Rouiba Eclairage, Algeria; Badis Derradji, NEAL Algeria; Yao Azoumah, Lesee, 2IE Foundation Burkina Faso; Mamadou Amadou Kane, MPEM Mauritania; Jean-Charles Mulet, Bertin Technologies); 4 - Second round-table on the French solar thermal offer for export (Georgina Grenon, DGEC; Stephanie Bouzigueseschmann, DG Tresor; Armand Pineda, Alstom; Florent Brunet, Mena-Areva; Roger Pujol, CNIM; Gilles David, Enertime; Michel Wohrer, Saed; Mathieu Vrinat, Sogreah; Marc Benmarraze, Solar Euromed; 5 - Presentation of Amisole - Moroccan association of solar and wind industries (Ahmed Squalli, Amisole); 6 - Third round-table on French research at the solar industry service (Gilles Flamant, Promes Lab. CNRS; Francois Moisan, Ademe; Tahar Melliti, CGI; Andre Joffre, Derbi; Michel Wohrer, Capenergies; 7 - Fourth round table on projects financing (Vincent Girard, Loan Officer BEI; Bertrand Marchais, Miga World Bank; Philippe Meunier, CDC Climat Groupe Caisse des Depots; Christian de Gromard, AFD; Laurent Belouze, Natixis; Piotr Michalowski, Loan Officer BEI); 8 - Closing of the meeting (Roger Pujol, SER)

  19. STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

  20. Can industry afford solar energy

    Science.gov (United States)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  1. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  2. Estimating the potential for solar thermal applications in the industrial process heat market 1990-2030

    International Nuclear Information System (INIS)

    Demeter, C.P.; Gray, E.E.; Carwile, C.

    1991-01-01

    This paper reports the results of a preliminary evaluation of the potential domestic market for solar thermal energy supply technologies matched to industrial process heat applications. The study estimates current and projects future industrial process heat demand to the year 2030 by two-digit standard industrial classification code for the manufacturing industrial sector and discusses the potential to displace conventional fossil fuel sources such as natural gas with alternative sources of supply. The PC Industrial Model, used by DOE's Energy Information Administration in support of the National Energy Strategy (NES) is used for forecast industrial energy demand. Demand is disaggregated by census region to account for geographic variations in solar insolation, and by heat medium and temperature to facilitate end-use matching with appropriate solar energy supply technologies. Levelized energy costs (LEC) are calculated for flat plate collectors for low- temperature preheat applications, parabolic troughs for intermediate temperature process steam and direct heat, and parabolic dish technologies for high-temperature, direct heat applications. LEC is also developed for a conventional natural gas-fueled Industrial Process Heat (IPH) supply source assuming natural gas price escalation consistent with NES forecasts to develop a relative figure of merit used in a market penetration model

  3. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    Science.gov (United States)

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  4. Volumetric solar thermal receiver principles and technological approach

    International Nuclear Information System (INIS)

    Sagie, D.; Gruntman, S.; Taragan, E.; Danino, M.; Weiss, S.; Mimon, Y.

    1996-01-01

    Solar energy has received much interest in recent years, being a clean free of pollution or other environmental dotage), and inexhaustible energy source. It is also considered safer than some other non conventional energy sources (like nuclear energy). The interest in solar energy is motivated mainly by the growing awareness of the environmental problems associated with the use of . conventional keels. However, solar energy may become a serious alternative only if it can be used efficiently in major energy consuming industries (like the chemical industry), or be used for electricity generation. Those facilities are nowadays solely depend on fossil fuels as the prime source of energy . The solar energy, reaches file Earth as radiation, can be utilized either by direct quantum conversion using photo-voltaic solar cells, or by converting the radiation into thermal energy, to be used directly for heating, or to feed a thermal to electric converting cycle. Alter three decades of huge spending on the development of photo-voltaic systems those devices are commercially competitive only on very small energy scale, while solar thermal commercial applications are evident. The prominent examples are the domestic heating water receivers (direct thermal), and LUZ International electricity generation plants which are currently operated on a commercial basis, supplying 80 MWe per plant. Direct thermal exploitation of solar energy is naturally more efficient than converting to electricity but is limited to specific applications and locations especially since thermal storage at high temperature is not commercially viable. Efficient electricity production at competitive price is clearly the biggest opportunity for solar energy. (authors)

  5. Thermal solar energy, towards a sunny interval?

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    While its market results are continuously decreasing, the thermal solar sector regains confidence with the perspectives of a new thermal legislation in France, a higher carbon tax and the growing volume of installed equipment. This document contains 5 articles, which themes are: The renewal of the thermal solar energy sector in France, notably for the building market, due to a new regulation and a reduction in costs; Several companies are developing large capacity thermal solar plant for industrial facilities (one of them covers 10000 m 2 ) while another company is developing an all-in-one containerised system (less than 1 MW); Another example is given with a Caribbean chemical company which use thermal solar energy for its processes, with a reduction of the fuel consumption by a 2.5 factor; The return of experience show that hybrid solar panels present some limitations, especially in terms of performances and sizing; A collective building (35 apartments) in the West of France has 100 pc of its heating needs (hot water production and space heating) satisfied with solar energy

  6. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  7. Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030

    International Nuclear Information System (INIS)

    1991-12-01

    This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE's Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets

  8. An overview of the development of solar water heater industry in China

    International Nuclear Information System (INIS)

    Runqing, Hu; Peijun, Sun; Zhongying, Wang

    2012-01-01

    This article introduce the development of China solar water heater industry .Gives an overview of stages, market, manufacturing, application and testing about China solar water heater industry. Show the market data from 1998 to 2009. Analyze the experiences and features about the industry. The article also introduces the policy for solar hot water industry in China. These policies have accelerated the development of industry in which the main two incentive policies have the greatest influence on solar water heater industry. First one is the policy of mandatory installation of solar water heater implemented since 2007 by some local governments at provincial and municipal levels. Second is the subsidy policy for solar water heaters in the household appliances going to the countryside scheme implemented since 2009. At last the article gives the reason why China solar water heater industry have so rapid growth. From technology research, industrialization, prices and policy environment gives analysis. - Highlights: ► We compared International and China market about solar thermal products. ► The reason for rapid development of China solar water heater is explained. ► The experience of China solar water heater industry would give reference to other develop country. ► “Meet the demands of customer” is the main driver for the solar water heater industry development. ► The policy framework about China solar thermal industry was introduced. The industry achieved commercial operation without subsidy.

  9. Review of concentrating solar thermal power industry in China: Status quo, problems, trend and countermeasures

    Science.gov (United States)

    Zou, Jiajun

    2018-01-01

    Concentrating solar thermal power (CSP) industry is a strategic emerging industry in China. Its further development is of great significance for promoting the energy revolution, achieving energy saving and emission reduction. In this paper, China’s CSP industry is systematically analysed. First of all, the status quo is elaborated from the perspectives of relevant policies and regulations, market and generation technology development. Secondly, the problems and the underlying reasons of China’s CSP industry are deeply studied. On this basis, the future trends of CSP are expounded on the three levels of policy, market and power generation technology. Finally, a series of feasible countermeasures are put forward, designed to promote the development of CSP industry and the transformation of energy structure.

  10. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  11. Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-07

    The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

  12. Solar thermal application for the livestock industry in Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Mei Liu

    2015-09-01

    Full Text Available Solar water heating systems have proven reliable and economical. In Taiwan, the cumulative area of installed solar collectors at the end of 2014 was approximately 2.39 million m2 and approximately 98% of those systems were installed in the domestic sector. Preheating water for livestock processing plants is cost-effective since heated water can be used for evisceration, sanitation during processing and for daily cleanup of plant. In this case study, detailed measurements are reported for parallel combined solar thermal and heat pump systems that are installed in a livestock processing plant. These results confirm that the hot water consumption, the mass flow rate and the operation of circulation and heat pumps affect the system's thermal efficiency. The combined operational effect is a factor in system design. The estimated payback period is less than the expected service period of the system, which validates the financial viability.

  13. Foster Wheeler Solar Development Corporation modular industrial solar retrofit qualification test results

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Dudley, V.E.; Lewandoski, A.A.

    1986-10-01

    Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

  14. Foster Wheeler Solar Development Corporation Modular Industrial Solar Retrofit qualification test results

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Dudley, V.E.; Lewandowski, A.A.

    1987-04-01

    Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

  15. Estec2003: European solar thermal energy conference. Proceedings; Estec2003: Europaeische Solarthermie-Konferenz. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In December 2002 more than 40 solar thermal companies and associations joined forces in the European Solar Thermal Industry Federation (ESTIF), to strengthen support for this clean technology on the European level. ESTIF aims at building a close partnership between industry and public authorities in order to overcome the main barriers to growth. Over the last 6 months we have seen some positive developments, which we could build upon. Here are some examples: 1. Germany, the country with the largest demand for solar thermal technology, is back on track to repeat the growth rates we have witnessed in the 1990s. 2. The rules for the solar Keymark quality label were approved by CEN board in January 2003. 3. The city of Madrid became the first European capital to follow the example of Barcelona in requiring the use of solar thermal in new residential buildings. 4. The long awaited ''Sun in Action II - a solar thermal strategy for Europe was published last month. 5. Now, the first European Solar Thermal Energy Conference brings together decision makers from industry and politics to discuss the future of renewable heating and cooling in Europe. - Solar thermal has a great potential - 1.4 billion square meters in the 15 EU member states alone. 99% of this potential are still to be developed. ESTIF has made it its mission 'to achieve high priority and acceptance for solar thermal as a key element for sustainable heating and cooling in Europe and to work for the implementation, as soon as possible, of all steps necessary to realise the high potential of solar thermal'. With estec2003 we offer a platform to exchange information and opinions concerning how this goal can be achieved. The developments in different countries show that the use of solar thermal technologies does not depend on climatic conditions alone. (orig.)

  16. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  17. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. The development of a volumetric solar thermal receiver: an overview

    International Nuclear Information System (INIS)

    Sagie, D.

    1996-01-01

    Solar energy has received much interest in recent years, being a clean (free of pollution or other environmental damage) and inexhaustible energy source. It is also considered safer than some other non conventional energy sources (like nuclear energy). The interest in solar energy is motivated mainly by the growing awareness of the environmental problems associated with the use of conventional fuels. However, solar energy may become a serious alternative only if it can be used efficiently in major energy consuming industries (like the chemical industry), or be used for electricity generation. Those facilities are nowadays solely dependent on fossil fuels as the prime source of energy. The solar energy, reaching the earth in the form of radiation, can be utilized either by direct quantum conversion using photo-voltaic solar cells, or by converting the radiation into thermal energy, to be used directly for heating, or to feed a thermal to electric converting cycle. After three decades of huge spending on the development of photo-voltaic systems those devices are commercially competitive only on a very small energy scale, while solar thermal commercial applications are more attractive. Prominent examples are the domestic heating water receivers (direct thermal), and LUZ International electricity generation plants which are currently operated on a commercial basis, supplying 80 MWe per plant. Direct thermal exploitation of solar energy is naturally more efficient than converting to electricity, but is limited to specific applications and locations especially since thermal storage at high temperature is not commercially viable. Efficient electricity production at a competitive price is clearly the biggest opportunity for solar energy . (author)

  19. estec2007 - 3rd European solar thermal energy conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-14

    The sessions of the 'estec2007 - 3{sup rd} European Solar Thermal Energy Conference held in Freiburg, Germany have the following titles: The solar thermal sector at a turning point; Cooling and Process Heat, Country reports Europe; Standards and Certification; Country reports outside Europe; Awareness raising and marketing; Domestic hot water and space heating; Domestic hot water and space heating; Quality Assurance and Solar Thermal Energy Service Companies; Collectors and other key technical issues; Policy - Financial incentives; Country Reports; Marketing and Awareness Raising; Quality Assurance Measures/Monistoring; Standards and Certification; Collectors; Domestic Hot Water and Space Heating; Industrial Process Heat; Storage; Solar Cooling. (AKF)

  20. estec2007 - 3rd European solar thermal energy conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-14

    The sessions of the 'estec2007 - 3{sup rd} European Solar Thermal Energy Conference held in Freiburg, Germany have the following titles: The solar thermal sector at a turning point; Cooling and Process Heat, Country reports Europe; Standards and Certification; Country reports outside Europe; Awareness raising and marketing; Domestic hot water and space heating; Domestic hot water and space heating; Quality Assurance and Solar Thermal Energy Service Companies; Collectors and other key technical issues; Policy - Financial incentives; Country Reports; Marketing and Awareness Raising; Quality Assurance Measures/Monistoring; Standards and Certification; Collectors; Domestic Hot Water and Space Heating; Industrial Process Heat; Storage; Solar Cooling. (AKF)

  1. Solar thermal technology and market in Europe

    International Nuclear Information System (INIS)

    Sabba, S.

    2000-01-01

    The solar heating industry in Europe has reached maturity after more than two decades of technical development. High quality systems are now available with reliability and durability of the products being assured. The European solar market, now the world's largest, has been growing since the late 1980s, despite the fact that conventional energy sources are usually available and inexpensive. This is a new phenomenon and marks the beginning of changes in energy supply and consumption that will be experienced throughout the world in this new century. Almost 10 million square metres of solar thermal collectors now exist in Europe saving more than 1.5 million tonnes of CO 2 emissions and about 500,000 tonnes of oil. The solar heating industry has created some 10,000 jobs. (author)

  2. On the potential and economic feasibility of solar industrial process-heat applications in selected Turkish industries

    International Nuclear Information System (INIS)

    Ozdogan, S.; Arikol, M.

    1992-01-01

    We discuss the potential and economic feasibility of solar, industrial process-heat applications in the Turkish food, textile and chemical industries. The study covers 18 sites and end-use temperatures up to 120 and 150 o C. A solar system composed of parabolic troughs without thermal storage is chosen. The system size investigated is 500 to 20,000m 2 . (author)

  3. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  4. Directory of the French thermal solar sector

    International Nuclear Information System (INIS)

    Demangeon, Elsa; Simmonet, Raphael; Canals, Jonathan

    2011-01-01

    After an overview of what is at stake for the thermal solar sector in terms of employment and industrial development, a discussion of the huge energy and industrial potential of this sector, and the proposition of a road map for the development of this sector in France, this publication proposes a directory of actors of the different activity sectors: research and development, engineering, electric and electronic hardware manufacturing, thermal equipment manufacturing, fluid manufacturing, reflector manufacturing, thermodynamic machine manufacturer, structure component manufacturer, control-command system, energy storage, developers, and so on

  5. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  6. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  7. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  8. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  9. Operational Experience from Solar Thermal Energy Projects

    Science.gov (United States)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  10. Solar energy applications in different agricultural and industrial processes

    International Nuclear Information System (INIS)

    Agudelo Florez, Sergio; Pineda Rios, Alexander

    2002-01-01

    Solar thermal technology can offer so much more than just domestic hot water, in this paper it is shown some solar system that can provide process heat for many industrial and agricultural requirements, for example can dry crops, extract potable water from brackish or saline supplies, destroy hazardous contaminants and be used in the manufacture of advanced material

  11. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes

    Science.gov (United States)

    Pérez-Aparicio, Elena; Lillo-Bravo, Isidoro; Moreno-Tejera, Sara; Silva-Pérez, Manuel

    2017-06-01

    Thermal energy for industrial processes can be generated using thermal (ST) or photovoltaic (PV) solar energy. ST energy has traditionally been the most favorable option due to its cost and efficiency. Current costs and efficiencies values make the PV solar energy become an alternative to ST energy as supplier of industrial process heat. The aim of this study is to provide a useful tool to decide in each case which option is economically and environmentally the most suitable alternative. The methodology used to compare ST and PV systems is based on the calculation of the levelized cost of energy (LCOE) and greenhouse gas emissions (GHG) avoided by using renewable technologies instead of conventional sources of energy. In both cases, these calculations depend on costs and efficiencies associated with ST or PV systems and the conversion factor from thermal or electrical energy to GHG. To make these calculations, a series of hypotheses are assumed related to consumer and energy prices, operation, maintenance and replacement costs, lifetime of the system or working temperature of the industrial process. This study applies the methodology at five different sites which have been selected taking into account their radiometric and meteorological characteristics. In the case of ST energy three technologies are taken into account, compound parabolic concentrator (CPC), linear Fresnel collector (LFC) and parabolic trough collector (PTC). The PV option includes two ways of use of generated electricity, an electrical resistance or a combination of an electrical resistance and a heat pump (HP). Current values of costs and efficiencies make ST system remains as the most favorable option. These parameters may vary significantly over time. The evolution of these parameters may convert PV systems into the most favorable option for particular applications.

  12. Thermal solar energy

    International Nuclear Information System (INIS)

    Gonzalez, J.C.; Leal C, H.

    1998-01-01

    Some relative aspects to the development and current state of thermal solar energy are summarized, so much at domestic level as international. To facilitate the criteria understanding as the size of the facilities in thermal solar systems, topics as availability of the solar resource and its interactions with the matter are included. Finally, some perspectives for the development of this energetic alternative are presented

  13. Comparison of thermal solar collector technologies and their applications

    OpenAIRE

    Alarcón Villamil, Alexander; Hortúa, Jairo Eduardo; López, Andrea

    2013-01-01

    This paper presents the operation of different thermal solar collector technologies and their main characteristics. It starts by providing a brief description of the importance of using solar collectors as an alternative to reduce the environmental impact caused by the production of non-renewable sources like coal and oil. Subsequently, it focuses on each solar concentrator technology and finishes with a theoretical analysis hub application in different industrial processes. En este artícu...

  14. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  15. Solar thermal utilization--an overview

    International Nuclear Information System (INIS)

    Chen Deming; Xu Gang

    2007-01-01

    Solar energy is an ideal renewable energy source and its thermal utilization is one of its most important applications. We review the status of solar thermal utilization, including: (1) developed technologies which are already widely used all over the world, such as solar assisted water heaters, solar cookers, solar heated buildings and so on; (2) advanced technologies which are still in the development or laboratory stage and could have more innovative applications, including thermal power generation, refrigeration, hydrogen production, desalination, and chimneys; (3) major problems which need to be resolved for advanced utilizaiton of solar thermal energy. (authors)

  16. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  17. Barriers to the Diffusion of Solar Thermal Technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Despite its considerable potential in household, domestic and industry sectors, the possible contribution of solar heat is often neglected in many academic and institutional energy projections and scenarios. This is best explained by the frequent failure to distinguish heat and work as two different forms of energy transfers. As a result, policy makers in many countries or States have tended to pay lesser attention to solar thermal technologies than to other renewable energy technologies.

  18. End-use matching for solar industrial process heat. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  19. Solar thermal - the new dynamics

    International Nuclear Information System (INIS)

    2017-01-01

    This booklet is intended to engineering consultants and construction professionals and aims at showing them the real interest of solar thermal energy. It notably highlights the very high efficiency which can be reached, the high performance value compared to gas, the high rank of solar thermal energy in terms of profitability over a 20-year period, the fact that solar thermal energy is almost always the most economic solution for buildings and the less expensive in comparison with non renewable energies. It outlines that, as far as purchase is concerned, solar thermal energy is more than competitive, is also a leader as far as financing issues are concerned. It finally briefly describes how the SOCOL initiative can be a support at any step of a solar thermal project

  20. Solar thermal energy utilization in Brazil: a perspective; Utilizacao da energia solar termica no Brasil: uma perspectiva

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Francisco Mateus [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Although Brazil has a large insolation potential, utilization of solar thermal energy is still limited to few applications, like residential and commercial water heating and drying of grains. However, there are in other countries more intensive applications, like electricity generation, industrial heat and fresh water production. The present work describes which are the other ways of using solar thermal energy that have been developed in the world, approaches the main technical aspects that affect its utilization, the perspective of increasing it in Brazil and its possible barriers and, finally, PETROBRAS' studies in this area, positioning itself as an Energy Company. The main solar thermal technologies currently used in the world are evacuated collectors, that work efficiently at temperatures up to 130 deg C, and concentrating solar technologies, that can reach the temperature of 1200 deg C. Among the latter, solar trough is the technology that is already considered mature, and near to become economically viable. Brazil, at the moment, has two technological challenges: development of national technology to manufacture high performance solar collectors, like evacuated collectors and solar troughs, and the development of thermal equipment to operate at temperatures under 120 deg C, like adsorption and absorption chillers and desalination towers, that can be economically competitive. (author)

  1. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  2. Solar Thermal | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    building can still be designed and constructed to be solar ready with roof exposures and slopes that accept Solar Thermal Solar Thermal Solar thermal applications can be simple, cost effective, and diverse for research campuses. The following links go to sections that describe when and where solar thermal

  3. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, the European solar thermal market put on a strong spurt only to mark time in 2009 with about 4.2 million m 2 installed, which is 450000 m 2 less year-on-year. The main reasons of the decrease is the financial crisis and the low oil price, other reasons more specific to the country exist, for instance the property crisis has dragged the Spanish market down. In 2009, the solar thermal collector surface area in service in the European Union is of the magnitude of 32.6 million m 2 , equivalent to a capacity of 22.8 GWTh. The solar thermal sector is one of the renewable sectors that creates the highest number of jobs and wealth, partly because the vast majority of the system components sold in Europe are produced in Europe and partly because the sale, installation fitting and maintenance are labour-intensive. In 2009, there were 50000 direct or indirect jobs in the European solar thermal sector. The main European actors in this sector are GREENoneTEC, Bosch-Thermotechnik, Viessmann, Vaillant and Solvis. No clear recovery is expected before 2011. (A.C.)

  4. Myo-inositol based nano-PCM for solar thermal energy storage

    International Nuclear Information System (INIS)

    Singh, D.K.; Suresh, S.; Singh, H.; Rose, B.A.J.; Tassou, S.; Anantharaman, N.

    2017-01-01

    Highlights: • Properties of Myo-Inositol laden with Al_2O_3 and CuO nanoparticles was studied. • The melting point was found to increase for MI-A and decrease for MI-C. • MI interacted only physically on addition of NPs. • Mass changes were <3% after thermal cycling of MI-A and MI-C. • MI-A is more suited for thermal energy storage than MI-C. - Abstract: The thermo-physical behavior of Myo-Inositol (MI), (a sugar alcohol), was investigated as a potential material for developing more compact solar thermal energy storage systems than those currently available. This latent heat storage medium could be utilized for commercial and industrial applications using solar thermal energy storage in the temperature range of 160–260 °C, if its thermal performance was modified. The objective of this investigation was to determine via experimentation, if Al_2O_3 and CuO nanoparticles dispersed in pure MI for mixtures of 1, 2 and 3% (by weight) improved the thermal performance of MI for solar thermal energy systems. Nanoparticles only physically interacted with MI, and not chemically, even after 50 thermal cycles. The distribution of CuO nanoparticles in the nano-PCM was found to be more uniform than alumina nanoparticles. After cycling, nano-MIs studied here suffered a lower decrease in heat of fusion than pure MI, which makes nano-MIs more suitable for solar thermal storage applications at 160–260 °C. Between CuO and Al_2O_3 nanoparticles, latter was found to be more suitable for compact solar thermal energy storage owing to an increase in melting point observed.

  5. The photo-thermal industry. Why evacuated collectors are the most profitable solar application

    International Nuclear Information System (INIS)

    Mahdjuri, F.

    1994-01-01

    The reasons for the increasing popularity of using solar energy as one way of meeting the global energy demand are outlined. However, the solar energy industry needs to approach marketing its products rationally and carefully to assure future growth of its market share of power production. The need for clear marketing strategies alongside a good understanding of solar technology are emphasised. (UK)

  6. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  7. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  8. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. The solarPACES strategy for the solar thermal breakthrough

    International Nuclear Information System (INIS)

    Burch, G.D.; Grasse, W.

    1997-01-01

    IEA(International Energy Agency)/SolarPACES(Solar Power and Chemical Energy systems)represents a world wide coalition for information sharing and collaboration on applications of concentrated solar energy. The current SolarPACES community has built up solar thermal system know-how over 15 years, is operating the three main solar test centres in the world. Its main activities are in the following four fields: solar thermal electric power systems, solar chemistry, solar technology and advanced applications and non-technical activities. The article presents the talk on the strategy of solarPACES given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. (A.A.D.)

  10. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  11. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  12. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  13. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  14. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  15. The SolarPACES strategy for the solar thermal breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Burch, G.D. [U.S. Department of Energy, Washington, DC (United States)

    1997-12-31

    Our national solar thermal research programs and our combined efforts conducted through IEA/SolarPACES have brought about many breakthroughs in the development of solar thermal technology. We have components and systems that are much more efficient, much more reliable, and can be built much more cost-efficiently than just a few years ago. As our technology development proceeds, we undoubtedly will continue to make significant progress, breakthroughs in fact, in all these areas - progress that will bring us even closer to economic parity with more conventional forms of energy. And while this progress is absolutely necessary, the question is whether it will be enough to allow solar thermal to break into the mainstream of global energy supply. Our new IEA/SolarPACES strategy, crafted and approved over the course of the past year, has recognized the changes we must face and given us license to begin to make those changes. We must begin addressing financial hurdles, work to create a more favorable regulatory and tax environment, support development of international partnerships, and expand the visibility and excitement of solar thermal technology to achieve the final breakthroughs we need to allow solar thermal energy to live up to its vast potential. (orig./AKF)

  16. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    OpenAIRE

    M. Z. H. Khan; M. R. Al-Mamun; S. Sikdar; P. K. Halder; M. R. Hasan

    2016-01-01

    This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experi...

  17. The limits to solar thermal electricity

    International Nuclear Information System (INIS)

    Trainer, Ted

    2014-01-01

    The potential and limits of solar thermal power systems depend primarily on their capacity to meet electricity demand in mid-winter, and the associated cost, storage and other implications. Evidence on output and costs is analysed. Most attention is given to central receivers. Problems of low radiation levels, embodied energy costs, variability and storage are discussed and are found to set significant difficulties for large scale solar thermal supply in less than ideal latitudes and seasons. It is concluded that for solar thermal systems to meet a large fraction of anticipated global electricity demand in winter would involve prohibitive capital costs. - Highlights: • Output and capital cost data for various solar thermal technologies is examined. • Special attention is given to performance in winter. • Attention is also given to the effect of solar intermittency. • Implications for storage are considered. • It is concluded that there are significant limits to solar thermal power

  18. Macroeconomic impact of the Solar Thermal Electricity Industry in Spain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-10-15

    In the last three years, Solar Thermal Electricity (STE) in Spain has grown significantly. Its weight within the renewables mix is becoming relevant, and even more so, its impact on economics, society, the environment, and reducing energy dependence. This report was carried out by Deloitte for Protermosolar to quantitatively and qualitatively evaluate the main macroeconomic variables derived from the development of this technology in Spain from 2008 to 2010, and forecast its possible future impact.

  19. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  20. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  1. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  2. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  3. Solar Thermal Utilization: Past, Present and Future

    Science.gov (United States)

    2010-09-01

    SO•C NON-FOCUSSING FLAT PLATE / (FPC) 100- 150•C For low temperature 50- 200•C COMPOUND applications PARABOLIC EVACUATED CONCENTRATOR ~ (ETC...2030 Ø 200GW BY 2050 Ø 20 MILLION SQ.METER SOLAR THERMAL COLLECTORS (20GW power) Ø 20 MILLION SOLAR LIGHTS LAUNCHING OF SOLAR INDIA SOLAR THERMAL...Temperature (20oC- 80oC) NALSUN ApplicationsThermal Conversion range SOLAR ENERGY COLLECTORS 40- GO•C UNGLAZED COLLECTORS 60- 90•C SOLAR POND 60

  4. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  5. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  6. A perspective of the market of thermal solar energy; Una perspectiva del mercado de la energia solar termica

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, R.; Moreno, J.

    2008-07-01

    The take in effect in 2006 of the new Technical Code of Edification (CTE) augured a remarkable impact in the market of the thermal solar energy in Spain. Parallelly, in april of this year was published in Portugal the Regulation of the Characteristics of thermal Behaviours of the Buildings (RCCTE) that also generated promising expectations. A year and a half later, the market does not match to the initial forecasts made by the government agencies and the solar industry. The purpose of this article is to make an analysis of the causes of ralentization in the definitive takeoff of both markets. (Author)

  7. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  8. Electromagnetic Acoustic Transducers Applied to High Temperature Plates for Potential Use in the Solar Thermal Industry

    Directory of Open Access Journals (Sweden)

    Maria Kogia

    2015-12-01

    Full Text Available Concentrated Solar Plants (CSPs are used in solar thermal industry for collecting and converting sunlight into electricity. Parabolic trough CSPs are the most widely used type of CSP and an absorber tube is an essential part of them. The hostile operating environment of the absorber tubes, such as high temperatures (400–550 °C, contraction/expansion, and vibrations, may lead them to suffer from creep, thermo-mechanical fatigue, and hot corrosion. Hence, their condition monitoring is of crucial importance and a very challenging task as well. Electromagnetic Acoustic Transducers (EMATs are a promising, non-contact technology of transducers that has the potential to be used for the inspection of large structures at high temperatures by exciting Guided Waves. In this paper, a study regarding the potential use of EMATs in this application and their performance at high temperature is presented. A Periodic Permanent Magnet (PPM EMAT with a racetrack coil, designed to excite Shear Horizontal waves (SH0, has been theoretically and experimentally evaluated at both room and high temperatures.

  9. Photovoltaic. Solar thermal. Solar thermal electricity;Le Photovoltaique. Le solaire thermique. L'heliothermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  10. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  11. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  12. European research school on large scale solar thermal – SHINE

    DEFF Research Database (Denmark)

    Bales, Chris; Forteza, Pau Joan Cortés; Furbo, Simon

    2014-01-01

    The Solar Heat Integration NEtwork (SHINE) is a European research school in which 13 PhD students in solar thermal technologies are funded by the EU Marie-Curie program. It has five PhD course modules as well as workshops and seminars dedicated to PhD students both within the project as well...... as outside of it. The SHINE research activities focus on large solar heating systems and new applications: on district heating, industrial processes and new storage systems. The scope of this paper is on systems for district heating for which there are five PhD students, three at universities and two...

  13. Investigation of Solar and Solar-Gas Thermal Energy Sources

    OpenAIRE

    Ivan Herec; Jan Zupa

    2003-01-01

    The article deals with the investigation of solar thermal sources of electrical and heat energy as well as the investigation of hybrid solar-gas thermal sources of electrical and heat energy (so called photothermal sources). Photothermal sources presented here utilize computer-controlled injection of the conversion fluid into special capillary porous substance that is adjusted to direct temperature treatment by the concentrated thermal radiation absorption.

  14. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  15. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  16. Effect of incentives on the financial attractiveness of solar industrial process heating in India★

    Directory of Open Access Journals (Sweden)

    Sharma Ashish K.

    2017-01-01

    Full Text Available India has a huge industrial demand for process heating at temperatures that can be provided with commercially available solar collectors. Government of India with support from multi-lateral agencies has initiated an ambitious programme for promoting large scale adoption of Solar Industrial Process Heating (SIPH in the industrial sector of the country. This paper presents the details of an attempt to study the effect of several existing and potential incentives on the financial attractiveness of SIPH systems in India. A case of solar process heating in dairy industry has been presented to demonstrate the relative efficacy of different incentives on the economics of SIPH systems in terms of their impact on levelized cost of useful thermal energy delivered. Finally, policy implications of the results obtained have been discussed.

  17. Fuels and chemicals from biomass using solar thermal energy

    Science.gov (United States)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  18. New thermal energies in France. Solar, biomass, geothermal and aero-thermal: which perspectives by 2015?

    International Nuclear Information System (INIS)

    2012-01-01

    Whereas thermal renewable energies are to become inescapable, and notably 'green heat' which is acclaimed by real estate professionals as well as by industries, their market is foreseen to grow at a rate of 6 per cent a year until 2015. This high rate is notably due to the soaring price of conventional energies like electricity, gas or oil fuel, but also to environmental constraints related to the reduction of greenhouse gas emissions. A first part proposes an overview of the French market of new sources of thermal renewable energies for a domestic use in 2011, and discusses perspectives by 2015. A detailed analysis of the three main technologies (heat pumps, thermal solar devices, wood fuelled domestic heating devices) is proposed and challenges faced by involved enterprises and possible answers provided by professionals are also detailed. A second part gathers and comments data related to thermal energy production for industrial and collective use (in collective housing and office building): energy production level, legal and regulatory framework, evolution of demand, predictions for the different energy sources (wood energy, geothermal, waste energetic valorisation). It also proposes an analysis of stakes related to these applications. The third part proposes an assessment of the size of the different sectors by presenting key economic figures (turnover, staff, etc.). While the fourth part proposes an overview of leaders for each sector (thermal solar, biomass, and heat pump) and a more detailed presentation of 14 important actors, the fifth and last part proposes a large set of financial and economic indicators of 200 involved operators

  19. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  20. Theseus, the 50 MW solar thermal power plant; Das solarthermische 50-MW-Kraftwerk Theseus

    Energy Technology Data Exchange (ETDEWEB)

    Brakmann, G. [Fichtner GmbH und Co. KG, Stuttgart (Germany). Solarenergieprojekte

    1998-04-01

    The Isle of Crete measures 8331 km{sup 2}, and this island renowned for its historical sites attracts millions of tourists every year. Like any other branch of industry, tourism, which is called a ``white`` industry, has an ever growing demand for electric power. Up to now, electricity generation on the island is based on fossil-fuelled thermal power plants. However, recent developments indicate that this technology might be overtaken soon by the novel Theseus power plant (Thermal Solar European Power Station) currently under construction. It is expected to usher in a new era of power generation on the Isle of Crete. (orig./CB) [Deutsch] Die 8 331 km{sup 2} grosse Insel Kreta wurde vor ueber 3 500 Jahren besiedelt. Der geschichtstraechtige Ort ist ein hochgeschaetztes Reiseziel von Millionen Griechenlandurlaubern. Wie jede Art von Industrie, so benoetigt auch die als `weisse Industrie` bezeichnete Touristikbranche immer mehr elektrische Energie. Diese wird derzeit auf Kreta ausschliesslich mit thermischen Kraftwerken, welche fossile Brennstoffe verbrennen, erzeugt. Aber die Vorherrschaft dieser Technologie kann schon bald mit dem neuen solarthermischen Kraftwerk Theseus (Thermal Solar European Power Station) gebrochen werden. Es soll in wenigen Jahren eine neue Aera der Energieerzeugung auf Kreta einlaeuten. (orig.)

  1. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  2. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  3. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  4. Solar-Thermal Engine Testing

    Science.gov (United States)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  5. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  6. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  7. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  8. Thermal solar energy - application in industrial heat processes; Energia solar termica - aplicacion en procesos industriales de calor

    Energy Technology Data Exchange (ETDEWEB)

    Bonneschky, Alexis [Universidad Tecnica de Brandenburgo/Cottbus (Germany); Roth, Pedro; Cancino, Beatriz [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Kanig, Thomas [Germany, (Georgia)

    2000-07-01

    The main objective of this paper is to show the use solar energy for water heating in industry, integrating the companies through some strategy that signifies a common purpose that benefits both of them. In this report a project made with two neighboring companies in the region of Branderburgo, Germany is presented, that mutually benefit with the solar energy installation, but which are independent as far as its intentions and capitals. The first company is the factory FK-Solartchnik Kleinkoschen that produces solar collectors for hot water and is interested in developing publicity in this sense, reason why it put at the disposition of the second industry the necessary area to install the solar collectors. The second company, is the FGT Glaswerk Kleinkoschen that produces high quality glass plates, but does not have facade available for the installation of any solar equipment. In this industry, for the manufacture of glass, hot water is used. The glass plates, already cut, go trough a process of washing and drying. The washing, requires a volume of 1 m{sup 3}/day of hot water, at 60 degrees Celsius and is made between 6:30 a.m. and 3:30 p.m. The water heating was carried out with two electrical heaters (around 12 kW each one). A solar equipment was designed that allows to diminish the energy losses in the accumulation in the hours following the process, where the water is warmed up, and additionally covers part of the requirements of the consumed water. This equipment has a collector with a surface of 27 m{sup 2}. With this system, plus the contribution made by the workers of the company, the water temperature for washing was diminished in 20 K, without affecting the product quality and in addition, the annual consumption of electrical energy of the company was reduced in 15,000 kWh, using the solar energy resources in about 50% of the total consumption. [Spanish] El objetivo principal de este trabajo es mostrar el uso de la energia solar para el calentamiento de

  9. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  12. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  13. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  14. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  15. Solar thermal production of zinc: Program strategy

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A; Weidenkaff, A; Moeller, S; Palumbo, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The solar thermal production of zinc is considered for the conversion of solar energy into storable and transportable chemical fuels. The ultimate objective is to develop a technically and economically viable technology that can produce solar zinc. The program strategy for achieving such a goal involves research on two paths: a direct path via the solar thermal splitting of ZnO in the absence of fossil fuels, and an indirect path via the solar carbothermal/CH{sub 4}-thermal reduction of Zn O, with fossil fuels (coke or natural gas) as chemical reducing agents. Both paths make use of concentrated solar energy for high-temperature process heat. The direct path brings us to the complete substitution of fossil fuels with solar fuels for a sustainable energy supply system. The indirect path creates a link between today`s fossil-fuel-based technology and tomorrow`s solar chemical technology and builds bridges between present and future energy economies. (author) 1 fig., 15 refs.

  16. Thermal performance of a double-pass solar collector with porous media

    International Nuclear Information System (INIS)

    Elradi A Musa; Kamaruzzaman Sopian; Shahrir Abdullah

    2006-01-01

    Thermal performance of a double-pass solar collector has been developed for air following through the porous media. The porous media are arranged in different porosities to increase heat transfer, area density and the total heat transfer rate. A test collector was developed and tested indoors by varying the design features and operating conditions using a halogen-lamp simulator as a radiation source. An experimental setup as been designed and constructed. Comparisons of the theoretical and the experimental result have been conducted. This type of collector can be used for drying and heat applications such as solar industrial processes, space and solar drying of agricultural products

  17. Status of the expanding solar industry

    International Nuclear Information System (INIS)

    Boice, C.

    1992-01-01

    This paper emphasizes photovoltaic and active solar thermal initiatives. President Bush's National Energy Strategy envisions commercially-successful distributed applications of photovoltaics by 2005, and utility-scale applications by 2015. In 1990, solar industry revenues arguably topped $100 million and seem to some observers to be growing as much as 40% annually. However, this revenue growth is still powered by research experiments and demonstration projects. Photovoltaic power is still a decade away from commercial price competition, according to John Schaefer of the Electric Power Research Institute (EPRI). Growth is to be expected whenever laboratory technologies need pilot scale-up tests, and large-scale photovoltaic electric power is still being tested. The tests are proving worthwhile: maintenance costs are falling toward 1/2 cent per kWh, capacity factors are reaching 35%, and availability is improving. Energy efficiencies have increased from 10% to 15%, and custom-built, standard-materials laboratory systems have reached 16% efficiency

  18. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  19. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Science.gov (United States)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  20. Towards the industrial solar production of lime

    Energy Technology Data Exchange (ETDEWEB)

    Meier, A.; Bonaldi, E. [QualiCal SA, Bergamo (Italy); Cella, G.M. [QualiCal SA, Bergamo (Italy); Lipinski, W.; Palumbo, R.; Steinfeld, A. [ETH Zuerich (Switzerland) and PSI; Wieckert, C.; Wuillemin, D.

    2002-03-01

    A new industrial concept that aims at the development of the chemical engineering technology for the solar production of lime is being examined. To establish the technical feasibility, a 10 kW solar reactor has been designed, constructed, and experimentally tested at a high-flux solar furnace. The quality of the produced solar lime meets industrial standards. (author)

  1. Solar air heaters for industrial drying; Aquecedor solar de ar para secagem industrial

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Everaldo Mendes [Governo do Estado da Paraiba, Joao Pessoa, PB (Brazil). Secretaria de Planejamento e Gestao

    2008-07-01

    The objective of this study is to encourage the use of solar energy in industrial drying of fruits, with the producers poles, at the same time, promote the rational use of energy for heat, or replacing the hydroelectric and oil derivatives for this purpose. This study is presented in the following chapters: availability of solar energy; details of constructive solar heated air; drying fruit; market. (author)

  2. Solar thermal in France

    International Nuclear Information System (INIS)

    Letz, T.

    2006-01-01

    This article gives details of Plan Soleil established in 2000 by the French Agency for Environment and Energy Management and its identification of solar hot water systems and combined domestic solar hot water and space heating as promising sectors for development. The setting up of a support scheme for investment by Plan Soleil is discussed along with subsidies and grants, manufacturers and importers, the guarantee of solar results, and the quality of plants, components, and installers. The costs of thermal solar equipment, and results of the French assessment programme are considered. The need for quality standards is stressed

  3. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  4. The THESEUS project -- 50 MWe solar thermal power for Crete

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, F.; Geyer, M.; Kistner, R.; Aringhoff, R.; Nava, P.; Brakmann, G.

    1998-07-01

    A consortium of European industry, utilities and research institutions from Greece, Germany, Spain and Italy attempts to implement a 52 MWe solar thermal power plant with parabolic trough technology on the Greek island of Crete sponsored by the EU' s THERMIE program. The increased demand for electricity on the island, a consequence of the growing allurement of the island as a tourist resort, makes it necessary to expand the installed capacity on Crete during the next years. According to the capacity expansion plans of Greek' s utility PPC a 160 MWe heavy fuel-fired power plant complex--two 30 MWe diesel units and two 50 MWe steam turbine units--is foreseen to be built by the year 2002. In this paper a description of the technical, economical and environmental aspects of the THESEUS project is provided. Moreover a market entry strategy for solar thermal power generation is discussed.

  5. Active solar heating industry development study

    International Nuclear Information System (INIS)

    1995-01-01

    Despite the fact that solar water heating systems are technologically viable and commercially available, this Energy Technology Support Unit report shows that there is no established market in the United Kingdom. The Solar Trade Association (STA) has undertaken an Active Solar Heating Industry Development Study which is reported here. The data is derived from a questionnaire survey completed by companies, organizations and individuals operating within the industry. Information was also gathered from utility companies, and STAs elsewhere in Europe. Barriers which need to be overcome include lack of public awareness, especially in the construction industry, lack of capital investment and other financial disincentives, little or no government support, and lack of organization and quality monitoring and assurance within the industry itself. (UK)

  6. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  7. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  8. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  9. A central solar-industrial waste heat heating system with large scale borehole thermal storage

    NARCIS (Netherlands)

    Guo, F.; Yang, X.; Xu, L.; Torrens, I.; Hensen, J.L.M.

    2017-01-01

    In this paper, a new research of seasonal thermal storage is introduced. This study aims to maximize the utilization of renewable energy source and industrial waste heat (IWH) for urban district heating systems in both heating and non-heating seasons through the use of large-scale seasonal thermal

  10. Proceedings of the General Committee for solar thermal energy 2015

    International Nuclear Information System (INIS)

    Gibert, Francois; Loyen, Richard; Khebchache, Bouzid; Cholin, Xavier; Leicher, David; Mozas, Kevin; Leclercq, Martine; Laugier, Patrick; Dias, Pedro; Kuczer, Eric; Benabdelkarim, Mohamed; Brottier, Laetitia; Soussana, Max; Cheze, David; Mugnier, Daniel; Laplagne, Valerie; Mykieta, Frederic; Ducloux, Antoine; Egret, Dominique; Noisette, Nadege; Peneau, Yvan; Seguis, Anne-Sophie; Gerard, Roland

    2017-10-01

    After an introducing contribution which discussed the difficult evolution of the solar thermal energy sector in 2015, contributions addressed development plans for SOCOL (a plan for collective solar thermal and solar heat) which aims at reviving the market and at opening new markets. A next set of contributions discussed how solar thermal energy can be at the service of energy transition. Following sessions addressed issues like innovation at the service of solar thermal energy, energetic display of solar systems and application of the Ecodesign and Labelling directives, and the reduction of carbon footprint and the energy dependence of territories

  11. SOLTECH 92 proceedings: Solar Process Heat Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  12. Review and summary of Solar Thermal Conversion Program planning assistance

    Energy Technology Data Exchange (ETDEWEB)

    1975-06-01

    The Solar Thermal Conversion Program comprises a major part of the national solar energy program which must be continuously reviewed and modified where necessary. Modifications are typically required to reflect technical achievements and uncertainties which arise from within the program or from other technical programs, changes in budgets available for supporting the program as well as internal program funding priorities, changing goals such as through acceleration or stretch-out of the program schedule, significant organizational changes involving responsible governmental agencies, the introduction of new project management support contractors, and required budget or schedule changes occurring within individual projects that make up the Solar Thermal Conversion Program. The Aerospace Corporation has provided data to assist in planning, review, coordination, and documentation of the overall Solar Thermal Conversion Program. The Solar Thermal Conversion Program Plan is described in detail. Sections 2.0 through 5.0 cover the discussion and detail planning covering the objectives, justification, basic and alternative plans, budgets, and schedules for the Solar Thermal sub-unit portion of the Solar Electric Applications effort. Appendices B1, B2, and B3 include the March 21, March 28, and April 5, 1975, Program Plan submissions of the complete Solar Electric Applications effort. In Appendix B the Solar Thermal, Solar Photovoltaic, Wind Energy, and Ocean Thermal sub-unit texts have been condensed and formatted for integration in the overall ERDA budget package. (WHK)

  13. Solar thermal barometer - EurObserv'ER - May 2016

    International Nuclear Information System (INIS)

    2016-05-01

    In 2015, the European Union saw its solar thermal market contract for the seventh year in a row. EurObserv'ER puts sales of solar thermal capacity installed for the heating market (hot water and space heating) at 1861 MWth, equivalent to a 2.7 million m"2 of collectors... a further 8.6% decrease on the previous year's poor performance. Combined solar thermal capacity installed to date in the EU stands at 34.3 GWth, or 49 million m"2 of collectors

  14. Inventory of thermal solar energy systems in the Netherlands: Period 1975-1992

    International Nuclear Information System (INIS)

    Warmerdam, J.M.; Stap, C.A.M.

    1993-10-01

    An overview is given of the number of active thermal solar energy systems that have been installed in the Netherlands during the period 1975-1992. By the end of 1992, 8,300 systems have been installed, of which 6,000 were domestic solar hot water systems. The uncertainty in these figures is 10%. Several sources were used to determine the number of systems installed. The two main sources were the files of the solar industry association 'Holland Solar' (data until 1988), and the Dutch subsidy administrator 'Senter' for data from 1988 up to and including 1992. At the end of 1992 preparations were made for the installation of approximately 3,000 domestic solar water heaters in 1993. It is recommended to carry out an inventory every three months and to compile data on investment costs. 17 figs., 7 appendices

  15. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  16. Development of Non-Tracking Solar Thermal Technology

    Science.gov (United States)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  17. Market development study for active solar thermal systems in the institutional, commercial and industrial sectors : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Promising market opportunities for the sale of Active Solar Thermal Systems (ASTS) in the institutional, commercial and industrial sectors of the Canadian economy were examined in an effort to identify the main factors for success and the barriers to development of the ASTS market. This report described some of the action plans which could help Natural Resources Canada and the industry to develop these markets. It was noted that a promising ASTS application should have a substantial market. Some of the promising applications for ASTS include air heating applications such as: (1) make-up air to an industrial facility, particularly one that requires a high rate of air flow or air layer destratification, such as in welding operations, paint shops or vehicle maintenance facilities, (2) ventilation to a high-walled commercial or institutional building that requires high air flow such as in schools, recreational facilities, multi-residential or retail buildings, and (3) slow drying applications for crops, lumber or other materials. Promising water heating applications include: (1) high volume low temperature rise applications such as in swimming pools, (2) domestic hot water to high density accommodations such as in hotels, multi-unit dwellings, college residences and military barracks, (3) domestic hot water to an isolated location such as campgrounds or lodges, and (4) process hot water used for water washing in industry, restaurants, farms and car washes. This study concluded that there are many opportunities for sales of ASTS to the institutional, commercial and industrial sectors, but combined efforts are needed by committed members of the community to take advantage of these opportunities. 15 refs., 11 tabs., 2 figs., 4 append.

  18. The Department of Energy`s Solar Industrial Program: 1995 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

  19. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  20. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The thermal solar energy - September 2010

    International Nuclear Information System (INIS)

    Acket, C.

    2010-01-01

    The author first notices that the use of solar heat to produce electricity is much lesser known than the production of electricity by photovoltaic effect. He also notices that few efforts have been made in France to develop this technology (thermal solar energy, also called helio-thermodynamics). He evokes the Themis project and also some initiatives in Spain and in California. He recalls some data about solar heat, presents the solar concentration technique which either uses a parabolic configuration (point focus concentration) or a cylindrical and parabolic configuration (line concentration system). He briefly presents the different techniques used to transform solar heat into electricity and to store the electricity. He briefly presents different solutions which have been tested over the past years in France, Germany, Spain, California and Israel (tower and air, gas and Stirling cycle, tower and direct vapour production, cylindrical-parabolic collector). He discusses the effect of intermittency and the French context, and questions and discusses the choice between thermal and photovoltaic solar energy (advantages and drawbacks)

  2. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  3. Comparison of selective transmitters for solar thermal applications.

    Science.gov (United States)

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent optics for solar

  4. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    Science.gov (United States)

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  5. Solar engineering 1995: Proceedings. Volume 1

    International Nuclear Information System (INIS)

    Stine, W.B.; Tanaka, Tadayoshi; Claridge, D.E.

    1995-01-01

    This is Volume 1 of the papers presented at the 1995 ASME/JSME/JSES International Solar Energy Conference. The topics of the papers include wind energy, heat pump performance, ground source and solar chemical heat pumps, analysis of measured building energy data, thermal storage, system modeling of buildings, evaluation of the Federal Building energy Efficiency program, sustainable projects, bioconversion, solar chemistry, solar detoxification innovative concepts and industrial applications, solar thermal power systems, DISH/engine power systems, power towers, solar thermal power advanced development, and solar thermal process heating and cooling

  6. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  7. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  8. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  9. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  10. Low temperature desalination using solar collectors augmented by thermal energy storage

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand

    2012-01-01

    Highlights: ► A new low temperature desalination process using solar collectors was investigated. ► A thermal energy storage tank (TES) was included for continuous process operation. ► Solar collector area and TES volumes were optimized by theoretical simulations. ► Economic analysis for the entire process was compared with and without TES tank. ► Energy and emission payback periods for the solar collector system were reported. -- Abstract: A low temperature desalination process capable of producing 100 L/d freshwater was designed to utilize solar energy harvested from flat plate solar collectors. Since solar insolation is intermittent, a thermal energy storage system was incorporated to run the desalination process round the clock. The requirements for solar collector area as well as thermal energy storage volume were estimated based on the variations in solar insolation. Results from this theoretical study confirm that thermal energy storage is a useful component of the system for conserving thermal energy to meet the energy demand when direct solar energy resource is not available. Thermodynamic advantages of the low temperature desalination using thermal energy storage, as well as energy and environmental emissions payback period of the system powered by flat plate solar collectors are presented. It has been determined that a solar collector area of 18 m 2 with a thermal energy storage volume of 3 m 3 is adequate to produce 100 L/d of freshwater round the clock considering fluctuations in the weather conditions. An economic analysis on the desalination system with thermal energy storage is also presented.

  11. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  12. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  13. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  14. SOLTECH 92 proceedings: Solar Process Heat Program. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy`s (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  15. SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1

    Science.gov (United States)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  16. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy......Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  17. Inventory of the solar thermal and photovoltaic energy potential in the Ardennes district

    International Nuclear Information System (INIS)

    Gal, Henri-Louis

    2010-03-01

    Based on the use of cartographic tool, the objective of this study was to assess the potential production of solar thermal and solar photovoltaic systems, social-economic data, regulatory data, and environmental, heritage-related, and urban constraints, and natural risks. For each type of installation, the possible reachable potential has been assessed while taking these constraints, building typology (housing, industrial, heritage, and so on), building orientation, project construction dynamics into account. The report analyses solar resource, housing characteristics, building typology, regulatory constraints related to the protection of the built environment, exploitation constraints (shade), building orientation constraints. It presents an assessment of net resources for both sectors, an assessment of plausible production potentials by 2030. It also presents and discusses environmental (avoided emissions) and financial indicators related to both solar sectors

  18. Methodology Einstein for energy audit and design of solar heat systems in industrial processes; Metodologia Einstein para auditoria energetica y diseno de sistemas de calor solar en procesos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Schweiger, H.; Vannoni, C.; Danov, S.; Facci, E.

    2008-07-01

    Estimates show that 57% of the total industrial heat demand in EU countries is required at low (up to 100 degree centigrade) and medium temperature (up to 400 degree centigrade). An important part of this thermal energy demand can be covered by solar thermal energy. In the framework of the European project EINSTEIN (Expert-system for an Intelligent Supply of Thermal Energy in Industry), an expert system is being developed, where process optimisation, heat recovery, intelligent cold supply and renewable energy are integrated into a holistic energy audit methodology with the objective of reducing energy consumption in the industrial sector. EINSTEIN is being developed as a free and open source software project. (Author)

  19. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    Science.gov (United States)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  20. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  1. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  2. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  3. Thermal efficiency of low cost solar collectors - CSBC; Eficiencia termica de coletores solares de baixo custo - CSBC

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Renato C.; Shiota, Robson T.; Mello, Samuel F.; Assis Junior, Valdir; Bartoli, Julio R. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica. Dept. de Tecnologia de Polimeros

    2006-07-01

    The thermal performance of a low cost flat panel solar collector was measured. This Low Cost Solar Collector is a novel concept for water heating using only thermoplastics materials, used on building: ceiling and tubes made of unplasticized PVC, but without transparent cover. The top side of the UPVC panel was black painted to be the solar radiation absorber surface. Prototypes were installed on two charity houses around Campinas and at the FEQ campus, being used without any trouble for one year. The thermal efficiency analysis followed ABNT NBR 10184 standard at the Green-Solar Laboratory, Brazilian Centre for Development of Solar Thermal Energy, PUC-Minas. It was measured a thermal efficiency of 67%, compared to the 75% usually found on conventional solar collectors made of copper tubes and with glass cover. (author)

  4. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  5. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  6. Solar thermal heating and cooling. A bibliography with abstracts

    Science.gov (United States)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  7. Semi-transparent solar energy thermal storage device

    Science.gov (United States)

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  8. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Subasri, R., E-mail: subasri@arci.res.in; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO{sub 2} as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coating • Thermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes.

  9. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    International Nuclear Information System (INIS)

    Subasri, R.; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO_2 as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coating • Thermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes

  10. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  11. 100 °C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes.

    Science.gov (United States)

    Baranwal, Ajay K; Kanaya, Shusaku; Peiris, T A Nirmal; Mizuta, Gai; Nishina, Tomoya; Kanda, Hiroyuki; Miyasaka, Tsutomu; Segawa, Hiroshi; Ito, Seigo

    2016-09-22

    Many efforts have been made towards improving perovskite (PVK) solar cell stability, but their thermal stability, particularly at 85 °C (IEC 61646 climate chamber tests), remains a challenge. Outdoors, the installed solar cell temperature can reach up to 85 °C, especially in desert regions, providing sufficient motivation to study the effect of temperature stress at or above this temperature (e.g., 100 °C) to confirm the commercial viability of PVK solar cells for industrial companies. In this work, a three-layer printable HTM-free CH 3 NH 3 PbI 3 PVK solar cell with a mesoporous carbon back contact and UV-curable sealant was fabricated and tested for thermal stability over 1500 h at 100 °C. Interestingly, the position of the UV-curing glue was found to drastically affect the device stability. The side-sealed cells show high PCE stability and represent a large step toward commercialization of next generation organic-inorganic lead halide PVK solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  13. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  14. Mathematical model for solar drying of potato cylinders with thermal conductivity radially modulated

    Science.gov (United States)

    Trujillo Arredondo, Mariana

    2014-05-01

    A mathematical model for drying potato cylinders using solar radiation is proposed and solved analytically. The model incorporates the energy balance for the heat capacity of the potato, the radiation heat transfer from the potato toward the drying chamber and the solar radiation absorbed by the potato during the drying process. Potato cylinders are assumed to exhibit a thermal conductivity which is radially modulated. The method of the Laplace transform, with integral Bromwich and residue theorem will be applied and the analytic solutions for the temperature profiles in the potato cylinder will be derived in the form of an infinite series of Bessel functions, when the thermal conductivity is constant; and in the form of an infinite series of Heun functions, when the thermal conductivity has a linear radial modulation. All computations are performed using computer algebra, specifically Maple. It is expected that the analytical results obtained will be useful in food engineering and industry. Our results suggest some lines for future investigations such as the adoption of more general forms of radial modulation for the thermal conductivity of potato cylinders; and possible applications of other computer algebra software such as Maxima and Mathematica.

  15. Cheap effective thermal solar-energy collectors

    Energy Technology Data Exchange (ETDEWEB)

    Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy

    1996-04-01

    A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)

  16. The role of Solar thermal in Future Energy Systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth

    This report deals with solar thermal technologies and investigates possible roles for solar thermal in future energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period started in January 2014 and finished by October 2017. This report is based...

  17. Interreg IIIA SR - AT project SOLARSTRAT. Results of the interviews with experts on solar-thermal energy utilization. Possibilities of support to thermal-solar systems installation

    International Nuclear Information System (INIS)

    Ilias, I.

    2005-01-01

    In this presentation author presented the results of collecting of important data for solar-thermal market scenario modelling through interviews with Slovak stakeholders. Interviews with Slovak experts on thermal-solar energy utilisation represents important project activity in order to give a general review of current status of the market in target Bratislava region and to collect important data for next market analyses, which will be prepared by Austrian partner - IFAST. The results of face-to-face interviews and filled questionnaires can be generally presented as follows: - public attitude towards the renewable energy sources and solar energy utilisation is slowly getting better in Slovakia; - evaluating public awareness only 15% share of population is able to consider the possibilities of thermal-solar technologies; - expected increase of fossil fuels and energy prices will help to spread of thermal-solar systems through shorten the pay-back period of investment while prices of thermal-solar systems will increase only slightly; - also expected increase of political and economic public awareness about energy production and demand on thermal-solar systems will help to promote the further development of solar energy utilisation in Slovakia. Respondents were also evaluating the main barriers for better solar energy utilisation: (1) Weak public awareness, no systematic information campaign (examples from real life); (2) Missing support to installation for physical persons, no tax allowances; (3) High investment costs; (4) Unfriendly legislation. Other important barriers for better development of the sector were presented. E.g. assembling companies cannot afford effective promotion, only big producers are able to fund the marketing on their products, which are mainly expensive systems. Public is still considering solar systems as too expensive ('I can't afford it'). Renewable energy sources (RES) are often presented as the alternative to nuclear energy - this

  18. Interreg IIIA SR - AT project SOLARSTRAT. Results of the interviews with experts on solar-thermal energy utilization. Possibilities of support to thermal-solar systems installation

    International Nuclear Information System (INIS)

    Ilias, I.

    2005-01-01

    In this presentation author presented the results of collecting of important data for solar-thermal market scenario modelling through interviews with Slovak stakeholders. Interviews with Slovak experts on thermal-solar energy utilisation represents important project activity in order to give a general review of current status of the market in target Bratislava region and to collect important data for next market analyses, which will be prepared by Austrian partner - IFAST. The results of face-to-face interviews and filled questionnaires can be generally presented as follows: - public attitude towards the renewable energy sources and solar energy utilisation is slowly getting better in Slovakia; - evaluating public awareness only 15% share of population is able to consider the possibilities of thermal-solar technologies; - expected increase of fossil fuels and energy prices will help to spread of thermal-solar systems through shorten the pay-back period of investment while prices of thermal-solar systems will increase only slightly; - also expected increase of political and economic public awareness about energy production and demand on thermal-solar systems will help to promote the further development of solar energy utilisation in Slovakia. Respondent were also evaluating the main barriers for better solar energy utilisation: (1) Weak public awareness, no systematic information campaign (examples from real life); (2) Missing support to installation for physical persons, no tax allowances; (3) High investment costs; (4) Unfriendly legislation Other important barriers for better development of the sector were presented. E.g. assembling companies cannot afford effective promotion, only big producers are able to fund the marketing on their products, which are mainly expensive systems. Public is still considering solar systems as too expensive ('I can't afford it'). Renewable energy sources (RES) are often presented as the alternative to nuclear energy - this argument

  19. Robust optimization of a tandem grating solar thermal absorber

    Science.gov (United States)

    Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae

    2018-04-01

    Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.

  20. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  1. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  2. The French market of thermal solar and its perspectives. Conditions are met for a sustained and durable market growth

    International Nuclear Information System (INIS)

    2011-03-01

    This article presents the content of a market study which aimed at assessing the rebound ability of the thermal solar energy market, at assessing the impact of the large legal framework which aims at developing thermal solar energy, at assessing the weight of French industries with respect to the German giants, and at understanding the strategy of equipment manufacturers and installers/integrators. The report presents the operating principles and applications of thermal solar energy production, presents the European and the French regulatory context, discusses the situation of France with respect to its commitments in terms of renewable energy as heat source, comments the dynamics of the French market, discusses the business model of this sector, and comments the position and strategies of front-end and back-end actors, i.e. equipment manufacturers on the one hand, and installers on the other hand

  3. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  4. Economic impact of solar thermal electricity deployment in Spain

    International Nuclear Information System (INIS)

    Caldes, N.; Varela, M.; Santamaria, M.; Saez, R.

    2009-01-01

    The objective of the work is to estimate the socio-economic impacts of increasing the installed solar thermal energy power capacity in Spain. Using an input-output (I-O) analysis, this paper estimates the increase in the demand for goods and services as well as in employment derived from solar thermal plants in Spain under two different scenarios: (a) based on two solar thermal power plants currently in operation (with 50 and 17 MW of installed capacity); (b) the compliance to the Spanish Renewable Energy Plan (PER) 2005-2010 reaching 500 MW by 2010. Results show that the multiplier effect of the PER is 2.3 and the total employment generated would reach 108,992 equivalent full-time jobs of 1 year of duration. Despite this is an aggregated result, this figure represents 4.5% of current Spanish unemployment. It can be concluded that the socio-economic effect of the PER's solar thermal installed capacity goal would be remarkable.

  5. Solar thermal barometer. More than 2 million m2 installed in 2005

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    With 22,8% growth, the european union solar thermal market (glazed, vacuum and unglazed collectors) has passed the 2 million m 2 benchmark corresponding to installed capacity of approximately 1450 MWth. This growth can be explained by the very good performance of the three leading EU solar thermal markets: Germany, Austria and Greece and the increase in importance of the French and Spanish markets. Statistical data are provided for the european union on the annually installed surfaces, breakdown by technologies of the solar thermal market, the solar thermal capacity in operation, the representative companies of the thermal solar sector and a comparison of current trend with the white book objectives. (A.L.B.)

  6. Solar thermal market in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Chung, Kung-Ming

    2013-01-01

    The long-duration of national programs has been the driving force behind the expansion of the local market of solar water heaters (SWHs) in Taiwan in the last two decades. This study examines the potential market for SWHs using the statistical data from end users and the 2010 Population and Housing Census. The current effective utilization rate of residential SWHs in terms of potential number of systems installed is estimated to be 11.8%. The analyses also show that the current national subsidy program has recently lost its momentum in expanding the market. Therefore, regional subsidy programs should become the main force in influencing the growth in sales. In addition, SWHs of larger scale would be particularly effective in industries. To promote such applications, a combination of performance-based and direct subsidy schemes or tax deductions can be offered to end users to promote the applications of SWHs in the commercial sector. Solar-assisted cooling systems are considered to be another potential application of solar energy, which is associated with energy saving and power consumption in commercial and residential buildings. A short review of the R and D activities is also given in this paper. - Highlights: ► Regional subsidy programs will be the main force in influencing the growth in sales. ► A revised program is needed to promote solar water heaters for industry applications. ► Solar-assisted cooling systems are potential applications of solar energy in Taiwan

  7. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2012

    International Nuclear Information System (INIS)

    2012-05-01

    27545 MWth: the EU's solar thermal base to date at the end of 2011. After two years of sharp decline, the European solar thermal market is bottoming out. The EurObserv'ER survey findings are that the installation figure fell just 1.9% in comparison with 2010, giving a newly-installed collector area of 3.7 million m 2 . The concentrated solar power sector has been forging ahead alongside the heat production applications, and at the end of 2011 installed capacity passed the one gigawatt mark in Spain for the first time with 1157.2 MWe

  8. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  9. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  10. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  11. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    Directory of Open Access Journals (Sweden)

    Samir Mahmmod Ahmad

    Full Text Available Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50–150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3. Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells. Keywords: Crystalline Si solar cells, Phosphoric acid spin-on doping, Screen printing, Thermal oxide passivation

  12. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Shan Su

    2013-01-01

    Full Text Available The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors. In this study, I analyzed the trends and developments of the solar photovoltaic industry in Taiwan and in the globe. And I also investigated the positioning and competitive advantage of Taiwanese firms in the value chain of the global solar photovoltaic industry. I found that Taiwanese firms continue to have an important and indispensable role in the global solar photovoltaic industry by either differentiation or cost advantage.

  13. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    Science.gov (United States)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a

  14. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  15. Output performance analyses of solar array on stratospheric airship with thermal effect

    International Nuclear Information System (INIS)

    Li, Jun; Lv, Mingyun; Tan, Dongjie; Zhu, Weiyu; Sun, Kangwen; Zhang, Yuanyuan

    2016-01-01

    Highlights: • A model investigating the output power of solar array is proposed. • The output power in the cruise condition with thermal effect is researched. • The effect of some factors on output performance is discussed in detail. • A suitable transmissivity of external layer is crucial in preliminary design step. - Abstract: Output performance analyses of the solar array are very critical for solving the energy problem of a long endurance stratospheric airship, and the solar cell efficiency is very sensitive to temperature of the solar cell. But the research about output performance of solar array with thermal effect is rare. This paper outlines a numerical model including the thermal model of airship and solar cells, the incident solar radiation model on the solar array, and the power output model. Based on this numerical model, a MATLAB computer program is developed. In the course of the investigation, the comparisons of the simulation results with and without considering thermal effect are reported. Furthermore, effects of the transmissivity of external encapsulation layer of solar array and wind speed on the thermal performance and output power of solar array are discussed in detail. The results indicate that this method is helpful for planning energy management.

  16. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  17. Solar dryer with thermal storage and biomass-backup heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Ngwalo, G. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi)

    2007-04-15

    An indirect type natural convection solar dryer with integrated collector-storage solar and biomass-backup heaters has been designed, constructed and evaluated. The major components of the dryer are biomass burner (with a rectangular duct and flue gas chimney), collector-storage thermal mass and drying chamber (with a conventional solar chimney). The thermal mass was placed in the top part of the biomass burner enclosure. The dryer was fabricated using simple materials, tools and skills, and it was tested in three modes of operation (solar, biomass and solar-biomass) by drying twelve batches of fresh pineapple (Ananas comosus), with each batch weighing about 20 kg. Meteorological conditions were monitored during the dehydration process. Moisture and vitamin C contents were determined in both fresh and dried samples. Results show that the thermal mass was capable of storing part of the absorbed solar energy and heat from the burner. It was possible to dry a batch of pineapples using solar energy only on clear days. Drying proceeded successfully even under unfavorable weather conditions in the solar-biomass mode of operation. In this operational mode, the dryer reduced the moisture content of pineapple slices from about 669 to 11% (db) and yielded a nutritious dried product. The average values of the final-day moisture-pickup efficiency were 15%, 11% and 13% in the solar, biomass and solar-biomass modes of operation respectively. It appears that the solar dryer is suitable for preservation of pineapples and other fresh foods. Further improvements to the system design are suggested. (author)

  18. Profits or preferences? Assessing the adoption of residential solar thermal technologies

    International Nuclear Information System (INIS)

    Mills, Bradford F.; Schleich, Joachim

    2009-01-01

    Solar thermal technologies offer the potential to meet a substantial share of residential water and space heating needs in the EU, but current levels of adoption are low. This paper uses data from a large sample of German households to assess the effects of geographic, residence, and household characteristics on the adoption of solar thermal water and space heating technologies. In addition, the impact of solar thermal technology adoption on household energy expenditures is estimated after controlling for observed household heterogeneity in geographic, residential, and household characteristics. While evidence is found of moderate household energy expenditure savings from combined solar water and space heating systems, the findings generally confirm that low in-home energy cost savings and fixed housing stocks limit the diffusion of residential solar thermal technologies. Little evidence is found of differential adoption by distinct socio-economic groups.

  19. Q2/Q3 2017 Solar Industry Update

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hoskins, Jack [Dept. of Energy (DOE), Washington DC (United States); Margolis, Robert M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-24

    This technical presentation provides an update on the major trends that occurred in the solar industry in Q2 and Q3 of 2017. Major topics of focus include global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry.

  20. Q2/Q3 2016 Solar Industry Update

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David; Boff, Daniel; Margolis, Robert

    2016-10-11

    This technical presentation provides an update on the major trends that occurred in the solar industry in the Q2 and Q3 of 2016. Major topics of focus include global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry.

  1. Q3/Q4 2016 Solar Industry Update

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David; Boff, Daniel; Margolis, Robert

    2016-12-21

    This technical presentation provides an update on the major trends that occurred in the solar industry in the Q3 and Q4 of 2016. Major topics of focus include global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry.

  2. Q3/Q4 2017 Solar Industry Update

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hoskins, Jack [Dept. of Energy (DOE), Washington DC (United States); Margolis, Robert M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-15

    This technical presentation provides an update on the major trends that occurred in the solar industry in the Q3 and Q4 of 2017. Major topics of focus include global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry.

  3. Market development directory for solar industrial process heat systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  4. Monitoring solar-thermal systems: An outline of methods and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  5. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  6. The solar thermal market in Greece - review and perspectives

    International Nuclear Information System (INIS)

    Argiriou, A.A.; Mirasgedis, S.

    2003-01-01

    The Hellenic solar thermal market is actually one of the most developed worldwide. This paper provides an overview of the evolution of this market since its start in the mid-1970s until today. The reasons for its success are discussed in detail: the role of the manufacturers, the quality assurance practices applied and the incentives on the demand and supply sides. The role of economic instruments towards the development of the Hellenic solar thermal market is investigated using a cost-benefit analysis (CBA). Although commercially successful, solar thermal applications today in Greece still cover a very limited percentage of their potential applications. The perspectives and potential barriers for their future development are presented, analysed by a CBA and discussed. This information is useful for all parties related to this market, manufacturers, potential users, policy makers, etc. Countries having a solar energy potential similar to that of Greece but a less developed solar market may also identify in this work parameters that will contribute to the development of their national market. (author)

  7. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  8. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  9. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  10. Thermal performance of a transpired solar collector updraft tower

    International Nuclear Information System (INIS)

    Eryener, Dogan; Hollick, John; Kuscu, Hilmi

    2017-01-01

    Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.

  11. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  12. Solar PV Industry in Jiangsu Province [China

    International Nuclear Information System (INIS)

    2010-03-01

    Jiangsu Province is a leading province in China both in terms of Solar PV application as well as its implementation. The Netherlands Business Support Office in Nanjing reports on the photovoltaic solar cell industry in Jiangsu Province with details on opportunities for foreign investors; applications of solar energy in the province; Chinese government; relevant organizations; and key Chinese players in this sector.

  13. Thermal performance of Danish solar combi systems in practice and in theory

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2004-01-01

    An overview of measured thermal performances of Danish solar combi systems in practice is given. The thermal performance varies greatly from system to system. Measured and calculated thermal performances of different solar combi systems are compared and the main reasons for the different thermal ...... as theoretically expected....

  14. Proceedings of the General Committee for solar thermal energy 2017

    International Nuclear Information System (INIS)

    Loyen, Richard; Gibert, Francois; Porcheyre, Edwige; Laplagne, Valerie; Lambertucci, Stefano; Hauser, Eva; Delmas, Pierre; Mozas, Kevin; Servier, Gerard; Girard, Jean-Paul; Haim, Philippe; Gendron, Marc; Haas, Benjamin; Leclech, Rodrigue; Eberhardt, Mathieu; Bettwy, Fabrice; Berthomieu, Nadine; Barais, Claire; Mingant, Sylvie; Daniel, Charles; GODIN, Olivier; PELe, Charles; Benabdelkarim, Mohamed; Brottier, Laetitia; Cholin, Xavier; Mugnier, Daniel; Marchal, David; Khebchache, Bouzid

    2017-10-01

    The contributions of this conference first proposed an overview of the status and perspectives of the solar thermal energy sector with a presentation of the present situation and perspectives for the French market, and an overview of situations and initiatives in neighbouring European countries. A second session addressed the possible new economical and marketing models able to face challenges of solar thermal energy in 2018 with focuses on heat kWh purchase, on supply portage through a global operator contract (design-realisation-exploitation-maintenance contracts or CREM contracts, energy performance contracts or CPE), and on issues related to building renovation (solar-gas synergy) and to new buildings (regulatory evolution, E+C label). The third session proposed examples of local good practices: development of solar thermal networks in Auvergne-Rhone-Alpes with the development of these networks and a support to commissioners, ADEME's support with patrimony-rehabilitation contracts, and the solar policy implemented by the Brest metropole. A technological focus was then proposed. It addressed communications about the SOCOL approach, concentration-based solar technology (technology, applications, realisations), and solar heating (assets in new and renovated buildings). Before a synthesis, two interventions addressed the production of solar electron and calories, and works performed on the increase of the solar coverage rate

  15. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  16. Solar thermal central receivers

    International Nuclear Information System (INIS)

    Vant-Hull, L.L.

    1993-01-01

    Market issues, environmental impact, and technology issues related to the Solar Central Receiver concept are addressed. The rationale for selection of the preferred configuration and working fluid are presented as the result of a joint utility-industry analysis. A $30 million conversion of Solar One to an external molten salt receiver would provide the intermediate step to a commercial demonstration plant. The first plant in this series could produce electricity at 11.2 cents/kWhr and the seventh at 8.2 cents/kWhr, completely competitive with projected costs of new utility plants in 1992

  17. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  18. Transient simulation of a solar heating system for a small-scale ethanol-water distillation plant: Thermal, environmental and economic performance

    International Nuclear Information System (INIS)

    Vargas-Bautista, Juan Pablo; García-Cuéllar, Alejandro Javier; Pérez-García, Santiago L.; Rivera-Solorio, Carlos I.

    2017-01-01

    Highlights: • Thermal simulation of a small solar ethanol distillation plant is performed. • The optimum collector area is obtained for two different thermal collectors types. • Higher solar fraction was found for parabolic trough collectors. • Economic analysis is performed for different scenarios to evaluate feasibility. - Abstract: The thermal, environmental and economic performance of a small-scale ethanol distillation system, where solar energy is used as primary energy source, was studied. Two different concentrations of ethanol at the feed stream (5 wt.% and 10 wt.%) were analysed to obtain a distillate product of 95 wt.% ethanol (hydrous ethanol). Evacuated tube solar collectors (ETC) and parabolic trough collectors (PTC) were considered for the solar heating system. A case of study for a specific geographical place (Monterrey, México) was developed herein to evaluate the solar ethanol distillation system; the results can be extended to other locations, weather conditions and operational parameters. The thermal results from the simulation showed that through an adequate selection of the solar collector area and an appropriate sizing of the different equipment of the solar distillation system, PTC represents a better option where energy savings of 80% and 71% can be achieved for 5 wt.% and 10 wt.% ethanol at the feed stream, respectively. However, the economic feasibility of the solar distillation system is achieved using ETC for a price of hydrous ethanol of 1.75 USD/L and a feed stream of 10 wt.% ethanol, reaching an internal rate of return (IRR) of 18.8% and payback period of 5.2 years. As an important technical result, selected ETC presented advantages over PTC where an average distillate product of 3.6 and 3.4 ml at 95 wt.% ethanol can be obtained per unit of solar energy (kW h) captured per area (m"2) of solar collector using 5 wt.% and 10 wt.% ethanol at the feed stream, respectively (36% more than PTC). The reduction of greenhouse gases (GHG

  19. Solar Thermal energy strategic road-map

    International Nuclear Information System (INIS)

    Hafner, Bernd; Godin, Olivier; Villier, Dominique; Petit, J.F.; Demangeon, Elsa; Laplagne, Valerie; Loyen, Richard; Mugnier, Daniel; Filloux, Alain; Frichet, Jean-Claude; Aubert, Elisabeth; Cherepanova, Margarita; Guilmin, Audrey; Dicostanzo, Catherine; Papillon, Philippe; Caccavelli, Dominique; Cholin, Xavier; Leger, Emmanuel; Gevaudan, Alain; Coulaud, Celine; Morlot, Rodolphe; Khebchache, Bouzid; Parrouffe, Jean-Michel; Clement, Daniel; Tonnet, Nicolas

    2012-11-01

    The French Environment and Energy Management Agency (ADEME) manages a fund dedicated to new energy technologies. Since 2008 this fund has funded 'research demonstrators' to implement testing of technologies that are in an experimental stage, between research and industrial deployment. ADEME coordinates a group of experts who are charged with drawing up a strategic road-map prior to each Call for Expressions of Interest. The aims of the solar thermal road-map are: - to highlight the industrial, technological, environmental and societal issues at stake; - to elaborate coherent, consistent and shared visions of the technologies and/or socio-technical systems outlined in the road-map; - to underscore the technological, organisational and socioeconomic barriers and bottlenecks to be overcome in order to achieve these visions; - to link priority research topics to a timetable of goals for technology availability and deployment that is consistent with the stated objectives; - to give priority to research needs and research demonstrators that will serve as the basis for: 1 - calls for expression of interest issued by the Research Demonstrators Fund, 2 - the research programming process at ADEME and more broadly at the Agence nationale de la recherche (ANR) and the Comite strategique national sur la recherche sur l'energie. Research priorities and needs for demonstrators are determined by the intersection of visions and bottlenecks. They also take into account industrial and research capacity in France. The road-maps may also refer to exemplary research demonstrators abroad that are in the forefront of technological progress, and make recommendations regarding industrial policy. These road-maps are the result of collective work by a group of experts appointed by the Steering Committee (Comite de pilotage, COPIL) of the Research Demonstrators Fund for new energy technologies. The members of this group are actors in research, drawn from industry, research bodies and research

  20. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  1. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The european solar thermal system market grew spectacularly in 2008 with over 4,6 million m 2 installed as against less than 3,1 million in 2007. This was largely due to the doubling of the German market, bu strong growth in Southern Europe also played a vital part. While 2009 is looking uncertain, the medium and long term growth prospects are still very exciting. This barometer provides statistical data on the production, market, capacity and enterprises. (A.L.B.)

  2. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  3. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    OpenAIRE

    Romero Manuel; González-Aguilar José

    2016-01-01

    Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Ara...

  4. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  5. Low cost thermal solar collector

    International Nuclear Information System (INIS)

    Abugderah, M. M.; Schneider, E. L.; Tontini, M. V.

    2006-01-01

    Solar energy is a good alternative in the economy of the electric energy mainly for the water heating. However, the solar heaters used demand a high initial investment, becoming the warm water from solar energy inaccessible to a large part of the society. Thus, a low cost solar heater was developed, constructed and tested in the chemical engineering department of West Parana State University-Unioeste. This equipment consists of 300 cans, divided in 30 columns of 10 cans each, all painted in black to enhance the obsorption of the solar radiation. The columns are connected to a pipe of pvc of 8 liters with 0.085m of external diameter. The equipment is capable to heat 120 liters of water in temperatures around 60 degree centigrade. The heater is insolated in its inferior part with cardboard and aluminum, covered with a transparent plastic in its superior. The system still counts with a insulated thermal reservoir, which can conserve the water in temperatures adjusted for the night non-solar days domestic use. The advantage of the constructed is it low cost material. The results are given an graphical tabular from showing acceptable efficiencies.(Autho

  6. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  7. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  8. Solar energy in Germany: a national commitment

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of solar energy in Germany: national energy plan and share of solar energy in the German energy mix, the photovoltaic industry: a dynamic industry which creates jobs, 2006-2012 evolution of photovoltaic power plant costs, solar thermal resource potentialities and effective exploitation

  9. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    Science.gov (United States)

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Experimental Study on Solar Cooling Tube Using Thermal/Vacuum Emptying Method

    Directory of Open Access Journals (Sweden)

    Huizhong Zhao

    2012-01-01

    Full Text Available A solar cooling tube using thermal/vacuum emptying method was experimentally studied in this paper. The coefficient of performance (COP of the solar cooling tube was mostly affected by the vacuum degree of the system. In past research, the thermal vacuum method, using an electric oven and iodine-tungsten lamp to heat up the adsorbent bed and H2O vapor to expel the air from the solar cooling tube, was used to manufacture solar cooling tubes. This paper presents a novel thermal vacuum combined with vacuum pump method allowing an increased vacuum state for producing solar cooling tubes. The following conclusions are reached: the adsorbent bed temperature of solar cooling tube could reaches up to 233°C, and this temperature is sufficient to meet desorption demand; the refrigerator power of a single solar cooling tube varies from 1 W to 12 W; the total supply refrigerating capacity is about 287 kJ; and the COP of this solar cooling tube is about 0.215.

  11. Study of the development of solar energy in Rhone-Alpes. Presentation of the photovoltaic sector, Presentation of the solar thermal sector, Sunshine mapping, Assessment of installations by the end 2009, Development potential for solar thermal energy, Development potential for solar photovoltaic energy

    International Nuclear Information System (INIS)

    2010-12-01

    A first part proposes a wide presentation of the photovoltaic sector with an overview of largest plants, a market analysis (on the 2001-2009 period in the World, Europe and France, per technology, in terms of industrial tissue and R and D activity in France, evolution per region and per technology), a presentation of the different technologies (from the first to the third generation, in terms of costs, and of perspective for the different sectors), an environmental assessment of the different sectors (CO 2 emissions and avoided emissions), a presentation of the main actors of the photovoltaic sector (silicon producers, cell producers, thin layer producers, developers), a presentation of tracking technologies (trackers gains), and a perspective for the photovoltaic sector in Europe and in the World. In a same way, a second part presents the solar thermal sector: market analysis, active and passive technologies, solar concentration technology, environmental assessment, future perspective in Europe and in the World. A sunshine mapping is then proposed for the Rhone-Alpes region. The next part discusses various stakes: regulation for roof-based installations and for ground-based photovoltaic plants with respect to various issues (land planning, environment, biodiversity, agriculture, landscape, cultural heritage, natural risks). The next part proposes an assessment of solar thermal and photovoltaic installations at the end of 2009

  12. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging. EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2

  13. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  14. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  15. The role of state government in advancing the solar industries

    International Nuclear Information System (INIS)

    Kling, C.

    1999-01-01

    The New Jersey Sustainable Business Office (NJOSB) was created within the New Jersey Commerce Commission in order to support and promote environmentally preferable businesses and to make policy changes that support sustainability throughout New Jersey. This paper will discuss the role that this new office has taken in order to advance the solar industries. The work of the office, to this end, has focused on: surveying the solar energy industry to discover barriers to market, advocating policy change to address level playing field issues, developing strong communication channels between government and industry and leveraging traditional commerce and government programs to provide structured business assistance to the solar industries

  16. Ultrafast Thermal Cycling of Solar Panels

    National Research Council Canada - National Science Library

    Wall, T

    1998-01-01

    Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation...

  17. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: A vital transition for low-carbon power generation industry

    International Nuclear Information System (INIS)

    Milani, Dia; Luu, Minh Tri; McNaughton, Robbie; Abbas, Ali

    2017-01-01

    Highlights: • The layout of 14 demonstrative supercritical CO 2 closed Brayton cycles are analysed. • The key parameters of the “combined” cycle are sensitized and optimized. • The effect of thermal efficiency vs HX area on techno-economic nexus is highlighted. • The design of a matching solar heliostat field in direct configuration is revealed. • The water demand for hybrid vs water-only cooling scenarios are assessed. - Abstract: Current worldwide infrastructure of electrical power generation would mostly continue to rely on fossil-fuel but require a modest transition for the ultimate goal of decarbonizing power generation industry. By relying on those already established and carefully managed centrepiece power plants (PPs), we aim at filling the deficits of the current electrical networks with smaller, cleaner, and also more efficient PPs. In this context, we present a unique model for a small-scale decentralized solar-assisted supercritical CO 2 closed Brayton cycle (sCO 2 -CBC). Our model is based on the optimized values of three key performance indicators (KPIs); thermal efficiency, concentrated solar power (CSP) compatibility, and water demand for cooling. For a case-study of 10 MW e CSP-assisted sCO 2 -CBC power plant, our dynamic model shows a 52.7% thermal efficiency and 25.9% solar penetration and up to 80% of water saving in heat-rejection units. These KPIs show significant promise of the solar-assisted supercritical CO 2 power cycle for an imperative transformation in the power industry towards future sustainable electricity generation.

  18. Testing of modular industrial solar retrofit industrial process steam systems

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Dudley, V.E.

    1984-06-13

    Under the Department of Energy's Modular Industrial Solar Retrofit project, five industrial process heat systems incorporating line-focus solar collectors were designed and hardware was installed and tested at Sandia National Laboratories and the Solar Energy Research Institute. System designers and collector manufacturers participating in the project included Acurex Solar Corporation, BDM, Inc., Custom Engineering, Inc., Foster Wheeler Solar Development Corporation, Solar Kinetics, Inc., and Suntec Systems, Inc. This paper describes the testing of the qualification test systems which has been under way since mid-1982. Each qualification test system includes an equipment skid sufficient to support a collector field of 2300 m/sup 2/ aperture and one delta-tempeature string of from 175 to 460 m/sup 2/ aperture. Each system is capable of producing saturated steam at 1.7 MPa and operates at maximum outlet temperatures of from 250 to 290/sup 0/C. The test series includes function and safety tests to determine that the systems operate as specified, an unattended operation test of at least two weeks duration, performance tests to allow prediction of annual system performance, and life cycle tests to evaluate component lifetime and maintenance requirements. Since the start of testing, some twenty five modifications have been made to the various systems for the purpose of improving system performance and/or reliability, and appropriate tests of these modifictions have been made or are underway. This paper presents a description of the approach to testing of the MISR systems and selected test results.

  19. Yearly thermal performances of solar heating plants in Denmark – Measured and calculated

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Perers, Bengt

    2018-01-01

    The thermal performance of solar collector fields depends mainly on the mean solar collector fluid temperature of the collector field and on the solar radiation. For Danish solar collector fields for district heating the measured yearly thermal performances per collector area varied in the period...... 2012–2016 between 313 kWh/m2 and 577 kWh/m2, with averages between 411 kWh/m2 and 463 kWh/m2. The percentage difference between the highest and lowest measured yearly thermal performance is about 84%. Calculated yearly thermal performances of typically designed large solar collector fields at six...... different locations in Denmark with measured weather data for the years 2002–2010 vary between 405 kWh/m2 collector and 566 kWh/m2 collector, if a mean solar collector fluid temperature of 60 °C is assumed. This corresponds to a percentage difference between the highest and lowest calculated yearly thermal...

  20. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  1. Opportunities to integrate solar technologies into the Chilean lithium mining industry - reducing process related GHG emissions of a strategic storage resource

    Science.gov (United States)

    Telsnig, Thomas; Potz, Christian; Haas, Jannik; Eltrop, Ludger; Palma-Behnke, Rodrigo

    2017-06-01

    The arid northern regions of Chile are characterized by an intensive mineral mining industry and high solar irradiance levels. Besides Chile's main mining products, copper, molybdenum and iron, the production of lithium carbonate from lithium containing brines has become strategically important due to the rising demand for battery technologies worldwide. Its energy-intensive production may affect the ecological footprint of the product and the country's climate targets. Thus, the use of solar technologies for electricity and heat production might constitute an interesting option for CO2 mitigation. This study aims to quantify the impacts of the lithium carbonate production processes in Chile on climate change, and to identify site-specific integration options of solar energy technologies to reduce GHG life-cycle emissions. The considered solar integration options include a parabolic trough power plant with a molten salt storage, a solar tower power plant with molten salt receiver and molten salt storage, a one-axis tracking photovoltaic energy system for electricity, and two solar thermal power plants with Ruths storage (steam accumulator) for thermal heat production. CSP plants were identified as measures with the highest GHG mitigation potential reducing the CO2 emissions for the entire production chain and the lithium production between 16% and 33%. In a scenario that combines solar technologies for electricity and thermal energy generation, up to 59% of the CO2 emissions at the lithium production sites in Chile can be avoided. A comparison of the GHG abatement costs of the proposed solar integration options indicates that the photovoltaic system, the solar thermal plant with limited storage and the solar tower power plant are the most cost effective options.

  2. Economic evaluation of the industrial solar production of lime

    International Nuclear Information System (INIS)

    Meier, Anton; Gremaud, Nicolas; Steinfeld, Aldo

    2005-01-01

    The use of concentrated solar energy in place of fossil fuels for driving the endothermic calcination reaction CaCO 3 → CaO + CO 2 at above 1300 K has the potential of reducing CO 2 emissions by 20% in a state-of-the-art lime plant and up to 40% in a conventional cement plant. An economic assessment for an industrial solar calcination plant with 25 MW th solar input indicates that the cost of solar produced lime ranges between 128 and 157 $/t, about twice the current selling price of conventional lime. The solar production of high purity lime for special sectors in the chemical and pharmaceutical industry might be competitive with conventional fossil fuel based calcination processes at current fuel prices

  3. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  4. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  5. Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, N. [University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER), Hessbruehlstr. 49a, 70565 Stuttgart (Germany); Glueck, C. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Schmidt, F.P. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2011-05-15

    We present a comparison of solar thermal and solar electric cooling for a typical small office building exposed to two different European climates (Freiburg and Madrid). The investigation is based on load series for heating and cooling obtained previously from annual building simulations in TRNSYS. A conventional compression chiller is used as the reference system against which the solar options are evaluated with respect to primary energy savings and additional cost. A parametric study on collector and storage size is carried out for the solar thermal system to reach achieve the minimal cost per unit of primary energy saved. The simulated solar electric system consists of the reference system, equipped with a grid connected photovoltaic module, which can be varied in size. For cost comparison of the two systems, the electric grid is assumed to function as a cost-free storage. A method to include macroeconomic effects in the comparison is presented and discussed. Within the system parameters and assumptions used here, the grid coupled PV system leads to lower costs of primary energy savings than the solar thermal system at both locations. The presumed macroeconomic advantages of the solar thermal system, due to the non-usage of energy during peak demand, can be confirmed for Madrid. (author)

  6. Q4 2017/Q1 2018 Solar Industry Update

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoskins, Jack [U.S. Department of Energy

    2018-05-16

    This technical presentation provides an update on the major trends that occurred in the solar industry in Q4 2017 and Q1 2018. Major topics of focus include global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry.

  7. Economic Evaluation of a Solar Charged Thermal Energy Store for Space Heating

    OpenAIRE

    Melo, Manuel

    2013-01-01

    A thermal energy store corrects the misalignment of heating demand in the winter relative to solar thermal energy gathered in the summer. This thesis reviews the viability of a solar charged hot water tank thermal energy store for a school at latitude 56.25N, longitude -120.85W

  8. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.

  9. Market: why is thermal solar power down?

    International Nuclear Information System (INIS)

    Le Jannic, N.

    2010-01-01

    After a 10 year period of steady growth the French market of the thermal solar power dropped by 15% in 2009. Only 265.000 m 2 were installed instead of 313.000 m 2 in 2008. The main reason of this decrease is the economic crisis: the European market for thermal solar energy dropped by 10%. The second reason is the unfair competition of the photovoltaic power that benefits from very favourable electricity purchase prices, from higher subsidies and from a better image in the public's eye. Another competitor on the market is the new equipment called 'thermodynamic water heater' that involves a heat pump, this equipment is cheaper but only on a short term basis. (A.C.)

  10. Proceedings of the solar industrial process heat symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

  11. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2018-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  12. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2017-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  13. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  14. Thermal Performance Analysis of Staging Effect of Solar Thermal Absorber with Cross Design

    International Nuclear Information System (INIS)

    Amir Abdul Razak; Zafri Azran Abdul Majid; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-01-01

    The type and shape of solar thermal absorber materials will impact on the operating temperature and thermal energy storage effect of a solar air thermal collector. For a standard flat-plate design, energy gain can be increased by expanding the thermal absorber area along the collector plane, subject to area limitation. This paper focuses on the staging effect of a metal hollow square rod absorber of aluminium, stainless steel, and a combination of the two with a cross design, for the heat gain and temperature characteristics of a solar air collector. Experiments were carried out with three cross design set-ups, with 30 minutes of heating and cooling, phase, respectively, under 485 W/ m 2 solar irradiance value, and at a constant air speed at 0.38 m/ s. One set aluminium set-up delivered the highest output temperature of 41.8 degree Celsius, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 and 38.2 degree Celsius, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 degree Celsius. The bi-metallic set-up performed better than the two aluminium set-up where each set-up obtained a temperature drop against heat gain gradient value of -0.4186 degree Celsius/ W and -0.4917 degree Celsius/ W, respectively. Results concluded that by increasing the number of sets, the volume and surface areas of the absorber material are also increased, and lead to a decrease in peak temperature output for each increase of sets. (author)

  15. Rapid thermal cycling of new technology solar array blanket coupons

    Science.gov (United States)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  16. Q4 2016/Q1 2017 Solar Industry Update

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, Robert; Feldman, David; Boff, Daniel

    2017-05-17

    This technical presentation provides an update on the major trends that occurred in the solar industry in the fourth quarter of 2016 and the first quarter of 2017. Major topics of focus include global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry.

  17. Dimensioning of Solar Thermal Systems for Multi-Family Buildings in Lithuania: an Optimisation Study

    OpenAIRE

    Valančius, Rokas; Jurelionis, Andrius; Vaičiūnas, Juozas; Perednis, Eugenijus

    2017-01-01

    Small-scale solar thermal domestic hot water (DHW) systems in Lithuania can produce up to 523 kWh per year per one square meter of solar collector area. It is therefore one of the most common solar thermal applications in the country with the expected payback period of approximately 10 years. However, the number of solar water heating systems (SWH) installed in the renovated multi-family buildings is quite limited. On the other hand, the potential of integrating solar thermal systems in these...

  18. The thermal solar at the dawn of a necessary revolution

    International Nuclear Information System (INIS)

    Zebboudj, Idir

    2013-01-01

    This article proposes an overview of the difficult situation which the thermal solar sector is now facing in France (after a constant increase until 2008, its market keeps on shrinking and is not attractive enough). It discusses the implications and possible benefits the new thermal regulation (RT 2012) for new buildings could have for this energy, and whether it will be at the heart of the planned and expected energy transition. A new concept of water heater is presented which associates thermal solar and gas

  19. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  20. Proceedings of the 1992 DOE-industry thermal distribution conference

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W. (ed.)

    1992-06-01

    The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE's current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

  1. Proceedings of the 1992 DOE-industry thermal distribution conference

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W. [ed.

    1992-06-01

    The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE`s current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

  2. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  3. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    Science.gov (United States)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  4. In the world of solar technology

    International Nuclear Information System (INIS)

    Tomson, T.

    1993-01-01

    The paper gives a short survey of the development of solar electrical and thermal technologies. The thermal solar technology is also applicable in Estonia with the view of using our local industrial potential. The theoretical solar resource in Estonia is 977 kWh/m 2 per year, which will make it possible to build (central) heating systems with partial solar fraction by using the method of seasonal storage. The technological solar resource can be improved by using an inter medial storage and heat pump between the solar collector and the main storage in the process of charging. (author). fig., 2 refs

  5. Performance study of a laboratory model shallow solar pond with and without single transparent glass cover for solar thermal energy conversion applications.

    Science.gov (United States)

    Ganesh, S; Arumugam, S

    2016-12-01

    The thermal performance of a shallow solar pond with and without the single transparent glass cover has been investigated experimentally. This experiment has been performed during the summer season of 2014 under the operational condition for five different storage volumes of water upto a maximum of 10liter. The pond performance is investigated in terms of the rate of energy collected and its collection efficiency. A Low Density Polyethylene (LDPE) black sheet liner of 200μm thickness was laid on all the interior sides of the pond for solar energy absorption. A clear transparent PVC plastic sheet of 150μm thickness was laid over the water surface as evaporation suppressing membrane. Calibrated Copper constantan thermocouples were used to measure the temperatures of the system. A highest temperature of 81.5°C has been achieved for the stored volume of 2liter of water, when the pond was used with a single transparent glass cover of 5mm thickness. When the shallow solar pond was used without the transparent glass cover the system attained a maximum temperature of 62°C for the same stored volume of 2liter. A comparison between the two conditions of with and without the transparent glass cover, on the thermal performance of the SSP has been reported. A shallow solar pond system of the present type could be used us a source of warm water, of desired temperature, below 10°C which are required for the domestic and industrial utilities. The global warming is increased day by day; inorder to reduce global warming a typical method of small scale shallow solar pond has been used to absorb the radiation from the sun to convert it to useful heat energy by the source of water. The SSP is an eco friendly way to generate energy without polluting our environment and in an environment safety manner. Based on environmental safety this study has experimentally investigated the thermal performance of the shallow solar pond. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  7. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Zhao Jiafei; Song Yongchen; Lam, Wei-Haur; Liu Weiguo; Liu Yu; Zhang Yi; Wang DaYong

    2011-01-01

    This paper presents the design optimization of a photovoltaic/thermal (PV/T) system using both non-concentrated and concentrated solar radiation. The system consists of a photovoltaic (PV) module using silicon solar cell and a thermal unit based on the direct absorption collector (DAC) concept. First, the working fluid of the thermal unit absorbs the solar infrared radiation. Then, the remaining visible light is transmitted and converted into electricity by the solar cell. This arrangement prevents excessive heating of the solar cell which would otherwise negatively affects its electrical efficiency. The optical properties of the working fluid were modeled based on the damped oscillator Lorentz-Drude model satisfying the Kramers-Kroenig relations. The coefficients of the model were retrieved by inverse method based on genetic algorithm, in order to (i) maximize transmission of solar radiation between 200 nm and 800 nm and (ii) maximize absorption in the infrared part of the spectrum from 800 nm to 2000 nm. The results indicate that the optimum system can effectively and separately use the visible and infrared part of solar radiation. The thermal unit absorbs 89% of the infrared radiation for photothermal conversion and transmits 84% of visible light to the solar cell for photoelectric conversion. When reducing the mass flow rate, the outflow temperature of the working fluid reaches 74 o C, the temperature of the PV module remains around 31 o C at a constant electrical efficiency about 9.6%. Furthermore, when the incident solar irradiance increases from 800 W/m 2 to 8000 W/m 2 , the system generates 196 o C working fluid with constant thermal efficiency around 40%, and the exergetic efficiency increases from 12% to 22%.

  8. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    After two years of very strong growth, the solar thermal market marked time in 2007 with 6,9% less collectors being sold with respect to year 2006. In the end this market reached 2,9 million m 2 facing 3,1 million m 2 in 2006, an equivalent capacity of more than 2000 MWth. This decrease is explained for a large part by a strong decline of the german market, the largest market of the european union. Conversely, other countries are continuing to develop their markets and are showing double-digit growth rates. (A.L.B.)

  9. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  10. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    OpenAIRE

    Yu-Shan Su

    2013-01-01

    The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors...

  11. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Cheow, Siu Leong; Ludin, Norasikin A.; Sopian, K.; Zaidi, Saleem H.

    Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt) is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50-150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3). Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells.

  12. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  13. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  14. Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage

    International Nuclear Information System (INIS)

    Li, Qiyuan; Tehrani, S. Saeed Mostafavi; Taylor, Robert A.

    2017-01-01

    In this paper, the feasibility of a medium temperature, low profile concentrated solar thermal collector integrated with latent heat thermal energy storage (LHTES) is investigated. The proposed modular integrated collector storage (ICS) system consists of six solar receiver units and seven cylindrical shell and tube LHTES tanks. By implementing an innovative optical concentration assembly and an internal linear tracking mechanism, the collector can concentrate beam radiation to the tube receivers during the highest flux hours of a day without any external or rotational motion. The collector's efficiency correlations were obtained experimentally and its integrated performance – with the LHTES units – was evaluated numerically. To demonstrate the potential of this proposed ICS system, an annual analysis was carried out for a characteristic industrial application – a dairy dehydration process that requires a constant 50 kW th of heat in the 120–150 °C temperature range. It was found that adding the storage units will increase the capital costs by ∼10%, but it can increase the annual thermal output of the system by up to ∼20%. A solar fraction of 65% was achievable with some design alternatives, but the optimum techno-economic design had a solar fraction of ∼35% and an annual charging efficiency of nearly 100%. It was also found that if the capital cost of the ICS (collector and LHTES tank) system could be reduced by 50% from an estimated ∼1000 US$/m 2 to ∼500 US$/m 2 through mass production and/or further design optimizations, this system could provide industrial process heat with a levelized cost of heating (LCOH) of ∼0.065 US$/kWh th . - Highlights: • An innovative ICS system was proposed and analyzed for industrial heat applications. • The optimum design can achieve a ∼35% solar fraction with ∼100% charging efficiency. • A 0.12 US$/kWh LCOH was found, but further reductions could result in 0.065 US$/kWh. • Costs reductions of

  15. Design aspects of integrated compact thermal storage system for solar dryer applications

    International Nuclear Information System (INIS)

    Rajaraman, R.; Velraj, R.; Renganarayanan, S.

    2000-01-01

    Solar energy is an excellent source for drying of crops, fruits, vegetables and other agricultural and forest products. Though the availability of solar energy is plenty, it is time dependent in nature. The energy need for some applications is also time dependent, but in a different pattern and phase from the solar energy supply. This implies that the solar dryer should be integrated with an efficient thermal storage system to match the time-dependent supply and end-use requirements. Based on the studies carried out on Latent Heat Thermal Storage (LHTS) Systems, it is observed that when air is used as the heat transfer fluid in LHTS system, nearly uniform surface heat flux can be achieved. Hence the LHTS systems are most suitable for air based solar drying applications. In the present work some major conclusions arrived from the investigations on LHTS systems and the design considerations for the integrated latent heat thermal storage for the solar dryer are reported. (Author)

  16. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells

    Science.gov (United States)

    Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik

    2018-04-01

    In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors  >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.

  17. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  18. Thermal Analysis of Solar Panels

    Science.gov (United States)

    Barth, Nicolas; de Correia, João Pedro Magalhães; Ahzi, Saïd; Khaleel, Mohammad Ahmed

    In this work, we propose to analyze the thermal behavior of PV panels using finite element simulations (FEM). We applied this analysis to compute the temperature distribution in a PV panel BP 350 subjected to different atmospheric conditions. This analysis takes into account existing formulations in the literature and, based on NOCT conditions, meteorological data was used to validate our approach for different wind speed and solar irradiance. The electrical performance of the PV panel was also studied. The proposed 2D FEM analysis is applied to different region's climates and was also used to consider the role of thermal inertia on the optimization of the PV device efficiency.

  19. The UK solar water heating industry: a period of development and growth

    International Nuclear Information System (INIS)

    Blower, John

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the solar water heating sector in the UK and presents an illustration of the layout of a typical solar water heating system. The rising demand for solar water heating and growth in sales especially in the export market are noted. Developments within the UK solar water heating manufacturing industry are considered, and details are given of design and development in innovative policy infrastructure, and the SHINE 21 project supported by the EU's ADAPT programme and the UK Department of Trade and Industry involving collaboration between the solar water heating and plumbing industries. Developments in the new build sectors including in-roof solar collector products and the increasing number of solar water heating systems installed in UK houses are discussed along with the promising future for the market

  20. Tehachapi solar thermal system first annual report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  1. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  2. Solar energy research and development: program balance. Annex, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    An evaluation of federal research, development, and demonstration options on solar energy is presented. This assessment treats seven groups of solar energy technologies: solar heating and cooling of buildings, agricultural and industrial process heat, biomass, photovoltaics, thermal power, wind, and ocean thermal energy conversion. The evaluation methodology is presented in detail. (MHR)

  3. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  4. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles

  5. Solar thermal barometer. 12 million M2 installed in europe

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    European thermal solar has once again reached its zenith. The difficult times of 1985-1995 are now a thing of the past. The best proof is the very good results of 2001 that show figures in significant progression with respect to those of the year 2000. 1480 320 m 2 . This is now the new record to beat in terms of the annual volume of thermal solar collector installation in the European Union. (author)

  6. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    Directory of Open Access Journals (Sweden)

    Romero Manuel

    2016-01-01

    Full Text Available Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Arab Emirates or Morocco. Prices for electricity produced by today's plants fill the range from 12 to 16 c€/kWh and they are capital intensive with investments above 4000 €/kW, depending on the number of hours of thermal storage. The urgent need to speed up the learning curve, by moving forward to LCOE below 10 c€/kWh and the promotion of sun-to-fuel applications, is driving the R&D programmes. Both, industry and R&D community are accelerating the transformation by approaching high-flux/high-temperature technologies and promoting the integration with high-efficiency conversion systems.

  7. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin A. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center; Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    The industrial sector was the third-largest source of direct U.S. greenhouse gas (GHG) emissions in 2014 behind electricity generation and transportation and accounted for roughly 20% of total emissions (EPA 2016). The Energy Information Administration (EIA) projects that total U.S. energy consumption will grow to about 108 exajoules (1 EJ = 1018 J) or 102 quads (1 quad = 1015 British thermal units) in 2025, with nearly all of the growth coming from the industrial sector (DOE 2015b). Energy consumption in the industrial sector is forecast to increase to 39.5 EJ (37.4 quads)—a 22% increase, exceeding 36% of total energy consumption in the United States. Therefore, it is imperative that industrial GHG emissions be considered in any strategy intent on achieving deep decarbonization of the energy sector as a whole. It is important to note that unlike the transportation sector and electrical grid, energy use by industry often involves direct conversion of primary energy sources to thermal and electrical energy at the point of consumption. About 52% of U.S. industrial direct GHG emissions are the result of fuel combustion (EPA 2016) to produce hot gases and steam for process heating, process reactions, and process evaporation, concentration, and drying. The heterogeneity and variations in scale of U.S. industry and the complexity of modern industrial firms’ global supply chains are among the sector’s unique challenges to minimizing its GHG emissions. A combination of varied strategies—such as energy efficiency, material efficiency, and switching to low-carbon fuels—can help reduce absolute industrial GHG emissions. This report provides a complement to process-efficiency improvement to consider how clean energy delivery and use by industry could reduce GHG emissions. Specifically, it considers the possibility of replacing fossil-fuel combustion in industry with nuclear (specifically small modular reactors [SMRs]), solar thermal (referred to

  8. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  9. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  10. Thermal Analysis of the Receiver of a Standalone Pilot Solar Dish–Stirling System

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2018-06-01

    Full Text Available Recent developments in solar thermal systems have aroused considerable interest in several countries with high solar potential. One of the most promising solar driven technologies is the solar thermal dish-Stirling system. One of the main issues of the solar dish–Stirling system is thermal losses from its components. The majority of the thermal losses of the system occur through its receiver before the thermal energy is converted to electrical energy by the Stirling engine. The goal of this investigation is to analyze the thermal performance of the receiver of a standalone pilot solar dish–Stirling system installed in Kerman City, Iran, to be used in remote off-grid areas of the Kerman Province. An analytical model was developed to predict the input energy, thermal losses, and thermal efficiency of the receiver. The receiver thermal model was first validated by comparing simulation results to experimental measurements for the EuroDish project. Then, the incident flux intensity intercepted by the receiver aperture, the thermal losses through the receiver (including conduction, convection, and radiation losses, and the power output during daytime hours (average day of each month for a year were predicted. The results showed that the conduction loss was small, while the convection and radiation losses played major roles in the total thermal losses through the receiver. The convection loss is dominant during the early morning and later evening hours, while radiation loss reaches its highest value near midday. Finally, the thermal efficiency of the receiver and the power output for each working hour throughout the year were calculated. The maximum performance of the system occurred at midday in the middle of July, with a predicted power output of 850 W, and a receiver efficiency of about 60%. At this time, a conduction loss of about 266 W, a convection loss of 284 W, and a radiation loss of about 2000 W were estimated.

  11. Solar Thermal Barometer

    International Nuclear Information System (INIS)

    Beurskens, L.W.M.; Mozaffarian, M.

    2008-09-01

    After two years of very strong growth, the solar thermal market (taking all technologies including unglazed flexible collectors into account) marked time in 2007 with 6.9% less collectors being sold with respect to year 2006. In the end, this market reached 2.9 million m 2 vs. 3.1 million m 2 in 2006, i.e. an equivalent capacity of more than 2000 MWth. This decrease is explained for a large part by a strong decline of the German market, the largest market of the European Union. Conversely, other countries are continuing to develop their markets and are showing double-digit growth rates

  12. Thermal Desalination using MEMS and Salinity-Gradient Solar Pond Technology

    Science.gov (United States)

    Lu, H.; Walton, J. C.; Hein, H.

    2002-08-01

    MEMS (multi-effect, multi-stage) flash desalination (distillation) driven by thermal energy derived from a salinity-gradient solar pond is investigated in this study for the purpose of improving the thermodynamic efficiency and economics of this technology. Three major tasks are performed: (1) a MEMS unit is tested under various operating conditions at the El Paso Solar Pond site; (2) the operation and maintenance procedures of the salinity-gradient solar pond coupled with the MEMS operation is studied; and (3) previous test data on a 24-stage, falling-film flash distillation unit (known as the Spinflash) is analyzed and compared with the performance of the MEMS unit. The data and information obtained from this investigation is applicable to a variety of thermal desalination processes using other solar options and/or waste heat.

  13. Thermal Testing Methods for Solar Dryers

    DEFF Research Database (Denmark)

    Singh, Shobhana

    2017-01-01

    Solar food drying is a complex heat and mass transfer phenomena which depend on a number of drying process-dependent parameters such as operating conditions and characteristics of the food product to be dried. The variation in these parameters significantly affects the overall performance...... of the dryer system. Since commercial growth and acceptance of any solar dryer system momentously depend on its performance guarantee, the development of a standard methodology for their thermal testing has become necessary. The standard testing method not only provides better performance management...... of the dryer system but allows the manufacturers to achieve competitive efficiency and good product quality by comparing the available designs. In this chapter, an extensive review of solar dryer performance evaluation has been carried out. Furthermore, the chapter describes the existing testing procedures...

  14. THERMAL STRATIFICATION IN SOLAR DOMESTIC STORAGE TANKS CAUSED BY DRAW-OFFS

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Furbo, Simon

    2003-01-01

    As shown in many research studies in the past, the thermal stratification of the tank caused by draw-offs has a high impact on the performance of a Solar Domestic Hot Water (SDHW) system. Nevertheless, in most tank models for system simulations the influence of the draw-off pattern on the mixing...... with a component oriented simulation tool for solar thermal systems....

  15. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  16. Essential oil extraction with concentrating solar thermal energy

    OpenAIRE

    Veynandt, François

    2015-01-01

    Material complementari del cas estudi "Essential oil extraction with concentrating solar thermal energy”, part component del llibre "Case studies for developing globally responsible engineers" Peer Reviewed

  17. Remote Thermal IR Spectroscopy of our Solar System

    Science.gov (United States)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  18. Desalination with thermal solar systems: technology assessment and perspectives

    International Nuclear Information System (INIS)

    Ajona, J.I.

    1992-01-01

    Solar desalination is among the most promising alternatives to apply solar energy as solar availability and the load requirements use to be matched. Solar thermal energy offers a full set of alternatives to desalt water, being the main difference among them the temperature range at which the load has to be fed. Solar technologies for the low temperature range (solar stills, plastic collectors,...) are quite suited for small loads in isolated placed or whenever the main constrain is to indigenize technology and to perform the operation and maintenance work with low qualified local labor, such as in less developed countries. The main drawback of this low temperature use of solar energy is that it is not possible to recover neither the heat of condensation of the water vapor, nor from the reject brine, to warm up the feed saline water. Higher temperature collectors, such as flat plate collectors with transparent insulation material and evacuated tubes, allow to work with conventional desalination units fed at 60-90C, as Multiple Effect Units or Multistage Flash Units, which get a performance ratio (quotient between heat required without recovery and with heat recovery) between 5 and 10. To further increase the performance ratio it is necessary to work with vapor in the 200C range. To attain this temperature range the solar option is based on the Parabolic Trough collector. This has been the line we have followed in our STD project in the Plataforma Solar in Almeria (Spain) when we have run a Multiple Effect Unit with an Absorption Heat Pump able to attain a performance ratio of 20. In this report, included within the STD project activities, we assess the potential of the solar thermal technology to desalt water in all the above mentioned temperature ranges. Beside the technology description and some characteristics results, we present a set of tool that, as the final result is dramatically dependent on the technical and economical scenario selected, will allow to

  19. Integration of a solar thermal system in a medium-sized brewery using pinch analysis: Methodology and case study

    International Nuclear Information System (INIS)

    Eiholzer, Tobias; Olsen, Donald; Hoffmann, Sebastian; Sturm, Barbara; Wellig, Beat

    2017-01-01

    Highlights: • Methodologies to reduce energy consumption in batch processes are presented. • Pinch analysis is used to improve energy efficiency. • Integration potential for solar heat is presented on a Scottish brewery case study. • Governmental support is important in a company’s investment in renewables. - Abstract: In the food industry a major portion of thermal energy is required for low temperature applications (below 100 °C). As a consequence, there is a significant potential to substitute fossil fuels by the use of solar heat. This paper presents a methodology that first uses pinch analysis to optimize a medium-sized Scottish brewery from a direct heat recovery perspective followed by the integration of a solar thermal system. Both the time average model and time slice model were used to determine direct and indirect heat recovery potentials. In a second stage, an optimization of a chosen integration point was conducted to assess the viability of the resulting design concept. The economic analysis includes an assessment of the impact of restrictions in the UK government’s Renewable Heat Incentive program. It was determined that since solar thermal systems are financially supported up to an installed capacity of 200 kW, solar heat can only account for a maximum of 7.7% of the heat demand based on the investigated brewery. However, if there was no limitation in capacity, from an economic point of view, the solar fraction could almost be doubled drawing into question the need for the restriction. Nevertheless, a CO_2 saving potential of approximately 38 tons per year in conjunction with a payback period of 6.4 years was determined.

  20. FNCCR/Enerplan day 'Thermal solar for all territories'. Collection of contributions

    International Nuclear Information System (INIS)

    Perrin, Guillaume; Loyen, Richard; Porcheyre, Edwige; Greau, David; Boisleux, Francois; Roger, Christophe; Mariani, Christian; Mugnier, Daniel; Frey, Johan; Paulus, Cedric; Egret, Dominique; Muller, Marius

    2018-04-01

    Contributions to this day on the use of thermal solar installations (on building or for injection into a heat network) are proposed under the form of Power Point presentations. More precisely, after a general introduction with an overview of recent events in the energy sector, the authors address the renewal of the thermal solar sector (financial aspects, the SOCOL approach, performance markets), the development of solar energy in territories (study in Hauts-de-France, of support arrangements, large projects), the implementation of a regional support, an installation in an establishment for elderly and dependent people, a return on experience from a heat network with storage, the role of thermal solar in heat networks, the implementation of a new project (a heat network in Chateaubriant), and the innovative use of solar energy to produce cold

  1. Process and Economic Optimisation of a Milk Processing Plant with Solar Thermal Energy

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    . Based on the case study of a dairy factory, where first a heat integration is performed to optimise the system, a model for solar thermal process integration is developed. The detailed model is based on annual hourly global direct and diffuse solar radiation, from which the radiation on a defined......This work investigates the integration of solar thermal systems for process energy use. A shift from fossil fuels to renewable energy could be beneficial both from environmental and economic perspectives, after the process itself has been optimised and efficiency measures have been implemented...... surface is calculated. Based on hourly process stream data from the dairy factory, the optimal streams for solar thermal process integration are found, with an optimal thermal storagetank volume. The last step consists of an economic optimisation of the problem to determine the optimal size...

  2. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  3. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  4. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    Science.gov (United States)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  5. Solar thermal energy utilization: A bibliography with abstracts

    Science.gov (United States)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  6. GIS methodology and case study regarding assessment of the solar potential at territorial level: PV or thermal?

    Directory of Open Access Journals (Sweden)

    Loïc Quiquerez

    2015-06-01

    Full Text Available This paper presents a GIS-based methodology for assessing solar photovoltaic (PV and solar thermal potentials in urban environment. The consideration of spatial and temporal dimensions of energy resource and demand allows, for two different territories of the Geneva region, to determine the suitable building roof areas for solar installations, the solar irradiance on these areas and, finally, the electrical and/or thermal energy potentials related to the demand. Results show that the choice of combining PV and solar thermal for domestic hot water (DHW is relevant in both territories. Actually, the installation of properly sized solar thermal collectors doesn’t decrease much the solar PV potential, while allowing significant thermal production. However, solar collectors for combined DHW and space heating (SH require a much larger surface and, therefore, have a more important influence on the PV potential.

  7. Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment

    International Nuclear Information System (INIS)

    Du, Yanping

    2017-01-01

    Highlights: • The nano-coated heat pipe plate provides sufficient cooling energy to the solar cell. • The induced solar cell temperature is below 40 °C in normal range of solar irradiance. • The evaporative heat flux is tuneable and varies with the change of operating conditions. • Additional cooling at the condenser is helpful to improve the heat removal of the device. - Abstract: The significant temperature effect on solar cells results in loss of photovoltaic (PV) efficiency by up to 20–25%, which may over-negate the efforts in technology development for promoting PV efficiency. This motivates studies in thermal management for solar cells. This study concerns the thermal assessment of an advanced system composed by a solar cell and a nano-coated heat pipe plate for thermal management. Solar cell temperature and the corresponding evaporative heat flux are evaluated based on a conjugated heat transfer model. It indicates that the solar cell can be cooled down to be below 40 °C and suffers no temperature effect due to the use of the heat pipe plate. The heat pipe plate can provide sufficient cooling to the solar cell under different solar irradiance. The analytical and experimental results show that the maximum evaporative heat flux of the current heat pipe plate is around 450 W/m"2. However, the practical heat removal flux at the condenser is 390 W/m"2. The loss of cooling energy is due to the gathered vapour at the condenser section, which prevents the liquid-vapour circulation inside the vacuum chamber of the device. By using additional cooling strategies (i.e. heat sink, PCMs, water jacket) at the condenser section, the heat removal ability can be further improved.

  8. Cyprus solar water heating cluster: A missed opportunity?

    International Nuclear Information System (INIS)

    Maxoulis, Christos N.; Charalampous, Harris P.; Kalogirou, Soteris A.

    2007-01-01

    Cyprus is often called the 'sun island' because of the amount of sunshine received all year round. The abundance of solar radiation together with a good technological base has created favourable conditions for the exploitation of solar energy on the island. This led to the development of a pioneering solar collector industry in Cyprus, which in the mid-1980s was flourishing. The result was an outstanding figure of installed solar collector area per inhabitant. Nowadays, Cyprus is cited as the country with the highest solar collector area installed per inhabitant, worldwide. This means that the local market for solar thermal collectors (for domestic applications) is now rather saturated. It was only rational to assume that Cypriot firms equipped with their gained expertise and leading edge would have safeguarded a sustainable growth and have an international orientation, focusing on exports in an emerging European and eastern Mediterranean thermal solar market. Unfortunately, this is not the case today. This paper reviews the economic performance and the competitiveness of Cyprus and the evolution of the solar water heating (SWH) industry using the cluster theory of Michael Porter. Its aim is to give insight and explanations for the success of the sector domestically, its failure with regards to exporting activity, pinpoint the industry in the European map and finally give recommendations for the cross the boarders commercial success of the industry

  9. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  10. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    Science.gov (United States)

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  11. Nonimaging concentrators for solar thermal energy

    Science.gov (United States)

    Winston, R.; Gallagher, J. J.

    1980-03-01

    A small experimental solar collector test facility was used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems were designed, built and tested. The performance characteristics are presented.

  12. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics

    Science.gov (United States)

    Jiang, Li; Mancuso, Matthew; Lu, Zhengda; Akar, Gunkut; Cesarman, Ethel; Erickson, David

    2014-02-01

    Nucleic acid-based diagnostic techniques such as polymerase chain reaction (PCR) are used extensively in medical diagnostics due to their high sensitivity, specificity and quantification capability. In settings with limited infrastructure and unreliable electricity, however, access to such devices is often limited due to the highly specialized and energy-intensive nature of the thermal cycling process required for nucleic acid amplification. Here we integrate solar heating with microfluidics to eliminate thermal cycling power requirements as well as create a simple device infrastructure for PCR. Tests are completed in less than 30 min, and power consumption is reduced to 80 mW, enabling a standard 5.5 Wh iPhone battery to provide 70 h of power to this system. Additionally, we demonstrate a complete sample-to-answer diagnostic strategy by analyzing human skin biopsies infected with Kaposi's Sarcoma herpesvirus (KSHV/HHV-8) through the combination of solar thermal PCR, HotSHOT DNA extraction and smartphone-based fluorescence detection. We believe that exploiting the ubiquity of solar thermal energy as demonstrated here could facilitate broad availability of nucleic acid-based diagnostics in resource-limited areas.

  13. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  14. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  15. Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking

    Science.gov (United States)

    Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.

  16. Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary

    Science.gov (United States)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.

    1980-11-01

    Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.

  17. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  18. The development and commercialization of solar PV technology in the oil industry

    International Nuclear Information System (INIS)

    Pinkse, Jonatan; Buuse, Daniel van den

    2012-01-01

    In diversifying energy supply, the transformation of the energy industry has been identified as a key challenge for a sustainable energy future. This suggests that incumbent firms in this industry have a vital role in the development and commercialization process of renewable energy technologies. This paper provides a comparative analysis of oil and gas firms’ strategies regarding solar PV technology investments, a renewable energy technology that has seen explosive growth of late. The main aim is to examine the strategic approach of incumbent firms in the oil and gas industry towards the development and commercialization of solar PV technology. To investigate this, a multiple case study has been conducted within the European oil industry, focusing on the three largest oil and gas firms: BP, Royal Dutch/Shell, and Total. Findings show that oil and gas firms have difficulties with integrating solar PV technology in their supply chain. The analysis suggests that it is uncertain whether all oil and gas firms will abandon solar completely, as this depends to what extent they are able to generate profits. Nevertheless, there is currently a trend in the oil industry of leaving solar and positioning towards a ‘recarbonization’ of business activities. - Research Highlights: ► Oil and gas incumbents have experienced difficulties in integrating solar technology in their supply chain and therefore established fairly independent business units, serving niche markets outside mainstream markets for oil and gas. ► It is uncertain whether all oil and gas firms will abandon solar completely, as it depends to what extent they are able to generate profits with these activities. ► The competitive strain and increased turbulence in the oil industry have led to erratic investment behavior of oil firms and, as a consequence, renewable energy projects in which incumbents are engaged are often cancelled for reasons which have nothing to do with the market viability of renewable

  19. First adjustments in the solar industry

    International Nuclear Information System (INIS)

    Deye, M.

    2009-01-01

    The European environmental policy goal is to generate 23% of the end-use power consumption from renewable energy sources by 2020. The solar photovoltaic market has shown an exponential growth since 1998 with a record rise of installed capacities in 2008 (+61%). In 2009, the growth should reach 30% only. The solar industry has to face the conjugated effects of the demand decay and of the credit crisis which has led to over-capacities and prices drop. The crisis has hit the solar cell manufacturers but for some of them, it is an opportunity to make some strategic adjustments and to develop products with a higher added value. The market and the demand are still there but the clients encounter more difficulties to obtain the credits for their projects. (J.S.)

  20. High-temperature molten salt thermal energy storage systems for solar applications

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  1. Recommendations for the market introduction of solar thermal power stations

    International Nuclear Information System (INIS)

    Trieb, F.; Nitsch, J.

    1998-01-01

    Until 2010, solar thermal power stations based on parabolic trough concentrating collectors can become a competitive option on the world's electricity market, if the market extension of this mature technology is supported by a concerted, long-term programme capable of bundling the forces of industry, finance, insurance and politics. Technical improvements based on the experience of over ten years of successful operation, series production and economies of scale will lead to a further cost reduction of 50% and to electricity costs of 0.06 - 0.04 US$/kWh for hybrid steam cycles and hybrid combined cycles, respectively. Until 2010, a capacity of 7 GW will be installed, avoiding 16 million tons of carbon dioxide per year. The programme comprises an investment of 16 billion US$ and requires external funding of 6%. (author)

  2. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  3. Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors

    International Nuclear Information System (INIS)

    Wang, Fu; Zhao, Jun; Li, Hailong; Deng, Shuai; Yan, Jinyue

    2017-01-01

    Highlights: • A solar assisted chemical absorption pilot system with two types of collectors (parabolic trough and linear Fresnel reflector) has been constructed. • Performance of two types of solar collectors has been investigated and compared at steady and transient states. • The operations of the pilot system with and without solar assisted have been tested. • The pilot system responds to the temperature of the heat transfer fluid regularly. - Abstract: The amine-based chemical absorption for CO_2 capture normally needs to extract steam from the steam turbine cycle for solvent regeneration. Integrating solar thermal energy enables the reduction of steam extraction and therefore, can reduce the energy penalty caused by CO_2 capture. In this paper, a pilot system of the solar thermal energy assisted chemical absorption was built to investigate the system performance. Two types of solar thermal energy collectors, parabolic trough and linear Fresnel reflector, were tested. It was found that the values of operation parameters can meet the requirements of designed setting parameters, and the solar collectors can provide the thermal energy required by the reboiler, while its contribution was mainly determined by solar irradiation. The solvent regeneration was investigated by varying the heat input. The results show that the response time of the reboiler heat duty is longer than those of the reboiler temperature and desorber pressure. This work provides a better understanding about the overall operation and control of the system.

  4. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  5. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  6. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  7. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    Science.gov (United States)

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  8. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    Science.gov (United States)

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  9. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    Science.gov (United States)

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  10. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  11. The International Standards for Solar Thermal Collectors and Components as a Medium of Quality Assurance

    International Nuclear Information System (INIS)

    Alkishriwi, Nouri; Schorn, Christian A.; Theis, Danjana

    2014-01-01

    Within this publication a detailed overview about the national and international solal't1lel1nai standards is made. The various tests are described and a cross reference list for comparing the different standards is given. Moreover a certification model is presented and the advantage of third party assessment is carried out. The requirement for a solar thermal test laboratory to conduct independent third party assessment by means of an ISO/IEC17065 accreditation is given. Finally the concept of a quality system for solar thermal markets is explained and major advantages are outlined. Solar thermal systems and their components are described in various national and international standards. In Europe the standard EN12975 defines the regulations and requirements for solar thermal collectors. The standard EN12976 is established for the evaluation of factory made solar thermal systems. The EN12977 is the state of the art standard for the evaluation of custom build systems. Nowadays in Libya the standard ISO9806 for solar collectors and the standard ISO9459 for domestic water heating systems define the regulations and requirements for solar thermal collectors and systems. In the meanwhile, empowered Center for Renewable Energy and Energy Efficiency Certification Body is under construction. This body is working now to set the minimum requirements of the testing facilities of solar thermal systems. The international standard for collector testing is the ISO9806 and the standard ISO9459 Part 2, 4, 5 for domestic water heating systems. Within the year 2013 a revision of the ISO9806 will be published and, for the first time, a consistent harmonized standard for the main solar thermal markets will be set in force. Besides the various standards for solar thermal products a meaningful element for the quality assurance and the customer protection is third party certification. Third party certification involves an independent assessment, declaring that specified requirements

  12. A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15

    International Nuclear Information System (INIS)

    Celik, Ali Naci; Muneer, Tariq; Clarke, Peter

    2009-01-01

    This article analyses the energy statistics of 15 European Union countries (EU-15), giving special emphasis to the installed solar photovoltaic and thermal collector capacity. The installed capacities per capita are analysed in relation to the solar radiation income of respective countries with the view to explore the relationship between the solar income and its utilisation as of the year 2006. In terms of the installed solar thermal collector capacity, Austria leads the statistics amongst the countries studied with 223W th collector capacity per capita, followed by Greece with 207W th . Except for Greece, it is observed that the countries with high solar radiation income are lacking to realise their solar potential. Regarding the installed photovoltaic power per capita, Luxembourg leads the pack by a wide margin with 47W p capacity, followed by Germany with 30W p . Fiscal instruments to invigorate the deployment of solar energy have also been identified in this work. (author)

  13. Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Most greenwall studies focus on cooling and energy conservation in the warm season, and tropical cold-season has received little attention. This field-experimental study in humid-subtropical Hong Kong evaluated winter thermal behavior of climber greenwalls. Orientation and weather factors regulated solar-irradiation regimes with critical impact on vegetation thermal responses. Temperature differentiation occurred mainly on sunny day, with subdued variations on cloudy and rainy days. The south greenwall on sunny day received the highest solar-energy input, bringing divergent surface temperature in three climber species. The daytime descending cooling sequence was: Control-air > Pyrostegia venusta > Bauhinia corymbosa > Ficus pumila > Control-surface. Heat-sink effect related to foliage-thickness and moisture-content influenced climber thermal responses. Exceeding a solar-irradiance threshold of 500 Wm"−"2 was a prerequisite for notable solar-warming and transpiration-cooling, bringing well-differentiated climber-surface temperature. Cooling of vegetation-surface and Anterior-ambient-air was contrasted by warming behind the greenwall. Posterior-airgap with trapped stagnant air and Posterior-concrete-surface were warmed consistently above control concrete-surface on sunny and cloudy days. This winter passive warming mechanism denotes a new dimension in thermal benefits operating behind the greenwall. The thermal-gradient can transmit heat into indoor space, with benefits on human comfort, health and energy conservation. - Highlights: • Cold-season thermal regimes and benefits of climber greenwalls in tropics was studied. • Greenwall plots were installed as a field-experiment to evaluated six related factors. • Descending cooling sequence: Pyrostegia venusta > Bauhinia corymbosa > Ficus pumila. • Solar radiation intensity and foliage heat-sink effect determined climber cooling. • Posterior airgap and Posterior concrete-surface were warmed to provide indoor

  14. An Analysis of Solar Panel Assembly as a Prison Industry

    Science.gov (United States)

    Lizak, R. M.

    1980-01-01

    An analysis of the effect of manufacturing solar collectors by California prison inmates is presented. It was concluded that the concept is feasible and would have little adverse effect on the private sector's solar industry.

  15. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  16. Thermal design of spacecraft solar arrays using a polyimide foam

    International Nuclear Information System (INIS)

    Bianco, N; Iasiello, M; Naso, V

    2015-01-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics ® . Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared. (paper)

  17. Thermal design of spacecraft solar arrays using a polyimide foam

    Science.gov (United States)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  18. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    Science.gov (United States)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  19. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.

    Science.gov (United States)

    Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-05-31

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  20. Heating up the market with solar thermal energy; Mit Solarthermie den Markt aufheizen

    Energy Technology Data Exchange (ETDEWEB)

    Leukefeld, T. [Soli fer Solardach GmbH, Freiberg (Germany)

    2006-07-01

    Compared to the market for solar current, the market for solar thermal energy only grows slowly. The markets depends on subsidies and as soon as somebody reacts too slowly the sales are decreasing. It is typical for a pioneer product but unsuitable for our proven technology that solar thermal campaigns attempt to sell an ideology instead of addressing the latent purchasing readiness of the customer. The leading groups in the market who have a strong buying power remain sceptical, mostly they are not reached at all. A healthy growth of the solar thermal energy field in Germany can not be achieved like this. Why do the solar pioneers not have the economic success? Where do the variations come from, why are the sales increases behind the expectations? Where do we hamper ourselves, which obstacles in the market do we allow? This contribution reports on some hindrances based on own gained experience and evaluates them from different perspectives. (orig.)

  1. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  2. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  3. Solar Thermal AIR Collector Based on New Type Selective Coating

    Directory of Open Access Journals (Sweden)

    Musiy, R.Y.

    2014-01-01

    Full Text Available Based on the best for optical performance and selective coating solar thermal air collector, which operates by solar power on the principle of simultaneous ventilation and heating facilities, is designed. It can be used for vacation homes, museums, wooden churches, warehouses, garages, houses, greenhouses etc.

  4. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  5. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    Science.gov (United States)

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  6. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  7. From Molecular Electronics to Solar Thermal Energy Storage

    DEFF Research Database (Denmark)

    Olsen, Stine Tetzschner

    The Sun's signicant resource potential provides a solution for the world's increasing energy demand in a sustainable and responsible manner. However, the intrinsic property of the on-o cycles of the solar irradiation, i.e. daynight, sunny-cloudy, and summer-winter, constitutes a signicant challenge...... for the utilization of solar energy. An eective technology for storing the solar energy is required. This thesis focuses on solar thermal energy storage in molecules, since it oers a very compact and eective storage method. The rst chapter after the introduction of the thesis, chapter two, introduces the fundamental...... properties of the molecule, i.e. the electronic behaviour of the molecule in dierent environments, which is a key property for investigations of solar energy storage. The main focus of the research is on the electron transport in the Coulomb blockade regime. The third chapter goes into the challenge...

  8. Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Zheng, Maoyu; Zhang, Wenyong; Zhang, Shu; Yang, Tao [School of Municipal and Environmental Engineering, Harbin Institute of Technology, NO 202 Haihe Road, Harbin, Hei Longjiang 150090 (China)

    2010-11-15

    This paper presents the experimental study of a solar-assisted ground-coupled heat pump system (SAGCHPS) with solar seasonal thermal storage installed in a detached house in Harbin. The solar seasonal thermal storage was conducted throughout the non-heating seasons. In summer, the soil was used as the heat sink to cool the building directly. In winter, the solar energy was used as a priority, and the building was heated by a ground-coupled heat pump (GCHP) and solar collectors alternately. The results show that the system can meet the heating-cooling energy needs of the building. In the heating mode, the heat directly supplied by solar collectors accounted for 49.7% of the total heating output, and the average coefficient of performance (COP) of the heat pump and the system were 4.29 and 6.55, respectively. In the cooling mode, the COP of the system reached 21.35, as the heat pump was not necessary to be started. After a year of operation, the heat extracted from the soil by the heat pump accounted for 75.5% of the heat stored by solar seasonal thermal storage. The excess heat raised the soil temperature to a higher level, which was favorable for increasing the COP of the heat pump. (author)

  9. Agricultural utilization of industrial thermal effluents

    International Nuclear Information System (INIS)

    Guillermin, P.; Delmas, J.; Grauby, A.

    1976-01-01

    An assessment is made of the utilization of thermal effluent for agricultural purpose (viz. early vegetables, cereals, trees). Heated waters are being used in field experiments on soil heating, improvement of agricultural procedures and crop yields. Thermal pollution cannot be removed yet it is reduced to acceptable limits. New prospects are open to traditional agriculture, leading towards a more competitive industrial model [fr

  10. Combined photovoltaic and solar-thermal systems: overcoming barriers to market acceptance

    International Nuclear Information System (INIS)

    Collins, M.R.

    2005-01-01

    Combined Photovoltaic and Solar-Thermal Systems (PV/T Systems) combine Photovoltaic (PV) and solar thermal technologies into one system with both electrical and thermal energy output. PV/T systems have several perceived advantages to stand-alone PV or solar-thermal systems. The increased efficiency and dual nature of the systems make suitable for situations where installation space is limited, and for homeowners who are forced to decide between meeting thermal or electrical needs. The financial benefit of the combined system is also significant, as the long payback of PV systems is joined with a relatively short payback of solar thermal systems. A background of PV/T was presented, with details of classifications and the International Energy Association's program to evaluate the technical status of PV/T systems and formulate a roadmap for future development. It was noted that input from the Solar Heating and Cooling Program (SHCP) is needed to help identify market barriers in PV/T systems. This paper reviewed existing and potential PV/T systems and their technical status, and reported on the methodology established by IEA group 35. The systems were grouped according to thermal collector types of unglazed water collectors, glazed water collectors, unglazed air collectors, glazed air collectors, air-flow windows, and concentrating collectors. It was noted that a number of new systems are currently being developed, including concentrating collectors with water and air heating, unglazed air heating systems, and unglazed water heating systems. It was noted that apart from technical barriers, efficient design and performance prediction are also problematic, as tools for predicting performance do not exist. The same tools will be used to optimize PV/T system designs. It was suggested that standardized reporting methods, simulation and sizing tools and demonstration products need to be created and that regional certification issues need to be identified. Environmental

  11. Comparison of conventional and solar-water-heating products and industries report

    Energy Technology Data Exchange (ETDEWEB)

    Noreen, D; LeChevalier, R; Choi, M; Morehouse, J

    1980-07-11

    President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined in the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.

  12. Solar thermal energy. Solar pasteurization of dairy products; Energia solar termica. Pasteurizacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, J.; Chemisana, D.

    2009-07-01

    Nicaragua is one of the south America countries with biggest cattle figures; however, it is at the bottom of the list of milk consumers. The cause which explains this is a twofold trouble. First of all, they have not the adequate milk treatment methods to guarantee a proper hygienic and conservation conditions. By the other side, production is distributed in small production centers to serve local consumers. this article proposal is to get a pasteurization treatment with thermal processes arranged by means of the solar energy. (Author) 3 refs.

  13. Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

    OpenAIRE

    K. Touafek; A. Khelifa; E. H. Khettaf; A. Embarek

    2013-01-01

    Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a h...

  14. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  15. Thermal Feature of a Modified Solar Phase Change Material Storage Wall System

    Directory of Open Access Journals (Sweden)

    Chenglong Luo

    2018-01-01

    Full Text Available This work is to study a novel solar PCM storage wall technology, that is, a dual-channel and thermal-insulation-in-the-middle type solar PCM storage wall (MSPCMW system. The system has the following four independent functions, passive solar heating, heat preservation, heat insulation, and passive cooling, and it can agilely cope with the requirements of climatization of buildings in different seasons throughout the year and is exactly suitable for building in regions characterized by hot summer and cold winter. The present work experimentally analyzes thermal feature of the system working in summer and winter modes, respectively.

  16. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  17. Calculated thermal performance of solar collectors based on measured weather data from 2001-2010

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Andersen, Elsa

    2015-01-01

    This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period ...... with an increase in global radiation. This means that besides increasing the thermal performance with increasing the solar radiation, the utilization of the solar radiation also becomes better.......This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period...

  18. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

    Directory of Open Access Journals (Sweden)

    Wisut Chamsa-ard

    2017-05-01

    Full Text Available The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  19. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  20. Smart thermal grid with integration of distributed and centralized solar energy systems

    International Nuclear Information System (INIS)

    Yang, Libing; Entchev, Evgueniy; Rosato, Antonio; Sibilio, Sergio

    2017-01-01

    Smart thermal grids (STGs) are able to perform the same function as classical grids, but are developed in order to make better use of distributed, possibly intermittent, thermal energy resources and to provide the required energy when needed through efficient resources utilization and intelligent management. District heating (DH) plays a significant role in the implementation of future smart energy systems. To fulfil its role, DH technologies must be further developed to integrate renewable resources, create low-temperature networks, and consequently to make existing or new DH networks ready for integration into future STGs. Solar heating is a promising option for low-temperature DH systems. Thermal energy storage (TES) can make the availability of the energy supply match the demand. An integration of centralized seasonal and distributed short-term thermal storages would facilitate an efficient recovery of the solar energy. This study, through modelling and simulation, investigates the impacts of such integration on the overall performance of a community-level solar DH system. The performance analysis results show that the solar DH system with integration of distributed and centralized seasonal TESs improves system overall efficiency, and reduces DH network heat losses, primary energy consumption and greenhouse gas emissions, in comparison to the one without integration. - Highlights: • STG should be designed to store energy in the most efficient way at the most effective location. • Integration of centralized seasonal and distributed TESs in a solar DH system is proposed. • Performance of such integrated solar DH system is evaluated and compared to the one without. • The integration results in reduction of primary energy consumption and GHG emission. • The integration improves the overall efficiency of the total solar energy system.

  1. Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.

    Science.gov (United States)

    Stegmaier, Thomas; Linke, Michael; Planck, Heinrich

    2009-05-13

    Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.

  2. BIM-Integration of solar thermal systems in early housing design

    OpenAIRE

    Bonilla Castro, Alejandro; García Alvarado, Rodrigo

    2017-01-01

    Abstract: This paper sets a methodology to integrate solar thermal systems in BIM-software for the early architectural design of single houses in Concepción, Chile, using parametric families, programming in Dynamo, energy calculation with LadyBug and piping design in MEP. The results obtained allowed to select products, insert and adapts automatically the parametric designs into the model, as well as to identify changes in the type and number of solar components when the solar orientation of ...

  3. Phase-Change Thermal Energy Storage

    Science.gov (United States)

    1989-11-01

    The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100 C in low-temperature troughs to over 1500 C in dish and central receiver systems.

  4. Optical losses due to tracking on solar thermal collectors

    DEFF Research Database (Denmark)

    Sallaberry, Fabienne; Pujol-Nadal, Ramn; Peres, Bengt

    2017-01-01

    For a wide range of operational temperatures, the solar thermal collectors can use optical concentration systems to optimize their efficiency. However, as optical concentration relies on direct solar radiation, it is necessary to use a solar tracker following the sun direction to maximize...... the amount of useful solar radiation received. The selection of the appropriate tracking systems matching the optical concentration factor is essential to achieve optimal collector efficiency. Otherwise, the concentrator would experience high optical losses due to the inadequate focusing of the direct solar...... radiation onto its receiver, regardless of its quality. This paper gives the state-of-the-art of the methodologies available to characterize the tracking error of a concentrating collector, a summary of different previous studies done in this subject and of the standardization regarding the tracking...

  5. Solar Energy Technologies Program FY08 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-05-01

    These reports chronicle the research and development (R&D) results of the Solar Program for the fiscal year. In particular, the report describes R&D performed by the Program's national laboratories and its university and industry partners within PV R&D, Solar Thermal R&D, which encompasses solar water heating and concentrating solar power (CSP), and other subprograms.

  6. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  7. Comprehensive assessment of the role and potential for solar thermal in future energy systems

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad

    2018-01-01

    to the energy system configurations. Solar thermal benefits reduce when moving towards a high-renewable energy system as other renewable energy sources start competing with solar thermal on energy prices and energy system flexibility. The findings can be applied to a diversity of energy systems also beyond...

  8. Large scale solar thermal power for the European Union{exclamation_point}

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    Southern Europe, on the edge of the sunbelt, represents the ideal location for solar thermal generated power. Last year. SAWIE reported on the THESEUS project, a proposed 50 MWe solar thermal power plant for Frangokastello, southern Crete, which was submitted for support under the European Union`s THERMIE Programme. Funding was approved for the design phase for this innovative power plant, the first large-scale SEGS-style plant on European soil, at the end of last year. However, the THERMIE Programme also provided support for another Southern European plant, proposed by Colon Solar for Huelva in Southern Spain. Whilst hurdles remain to be overcome before both plants are built and commissioned, there is an excellent chance that by the start of the new Millennium, the solar collectors from these two plants could be generating over half a million MWh of energy a year. SAWIE compares the two projects. (author)

  9. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  10. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  11. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  12. concentrated solar power and solar thermal Barometer - EurObserv'ER - May 2015

    International Nuclear Information System (INIS)

    2015-05-01

    European concentrated solar power capacity remained stable in 2014 and will probably post a negligible increase in 2015. Construction work on a number of new facilities in Italy that are scheduled for commissioning in 2016 and 2017 could commence in the second half of the year. The European solar thermal market for producing heat, domestic hot water and heating has not found the recipe for recovery. According to EurObserv'ER, the market contracted by a further 3.7% from its 2013 level which is the sixth decrease in a row

  13. Solar thermal technology development: Estimated market size and energy cost savings. Volume 2: Assumptions, methodology and results

    Science.gov (United States)

    Gates, W. R.

    1983-02-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.

  14. Solar thermal technology development: Estimated market size and energy cost savings. Volume 2: Assumptions, methodology and results

    Science.gov (United States)

    Gates, W. R.

    1983-01-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.

  15. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  16. Studies of a photovoltaic-thermal solar during system for rural applications

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Y.; Yatim, B.; Bakar, N.A. [Kebangsaan Malaysia Univ., Bangi, Selangor (Malaysia). Center for Applied Physics Studies; Sopian, K. [Kebangsaan Malaysia Univ., Bangi, Selangor (Malaysia). Dept. of Mechanical and Material Engineering

    2007-07-01

    The use of solar drying is increasing in areas where the use of abundant, renewable and clean solar energy is advantageous. Particularly in developing countries and in rural areas, the traditional open-air drying methods are being substituted by the more effective and more economic solar drying technologies. Since the air collector is the most important component of a solar food drying system, improvement of the design of collectors would lead to better performance of the system. This paper presented a new design of a photovoltaic-thermal (PVT) solar drying system. In order to achieve an efficient design of an air collector suitable for a solar dryer, the results of an experimental study of PVT solar air collector was conducted and presented. The paper presented the methodology and discussed a series of experiments that were conducted under Malaysian climatic conditions. The paper discussed the design of a double pass photovoltaic-thermal solar air collector with compound parabolic concentrator (CPC) and fins. The collector design concept and the collector array were demonstrated. The performance of the collector was examined over a wide range of operating conditions. Results of the test were then presented and discussed. It was concluded that the performance of the solar collector was satisfactory. The quality attributes such as colour, flavour, and taste were significantly improved since it was protected from rain, dust, and insects, in contrast to sun drying. 10 refs., 8 figs.

  17. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  18. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS_2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS_2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS_2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  19. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  20. Proceedings of the Canadian Solar Industries Association Solar Forum 2005 : sunny days ahead : a forum on solar energy for government officials

    International Nuclear Information System (INIS)

    2006-01-01

    Solar energy is the fastest growing energy source in the world. Government involvement is critical in the deployment of solar energy. This forum focused on the application of solar energy in government facilities. The forum was divided into 3 sessions: (1) solar technologies and markets; (2) government initiatives that support solar energy; and (3) the use of solar energy on government facilities in Canada. The current state of solar technologies and products in Canada was reviewed. Solar thermal markets were discussed with reference to passive solar energy and photovoltaic applications. On-site solar generation for federal facilities was discussed, and various federal initiatives were reviewed. Issues concerning Ontario's standard offer contract program were discussed. Government users and buyers of solar products spoke of their experiences in using solar energy and the challenges that were faced. The role that solar energy can play in reducing government costs was discussed, as well as the impact of solar energy on the environment. Opportunities and barriers to the use of solar energy in Canada were explored. The conference featured 14 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs

  1. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Solar thermal power generation systems); 1977 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyo netsu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at surveys and researches on operation, economic efficiency and performance evaluation of solar thermal power generation systems, and test methods, e.g., for aging the materials for their devices, in order to establish the methods for evaluating their performance. For operation of solar thermal power generation systems, a feasible system is a hybrid with another system, e.g., thermal power or nuclear system. For economic efficiency, heat-storage capacity will be based on power generation for around 4 hours a day for a solar system to be installed in Japan. The construction and light/heat-collecting costs should be reduced to around 300,000 yen/kW and 13,000 to 21,000 yen/m{sup 2}, respectively, in order to keep the power generation cost at around 23 yen/kWH. The energy analysis of solar thermal power generation, based on the data given by the industrial correlation tables, indicates that the total energy required for construction of the system can be recovered in 2 to 3 years. Also outlined are construction of a 1MW pilot plant and its facilities, and designs of the pilot plants with a curved surface or tower type light collector. A total of 12 types of reflection mirrors are screened for establishing the air-exposure testing methods. Methods for treating back surface edges of the reflection mirrors are also investigated. (NEDO)

  2. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    Science.gov (United States)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  3. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  4. Renewable Energy Essentials: Concentrating Solar Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Concentrated solar thermal power (CSP) is a re-emerging market. The Luz Company built 354 MWe of commercial plants in California, still in operations today, during 1984-1991. Activity re-started with the construction of an 11-MW plant in Spain, and a 64-MW plant in Nevada, by 2006. There are currently hundreds of MW under construction, and thousands of MW under development worldwide. Spain and the United States together represent 90% of the market. Algeria, Egypt and Morocco are building integrated solar combined cycle plants, while Australia, China, India, Iran, Israel, Italy, Jordan, Mexico, South Africa and the United Arab Emirates are finalising or considering projects. While trough technology remains the dominant technology, several important innovations took place over 2007-2009: the first commercial solar towers, the first commercial plants with multi-hour capacities, the first Linear Fresnel Reflector plants went into line.

  5. Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Ma, Xinglong

    2016-01-01

    Highlights: • A common design method of a cycloidal transmissive Fresnel solar concentrator was presented. • The gallium arsenide high concentrated solar was used as the receiver. • High efficiency of electric generating could be achieved at noon. • Fresnel solar concentrator was studied and compared in hazy weather and clear weather. - Abstract: A design method of a cycloidal transmissive Fresnel solar concentrator which can provide a certain width focal line was presented in this study. Based on the optical principle of refraction, the dimensions of each wedge-shaped element of Fresnel lens are calculated. An optical simulation has been done to obtain the optical efficiency of the concentrator for different tracking error and axial incidence angle. It has been found that about 80% of the incident sunlight can still be gathered by the absorber when the tracking error is within 0.7°. When the axial angle of incidence is within 10°, it almost has no influence to the receiving rate. The concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator has been designed in this paper. Take the gallium arsenide high concentrated battery as the receiver, experimental research about cylindrical Fresnel concentrating photovoltaic/thermal system is undertaken in the real sky. Main parameters are tested such as the temperature distribution on receiver, electric energy and thermal energy outputs of concentrating photovoltaic/thermal system, the efficiency of multipurpose utilization of electric and heat, and so on. The test results in clear weather show that maximum electric generating efficiency is about 18% at noon, the maximum heat receiving rate of cooling water is about 45%. At noon time (11:00–13:00), the total efficiency of thermal and electricity can reach more than 55%. Performance of this concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator is studied and compared in two types typical weather, hazy

  6. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India

    Directory of Open Access Journals (Sweden)

    Deepak Bishoyi

    2017-09-01

    Full Text Available Solar energy is a key renewable energy source and the most abundant energy source on the globe. Solar energy can be converted into electric energy by using two different processes: by means of photovoltaic (PV conversion and the thermodynamic cycles. Concentrated solar power (CSP is viewed as one of the most promising alternatives in the field of solar energy utilization. Lifetime and efficiency of PV system are very less compared to the CSP technology. A 100 MW parabolic trough solar thermal power plant with 6 h of thermal energy storage has been evaluated in terms of design and thermal performance, based on the System Advisor Model (SAM. A location receiving an annual DNI of 2248.17 kW h/m2 in Rajasthan is chosen for the technical feasibility of hypothetical CSP plant. The plant design consists of 194 solar collector loops with each loop comprising of 8 parabolic trough collectors. HITEC solar salt is chosen as an HTF due to its excellent thermodynamic properties. The designed plant can generate annual electricity of 285,288,352 kW h with the plant efficiency of 21%. The proposed design of PTC based solar thermal power plant and its performance analysis encourages further innovation and development of solar thermal power plants in India.

  7. Numerical model for the thermal yield estimation of unglazed photovoltaic-thermal collectors using indoor solar simulator testing

    NARCIS (Netherlands)

    Katiyar, M.; van Balkom, M.W.; Rindt, C.C.M.; de Keizer, C.; Zondag, H.A.

    2017-01-01

    It is a common practice to test solar thermal and photovoltaic-thermal (PVT) collectors outdoors. This requires testing over several weeks to account for different weather conditions encountered throughout the year, which is costly and time consuming. The outcome of these tests is an estimation of

  8. Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator

    Science.gov (United States)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.

    2013-07-01

    In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.

  9. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  10. Housing and sustainable development: perspectives offered by thermal solar energy. Particle emissions: prospective investigation of primary particle emissions in France by 2030

    International Nuclear Information System (INIS)

    Brignon, J.M.; Cauret, L.; Sambat, S.

    2004-09-01

    This publication proposes two investigation reports. A first study proposes a prospective analysis of the housing 'stock' in France and the evolution of global energy consumptions and CO 2 emissions by the housing sector, a prospective study of space heating and hot water needs by defining reference scenarios as well as a target scenario for heating consumption (based on the factor 4 of reduction of emissions by 2050), and an assessment of the contribution of the thermal solar energy applied to winter comfort under the form of direct solar floors and passive solar contributions, and applied to hot water by 2050. The contribution of the thermal solar energy is studied within its regulatory context. An analysis of urban forms is also performed to assess the potential of integration of renewable energy solutions in the existing housing stock, and thus to assess the morphological limits of an attempt of generalized solarization of roofs. The second study proposes a detailed identification and assessment of the various sources of primary particles (combustion, industrial processes, mineral extraction and processing, road transport, waste processing and elimination, agriculture, natural sources, forest fires), providing more precise results and methodological complements for some sources. It also proposes a prospective assessment of emissions and identifies the main factors of particle concentrations in urban environment

  11. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    Science.gov (United States)

    Balasubramaniam, R.; Wegeng, R. S.; Gokoglu, S. A.; Suzuki, N. H.; Sacksteder, K. R.

    2010-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can enable the operation of lightweight robotic rovers or other assets in cold, dark environments without incurring potential mass, cost, and risk penalties associated with various onboard sources of thermal energy. Thermal wadi-assisted lunar rovers can conduct a variety of long-duration missions including exploration site surveys; teleoperated, crew-directed, or autonomous scientific expeditions; and logistics support for crewed exploration. This paper describes a thermal analysis of thermal wadi performance based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. Analysis was performed for the lunar equatorial region and for a potential Outpost location near the lunar south pole. The results are presented in some detail in the paper and indicate that thermal wadis can provide the desired thermal energy reserve, with significant margin, for the survival of rovers or other equipment during periods of darkness.

  12. Thermal performance of climber greenwalls: Effects of solar irradiance and orientation

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Highlights: • Field experiment tested solar irradiance effect on greenwall thermal performance. • Climber greenwalls were planted on four orientations of circular concrete tank. • High solar-energy input had high bare-surface temperature but maximum cooling. • Threshold solar intensity of 300 Wm −2 was needed for effective greenwall cooling. • Transpiration cooled anterior air better than shading and thermal insulation. - Abstract: Thermal performance of greenwalls, a critical and common concern, is regulated by solar irradiance vis-à-vis orientation and shading. A field experiment was conducted in humid-tropical Hong Kong to address the research question under typical summer-weather scenarios: sunny, cloudy and rainy. On a large circular concrete tank, climber-greenwall experimental plots were established with duplication in four cardinal compass directions. Air and infrared-radiometer surface temperature sensors monitored at different greenwall positions: ambient-air (control), bare-concrete-surface (control), vegetation-surface, behind-mesh-airgap, and behind-mesh-concrete surface. Pyranometers were installed vertically at four orientations and horizontally at tank-top (control) to monitor solar-energy input. Habitat verticality induces notable variations in solar-energy capture at four orientations by daily total, peak level, intensity, duration and timing. On sunny day, solar fraction reaching east side was only 37.1% of tank-top. Early morning sunshine striking east side nearly perpendicularly brings maximum intensity. South side facing the sun but at tangential incident angle has only 23.3% reception. Strong irradiance drives high control-surface temperature, but also induces notable vegetation-surface and adjacent ambient-air cooling by transpiration. A threshold solar intensity of about 300 Wm −2 is necessary to impart notable cooling-effect. Summer-sunny day and rainy-day sunshine-burst episodes could satisfy this condition; cloudy day and

  13. Hydrogen from solar energy

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The long-range options of energy sources are the breeding reactor, nuclear fusion, and solar energy. Concerning solar energy three systems are being developed: First the photovoltaic cells which are almost ready for industrial production, but which are still too expensive - at least today. Secondly the thermal utilization of solar radiation. Compared to these, thirdly, the photobiological and photochemical possibilities of solar energy utilization have been somewhat neglected so far. However, the photolysis of water by solar energy is a very promising option for future energy demands. This can be done by making use of the photo-synthetic splitting of water in technical facilities or with semiconductors.

  14. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  15. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    International Nuclear Information System (INIS)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-01-01

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG and amp;E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  16. Profiles of five promising industries and apartment dwellings for solar systems trials planning

    Energy Technology Data Exchange (ETDEWEB)

    1891-12-01

    The objective of this study was to identify suitable types of large-scale applications for solar water-heating systems. The factors considered in industrial applications were the amount, type, and cost of energy used for heating water to temperatures <50/sup 0/C. It was found that five industries account for almost one-half of the industrial low-temperautre water-heating requirements. Since oil is the primary source of this energy in Eastern Canada and is soon to be the most costly conventional energy source, large businesses located in Quebec and the Atlantic Provinces were found to be the most promising establishments for solar applications. The report recommends contacting owners in all five industrial sectors to determine their attitudes to solar systems trials and to gather site-specific data. At the same time, the report indicates that apartments, especially those in Eastern Canada, may be more suitable than businesses for large-scale solar water heating. Low-rise apartments use approximately 17 PJ of oil energy for domestic hot water compared to the 11 PJ used by all five industrial subsectors for low-temperature water heating. 4 refs., 5 figs., 100 tabs.

  17. Simulation, design and thermal analysis of a solar Stirling engine using MATLAB

    International Nuclear Information System (INIS)

    Shazly, J.H.; Hafez, A.Z.; El Shenawy, E.T.; Eteiba, M.B.

    2014-01-01

    Highlights: • Modeling and simulation for a prototype of the solar-powered Stirling engine. • The solar-powered Stirling engine working at the low temperature range. • Estimating output power from the solar Stirling engine using Matlab program. • Solar radiation simulation program presents a solar radiation data using MATLAB. - Abstract: This paper presents the modeling and simulation for a prototype of the solar-powered Stirling engine working at the low temperature range. A mathematical model for the thermal analysis of the solar-powered low temperature Stirling engine with heat transfer is developed using Matlab program. The model takes into consideration the effect of the absorber temperature on the thermal analysis like as radiation and convection heat transfer between the absorber and the working fluid as well as radiation and convection heat transfer between the lower temperature plate and the working fluid. Hence, the present analysis provides a theoretical guidance for designing and operating of the solar-powered low temperature Stirling engine system, as well as estimating output power from the solar Stirling engine using Matlab program. This study attempts to demonstrate the potential of the low temperature Stirling engine as an option for the prime movers for Photovoltaic tracking systems. The heat source temperature is 40–60 °C as the temperature available from the sun directly

  18. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Tan, Lijun; Ji, Xu; Li, Ming; Leng, Congbin; Luo, Xi; Li, Haili

    2014-01-01

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m 2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m 2 mirror PV/T stage and a 15 m 2 mirror heating stage, or a 1.8 m 2 mirror PV/T stage and a 30 m 2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  19. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  20. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  1. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (solar furnace); 1974 nendo taiyo energy riyo system chosa kenkyu. Taiyoro

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    In fiscal 1974, analysis was made on the concept design of solar furnace hardware, and utilization and use purpose of solar furnaces as high-temperature industrial heat source. Detailed survey was also made on the history of high- temperature solar furnaces. Based on the history of large- scale solar furnaces and the current state of some industries consuming a large amount of thermal energy, wide consideration was made on the applicability of large-scale solar furnaces as heat source in the future. Although various applications of large-scale solar furnaces are expected in the future, their current main applications are production of high-melting point materials, research on high-temperature physical properties, production of silicon, and solar heat power generation. A solar furnace is mainly composed of a parabolic reflector and heliostat plane reflector as optical system. It is necessary for practical industrial use of solar furnaces to study on furnace core design, profitability, installation site, temperature control, and reflector maintenance enough. (NEDO)

  2. PKI solar thermal plant evaluation at Capitol Concrete Products, Topeka, Kansas

    Science.gov (United States)

    Hauger, J. S.; Borton, D. N.

    1982-07-01

    A system feasibility test to determine the technical and operational feasibility of using a solar collector to provide industrial process heat is discussed. The test is of a solar collector system in an industrial test bed plant at Capitol Concrete Products in Topeka, Kansas, with an experiment control at Sandia National Laboratories, Albuquerque. Plant evaluation will occur during a year-long period of industrial utilization. It will include performance testing, operability testing, and system failure analysis. Performance data will be recorded by a data acquisition system. User, community, and environmental inputs will be recorded in logs, journals, and files. Plant installation, start-up, and evaluation, are anticipated for late November, 1981.

  3. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  4. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  5. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    Science.gov (United States)

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  7. Numerical investigation on thermal and fluid dynamic behaviors of solar chimney building systems

    International Nuclear Information System (INIS)

    Manca, O.; Nardini, S.; Romano, P.; Mihailov, E.

    2013-01-01

    Full text: Buildings as big energy-consuming systems require large amount of energy to operate. Globally, buildings are responsible for approximately 40% of total world annual energy consumption. Sustainable buildings with renewable energy systems are trying to operate independently without consumption of conventional resources. Renewable energy is a significant approach to reduce resource consumption in sustainable building. A solar chimney is essentially divided into two parts, one - the solar air heater (collector) and second - the chimney. Two configurations of solar chimney are usually used: vertical solar chimney with vertical absorber geometry, and roof solar chimney. For vertical solar chimney, vertical glass is used to gain solar heat. Designing a solar chimney includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance. In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-s turbulence model. Two geometrical configurations are investigated: 1) a channel with vertical parallel walls and 2) a channel with principal walls one vertical and the other inclined. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for a uniform wall heat flux on the vertical wall is equal to 300 and 600 W/m2. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is examined. key words: mathematical modeling, solar chimney

  8. Solar-thermal energy - How progress will be made

    International Nuclear Information System (INIS)

    Frei, U.; Hawkins, A. C.

    2004-01-01

    This second part of a two-part article is based on a lecture given by professor Ueli Frei of the University of Applied Science in Rapperswil, Switzerland. It discusses present and future system technologies that can be used for thermal applications of solar energy. The importance of correct engineering and planning is stressed. The evolution of solar collector technology since 1980 is examined and the important progress made in this area is looked at. A selection of graphical representations illustrate the progress that has already been made and that which can be expected in the future

  9. Methane-steam reforming by molten salt - membrane reactor using concentrated solar thermal energy

    International Nuclear Information System (INIS)

    Watanuki, K.; Nakajima, H.; Hasegawa, N.; Kaneko, H.; Tamaura, Y.

    2006-01-01

    By utilization of concentrated solar thermal energy for steam reforming of natural gas, which is an endothermic reaction, the chemical energy of natural gas can be up-graded. The chemical system for steam reforming of natural gas with concentrated solar thermal energy was studied to produce hydrogen by using the thermal storage with molten salt and the membrane reactor. The original steam reforming module with hydrogen permeable palladium membrane was developed and fabricated. Steam reforming of methane proceeded with the original module with palladium membrane below the decomposition temperature of molten salt (around 870 K). (authors)

  10. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  11. Comparative ranking of 0. 1-10 MW/sub e/ solar thermal electric power systems. Volume II. Supporting data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kriz, T.A.

    1980-07-01

    This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1-10 MW/sub e/, operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW/sub e/, a range that is attractive to industrial and other nonutility applications. Volume I summarizes the results for the full range of capacities from 0.1 to 1.0 MW/sub e/. Volume II presents data on the performance and cost and ranking methodology.

  12. Buffer thermal energy storage for a solar Brayton engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  13. Solar energy guide

    International Nuclear Information System (INIS)

    Lentz, A.; Winter, R.

    1993-07-01

    Many aspects with regard to the practical use of solar energy are discussed. This guide is aimed at informing local and regional administrators, committee members of housing corporations and public utilities and public relations officers on the possibilities to use solar energy. In chapter one an overview is given of the use of solar energy in the housing sector, the recreational sector, agricultural sector, industry, trade and other sectors. In the chapters two, three and four attention is paid to passive solar energy, active thermal solar energy and photovoltaic energy respectively. In the chapters five and six aspects concerning the implementation of solar energy systems in practice are discussed. First an outline of the parties involved in implementing solar energy is given: the municipality, the energy utility, the province, local authorities, advisors, housing constructors and the occupants of the buildings. Then attention is paid to the consequences of implementing solar energy for the building inspection and regulations, the finances, energy savings and the environment. In chapter seven an overview is given of the subsidy regulations of the European Community, the Dutch national and local governments. Chapter contains addresses of solar thermal systems, photovoltaic systems and other institutes operating in the field of solar energy, as well as the titles of a number of brochures and courses. 51 figs., 7 tabs., 86 refs

  14. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: liming@ynnu.edu.c [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China); Li, G.L. [School of Physics and Electronic Information, Yunnan Normal University, Kunming 650092 (China); Ji, X.; Yin, F.; Xu, L. [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China)

    2011-06-15

    Research highlights: {yields} A 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. {yields} Another 10 m{sup 2} TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. {yields} The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m{sup 2} TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating

  15. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, M.; Li, G.L.; Ji, X.; Yin, F.; Xu, L.

    2011-01-01

    Research highlights: → A 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. → Another 10 m 2 TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. → The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m 2 TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating silicon cell array are 7.51% and 42

  16. Thermal design, analysis and comparison on three concepts of space solar power satellite

    Science.gov (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  17. Thermal analyses of solar swimming pool heating in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, I.

    2011-01-01

    Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts of Pakistan remain sunny and unglazed low cost solar collectors may be used to extend the swimming season. Installing the pool in a wind-protected area, which receives unobstructed solar radiation, may further reduce the size of the solar collectors required to heat the swimming pools. The pools should be covered with plastic sheet to eliminate evaporative heat losses and to prevent dust and tree leaves falling in the pool. The results of the thermal analysis show that in some parts of the country, a solar exposed pool can maintain comfortable temperature simply by using a plastic sheet on the pool surface. On the other hand, there are cities where solar collector array equal to twice the surface area of the pool is required to keep desired temperature in winter. (author)

  18. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.

    Science.gov (United States)

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-28

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  19. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    Science.gov (United States)

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-01

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094

  20. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    Directory of Open Access Journals (Sweden)

    Shanguo Zhao

    2018-01-01

    Full Text Available The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  1. Experimental characterization of a solar cooker with thermal energy storage based on solar salt

    Science.gov (United States)

    Coccia, G.; Di Nicola, G.; Tomassetti, S.; Gabrielli, G.; Chieruzzi, M.; Pierantozzi, M.

    2017-11-01

    High temperature solar cooking allows to cook food fast and with good efficiency. An unavoidable drawback of this technology is that it requires nearly clear-sky conditions. In addition, evening cooking is difficult to be accomplished, particularly on the winter season during which solar radiation availability is limited to a few hours in the afternoon in most of countries. These restrictions could be overcome using a cooker thermal storage unit (TSU). In this work, a TSU based on solar salt was studied. The unit consists of two metal concentric cylindrical vessels, connected together to form a double-walled vessel. The volume between walls was filled with a certain amount of nitrate based phase change material (solar salt). In order to characterize the TSU, a test bench used to assess solar cooker performance was adopted. Experimental load tests with the TSU were carried out to evaluate the cooker performance. The obtained preliminary results show that the adoption of the solar salt TSU seems to allow both the opportunity of evening cooking and the possibility to better stabilize the cooker temperature when sky conditions are variable.

  2. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  3. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  4. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  5. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2014

    International Nuclear Information System (INIS)

    2014-05-01

    The European concentrated solar plant market is set to mark time for a year following efforts to complete construction on 350 MW of CSP capacity in Spain in 2013. The spotlight has switched to Italy which could re-launch the European market within a couple of years. The European solar thermal market for heat and hot water production and space heating, is shrinking all the time. EurObserv'ER reports that the market is in its fifth successive year of contraction in the European Union. It now posts a 10.5% decline on its 2012 performance having struggled to install just over 3 million m 2 of collectors in 2013

  6. Economic Feasibility and Market Readiness of Solar Technologies. Draft Final Report. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, Silvio J.; Buchanan, Deborah L.; Christmas, Susan; Fellhauer, Cheryl; Glenn, Barbara; Ketels, Peter A.; Levary, Arnon; Mourning, Pete; Steggerda, Paul; Trivedi, Harit; Witholder, Robert E.

    1978-09-01

    Systems descriptions, costs, technical and market readiness assessments are reported for ten solar technologies: solar heating and cooling of buildings (SHACOB), passive, agricultural and industrial process heat (A/IPH), biomass, ocean thermal (OTEC), wind (WECS), solar thermal electric, photovoltaics, satellite power station (SPS), and solar total energy systems (STES). Study objectives, scope, and methods. are presented. of Joint Task The cost and market analyses portion 5213/6103 will be used to make commercialization assessments in the conclusions of. the final report.

  7. Workforce challenges and opportunities in the solar photovoltaic industry in Toronto

    International Nuclear Information System (INIS)

    Saneinejad, Sheyda

    2011-01-01

    In December 2009, the city of Toronto adopted principles and targets for the city's sustainable energy future. The city plans to install 2 MW of solar photovoltaic panels in its facilities. The aim of this study is to assess the impact of such a project, as well as further expansion of solar photovoltaic energy generation, from the economic development perspective. A literature review, online surveys and interviews with solar industries were carried out and a job estimation model was developed. Results showed that the 2 MW installation would create 53 person years of employment locally while expansion of the technology throughout the city could generate 100,000 local jobs. However this research also pointed out a lack of suitably qualified and experienced personnel Canada-wide. This study demonstrated that the solar photovoltaic industry has the potential to provide significant economic benefits in Toronto but that certification programs must be put in place to address the lack of qualified personnel.

  8. Europe's largest solar thermal power plant. [200 kw thermal output supplemented by two 10-kw windmills

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, U

    1976-03-01

    An overview is given over the solar heating plant which has recently been commissioned in the Camargue (France). This is the largest plant in Europe, with a mean heat output of about 200 kW, for the production of thermal energy from solar energy. The plant consists of 108 parabolic collectors (200 sq. metres) and 48 flat collectors (110 sq. metres). Two windmills with outputs of 10 kW each complete the system. The heat energy produced by the solar collectors is given up to 3 different stores, which in turn are connected to various consumers.

  9. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  10. A survey of manufacturers of solar thermal energy systems

    Science.gov (United States)

    Levine, N.; Slonski, M. L.

    1982-01-01

    Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.

  11. The New Solar System: China’s Evolving Solar Industry and Its Implications for Competitive Solar Power in the United States and the World

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Jeffrey [Stanford Univ., CA (United States); Reicher, Dan [Stanford Univ., CA (United States); Sun, Xiaojing [Stanford Univ., CA (United States); Pollock, Caitlin [Stanford Univ., CA (United States)

    2017-03-08

    Solar power is undergoing a revolution. Over the past decade, an energy source as old as the planet and theoretically all but limitless has plummeted in cost and begun in some places to be harnessed in large volume. This dynamic is disrupting the modern energy system and, as energy disruptions always do, rattling the geopolitical order. In the process, the industry that produces the equipment to convert sunlight into electricity is simultaneously reeling, consolidating, and surging. These twin transformations—one of the global energy system, one of the global solar industry—carry profound implications for national economies and for the planet. At the center of both transformations sits China. The New Solar System illuminates key and little- understood changes that are remaking the solar enterprise—in China and thus in the world. Based on this analysis, it recommends changes in U.S. solar policy—particularly timely with a new U.S. administration and Congress—that would put solar power on a more economically sensible path toward environmentally significant growth. The New Solar System does not seek to enable any country to beat another in the global solar industry. It seeks instead to help all countries find their most effective places. By better understanding and playing to their comparative strengths in the solar business, countries would achieve two key objectives. They would reduce the cost for the world of scaling up solar power. And they would be better positioned to fashion policies that maximized the long-term benefit to their own economies from solar’s global growth.

  12. Thermal performance assessment of a large aperture concentrating collector in an industrial application in Chile

    Science.gov (United States)

    Murray, Clare; Pino, Alan; Cardemil, José Miguel; Escobar, Rodrigo

    2017-06-01

    The application of solar thermal energy to meet the heat demands of the food and beverage processing industry in Chile has huge potential. This paper presents an assessment of the first large aperture trough collector installed in Latin America. The collector preheats water for a boiler in a juice-concentrating factory, 100 km north of Santiago. An analysis of the system for a day in November indicates the system was not able to utilize the heat generated, resulting in rapid de- and refocusing of the collector and problems with sensor calibration. An analysis of a day in March indicates the tracking algorithm has not correctly aligned the collector with the sun's position. An investigation into the design document reveals that the meteorological data underestimates the actual irradiation values by 40%, resulting in an oversized system given the actual conditions. To increase the energy gain in the system it is proposed to increase the working pressure from the current value of 1.5bar to up to 5bar, which could increase the system utilization from 41% to 65% and reduce the dumped energy to near zero. The simulation results with actual weather data and a fixed inlet temperature indicate the annual solar fraction could increase from the design value of 8.1% to 31.8% with a working pressure of 5 bar. The plant presents multiple opportunities for improvement not only to the performance of the plant but also in the design and installation of solar thermal systems in Chile in the future.

  13. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohitash, E-mail: dootrohit1976@gmail.com [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India); Kumar, Ravindra [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Dixit, Ambesh, E-mail: ambesh@iitj.ac.in [Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India)

    2016-05-06

    Thermal properties of Acetamide (AM) – Benzoic acid (BA) and Benzoic acid (BA) – Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  14. The Effectiveness of Warranties in the Solar Photovoltaic and Automobile Industries

    Science.gov (United States)

    Formica, Tyler J.

    A warranty is an agreement outlined by a manufacturer to a customer that defines performance requirements for a product or service. Although long warranty periods are a useful marketing tool, in 2011 the warranty claims expense was 2.6% of total sales for computer original equipment manufacturers (OEMs) and is over 2% of total sales in many other industries today. Solar PV systems offer inverters with 5-15 year warranties and PV modules with 25-year performance warranties. This is problematic for the return on investment (ROI) of solar PV systems when the modules are still productive and covered under warranty but inverter failures occur due to degradation of electronic components after their warranty has expired. Out-of-warranty inverter failures during the lifetime of solar panels decrease the ROI of solar PV systems significantly and can cause the annual ROI to actually be negative 15-25 years into the lifetime of the system. This thesis analyzes the factors that contribute to designing an optimal warranty period and the relationship between reliability and warranty periods using General Motors (GM) and the solar PV industry as case studies. A return on investment of a solar photovoltaic system is also conducted and the effect of reliability, changing tax credit structures, and failure areas of solar PV systems are analyzed.

  15. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  16. Industrialization of Polymer Solar Cells – phase 1

    DEFF Research Database (Denmark)

    Lauritzen, Hanne; Bork, Jakob; Andersen, Rasmus B.

    into more refined products. Such refined products might be self-powered electronic devices designed for easy integration in the customer’s production or solar-powered products for the end-user. A three-phased project with the objective to industrialize DTU’s basic polymer solar cell technology was started...... in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project’s phase 1.The key tasks in phase 1...... to a slot-die printing head manufactured in DTU’s workshop. The line was at the same time adjusted and updated to handle the new production. The very first solar cells produced on this line appeared in July 2010. The line has subse-quently been upgraded on a running basis, and Mekoprint’s operators have...

  17. Systems comparison and potential of Solar Thermal installations in the mediterranean area

    International Nuclear Information System (INIS)

    Klaib, M.; Staib, F.; Winter, C.J.

    1993-01-01

    This study is an attempt to investigate, from a variety of starting points, the market potential for solar thermal power plants. The terms of reference chosen for the central systems parabolic trough and tower plants (30-200 MW e ) seem to be workable. For the decentral dish/Stirling systems (10 kW e -10 MW e ) a first estimation could be worked out. In addition to collecting data on a large number of parameters relevant to the energy economy, the study also concentrated on: evaluating Meteosat data in order to determine the insolation conditions for each 50 x 50 km square of land in the entire Mediterranean area; making a rough cartographic sketch showing the most significant surface-area related criteria for each country; deriving typical annual, weekly and daily load curves for central and decentral grids from a multitude of country-specific data, and comparing the electricity generating costs of solar thermal and conventional power plants. From this basic data, various potentials (theoretical, available, technical, economic and anticipated) were determined for solar thermal power plants

  18. Solar-Biomass hybrid system for process heat supply in medium scale hotels in Sri Lanka

    OpenAIRE

    Abeywardana, Asela M.A.J.

    2016-01-01

    This study aimed at evaluating and demonstrating the feasibility of using Concentrated Solar Thermal technology combined with biomass energy technology as a hybrid renewable energy system to supply the process heat requirements in small scale industries in Sri Lanka. Particularly, the focus was to apply the concept to the expanding hotel industry, for covering the thermal energy demand of a medium scale hotel. Solar modules utilize the rooftop area of the building to a valuable application. L...

  19. Thermal destratification in small standard solar tanks due to mixing during tapping

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    1999-01-01

    The aim of the project is to investigate the thermal destratification in small standard solar tanks due to mixing during tapping. Three different cold water inlet designs are tested. A model of the tested solar tank is verified. Based on the measurements and the calculations it is elucidated how...

  20. Parabolic trough solar concentrators: a technology which can contribute towards pakistan's energy future

    International Nuclear Information System (INIS)

    Masood, R.

    2013-01-01

    The utilization of solar thermal energy has got prime importance in Pakistan due to the current energy scarcity and escalating cost scenario in the country. Parabolic Trough Solar Concentrator is one of the most reliable technologies for utilization of solar thermal energy. In solar thermal power generation, Parabolic Trough Solar Concentrators are most successful as almost 96 percent of total solar thermal power is generated across the world by utilizing this technology. Its high reliability, operational compatibility, comparative low cost and high efficiency adds to its high value among other resources. Fortunately, Pakistan lies in the high Solar Insolation Zone; thus, a huge potential exists to benefit from this technology. This technology may cater to the Pakistan's seasonal increased electricity demand. Apart from electric power generation, this technology may also have cost-effective solutions for Pakistan's other industries, like steam generation, preheating of boiler make-up water, air-conditioning, and hot water production for food, textile, dairy and leather industries. However, economic justification of such projects would be possible only on accomplishing an indigenous technology base. Globally, this is a proven technology, but in Pakistan there is hardly any development in this field. In this study, an effort has been made by designing and fabricating an experimental Parabolic Trough Solar Water Heater by utilizing locally available materials and manufacturing capabilities. On achieving encouraging results, a solar boiler (steam generator) is proposed to be manufactured locally. (author)

  1. Incentives for solar energy in industry

    Science.gov (United States)

    Bergeron, K. D.

    1981-05-01

    Several issues are analyzed on the effects that government subsidies and other incentives have on the use of solar energy in industry, as well as on other capital-intensive alternative energy supplies. Discounted cash flow analysis is used to compare tax deductions for fuel expenses with tax credits for capital investments for energy. The result is a simple expression for tax equity. The effects that market penetration of solar energy has on conventional energy prices are analyzed with a free market model. It is shown that net costs of a subsidy program to the society can be significantly reduced by price. Several government loan guarantee concepts are evaluated as incentives that may not require direct outlays of government funds; their relative effectiveness in achieving loan leverage through project financing, and their cost and practicality, are discussed.

  2. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  3. Studies of a photovoltaic-thermal solar dryi system for rural applications

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    Importance of solar drying in increasing worldwide. especially in areas where the use of abundant, renewable and clean solar energy is essentially advantageous. In developing countries and in rural areas the traditional open-air drying methods should be substituted by the more effective and more economic solar drying technologies. In the present work, a new design of a photovoltaic-thermal (PV/T) solar drying system was fabricated. An experimental study of PV/T solar air collector has been performed towards achieving n efficient design of air collector suitable foe a solar dryer. A series of experiments were conducted based on the ASHRAE standard, under Malaysia Climatic conditions. The performance of the collector is examined over a wide range of operating conditions. Results of the test are presented and discussed.(Author)

  4. Solar boilers 1995. Five years solar boiler campaign

    International Nuclear Information System (INIS)

    Houtsma, R.; Van de Water, A.; Van Zee, E.

    1995-01-01

    An overview is given of the activities and the results of Marketing Communication Strategy for Solar Water Heaters in the Netherlands, carried out within the framework of the 1990-1994 National Research Program Thermal Solar Energy (NOZ-th) of the Netherlands Agency for Energy and the Environment (NOVEM). Subsequently attention is paid to the sales, the manufacturers and their products, public information activities and reactions from the consumers, the marketing activities of energy distribution companies, the role of installers, local governments and the building construction industry, and market developments. 24 figs., 21 ills., 5 tabs., 18 refs., 2 appendices

  5. Theoretical variations of the thermal performance of different solar collectors and solar combi systems as function of the varying yearly weather conditions in Denmark

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2009-01-01

    The thermal performances of solar collectors and solar combi systems with different solar fractions are studied under the influence of the Danish Design Reference Year, DRY data file, and measured weather data from a solar radiation measurement station situated at the Technical University of Denm...

  6. Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation

    International Nuclear Information System (INIS)

    Liao, B; Stangl, R; Ma, F; Mueller, T; Lin, F; Aberle, A G; Bhatia, C S; Hoex, B

    2013-01-01

    We demonstrate that by using a water (H 2 O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al 2 O 3 ) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s −1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2 O 3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100–400 °C range and peak firing temperatures of about 800 °C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance–voltage measurements reveal that the negative fixed charge density near the AlO x /c-Si interface increases from 1.4 × 10 12 to 3.3 × 10 12 cm −2 due to firing, while the midgap interface defect density reduces from 3.3 × 10 11 to 0.8 × 10 11 cm −2 eV −1 . This work demonstrates that direct firing activation of thermal ALD Al 2 O 3 is feasible, which could be beneficial for solar cell manufacturing. (paper)

  7. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    International Nuclear Information System (INIS)

    Ryan, Daniel F.; Gallagher, Peter T.; Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C.

    2012-01-01

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  8. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  9. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion (Briefing Charts)

    Science.gov (United States)

    2014-07-01

    handled by the “enthalpy method” ** Movie File to Be Added Here** DISTRIBUTION STATEMENT A: Approved for public release; distribution is...irreparable damage to quartz chamber window • Gradually increase power until thermal equilibrium is achieved • Use “shutter curtain” to quickly cut...274 0.4 289 0.8 312 1 322 • Incomplete dissociation will lower performance • Equilibrium calculations for 1500 K solar thermal thruster

  10. Japan's Sunshine Project. Summary of solar energy research and development program (1983 edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    The Sunshine Program is managed by the promotion center established by the Agency of Industrial Science and Technology of the Ministry of International Trade and Ministry, and is allocated for fiscal 1983 a budget of 8.9 times 1-billion yen. The program is to come to a conclusion in 2000. The program covers not only photovoltaic power generation but also many other fields in which research and development efforts bear fruits of success in practical application one after the other. At the current stage, the target is the test run of a crystalline solar cell mass production line (500kW/year). Basic studies and development will also proceed for the practicalization of amorphous solar cells. For photovoltaic power generation, four demonstration systems and two central power plants will be constructed and operated. Two solar thermal power generation systems each capable of 1000kWe will be tested and operated. Solar systems will be constructed and operated for industrial process heating. Articles on photovoltaic power generation in this book cover the basic study of solar cells, development of crystalline/amorphous solar cells, development of mass production technology, and development of system technology. Reference is also made to the state of development of solar thermal power generation and solar thermal heating/cooling. (NEDO)

  11. Estimation and optimization of thermal performance of evacuated tube solar collector system

    Science.gov (United States)

    Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; Şahin, Arzu Şencan

    2014-05-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.

  12. Transient analysis of the double pass photovoltaic thermal solar collector

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M.; Sopian, Kamaruzzaman; Abakr, Yousif A.

    2006-01-01

    A mathematical model of a double pass photovoltaic thermal (PV/T) solar collector is reported in this work. It is composed of five couple unsteady nonlinear partial differential equations which are solved by using Gear implicit numerical scheme. That model was validated against experimental data and was found to accurately predict the temperature of the circulated air as well as the temperature distribution of every static elements in a two-pass PV/T solar collector.(Author)

  13. Full-size solar dynamic heat receiver thermal-vacuum tests

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  14. Application of solar flat plate collector in automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Wawge, P. [Peenya Alloys Pvt. Ltd., Parvati, Pune (India)

    2004-07-01

    In any industry, heating, cooling and compressed air the costliest part, which affects the production cost of any product. There are three types of indirect heat requirement or the requirement of heat can be divided in the three main categories. (1) low temp. 40 - 60 Deg. (2) Medium temp. 80 - 150 deg. (3) High Temp applications - above 150. Solar Flat Collectors have been proven for the use of solar energy for medium temp. application in hotels, boiler feed water preheating, dairy for pasteurization and some other indirect heating applications. There is another neglected area of application of Solar Flat Plate collector is heat treatment for powder coating plants where heat requirement is bet 50 Deg C - 70 Deg C. In any automobile industry the aesthetic or look of the vehicle place a very important role as far as the sale is concern (after the mechanical performance). The aesthetic means the body and colour of the vehicle. To get a long lasting good quality color, the powder coating procedure plays a major role. Before powder coating there is requirement of different chemical treatment for the removal of rust, grease and other cleaning of the specific sheet metal body parts. The time duration and chemical composition is depends on the selection of body material. A proven method of a chemical treatment is seven / eight tank process. The common system of heating chemicals is by way of electrical heaters, by diesel or other fuel fired boilers. This increases the cost of heat treatment process due the high cost of electricity (for industries rate of electricity is 1.5 to 2 times than the domestic rate) or oils. This can be replaced by Solar water heating system which can efficiently generate the temp of liquid upto 85 Deg C. (orig.)

  15. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  16. Advanced latent heat of fusion thermal energy storage for solar power systems

    Science.gov (United States)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  17. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  18. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  19. Thermal Efficiency of Power Module “Boiler with Solar Collectors as Additional Heat Source” For Combined Heat Supply System

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2015-04-01

    Full Text Available The purpose of work is to increase the efficiency of the combined heat supply system with solar collectors as additional thermal generators. In order to optimize the parameters of combined heat supply system the mathematical modeling of thermal processes in multi module solar collectors as additional thermal generators for preheating of the water for boiler have been done. The method of calculation of multi-module solar collectors working with forced circulation for various configurations of hydraulic connection of solar collector modules as the new result of our work have been proposed. The results of numerical simulation of thermal efficiency of solar heat source for boiler of combined heat supply system with the account of design features of the circuit; regime parameters of thermal generators that allow establishing rational conditions of its functioning have been worked out. The conditions of functioning that provide required temperature of heat carrier incoming to boiler and value of flow rate at which the slippage of heat carrier is not possible for different hydraulic circuits of solar modules have been established.

  20. Proceedings of the second workshop on thermal-non-thermal interactions in solar flares [TNT-II

    International Nuclear Information System (INIS)

    Phillips, K.J.H.

    1989-09-01

    The Second Workshop on the theme of Thermal-Non-thermal Interactions in Solar Flares (TNT-II) was held at Somerville College, University of Oxford, England, during the week of April 10-14, 1989. The keynote address, gave a view of the problems still outstanding with regard to soft and hard X-ray observations of flares. The gathering broke up into four subgroups. The subjects under discussion were: large-scale magnetic field phenomena, flare dynamics, energy release and deposition, and global energy balance. (author)

  1. Analysis of regenerative thermal storage geometries for solar gas turbines

    CSIR Research Space (South Africa)

    Klein, P

    2014-08-01

    Full Text Available Ceramic heat regenerators are suited to providing thermal storage for concentrating solar power stations based on a recuperated gas turbine cycle. Randomly packed beds of spheres and saddles; honeycombs and checker bricks were identified...

  2. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles....... The two glasses are identical, except for the fact that one of them is equipped with antireflection surfaces by the company SunArc A/ S. The transmittance was increased by 5–9%-points due to the antireflection surfaces. The increase depends on the incidence angle. The efficiency at incidence angles of 08...... and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces...

  3. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  4. Thermal Feature of a Modified Solar Phase Change Material Storage Wall System

    OpenAIRE

    Luo, Chenglong; Xu, Lijie; Ji, Jie; Liao, Mengyin; Sun, Dan

    2018-01-01

    This work is to study a novel solar PCM storage wall technology, that is, a dual-channel and thermal-insulation-in-the-middle type solar PCM storage wall (MSPCMW) system. The system has the following four independent functions, passive solar heating, heat preservation, heat insulation, and passive cooling, and it can agilely cope with the requirements of climatization of buildings in different seasons throughout the year and is exactly suitable for building in regions characterized by hot sum...

  5. Economic viability of wind and solar energy for industrial use

    International Nuclear Information System (INIS)

    Lashkari, Z.F.

    1994-01-01

    Non conventional energy sources have begun to move from fringes of technological possibility towards commercial viability. Out of the four sources, i e. solar, wind, biogas and minimicro hydel the first two viz. wind and solar energy are of relevance for industries in western region of India. This has to be seen in the context of developments in technology and hence economics both worldwide and in India. (author)

  6. Field test measurements and system optimisation at a solar operated DEC ventilation system at industrial use; Feldtest-Messungen und Systemoptimierung an einer solarbetriebenen DEC-Klimatisierungsanlage im industriellen Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Tobias; Finkenzeller, Michael; Trinkl, Christoph; Zoerner, Wilfried [Hochschule Ingolstadt (Germany). Kompetenzfeld Erneuerbare Energien

    2010-07-01

    The field of competence for renewable energy at the Ingolstadt University (Federal Republic of Germany) examines and optimizes an innovative, solar powered air conditioning system with DEC technology (DEC = Desiccant and Evaporative Cooling) in a multi-functional industrial buildings. In addition to a geothermal heat pump system for basic energy supply of heating and cooling, the building is fitted with two solar thermal solar collector panels and a sorption supported air conditioning system. This air conditioner consists of two units, each with a nominal air flow of 8,000 m{sup 3} per hour. The two solar collector panels provide the heat necessary for the regeneration of the sorption rotors and support the domestic preparation of hot water.

  7. 8. Forum on solar engineering in practice - solar engineering - politics, market and finances, marketing and sales. Proceedings 2007; 8. Forum Solarpraxis. Solartechnik - Politik, Markt and Finanzen, Marketing and Verkauf. Tagungsband 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The 8th forum on solar engineering in practice includes based upon a proven concept talks, impulse briefings and discussions in larger and smaller groups in many different ways about the subjects politics, market, finances, marketing and sales. In terms of contents the forum incorporates all subjects, which are of importance for the growth of solar engineering: New European Energy Law and Thermal Energy Law, supporting industry, mechanical engineering, training and finances. Latest subjects like Start-Up, finances, energy efficiency and market conditions and applications like solar cooling and solar thermal power plants are presented and discussed. In the frame of the forum on solar engineering in practice analyst conferences are held this year as well. Many companies, which are quoted at the stock exchange present their numbers to the analysts and financial groups. Furthermore companies in the field of the supporting industry present themselves to the fields of finance and solar engineering. (orig.)

  8. Thermal Treatment of Mercury Mine Wastes Using a Rotary Solar Kiln

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2014-01-01

    Full Text Available Thermal desorption, by a rotary kiln of mercury contaminated soil and mine wastes, has been used in order to volatilize mercury from the contaminated medium. Solar thermal desorption is an innovative treatment that uses solar energy to increase the volatility of contaminants, which are removed from a solid matrix by a controlled air flow system. Samples of soils and mine wastes used in the experiments were collected in the abandoned Valle del Azogue mine (SE, Spain, where a complex ore, composed mainly of cinnabar, arsenic minerals (realgar and orpiment and stibnite, was mined. The results showed that thermal treatment at temperatures >400 °C successfully lowered the Hg content (2070–116 ppm to <15 mg kg−1. The lowest values of mercury in treated samples were obtained at a higher temperature and exposition time. The samples that showed a high removal efficiency (>99% were associated with the presence of significant contents of cinnabar and an equivalent diameter above 0.8 mm.

  9. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  10. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  11. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    Science.gov (United States)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  12. Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors

    International Nuclear Information System (INIS)

    Daghigh, Ronak; Ibrahim, Adnan; Jin, Goh Li; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman

    2011-01-01

    BIPVT is an application where solar PV/T modules are integrated into the building structure. System design parameters such as thermal conductivity and fin efficiency, type of cells, type of coolant and operating conditions are factors which influence the performance of BIPVT. Attempts have been made to improve the efficiency of building-integrated photovoltaic thermal (BIPVT). A new design concept of water-based PVT collector for building-integrated applications has been designed and evaluated. The results of simulation study of amorphous silicon (a-Si) PV/T and crystalline silicon (c-Si) module types are based on the metrological condition of Malaysia for a typical day in March. At a flow rate of 0.02 kg/s, solar radiation level between 700 and 900 W/m 2 and ambient temperature between 22 and 32 o C, the electrical, thermal and combined photovoltaic thermal efficiencies for the PV/T (a-Si) were 4.9%, 72% and 77%, respectively. Moreover, the electrical, thermal and combined photovoltaic thermal efficiencies of the PV/T (c-Si) were 11.6%, 51% and 63%.

  13. Providing Appropriate Technology for Emerging Markets: Case Study on China’s Solar Thermal Industry

    Directory of Open Access Journals (Sweden)

    Jianghua Zhou

    2017-01-01

    Full Text Available Building on a case study of five Chinese solar thermal companies and one association, our study aims to understand how the innovator’s choices regarding the use of technology and organizational practices for new product development enable companies to design and diffuse appropriate technology in emerging markets. The study uncovers two critical factors that enhance the appropriateness of technology: redefining the identity of technology and building a local supply system. Our analysis shows that synergic innovation in both architecture and component leads to the appropriate functionalities desired by emerging markets. Moreover, modular design and the building of a local supply system enhance the process appropriateness of technology. Our study provides an empirical basis for advocating going beyond minor adaptations of existing products to creating appropriate technology for emerging markets, and extends our understandings of the upstream process of designing appropriate technology. Moreover, the emphasis on the local supply system reflects a holistic framework for shaping and delivering appropriate technology, expanding the existing research focus on the perspective of the technology itself. Our research also has managerial implications that may help firms tap into emerging markets.

  14. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  15. Proof-of-Concept Testing of the Passive Cooling System (T-CLIP™) for Solar Thermal Applications at an Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Quintana, Donald L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Vigil, Gabrielle M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Perraglio, Martin Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Farley, Cory Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Tafoya, Jose I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Martinez, Adam L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology

    2015-11-30

    The Applied Engineering and Technology-1 group (AET-1) at Los Alamos National Laboratory (LANL) conducted the proof-of-concept tests of SolarSPOT LLC’s solar thermal Temperature- Clipper, or T-CLIP™ under controlled thermal conditions using a thermal conditioning unit (TCU) and a custom made environmental chamber. The passive T-CLIP™ is a plumbing apparatus that attaches to a solar thermal collector to limit working fluid temperature and to prevent overheating, since overheating may lead to various accident scenarios. The goal of the current research was to evaluate the ability of the T-CLIP™ to control the working fluid temperature by using its passive cooling mechanism (i.e. thermosiphon, or natural circulation) in a small-scale solar thermal system. The assembled environmental chamber that is thermally controlled with the TCU allows one to simulate the various possible weather conditions, which the solar system will encounter. The performance of the T-CLIP™ was tested at two different target temperatures: 1) room temperature (70 °F) and 2) an elevated temperature (130 °F). The current test campaign demonstrated that the T-CLIP™ was able to prevent overheating by thermosiphon induced cooling in a small-scale solar thermal system. This is an important safety feature in situations where the pump is turned off due to malfunction or power outages.

  16. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  17. Solar heating. Vol. 1. Basic knowledge of thermal science

    Energy Technology Data Exchange (ETDEWEB)

    Jauffret, C.

    1982-01-01

    This document deals with general basic knowledge of thermal sciences: basics of thermodynamics, heat transfer, studies of thermal exchanges in the building industry including ventilation and the effects of the wind, basics and techniques of central heating and refrigeration (technologies, calculations, thermodynamic cycles and refrigerating machines).

  18. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    OpenAIRE

    Cisneros, Jesus

    2010-01-01

    The objective of this thesis is to perform a preliminary optical assessment of the external compound parabolic concentrator (XCPC) component in three concentrating solar thermal units. Each solar thermal unit consists an optical element (the non-imaging concentrating reflector) and a thermal element (the evacuated glass tube solar absorber). The three concentrating solar thermal units discussed in this work are DEWAR 58, a direct flow all-glass dewar, DEWAR 47 an indirect flow ...

  19. Sandia Laboratories in-house activities in support of solar thermal large power applications

    Science.gov (United States)

    Mar, R. W.

    1980-01-01

    The development of thermal energy storage subsystems for solar thermal large power applications is described. The emphasis is on characterizing the behavior of molten nitrate salts with regard to thermal decomposition, environmental interactions, and corrosion. Electrochemical techniques to determine the ionic species in the melt and for use in real time studies of corrosion are also briefly discussed.

  20. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Pilatowsky, I. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco, s/n, Colonia Centro, 62580 Temixco, Morelos (Mexico); Ruiz, V. [Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Isla de la Cartuja, 41092 Sevilla, Espana (Spain)

    2008-07-15

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design

  1. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    International Nuclear Information System (INIS)

    Garcia-Valladares, O.; Pilatowsky, I.; Ruiz, V.

    2008-01-01

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and

  2. A Comprehensive Review of Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2018-01-01

    Full Text Available Thermal energy storage (TES is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.

  3. Low-cost distributed solar-thermal-electric power generation

    Science.gov (United States)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  4. Performance and Simulation of a Stand-alone Parabolic Trough Solar Thermal Power Plant

    Science.gov (United States)

    Mohammad, S. T.; Al-Kayiem, H. H.; Assadi, M. K.; Gilani, S. I. U. H.; Khlief, A. K.

    2018-05-01

    In this paper, a Simulink® Thermolib Model has been established for simulation performance evaluation of Stand-alone Parabolic Trough Solar Thermal Power Plant in Universiti Teknologi PETRONAS, Malaysia. This paper proposes a design of 1.2 kW parabolic trough power plant. The model is capable to predict temperatures at any system outlet in the plant, as well as the power output produced. The conditions that are taken into account as input to the model are: local solar radiation and ambient temperatures, which have been measured during the year. Other parameters that have been input to the model are the collector’s sizes, location in terms of latitude and altitude. Lastly, the results are presented in graphical manner to describe the analysed variations of various outputs of the solar fields obtained, and help to predict the performance of the plant. The developed model allows an initial evaluation of the viability and technical feasibility of any similar solar thermal power plant.

  5. Stability of dye-sensitized solar cells under extended thermal stress.

    Science.gov (United States)

    Yadav, Surendra K; Ravishankar, Sandheep; Pescetelli, Sara; Agresti, Antonio; Fabregat-Santiago, Francisco; Di Carlo, Aldo

    2017-08-23

    In the last few decades, dye-sensitized solar cell (DSC) technology has been demonstrated to be a promising candidate for low cost energy production due to cost-effective materials and fabrication processes. Arguably, DSC stability is the biggest challenge for making this technology appealing for industrial exploitation. This work provides further insight into the stability of DSCs by considering specific dye-electrolyte systems characterized by Raman and impedance spectroscopy analysis. In particular, two ruthenium-based dyes, Z907 and Ru505, and two commercially available electrolytes, namely, the high stability electrolyte (HSE) and solvent-free Livion 12 (L-12), were tested. After 4700 h of thermal stress at 85 °C, the least stable device composed of Z907/HSE showed an efficiency degradation rate of ∼14%/1000 h, while the Ru505/L-12 system retained 96% of its initial efficiency by losing ∼1% each 1000 h. The present results show a viable route to stabilize the DSC technology under prolonged annealing conditions complying with the IEC standard requirements.

  6. Industrialization of polymer solar cells - phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Krebs, F.C. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark); Andersen, Rasmus B. [Mekoprint A/S, Stoevrimg (Denmark); Bork, J.; Bentzen, B.

    2012-03-15

    A three-phased project with the objective to industrialize DTU's basic polymer solar cell technology was started in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project's phase 1.The key tasks in phase 1 are to stream-line DTU's tech-nology for the industrial utilization, to demonstrate production according to this stream-lined technology at Mekoprint A/S and finally to fertilize the market for polymer solar cells by demonstrating their use in appli-cations that harmonize with their present maturity level. The main focus in the stream-lining of DTU's technology has been to demonstrate a convincing rate of reduction for the production cost, and thereby make a competitive price plausible. This has been materialized as a learning curve showing that the polymer technology presently develops considerably faster than the silicon technology. The polymer solar cells will, under the assumption that both technologies follow a projection of the learning curve, gain a cost-leading position within a reasonable time. A production cost of 5 Euro/Wp has already been demonstrated in DTU's pilot plant, and a road map for the further decrease to 1 Euro/Wp is drawn. This target is expected to be reached in 2013 in the ongoing phase 2 of the project. Another activity essential for the industrialization has been the launch of specialized materials, equipment and services required for the processing of DTU's polymer solar cells. Relevant products and services are made available for sale on DTU's homepage, www.energyconversion.dtu.dk. A production line for polymer solar cells has been established at Mekoprint. For this a retrofit solution was chosen where the core of an existing screen-printing line was dismantled and fitted to a slot-die printing head manufactured in DTU's workshop

  7. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Murray, O.L.

    1980-03-18

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  8. Prospects for solar thermal electricity generation - an introduction

    International Nuclear Information System (INIS)

    DeLaquil, P.

    1991-01-01

    The future potential for solar thermal electric power plants is quite significant. The size of the renewable energy resource base for the United States of America alone is almost 500 times its current primary energy consumption. Unfortunately, the levels of current utilization are quite small. Why have these technologies not made a larger contribution to today's market? The answer is that significant barriers still exist. (orig.)

  9. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  10. Independent Energy's Solar thermal products and services listing

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This article is a listing of companies offering products and services for the development of solar thermal electric power plants. The listing provides the company name under a heading describing the product or service the company provides. The products and services covered by the listing include developers and owner/operators, manufacturers of equipment, instruments and controls, consulting services, engineering and construction, and financial and legal services

  11. Homojunction silicon solar cells doping by ion implantation

    Science.gov (United States)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  12. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  13. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material

    International Nuclear Information System (INIS)

    Jouhara, H.; Milko, J.; Danielewicz, J.; Sayegh, M.A.; Szulgowska-Zgrzywa, M.; Ramos, J.B.; Lester, S.P.

    2016-01-01

    A novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name “heat mat” and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system. - Highlights: • A new flat heat pipe PV/T system that can be used as building materials is reported. • The new solar collector enhanced the performance of the PV by about 15%. • The new solar collector is capable of absorbing heat from ambient efficiently. • The new system is efficient from the solar/thermal conversion point of view.

  14. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  15. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  16. Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells

    Science.gov (United States)

    2013-01-01

    Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy. PMID:23281811

  17. Performance evaluation and simulation of a Compound Parabolic Concentrator (CPC) trough Solar Thermal Power Plant in Puerto Rico under solar transient conditions

    Science.gov (United States)

    Feliciano-Cruz, Luisa I.

    The increasing fossil fuel costs as well as the need to move in a somewhat sustainable future has led the world in a quest for exploiting the free and naturally available energy from the Sun to produce electric power, and Puerto Rico is no exception. This thesis proposes the design of a simulation model for the analysis and performance evaluation of a Solar Thermal Power Plant in Puerto Rico and suggests the use of the Compound Parabolic Concentrator as the solar collector of choice. Optical and thermal analysis of such collectors will be made using local solar radiation data for determining the viability of this proposed project in terms of the electric power produced and its cost.

  18. Thermal performance assessment and improvement of a solar domestic hot water tank with PCM in the mantle

    DEFF Research Database (Denmark)

    Deng, Jie; Furbo, Simon; Kong, Weiqiang

    2018-01-01

    To develop an appropriate solar DHW (Domestic Hot Water) tank for residential dwellings and put it into the European solar thermal market for promotion, thermal performance tests of PCM (Phase Change Material) hot water storage tanks of both a prototype and an improved version with a water volume...

  19. A solar powered wireless computer mouse: industrial design concepts

    NARCIS (Netherlands)

    Reich, N.H.; Veefkind, M.; van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C.; Silvester, S.

    2009-01-01

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared

  20. Multi-Use Solar Thermal System for Oxygen Production from Lunar Regolith [7227-570], Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an innovative solar thermal system for oxygen production from lunar regolith. In this system solar radiation is collected by the concentrator...