WorldWideScience

Sample records for solar system water

  1. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  2. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  3. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  4. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  5. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  6. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  7. A completely passive continuous flow solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, William S.; Hodgson, David A. [Dept. of Mechanical Enginnering, Colorado State Univ., Fort Collins, CO (United States)

    2008-07-01

    Water-borne pathogens in developing countries cause several billion cases of disease and up to 10 million deaths each year, at least half of which are children. Solar water pasteurization is a potentially cost-effective, robust and reliable solution to these problems. A completely passively controlled solar water pasteurization system with a total collector area of 0.45 m{sup 2} has been constructed. The system most recently tested produced 337 litres per m{sup 2} of collector area of treated water on a sunny day. We developed our completely passive density-driven solar water pasteurization system over a five year span so that it now achieves reliable control for all possible variations in solar conditions. We have also substantially increased its daily pure water production efficiency over the same period. We will discuss the performance of our water purification system and provide an analyses that demonstrates that the system insures safe purified water production at all times. (orig.)

  8. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    Xiaodi, Xue; Hongfei, Zheng; Kaiyan, He; Zhili, Chen; Tao, Tao; Guo, Xie

    2010-01-01

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m 2 , the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  9. A simple high efficiency solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, W.S.; Hodgson, D.A. [Colorado State University, Fort Collins, CO (United States). Dept. of Mechanical Engineering

    2005-07-01

    A new passive solar water pasteurization system based on density difference flow principles has been designed, built and tested. The system contains no valves and regulates flow based on the density difference between two columns of water. The new system eliminates boiling problems encountered in previous designs. Boiling is undesirable because it may contaminate treated water. The system with a total absorber area of 0.45 m2 has achieved a peak flow rate of 19.3 kg/h of treated water. Experiments with the prototype systems presented in this paper show that density driven systems are an attractive option to existing solar water pasteurization approaches. (author)

  10. A pilot solar water disinfecting system: performance analysis and testing

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, T.S.; El-Ghetany, H.H. [Tohoku University, Sendai (Japan). Dept. of Aeronautics and Space Engineering

    2002-07-01

    In most countries, contaminated water is the major cause of most water-borne diseases. Disinfection of water may be accomplished by a number of different physical-chemical treatments including direct application of thermal energy, chemical and filtration techniques. Solar energy also can be used effectively in this field because inactivation of microorganisms is done either by heating water to a disinfecting temperature or by exposing it to ultraviolet solar radiation. A pilot solar system for disinfecting contaminated water is designed, constructed and tested. Investigations are carried out to evaluate the performance of a wooden hot box solar facility as a solar disinfectant. Experimental data show that solar energy is viable for the disinfection process. A solar radiation model is presented and compared with the experimental data. A mathematical model of the solar disinfectant is also presented. The governing equations are solved numerically via the fourth-order Runge-Kutta method. The effects of environmental conditions (ambient temperature, wind speed, solar radiation, etc.) on the performance of the solar disinfectant are examined. Results showed that the system is affected by ambient temperature, wind speed, ultraviolet solar radiation intensity, the turbidity of the water, the quantity of water exposed, the contact area between the transparent water container in the solar disinfectant and the absorber plate as well as the geometrical parameters of the system. It is pointed out that for partially cloudy conditions with a low ambient temperature and high wind speeds, the thermal efficiency of the solar disinfectant is at a minimum. The use of solar energy for the disinfection process will increase the productivity of the system while completely eliminating the coliform group bacteria at the same time. (author)

  11. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater

    International Nuclear Information System (INIS)

    Sharshir, S.W.; Peng, Guilong; Yang, Nuo; Eltawil, Mohamed A.; Ali, Mohamed Kamal Ahmed; Kabeel, A.E.

    2016-01-01

    Highlights: • Evacuated solar water heater integrated with humidification-dehumidification system. • Reuse of warm water drained from humidification-dehumidification to feed solar stills. • The thermal performance of hybrid system is increased by 50% and maximum yield is 63.3 kg/day. • The estimated price of the freshwater produced from the hybrid system is $0.034/L. - Abstract: This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

  12. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  13. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  14. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  15. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  16. Economic Investigation of Different Configurations of Inclined Solar Water Desalination Systems

    Directory of Open Access Journals (Sweden)

    O. Phillips Agboola

    2014-02-01

    Full Text Available This study empirically investigated the performance of four configurations of inclined solar water desalination (ISWD system for parameters such as daily production, efficiency, system cost, and distilled water production cost. The empirical findings show that in terms of daily productivity improved inclined solar water desalination (IISWD performed best with 6.41 kg/m2/day while improved inclined solar water desalination with wire mesh (IISWDWM produced the least with 3.0 kg/m2/day. In terms of cost price of the systems, the control system inclined solar water desalination (ISWD is the cheapest while IISWDWM is the most expensive system. Distilled water cost price ranges from 0.059 TL/kg, for IISWDW, to 0.134 TL/kg, for IISWDWM system. All the systems are economically and technically feasible as a solar desalination system for potable water in northern Cyprus. Potable water from vendors/hawkers ranges from 0.2 to 0.3 TL/kg.

  17. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  18. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  19. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  20. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  1. Experimental investigation of a Hybrid Solar Drier and Water Heater System

    International Nuclear Information System (INIS)

    Mohajer, Alireza; Nematollahi, Omid; Joybari, Mahmood Mastani; Hashemi, Seyed Ahmad; Assari, Mohammad Reza

    2013-01-01

    Highlights: • A Hybrid Solar Drier and Water Heater System experimentally investigated. • Using collected data, GIS maps were plotted for solar energy of Khuzestan Province. • System is presented which facilitates a dual-purpose solar collector. • The system includes a 100 l water storage tank, a solar dryer with 5 trays. • Experiments were carried out to dry vegetables (parsley, dill and coriander). - Abstract: Drying process is of great importance in food industries. One of the best methods of food drying is using solar dryers. For initial estimation of solar energy, calculations were made for statistical information measured by Renewable Energy Organization of Iran. Using collected data, GIS maps were plotted for solar energy of Khuzestan Province, Iran. In this study, a new hybrid system is presented which facilitates a dual-purpose solar collector to simultaneously support a dryer system and provide consumptive hot water. The system includes a 100 l water storage tank, a solar dryer with 5 trays, and a dual-purpose collector. Experiments were carried out to dry a mixture of vegetables (parsley, dill and coriander) at constant air and water flow rates. Besides, an electrical heater has been used as an auxiliary source for heating. The results indicated that the system optimally dried the vegetables and simultaneously provided the consumptive hot water

  2. Novel configurations of solar distillation system for potable water production

    Science.gov (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.

    2013-06-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  3. Novel configurations of solar distillation system for potable water production

    International Nuclear Information System (INIS)

    Riahi, A; Yusof, K W; Sapari, N; Hashim, A M; Singh, B S

    2013-01-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  4. The ancient heritage of water ice in the solar system.

    Science.gov (United States)

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems. Copyright © 2014, American Association for the Advancement of Science.

  5. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  6. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  7. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Shaikh, N.U.; Siddiqui, M.A

    2012-01-01

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

  8. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  9. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  10. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  11. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  12. Solar Hot Water System Matter in Turkey (Mersin Case

    Directory of Open Access Journals (Sweden)

    Müjgan ŞEREFHANOĞLU SÖZEN

    2010-01-01

    Full Text Available When the effects of sustainability on the construction sector have been taken into consideration, solar active systems on buildings emerge as an important design issue in the context of renewal energy usage. Solar hot water systems such as those widely used in Turkey are inefficient and have a negative effect on a building’s aesthetic and the urban view in general because of the poor quality of installation. Natural circulated open loop systems are commonly used, particularly in the south of Turkey, as they are highly economical and require no regulation to install. Solar hot water systems tend to be clustered together on the roofs, causing visual pollution, and this situation arises largely because are not considered part of the architectural design. It is therefore important to consider the negative effects of such systems in the form of treatment studies. This study aims to determine the positive effects that will be gained by the renovation of solar hot water systems in Mersin, a city in the southern region of Turkey.

  13. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  14. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  15. Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-06-01

    Full Text Available Solar Photovoltaic (SPV water pumping system is one of the best technologies that utilize the solar energy to pump water from deep well underground water sources and to provide clean drinking water worldwide. The availability of abundant solar radiation and enough underground water sources in Ethiopia can be combined together to make clean drinking water available to rural communities. The software PVsyst 5.56 was used to study the feasibility of solar photovoltaic water pumping system in the selected sites. The designed system is capable of providing a daily average of 10.5, 7 and 6.5 m3/day for 700, 467 and 433 people in Siadberand Wayu, Wolmera and Enderta sites respectively, with average daily water consumption of 15 liters per day per person and the costs of water without any subsidy, are approximately 0.1, 0.14 and 0.16 $/m3for each site respectively. If diesel generator is used instead of solar photovoltaic water pumping system, to provide the same average daily water for the selected community, the costs of water without any subsidy are approximately 0.2, 0.23 and 0.27 $/m3 for each site respectively. A life cycle cost analysis method was also carried out for economic comparison between solar PV and the diesel pumping system. The results of this study are encouraging the use of the PV system for drinking water supply in the remote areas of the country.

  16. System design package for SIMS Prototype System 4, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air type solar energy collection techniques. The system consists of a modular designed prepackaged solar unit containing solar collctors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with inforation sufficient to assemble a similar system. The prepackage solar unit has been installed at the Mississippi Power and Light Company, Training Facilities, Clinton, Mississippi.

  17. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  18. Solar heating and hot water system installed at Saint Louis, Missouri

    Science.gov (United States)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  19. Solar Water Heater

    Science.gov (United States)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  20. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  1. Analysis of a solar water thermosyphon system; Analise do aquecimento solar de agua por sistema a termosifao

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Abner Barzola

    1992-07-01

    A design methodology and to perform the simulation of flat plate solar collectors coupled with a water storage tank and operating by natural convection circulation is presented. For a given site the incident solar radiation on a tilted and previously oriented surface is determined from solar astronomy and the dally average of the monthly data of the horizontal total solar radiation. Huancayo situated in Peru (at 12.05 deg S, long. 76.18 deg W, altitude 3,312 m), is chosen as the site to be installed the solar water system, as a mean to improve the peasant's standard of life. An optimum tilt angle for a north oriented collector surface is obtained in order to have a maximum solar capture during the water. The theoretical methodology use here is based upon the ONG's paper (1976), and in attrition is considered the hot water drainage due to the dally consumption. For the sake of comparison, the calculated flowrate values are confronted with the experimental data obtained by FERNANDEZ, for a same site location (Rio de Janeiro) and are used identical dimensions for the water thermosyphon heater. Finally, the economic feasibility of the solar water system is demonstrated when it is compared with the usual immersion electric resistance boiler. For the Peruvian conditions the more adequate solar water system for a rural or domestic usage is a 1.4 m{sup 2} area solar collector (6 parallel, 15,875 mm copper tubes), 100 l capacity for the water storage tank, 33.5 mm for the connecting tubes, being of 300 mm. The height between the collector top and the bottom of the tank. (author)

  2. Analysis of a solar water thermosyphon system; Analise do aquecimento solar de agua por sistema a termosifao

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Abner Barzola

    1992-07-01

    A design methodology and to perform the simulation of flat plate solar collectors coupled with a water storage tank and operating by natural convection circulation is presented. For a given site the incident solar radiation on a tilted and previously oriented surface is determined from solar astronomy and the dally average of the monthly data of the horizontal total solar radiation. Huancayo situated in Peru (at 12.05 deg S, long. 76.18 deg W, altitude 3,312 m), is chosen as the site to be installed the solar water system, as a mean to improve the peasant's standard of life. An optimum tilt angle for a north oriented collector surface is obtained in order to have a maximum solar capture during the water. The theoretical methodology use here is based upon the ONG's paper (1976), and in attrition is considered the hot water drainage due to the dally consumption. For the sake of comparison, the calculated flowrate values are confronted with the experimental data obtained by FERNANDEZ, for a same site location (Rio de Janeiro) and are used identical dimensions for the water thermosyphon heater. Finally, the economic feasibility of the solar water system is demonstrated when it is compared with the usual immersion electric resistance boiler. For the Peruvian conditions the more adequate solar water system for a rural or domestic usage is a 1.4 m{sup 2} area solar collector (6 parallel, 15,875 mm copper tubes), 100 l capacity for the water storage tank, 33.5 mm for the connecting tubes, being of 300 mm. The height between the collector top and the bottom of the tank. (author)

  3. Optimum systems design with random input and output applied to solar water heating

    Science.gov (United States)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  4. Development of domestic hot water systems in Costa Rica from solar energy

    International Nuclear Information System (INIS)

    Lizana-Moreno, Fernando

    2015-01-01

    A software tool is developed to implement the solar domestic hot water systems (DHW) in Costa Rica and to replace the electric water heating equipment. A database with information from the solar radiation is elaborated for different locations in Costa Rica. A manual of design DHW solar systems is realized for the country. An DHW solar system is designed for the type of average building the of country. A software is implemented to calculate the parameters and dimensions necessary for the solar installation of DHW, using the F-Chart method; in addition, the information of the mentioned database is included. A financial analysis is elaborated of the DHW solar systems in Costa Rica. The strategies are proposed for the implementation of DHW solar systems in Costa Rica [es

  5. Numerical study of a water distillation system using solar energy

    International Nuclear Information System (INIS)

    Zarzoum, K.; Zhani, K.; Bacha, H. Ben

    2016-01-01

    This paper tackles an optimization approach in order to boost the fresh water production of a new design of a solar still which is located at Sfax engineering national school in Tunisia. This optimization approach is based upon the above mentioned design's improvement by coupling the conventional solar still into at a condenser, solar air and water collector and humidifier. This new concept of a distiller solar still using humidification- dehumidification processes (HD) is exploited for the desalination purpose. As a result of this work, the humidification- dehumidification processes have an essential effect in improving the solar still performance. Performance has been predicted theoretically in terms of water and inner glass cover temperatures, the inlet temperature of air and water of the new concept of distiller on water condensation rate and fresh water production. A general model based on heat and mass transfers in each component of the unit has been developed in steady dynamic regime. The developed model is used, simulating the HD system, to investigate the influence of the meteorological and operating parameters on the system productivity. The obtained set of ordinary differential equations has been converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to simulate the HD system in order to investigate the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The obtained results were compared with those of other studies and the comparison gives a good validity of the present results

  6. Numerical study of a water distillation system using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Zarzoum, K.; Zhani, K. [Sfax University, (Turkey); Bacha, H. Ben [Prince Sattam Bin Abdulaziz University, Alkharj (Saudi Arabia)

    2016-02-15

    This paper tackles an optimization approach in order to boost the fresh water production of a new design of a solar still which is located at Sfax engineering national school in Tunisia. This optimization approach is based upon the above mentioned design's improvement by coupling the conventional solar still into at a condenser, solar air and water collector and humidifier. This new concept of a distiller solar still using humidification- dehumidification processes (HD) is exploited for the desalination purpose. As a result of this work, the humidification- dehumidification processes have an essential effect in improving the solar still performance. Performance has been predicted theoretically in terms of water and inner glass cover temperatures, the inlet temperature of air and water of the new concept of distiller on water condensation rate and fresh water production. A general model based on heat and mass transfers in each component of the unit has been developed in steady dynamic regime. The developed model is used, simulating the HD system, to investigate the influence of the meteorological and operating parameters on the system productivity. The obtained set of ordinary differential equations has been converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to simulate the HD system in order to investigate the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The obtained results were compared with those of other studies and the comparison gives a good validity of the present results.

  7. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  8. Solar Water Heater Installation Package

    Science.gov (United States)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  9. Solar hot water systems application to the solar building test facility and the Tech House

    Science.gov (United States)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  10. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  11. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  12. Solar warming systems of water installed in Colombia. Photovoltaic solar systems installed in the Country

    International Nuclear Information System (INIS)

    Rodriguez P, F.

    1995-01-01

    Between the systems that operate as of solar energy, the solar collectors to heat water have had wide use and application in the Country. Basically, a solar collector is constituted by: Box, thermal insulator, ducts and transparent roof. Generally, the used materials are the following: As thermal insulator: Polyurethane or glass fiber; as absorbent plate: Copper or aluminum, painting in dull black or selective surfaces; for the ducts: Generally it is used copper pipeline; and for the cover: Common glass or temperate glass

  13. Solar action: solar hot water in The Netherlands

    International Nuclear Information System (INIS)

    Van de Water, Adrie

    2001-01-01

    This paper focuses on the use of solar hot water systems in the Netherlands, and reports on the Dutch Solar Domestic Hot Water System agreement signed in 1999 and set up to enhance the development of the market for solar domestic hot water (SDHW) systems and their application as a sustainable energy source. The Dutch Thermal Solar Energy Programme's objectives and goals, the subsidy schemes for thermal solar energy administered by Senter - an agency of the Ministry of Economic Affairs (MEA), and the project-based and individual approaches to boosting the sales of SDHW systems are examined. Large system sales, the targeting of consumers via a national campaign, and national publicity using the slogan 'Sustainable energy. Goes without saying' commissioned by the MEA are discussed along with the support shown by the Dutch power distribution companies for SDHW systems, marketing aspects, and the outlook for sales of SDHW systems

  14. Optimized operation of a solar driven thermoelectric dehumidification system for fresh water production

    Energy Technology Data Exchange (ETDEWEB)

    Jradi, M.; Ghaddar, N.; Ghali, K. [Department of Mechanical Engineering, American University of Beirut (Lebanon)], Email: maj18@aub.edu.lb, email: farah@aub.edu.lb, email: ka04@aub.edu.lb

    2011-07-01

    One of the biggest challenges facing humanity is the scarcity of water resources; around 15% of people in the Arab world who do not have access to fresh water. A solar-driven thermoelectric system has been designed to dehumidify air and generate fresh water and combined with a solar distiller, which humidifies the air, the quantity of fresh water produced is further increased. The aim of this study is to assess the performance of this system. A case study was carried out in the Lebanese coastal humid climate zone on a residential space of 80m2 with water needs of 10 liters per day during summer months. Results showed that water requirements can be met with 5 thermoelectrically cooled channels and a solar distiller and that it would result in energy savings of from 17 to 45% during summer. This study demonstrated that the association of solar-driven thermoelectric systems and a solar distiller can provide fresh water at a low cost.

  15. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  16. Solar hot water system installed at Quality Inn, Key West, Florida

    Science.gov (United States)

    1980-04-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  17. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  18. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  19. Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

    OpenAIRE

    Hossein Lotfizadeh; André McDonald; Amit Kumar

    2016-01-01

    Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (n...

  20. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  1. Numerical Simulation of a Solar Domestic Hot Water System

    International Nuclear Information System (INIS)

    Mongibello, L; Graditi, G; Bianco, N; Di Somma, M; Naso, V

    2014-01-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed

  2. Numerical Simulation of a Solar Domestic Hot Water System

    Science.gov (United States)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  3. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    Solar water heating systems are usually designed using simplified equation of annual efficiency of the heating system from solar radiation incident on the collector during the year and empirical values of annual efficiency. The pe1formance of the preliminary design is predicted by using either/chart method or by translate it ...

  4. A High Rated Solar Water Distillation Unit for Solar Homes

    Directory of Open Access Journals (Sweden)

    Abhishek Saxena

    2016-01-01

    Full Text Available India is presently focusing on complete utilization of solar energy and saving fossil fuels, which are limited. Various solar energy systems like solar cookers, solar water heaters, solar lanterns, solar PV lights, and solar lamps are continuously availing by the people of India at a low cost and on good subsidies. Apart from this, India is a solar energy promising country with a good number of solar homes (carrying solar energy systems in its various locations. The present paper focuses on a unique combination of solar dish cooker (SDC and solar water heater (SWH to produce distilled water with a high distillate and a high daily productivity. The procedure has been discussed on the basis of experimental testing to produce distilled water by combining an evacuated type SWH and a SDC. Experimentation has been carried out in MIT, Moradabad (longitude, 28.83°N, and latitude, 78.78°E by developing the same experimental setup on behalf of solar homes. The daily productivity of distilled water was found around 3.66 litres per day in full sunshine hours for an approximated pH value of 7.7 and a ppm value of 21. The payback period (PBP has been estimated around 1.16 years of the present system.

  5. Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production

    International Nuclear Information System (INIS)

    Uday Kumar, N.T.; Mohan, Gowtham; Martin, Andrew

    2016-01-01

    Highlights: • Solar driven cogeneration system integrating membrane distillation technology is developed. • System utilizes solar thermal energy for the operations without auxiliary heaters. • Three different system integrations are experimentally investigated in UAE. • Economical benefits of solar cogeneration system is also reported. - Abstract: A novel solar thermal cogeneration system featuring the provision of potable water with membrane distillation in combination with domestic hot water supply has been developed and experimentally analyzed. The system integrates evacuated tube collectors, thermal storage, membrane distillation unit, and heat exchangers with the overall goals of maximizing the two outputs while minimizing costs for the given design conditions. Experiments were conducted during one month’s operation at AURAK’s facility in UAE, with average peak global irradiation levels of 650 W/m"2. System performance was determined for three integration strategies, all utilizing brackish water (typical conductivity of 20,000 μs/cm) as a feedstock: Thermal store integration (TSI), which resembles a conventional indirect solar domestic hot water system; Direct solar integration (DSI) connecting collectors directly to the membrane distillation unit without thermal storage; and Direct solar with thermal store integration (DSTSI), a combination of these two approaches. The DSTSI strategy offered the best performance given its operational flexibility. Here the maximum distillate productivity was 43 L/day for a total gross solar collector area of 96 m"2. In terms of simultaneous hot water production, 277 kWh/day was achieved with this configuration. An economic analysis shows that the DSTSI strategy has a payback period of 3.9 years with net cumulative savings of $325,000 during the 20 year system lifetime.

  6. Solar hot water system installed at Las Vegas, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  7. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  8. Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida

    Science.gov (United States)

    1981-01-01

    Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

  9. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  10. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  11. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  12. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  13. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  14. Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source.

    Science.gov (United States)

    Sarafian, Adam R; Nielsen, Sune G; Marschall, Horst R; McCubbin, Francis M; Monteleone, Brian D

    2014-10-31

    Determining the origin of water and the timing of its accretion within the inner solar system is important for understanding the dynamics of planet formation. The timing of water accretion to the inner solar system also has implications for how and when life emerged on Earth. We report in situ measurements of the hydrogen isotopic composition of the mineral apatite in eucrite meteorites, whose parent body is the main-belt asteroid 4 Vesta. These measurements sample one of the oldest hydrogen reservoirs in the solar system and show that Vesta contains the same hydrogen isotopic composition as that of carbonaceous chondrites. Taking into account the old ages of eucrite meteorites and their similarity to Earth's isotopic ratios of hydrogen, carbon, and nitrogen, we demonstrate that these volatiles could have been added early to Earth, rather than gained during a late accretion event. Copyright © 2014, American Association for the Advancement of Science.

  15. Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    This study focus on the analysis, modeling and simulation of solar domestic hot water(DHW) systems. Problems related to the system operation such as input weather data and hot water load conditions are also investigated.In order to investigate the heat loss as part of the total heat load, dynamic...... model of distribution network is developed and simulations are carried out for typical designed circulation type of distribution networks. For dynamic simulation of thermosyphon and drain-back solar DHW systems, thermosyphon loop model and drain-back tank model are put forward. Based on the simulations...

  16. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  17. In-Situ Measurements of the Performance of Thermosyphon Solar Water Heating Systems in Libya

    International Nuclear Information System (INIS)

    Abdunnabi, M. I. R.; Loveday, D. L.

    2014-01-01

    This paper reports on a project carried out by the Centre for Solar Energy Research and Studies (CSERS) to familiarize Libyan people with solar water heating technologies. Around 100 solar water heaters have been installed in the domestic sector and selected systems were equipped with monitoring instruments required to evaluate thermal performance. The paper presents the results of data collected over a one year period from a system installed in a family residence situated in a village located 90 km south of Tripoli (Libyan capital). The results showed that the system solar fraction was 55.8% of the average amount of daily hot water withdrawn (144 liters) at an average withdrawal temperature of 46.6 °. The total energy withdrawn during the whole year was 1557 kWl1. It is concluded that such a system is not adequate in terms of cost effectiveness for the current installed situation. It is recommended that the annual solar fraction for any solar water heating system should be over 70° in order to achieve cost—effectiveness and to help wide spread take—up of this technology.(author)

  18. System design package for SIMS prototype system 4, solar heating and domestic hot water

    Science.gov (United States)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  19. Dynamic Modeling, Control, and Analysis of a Solar Water Pumping System for Libya

    Directory of Open Access Journals (Sweden)

    Muamer M. Shebani

    2017-01-01

    Full Text Available In recent years, one of the suitable solar photovoltaic (PV applications is a water pumping system. The simplest solar PV pumping system consists of PV array, DC-DC converter, DC motor, and water pump. In this paper, water pumping system sizing for Libya is evaluated based on a daily demand using HOMER software, and dynamic modeling of a solar PV water pumping system using a Permanent Magnet DC (PMDC motor is presented in Matlab/Simulink environment. The system performance with maximum power point tracking (MPPT based on Fractional Open Circuit Voltage (FOCV is evaluated with and without a battery storage system. In some applications, a rated voltage is needed to connect a PMDC motor to a PV array through a DC-DC converter and in other applications the input voltage can vary. The evaluation of the system is based on the performance during a change in solar irradiation. Using Matlab/Simulink, simulation results are assessed to see the efficiency of the system when it is operating at a specific speed or at the MPPT. The results show that an improvement in the system efficiency can be achieved when the PMDC motor is running at a specific speed rather than at the peak PV power point.

  20. Comparison of three systems of solar water heating by thermosiphon

    Science.gov (United States)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  1. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  2. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  3. Effect of water and air flow on concentric tubular solar water desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.

    2013-01-01

    Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.

  4. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  5. Water decontamination by solar photocatalysis. Descontaminacion de aguas residuales mediante fotocatalisis solar

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Galvez, J; Malato Rodriguez, S

    1993-01-01

    A solar photocatalytic system is being developed at the Plataforma Solar de Almeria to destroy organic contaminants in water. Test with common water contaminants were conducted at the Solar Detoxification Loop with real sunlight and large quantities of water flowing through glass tubes were the solar UV light is concentrated. Experiments at this scale provide verification of laboratory studies and allow the design and operation of real preindustrial detoxification systems. (Author)

  6. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  7. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  8. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  9. Theoretical simulation of small scale psychometric solar water desalination system in semi-arid region

    International Nuclear Information System (INIS)

    Shatat, Mahmoud; Omer, Siddig; Gillott, Mark; Riffat, Saffa

    2013-01-01

    Many countries around the world suffer from water scarcity. This is especially true in remote and semi-arid regions in the Middle East and North Africa (MENA) where per capita water supplies decline as populations increase. This paper presents the results of a theoretical simulation of an affordable small scale solar water desalination plant using the psychometric humidification and dehumidification process coupled with an evacuated tube solar collector with an area of about 2 m 2 . A mathematical model was developed to describe the system's operation. Then a computer program using Simulink Matlab software was developed to provide the governing equations for the theoretical calculations of the humidification and dehumidification processes. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. After the experimental calibration of the mathematical model, a model simulating solar radiation under the climatic conditions in the Middle East region proved that the performance of the system could be improved to produce a considerably higher amount of fresh water, namely up to 17.5 kg/m 2 day. This work suggests that utilizing the concept of humidification and dehumidification, a compact water desalination unit coupled with solar collectors would significantly increase the potable water supply in remote area. It could be a unique solution of water shortages in such areas. -- Highlights: • An affordable small scale desalination system is proposed. • A mathematical model of the desalination system is developed and programmed using Matlab Simulink. • The model describes the psychometric process based on humidification and dehumidification. • The model is used in optimal selection of elements and operating conditions for solar desalination system. • The use of solar water desalination contributes significantly to reducing global warming

  10. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    OpenAIRE

    M. Z. H. Khan; M. R. Al-Mamun; S. Sikdar; P. K. Halder; M. R. Hasan

    2016-01-01

    This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experi...

  11. Analysis of systems for hot water supply with solar energy utilization

    International Nuclear Information System (INIS)

    Zlateva, M.

    2001-01-01

    The results from the analysis of the hot water consumption of a group of hotels in the Black See resort Albena are presented. Structural schemes of hot water solar systems with flat plate collectors have been synthesized. By the synthesis have been analyzed the type of the consumers, the operating period, the existing heating plants, the auxiliary energy source - electricity. The change of the solar fraction by different performance of the system have been investigated. A comparative analysis of the alternative solutions has been fulfilled. The most advantageous solution has been chosen on the basis of the evaluation of the pay-back period, the life cycle savings and the benefit-cost ratio. The effect of the changing economic characteristics on the economic efficiency have been investigated. The risk for the investments has been examined. It had been proved that for the conditions in Bulgarian Black See region the use of solar energy for hot water producing is economic reasonable. (author)

  12. Cold-Climate Solar Domestic Hot Water Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-11-01

    The Solar Heating and Lighting Sub-program has set the key goal to reduce the cost of saved energy [Csav, defined as (total cost, $)/(total discounted savings, kWh_thermal)] for solar domestic water heaters (SDWH) by at least 50%. To determine if this goal is attainable and prioritize R&D for cold-climate SDWH, life-cycle analyses were done with hypothetical lower-cost components in glycol, drainback, and thermosiphon systems. Balance-of-system (BOS, everything but the collector) measures included replacing metal components with polymeric versions and system simplification. With all BOS measures in place, Csav could be reduced more than 50% with a low-cost, selectively-coated, glazed polymeric collector, and slightly less than 50% with either a conventional selective metal-glass or a non-selective glazed polymer collector. The largest percent reduction in Csav comes from replacing conventional pressurized solar storage tanks and metal heat exchangers with un-pressurized polymer tanks with immersed polymer heat exchangers, which could be developed with relatively low-risk R&D.

  13. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  14. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Directory of Open Access Journals (Sweden)

    M. Benghanem

    2018-03-01

    Full Text Available This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia. The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed. Keywords: Photovoltaic water pumping system, Solar radiation data, Simulation, Flow rate

  15. Factors influencing the performance and efficiency of solar water pumping systems:  a review

    OpenAIRE

    Gouws, Rupert; Lukhwareni, Thendo

    2012-01-01

    The world is having an energy crisis and currently there is a strong drive towards renewable energy. A renewable energy option is solar energy, where by means of photovoltaic (PV) modules electrical energy can be produced. A residential as well as industrial application for these PV modules is solar water pumping systems. Disadvantages of solar water pumping systems are low performance and low energy efficiency. This paper provides a review on the factors that influence the performance and ef...

  16. Water and Volatiles in the Outer Solar System

    Science.gov (United States)

    Grasset, O.; Castillo-Rogez, J.; Guillot, T.; Fletcher, L. N.; Tosi, F.

    2017-10-01

    Space exploration and ground-based observations have provided outstanding evidence of the diversity and the complexity of the outer solar system. This work presents our current understanding of the nature and distribution of water and water-rich materials from the water snow line to the Kuiper Belt. This synthesis is timely, since a thorough exploration of at least one object in each region of the outer solar system has now been achieved. Next steps, starting with the Juno mission now in orbit around Jupiter, will be more focused on understanding the processes at work than on describing the general characteristics of each giant planet systems. This review is organized in three parts. First, the nature and the distribution of water and volatiles in giant and intermediary planets are described from their inner core to their outer envelopes. A special focus is given to Jupiter and Saturn, which are much better understood than the two ice giants (Uranus and Neptune) thanks to the Galileo and Cassini missions. Second, the icy moons will be discussed. Space missions and ground-based observations have revealed the variety of icy surfaces in the outer system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billion years. Ice compositions found at these bodies are also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. A detailed review of the distribution of non-ice materials on the surfaces and in the tenuous atmospheres of the moons is proposed, followed by a more focused discussion on the nature and the characteristics of the liquid layers trapped below the cold icy crusts that have been suggested in the icy Galilean moons, and in Enceladus, Dione, and Titan at Saturn. Finally, the recent observations collected by Dawn at Ceres and New Horizons at Pluto, as well as the state of knowledge of other transneptunian objects

  17. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  18. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  19. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  20. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    OpenAIRE

    Suresh Baral; Kyung Chun Kim

    2015-01-01

    The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC) water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal ef...

  1. Prototype Solar Domestic Hot Water Systems (A collation of Quarterly Reports)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report is a collection of quarterly reports from Solar Engineering and Manufacturing Company (SEMCO) covering the period from November 1976 through September 1977. SEMCO, under NASA/MSFC Contract NAS8-32248, is developing two prototype solar domestic hot water systems consisting of the following subsystems: collector, storage, control, transport, and auxiliary energy. These two systems are being installed at sites in Loxahatchee, Florida (OTS-27) and Macon, Georgia (OTS-28).

  2. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  3. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  4. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    Science.gov (United States)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  5. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  6. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    OpenAIRE

    Yu, Xiangchun; Lin, Qingqing; Zhou, Xuedong; Yang, Zhibin

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province, fresh water resource becomes increasingly insufficient. Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy. This needs modern irrigation method. Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture, and will have directive significance for Hainan Province developi...

  7. The performance and applicability study of a fixed photovoltaic-solar water disinfection system

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun

    2016-01-01

    Highlights: • A fixed photovoltaic-SODIS (solar water disinfection) system was constructed. • The system could generate electricity and produce clean water simultaneously. • The daily solar generated electricity was much more than the system consumption. • The system can be used for about 90% of whole year in Lhasa and Chennai. • Temperature enhanced the SODIS process for about 60% days of whole year in Chennai. - Abstract: The objective of the study is to construct and evaluate a fixed PV (photovoltaic) cell integrated with SODIS (solar water disinfection) system to treat drinking water and generate electricity under different climate through experimental and simulation methods. The photovoltaic and disinfection performances of the hybrid system were studied by the disinfection of Escherichia coli. The applicability of the system in Lhasa and Chennai was evaluated by analyzing the daily radiation and predicting the daily water temperature and the system electricity output. The results confirm that the temperature would dramatically enhance the SODIS process and shorten the disinfection time, when the water temperature was above 45 °C. The PV cell in the hybrid system could work under low temperature because of the water layer and the generated electricity was much more than the system consumption. The simulation results show that the days with maximum water temperature above 45 °C were more than 60% of whole year in Chennai. The generated electricity of the hybrid system was 49682.3 W h and 45615.9 W h a year in Lhasa and Chennai respectively. It was sufficient to drive the system of whole year. The number of days which realized drinking water treatment was 324 days in Lhasa and 315 days in Chennai a year.

  8. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  9. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  10. Optimization of hybrid system (wind-solar energy) for pumping water

    African Journals Online (AJOL)

    DR OKE

    Keywords: Renewable energy; pumping water; technical optimization; ... The country already start on a mega-project of solar power production (2000 MW) ...... with a wind turbine in a standalone renewable energy system based on hydrogen.

  11. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    Science.gov (United States)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  12. Optimization of hybrid system (wind-solar energy) for pumping water ...

    African Journals Online (AJOL)

    This paper presents an optimization method for a hybrid (wind-solar) autonomous system designed for pumping water. This method is based on mathematical models demonstrated for the analysis and control of the performance of the various components of the hybrid system. These models provide an estimate of ...

  13. Solar Water Heater Systems for Building Trades Class.

    Science.gov (United States)

    Ryan, Milton; And Others

    This teaching unit serves as a guide for the installation of active solar water heating systems. It contains a project designed for use with secondary level students of a building trades class. Students typically would meet 2 to 3 hours per day and would be able to complete the activity within a 1-week time period. Objectives of this unit include:…

  14. BC SEA Solar Hot Water Acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.C. [BC Sustainable Energy Association, Victoria, BC (Canada)

    2005-07-01

    Although solar hot water heating is an environmentally responsible technology that reduces fossil fuel consumption and helps mitigate global climate change, there are many barriers to its widespread use. Each year, domestic water heating contributes nearly 6 million tonnes of carbon dioxide towards Canada's greenhouse gas emissions. The installation of solar water heaters can eliminate up to 2 tonnes of carbon dioxide emissions per household. The BC SEA Solar Hot Water Acceleration project was launched in an effort to demonstrate that the technology has the potential to be widely used in homes and businesses across British Columbia. One of the main barriers to the widespread use of solar hot water heating is the initial cost of the system. Lack of public awareness and understanding of the technology are other barriers. However, other jurisdictions around the world have demonstrated that the use of renewables are the product of conscious policy decisions, including low-cost financing and other subsidies that have created demand for these technologies. To this end, the BC SEA Solar Hot Water Acceleration project will test the potential for the rapid acceleration of solar water heating in pilot communities where barriers are removed. The objective of the project is to install 100 solar water systems in homes and 25 in businesses and institutions in communities in British Columbia by July 2007. The project will explore the financial barriers to the installation of solar hot water systems and produce an action plan to reduce these barriers. In addition to leading by example, the project will help the solar energy marketplace, mitigate climate change and improve energy efficiency.

  15. Solar energy uses in home water heating systems; Utilizacao da energia solar em sistemas de aquecimento de agua residencial

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Luiz Henrique

    2008-07-01

    The awareness of the importance of the environment has stimulated the study of new energy sources renewed and less pollutant. Amongst these sources, solar energy stands alone for being perennial and clean. The use of solar energy in systems of residential water heating, instead of the electric shower, can compliment the economy of electric energy, based on the Brazilian energy matrix. To know all the factors that influence the operation of a system of water heating by solar energy it is important the determination of its economic and technical viabilities and, distribution targeting in urban and agricultural residences. To evaluate equipment of water heating for solar energy in the region west of the Parana, Brazil, an archetype with similar characteristics to equipment used in residences for two inhabitants was built, to function with natural circulation or thermosyphon and without help of a complementary heating system. The room temperature and the speed of the wind were also evaluated, verifying its influence in the heating system. The equipment revealed technical viability, reaching the minimum temperature of 35 deg C for shower, whenever the solar radiation was above the 3500 W.m{sup -2}, for the majority of the studied days. The system operated without interruptions and it did not need maintenance, except for the monthly glass cleaning. Economic viability was clearly demonstrated since the useful life of the equipment exceeded the period of use to gain its investment. (author)

  16. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  17. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  18. Longevity characteristics of flat solar water-heating collectors in hot-water-supply systems. Part 1. Procedure for calculating collector thermal output

    International Nuclear Information System (INIS)

    Avezova, N.R.; Ruziev, O. S.; Suleimanov, Sh. I.; Avezov, R. R.; Vakhidov, A.

    2013-01-01

    A procedure for calculating longevity indices (daily and monthly variations and, hence, annual thermal output) of flat solar water-heating collectors, amount of conditional fuel saved per year by using solar energy, and cost of solar fuel and thermal energy generated in hot-water-supply systems is described. (authors)

  19. Solar heating systems for houses. A design handbook for solar combisystems

    International Nuclear Information System (INIS)

    Weiss, W.

    2003-11-01

    A handbook giving guidance on systems for providing combined solar space heating and solar water heating for houses has been produced by an international team. The guidance focuses on selection of the optimum combi-system for groups of single-family houses and multi-family houses. Standard classification and evaluation procedures are described. The book should be a valuable tool for building engineers, architects, solar manufacturers and installers of solar solar energy systems, and anyone interested in optimizing combined water and space heating solar systems

  20. Water heating solar system for popular houses; Sistema solar de aquecimento de agua para residencias populares

    Energy Technology Data Exchange (ETDEWEB)

    Mogawer, Tamer; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br

    2004-07-01

    In this paper we present a case study for the design of a low cost solar heating system for a popular residence in an isolated rural community in the state of Rio Grande do Norte. This scaling can be extended to several rural communities that are in the same situation in Brazil as well as the wider use of solar power between the low-income people who do not have the benefits of electricity in their homes or want to have a lower cost of electricity. In this context, there are very interesting alternatives, among which is the replacement of electric heating bath water by heating by solar energy. According to several sources the electric shower, as it is now simple and extremely cheap, is the villain of the national electrical system. It is used in peak hours of consumption, something like 10% of electric generating capacity installed in Brazil, forcing many industries to switch off the machines because of the high cost of electricity during this period. Using the heating by solar energy, we can reduce consumption of electric shower and also increase the use of clean energy in popular homes and in isolated rural communities. This paper will address the use of solar energy with the basic purpose of heating water for bathing in popular residences and in isolated rural areas, using low cost systems, built with easily materials that is found in any area of the country. (author)

  1. Investigations of solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2005-01-01

    ). However, it is still too early to draw conclusions on the design of solar combi systems. Among others, the following questions needs to be answered: Is an external domestic hot water preparation more desirable than an internal domestic hot water preparation? Is a stratification manifold always more......A large variety of solar combi systems are on the marked to day. The best performing systems are highly advanced energy systems with thermal stratification manifolds, an efficient boiler and only one control system, which controls both the boiler and the solar collector loop (Weiss et al., 2003...... desirable than a fixed inlet position? This paper presents experimental investigations of an advanced solar combi system with thermal stratification manifold inlets both in the solar collector loop and in the space heating system and with an external domestic hot water preparation. Theoretical...

  2. Solar heating and domestic hot water system installed at North Dallas High School

    Science.gov (United States)

    1980-01-01

    The solar energy system located at the North Dallas High School, Dallas, Texas is discussed. The system is designed as a retrofit in a three story with basement, concrete frame high school building. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are included.

  3. Comparison of solar panel cooling system by using dc brushless fan and dc water

    International Nuclear Information System (INIS)

    Irwan, Y M; Leow, W Z; Irwanto, M; M, Fareq; Hassan, S I S; Amelia, A R; Safwati, I

    2015-01-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer. (paper)

  4. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Pilatowsky, I. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco, s/n, Colonia Centro, 62580 Temixco, Morelos (Mexico); Ruiz, V. [Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Isla de la Cartuja, 41092 Sevilla, Espana (Spain)

    2008-07-15

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design

  5. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    International Nuclear Information System (INIS)

    Garcia-Valladares, O.; Pilatowsky, I.; Ruiz, V.

    2008-01-01

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and

  6. OUT Success Stories: Solar Hot Water Technology

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building

  7. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  8. Solar system design for water pumping

    Science.gov (United States)

    Abdelkader, Hadidi; Mohammed, Yaichi

    2018-05-01

    In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  9. Solar system design for water pumping

    Directory of Open Access Journals (Sweden)

    Abdelkader Hadidi

    2018-01-01

    Full Text Available In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  10. Solar Water-Heater Design and Installation

    Science.gov (United States)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  11. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  12. Energy behavior of solar hot water systems under different conditions

    International Nuclear Information System (INIS)

    Fuentes Lombá, Osmanys; Torres Ten, Alonso; Arzuaga Machado, Yusnel; Hernández, Massipe J. Raúl; Cueva Gonzales, Wagner

    2017-01-01

    By means of numerical simulations in TRNSYS v14 the influence of the solar absorption area of a system for heating water with solar energy, composed by a flat solar collector and a tank thermo-accumulator, on its energy efficiency. For the study, the solar collectors EDWARDS, ISOFOTÓN 1, ISOFOTÓN 2, MADE, ROLDAN and IBERSOLAR of absorption area 2, 1,9, 1,88, 2, 1,9 and 2,3 m2 respectively were chosen. For each collector, the energy performance was simulated for one year, setting 200 L for the accumulation volume and 50 °C for the intake temperature. Despite the different characteristics of each collector, their behavior is quite similar showing a very mature technology. (author)

  13. Study on Thermal Performance Assessment of Solar Hot Water Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2014-07-01

    Full Text Available Solar Hot Water Systems (SHWS are gaining popularity in Malaysia due to increasing cost of electricity and also awareness of environmental issues related to the use of fossil fuels. The introduction of solar hot water systems in Malaysia is an indication that it has potential market. However, there is a need for a proper methodology for rating the energy performance of these systems. The main objective of this study is to assess the thermal performance of several SHWS subject to four different locations in Malaysia using combined direct measurement and computer modelling using the TRNSYS simulation program. The results showed distinct differences in performance of the systems as a result of locations and manufacturers. The findings could be used further in developing an acceptable rating system for SHWS in Malaysia.

  14. Mitigating Climate Change by the Development and Deployment of Solar Water Heating Systems

    Directory of Open Access Journals (Sweden)

    S. T. Wara

    2013-01-01

    Full Text Available Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in Water Heating Systems. Ogun State in Nigeria was used as a case study. The solar radiation for the state was explored with an annual average of 4.775 kWh/m2 recorded. The designed system comprised storage tanks and the collector unit which comprises wooden casing, copper tube, and aluminium foil. Test results for the unlagged and lagged storage tanks for water temperature at various angles of inclination (2.500°–20.000° were on the average 27.800°C and 28.300°C, respectively, for the inlet temperature and 60.100°C and 63.000°C for the outlet temperature, respectively. The efficiency of the Solar Water Heating System was 72.500% and the power saved 2.798 kW. The cost of the unit is put at 1121,400 ($145 as at August 2012. The unit developed can be applied for the purpose of reducing the cost of energy, dealing with environmental challenges, and improving the use of energy, hence serving as a climate mitigation process as this can be extended for water heating for domestic and other industrial purposes.

  15. Observations of Warm Water in Young Solar-System Analogs

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm

    dioxide). The amount of warm water is deduced and its origin is observationally constrained. With both isotopologues observed, the HDO/H2O ratio is deduced. This ratio is then compared to other sources, e.g., comets and the Earth’s ocean, to gain understanding of the origin of the water in our own solar...... system. The emission line fluxes are modeled with radiative transfer tools and compared to other results of water abundances in the same source. The observed water emission, both H18(2 O and HDO is compact for all observed sources and traces the emission on R 150 AU scales or less. In one source...

  16. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  17. Solar Water-Heater Design Package

    Science.gov (United States)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  18. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Science.gov (United States)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  19. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    Science.gov (United States)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  20. Application of an electrochemical chlorine-generation system combined with solar energy as appropriate technology for water disinfection.

    Science.gov (United States)

    Choi, Jusol; Park, Chan Gyu; Yoon, Jeyong

    2013-02-01

    Affordable water disinfection is key to reducing the waterborne disease experienced worldwide where resources are limited. A simple electrochemical system that can generate chlorine as a disinfectant from the electrolysis of sodium chloride is an appropriate technology to produce clean water, particularly if driven by solar energy. This study examined the affordability of an electrochemical chlorine generation system using solar energy and developed the necessary design information for its implementation. A two-electrode batch reactor, equipped with commercial IrO(2)-coated electrodes and a solar panel (approximate area 0.2 m(2)), was used to produce chlorine from a 35g/L solution of NaCl. Within 1 h, sufficient chlorine (0.8 g) was generated to produce clean drinking water for about 80 people for 1 day (target microorganism: Escherichia coli; daily drinking water requirement: 2 L per person; chlorine demand: 4 mg/L; solar power: 650 W/m(2) in Seoul, Korea. Small household batteries were demonstrated to be a suitable alternative power source when there is insufficient solar irradiation. Using a 1 m(2) solar panel, the reactor would take only 15 min in Seoul, Korea, or 7 min in the tropics (solar power 1300 W/m(2)), to generate 1 g of chlorine. The solar-powered electrochemical chlorine generation system for which design information is provided here is a simple and affordable way to produce chlorine with which to convert contaminated water into clean drinking water.

  1. Homemade Solar Systems

    Science.gov (United States)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  2. System design package for IBM system one: solar heating and domestic hot water

    Science.gov (United States)

    1977-01-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

  3. Feasibility analysis of domestic solar water heating systems in Greece

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; El Samani, K.; Koronakis, P.

    2005-01-01

    The excessive usage of fossil fuels has world-widely caused chain environmental consequences. An interesting solution to this problem is the systematic exploitation of available renewable energy sources, including solar energy. Greece is located in a major geographical region with an abundant and reliable supply of solar energy, even during the winter. In as much, one cannot disregard the significant dependency of the country on imported fuels, since almost 70% of its domestic energy consumption is covered by oil and natural gas imports. Despite the relative local sun abundance, during the last 10 years the local solar collectors market illustrates a sluggish behaviour, in comparison with the impressive numbers of sales during the 1980-1990 decade. At a first glance, such an occurrence characterizes a controversy. In an attempt to find a rational explanation of this peculiar situation, an integrated cost-benefit analysis is carried out taking into consideration the vast majority of the parameters affecting solar thermal energy production cost. The resulting numerical values are then compared with the corresponding ones coming from alternative hot-water production techniques. Accordingly, a quite extensive sensitivity analysis is carried out, in order to demonstrate the impact of the main techno-economic parameters on the fiscal behaviour of contemporary solar hot water production systems. The results obtained not only explain with sufficient accuracy the current local market situation but also demonstrate the specific actions that if realized they may boost solar collector sales in the corresponding local market. (author)

  4. Solar photovoltaic water pumping for remote locations

    International Nuclear Information System (INIS)

    Meah, Kala; Fletcher, Steven; Ula, Sadrul

    2008-01-01

    Many parts of the world as well as the western US are rural in nature and consequently do not have electrical distribution lines in many parts of villages, farms, and ranches. Distribution line extension costs can run from USD 10,000 to USD 16,000/km, thereby making availability of electricity to small water pumping projects economically unattractive. But, ground water and sunlight are available, which make solar photovoltaic (SPV) powered water pumping more cost effective in these areas' small scale applications. Many western states including Wyoming are passing through the sixth year of drought with the consequent shortages of water for many applications. The Wyoming State Climatologist is predicting a possible 5-10 years of drought. Drought impacts the surface water right away, while it takes much longer to impact the underground aquifers. To mitigate the effect on the livestock and wildlife, Wyoming Governor Dave Freudenthal initiated a solar water pumping initiative in cooperation with the University of Wyoming, County Conservation Districts, Rural Electric Cooperatives, and ranching organizations. Solar water pumping has several advantages over traditional systems; for example, diesel or propane engines require not only expensive fuels, they also create noise and air pollution in many remote pristine areas. Solar systems are environment friendly, low maintenance, and have no fuel cost. In this paper the design, installation, site selection, and performance monitoring of the solar system for small-scale remote water pumping will be presented. This paper also presents technical, environmental, and economic benefits of the SPV water pumping system compared to stand alone generator and electric utility. (author)

  5. System design package for SIMS prototype system 3, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using liquid flat plat collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system. The SIMS Prototype Heating and Hot Water System, Model Number 3 has been installed in a residence at Glendo State Park, Glendo, Wyoming.

  6. Solar Water Heating with Low-Cost Plastic Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  7. Technical project of a solar water heating system for Hostal FRATERNIDAD, Santiago de Cuba

    International Nuclear Information System (INIS)

    Arzuaga Machado, Yusnel; Torres Ten, Alonso; Fonseca Fonseca, Susana; Fuetes lombá, Osmanys; Massipe Hernández, J. Raúl; Gonzalez, Wagner Roberto

    2017-01-01

    It is presented the technical project of a solar water heating system for Hostal FRATERNIDAD, Santiago de Cuba, Cuba, 20 Cabannas type tourism and a one of 2 square meter flat solar collector will be used, with a storage tank of 200 liters capacity, that is to say one system per cabin. (author)

  8. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  9. Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico

    Science.gov (United States)

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...

  10. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detaile...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  11. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  12. Economic feasibility of solar water and space heating.

    Science.gov (United States)

    Bezdek, R H; Hirshberg, A S; Babcock, W H

    1979-03-23

    The economic feasibility in 1977 and 1978 of solar water and combined water and space heating is analyzed for single-family detached residences and multi-family apartment buildings in four representative U.S. cities: Boston, Massachusetts; Washington, D.C.; Grand Junction, Colorado; and Los Angeles, California. Three economic decision criteria are utilized: payback period, years to recovery of down payment, and years to net positive cash flow. The cost competitiveness of the solar systems compared to heating systems based on electricity, fuel oil, and natural gas is then discussed for each city, and the impact of the federal tax credit for solar energy systems is assessed. It is found that even without federal incentives some solar water and space heating systems are competitive. Enactment of the solar tax credit, however, greatly enhances their competitiveness. The implications of these findings for government tax and energy pricing policies are discussed.

  13. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  14. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  15. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  16. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  17. Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases

    International Nuclear Information System (INIS)

    Kianifar, Ali; Zeinali Heris, Saeed; Mahian, Omid

    2012-01-01

    An exergy analysis has been conducted to show the effect of a small fan on the exergy efficiency in a pyramid-shaped solar still. The tests were carried out in Mashhad (36° 36′ N), for two solar still systems. One of them was equipped with a small fan (active system), to enhance the evaporation rate while the other one was tested in passive condition (no fan). To examine the effects of radiation and water depth on exergy efficiency, experiments in two seasons and two different depths of water in the solar still basin were performed. The results show that during summer, active unit has higher exergy efficiency than passive one while in winter there is no considerable difference between the exergy efficiency of the units. Results also reveal that the exergy efficiency is higher when the water depth in the basin is lower. Finally, the economic analysis shows a considerable reduction in production cost of the water (8–9%) when the active system is used. -- Highlights: ► Using a small fan in the solar still; reduces the productive cost of fresh water up to 9%. ► Effects of the fan and basin depth on the exergy efficiency during summer and winter were examined. ► Utilizing an active system will increase the daily productivity of fresh water by 20%.

  18. Retrofitting Conventional Electric Domestic Hot Water Heaters to Solar Water Heating Systems in Single-Family Houses—Model Validation and Optimization

    Directory of Open Access Journals (Sweden)

    Luis R. Bernardo

    2013-02-01

    Full Text Available System cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. In this study, the TRNSYS simulation models of the retrofitting solar thermal system were validated against measurements. Results show that the validated models are in good agreement with measurements. On an annual basis a deviation of 2.5% out of 1099 kWh was obtained between the auxiliary energy from results and from the simulation model for a complete system. Using the validated model a system optimization was carried out with respect to control strategies for auxiliary heating, heat losses and volume of auxiliary storage. A sensitivity analysis was carried out regarding different volumes of retrofitted hot water boiler, DHW profiles and climates. It was estimated that, with adequate improvements, extended annual solar fractions of 60%, 78% and 81% can be achieved for Lund (Sweden, Lisbon (Portugal and Lusaka (Zambia, respectively. The correspondent collector area was 6, 4 and 3 m2, respectively. The studied retrofitted system achieves a comparable performance with conventional solar thermal systems with the potential to reduce the investment cost.

  19. Astrobiology: Water and Life in the Solar System and beyond

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Quillfeldt

    2010-03-01

    Full Text Available After some methodological considerations and a brief historical background (SETI, we describe the three main impulses to the present discipline of exo / astrobiology - extremophyles, the discovery of exoplanets, and the data gathered by several unmanned probes in the solar system. An overview of recent findings concerning the presence of frozen or liquid water in our planetary system is presented, and the main trends for the following years, summarized.

  20. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Bessa, Vanessa M.T.; Prado, Racine T.A.

    2015-01-01

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO 2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO 2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  1. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  2. Solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2007-01-01

    The focus in the present Ph.D. thesis is on the active use of solar energy for domestic hot water and space heating in so-called solar combi systems. Most efforts have been put into detailed investigations on the design of solar combi systems and on devices used for building up thermal...... the thermal behaviour of different components, and the theoretical investigations are used to study the influence of the thermal behaviour on the yearly thermal performance of solar combi systems. The experimental investigations imply detailed temperature measurements and flow visualization with the Particle...... Image Velocimetry measurement method. The theoretical investigations are based on the transient simulation program TrnSys and Computational Fluid Dynamics. The Ph.D. thesis demonstrates the influence on the thermal performance of solar combi systems of a number of different parameters...

  3. Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-16

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  4. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit...... and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water...

  5. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    Science.gov (United States)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  6. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  7. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  8. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-07-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  9. Dynamic Modelling of a Solar Water Pumping System with Energy Storage

    Directory of Open Access Journals (Sweden)

    Shatadru Biswas

    2018-01-01

    Full Text Available This paper describes the dynamic modelling of a system used for extraction of groundwater for irrigation using an alternative source of energy. The system is designed based on data of an existing project in Lalmonirhat, Bangladesh. The system comprises a 38.4 kWp solar photovoltaic array, inverter, AC motor, and pump set, which can discharge a maximum of 1,930 m3 of water per day. MATLAB simulation is performed with two types of energy storage system: (i electric energy using a battery bank and (ii stored water in a large water tank. A large battery bank and a transformer are needed in the former one, which turns out as a costly solution. The latter one requires a boost converter and a large water tank to store around 2,000 m3 of water, which is also a costly solution. A combination of both systems yields an efficient and economical solution. The effectiveness of these three systems is compared with conventional diesel engine system.

  10. Verification test report on a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  11. Performance test for a solar water heater

    Science.gov (United States)

    1979-01-01

    Two reports describe procedures and results of performance tests on domestic solar powered hot water system. Performance tests determine amount of energy collected by system, amount of energy delivered to solar source, power required to operate system and maintain proper tank temperature, overall system efficiency, and temperature distribution in tank.

  12. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  13. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Berković-Šubić, Mihaela; Rauch, Martina; Dović, Damir; Andrassy, Mladen

    2014-01-01

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher Q H,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  14. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  15. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis

    International Nuclear Information System (INIS)

    Hazami, Majdi; Naili, Nabiha; Attar, Issam; Farhat, Abdelhamid

    2013-01-01

    Highlights: • The present work studies the potential of using Domestic Solar Water Heating systems. • The payback period is between 8 and 7.5 years. • The annual savings in electrical energy is between 1316 and 1459 kW h/year. • The savings by using the solar systems is about 3969–4400.34 $. • The annual GHG emission per house is reduced by 27,800 tCO 2 . - Abstract: The main goal of the present work is to study the energetic and the economic potential of the deployment of Domestic Solar Water Heating systems (DSWHs) instead of using electric/gas/town gas water heaters. A case study related to Tunisian scenario was performed according to a typical Tunisian households composed of 4–5 persons. In this scenario we evaluated the performance and the life cycle perspective of the two most popular DSWHs over the recent years (i.e. DSWH with flat-plate solar collector, FPC, and DSWHs with evacuated-tube solar collector, ETC). The dynamic behavior of DSWHs according to Tunisian data weather was achieved by means of TRNSYS simulation. The Results showed that the FPC and ETC provide about 8118 and 12032 kW h/year of thermal energy. The economic potential of DSWHs in saving electricity and reducing carbon dioxide emissions was also investigated. Results showed that the annual savings in electrical energy relatively to the FPC and ETC are about 1316 and 1459 kW h/year, with a payback period of around 8 and 10 years, respectively. Based on gas/town gas water heater, the FPC and ETC save about 306 m 3 and 410 m 3 of gas/town gas with a payback period about 6 and 7.5 years, respectively. We found that the life cycle savings by installing the solar system instead of buying electricity to satisfy hot water needs are about $3969 (FPC) and $4400 (ETC). We establish also that the use of the DSWHs instead of installing gas/town gas water heaters save about $1518 (FPC) and $2035 (ETC). From an environmental point of view the annual GHG emission per house is reduced by 27800

  16. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Science.gov (United States)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  17. Analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  18. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  19. A water heating system analysis for rural residences, using solar energy; Analise de um sistema de aquecimento de agua para residencias rurais, utilizando energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Luiz H.; Souza, Samuel N.M. de; Siqueira, Jair A.C.; Nogueira, Carlos E.C.; Santos, Reginaldo F. [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Programa de Pos-Graduacao em Engenharia Agricola], emails: melegsouza@yahoo.com, ssouza@unioeste.br, jairsiqueira@unioeste.br, cecn1@yahoo.com.br, rfsantos@unioeste.br

    2010-01-15

    The awareness of the importance of the environment has stimulated the study of new renewed energy sources and less pollutant. Amongst these sources, solar energy stands alone for being perennial and clean. The use of solar energy in systems of agricultural residential water heating, can complement the economy of electric energy, base of the Brazilian energy matrix. Knowing the factors that influence the operation of a system of water heating by solar energy is important in determining their technical viabilities targeting their distribution in agricultural residences. To evaluate equipment of water heating for solar energy, a prototype was constructed in the campus of Assis Gurgacz College, in Cascavel,State of Parana, Brazil, with similar characteristics to equipment used in residences for two inhabitants, to function with natural circulation or thermo siphon and without help of a complementary heating system. The equipment revealed technical viability, reaching the minimum temperature for shower, of 35 deg C, whenever the solar radiation was above the 3,500 Wh m{sup -2}, for the majority of the studied days. (author)

  20. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  1. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  2. Decentralized and cost-effective solar water purification system for remote communities

    Science.gov (United States)

    Abd-ur-Rehman, Hafiz M.; Shakir, Sehar; Atta-ur-Razaq; Saqib, Hamza; Tahir, Saad

    2018-05-01

    In this study, a modified stepped solar still is proposed for water desalination. The overall objective of this work is to develop and test the proposed still design to identify the productivity enhancement as compared to conventional basin type solar still. The proposed design takes the advantage of its stepped configuration that allows the water stream to maintain a minimum desirable water column height and the water flow through the stages under the force of gravity. A minimum water depth in the still results in a higher rate of evaporation. The still is also incorporated with Fresnel lens to increase the water temperature that eventually increases the rate of water evaporation. Another important aspect of this design is the incorporation of phase-change-material (PCM) to increase the operational hours of the solar still. Consequently, daily productivity of fresh water is increased.

  3. Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters

    International Nuclear Information System (INIS)

    Tang, Runsheng; Yang, Yuqin

    2014-01-01

    Highlights: • Performance of water-in-glass evacuated tube solar water heaters (SWH) at night was studied. • Experimental measurements showed that reverse flow occurred in SWHs at night. • Reverse flow in SWHs was very high but the heat loss due to reverse flow was very low. • Reverse flow seemed not sensitive to atmospheric clearness but sensitive to collector tilt-angle. - Abstract: In this work, the thermal performance of water-in-glass evacuated tube solar water heaters (SWH) at nights was experimentally investigated. Measurements at nights showed that the water temperature in solar tubes was always lower than that in the water tank but higher than the ambient air temperature and T exp , the temperature of water inside tubes predicted in the case of the water in tubes being naturally cooled without reverse flow. This signified that the reverse flow in the system occurred at nights, making the water in solar tubes higher than T exp . It is found that the reverse flow rate in the SWH, estimated based on temperature measurements of water in solar tubes, seemed not sensitive to the atmospheric clearness but sensitive to the collector tilt-angle, the larger the tilt-angle of the collector, the higher the reverse flow rate. Experimental results also showed that, the reverse flow in the SWH was much higher as compared to that in a thermosyphonic domestic solar water heater with flat-plate collectors, but the heat loss from collectors to the air due to reverse flow in SWHs was very small and only took about 8–10% of total heat loss of systems

  4. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  5. Efficiency improvement of a concentrated solar receiver for water heating system using porous medium

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.

  6. Water pumping system using solar photovoltaic induction motor; Sistema de bombeamento de agua com energia solar fotovoltaica utilizando motor de inducao trifasico

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Eduardo Henrique Pereira de; Bezerra, Luiz Daniel Santos; Antunes, Fernando Luiz Marcelo [Universidade Federal do Ceara (DEE/PPGEE/UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica. Programa de Pos -Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    One of the main difficulties to people who live in remote areas or isolated community and not grid connected, certainly is to access potable drink water. In the world, more than 6000 children dies everyday by some kind of illnesses associated to non-potable drink water. At state of Ceara, during the dry weather periods, remain water reservoir becomes practically a mud puddle, as a result, people and animals are forced to drink this inappropriate water. To minimize this consequences in this periods some water is distributed by tankers but, sometimes, even this water is not enough potable. Underground water is an alternative to mitigate this problem. The most common technique is the use of direct current (DC) pumps set supplied by solar photovoltaic systems. However, this kind of pump-set is relatively expensive and too hard to maintain. This paper brings an alternative lower expensive and sustainable to water pumping system, it uses a three phase induction machine coupled to an underwater centrifugal pump supplied by solar photovoltaic energy system. (author)

  7. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  8. EVALUATION OF A SOLAR DESALINATION SYSTEM, TYPE CYLINDRICAL PARABOLIC CONCENTRATOR FOR SEA WATER

    Directory of Open Access Journals (Sweden)

    Carolina Mercado

    2015-12-01

    Full Text Available In this work, the methodology for the design, construction and commissioning of a solar desalinator, based on a parabolic trough collector and a solar still occurs, is presented. The energy is supplied through the solar collector, which is connected to the distiller. The equipment was set up on the premises of the Universidad Católica del Norte. It is compact, modular, low cost, easy maintenance and long life, with an average production capacity of distilled water of 2.37 l / d, however, it has to be considered that this rate is directly related with weather conditions and sea water flow entering the system, generating an average percentage of 34.04% efficiency. The results obtained with the respective findings, conclusions and recommendations for future projects associated to renewable energy equipment designed analyzed.

  9. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  10. Hepatitis A Virus Disinfection in Water by Solar Photo-Fenton Systems.

    Science.gov (United States)

    Polo, David; García-Fernández, Irene; Fernández-Ibañez, Pilar; Romalde, Jesús L

    2018-06-01

    This study evaluates and compares the effectiveness of solar photo-Fenton systems for the inactivation of hepatitis A virus (HAV) in water. The effect of solar irradiance, dark- Fenton reaction and three different reactant concentrations (2.5/5, 5/10 and 10/20 mg/L of Fe 2+ /H 2 O 2 ) on the photo-Fenton process were tested in glass bottle reactors (200 mL) during 6 h under natural sunlight. Disinfection kinetics were determined both by RT-qPCR and infectivity assays. Mean water temperatures ranged from 25 to 27.3 °C, with a maximum local noon UV irradiances of 22.36 W/m 2 . Photo-Fenton systems yielded increased viral reduction rates in comparison with the isolated effect under the Fenton reaction in darkness (negligible viral reduction) or the solar radiation (0.25 Log of RNA reduction). With the highest concentration employed (10-20 mg/L Fe 2+ -H 2 O 2 ), an average RNA reduction rate of ~ 1.8 Log (initial concentration of 10 5 pfu/mL) and a reduction of 80% in the infectivity capacity were reached. Results showed a strong synergistic effect between Fe 2+ /H 2 O 2 and sunlight, demonstrating that significant disinfection rates of HAV under photo-Fenton systems may occur with relatively higher efficiency at middle environmental temperatures and without the need for an energy-intensive light source.

  11. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  12. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  13. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  14. Solar photovoltaic power for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J. R.; Crutcher, J. L.; Norbedo, A. J.; Cummings, A. B.

    1980-07-01

    There is a considerable global need for systems which can meet the drinking water requirements of small communities (7000 people or less) from brackish water or from seawater. Solar photovoltaic panels are an ideal source of power for the purpose, primarily because they produce electricity, which can be used to power a membrane type desalting unit, i.e., either a reverse osmosis plant or an electrodialysis unit. In addition, electricity is most convenient for feedwater pumping. This paper addresses considerations which arise in the design and construction of a complete solar powered water desalination system which requires no supply of fuel nor any form of backup power (grid connection or engine generator).

  15. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    Science.gov (United States)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  16. Domestic hot water and solar energy in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Hand, F; Asare, B; Haslett, J

    1977-01-01

    Two systems are discussed which involve the use of solar energy to supply domestic hot-water requirements and their usefulness in Ireland is examined. The systems are evaluated for thermal performance and cost-effectiveness by the use of a computer simulation model of a system involving a typical commercially available solar panel. It is shown that such systems may be economically justified when compared with electricity, but only if the water supply is directly heated by solar panels and only if the installed cost of such panels is low. Further, it appears that the system performance is relatively insensitive to the panel orientation and consequently that retro-fit installations on existing houses are unlikely to cause difficulties.

  17. Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector

    International Nuclear Information System (INIS)

    Mazloumi, M.; Naghashzadegan, M.; Javaherdeh, K.

    2008-01-01

    Ahwaz is one of the sweltering cities in Iran where an enormous amount of energy is being consumed to cool residential places in a year. The aim of this research is to simulate a solar single effect lithium bromide-water absorption cooling system in Ahwaz. The solar energy is absorbed by a horizontal N-S parabolic trough collector and stored in an insulated thermal storage tank. The system has been designed to supply the cooling load of a typical house where the cooling load peak is about 17.5 kW (5 tons of refrigeration), which occurs in July. A thermodynamic model has been used to simulate the absorption cycle. The working fluid is water, which is pumped directly to the collector. The results showed that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 57.6 m 2 , which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy

  18. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    Directory of Open Access Journals (Sweden)

    Nutakki Tirumala Uday Kumar

    2017-04-01

    Full Text Available Water is the most desirable and sparse resource in Gulf cooperation council (GCC region. Utilization of point-of-use (POU water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks. However, there is no foolproof way of knowing whether the treated water is free of contaminants harmful for drinking and hence reliance on certified bottled water has increased worldwide. The bottling process right from treatment to delivery is highly unsustainable due to huge energy demand along the supply chain. As a step towards sustainability, we investigated various ways of coupling of membrane distillation (MD process with solar domestic heaters for co-production of domestic heat and pure water. Performance dynamics of various integration techniques have been evaluated and appropriate configuration has been identified for real scale application. A solar combi MD (SCMD system is experimentally tested for single household application for production 20 L/day of pure water and 250 L/day of hot water simultaneously without any auxiliary heating device. The efficiency of co-production system is compared with individual operation of solar heaters and solar membrane distillation.

  19. South Africa. Fertile ground for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-07-01

    The national solar water heating plan, launched by South Africa's state power utility Eskom, seems to be making good progress with the power generator saying at least 215,000 solar water heater (SWH) systems had been installed by February this year. (orig.)

  20. Collective solar hot water: best practices

    International Nuclear Information System (INIS)

    Beutin, Philippe; Grouzard, Patrice; Coroller, Francoise

    2005-10-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a collection of good practices concerning the selection and installation of collective solar water heating systems in France. A first note presents the Garantie de Resultats solaires (GRS - Guarantee of Solar Results), a kind of certification that gives a long term guarantee of the annual solar energy produced quantity as a function of the hot water consumption. An overview of the collective solar market is given, followed by informations on the financial incentives for feasibility studies and installations, the technical design and optimization of a collective solar project, its economic assessment, etc. Numerous examples of collective of solar heating operations in collective buildings are presented, in various regions of France, in the east (Alsace), the center (Auvergne, Ile de France (Paris region)), and the south (Languedoc-Roussillon, Midi-Pyrennes, PACA), giving technical data, financing, partnerships, etc

  1. Solar system for soil drainage

    International Nuclear Information System (INIS)

    Kocic, Z.R.; Stojanovic, J.B.; Antic, M.A.; Pavlovic, T.M.

    1999-01-01

    The paper reviews solar system for drainage of the cultivable agricultural surfaces which can be situated near the rivers in plains. These are usually very fertile surfaces which cannot be cultivated die to constant presence of the water. Using such solar systems should increase the percentage of cultivable surfaces. These systems can also be installed on the cultivable agricultural surfaces, where the water surfaces or so called still waters appear, which make impossible the application of agritechnical measures on these surfaces, significantly decreasing crops and creating conditions for the growth of pond plants and animals. Increasing the percentage of cultivable agricultural surfaces would increase national agricultural income. At the same time, increasing the percentage of cultivable agricultural surfaces decreases the surfaces of unhealthy bog, swamp and marshland soils, where many insect breed. They are the cause for soil spraying from the air, which causes the pollution of environment. Solar systems do not pollute the environment because they use solar energy as the purest source of energy. Their usage has special significance in the places where there is no electricity distribution network

  2. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  3. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  4. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  5. Dynamic Modelling of a Solar Water Pumping System with Energy Storage

    OpenAIRE

    Shatadru Biswas; M. Tariq Iqbal

    2018-01-01

    This paper describes the dynamic modelling of a system used for extraction of groundwater for irrigation using an alternative source of energy. The system is designed based on data of an existing project in Lalmonirhat, Bangladesh. The system comprises a 38.4 kWp solar photovoltaic array, inverter, AC motor, and pump set, which can discharge a maximum of 1,930 m3 of water per day. MATLAB simulation is performed with two types of energy storage system: (i) electric energy using a battery bank ...

  6. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.

    Science.gov (United States)

    Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily

    2017-05-28

    Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb- 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  7. Performance of a compact solar absorption cooling system

    International Nuclear Information System (INIS)

    Mulyanef; Kamaruzzaman Sopian

    2006-01-01

    This paper describes the performance of a compact solar absorption system. Purpose of compact solar is collector, generator and condenser in one unit. At present, two types of absorption cooling systems are marketed: the lithium bromide-water system and the ammonia-water system. In the lithium bromide-water system, water vapor is the refrigerant and ammonia water system where ammonia is the refrigerant. In addition, the ammonia-water system requires higher generator temperature 120 o C to 150 o C than a flat-plate solar collector can provide without special techniques. The lithium bromide-water system operates satisfactorily at a generator temperature of 75 o C to 100 o C, achievable by a flat-plate collector. The lithium bromide-water system also has a higher COP than the ammonia-water system. The disadvantage of the lithium bromide-water systems is that the evaporators cannot operate at temperature below 0 o C since the refrigerant is water. The Coefficient of Performance (COP) system is 0.62 and the concentration of LiBr-H 2 O is 50%

  8. Role of solar ultraviolet radiation in 'natural' water purification

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, J; Buckles, J D; Moeller, J R [Kentucky Univ., Lexington (USA)

    1976-07-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated.

  9. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  10. Quarterly overviews of thermal solar energy systems 1993

    International Nuclear Information System (INIS)

    Warmerdam, J.M.; Stap, C.A.M.

    1994-08-01

    The title overviews were compiled to support the market introduction campaign for solar water heaters in the Netherlands. Use has been made of the data-banks of the Dutch subsidy administrator 'Senter'. 88% of the 1,883 systems, that were installed in 1993, are solar water heaters. Considering the solar collector surface the largest contribution is from the use of mainly uncovered collectors in swimming pools: 51% (37% for the collector surface of solar water heaters). Energy utilities are involved in the installation of 70% of the solar heating systems (even 77% for the solar water heaters). Next to the quarterly overviews, the subsidy data for the period 1988 up to and including 1993 are analyzed. 70% of the installed systems has been purchased and 30% was rented. At the end of 1993 preparations were made to install more than 3,000 solar boilers in 1994 and 1995. 3 figs., 21 tabs

  11. Monitoring of Danish marketed solar heating systems

    International Nuclear Information System (INIS)

    Ellehauge, K.

    1993-01-01

    The paper describes the monitoring of manufactured solar heating systems for domestic hot water combined with space heating and systems for domestic hot water only. Results from the monitoring of 5 marketed combined systems for domestic hot water and space heating are presented. The systems situated at one family houses at different sites in Denmark have been monitored from January/February 1992. For the detailed monitoring of manufactured systems only for domestic hot water a test facility for simultaneous monitoring of 5 solar heating systems has been established at the Thermal Insulation Laboratory. (au)

  12. The UK solar water heating industry: a period of development and growth

    International Nuclear Information System (INIS)

    Blower, John

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the solar water heating sector in the UK and presents an illustration of the layout of a typical solar water heating system. The rising demand for solar water heating and growth in sales especially in the export market are noted. Developments within the UK solar water heating manufacturing industry are considered, and details are given of design and development in innovative policy infrastructure, and the SHINE 21 project supported by the EU's ADAPT programme and the UK Department of Trade and Industry involving collaboration between the solar water heating and plumbing industries. Developments in the new build sectors including in-roof solar collector products and the increasing number of solar water heating systems installed in UK houses are discussed along with the promising future for the market

  13. Environmental benefits of domestic solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, Soteris A.

    2004-01-01

    All nations of the world depend on fossil fuels for their energy needs. However the obligation to reduce CO 2 and other gaseous emissions in order to be in conformity with the Kyoto agreement is the reason behind which countries turn to non-polluting renewable energy sources. In this paper the pollution caused by the burning of fossil fuels is initially presented followed by a study on the environmental protection offered by the two most widely used renewable energy systems, i.e. solar water heating and solar space heating. The results presented in this paper show that by using solar energy, considerable amounts of greenhouse polluting gasses are avoided. For the case of a domestic water heating system, the saving, compared to a conventional system, is about 80% with electricity or Diesel backup and is about 75% with both electricity and Diesel backup. In the case of space heating and hot water system the saving is about 40%. It should be noted, however, that in the latter, much greater quantities of pollutant gasses are avoided. Additionally, all systems investigated give positive and very promising financial characteristics. With respect to life cycle assessment of the systems, the energy spent for manufacture and installation of the solar systems is recouped in about 1.2 years, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 9.5 years according to the fuel and the particular pollutant considered. Moreover, due to the higher solar contribution, solar water heating systems have much shorter payback times than solar space heating systems. It can, therefore, be concluded that solar energy systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future

  14. Solar water heater design package

    Science.gov (United States)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  15. Innovative approach for achieving of sustainable urban water supply system by using of solar photovoltaic energy

    Directory of Open Access Journals (Sweden)

    Jure Margeta

    2017-01-01

    Full Text Available Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV energy in urban water supply system (UWSS. Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES. The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.

  16. Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong

    International Nuclear Information System (INIS)

    Chow, T.T.; Fong, K.F.; Chan, A.L.S.; Lin, Z.

    2006-01-01

    There is a growing, government-led trend of applying renewable energy in Hong Kong. One area of interest lies in the wider use of solar-energy systems. The worldwide fast development of building-integrated solar technology has prompted the design alternative of fixing the solar panels on the external facades of buildings. In Hong Kong, high-rise buildings are found everywhere in the urban districts. How to make full use of the vertical facades of these buildings to capture the most solar radiation can be an important area in the technology promotion. In this numerical study, the potential application of a centralized solar water-heating system in high-rise residence was evaluated. Arrays of solar thermal collectors, that occupied the top two-third of the south and west facades of a hypothetical high-rise residence, were proposed for supporting the domestic hot-water system. Based on typical meteorological data, it was found that the annual efficiency of the vertical solar collectors could reach 38.4% on average, giving a solar fraction of 53.4% and a payback period of 9.2 years. Since the solar collectors were able to reduce the heat transmission through the building envelope, the payback was in fact even shorter if the energy saving in air-conditioner operation was considered

  17. Analysis of an innovative solar water desalination system using gravity induced vacuum

    International Nuclear Information System (INIS)

    Ayhan, T.; Al-Madani, H.

    2007-01-01

    This study presents the theoretical analysis, design and appropriate models of a new desalination system using gravity induced vacuum. The system utilizes natural means (gravity and atmospheric pressure) to create a vacuum under which water can be rapidly evaporated at much lower temperatures with less energy than conventional techniques. This technique is developed to overcome water storage, in the areas where good solar radiation (or waste heat sources) and sea water (or waste water sources). The developed system consists of an evaporator connected to condenser by means of a vacuum tank. The vapour produced in the evaporator is driven to condenser through the vacuum tank, where it condenses and collected as a product. Vacuum equivalent to 7 kPa (abs) or less can be created depending on ambient temperature of Bahrain climatic conditions. The effect of various operating conditions, namely water levels in condensation and evaporating columns on the system performance were studied. The theoretical analysis and preliminary experimental results show that the performance of this system depends on the condensation temperature

  18. Solar heating and hot water system installed at Alderson Broaddus College, Philippi, West Virginia

    Science.gov (United States)

    1981-01-01

    Data needed necessary to evaluate the design and operation of a solar energy heating and hot water system installed in a commercial application are presented. The information includes system descriptions, acceptance test data, schematics, as built drawing, problems encountered, all solutions and photographs of the system at various stages of completion.

  19. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  20. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    Zhao Xudong; Wang Zhangyuan; Tang Qi

    2010-01-01

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  1. Application of cooling with solid dissecants in solar heating and heating water systems; Aplicacion de la refrigeracion con desecantes solidos en sistemas solares de calefaccion y agua caliente sanitaria

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo Andres, A.; Cejudo Lopez, J. M.; Dominguez Munoz, F.; Serrano Casares, F.

    2004-07-01

    Solar thermal systems designed for domestic hot water and space heating, must be dimensioned on a larger scale than for purely domestic hot water. In summer, when there are many days when no heating is required, the oversized collector area leads to frequent stagnancy situations. In order to use the excess of collector area in summer, a solar desiccant cooling system can be integrated in the solar thermal system. This paper study such combination, using computer simulations with the program TRNSYS, Klein(2000). (Author)

  2. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  3. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    Science.gov (United States)

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  4. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    Science.gov (United States)

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  5. design and experimental study of a solar system for heating water ...

    African Journals Online (AJOL)

    M. Ghodbane, B. Boumeddane, N. Said

    2016-09-01

    Sep 1, 2016 ... This work presents a design and an experimental study of a linear Fresnel reflector solar with trapezoidal cavity. ... concentrator in the solar fields allocated to the domestics and industrial water-heaters. Keywords: ...... integrated photovoltaic panels, Journal of Solar Energy Engineering, Transactions of the ...

  6. Survey of large-scale solar water heaters installed in Taiwan, China

    Energy Technology Data Exchange (ETDEWEB)

    Chang Keh-Chin; Lee Tsong-Sheng; Chung Kung-Ming [Cheng Kung Univ., Tainan (China); Lien Ya-Feng; Lee Chine-An [Cheng Kung Univ. Research and Development Foundation, Tainan (China)

    2008-07-01

    Almost all the solar collectors installed in Taiwan, China were used for production of hot water for homeowners (residential systems), in which the area of solar collectors is less than 10 square meters. From 2001 to 2006, there were only 39 large-scale systems (defined as the area of solar collectors being over 100 m{sup 2}) installed. Their utilization purposes are for rooming house (dormitory), swimming pool, restaurant, and manufacturing process. A comprehensive survey of those large-scale solar water heaters was conducted in 2006. The objectives of the survey were to asses the systems' performance and to have the feedback from the individual users. It is found that lack of experience in system design and maintenance are the key factors for reliable operation of a system. For further promotion of large-scale solar water heaters in Taiwan, a more compressive program on a system design for manufacturing process should be conducted. (orig.)

  7. Study Of Solar PV Sizing Of Water Pumping System For Irrigation Of Asparagus

    OpenAIRE

    Mya Su Kyi; Lu Maw; Hla Myo Tun

    2015-01-01

    The motivation for this system come from the countries where economy is depended on agriculture and the climatic conditions lead to lack of rains. The farmers working in the farm lands are dependent on the rains and bore wells. Even if the farm land has a water-pump manual involvement by farmers is required to turn the pump onoff when on earth needed. This paper presents design and calculation analysis of efficient Solar PV water pumping system for irrigation of Asparagus. The study area fall...

  8. Integrated collector-storage solar water heater with extended storage unit

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Rosen, Marc A.

    2011-01-01

    The integrated collector-storage solar water heater (ICSSWH) is one of the simplest designs of solar water heater. In ICSSWH systems the conversion of solar energy into useful heat is often simple, efficient and cost effective. To broaden the usefulness of ICSSWH systems, especially for overnight applications, numerous design modifications have been proposed and analyzed in the past. In the present investigation the storage tank of an ICSSWH is coupled with an extended storage section. The total volume of the modified ICSSWH has two sections. Section A is exposed to incoming solar radiation, while section B is insulated on all sides. An expression is developed for the natural convection flow rate in section A. The inter-related energy balances are written for each section and solved to ascertain the impact of the extended storage unit on the water temperature and the water heater efficiency. The volumes of water in the two sections are optimized to achieve a maximum water temperature at a reasonably high efficiency. The influence is investigated of inclination angle of section A on the temperature of water heater and the angle is optimized. It is determined that a volume ratio of 7/3 between sections A and B yields the maximum water temperature and efficiency in the modified solar water heater. The performance of the modified water heater is also compared with a conventional ICSSWH system under similar conditions.

  9. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  10. Actual performance and economic feasibility of residential solar water heaters

    International Nuclear Information System (INIS)

    Anhalt, J.

    1987-01-01

    Four residential solar water heaters currently available on the Brazilian market have been evaluated to their possible use for substituting the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents a Brazilian family with an income of seven minimum salaries. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65% of the energy demand for residential water heating in the state of Sao Paulo. An economical study concludes that the installation and maintenance of such a solar system is feasible if long term financing is available. (author)

  11. Techno-Economic Analysis of Solar Water Heating Systems inTurkey.

    Science.gov (United States)

    Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih

    2008-02-25

    In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.

  12. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  13. The Search for Surviving Direct Samples of Early Solar System Water

    Science.gov (United States)

    Zolensky, Michael

    2016-01-01

    We have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. All classes of astromaterials studied show some degree of interaction with aqueous fluids. Nevertheless, we are still lacking fundamental information such as the location and timing of the aqueous alteration and the detailed nature of the aqueous fluids. Halite crystals in two meteorite regolith breccias were found to contain aqueous fluid inclusions (brines) trapped approx. 4.5 BYBP. Heating/freezing studies of the aqueous fluid inclusions in these halites demonstrated that they were trapped near 25 C. The initial results of our O and H isotopic measurements on these brine inclusions can be explained by a simple model mixing asteroidal and cometary water. We have been analyzing solids and organics trapped alongside the brines in the halites by FTIR, C-XANES, SXRD and Raman, as clues to the origin of the water. The organics show thermal effects that span the entire range witnessed by organics in all chondrite types. Since we identified water-soluble aromatics, including partially halogenated methanol, in some of the halite, we suspected amino acids were also present, but have thus far found that levels of amino acids were undetectable (which is very interesting). We have also been locating aqueous fluid inclusions in other astromaterials, principally carbonates in CI and CM chondrites. Although we have advanced slowly towards detailed analysis of these ancient brines, since they require techniques right at or just beyond current analytical capabilities, their eventual full characterization will completely open the window onto the origin and activity of early solar system water.

  14. Performance of Thermosyphon Solar Water Heaters in Series

    Directory of Open Access Journals (Sweden)

    Tsong-Sheng Lee

    2012-08-01

    Full Text Available More than a single thermosyphon solar water heater may be employed in applications when considerable hot water consumption is required. In this experimental investigation, eight typical Taiwanese solar water heaters were connected in series. Degree of temperature stratification and thermosyphon flow rate in a horizontal tank were evaluated. The system was tested under no-load, intermittent and continuous load conditions. Results showed that there was stratification in tanks under the no-load condition. Temperature stratification also redeveloped after the draw-off. Analysis of thermal performance of the system was conducted for each condition.

  15. The role of solar ultraviolet radiation in 'natural' water purification

    International Nuclear Information System (INIS)

    Calkins, J.; Buckles, J.D.; Moeller, J.R.

    1976-01-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated. (author)

  16. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.

    Science.gov (United States)

    Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng

    2018-01-23

    Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h -1 m -2 g -1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (solar thermal water purification system for a variety of environmental conditions.

  17. Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator

    Science.gov (United States)

    Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul

    2016-09-01

    The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.

  18. Comparative Experimental Analysis of the Thermal Performance of Evacuated Tube Solar Water Heater Systems With and Without a Mini-Compound Parabolic Concentrating (CPC Reflector(C < 1

    Directory of Open Access Journals (Sweden)

    Yuehong Su

    2012-04-01

    Full Text Available Evacuated tube solar water heater systems are widely used in China due to their high thermal efficiency, simple construction requirements, and low manufacturing costs. CPC evacuated tube solar water heaters with a geometrical concentration ratio C of less than one are rare. A comparison of the experimental rig of evacuated tube solar water heater systems with and without a mini-CPC reflector was set up, with a series of experiments done in Hefei (31°53'N, 117°15'E, China. The first and second laws of thermodynamics were used to analyze and contrast their thermal performance. The water in the tank was heated from 26.9 to 55, 65, 75, 85, and 95 °C. Two types of solar water heater systems were used, and the data gathered for two days were compared. The results show that when attaining low temperature water, the evacuated tube solar water heater system without a mini-CPC reflector has higher thermal and exergy efficiencies than the system with a mini-CPC reflector, including the average and immediate values. On the other hand, when attaining high temperature water, the system with a mini-CPC reflector has higher thermal and exergy efficiencies than the other one. The comparison presents the advantages of evacuated tube solar water heater systems with and without a mini-CPC reflector, which can be offered as a reference when choosing which solar water system to use for actual applications.

  19. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  20. Comparative analysis of DG and solar PV water pumping system

    Science.gov (United States)

    Tharani, Kusum; Dahiya, Ratna

    2016-03-01

    Looking at present day electricity scenario, there is a major electricity crisis in rural areas. The farmers are still dependant on the monsoon rains for their irrigation needs and livestock maintenance. Some of the agrarian population has opted to use Diesel Generators for pumping water in their fields. But taking into consideration the economics and environmental conditions, the above choice is not suitable for longer run. An effort to shift from non-renewable sources such as diesel to renewable energy source such as solar has been highlighted. An approximate comparative analysis showing the life cycle costs of a PV pumping system with Diesel Generator powered water pumping is done using MATLAB/STMULTNK.

  1. Solar energy system performance evaluation report for IBM System 4 at Clinton, Mississippi

    Science.gov (United States)

    1980-07-01

    The IBM System 4 Solar Energy System is described and evaluated. The system was designed to provide 35 percent of the space heating and 63 percent of the domestic hot water preheating for a single family residence located within the United States. The system consists of 259 square feet of flat plate air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing. In general, the performance of the system did not meet design expectations, since the overall design solar fraction was 48 percent and the measured value was 32 percent. Although the measured space heating solar fraction at 32 percent did agree favorably with the design space heating solar fraction at 35 percent, the hot water measured solar fraction at 33 percent did not agree favorably with the design hot water solar fraction of 63 percent. In particular collector array air leakage, dust covered collectors, abnormal hot water demand, and the preheat tank by pass valve problem are main reasons for the lower performance.

  2. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    Science.gov (United States)

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of

  3. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico

    2017-01-01

    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  4. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions...

  5. Solar water heaters in Taiwan

    International Nuclear Information System (INIS)

    Chang, K.; Lee, T.; Chung, K.

    2006-01-01

    Solar water heater has been commercialized during the last two decades in Taiwan. The government initiated the incentive programs during 1986-1991 and 2000-2004. This created an economic incentive for the end-users. The total area of solar collectors installed was more than one million square meters. The data also show that most of the solar water heaters are mainly used by the domestic sector for hot water production (about 97%). The regional popularization analysis indicates limited installation of solar water heaters in the northern district. In the eastern district and remote islands, the problems of climatic conditions and availability of localized installers/dealers are addressed. (author)

  6. Preheating of tap water with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Granum, H; Raaen, H

    1992-05-05

    In 1991 SINTEF Architecture and Building Technology won the second prize in 'The Nordic Competition for Low Energy Buildings' with a project proposal named 'LOWe'. The paper gives a description of the energy-saving features of this project, particularly the use of a solar collector for preheating of tap water. Compared with the economic profitability of other saving efforts in the project, such as good thermal insulation and efficient heat recovering system, the system for solar preheating of tap water does not seem very attractive for the time being. Loose estimates indicate a cost of close of NOK 1.00 per kWh for the produced energy in the solar collector, while the present price for electricity in Norway is about NOK 0.50 per kWh. Compared with a heat pump solution however the energy cost is not unreasonable.

  7. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  8. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    Cragan, K.E.; Klein, S.A.; Beckman, W.A.

    1995-01-01

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  9. Environmental aspects of the use of materials for solar water heaters

    International Nuclear Information System (INIS)

    Van der Leun, C.J.; De Jager, D.

    1994-10-01

    The study on the title subject has been carried out in order to apply the results in new designs and to improve the production of solar water heating systems. Attention is paid to solar water heaters that are under development and solar water heaters that are commercially available in the Netherlands. Use has been made of a IVAM-developed product analysis method. For seven solar water heater concepts, that were on the market or under development in the Netherlands in 1992, the applied amounts of materials have been inventorized. Data on the environmental effects of the production of these materials are outlined and aggregated on the level of the components and the systems. Based on those data, environmental profiles are drafted, comprising 'effect scores' on 9 environmental criteria. However, the environmental 'effect scores' are not reliable enough to determine the most important factors in order to identify options to reduce the negative environmental effects. Data on the energy consumption of the production of relevant materials are available and reliable. The solar water heaters, considered in this report, do not show large differences for that matter. It appears that the amounts of air pollution, water pollution and waste flow from the production of materials for solar water heaters are no reasons to further reduce environmental effects of the production. It is recommended to focus on the reduction of material quantities and to increase the quantity of recycled material. Also it is recommended that manufacturers of solar boilers set up a take-back system. 43 tabs., 1 appendix, 56 refs

  10. Combined solar collector and storage systems

    International Nuclear Information System (INIS)

    Norton, B.; Smyth, M.; Eames, P.; Lo, S.N.G.

    2000-01-01

    The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems

  11. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  12. Solar-hydrogen energy systems: an authoritative review of water-splitting systems by solar beam and solar heat : hydrogen production, storage, and utilisation

    National Research Council Canada - National Science Library

    Ōta, Tokio

    1979-01-01

    ... An Authoritative Review of Watersplitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilisation edited by TOKIO OHTA Professor of Materials Science and Energy System Yoko...

  13. Renewable water: Direct contact membrane distillation coupled with solar ponds

    International Nuclear Information System (INIS)

    Suárez, Francisco; Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.

    2015-01-01

    Highlights: • Experimental investigation of direct contact membrane distillation driven by solar ponds. • The DCMD/SGSP system treats ∼6 times the water flow treated by an AGMD/SGSP system. • Half of the energy extracted from the SGSP was used to transport water across the membrane. • Reducing heat losses through the DCMD/SGSP system would yield higher water fluxes. - Abstract: Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in

  14. Solar based water treatment technologies

    International Nuclear Information System (INIS)

    Ahmad, I.; Hyder, M.J.

    2000-01-01

    In developing countries, the quality of drinking water is so poor that reports of 80% diseases from water-related causes is no surprise (Tebbet, 90). Frequently, there are reports in press of outbreak of epidemics in cities due to the unhygienic drinking-water. The state of affairs in the rural areas can be well imagined, where majority of the people live with no piped water. This paper describes the solar-based methods of removing organic pollutants from waste-water (also called Advanced Oxidation Technologies) and solar desalination. Experimental results of a simple solar water-sterilization technique have been discussed, along with suggestions to enhance the performance of this technique. (author)

  15. Study Of Solar PV Sizing Of Water Pumping System For Irrigation Of Asparagus

    Directory of Open Access Journals (Sweden)

    Mya Su Kyi

    2015-08-01

    Full Text Available The motivation for this system come from the countries where economy is depended on agriculture and the climatic conditions lead to lack of rains. The farmers working in the farm lands are dependent on the rains and bore wells. Even if the farm land has a water-pump manual involvement by farmers is required to turn the pump onoff when on earth needed. This paper presents design and calculation analysis of efficient Solar PV water pumping system for irrigation of Asparagus. The study area falls 21-58-30 N Latitude and 96-5-0 E Longitude of Mandalay. The PV system sizing was made in such a way that it was capable of irrigation one acre of Asparagus plot with a daily water requirement of 25mday.

  16. Techno-Economic Analysis of Solar Water Heating Systems inTurkey

    Directory of Open Access Journals (Sweden)

    Fatih Evrendilek

    2008-02-01

    Full Text Available In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber. Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type’s heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs of the galvanized absorber were lower, net present values (NPVs of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.

  17. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Science.gov (United States)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach

  18. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Directory of Open Access Journals (Sweden)

    Gaaliche Nessreen

    2017-01-01

    Full Text Available Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH and its efficiency, was developed. Modeling through a numerical

  19. Continuous-flow solar UVB disinfection reactor for drinking water.

    Science.gov (United States)

    Mbonimpa, Eric Gentil; Vadheim, Bryan; Blatchley, Ernest R

    2012-05-01

    Access to safe, reliable sources of drinking water is a long-standing problem among people in developing countries. Sustainable solutions to these problems often involve point-of-use or community-scale water treatment systems that rely on locally-available resources and expertise. This philosophy was used in the development of a continuous-flow, solar UVB disinfection system. Numerical modeling of solar UVB spectral irradiance was used to define temporal variations in spectral irradiance at several geographically-distinct locations. The results of these simulations indicated that a solar UVB system would benefit from incorporation of a device to amplify ambient UVB fluence rate. A compound parabolic collector (CPC) was selected for this purpose. Design of the CPC was based on numerical simulations that accounted for the shape of the collector and reflectance. Based on these simulations, a prototype CPC was constructed using materials that would be available and inexpensive in many developing countries. A UVB-transparent pipe was positioned in the focal area of the CPC; water was pumped through the pipe to allow exposure of waterborne microbes to germicidal solar UVB radiation. The system was demonstrated to be effective for inactivation of Escherichia coli, and DNA-weighted UV dose was shown to govern reactor performance. The design of the reactor is expected to scale linearly, and improvements in process performance (relative to results from the prototype) can be expected by use of larger CPC geometry, inclusion of better reflective materials, and application in areas with greater ambient solar UV spectral irradiance than the location of the prototype tests. The system is expected to have application for water treatment among communities in (developing) countries in near-equatorial and tropical locations. It may also have application for disaster relief or military field operations, as well as in water treatment in areas of developed countries that receive

  20. Dissemination of Solar Water Heaters in Taiwan: The Case of Remote Islands

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2013-10-01

    Full Text Available Solar water heaters represent the success story in the development of renewable energy in Taiwan. With increasing public awareness, there are over 0.3 million residential systems in operation. To disseminate solar water heaters in remote islands, economic feasibility and water quality are taken into account in this study. The payback period in Kinmen and Penghu Counties are evaluated, according to effective annual solar energy gain, hot water consumption pattern and cost. Assessment of the scaling and corrosion tendencies for solar water heaters using tap and underground water are also presented. For flat-plate solar collectors with metal components, favorable corrosion resistance and protective anti-corrosion coatings are required.

  1. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  2. Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in dubai using flat plate and evacuated tube solar collectors

    DEFF Research Database (Denmark)

    Asim, Muhammad; Imran, Muhammad; Leung, Michael K.H.

    2017-01-01

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four...... to five members. Experiments have been performed in Ras Al Khaimah Research and Innovation Centre (RAKRIC) facility. The experimental setup has been installed to achieve the required production of 15–25 L/d of drinking water and 250 L/d of hot water for domestic purposes. Experiments have been performed...

  3. Design of absorption system water-ammonia by using solar radiation as thermal source

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Eduardo J. Cidade; Souza, Luiz Guilherme Meira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Tecnlogia. Dept. de Engenharia Mecanica], E-mails: educanti@gmail.com, lguilherme@dem.ufrn.br

    2010-07-01

    An absorption refrigeration system with the single effect of par ammonia water with 1.758 kW (1 / 2 RT) cooling capacity was designed. The system was operating under conditions of 5 degree C evaporation and 45 degree C condensation temperature. The absorption system has a heat exchanger to improve performance. The heat source is the cylinder parabolic solar concentrator (CPC). The design of the concentrator was estimated based on experimental data of the pilot plant built in the Solar Energy Laboratory, Federal University of Rio Grande do Norte. The thermodynamic model with heat and mass transfer was made to the project areas of heat exchange (absorber) and consequent construction of the system. The rectifying column was modeling assuming that liquid is in equilibrium with the vapor state in all plate. The results should show the dimensions of the compact and allows a future assessment of the operational cost. (author)

  4. Investigation and Construction of a Thermosyphoning Solar Hot Water System

    Science.gov (United States)

    Johnson, Harvey

    1978-01-01

    Describes how a thermosyphoning solar water heater capable of heating 110 kilogram of water to 80 degree Celsius and maintaining this temperature for 24 hours was constructed by four students in the fifth form of Sekolah Date Abdul Razak, Seremban, Malaysia in 1976. (HM)

  5. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  6. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  7. Modeling of a solar photovoltaic water pumping system under the influence of panel cooling

    Directory of Open Access Journals (Sweden)

    Chinathambi Gopal

    2017-01-01

    Full Text Available In this paper, the performance of a solar photovoltaic water pumping system was improved by maintaining the cell temperature in the range between 30°C and 40°C. Experiments have been conducted on a laboratory experimental set-up installed with 6.4 m2 solar panel (by providing air cooling either on the top surface or over the beneath surface of the panel to operate a centrifugal pump with a rated capacity of 0.5 HP. The performance characteristics of the photovoltaic panel (such as, cell temperature, photovoltaic panel output, and photovoltaic efficiency, pump performance characteristics (such as pump efficiency and discharge, and system performance characteristics are observed with reference to solar irradiation, ambient temperature and wind velocity. A thermal model has been developed to predict the variations of photovoltaic cell temperature based on the measured glass and tedlar temperatures. The influences of cell temperature and solar irradiation on the performance of the system are described. The results concluded that cooling of photovoltaic panel on beneath surface has maintained the cell temperature in the range between 30°C and 40°C and improved the overall efficiency by about 1.8% when compared to the system without panel cooling.

  8. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  9. Solar energy system performance evaluation: Seasonal report for IBM System 1B, Carlsbad, New Mexico

    Science.gov (United States)

    1980-01-01

    A hot solar heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. The space heating and hot water loads were near expected values for the year. Solar energy provided 43 percent of the space heating and 53 percent of the hot water energy. The system did not meet the total system solar fraction design value of 69 percent because of a combination of higher estimated space heating load than was actually encountered and the apportioning of solar energy between the space heating and the domestic hot water loads. System losses and high building temperatures also contributed to this deviation. Total net savings were 23.072 million BTUs. Most of the energy savings came during the winter months, but hot water savings were sufficient to justify running the system during the summer months.

  10. Innovative Sustainable Water Management Practices in Solar Residential Design

    Directory of Open Access Journals (Sweden)

    C. Jason Mabry

    2012-11-01

    Full Text Available This paper communicates the results of an architectural research project which sought innovative design strategies for achieving energy and resource efficiencies in water management systems traditionally used in single-family housing. It describes the engineering of an efficient, multifaceted, and fully integrated water management system for a domesticenvironment of 800 sq. ft., entirely powered by solar energy. The four innovations whose details are conveyed include the use of alternate materials for piping distribution and collection, the use of water in solar energy generation, the design of a building skin which capitalizes on water’s capacity to store heat as well as the design of a ecological groundscape which re-usesand filters waste water and rain water.Keywords: energy, plumbing, home design

  11. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  12. The annual number of days that solar heated water satisfies a specified demand temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, BT37 0QB Northern Ireland (United Kingdom); Popel, O.; Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 127412 (Russian Federation); Norton, B. [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2006-08-15

    An analysis of solar water heating systems determines the number of days in each month when solar heated water wholly meets demand above a set temperature. The approach has been used to investigate the potential contribution to water heating loads of solar water heating in two UK locations. Correlations between the approach developed and the use of solar fractions are discussed. (author)

  13. Investigations of medium sized solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    A large variety of solar combi systems are on the market, but it is still too early to draw conclusions on optimum design of solar combi systems. Among others, the following questions need to be answered: Is an external domestic hot water preparation more desirable than an internal? What...... is the advantage by using inlet stratifiers? To answer the questions, theoretical investigations are carried out for differently designed solar combi systems. The work is carried out within the Solar Heating and Cooling Programme of the International Energy Agency (IEA SHC), Task 32 Advanced storage concepts...... for solar houses and low energy buildings....

  14. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  15. Economical judge possibility uses solar collectors to warm service water and heating

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2006-09-01

    Full Text Available The sun-heated water has been used from before fossil fuels started to determine the direction of our power consumption. This article is focused on the assessing of the use of solar energy as one of inexhaustible resources that has multiple uses, including hot water service systems. Heating is rendered through solar collectors that permit to transform solar energy to warm water. We divide solar collectors into various groups but in principle they are medium temperature collectors and low temperature collectors. The work is directed also on the solar collector market. In our case the market is just at its initial stage as this technology is little known and costs of collectors are rather high, compared to our conditions, on average, they may grow up to 100,000 Slovac crowns per a family house. Because it is the only investment and the costs of operation are minimum throughout the entire collectors lifetime, from the economic point of view, it is a rather advantageous investment. Solar collectors are used in heating and also in hot service water systems in family houses, where they permit to lower costs for the consumption of many kinds of energies. In the hot service water system, solar collectors permit to lower the consumption by almost 70 %. This way of using the solar energy is very prospective and in future it will be used in various sectors

  16. Water Purification and Disinfection by using Solar Energy: Towards Green Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md Z.H. Khan

    2015-12-01

    Full Text Available The aim of this work was to design a solar water treatment plant for household purpose. Water purification is the process of eradicating detrimental chemicals, biological poisons, suspended solids and gases from contaminated water. In this work we have reported an investigation of compact filter which is cost effective for developing countries and ease of maintenance. We have arranged a solar water disinfection system that improves the microbiological quality of drinking water at household level. We get 14 L pure water and 16 ml water vapour within 240 min by using filtration method. From our work we get hot water up to 49°C. The efficiency of the system at sunny days and cloudy days are 18.23% and 18.13% respectively. This simple solar hybrid system helps to remove turbidity as well as chemical and pathogenic contaminants from water sources in the most affordable, and expedient manner possibly.

  17. Comparison of conventional and solar-water-heating products and industries report

    Energy Technology Data Exchange (ETDEWEB)

    Noreen, D; LeChevalier, R; Choi, M; Morehouse, J

    1980-07-11

    President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined in the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.

  18. Solar system design to heating water for a biodigester; Diseno de un sistema solar de calentamiento de agua para un biodigestor

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Castro, Lucia Monica; Quinto Diez, Pedro [Escuela Superior de Ingenieria Mecanica y Electrica, Instituto Politecnico Nacional, Mexico, D.F. (Mexico)]. E-mail: moni-80-lgc@hotmail.com; pqd510@hotmail.com; Tovar Galvez, Luis Raul [Centro Interdisciplinario de Investigaciones de Estudios sobre Medio Ambiente y Desarrollo, Instituto Politecnico Nacional, Mexico, D.F. (Mexico)]. E-mail: ltovarg@ipn.mx

    2010-11-15

    In this paper a Solar System of Heating Water (SSHW) to provide energy to a biodigester which produces biogas located in the Interdisciplinary Center of Investigation of Studies About Environment and Development (CIIEMAD) is assessed. This evaluation is made by means of the f Method considerating the extraterrestrial radiation, the earth radiation in the zone and the necessary energy to maintain at 55 degrees Celsius the mixture inside the biodigester. The data were introduced in the SOLAR program to calculate both the harnessing area m{sup 2} and the storage capacity in L/m{sup 2}. To guarantee the good performance of the SSHW, a control and monitoring system for the temperature of the mix inside the biodigester is proposed. It also controls the input and output temperature to the solar collectors, as well as the cost analysis which shows the savings of fuel of the SSHW with a conventional system to heating water. [Spanish] En este articulo se evalua un sistema solar de calentamiento de agua (SSCA) para proveer energia a un biodigestor que forma parte del sistema de generacion de biogas (SGB) ubicado en el Centro Interdisciplinario de Investigaciones de Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD). Dicha evaluacion se realiza por medio del Metodo f de diseno que considera datos de radiacion terrestre, radiacion extraterrestre sobre la zona y la energia necesaria para mantener la temperatura de la mezcla dentro del biodigestor a 55 grados centigrados. Los datos fueron introducidos en el programa SOLAR para el calculo del area de captacion en m{sup 2} y la capacidad de almacenamiento en L/m{sup 2}. Para garantizar el buen funcionamiento del SSCA se propone un sistema de control y monitoreo de la temperatura de la mezcla dentro del biodigestor. Tambien se controla la temperatura de entrada y salida a los colectores solares, asi como el analisis de costos que muestra el ahorro de combustible del SSCA con un sistema convencional de calentamiento de agua.

  19. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system; 1976 nendo taiyonetsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1974-76 research result on solar cooling/heating and hot water supply systems. Research was made on survey and analysis of current R and D states, system analysis, energy impact analysis, installation sites of solar collectors, diffusion policy, profitability, and performance evaluation method. Main research results obtained are as follows. The effect of solar cooling/heating and hot water supply on the Japanese energy demand in 2000 is estimated to be 13% for residences and 5% for the other buildings. Environment pollution derived from solar cooling/heating is extremely less than that from conventional energy quantitatively. The facility cost is estimated to be probably 27,000yen/m{sup 2} in collector cost, and nearly 100,000yen/t in heat storage tank cost. As design data for solar cooling/heating systems, the estimation method of heat collection for every solar radiation rank, performance comparison of honeycomb type collectors, and various data for air heat collection systems are presented. (NEDO)

  20. Simulation of solar-powered ammonia-water integrated hybrid cooling system

    International Nuclear Information System (INIS)

    Chinnappa, J.C.V.; Wijeysundera, N.E.

    1992-01-01

    A number of solar-operated air-conditioning systems based on the H 2 O-LiBr absorption chiller were built, installed, and monitored. A systematic study at the University of Colorado has been published. This paper presents a simple cost-benefit analysis of the conventional vapor compression system (VCS), the vapor absorption system (VAS), and the integrated hybrid system (IHS). The cost of energy input to the VAS and the IHS were compared with the energy cost of the VCS that these solar-powered systems replace. It was found that cost savings can be realized with solar-powered systems, only after a critical overall solar fraction is exceeded. Typically, this value was about 0.7 for a VAS and about 0.12 for a IHS. These cost-benefit results provided the motivation for a more detailed study of the IHS. There has also been other efforts in this direction

  1. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  2. Ground water lifting in the remote and arid areas of Egypt using solar photovoltaic pumps

    International Nuclear Information System (INIS)

    Younes, M.A.

    2006-01-01

    An experimental study has been carried out at Mechanical and Electrical Research Institute, Qenater (300 N, 310 E), Egypt on a 2000 WP solar photovoltaic (PV) water pump. The main objective is to investigate the feasibility of utilizing solar energy in ground water lifting. A solar PV pumping system has been constructed as a prototype for a large-scale photovoltaic project in south of Egypt. Solar potential at the remote and arid areas of Egypt is discussed. Installation and operation factors as a function of environmental conditions are presented. Performance of the water pump has been evaluated. The water discharge and system efficiency has been estimated and presented. The changes in water discharge and system efficiency with change in solar radiation has been measured and presented. Preliminary results show that there is a huge potential and real-ability for solar PV submersible water pumping in the remote and arid areas of Egypt

  3. Optimal operation by dynamic programming in a solar/electric hot-water system; Taiyonetsu/denryoku kyuto system no doteki keikakuho ni yoru saiteki un`yo

    Energy Technology Data Exchange (ETDEWEB)

    Edo, S; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    With regard to utilization of a solar/electric hot-water system, a discussion was given by using a dynamic programming method on operation of a system which minimizes power charge. The discussed system is an installation in a welfare facility accommodating 100 persons, where solar heat is stored in a heat storage tank from a heat collector, and utilized for hot water supply. If the solar heat is insufficient for required hot water quantity, the water is heated by using an electric heater. The discussion compared the system operation using the dynamic programming method with the following two systems: the operation method 1, which does not utilize insolation forecast and the operation method 2, in which insolation forecast is utilized and late-night electric power is utilized for heating water in shortage. As a result of the calculation, the operation using the dynamic programming method conducts heat storage by utilizing the late-night power even if insolation is sufficient in winter in order to suppress heating by utilizing late-night power for days with less insolation. Thus, suppression is given on excessive utilization of day-time power and on rise in annual maximum power demand. It was found that the present system reduces power consumption by 37.7% when compared with the operation method 1, and 22.7% when compared even with the operation method 2. 3 refs., 5 figs., 3 tabs.

  4. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  5. A unified approach for designing a photovoltaic solar system for the underground water pumping well-34 at Disi aquifer

    International Nuclear Information System (INIS)

    Ebaid, Munzer S.Y.; Qandil, Hasan; Hammad, Mahmoud

    2013-01-01

    Highlights: • Photovoltaic system for the underground water pumping wells at Disi aquifer was designed. • Solar irradiation values on horizontal and tilted surfaces were identified. • Method of the worst month MWM and peak sun hours PSH method were applied. • Thirty-eight percentage of the total PV panels would not be used beyond the design conditions (December). • Dust accumulation problem were solved by cleaning or as a 5% power loss factor. - Abstract: This paper aims to present a detailed design of a standalone photovoltaic system used to power continuously a submersible water pump from a selected well (Well-34 of a current static water level, SWL = 147.3 m), out of 55 production wells located at the Disi aquifer, where each of these wells should have a continuously-operating water flow rate of 80 l/s (288 m 3 /h) according to the Disi project specifications. Initially, solar irradiation calculations on horizontal and tilted surfaces were carried out to identify the potential of solar energy available in kW h/m 2 /day in the Disi aquifer. Then, a system design approach based on the worst month of the year (December) was carried out to choose and size the components of photovoltaic system that is required to operate the submersible pump over the 25-year operation period. The system sizing implies defining the number and type of solar panels required to capture the available solar energy, the capacity and number of batteries, inverter rating, cable sizing, charge controller numbers and rating to ensure the maximum reliability of the system. Furthermore, beyond the design conditions of the worst month (December), extra energy can be produced by the PV system during the rest of the year time, which can be used for many purposes. Also, the design process considers the problem of dust accumulation on PV surfaces and this can be dealt with by periodic cleaning

  6. Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Elkelawy, Medhat; Alm El Din, Hagar; Alghrubah, Adel

    2017-01-01

    Highlights: • The impact of PCM and solar concentrator on the production of solar still studied experimentally under Egyptian conditions. • Exergetic analysis studied for passive solar still in winter and summer at different water depth. • Experimental study of water depth effect on solar still with PCM and solar concentrator. • A comparison between improved still with and usual still is carried out for winter and summer. - Abstract: In the present study, two solar stills were assembled and experienced to evaluate the yield and energy performance of an improved passive solar desalination system compared to a conventional one. The improved still is incorporated with a latent heat thermal energy storage medium and a parabolic solar concentrator. A parabolic solar concentrator was added to concentrate and increase the amount of solar irradiance absorbed by the still basin. Paraffin wax was applied as phase change material (PCM) in the solar still bottom plate. In the current study also, the effect of impure water profundity inside the still on still’s accumulated yield have been assessed. The following study involved a mathematical analysis for calculation of the exergetic proficiency as an efficient tool for the optimization, and yield evaluation of any energy systems and solar stills as well. Experimental research conducted in steady days of summer and winter at six different values of impure water profundity inside the solar still basin. The salinity of the impure water tested was about 3000–5000 ppm, while the salinity for the resulted drinkable water was about 550–500 ppm. The performed outcomes revealed that during summer, exergetic efficiency is higher than its qualified value in winter with approximately (10–15%) for the same water profundity. Results also disclosed that, the exergetic efficiency is higher when the water profundity in the basin is lower with approximately (6–9%). The experimental findings reveals that, the solar still with

  7. Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hinti, I.; Al-Ghandoor, A.; Maaly, A.; Abu Naqeera, I.; Al-Khateeb, Z.; Al-Sheikh, O. [The Hashemite University, Zarqa 13115 (Jordan)

    2010-08-15

    This paper presents an experimental investigation of the performance of water-phase change material (PCM) storage for use with conventional solar water heating systems. Paraffin wax contained in small cylindrical aluminum containers is used as the PCM. The containers are packed in a commercially available, cylindrical hot water storage tank on two levels. The PCM storage advantage is firstly demonstrated under controlled energy input experiments with the aid of an electrical heater on an isolated storage tank, with and without the PCM containers. It was found that the use of the suggested configuration can result in a 13-14 C advantage in the stored hot water temperature over extended periods of time. The storage performance was also investigated when connected to flat plate collectors in a closed-loop system with conventional natural circulation. Over a test period of 24 h, the stored water temperature remained at least 30 C higher than the ambient temperature. The use of short periods of forced circulation was found to have minimum effect on the performance of the system. Finally, the recovery effect and the storage performance of the PCM was analyzed under open-loop operation patterns, structured to simulate daily use patterns. (author)

  8. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali

    2014-01-01

    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  9. Solar desalination system of combined solar still and humidification-dehumidification unit

    Science.gov (United States)

    Ghazy, Ahmed; Fath, Hassan E. S.

    2016-11-01

    Solar stills, as a simple technology, have many advantages such as simple design; unsophisticated fabrication; low capital and operation costs and easily maintained. However, their low daily production has put constraints on their usage. A radical improvement in the performance of solar stills can be achieved by the partial recovery of the energy losses from the glass cover of the still. This paper simulates a direct solar distillation system of combined solar still with an air heating humidification-dehumidification (HDH) sub-system. The main objective of the Still-HDH system is to improve the productivity and thermal efficiency of the conventional solar still by partially recovering the still energy losses to the ambient for additional water production. Various procedures have been employed to improve the thermal performance of the integrated system by recovering heat losses from one component in another component of the system. Simulations have been carried out for the performance of the Still-HDH system under different weather conditions. A comparison has been held between the Still-HDH system and a conventional solar still of the same size and under the same operating conditions.

  10. D/H ratios of the inner Solar System.

    Science.gov (United States)

    Hallis, L J

    2017-05-28

    The original hydrogen isotope (D/H) ratios of different planetary bodies may indicate where each body formed in the Solar System. However, geological and atmospheric processes can alter these ratios through time. Over the past few decades, D/H ratios in meteorites from Vesta and Mars, as well as from S- and C-type asteroids, have been measured. The aim of this article is to bring together all previously published data from these bodies, as well as the Earth, in order to determine the original D/H ratio for each of these inner Solar System planetary bodies. Once all secondary processes have been stripped away, the inner Solar System appears to be relatively homogeneous in terms of water D/H, with the original water D/H ratios of Vesta, Mars, the Earth, and S- and C-type asteroids all falling between δD values of -100‰ and -590‰. This homogeneity is in accord with the 'Grand tack' model of Solar System formation, where giant planet migration causes the S- and C-type asteroids to be mixed within 1 AU to eventually form the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  11. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  12. Comparison of two temperature control techniques in a forced water heater solar system

    Science.gov (United States)

    Hernández, E.; E Guzmán, R.; Santos, A.; Cordoba, E.

    2017-12-01

    a study on the performance of a forced solar heating system in which a comparative analysis of two control strategies, including the classic on-off control and PID control is presented. From the experimental results it was found that the two control strategies show a similar behaviour in the solar heating system forced an approximate settling time of 60 min and over-elongation 2°C for the two control strategies. Furthermore, the maximum temperature in the storage tank was 46°C and the maximum efficiency of flat plate collector was 76.7% given that this efficiency is the ratio of the energy of the radiation on the collector and the energy used to heat water. The efficiency obtained is a fact well accepted because the business efficiencies of flat plate collectors are approximately 70%.

  13. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    Science.gov (United States)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  14. Fiscal 1974 Sunshine Project result report. Research on solar cooling/heating and hot water supply system; 1974 nendo taiyonetsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report describes the fiscal 1974 research result on solar cooling/heating and hot water supply system. This 3- year project from fiscal 1974 to 1976 aims to predict the share of solar energy in future cooling/heating and hot water supply energy demand, and develop simulation technology. The project surveys and analyzes current domestic and overseas development states, and studies various systems to obtain characteristics of every system, pursuit an optimum implementation, and establish a diffusion plan. Future energy consumptions and prices are predicted in relation to energy saving, and the utilization impact of solar energy is analyzed. Study is also made on diffusion plan, profitability and performance evaluation method. Among these schedules, in fiscal 1974 based on the survey and analysis on previous domestic and overseas development states, features and problems were arranged every system and application. The basic study on system simulation, and rough feasibility study on solar heat systems by conventional technique were carried out. The basic data on performance evaluation standards were also prepared. (NEDO)

  15. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  16. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the

  17. Performance evaluation of a continuous flow inclined solar still desalination system

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; El-Samadony, Y.A.F.; Kabeel, A.E.

    2015-01-01

    Highlights: • A mathematical model was presented to analyze the performance of inclined still. • The effect of air speed, water masses, film thickness and velocity was studied. • Productivity for the Model 3 was higher than conventional still by 57.2%. • The performance was strongly affected by water film thickness and velocity. • Model 3 gave the highest performance while Model 1 gave the lowest performance. - Abstract: In the present work, theoretical study of the performance evaluation of a continuous water flow inclined solar still desalination system is performed. Three models are studied for inclined solar still desalination system with and without water close loop. The effects of the water mass, water film thickness, water film velocity and air wind velocity on the performance of the three models are studied. The results show that the inclined solar still with a makeup water is superior in productivity (57.2% improvement) compared with a conventional basin-type solar still. Also, the application of inclined solar still with open water loop is recommended when combined with other still desalination system due to high water temperature output. The inclined solar still with a makeup (Model 3) gives the highest performance while Model 1 gives the lowest performance. Finally, the water film thickness, and velocity as well as wind velocity plays important roles in improving the still productivity and efficiency

  18. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  19. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  20. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  1. Integrated collector storage solar water heater: Temperature stratification

    International Nuclear Information System (INIS)

    Garnier, C.; Currie, J.; Muneer, T.

    2009-01-01

    An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data.

  2. Procedures of water desalination with solar energy and f-chart method

    Directory of Open Access Journals (Sweden)

    Petrović Andrija A.

    2015-01-01

    Full Text Available Due to rapid population growth, and climate change caused by environmental pollution needs for drinking water are increasing while amount of freshwater are decreasing. However possible solution for freshwater scarcity can be found in water desalination procedures. In this article three representative water desalination solar powered plants are described. Except explanation of processes it is also mentioned basic advantages and disadvantages of humidification, reverse osmosis and desalination evaporation by using solar energy. Simulation of the solar desalination system is analyzed with f-chart method monthly, located on located 42 degrees north latitude.

  3. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    Science.gov (United States)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  4. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems...

  5. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater

    International Nuclear Information System (INIS)

    Deng, Weishi; Yu, Jianlin

    2016-01-01

    Highlights: • A modified direct expansion solar-assisted heat pump water heater is investigated. • An additional air source evaporator is used in parallel way in the M-DX-SHPWH system. • The M-DX-SHPWH system displays a higher performance at the low solar radiation. • Effects of solar radiation and air temperature on the performance are discussed. - Abstract: This paper investigated a combined solar/air dual source heat pump water heater system for domestic water heating application. In the dual source system, an additional air source evaporator is introduced in parallel way based on a conventional direct expansion solar-assisted heat pump water heaters (DX-SHPWH) system, which can improve the performance of the DX-SHPWH system at a low solar radiation. In the present study, a dynamic mathematical model based on zoned lump parameter approach is developed to simulate the performance of the system (i.e. a modified DX-SHPWH (M-DX-SHPWH) system). Using the model, the performance of M-DX-SHPWH system is evaluated and then compared with that of the conventional DX-SHPWH system. The simulation results show the M-DX-SHPWH system has a better performance than that of the conventional DX-SHPWH system. At a low solar radiation of 100 W/m"2, the heating time of the M-DX-SHPWH decreases by 19.8% compared to the DX-SHPWH when water temperature reaches 55 °C. Meanwhile, the COP on average increases by 14.1%. In addition, the refrigerant mass flow rate distribution in the air source evaporator and the solar collector of the system, the allocation between the air source evaporator and the solar collector areas and effects of solar radiation and ambient air temperature on the system performance are discussed.

  6. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  7. Design of a Solar Water Heating System for Kuti Hall, University of ...

    African Journals Online (AJOL)

    Monthly average daily irradiance in plane of solar collector and Cold water temperature calculated from weather data collated to determine heating load. Mathematical model was developed based on heat transfer, thermal and optical and energy performance of collector. The absorber plate area, dimensions of solar ...

  8. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  9. A comparison of diesel, biodiesel and solar PV-based water pumping systems in the context of rural Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Pokharel, Govind Raj; Østergaard, Poul Alberg

    2014-01-01

    Nepal is heavily dependent on the traditional energy sources and imported fossil fuel, which has an adverse impact on the environment and economy. Renewable energy technologies promoted in the country are regarded as a means of satisfying rural energy needs of the country for operating different...... using petro-diesel, jatropha-based biodiesel and solar photovoltaic pumps. The technical system design consists of system sizing of prime mover (engine, solar panel and pumps) and estimation of reservoir capacity, which are based on the annual aggregate water demand modelling. With these investigations......, incentives on the investments, which have effects on the cost of pumped water. Likewise, in case of biodiesel-based system, different yield rate of jatropha plants is also considered in estimating the cost of producing biodiesel. It is found that for operating a biodiesel-based pumping system for the study...

  10. Effects of solar collecting area and water flow rate on the performance of a sand bed solar collector

    International Nuclear Information System (INIS)

    Maganhar, A.L.; Memon, A.H.; Panhwar, M.I.

    2005-01-01

    The often discussed renewable sources of energy have been great interest to energy researchers and planners for quite some time. The primary of renewing all sources of energy is the sun. There have been two main problems not yet fully resolved. One is the large scale production of energy and other is the cost factor. In the present study, the cost factor is under consideration. In this regard a non-conventional solar collector using indigenous material (pit sand) as solar absorber is designed and manufactured. This paper presents the results of an investigation of the effect of solar collecting area and water flow rate on the performance of a pit sand bed solar collector especially in terms of rise in water temperature. Three pit sand solar collectors of area 1m/sup 2/ each were connected in series to enhance the collecting area and the system was tested for different flow rates. Experimental results proved that there was increase in water temperature with increase in solar collecting area an decreases in water temperature with increase in flow rate. (author)

  11. Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO4 Photoanode for Unassisted Solar Water Splitting.

    Science.gov (United States)

    Peng, Yuelin; Govindaraju, Gokul V; Lee, Dong Ki; Choi, Kyoung-Shin; Andrew, Trisha L

    2017-07-12

    We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO 4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO 4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO 4 photoanode, although BiVO 4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO 4 photoanode to be back-illuminated, i.e., through the BiVO 4 /back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO 4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.

  12. Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of solar system (research for solar/energy-conservation technology retrofitted to existing buildings); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Solar system no chosa kenkyu (solar toshi muke gijutsu ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for solar/energy-conversion technologies retrofitted to existing buildings. The estimated effects and economic viability of retrofitting technologies show that they bring very high energy-saving effects when applied to heating and hot water supply, which consume a large portion of energy, but relatively low energy-saving effects when applied to cooling, solar walls, glazed balconies and transparent insulators. The study on applicability of these technologies in Japan indicates that the technologies which can recover cost within an average life time are those applied to windows, solar collector systems for hot water supply and heating, and transparent insulators. Although these technologies are low in applicability to cooling viewed from the angle of cost recovery, retrofitted radiation type cooling systems improve not only cooling and energy-saving effects but also comfortableness.

  13. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  14. Solar home systems in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Henryson, Jessica; Haakansson, Teresa

    1999-04-01

    Photovoltaic (PV) technology is a clean and environmentally friendly technology that does not require any fuels. The high reliability of operation and little need for maintenance makes it ideally suited for rural areas. Today PV systems are used in Nepal to power telecommunications centres, navigational aids, in pumping systems for irrigation and drinking water, and for household electrification. A solar home system consists of a PV module, a battery, a charge controller and 3-4 fluorescent light bulbs with fixture. The system provides power for lighting and operation of household appliances for several hours. The success of donor supported programs have shown that solar home systems can be a practical solution for many rural households. In 1996 the Government of Nepal launched a subsidy program for solar home systems, which dramatically has increased the demand for solar home systems among rural customers. This report includes a survey of 52 households with solar home systems in two villages. The field-study shows that the villagers are very happy with their systems and the technical performance of the systems in both villages is satisfactory. The study also shows the positive impact electricity has on education, health, income generation and quality of life. The beneficiaries of introducing electricity in remote areas are the children and the women 39 refs, 18 tabs. Examination paper

  15. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  16. Solar water lifter

    Energy Technology Data Exchange (ETDEWEB)

    Khandurdyyev, A; Daykhanov, S; Itayev, K I; Kurbanov, N

    1982-01-01

    A water lifter is described which contains a diaphram pump with working cavity and inlet and outlet valves and solar energy collector filled with easily boiling fluid. In order to improve the degree of use of the solar energy and output, the water lifter additionally contains a bellows arranged in the working cavity of the pump and connected to it and the collector, and a cylinder made of magnetic-soft material with a magnetic valve arranged in it with a rod connected to the bellows, a seat for the valve on the upper end and contact plate interacting with the valve in its lower position.

  17. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  18. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  19. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model...... gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this paper....

  20. Parametric studies of an active solar water heating system with ...

    Indian Academy of Sciences (India)

    overall photovoltaic thermal efficiency will increase and also will save valuable space. ... sumption of RM95 per month for a medium cost house (Faridah 2003). ..... Hence, the use of solar water heater shall improve public awareness in.

  1. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    OpenAIRE

    M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid

    2015-01-01

    Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...

  2. Solar collector systems - better than their reputation. Kollektoranlagen - besser als ihr Ruf

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, F. (Energietechnik Mueller GmbH und Co. KG, Satteldorf (Germany, F.R.))

    1989-04-01

    The actual value of stereotype standard opinions put forward by experts and specialists advising against solar systems is analyzed and commented on as follows: 'Insufficiency of sunshine duration and intensity' (in the Federal Republic of Germany insolation is about 1100 kW/m/sup 2//a, solar power plant test results are available, solar water heating), 'immaturity of solar systems' (two thirds of water heating energy demands can be covered by solar energy; high state of the art and maturity of solar engineering today), 'poor economic efficiency of solar systems' (tabular examples of the expenses involved, depreciation: 100 per cent/10 years). (HWJ).

  3. Outlook for solar water heaters in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lee, Tsong-Sheng; Chung, Kung-Ming; Lin, Wei-Min

    2008-01-01

    The share of indigenous energy supply continuously decreases over the last two decades in Taiwan. The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For promotion of solar water heaters, the incentive programs were firstly initiated in the period of 1986-1991 and re-initiated from 2000 to the present. These programs create an economic incentive for the end users and have a drastic effect on the popularization of solar water heaters. To further promote solar water heaters during the current incentive program period, several key factors are addressed. In addition to the cost of solar water heaters and energy price index, the potential market of solar water heaters in Taiwan is associated with the climatic conditions, population structure, urbanization, building type of housing and status of new construction. (author)

  4. Outlook for solar water heaters in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keh-Chin [Department of Aeronautical and Astronautical Engineering, National Cheng Kung University, Kueijen, Tainan, Taiwan 711 (China); Lee, Tsong-Sheng; Chung, Kung-Ming [Aerospace Science and Technology Research Center, National Cheng Kung University, Kueijen, Tainan, Taiwan 711 (China); Lin, Wei-Min [Tainan University of Technology (China)

    2008-01-15

    The share of indigenous energy supply continuously decreases over the last two decades in Taiwan. The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For promotion of solar water heaters, the incentive programs were firstly initiated in the period of 1986-1991 and re-initiated from 2000 to the present. These programs create an economic incentive for the end users and have a drastic effect on the popularization of solar water heaters. To further promote solar water heaters during the current incentive program period, several key factors are addressed. In addition to the cost of solar water heaters and energy price index, the potential market of solar water heaters in Taiwan is associated with the climatic conditions, population structure, urbanization, building type of housing and status of new construction. (author)

  5. Multivariate optimization of a solar water heating system using the Simplex method

    CERN Document Server

    Michelson, E

    1982-01-01

    Two Simplex computer library packages for multivariate optimization have been tested on an hour-by-hour simulation of a solar water heating system. The two packages are: MINUITS written at CERN (Geneva) , and the E04CCF routine which is part of the UK Numerical Algorithms Group Library. Technical and economic optima have been derived for three of the following variables simultaneously: collector area, tilt, azimuth, and store volume. The two packages give the same results. The meteorological data used were one (composite) year for Hamburg (Germany) and 1964 for Kew (UK). The Hamburg data were also condensed to form a year consisting of 60 averaged days. The optima derived with the 60-day year were very close to those obtained with the 365-day year. The Simplex method, which is a direct search method, is known to be very robust. It is particularly suited to hour-by-hour simulations of solar heating systems since the function being minimized is not monotonically decreasing towards the minimum in sufficient sign...

  6. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  7. Solar water heating in the hotel industry

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, A

    1981-01-01

    There is an increasing number of hotels, pensions, guest-houses and boarding-houses whose owners attempt to lower their energy cost - especially for water heating in summer - by installing solar systems. The article presents some examples of buildings in West Germany.

  8. Absorption heat pump for a potable water supply in a solar house

    Energy Technology Data Exchange (ETDEWEB)

    Elshamarka, S [Military Technical Coll., Cairo (EG)

    1991-01-01

    Solar houses usually have good potential in arid areas. These areas often suffer from not only a shortage of conventional energy sources, but also of potable water supplies. In this study, a solar air-conditioning system including an absorption heat pump, already in production since the early 1980s, is described for potable water production while performing its air-conditioning duty in a solar house. Compiled weather-conditions of the Hurgada area, on the Red Sea coast of Egypt, were employed for the prediction of the system's productivity, if it were installed in such a locality. An evaluation of the system's feasibility has been conducted. (author).

  9. Solar House Obdach: experiences with a solar ground-coupled storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, M; Blum, P; Held, E; Aranovitch, E; Hardacre, A G; Ofverholm, E [eds.

    1982-09-14

    Within the framework of the Solar House Obdach-project, a system consisting of a ground heat exchanger, a low-temperature collector, a water-glycol/water heat pump and a low-temperature heating system was examined with regard to its suitability as only heat source of a house. With the design chosen (1 m/sup 2/ ground collector area and 0.3 m/sup 2/ low-temperature collector area per 80 W load), a seasonal performance factor of 2.83 could be obtained. About 40% of the low-temperature heat supplied to the heat pump were delivered directly or indirectly (by means of short-term storage in the ground) by the low-temperature collector, whereas about 60% came from the natural sources of energy of the ground (air heat, radiation, precipitation, ground water and slope water). The results obtained are used to verify and improve a computer model design program for ground collectors and ground-coupled storage systems which should help to optimize the design of solar plants, particularly under difficult conditions.

  10. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  11. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS—IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    International Nuclear Information System (INIS)

    Simões, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas; Hamelin, Michel; Berthelier, Jean-Jacques; Béghin, Christian; Lebreton, Jean-Pierre; Grard, Rejean; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-01-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  12. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in addition to heating water that is consumed by fixtures and appliances.

  13. Performance analysis of a solar photovoltaic hybrid system for electricity generation and simultaneous water disinfection of wild bacteria strains

    International Nuclear Information System (INIS)

    Pichel, N.; Vivar, M.; Fuentes, M.

    2016-01-01

    Highlights: • A new hybrid solar water disinfection and energy generation system was designed and tested. • SOLWAT comprises a water disinfection reactor and a PV module fully integrated into a single unit. • Natural water with wild strains of E. coli, Enterococcus spp. and C. perfringens were studied. • The water disinfection reactor located above the PV module did not affect the final energy output. • The SOLWAT disinfection results were always higher than conventional PET bottles. - Abstract: A hybrid solar water disinfection and energy generation system for meeting the needs of safe drinking water and electricity was designed and tested in Alcalá de Henares (Spain) under summer climatic conditions to demonstrate the feasibility of the concept. Natural water sources with wild strains of Escherichia coli, total coliforms, Enterococcus spp. and Clostridium perfringens (including spores) were studied. Results showed that SOLWAT disinfection efficiency was higher than conventional PET bottles and that the water disinfection reactor located above the PV module did not affect the total energy output produced by the hybrid system in comparison to the single PV module, achieving the same power losses over the 6 h of sun exposure in relation to their power at standard test conditions (STC).

  14. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  15. Experimental System of Solar Adsorption Refrigeration with Concentrated Collector.

    Science.gov (United States)

    Yuan, Z X; Li, Y X; Du, C X

    2017-10-18

    To improve the performance of solar adsorption refrigeration, an experimental system with a solar concentration collector was set up and investigated. The main components of the system were the adsorbent bed, the condenser, the evaporator, the cooling sub-system, and the solar collector. In the first step of the experiment, the vapor-saturated bed was heated by the solar radiation under closed conditions, which caused the bed temperature and pressure to increase. When the bed pressure became high enough, the bed was switched to connect to the condenser, thus water vapor flowed continually from the bed to the condenser to be liquefied. Next, the bed needed to cool down after the desorption. In the solar-shielded condition, achieved by aluminum foil, the circulating water loop was opened to the bed. With the water continually circulating in the bed, the stored heat in the bed was took out and the bed pressure decreased accordingly. When the bed pressure dropped below the saturation pressure at the evaporation temperature, the valve to the evaporator was opened. A mass of water vapor rushed into the bed and was adsorbed by the zeolite material. With the massive vaporization of the water in the evaporator, the refrigeration effect was generated finally. The experimental result has revealed that both the COP (coefficient of the performance of the system) and the SCP (specific cooling power of the system) of the SAPO-34 zeolite was greater than that of the ZSM-5 zeolite, no matter whether the adsorption time was longer or shorter. The system of the SAPO-34 zeolite generated a maximum COP of 0.169.

  16. Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-17

    Solar water heating systems are not new, but they have not become prevalent in most of the U.S. Most of the country is cold enough that indirect solar thermal systems are required for freeze protection, and average installed cost of these systems is $9,000 to $10,000 for typical systems on single-family homes. These costs can vary significantly in different markets and with different contractors, and federal and regional incentives can reduce these up-front costs by 50% or more. In western Massachusetts, an affordable housing developer built a community of 20 homes with a goal of approaching zero net energy consumption. In addition to excellent thermal envelopes and PV systems, the developer installed a solar domestic water heating system (SDHW) on each home. The Consortium for Advanced Residential Buildings (CARB), a research consortium funded by the U.S. Department of Energy Building America program, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.

  17. Economical investigation of an integrated boiler-solar energy saving system in Jordan

    International Nuclear Information System (INIS)

    Al-Salaymeh, A.; Al-Rawabdeh, I.; Emran, S.

    2010-01-01

    Jordan is relatively poor in conventional energy resources and is basically a non-oil producing country, i.e. its energy supply relies to a very large extent on imports. It is therefore unlikely that any future energy scenario for Jordan will not include a significant proportion of its energy to come from renewable sources such as solar energy. The lack of an integrated energy saving system which utilizes the solar energy for domestic hot water as well as for building space heating was the main motivation for the present study. In Jordan, there is no existing system can provide the integration mechanisms of solar energy and fuel combustion with electrical ones. Also adding new and related products increases sales of current boilers products and can be offered at competitive prices. During our investigations, it has been found that the market demand for boiler-solar integration system in terms of the system acceptability, system feasibility, and system values is very high especially after the increased in oil prices during the last 3 years, i.e. 2006-2008. The market trend shows that even though solar collector is not attractive as an energy source for domestic hot water, but the combined system for space heating and domestic hot water is fully accepted. However, the market demand for such a system is not completely identified yet but the awareness and the discussion of the idea shows a good potential. The economical study about the integration system of boiler and solar energy shows that using solar water heaters to heat space and for domestic water is cost-effective. Payback can be as low as 3 years, and utility bills are much lower than they would be using a conventional heating system. The initial draft and design of a prototype for the boiler-solar-electrical integration system has been carried out.

  18. Validation of a simulation method for forced circulation type of solar domestic hot water heating systems; Kyosei junkangata taiyonetsu kyuto system simulation hoho no kensho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Udagawa, M [Kogakuin University, Tokyo (Japan); Matsumoto, T [Yazaki Corp., Tokyo (Japan)

    1996-10-27

    Simulation of solar hot water systems using element model was conducted, in which computation of the convergence of apparatus characteristic values was performed every hour. For each apparatus, the outlet temperature was made a function of the inlet temperature on the basis of the heat balance, from which a simultaneous equation was derived and then solved for the determination of the outlet temperature for the computation of the quantity of heat collected by each apparatus. The actually measured system comprises a planar solar collector, heat storage tank, and heat collector piping. The measurement involved a direct heat collecting system with the medium running from the heat storage tank bottom layer, through the solar collector, and then back to the heat storage tank third layer, and an indirect heat collector system with a heat exchanger provided at the heat storage tank bottom layer. There was no substantial difference between the direct type and the indirect type with respect to the solar collector inlet and outlet temperatures, quantity of heat collected, and the fluctuation in heat storage tank inside temperature distribution relative to time. Difference occurred between the two in tank water temperature distribution, however, when water was extracted in great volume at a time. The quantity of the heat collected by each of the two and the daily integration of the same differed but a little from computed values. 4 refs., 6 figs., 4 tabs.

  19. Performance evaluation of a flow-down collecting solar system; Ryuka shunetsushiki solar system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Li, X; Baba, H; Endo, N [Kitami Institute of Technology, (Japan)

    1997-11-25

    The paper evaluated performance of a flow-down collecting solar system. The solar heat pump PV system is composed of a solar system, heat pump and PV, of which the heat collecting portion is a water-use horizontal evacuated double glass tube solar collector. As a result of the performance measurement, the necessity of fundamental improvement arose. Under an idea of disproving common sense of the original forced circulation solar system, a system was designed in which heat is collected by making the heat media reversely circulate and flow down in accordance with gravity. When the flow rate was 2m{sup 3}/h, the collecting rate reached a maximum, approximately 54% (36.9% before improvement). When the flow rate was 1.3-1.5m{sup 3}/h, the system can realize the maximum merit, and the collecting efficiency became approximately 50%. Helped by reduction in consumed power, the average system performance coefficient reached more than 85% (28.9% before improvement). The obtainable energy rate rapidly increased to 2.9 times more than before improvement. Further, the consumed power of pump was decreased 65% from before improvement when the flow rate was 2.4m{sup 3}/h. 2 refs., 5 figs.

  20. FY 1995 report on the results of the investigational study on the technology development for the commercialization of solar systems for industrial use, etc. - Investigational study on the solar system. Investigational study on a solar heat utilization system; 1995 nendo sangyoyonado solar system jitsuyoka gijutsu kaihatsu seika hokokusho. Solar system no chosa kenkyu (taiyonetsu riyo system ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This survey clarifies the present situation of the solar heat utilization technology mostly for industrial use, makes a concrete concept of solar heat utilization clear, and extracts items of the technology development and evaluates sociality, economical efficiency, etc. It aims at working out a program for the future technology development. The following proposals were made: 1) technology development program; 2) simulation soft development program; 3) experimental field of the solar heat utilization technology. In 1), concepts of technology development are 'medical use boiling pasteurization,' 'temperature increase in the metal surface treatment process,' 'water purification using photo-catalyst,' 'distributed small power system,' and 'waste water treatment using bio-technology.' In 2), cost reduction is needed for commercialization/merchandising of technology, and therefore, the development of simulation software is studied. In 3), as the experimental field from commercial/residential use system to industrial use system, an large-scale and systematical experimental field is proposed where all that can be substituted for by solar energy among the energies required for the urban function are used. By this, the solar heat utilization system gets accustomed to the people, increases the reliability, and clearly leads to the course to the next stage of the R and D. (NEDO)

  1. FY 1995 report on the results of the investigational study on the technology development for the commercialization of solar systems for industrial use, etc. - Investigational study on the solar system. Investigational study on a solar heat utilization system; 1995 nendo sangyoyonado solar system jitsuyoka gijutsu kaihatsu seika hokokusho. Solar system no chosa kenkyu (taiyonetsu riyo system ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This survey clarifies the present situation of the solar heat utilization technology mostly for industrial use, makes a concrete concept of solar heat utilization clear, and extracts items of the technology development and evaluates sociality, economical efficiency, etc. It aims at working out a program for the future technology development. The following proposals were made: 1) technology development program; 2) simulation soft development program; 3) experimental field of the solar heat utilization technology. In 1), concepts of technology development are 'medical use boiling pasteurization,' 'temperature increase in the metal surface treatment process,' 'water purification using photo-catalyst,' 'distributed small power system,' and 'waste water treatment using bio-technology.' In 2), cost reduction is needed for commercialization/merchandising of technology, and therefore, the development of simulation software is studied. In 3), as the experimental field from commercial/residential use system to industrial use system, an large-scale and systematical experimental field is proposed where all that can be substituted for by solar energy among the energies required for the urban function are used. By this, the solar heat utilization system gets accustomed to the people, increases the reliability, and clearly leads to the course to the next stage of the R and D. (NEDO)

  2. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    Science.gov (United States)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  3. Obtaining drinking water using solar electrodialysis

    Directory of Open Access Journals (Sweden)

    Sandro César Silveira Jucá

    2010-05-01

    Full Text Available This paper shows the main worldwide experiments in PV powered electrodialysis plants and analyses possible applications of such systems in the Brazilian Northeast region. The use of PV arrays to power electrodialysis plants for desalination of brackish water from deep wells makes sense in arid and semiarid regions. In such areas there is often an inadequate water and energy supply infrastructure along with favorable levels of solar radiation for electric generation, as is the case of the Brazilian Northeast region.

  4. Protecting solar collector systems from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.

  5. Solar energy system performance evaluation: Honeywell OTS 41, Shenandoah (Newman), Georgia

    Science.gov (United States)

    Mathur, A. K.; Pederson, S.

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of the data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-are heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics.

  6. Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and Left-Right twisted tapes

    International Nuclear Information System (INIS)

    Jaisankar, S.; Radhakrishnan, T.K.; Sheeba, K.N.

    2011-01-01

    Research highlights: → Conventional solar heaters are inefficient due to poor convective heat transfer. → Twisted tapes improve the heat transfer rate in solar water heater system. → Increase in outlet water temperature by 15 o C through the use of twisted tapes. →Thermal performance of twisted tape collector is 19% more than plain tube system. → Reduces collector area (0.6 m 2 ) whereas area for conventional collector is 1 m 2 . -- Abstract: Experimental investigation of heat transfer, friction factor and thermal performance of thermosyphon solar water heater system fitted with helical and Left-Right twist of twist ratio 3 has been performed and presented. The helical twisted tape induces swirl flow inside the riser tubes unidirectional over the length. But, in Left-Right system the swirl flow is bidirectional which increases the heat transfer and pressure drop when compared to the helical system. The experimental heat transfer and friction factors characteristics are validated with theoretical equations and the deviation falls with in the acceptable limits. The results show that heat transfer enhancement in twisted tape collector is higher than the plain tube collector. Compared to helical and Left-Right twisted tape system of same twist ratio 3, maximum thermal performance is obtained for Left-Right twisted tape collector with increase in solar intensity.

  7. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  8. Study on water desalination system by solar energy distillation; Taiyo energy wo riyoshita joryugata kaisui tansuika system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, M; Ameku, K; Yonamine, K [Univ. of the Ryukyus, Okinawa (Japan)

    1997-11-25

    Discussions have been given on developing a seawater desalination system by solar energy distillation. The system is composed of evaporators installed on the seawater level, condensers placed on high and cool locations, and steam transport pipes to connect these two pieces of equipment. Steam is generated from seawater heated by solar heat in evaporators, and the steam is transported driven by low power consuming fans to higher locations through the steam transport pipes, where it is condensed by cool air in the condensers, and recovered as plain water. The concept is such that electric power required to operate the fans is supplied from photovoltaic panels, and all other energy is obtained from the sun. First, an experiment was performed upon noticing on methods of transporting and condensing the steam. The experiment used plain water rather than seawater. The heat source and evaporators were installed on the first floor, and the steam transporting fans on the second floor of an atrium. The thermal load was set to 1.5 times greater than average outdoor insolation amount. Increase in the distilled water recovery rate and distillation efficiency was verified by using the fans. The evaporation efficiency was found to tend to increase when the steam flow rate is increased. 3 refs., 10 figs.

  9. Solar water heaters in China. A new day dawning

    International Nuclear Information System (INIS)

    Han, Jingyi; Mol, Arthur P.J.; Lu, Yonglong

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively affluent province, as a case study area to assess the performance of solar water heater utilization in China. The study will focus on institutional setting, economic and technological performance, energy performance, and environmental and social impact. Results show that China has greatly increased solar water heater utilization, which has brought China great economic, environmental and social benefits. However, China is confronted with malfeasant market competition, technical flaws in solar water heater products and social conflict concerning solar water heater installation. For further development of the solar water heater, China should clarify the compulsory installation policy and include solar water heaters into the current 'Home Appliances Going to the Countryside' project; most of the widely used vacuum tube products should be replaced by flat plate products, and the technology improvement should focus on anti-freezing and water saving; the resources of solar water heater market should be consolidated and most of the OEM manufacturers should evolve to ODM and OBM enterprises. (author)

  10. Solar energy collector/storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  11. An experimental study of a solar humidifier for HDD systems

    International Nuclear Information System (INIS)

    Ghazal, M.T.; Atikol, U.; Egelioglu, F.

    2014-01-01

    Highlights: • Solar water and air heating and humidification processes have been merged in one unit. • The effectiveness of the solar humidifier was improved. • Bubbles regeneration enhanced the mass and heat transfer to air. • Reflector mirror enhanced the productivity of the system. - Abstract: This paper investigates the performance of a solar humidification prototype suitable for using in humidification dehumidification desalination (HDD) systems. This unit replaces the solar air heater, solar water heater and the evaporator of the traditional HDD plants, facilitating compact system designs. The prototype is composed of a solar collector, filled with water, through which air is forced to travel upwards in the form of bubbles. Experiments are conducted under the weather conditions of North Cyprus. It is discovered that the air temperature is found to approach the hot water temperature in the collector (thus increasing the vapor carrying capacity) and the relative humidity is raised to almost 100% at the exit. The collector inlet and outlet temperatures and relative humidity values are recorded for different flow rates in the period between the 1st and the 14th of December, 2012. It was found that for an average intensity of solar radiation of 700 W/m 2 and a mass flow rate of 12.6 kg/h of air; the amount of water evaporated was 0.75 kg/h on a square meter basis. Introduction of a reflector mirror at the bottom side of the humidifier increased the average absolute humidity by 32%

  12. Energy Saving in an ETC Solar System to Produce High Temperature Water

    Directory of Open Access Journals (Sweden)

    Carlos J. Porras-Prieto

    2018-04-01

    Full Text Available The use of solar water heating systems (SWHS based on evacuated tube collectors (ETC has experienced rapid growth in the residential sector. In contrast, the implementation of these systems in the industrial sector is very limited, due in part to the demand of a higher temperature in water. Taking into account that the final energy of the industrial sector is similar to the residential sector, to increase the generation of renewable energy and energy saving in cities, efforts in this sector should be redoubled. Therefore, the present work characterises the behaviour of a SWHS-ETC with active circulation to produce hot water at 90 °C, determining its performance, energy saving and profitability in different scenarios in Europe. The annual energy savings generated by the SWHS Range between 741 and 435 kWh m−2 (reduction of emissions between 215 and 88 kg CO2 m−2. The results of the analysis of profitability, studying the variation of the conventional energy price, the cost of the investment, the useful life and the energy supplied, in thousands of scenarios, are a valuable tool for correct decision making, as they can be of great utility to increase the implementation of these systems in the industrial sector.

  13. Solar energy system economic evaluation: Contemporary Newman, Georgia

    Science.gov (United States)

    1980-01-01

    An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.

  14. Fabrication and characterization of a slanting-type solar water ...

    African Journals Online (AJOL)

    The system includes four major components; a wooden basin of surface area 0.16 m2, an absorber surface, a slanting glass roof and a condensate channel. Very cheap locally available materials were used to fabricate the solar still. The solar still produced an average of 0.09 m3 of distilled water per day, and this study was ...

  15. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  16. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    International Nuclear Information System (INIS)

    Delgado-Torres, Agustin M.; Garcia-Rodriguez, Lourdes

    2010-01-01

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects.

  17. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda. Astrofisico Francisco Sanchez s/n. 38206 La Laguna (Tenerife) (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Universidad de Sevilla Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects. (author)

  18. Performance Improvement of Solar Water Stills by Using Reflectors

    Directory of Open Access Journals (Sweden)

    Humphrey Hamusonde Maambo

    2016-09-01

    Full Text Available The lack of safe and clean drinking water sources is one of the problems faced in most rural communities in Zambia. Water in these communities is mostly obtained from shallow wells and rivers. However, this water might be potentially contaminated with harmful substances such as pathogenic bacteria and therefore, unsafe for drinking. Solar water distillation represents an important alternative to palliate problems of fresh water shortages. Solar water stills can be used to eliminate harmful substances from contaminated water by treating it using free solar energy before it can be consumed. Therefore, there is a need to improve solar still performance to produce a greater quantity of safe drinking water. One possible method to improve performance is through adding reflectors to solar stills. Reflectors improve performance by increasing the quantity of distillate by about 22.3 % at a water depth of 15 mm and about 2 9% at a water depth of 10 mm when compared to the distillate produced from a still without reflectors. The water produced using solar stills with reflectors was tested and adhered to World Health Organization (WHO drinking water standards. This implies that solar distillation with reflectors could be adopted at a larger scale to produce safer drinking water at a reduced cost.

  19. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  20. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus on the co...... for future system optimization....

  1. Experimental study on a parabolic concentrator assisted solar desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Denkenberger, David; Velraj, R.; Sathyamurthy, Ravishankar; Tanaka, Hiroshi; Vinothkumar, K.

    2015-01-01

    Highlights: • We optimized the augmentation of condense by enhanced desalination methodology. • Parabolic concentrator has been integrated with solar distillation systems. • We measured ambient together with solar radiation intensity. - Abstract: This paper presents a modification of parabolic concentrator (PC) – solar still with continuous water circulation using a storage tank to enhance the productivity. Four modes of operation were studied experimentally: (i) PC-solar still without top cover cooling; (ii) PC-solar still with top cover cooling, PC-solar still integrated with phase change material (PCM) without top cover cooling and PC-solar still integrated PCM with cooling. The experiments were carried out for the cooling water flow rates of 40 ml/min; 50 ml/min, 60 ml/min, 80 ml/min and 100 ml/min. Diurnal variations of water temperature (T_w), ambient air temperature (T_a), top cover temperature (T_o_c) and production rate are measured with frequent time intervals. Water cooling was not cost effective, but adding PCM was.

  2. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus

    Science.gov (United States)

    Loik, Michael E.; Carter, Sue A.; Alers, Glenn; Wade, Catherine E.; Shugar, David; Corrado, Carley; Jokerst, Devin; Kitayama, Carol

    2017-10-01

    Global renewable electricity generation capacity has rapidly increased in the past decade. Increasing the sustainability of electricity generation and the market share of solar photovoltaics (PV) will require continued cost reductions or higher efficiencies. Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.

  3. Hybrid solar-PLG system for industrial scale steam and hot water generation; Sistema hibrido solar-GLP para geracao de vapor e agua quente em escala industrial

    Energy Technology Data Exchange (ETDEWEB)

    Saidel, Marco A.; Monteiro, Marcio D.; Gimenes, Andre L.V.; Fujii, Ricardo J. [Universidade de Sao Paulo (GEPEA/EPUSP), SP (Brazil). Dept. Engenharia Energia e Automacao Eletricas. Grupo de Energia], e-mail: saidel@pea.usp.br, e-mail: marcio.monteiro@poli.usp.br, e-mail: gimenes@gmail.com, e-mail: fujii@gmail.com

    2008-07-01

    This paper presents an initiative conceived for attending to objectives of the PUREFA (Program for Rational Use of Energy and Alternative Sources) of the Sao Paulo university, Brazil. The indicative consists of the implantation of a solar collector system for pre-heating of the water used in the production of the steam consumed at the university restaurant, with a production of 5800 meals per day. This system (auxiliary to the original steam boiler) pre-heats the water of the boiler minimizing the energy expenses for the production of steam and hot water.

  4. Solar combi system based on a mantle tank

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2007-01-01

    A solar combisystem based on a mantle tank is investigated numerically and experimentally. Three different houses with four different radiator systems are considered for the simulations. The needed temperature for the auxiliary heater is determined for different houses and radiator systems....... The thermal performance of the solar combisystem is compared to the thermal performance of a solar domestic hot water system based on a mantle tank. In the experimental study, tank temperatures and the heat transfer coefficient for the top mantle for a discharge test is determined. The investigations showed...

  5. Seawater desalination with solar-energy-integrated vacuum membrane distillation system

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-03-01

    Full Text Available This study designed and tested a novel type of solar-energy-integrated vacuum membrane distillation (VMD system for seawater desalination under actual environmental conditions in Wuhan, China. The system consists of eight parts: a seawater tank, solar collector, solar cooker, inclined VMD evaporator, circulating water vacuum pump, heat exchanger, fresh water tank, and brine tank. Natural seawater was used as feed and a hydrophobic hollow-fiber membrane module was used to improve seawater desalination. The experiment was conducted during a typical summer day. Results showed that when the highest ambient temperature was 33 °C, the maximum value of the average solar intensity was 1,080 W/m2. The system was able to generate 36 kg (per m2 membrane module distilled fresh water during 1 day (7:00 am until 6:00 pm, the retention rate was between 99.67 and 99.987%, and electrical conductivity was between 0.00276 and 0.0673 mS/cm. The average salt rejection was over 90%. The proposed VMD system shows favorable potential application in desalination of brackish waters or high-salt wastewater treatment, as well.

  6. Techno-economic evaluation of a solar powered water desalination plant

    International Nuclear Information System (INIS)

    Fiorenza, G.; Sharma, V.K.; Braccio, G.

    2003-01-01

    Water desalination technologies and their possible coupling with solar energy have been evaluated. The topic is of particular interest, especially for countries located within the Southern Mediterranean belt, generally characterized with vast arid and isolated areas having practically no access to electric power from the national grid. Economic factors being one of the main barriers to diffusion of solar devices so far, an attempt has been made to estimate the water production cost for two different seawater desalination systems: reverse osmosis and multiple effect, powered by a solar thermal and a photovoltaic field, respectively. The results obtained for plants of capacity varying between 500 and 5000 m 3 /d have been compared to results concerning a conventional desalination system. In addition, the influences of various parameters, such as depreciation factor, economic incentives, PV modules cost and oil price, have also been considered

  7. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  8. Heating homes and water with the sun. Solar thermal solutions adapted to individual homes

    International Nuclear Information System (INIS)

    Bareau, Helene; Juniere, Olivier; Leplay, Camille

    2016-09-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook of the way to complete the installation of a solar space and hot water heating system in an individual home. After some recall of the key points to be considered before taking the decision to invest in a solar heating system (minimum surface, orientation, etc.) and the main administrative procedures to be respected (in France), this document presents the common individual solar water heating system (which is now reliable and robust), its various equipment and operating principles, the dimensioning of the system, gives recommendations on points such as the panel position and orientation, the risk of overheating and the way to avoid it, etc. It also presents combined solar heating solutions that simultaneously heat water and space, their operating principles and the way to complete their installation for a home. Informations on financing, selection of the equipment and the installer, and installation maintenance are also proposed

  9. Dimensioning of Solar Thermal Systems for Multi-Family Buildings in Lithuania: an Optimisation Study

    OpenAIRE

    Valančius, Rokas; Jurelionis, Andrius; Vaičiūnas, Juozas; Perednis, Eugenijus

    2017-01-01

    Small-scale solar thermal domestic hot water (DHW) systems in Lithuania can produce up to 523 kWh per year per one square meter of solar collector area. It is therefore one of the most common solar thermal applications in the country with the expected payback period of approximately 10 years. However, the number of solar water heating systems (SWH) installed in the renovated multi-family buildings is quite limited. On the other hand, the potential of integrating solar thermal systems in these...

  10. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2011-11-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling load to reduce the energy consumption of the air conditioner installed as the base-load cooler. A standard SACH-2 system for cooling load 3.5. kW (1. RT) and daily cooling time 10 h is used for case study. The cooling performance is assumed only in summer seasons from May to October. In winter season from November to April, only heat is supplied. Two installation locations (Taipei and Tainan) were examined.It was found from the cooling performance simulation that in order to save 50% energy of the air conditioner, the required solar collector area is 40m2 in Taipei and 31m2 in Tainan, for COPj=0.2. If the solar collector area is designed as 20m2, the solar ejector cooling system will supply about 17-26% cooling load in Taipei in summer season and about 21-27% cooling load in Tainan. Simulation for long-term performance including cooling in summer (May-October) and hot water supply in winter (November-April) was carried out to determine the monthly-average energy savings. The corresponding daily hot water supply (with 40°C temperature rise of water) for 20m2 solar collector area is 616-858L/day in Tainan and 304-533L/day in Taipei.The economic analysis shows that the payback time of SACH-2 decreases with increasing cooling capacity. The payback time is 4.8. years in Tainan and 6.2. years in Taipei when the cooling capacity >10. RT. If the ECS is treated as an additional device used as a protective equipment to avoid overheating of solar collectors and to convert the excess solar heat in summer into cooling to reduce the energy consumption of air conditioner, the payback time is less than 3 years for cooling capacity larger than 3. RT. © 2011 Elsevier Ltd.

  11. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    Science.gov (United States)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  12. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  13. Optimization of a computer simulation code to analyse thermal systems for solar energy water heating; Aperfeicoamento de um programa de simulacao computacional para analise de sistemas termicos de aquecimento de agua por energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Pozzebon, Felipe Barin

    2009-02-15

    The potential of solar water heating systems through solar energy in Brazil is excellent due to the climatic features of the country. The performance of these systems is highly influenced also by the materials used to build it and by the dimension of its equipment and components. In face of global warming, solar energy gains more attention, since it is one of the renewable energy that will be largely used to replace some of the existing polluting types of energy. This paper presents the improvement of a software that conducts simulations of water heating systems using solar energy in thermosyphon regime or forced circulation. TermoSim, as it is called, was initiated at the Solar Labs, and is in its version 3.0. The current version is capable of simulating 6 different arrangements' possibilities combined with auxiliary energy: systems with solar collectors with auxiliary energy with gas, electric energy, internal electric energy, electric energy in series with the consumption line, and no auxiliary energy. The software is a tool to aid studies and analysis of solar heating systems, it has a friendly interface that is easy to comprehend and results are simple to use. Besides that, this version also allows simulations that consider heat losses at night, situation in which a reverse circulation can occur and mean efficiency loss, depending on the simulated system type. There were many simulations with the mathematical models used and comparisons were made with the climatic data of the city of Caxias do Sul, in Rio Grande do Sul state, in Brazil, determining the system with the most efficient configuration for the simulated water consume profile. The paper is finalized with simple economic analyses with the intention of foreseeing the time for payback on the investment, taking into account the current prices for electrical energy in the simulated area and the possible monthly economy provided with the use of a solar energy heating system. (author)

  14. Performance analysis of a solar-assisted swimming pool heating system

    Energy Technology Data Exchange (ETDEWEB)

    Alkhamis, A I; Sherif, S A [Miami Univ., Coral Gables, FL (United States). Dept. of Mechanical Engineering

    1991-12-31

    This paper discusses feasibility studies for a solar-assisted heating system using a computer simulation program. The solar heating is accomplished by employing hot water generated by heat exchange with the solar collector working fluid. The performance of the system is analysed from both thermodynamic and economic standpoints and general conclusions are reached. 17 refs., 7 figs.

  15. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of$6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities.

  16. Estimation of solar collector area for water heating in buildings of Malaysia

    Science.gov (United States)

    Manoj Kumar, Nallapaneni; Sudhakar, K.; Samykano, M.

    2018-04-01

    Solar thermal energy (STE) utilization for water heating at various sectorial levels became popular and still growing especially for buildings in the residential area. This paper aims to study and identify the solar collector area needed based on the user requirements in an efficient manner. A step by step mathematical approach is followed to estimate the area in Sq. m. Four different cases each having different hot water temperatures (45°, 50°C, 55°C, and 60°C) delivered by the solar water heating system (SWHS) for typical residential application at Kuala Lumpur City, Malaysia is analysed for the share of hot and cold water mix. As the hot water temperature levels increased the share of cold water mix is increased to satisfy the user requirement temperature, i.e. 40°C. It is also observed that as the share of hot water mix is reduced, the collector area can also be reduced. Following this methodology at the installation stage would help both the user and installers in the effective use of the solar resource.

  17. Compact solar heating systems - back on the way up

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2001-01-01

    This article discusses the upward trend being noted in the installation of compact solar heating systems in Switzerland. The contribution of these complete, easy-to-install systems to the increasing number of solar heating units on the market is discussed and the role played by the Solar Collector and Systems Testing Facility at the Institute of Solar Technology in Rapperswil, Switzerland, is emphasised. One of this institute's important publications is a list of certified compact solar heating systems. The high technical standards of the systems and the current price situation are discussed. The article is rounded off by an interview with a four-person family on their motivation to install such a hot-water system and their experience with its operation. Finally, future trends in the area are discussed

  18. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  19. Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst.

    Science.gov (United States)

    Ochiai, Tsuyoshi; Nakata, Kazuya; Murakami, Taketoshi; Fujishima, Akira; Yao, Yanyan; Tryk, Donald A; Kubota, Yoshinobu

    2010-02-01

    A high-performance, environmentally friendly water treatment system was developed. The system consists mainly of an electrochemical and a photocatalytic oxidation unit, with a boron-doped diamond (BDD) electrode and TiO(2) photocatalyst, respectively. All electric power for the mechanical systems and the electrolysis was able to be provided by photovoltaic cells. Thus, this system is totally driven by solar energy. The treatment ability of the electrolysis and photocatalysis units was investigated by phenol degradation kinetics. An observed rate constant of 5.1 x 10(-3)dm(3)cm(-2)h(-1) was calculated by pseudo-first-order kinetic analysis for the electrolysis, and a Langmuir-Hinshelwood rate constant of 5.6 microM(-1)min(-1) was calculated by kinetic analysis of the photocatalysis. According to previous reports, these values are sufficient for the mineralization of phenol. In a treatment test of river water samples, large amounts of chemical and biological contaminants were totally wet-incinerated by the system. This system could provide 12L/day of drinking water from the Tama River using only solar energy. Therefore, this system may be useful for supplying drinking water during a disaster. (c) 2009 Elsevier Ltd. All rights reserved.

  20. Solar water lifter

    Energy Technology Data Exchange (ETDEWEB)

    Bazarov, B A; Gonchar, V I; Maymerdangulyyev, G; Orekhova, N P; Ryabikov, S V; Strevkov, D S; Tereshin, V D; Yurin, Ye M

    1982-01-01

    A water lifter is described which contains a pump, whose piston is kinematically connected to the drive element made of material with thermal-mechanical memory of the shape in the hot state, and a solar heater.

  1. Methods of accounting the hot water consumption modes at the solar installations design

    Directory of Open Access Journals (Sweden)

    Vyacheslav O. Dubkovsky

    2015-06-01

    Full Text Available Peculiarities of the high-powered solar systems for hot water heating are considered. The purpose of work consists in development of methods for accounting the 24-hourly hot water consumption mode, determining the solar systems dynamic descriptions. The basic solar system schemes are analyzed with their shortages from the user satisfaction view point due to sun energy. For the dynamic parameters improvement the use of operative expense tank is examined such receptacle bearing built-in worm-pipe, through which all heat carrier from solar collectors passes before entering the fast heat exchanger which heats a tank-accumulator. The scientific novelty refers to the proof that this tank principal parameter is a not the volume, but the built-in exchanger capacity, determined by the solar collectors field total thermal power. As an ecological constituent of operating costs it is suggested to take into account cost paid for the emission of combustion products. As this method practical application example considered is the solar collectors capacity optimization for a communal enterprise.

  2. Exergy Analysis of Serpentine Thermosyphon Solar Water Heater

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal Hasan

    2018-03-01

    Full Text Available The performance of a solar hot water system is assessed for heat pump and domestic heating applications. Thermodynamic analysis on a serpentine-type thermosyphon flat-plate solar heater is conducted using the Second Law of thermodynamics. Exergetic optimization is first performed to determine the parameters for the maximum exergy efficiency using MATLAB optimization toolbox. Geometric parameters (collector surface area, dimensions, and pipe diameter, optical parameters (transmittance absorptance product, ambient temperature, solar irradiation and operating parameters (mass flow rate, fluid temperature, and overall heat transfer (loss coefficient are accounted for in the optimization scheme. The exergy efficiency at optimum condition is found to be 3.72%. The results are validated using experimental data and found to be in good agreement. The analysis is further extended to the influence of various operating parameters on the exergetic efficiency. It is observed that optical and thermal exergy losses contribute almost 20%, whereas approximately 77% exergy destruction is contributed by the thermal energy conversion. Exergy destruction due to pressure drop is found negligible. The result of this analysis can be used for designing and optimization of domestic heat pump system and hot water application.

  3. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  4. Identification and assessment of environmental benefits from solar hot water production

    International Nuclear Information System (INIS)

    Haralambopoulos, D.; Spilanis, I.

    1997-01-01

    The environmental benefits associated with the utilization of solar energy for hot water production are estimated in this work. The case of a particular country, Greece, and its electricity production system is employed to show the direct consequences of substituting electricity with solar energy for hot water production. The amount of conventional fuel saved, i.e. lignite and oil, is estimated, and the reduction in air pollution is calculated. This allows the calculation of reduction emission factors for solar hot water production to be undertaken. Data, with respect to the materials and the amount of energy necessary for the construction of the solar heaters, are also presented. These can serve as inputs to an energy-environment policy framework in order to lead to reduction of air pollutants like SO 2 , NO X and particulates, and the release of the greenhouse gas CO 2 into the atmosphere. (Author)

  5. Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997

    International Nuclear Information System (INIS)

    Faninger, G.

    1998-04-01

    Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997. Test results from solar systems for swimming pool heating, hot water preparation and space heating as well as heat pumps for hot water preparation, space heating and heat recovery will be reported and assessed collectively. (author)

  6. Geographic variation of solar water performance in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y. [University of Ulster (United Kingdom). Faculty of Engineering; Popel, O.; Frid, S. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperatures; Norton, B. [Dublin Institute of Technology (Ireland)

    2006-07-01

    Solar water heater (SWH) performance has been analysed using the 'number of days' method for 147 different sites in all European countries. The total number of days that the temperature of delivered solar heated water reaches or exceeds specified demand temperatures is correlated with solar radiation on a horizontal surface for summer, warm half-year, and whole year periods. Maps are presented and discussed showing the contours for the number of days that an illustrative SWH met different hot water demand temperatures. Correlations between number of days water is provided at a specified temperature and solar fractions for the same periods are determined. (author)

  7. Solar heating still in the early stages. Changes for hot water production - VDI meeting 'Efficient heating systems'

    Energy Technology Data Exchange (ETDEWEB)

    Goehringer, P

    1976-10-01

    More and more realism replaces the initial euphoria concerning the discussion on solar heating. Not only the possibilities are considered these days, but also the limits of this still controversial way of heating. This impression was deepened by a meeting of the VDI-Gesellschaft Technische Gebaeudeausruestung (Society for the technical equipment of buildings) held in Bonn. The heating of water with solar energy during the summer is viewed optimistically by the experts - as far as space heating is concerned, the sun collector is conceded only a very modest position in Central Europe within integrated heating systems. It is true that solar technology in the USA is already very sophisticated and economically feasible in many cases; however, techniques cannot be adopted unconditionally for Europe, as the average values of global solar radiation are much lower here. Thus, different technologies will be required.

  8. The experimental study of a hybrid solar photo-Fenton and photovoltaic system for water purification

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun; Lin, Chunyan

    2017-01-01

    Highlights: • A new solar photo-Fenton and photovoltaic system was performed for the first time. • Acid Red 26, Malachite Green and Reactive Blue 4 were discolored using the system. • The PV panel of the hybrid system could work under lower temperature. • The system achieved self-sufficient energy and could work autonomously. • Solar spectrum could be made full use for power generation and water purification. - Abstract: A new hybrid system that integrated a photovoltaic (PV) panel with a solar photo-Fenton (SPF) reactor was constructed to treat wastewater and generate electricity for the first time. The decolorization and photovoltaic performances of the hybrid system were tested outdoors by discoloring three dyes: Acid Red 26 (AR26), Malachite Green (MG) and Reactive Blue 4 (RB4). Lab scale experiments also had been done to confirm the impact of temperature on the SPF process. The lab scale results show that SPF process was more efficiency for decoloring the different dyes, compared with dark Fenton. The SPF followed a pseudo-first-order reaction and the reaction rate constant was improved about 3.5, 4.5 and 0.61 times for AR26, RB4 and MG respectively as the wastewater temperature increased from 20 to 50 °C. The decolorization difficulty of the three dyes followed this order: MG > AR26 > RB4. The results of the hybrid systems tested outdoors show that 200 mg/L MG had achieved 98.6% color removal after 3 h of treatment at a low catalyst dose (Fe"2"+ = 5 mg/L) under sunlight. For 100 mg/L MG, 99.3% color removal was observed after 70 min. The treatment time required for decolorization of AR26 and RB4 was more shorter. In the present of the water layer, the wastewater temperature was increased and that of the hybrid system was decreased. The average output power of the hybrid system was more than 12 W and sufficient to drive the system during all of the outdoor experiments. Our results suggest that the system could realize decolorization of different

  9. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...

  10. Thermodynamic solar water pump with multifunction and uses

    Energy Technology Data Exchange (ETDEWEB)

    Ben Slama, R. [Gabes Univ. (Tunisia). Dept. of Electromechanics

    2009-07-01

    This paper discussed a thermodynamic solar water pump design. Reflectors were used on the pump in order to ensure that water evaporation was conducted at the highest possible temperature. A vacuum was created by steam condensation in a closed container. The influence of heating and cooling temperatures on pump vacuum performance was studied experimentally. Water and ambient temperatures were measured along with pressure drop. Incidental solar radiation on the tilted plane of the collector was measured with a pyranometer. The pumping cycle was characterized by measuring the temperature reached during heating before spontaneous cooling occurred. Results of the study were used to obtain curves corresponding to the cooling temperatures. The curves showed that pressure drop is higher when heating temperatures reached 100 degrees C. A cooling device system was included in order to increase the number of potential pumping cycles per day. It was concluded that the pump can also be used to create hot water. 11 refs., 11 figs.

  11. Experimental investigation of stepped solar still with continuous water circulation

    International Nuclear Information System (INIS)

    El-Agouz, S.A.

    2014-01-01

    Highlights: • Comparison between modified stepped and conventional solar still was carried out. • Effect of storage tank and cotton absorber on productivity was investigated. • Efficiency for modified stepped still is higher than conventional still by 20%. • The day and night efficiency increases by 5% and 3.5% for salt and sea water. - Abstract: This paper presents a modification of stepped solar still with continuous water circulation using a storage tank for sea and salt water. Total dissolved solids (TDS) of seawater and salt water before desalination is 57,100 and 2370 mg/l. A comparison study between modified stepped and conventional solar still was carried out to evaluate the developed desalination system performance under the same climate conditions. The effect of installing a storage tank and cotton black absorber for modified stepped solar still on the distillate productivity was investigated. The results indicate that, the productivity of the modified stepped still is higher than that for conventional still approximately by 43% and 48% for sea and salt water with black absorber respectively, while 53% and 47% of sea and salt water, respectively with cotton absorber. Also, the daily efficiency for modified stepped still is higher than that for conventional still approximately by 20%. The maximum efficiency of modified stepped still is occurring at a feed water flow rate of 1 LPM for sea water and 3 LPM for salt water. Total dissolved solids (TDS) of seawater and salt water after desalination is 41, and 27 mg/l

  12. Disinfection of contaminated water by using solar irradiation.

    Science.gov (United States)

    Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad

    2004-02-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.

  13. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  14. Appropriate technology for rural India - solar decontamination of water for emergency settings and small communities.

    Science.gov (United States)

    Kang, Gagandeep; Roy, Sheela; Balraj, Vinohar

    2006-09-01

    A commercial solar water heating system was evaluated for its effectiveness in decontaminating drinking water with a view to use in emergency situations. A total of 18 seeding experiments carried out over 6 months with 10(5) to 10(7)Escherichia coli/ml showed that the solar heater produced 125 l of bacteriologically safe water in 4 h when the ambient temperature was above 30 degrees C, with a holding time of at least 2 h. The solar water heating system is inexpensive, easy to transport and set up and could provide safer drinking water for 50 people a day. It would be effective in the decrease and prevention of waterborne disease in emergency situations, and is appropriate for use in small communities.

  15. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas [NASA/GSFC, Heliophysics Science Division, Space Weather Laboratory (Code 674), Greenbelt, MD (United States); Hamelin, Michel; Berthelier, Jean-Jacques [LATMOS/IPSL, UPMC, Paris (France); Beghin, Christian; Lebreton, Jean-Pierre [LPC2E, CNRS/Universite d' Orleans (France); Grard, Rejean [ESA/ESTEC, Research Scientific Support Department, Noordwijk (Netherlands); Sentman, Davis [Institute of Geophysics, University of Alaska Fairbanks, Fairbanks, AK (United States); Takahashi, Yukihiro [Department of Geophysics, Tohoku University, Sendai (Japan); Yair, Yoav [Department Life Natural Sciences, Open University of Israel, Raanana (Israel)

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  16. Experimental study of a cascade solar still coupled with a humidification–dehumidification system

    International Nuclear Information System (INIS)

    Farshchi Tabrizi, Farshad; Khosravi, Meisam; Shirzaei Sani, Iman

    2016-01-01

    Graphical abstract: In this study, coupling of a cascade solar still with a humidification–dehumidification system investigated experimentally. In addition, the effects of different operating conditions and configurations on thermal performance and productivity of the under investigation solar system were studied. - Highlights: • We investigate coupling of a cascade solar still with a humidification–dehumidification system. • The effects of different operating conditions on thermal performance were studied. • Temperature and flow rate of feed water as well as air process flow rate had undeniable effects on the productivity. • Coupling several CSS systems with just one HD system to maximize the productivity. • Enhancing daily productivity of coupling system from 28% to 141% for 40–150 ml/min flow rates, respectively. - Abstract: In this study, coupling of a cascade solar still with a humidification–dehumidification system was investigated experimentally under the climatological conditions of Zahedan (Latitude: 29.49, Longitude: 60.87), Iran. The inclined solar stills produce distillated and hot water simultaneously. In addition, the effects of different operating conditions and configurations on thermal performance and productivity of the solar system were studied. The effect of feed water and air flow rates on the daily productivity of HD system in different conditions such as feed water temperature has been investigated. The daily productivity of cascade solar still with and without HD system at different flow rates is investigated. Moreover, the end result of assembling the HD system with a cascade solar still was studied. The daily productivity of the system increases from 28% to 141% in the presence of humidification–dehumidification system. It also improves the thermal efficiency from 9% to 20% after using 40–150 ml/min of flow rate, respectively. The maximum productivity and efficiency were 5.4 kg/m"2 day and 39% for minimum flow rate.

  17. High-performance, low-cost solar collectors for disinfection of contaminated water.

    Science.gov (United States)

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  18. Thermal analysis of a hybrid solar energy saving system inside a greenhouse

    International Nuclear Information System (INIS)

    Ntinas, G.K.; Fragos, V.P.; Nikita-Martzopoulou, Ch.

    2014-01-01

    Highlights: • A hybrid solar system consisted of water filled polyethylene sleeves was examined. • The thermal behaviour of the system was studied based on the sleeves energy balance. • Water temperature and heat exchanges of the sleeves were dynamically estimated. • Experimental data used to validate the predictions of the mathematical model. • The use of the system led to an energy saving of 23% inside a heated greenhouse. - Abstract: The intensive greenhouse energy requirements are a major operational and economical problem for producers around the world. Energy conservation techniques and innovative applications of solar energy for heating are being employed in greenhouse operation to reduce heating costs during cold periods. The present study investigated the development of a mathematical model to predict the thermal efficiency of a novel hybrid solar energy saving system inside a heated greenhouse. The solar system consisted of a transparent water-filled polyethylene sleeve and two perforated air-filled polyethylene tubes on the top peripheral sides of it. Above the sleeve and between the two tubes, rockwool substrates were placed for hydroponic cultivation of tomato crop. In order to validate this model, experiments were carried out in two identical parts of a polyethylene arched-type greenhouse to obtain data during winter. By comparing the measured and the predicted values, a correlation of 95% was found, indicating that the model can simulate the water temperature inside the hybrid solar sleeves. Moreover, the additional energy provided by the hybrid solar system reached approximately 23% during the examined period, depending on solar radiation levels

  19. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  20. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures

    International Nuclear Information System (INIS)

    Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Xia, Z.Z.

    2016-01-01

    Highlights: • Modular silica gel–water adsorption chiller was designed and tested. • Single/double effect LiBr–water absorption chiller was operated and tested. • 1.n effect LiBr–water absorption chiller was proposed, designed and tested. • CaCl_2/AC–ammonia adsorption refrigerator was introduced and tested. • NH_3–H_2O absorption ice maker with better internal heat recovery was introduced. - Abstract: Solar driven air conditioning systems can cope with solar collectors working in a wide range of temperatures. Sorption systems, including absorption and adsorption refrigeration systems, are among the best choices for solar cooling. Five systems including modular silica gel–water adsorption chiller, single/double effect LiBr–water absorption chiller, 1.n effect LiBr–water absorption chiller, CaCl_2/AC (activated carbon)–ammonia adsorption refrigerator, and the water–ammonia absorption ice maker with better internal heat recovery were presented. The above five sorption chillers/refrigerators work under various driven temperatures and fulfill different refrigeration demands. The thermodynamic design and system development of the systems were shown. All these systems have improvements in comparison with existing systems and may offer good options for high efficient solar cooling in the near future.

  1. Hybrid solar-hydraulic electric power supply systems; Sistemas de fornecimento de energia eletrica hibrido solar hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Doriana Marinho Novaes; Silva, Selenio Rocha; Alvim Filho, Aymore de Castro [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Centro de Pesquisa e Desenvolvimento em Engenharia Eletrica]. E-mails: doriana@cpdee.ufmg.br; selenios@eee.ufmg.br; aymore@cpdee.ufmg.br; Martinez, Carlos Barreira [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Hidraulica e Recursos Hidricos]. E-mail: martinez@cce.ufmg.br

    2000-07-01

    This work presents a comparative study among the direct solar energy utilization options ,through solar panels, coupled to the frequency inverter. These system store energy through batteries or through a reversible and hybrid solar/hydraulic system, coupled to a rectifier and a frequency inverter. There are two basic configurations for the systems being the first one composed of solar panels linked to a battery system , delivering electric energy through a three phase inverter. The second one is composed of solar panels connected to a small battery system and to a water reservoir that has the goal of operating as a reversible system during at night, or during load peak periods. In this ,it is presented a methodology for the designing and economic analysis, comparing this hybrid alternative, to the inverter plus batteries options. This methodology to the correct Energy Conversion System,which is economically advantageous due to the availability of the region. At the end, it is presented a 'case study' where viability of use , for the hybrid solar/hydraulic system in an isolated area, is verified. (author)

  2. Water purification using solar radiation in Nigeria

    International Nuclear Information System (INIS)

    Udounwa, A.E.; Osuji, R.U.

    2005-12-01

    In developing countries, lack of safe and reliable drinking water constitutes a major problem. Contaminated water is the major cause of most water borne diseases like diarrhoea. Disinfection of water is accomplished by a number of different physical - chemical treatments including boiling, application of chlorine and filtration techniques. Solar energy, which is universally available, can also be used effectively in this process, that is, to deactivate the micro-organisms present in this contaminated water thereby improving its microbiological quality. This treatment process is called solar water disinfection. This paper therefore appraises the extent to which research work has been done as regards purification of water using solar radiation in Nigeria vis-a-vis outside the country. It is hoped that it will serve as a wake-up-call for Nigerians especially those in remote areas with no treated pipe borne water supply. The problems and prospects of this technology as well as the policy implications are presented. (author)

  3. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  4. Solar photocatalytic cleaning of polluted water

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI) [de

  5. A mathematical procedure to estimate solar absorptance of shallow water ponds

    International Nuclear Information System (INIS)

    Wu Hongbo; Tang Runsheng; Li Zhimin; Zhong Hao

    2009-01-01

    In this article, a mathematical procedure is developed for estimating solar absorption of shallow water ponds with different pond floor based on the fact that the solar radiation trapped inside the water layer undergoes multiplicative reflection and absorption and on that the solar absorption of water is selective. Theoretical model indicates that the solar absorption of a water pond is related to the reflectivity of the pond floor, the solar spectrum and the water depth. To validate the mathematical model, a concrete water pond measuring 3 x 3 x 0.24 m was constructed. Experimental results indicate that solar reflectivity calculated based on the mathematical model proposed in this work were in good agreement with those measured. For water ponds with a water-permeable floor, such as concrete floor, theoretical calculations of the solar absorptance of a water pond should be done based on the reflectivity of full wet floor, whereas for water ponds with a non-water-permeable floor, theoretical calculations should be done based on the fact that solar reflection on the floor is neither perfect specular reflection nor prefect isotropic diffuse reflection. Results of numerical calculation show that theoretical calculations of solar absorption of a water pond by dividing solar spectrum into six bands were pretty agreement with those by dividing solar spectrum into 20 bands.

  6. Solar energy system performance evaluaton: Seasonal report for Solaron-Akron, Akron, Ohio

    Science.gov (United States)

    1980-05-01

    The operational and thermal performance of the solar energy system by Solaron Corporation is described. The system was designed to provide an 1940 square foot floor area with space heating and domestic hot water for a dual-level single family residence in Akron, Ohio. The solar energy system uses air as the heat transport medium, has a 546 square foot flat plate collector array subsystem, a 270 cubic foot rock thermal storage bin subsystem, a domestic hot water preheat tank, pumps, controls and transport lines. In general, the performance of the Solaron Akron solar energy system was somewhat difficult to assess for the November 1978 through October 1979 time period. The problems relating to the control systems, various solar energy leakages, air flow correction factors and instrumentation cause a significant amount of subjectivity to be involved in the performance assessment for this solar energy system. Had these problems not been present, it is felt that this system would have exhibited a resonably high level of measured performance.

  7. Long term performance of a solar floor and hot water heating house; Taiyonetsu yukadanbo kyuto jutaku no choki seino

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Outlined herein are measured energy consumption followed for 12 years for a totally electrified solar house with a floor-heating and hot-water heating system. In the solar system, hot water generated by the solar collector is sent, via a surge tank, to a living room, dining room and study to heat their concrete floors, and recycled back to the collector after heating the heat-storage tank for hot water supply. The collector is of plate type, consisting of 6 units, each with a white glass sheet as the heat-collecting membrane for selectively absorbing heat. Its total heat-collecting area is 11.4m{sup 2}. Long-term performance of the solar system installed for floor and hot-water heating in a totally electrified solar house, is analyzed by the measured results collected for 12 years. The house consumes secondary energy of 11.7MWh/year on the average, which is approximately 20% lower that that required for a house of the equivalent size. The solar system has been operated smoothly, to supply 46 and 35% of the required heat for hot-water and floor heating. It is however estimated that annual heat loss reaches 34% in the hot-water heating system, including that in the electric hot-water generator, and prevention of heat loss is one of the major themes for the future system designs. 4 refs., 5 figs.

  8. Simulation of solar system in a house; Simulacion de un sistema solar en una vivienda unifamiliar

    Energy Technology Data Exchange (ETDEWEB)

    Rey, F. J.; Velasco, E.; Herrero, R.; Varela, F.; Nunez, M. J.; Lopez, L. M.

    2004-07-01

    Building sustainable development make necessary the rational use of already existing Energy Resources and the use of the Renewable Energies as the Thermal Solar Energy. The technological advance of the last years has allowed the development and improvement of Solar Energy Systems. As today the Thermal Solar Energy is available technical and economically reducing the environmental impact. In the present work it has been developed a TRNSYS simulation of a thermal Solar System for Hot water consumption and Space Heating by radiant Flooring in a single house. The Thermal Solar installation Simulation allows the hour-by-hour system parameters treatment to determine the energy consumptions, yields, solar contribution etc. Also, it has been studied the Energy Qualification of the building by TRNSYS and the AEV methodology developed by the Termotecnia Department of Valladolid University ( UVA). (Author)

  9. Economical investigation of solar water distillation in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Sakr, I A; Khalil, M A; Delyannis, A; Delyannis, E [eds.

    1976-01-01

    Many ways of solar water distillation have been suggested but most of them are either too expensive or only a practical solution to different processes under investigation. Solar heat distillation has a bright future because the greatest potential needs appear to be in those sections where the availability of solar energy is high and the availability of potable water is low as in our Egyptian deserts where the solar intensity has a yearly mean value of about 6000 kcal/(m/sup 2/day). The solar distillation method has a number of economic characteristics which are different from other sea water conversion methods, including: The processing equipment is very simple and results in low equipment costs. No special skills are required for both erection and operation. It can be used with saline water of wide range of salt concentration. The still design is essentially modular, and can be made to meet any desired capacity. Scale formation and corrosion are minor problems as compared with other methods. Power requirements are negligible. The cost of unit construction is not markedly influenced by the size of the still. The lack of quantitative and operative data of solar water distillation techniques with respect to their cost needs in investigation from the economical standpoint of view in Egypt. The subject of this work is to find the order of magnitude of the fresh water cost by solar distillation.

  10. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Piñeiro, Carolina; Alberto Dopazo, J.; Fernandes, F.; Sousa, Paulo X.B.

    2012-01-01

    Highlights: ► We analyze a direct expansion solar assisted heat pump under zero solar radiation. ► We determine the COP and equivalent seasonal performance factors (SPFe). ► We determine the main components’ performance under transient operating conditions. ► The Huang and Lee performance evaluation method provides a characteristic COP of 3.23. - Abstract: This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a R134a rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

  11. Inventory of thermal solar energy systems in the Netherlands: Period 1975-1992

    International Nuclear Information System (INIS)

    Warmerdam, J.M.; Stap, C.A.M.

    1993-10-01

    An overview is given of the number of active thermal solar energy systems that have been installed in the Netherlands during the period 1975-1992. By the end of 1992, 8,300 systems have been installed, of which 6,000 were domestic solar hot water systems. The uncertainty in these figures is 10%. Several sources were used to determine the number of systems installed. The two main sources were the files of the solar industry association 'Holland Solar' (data until 1988), and the Dutch subsidy administrator 'Senter' for data from 1988 up to and including 1992. At the end of 1992 preparations were made for the installation of approximately 3,000 domestic solar water heaters in 1993. It is recommended to carry out an inventory every three months and to compile data on investment costs. 17 figs., 7 appendices

  12. Simulation of the solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, D.; Koukios, E.

    2004-01-01

    The main object of this paper is the documentation and study of the main factors behind the spectacular diffusion of solar energy use for domestic hot water production in Greece. The time pattern of the diffusion of flat-plate solar collectors since its 'out of the blue' first appearance in 1974, shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 91,000 m 2 by 1980. A rate slow down in the early 1980s was followed by a brief period of explosive growth, with the annual sales figure reaching its peak value of more than 185,000 m 2 in mid-1980s. A rapid decline of the growth rate down to the present annual sales level followed. The installed solar collectors pattern has the characteristic form of an S-shape curve, representing the overall penetration of the flat-plate solar collector use for domestic hot water production in the Greek economy and society. This evolution has gone through an inflection point around 1987, i.e. at a time when about 1,000,000 m 2 of collectors had already been installed. By the year 2000, about 2,070,000 m 2 of collectors had been installed, with a tendency to level off by 2010, unless some the present conditions determining this phenomenon change. (author)

  13. Análise de um sistema de aquecimento de água para residências rurais, utilizando energia solar A water heating system analysis for rural residences, using solar energy

    Directory of Open Access Journals (Sweden)

    Luiz H. Basso

    2010-02-01

    Full Text Available A conscientização da importância do meio ambiente tem incentivado o estudo de novas fontes energéticas renováveis e menos poluentes. Dentre essas fontes, a energia solar destaca-se por ser perene e limpa. A utilização da energia solar em sistemas de aquecimento de água residencial rural pode colaborar com a economia de energia elétrica, base da matriz energética brasileira. Conhecer os fatores que influenciam na operação de um sistema de aquecimento de água por energia solar é importante na determinação de sua viabilidade técnica, visando a sua difusão em residências rurais. Para tanto, construiu-se um protótipo, no câmpus da Faculdade Assis Gurgacz, em Cascavel - PR, com características similares a um equipamento utilizado em residências para dois habitantes, para funcionar com circulação natural ou termossifão e sem auxílio de sistema de aquecimento complementar. O equipamento mostrou-se viável tecnicamente, alcançando a temperatura mínima para banho de 35 °C, sempre que a radiação solar foi superior a 3.500 Wh m-2, o que aconteceu para a maioria dos dias estudados.The awareness of the importance of the environment has stimulated the study of new renewed energy sources and less pollutant. Amongst these sources, solar energy stands alone for being perennial and clean. The use of solar energy in systems of agricultural residential water heating, can complement the economy of electric energy, base of the Brazilian energy matrix. Knowing the factors that influence the operation of a system of water heating by solar energy is important in determining their technical viabilities targeting their distribution in agricultural residences. To evaluate equipment of water heating for solar energy, a prototype was constructed in the campus of Assis Gurgacz College, in Cascavel,State of Paraná, Brazil, with similar characteristics to equipment used in residences for two inhabitants, to function with natural circulation or

  14. New solar desalination system using humidification/ dehumidification process

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Dayem, Adel M. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, 5555 Makah (Saudi Arabia)

    2013-07-01

    An innovative solar desalination system is successfully designed, manufactured and experimentally tested at Makkah, 21.4 °N. The system consists of 1.15 m2 flat-plate collector as a heat source and a desalination unit. The unit is about 400 liter vertical cylindrical insulated tank. It includes storage, evaporator and condenser of hot salt-water that is fed from the collector. The heated water in the collector is raised naturally to the unit bottom at which it is used as storage. A high pressure pump is used to inject the water vertically up through 1-mm three nozzles inside the unit. The hot salt-water is atomized inside the unit where the produced vapor is condensed on the inner surfaces of the unit outer walls to outside. The system was experimentally tested under different weather conditions. It is obtained that the system can produce about 9 liter a day per quadratic meter of collector surface area. By that it can produce about 1.6 liters per kWh of solar energy. Moreover the water temperature has a great effect on the system performance although the scaling possibility is becoming significant. By that way the cost of a liter water production is relatively high and is obtained as 0.5 US$.

  15. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  16. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  17. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-01-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water

  18. Solar Space and Water Heating for School -- Dallas, Texas

    Science.gov (United States)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  19. Optimal study of a solar air heating system with pebble bed energy storage

    International Nuclear Information System (INIS)

    Zhao, D.L.; Li, Y.; Dai, Y.J.; Wang, R.Z.

    2011-01-01

    Highlights: → Use two kinds of circulation media in the solar collector. → Air heating and pebble bed heat storage are applied with different operating modes. → Design parameters of the system are optimized by simulation program. → It is found that the system can meet 32.8% of the thermal energy demand in heating season. → Annual solar fraction aims to be 53.04%. -- Abstract: The application of solar air collectors for space heating has attracted extensive attention due to its unique advantages. In this study, a solar air heating system was modeled through TRNSYS for a 3319 m 2 building area. This air heating system, which has the potential to be applied for space heating in the heating season (from November to March) and hot water supply all year around in North China, uses pebble bed and water storage tank as heat storage. Five different working modes were designed based on different working conditions: (1) heat storage mode, (2) heating by solar collector, (3) heating by storage bed, (4) heating at night and (5) heating by an auxiliary source. These modes can be operated through the on/off control of fan and auxiliary heater, and through the operation of air dampers manually. The design, optimization and modification of this system are described in this paper. The solar fraction of the system was used as the optimization parameter. Design parameters of the system were optimized by using the TRNSYS program, which include the solar collector area, installation angle of solar collector, mass flow rate through the system, volume of pebble bed, heat transfer coefficient of the insulation layer of the pebble bed and water storage tank, height and volume of the water storage tank. The TRNSYS model has been verified by data from the literature. Results showed that the designed solar system can meet 32.8% of the thermal energy demand in the heating season and 84.6% of the energy consumption in non-heating season, with a yearly average solar fraction of 53.04%.

  20. Investigation of the comparative test method of solar DHW system; Solar kyuto system no toitsuteki seino shiken hoho no chosa

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, M; Noguchi, T [Japan Quality Assurance Organization, Tokyo (Japan)

    1996-10-27

    For the development of a unified performance test method for solar DHW (domestic hot water) systems, the Japan Quality Assurance Organization test was applied to three types. In an individual test, each specimen is exposed to irradiation from a solar simulator for 8 hours in a specified pattern. Upon completion of the 8-hour irradiation, hot water is taken from the specimen, the amount being 1.1 times as large as the heat accumulation tank capacity, for the measurement of the collected heat. The control of the heat medium circulation pump, flow rate, and density, all supposed to affect the heat collecting performance, are examined. Stable data, not subject to meteorological factors and high in reproducibility, is obtained, allowing a single test to represent the heat collecting performance. A system test continues for 24 hours, from 8 o`clock on this morning through 8 o`clock on the following morning, with water collected in a specified pattern. This test is suitable for examining the in-service performance of a solar hot water system including the auxiliary heat source. If temperature is not set properly in the auxiliary heat source before testing, the system performance coefficient and sun-dependency coefficient will not be expressed in a uniform manner. For a correct evaluation, measurements should be made only after a several days` uninterrupted operation for the removal of the adverse effect of the heat residual in the heat accumulation tank. 4 refs., 5 figs., 9 tabs.

  1. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara Denise.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  2. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  3. A heat pipe solar collector system for winter heating in Zhengzhou city, China

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2017-01-01

    Full Text Available A heat pipe solar collector system for winter heating is investigated both experimentally and theoretically. The hourly heat collecting capacity, water temperature and contribution rate of solar collector system based on Zhengzhou city typical sunshine are calculated. The study reveals that the heat collecting capacity and water temperature increases initially and then decreases, and the solar collector system can provide from 40% to 78% heating load for a 200 m2 villa with in Zhengzhou city from November to March.

  4. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  5. Solar engine system

    International Nuclear Information System (INIS)

    Tan, K.K.; Bahrom Sanugi; Chen, L.C.; Chong, K.K.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Noriah Bidin; Omar Aliman; Sahar Salehan; Sheikh Ab Rezan Sheikh A H; Tam, C.M.; Chen, Y.T.

    2001-01-01

    This paper reports the revolutionary solar engine system in Universiti Teknologi Malaysia (UTM). The solar engine is a single cylinder stirling engine driven by solar thermal energy. A first prototype solar engine has been built and demonstrated. A new-concept non-imaging focusing heliostat and a recently invented optical receiver are used in the demonstration. Second generation of prototype solar engine is described briefly. In this paper, the solar engine system development is reported. Measurement for the first prototype engine speed, temperature and specifications are presented. The benefits and potential applications for the future solar engine system, especially for the electricity generating aspect are discussed. (Author)

  6. Combined bio and solar heating system. Handbook for system design; Kombinerade bio- och solvaermesystem. Handbok foer systemutformning

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas

    2008-11-15

    The purpose of this report is to compile the knowledge available concerning combined pellets and solar system in order to support companies in their systems design. This publication deals with experience gained in research on solar and pellet heating, and gives proposals to system design, various technical solutions, and how systems should be controlled. When solar and pellets are combined, there are many possibilities to interconnect the systems. There are different traditions in different countries, which makes the system solutions vary from country to country. A general conclusion is that conventional Swedish boilers with built-in hot water heater are not appropriate for conventional solar systems. It gives rise to complex solutions and it is difficult to achieve good stratification in the water tank. In a solar system, it is important that the tank can be discharged in such a way that sharp stratification is obtained. This means that the tank bottom must be chilled to the temperature of incoming cold water and that the middle part must be cooled to the same temperature as the radiator return. If solar panels even in winter can work to preheat the cold water of 10 to 20 C, a much better efficiency is obtained on collectors than if the radiator return must be preheated, which at best is at a temperature level of between 30 and 40 C. To this end, the radiator return is placed well up from the bottom of the tank and the tap water is preheated in a loop that starts in the tank bottom. Another important parameter in the tank design is that heat losses are kept low, it is important that the solar heat can produce the hot water even during overcast periods in summer and to keep energy consumption low. In modern houses where the tank is placed in the living area, it is important to avoid high temperatures in the room where the tank is placed. To obtain a good isolation one must ensure that there is an airtight layer across the isolation that also closes tightly against

  7. Experimental investigation on a semi-circular trough-absorber solar still with baffles for fresh water production

    International Nuclear Information System (INIS)

    Sathyamurthy, Ravishankar; Nagarajan, P.K.; El-Agouz, S.A.; Jaiganesh, V.; Sathish Khanna, P.

    2015-01-01

    Highlights: • Experiments are carried out to analyze the performance. • Baffles are placed in the absorber to increase the residence time of water with solar intensity. • Yield of fresh water from present solar still is 16.66% more than a conventional solar still. • Payback period of the present model is quicker. - Abstract: The main objective of this research is to increase the contact time of water in the basin to enhance yield of fresh water by using a semicircular absorber solar still with baffles. An experimental as well as theoretical investigation is carried out. The productivity and efficiency of present still are analyzed with the influence of the number baffles and the water flow rate. A good agreement between the experimental and theoretical results is observed. The results indicate that, the daily yield of present solar still is higher than that for conventional still approximately by 16.66%. The outlet water temperature present solar still is high subsequently, it can be coupled with multi-state of solar stills to increase productivity. Therefore, the present solar still can be sufficiently extended for other continuous solar desalination systems. Economic analysis concluded that, the payback period of the present model solar still is quicker while comparing it with other solar still

  8. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    Directory of Open Access Journals (Sweden)

    Rokas Valančius

    2015-06-01

    Full Text Available Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to the numerical simulation results. Three different medium-scale solar thermal systems in Lithuania were selected for the analysis varying in both equipment used (flat type solar collectors, evacuated tube collectors and type of energy user (swimming pool building, domestic hot water heating, district heating. The results of the analysis showed that in the analysed cases the gap between measured and modelled data of heat energy produced by SHW systems was approx. 11%. From the economical perspective, the system with flat type solar collectors used for domestic hot water production was proved to be most efficient. However, calculation of Internal Rate of Return showed that a grant of 35% is required for this project to be fully profitable.

  9. SIMS prototype system 1: Design data brochure. [solar heating system

    Science.gov (United States)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  10. Combined heat and power solar system

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    An Australian-designed photovoltaic (PV) power system that also supplies hot water is close to commercial release. PVs have been around for decades and solar concentrators have been efficiently heating water for nearly a century. The Australian National University, Department of Engineering - Centre for Sustainable Energy systems (CSES), has designed a domestic scale modular system that not only generates electricity but also provides concentrated thermal energy to heat water for a Solahart hot water system and is designed to be deployed into small to medium scale applications such as hospitals, schools and dwellings with an easily assembled galvanised steel frame. A market research was carried out and is envisaged that at least 7,500 units will be installed annually by the year 2005 and up to 25,000 units by 2008

  11. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  12. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  13. Design and experimental study of a solar system for heating water ...

    African Journals Online (AJOL)

    This work presents a design and an experimental study of a linear Fresnel reflector solar with trapezoidal cavity. This prototype is used for heating the tap water. The reflector was designed, constructed and tested in mechanical engineering department, University of Blida 1, Algeria. Various combinations of reflecting mirrors ...

  14. Solar radiation for sea-water desalination and electric power generation via vacuum solar collectors

    International Nuclear Information System (INIS)

    Mottinelli, L.; Reali, M.; El-Nashar, A.M.; Giusiano, F.; Vigotti, R.

    1996-01-01

    The present report concerns the energetic potential of vacuum solar which are rather versatile and efficient devices for converting solar energy into thermal energy. Two main energetic applications have been analysed: the first one for a solar sea water desalination plant which has been operated in Abu Dhabi for the past ten years, the other for a conceptual solar thermoelectric-power plant having a fair thermodynamic efficiency (15-20%). A simple technology for the manufacture of vacuum solar collectors in a standard mechanical shop is being developed in collaboration between ENEL Sp A (DSR-CRIS, Milano) and WED (Abu Dhabi). Such technology should have an important economy-saving potential per se and would also make repair and substitution operations simple enough for the actual operators of the vacuum solar collector system without any need of external assistance. The technic-operative-economical features of the Abu Dhabi solar desalination plant suggest that the use novel simplified vacuum solar collectors could have a considerable technic economical potential. The analysis of the conceptual solar thermo-electric-power plant focuses on its general layout and singles out key technological issues which ought to be addressed in an overall feasibility study. 5 figs., 3 tabs

  15. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  16. Performance of the second generation solar heating system in the solar house of the Eindhoven University of Technology

    NARCIS (Netherlands)

    Bisschops, R.W.G.; van Koppen, C.W.J.; Veltkamp, W.B.; Ouden, den C.

    1984-01-01

    Summer 1981 a new solar heating system has been installed in the Solar House at the E.U.T. The principal features of the system are Philips VTR 261 evacuated tube collectors, integration of the auxiliary heater with the (stratified water) storage and application of the new, balanced flow control

  17. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for multiple dwelling); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This R and D was intended to develop the following technologies for the purpose of putting into practice an innovative system that performs cooling/heating and hot-water supply for a multiple dwelling economically by solar energy: development of equipment constituting solar cooling/heating and hot-water supply system, and development of a system which uses such equipment and which is inexpensive and safe as well as easy for inspection and maintenance. In fiscal 1979, a study was implemented in which emphasis was placed on the experiment of a test housing with a solar cooling/heating and hot-water supply system incorporated for the purpose of proving the results of the research since fiscal 1974. In the overall flow of this project, the following research contents were partially performed or being performed successively during the period of seven years. (1) Examination of various methods, (2) Development of thermally driven freezer, (3) High performance heat collecter, (4) Heat storage device, (5) Types of multiple dwelling suitable for solar energy utilization, (6) Construction of experimental multiple dwelling, (7) Experiment in houses actually in use by people, (8) Confirmation of system improvements and results on the basis of experimental measurements, and (9) Evaluation as a solar system for multiple dwelling. (NEDO)

  18. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  19. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    Science.gov (United States)

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  20. Building integrated multi PV/T/A solar system

    International Nuclear Information System (INIS)

    Ami Elazari

    2000-01-01

    Previous development in solar energy for residential applications proved that there is merit in further development and improvement of combined electricity and hot water and hot air collectors. The justification stems from the fact that waste heat is generated when PV cells are producing electricity but it decrease its efficiency dramatically, and any effective way to cool the cells can improve their efficiency and long while the heat that generated from this cooling process could be stored and used as standard solar hot water/air system. The core unit comprises of integrated PV cells mounted on a flat-plate collector for water and air, hot water storage tank hot air inlet pips to the house electric battery bank, inverter, connecting cables and controller. Double-glazing serving as solar trap to triple the amount of sun ray reaching the PV cells and other technical innovation make the system more cost effective and cost benefit for stand alone and grid connected domestic application. Two way interconnection with the electric grid like in all the roof top program may bring it to economic viability by selling excess electricity during the costly peak hours while buying low cost electricity during the night off-peak hours, and free electricity from the sun plus free hot water and hot air for domestic use as by-product. A basic domestic two-collector system may deliver up to 4 kWh of electricity and 12000 kcal of hot water and air daily. Some 22 systems are currently operating at various locations in Israel, some for 8 years with very good results. (Author)

  1. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity......The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes...

  2. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  3. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  4. Water in the Early Solar System: Infrared Studies of Aqueously Altered and Minimally Processed Asteroids

    Science.gov (United States)

    McAdam, Margaret M.

    This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data. 75 observations of 73 asteroids are analyzed and presented in Chapter 4. Asteroids with hydrated minerals are found throughout the main belt indicating that significant ice must have been present in the disk at the time of carbonaceous asteroid accretion. Finally, some carbonaceous chondrite meteorites preserve amorphous iron-bearing materials

  5. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. M.

    1980-06-01

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  6. Solar photocatalysis - a possible step in drinking water treatment

    International Nuclear Information System (INIS)

    Ljubas, Davor

    2005-01-01

    Possibility of the use of solar radiation for reduction of Natural Organic Matter (NOM) content in natural lake water, as a source for drinking water preparation, was the topic of this research. Solar radiation alone does not have enough energy for sufficient degradation of NOM, but in combination with heterogeneous photocatalyst-titanium dioxide (TiO 2 ), with or without other chemicals, the degradation potential could increase. In specific geographical conditions in Republic of Croatia, e.g. Adriatic islands or Dalmatia, solar radiation could be used for photocatalytic degradation of natural organic matter (NOM) in surface waters and therewith lighten the process of preparing them to the potable water. Specific quality of the geographical locality appears in fact that it is a very attractive tourist destination, especially in period June-September. In this period the drinking water demand is the biggest and, fortunately, the intensity of the solar radiation, too. So, there is a proportion between the drinking water demand and solar radiation available for the use in drinking water treatment. A number of tests with lake water exposed to solar radiation in non-concentrating reactors were performed and photodegradation of NOM for various combinations of doses and crystal forms of TiO 2 with H 2 O 2 was studied. Irradiation intensity was estimated from global solar radiation measurements. The best performance for the NOM degradation had combination of 1 g/L TiO 2 both anatase and rutile+solar radiation+H 2 O 2 , but - economically - it was not the best combination. An estimation of the biodegradation potential of dissolved organic matter after the photocatalytic step is given, too

  7. Solar water heating: The making of a simple, standard appliance

    International Nuclear Information System (INIS)

    Block, D.L.

    1993-01-01

    Within the solar community we have carried on never-ending discussions about the performance of solar water heaters. As a long-time solar advocate and researcher, I am continually asked, open-quotes When will solar usage become widespread?close quotes We who are in the solar business all face this question, and we must respond. Our answers usually take the form of some discussion on efficiency improvements, life-cycle costs, level playing field or environmental factors. But the only real way to answer this question is: Use of solar will be widewspread when a solar water heater is considered to be just another standard appliance. Increased installations is the key, and the solar technology with the greatest near-term potential for increased installation is solar water heating

  8. Thermal study of a residential water solar heating system with two different absorbing surface configurations; Estudo termico de um sistema solar de aquecimento de agua residencial para duas configuracoes de superficie absorvedora

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Rivaldo Ferreira

    2009-10-15

    A solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly is presented. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, it is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint fiat black for better absorption of sunlight. The system worked on a thermosyphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. The most efficient configuration for the connect purpose was determined. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied. (author)

  9. Experimental analysis of distinct design of a batch solar water heater with integrated collector storage system

    Directory of Open Access Journals (Sweden)

    Varghese Jaji

    2007-01-01

    Full Text Available The performance of a new design of batch solar water heater has been studied. In this system, the collector and storage were installed in one unit. Unlike the conventional design consisting of small diameter water tubes, it has a single large diameter drum which serves the dual purpose of absorber tube and storage tank. In principle it is a compound parabolic collector. The drum is sized to have a storage capacity of 100 liter to serve a family of four persons. The tests were carried out with a single glass cover and two glass covers. The tests were repeated for several days. Performance analysis of the collector has revealed that it has maximum mean daily efficiency with two glass covers as high as 37.2%. The maximum water temperature in the storage tank of 60°C has been achieved for a clear day operation at an average solar beam radiation level of 680 W/m2 and ambient temperature of 32°C. To judge the operating characteristics and to synchronize utility pattern of the collector, the different parameters such as efficiency, mean plate temperature and mass flow rate has been investigated.

  10. Modelling of solar distillation system with phase change material (PCM storage medium

    Directory of Open Access Journals (Sweden)

    Al-Hamadani Ali A.F.

    2014-01-01

    Full Text Available An experimental investigation on a passive solar still with myristic acid as phase change material (PCM is carried out to examine the effect of both the mass of PCM and basin water on the daily distillate output and efficiency of the system under indoor simulated condition. Basic energy balance equations are written to predict the water and glass temperatures, daily distillate output and instantaneous efficiency of the single slope solar distillation system with PCM. It is found that the higher mass of PCM with lower mass of water in the solar still basin significantly increases the daily yield and efficiency, but when the amount of PCM exceeds 20 kg productivity reduces. Therefore, a novel and simple of solar stills with PCM is proposed to enhance the overall productivity of the distillation system. The new solar still has increased the distillate output by 35-40%. The use of inner glass cover temperature for productivity prediction has also been investigated, and the prediction shows relatively better agreement with the experimental data.

  11. Material cycling solar system modeled ecosystem; Seitaikei wo model to shita busshitsu junkangata solar system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    It is proposed to establish an integrated system close to a natural ecosystem for an industrial complex, taking that in Hachinohe City, Aomori Pref. as the conceptual site. It is a system in which materials are recycled by solar energy and industrial waste heat for a complex food industry. The conceptual site, although blessed with various marine products, are sometimes attacked by cold weather. Waste heat from a 250,000kW power plant, if transported by EHD heat pipes to the site, could provide roughly 400 times the heat required for production of agricultural and marine products, such as cabbages and fish meat. The waste heat, coupled with solar energy, should solve the problems resulting from hot waste water, if they could be utilized for the industrial purposes. The food industrial site that produces agricultural and marine products is considered to be suited as the center of the solar industrial complex incorporating farms. 5 refs., 3 figs.

  12. Innovative Design of Solar-Powered Desalination (SPD System using Vacuum-Multi Effect Membrane Distillation (V-MEMD Process

    Directory of Open Access Journals (Sweden)

    Chafidz Achmad

    2018-01-01

    Full Text Available This research focused on the development of an innovative design of solar-powered desalination (SPD system which was expected to solve the water and energy problem simultaneously. We have developed a portable and hybrid solar-powered desalination (SPD system for producing potable water from saline water. It is a self-contained and integrated system which combines solar-thermal collector and solar-photovoltaic for its operation, and thus the system can operate to produce water by only using solar energy. Therefore, the system is highly suitable to be implemented in remote arid and coastal areas without infrastructures or connection to the grid (water and power, but blessed with abundant solar irradiation, like in Saudi Arabia. A Memsys Vacuum Multi-Effect Membrane Distillation (V-MEMD unit was used as the core of the SPD system. A heat pump was also integrated into the SPD system for energy recovery and to improve the performance of the system. The system could be considered as sustainable and “green” desalination technology, which will be very useful for the Kingdom of Saudi Arabia. To study the performance of the system, small-scale tests have been carried out at the Engineering College - King Saud University, Saudi Arabia. Based on the experimental results, the system has run successfully by only utilizing solar energy.

  13. Numerical investigation on effect of riser diameter and inclination on system parameters in a two-phase closed loop thermosyphon solar water heater

    International Nuclear Information System (INIS)

    Aung, Nay Zar; Li, Songjing

    2013-01-01

    Highlights: • Optimum inclination for maximum heat flux changes with latitude of location. • Optimum inclination for maximum heat flux also changes local solar time. • Maximum flow rate increases with increasing of riser tube size. • Maximum mass flow rate is obtained at different inclinations for different risers. • Length of two-phase region depends on inclination angles but not riser tube size. - Abstract: In this work, the effect of riser diameter and its inclination angle on system parameters in a two-phase closed loop thermosyphon solar water heater has been numerically investigated. Here, receivable heat flux by the collector, circulating mass flow rate, driving pressure, total pressure drop, heat transfer coefficient in risers and collector efficiency are defined as system parameters. For this aim, a model of two-phase thermosyphon solar water heater that is acceptable for various inclinations is presented and variations of riser diameter and inclination are considered. The riser tube size is varied from 1.25 cm to 2.5 cm with inclination range 2–75°. The system absolute pressure is set as 3567 Pa and water is chosen as working fluid. The results show that higher inclination angle is required for higher latitude location to obtain maximum solar heat flux. At local solar noon of 21.996 north latitude, the optimum inclination angle increases in the range of 24–44° with increasing of riser diameter giving maximum circulating mass flow rate from 0.02288 kg/s to 0.03876 kg/s. The longer two-phase heat transfer characteristics can be obtained at smaller inclination angles and mass flow rate for all riser tube sizes. Therefore, it is observed that the optimum inclination angles and diameters for solar heat flux, circulating mass flow rate and heat transfer coefficient in two-phase thermosyphon systemdo not coincide. From this work, better understanding and useful information are provided for constructing two-phase thermosyphon solar heaters

  14. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkanshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S; Mizuno, T [Yazaki Resources Co. Ltd., Shizuoka (Japan)

    1996-10-27

    For the purpose of satisfying demands for qualitative improvement on tapwater temperature and pressure, an indirect-type solar water heater using solar cells, in which a closed type hot water storage tank connected directly to the water supply is integrated with a solar collector, was examined for its characteristics and performance. The heat collecting medium is a water solution of polypropylene glycol, which circulates through the solar collector pump, cistern, solar collector, and heat exchanger (hot water storage tank). The results of the test are summarized below. When comparison is made between the two solar collector pump control methods, the solar cells direct connection method and the differential thermo method utilizing temperature difference between the solar collector and the hot water storage tank, they are alike in collecting heat on clear days, but on cloudy days the latter collects 5% more than the former. In winter, when the heat exchanger heat transfer area is 0.4m{sup 2} large, a further increase in the area improves but a little the heat collecting efficiency. An increase in the medium flow rate and temperature, or in the Reynolds number, enhances the heat collecting efficiency. 13 figs., 6 tabs.

  15. Solar-Energy System for a Commercial Building--Topeka, Kansas

    Science.gov (United States)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  16. Optimal design and control of solar driven air gap membrane distillation desalination systems

    International Nuclear Information System (INIS)

    Chen, Yih-Hang; Li, Yu-Wei; Chang, Hsuan

    2012-01-01

    Highlights: ► Air gap membrane distillation unit was used in the desalination plants. ► Aspen Custom Molder was used to simulate each unit of desalination plants. ► Design parameters were investigated to obtain the minimum total annual cost. ► The control structure was proposed to operate desalination plants all day long. -- Abstract: A solar heated membrane distillation desalination system is constructed of solar collectors and membrane distillation devices for increasing pure water productivity. This technically and economically feasible system is designed to use indirect solar heat to drive membrane distillation processes to overcome the unstable supply of solar radiation from sunrise to sunset. The solar heated membrane distillation desalination system in the present study consisted of hot water storage devices, heat exchangers, air gap membrane distillation units, and solar collectors. Aspen Custom Molder (ACM) software was used to model and simulate each unit and establish the cost function of a desalination plant. From Design degree of freedom (DOF) analysis, ten design parameters were investigated to obtain the minimum total annual cost (TAC) with fixed pure water production rate. For a given solar energy density profile of typical summer weather, the minimal TAC per 1 m 3 pure water production can be found at 500 W/m 2 by varying the solar energy intensity. Therefore, we proposed two modes for controlling the optimal design condition of the desalination plant; day and night. In order to widen the operability range of the plant, the sensitivity analysis was used to retrofit the original design point to lower the effluent temperature from the solar collector by increasing the hot water recycled stream. The simulation results show that the pure water production can be maintained at a very stable level whether in sunny or cloudy weather.

  17. Theoretical investigation of solar humidification-dehumidification desalination system using parabolic trough concentrators

    International Nuclear Information System (INIS)

    Mohamed, A.M.I.; El-Minshawy, N.A.

    2011-01-01

    Highlights: → We evaluated the performance of sea water HDD system powered by solar PTC. → The proposed design to the expected desalination plant performance was introduced. → The collector thermal efficiency was a function of solar radiation value. → The highest fresh water productivity is found to be in the summer season. → The production time reaches 42% of the day time in the summer season. - Abstract: This paper deals with the status of solar energy as a clean and renewable energy applications in desalination. The object of this research is to theoretically investigate the principal operating parameters of a proposed desalination system based on air humidification-dehumidification principles. A parabolic trough solar collector is adapted to drive and optimize the considered desalination system. A test set-up of the desalination system was designed and a theoretical simulation model was constructed to evaluate the performance and productivity of the proposed solar humidification-dehumidification desalination system. The theoretical simulation model was developed in which the thermodynamic models of each component of the considered were set up respectively. The study showed that, parabolic trough solar collector is the suitable to drive the proposed desalination system. A comparison study had been presented to show the effect of the different parameters on the performance and the productivity of the system. The productivity of the proposed system showed also an increase with the increase of the day time till an optimum value and then decreased. The highest fresh water productivity is found to be in the summer season, when high direct solar radiation and long solar time are always expected. The production time reaches a maximum value in the summer season, which is 42% of the day.

  18. A hybrid solar/diesel water heating system: in medicine area in a hospital in Mexico city; Sistema hibrido de energia solar y diesel para calentamiento de agua: caso en el area de medicina fisica en un hospital en la ciudad de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco Mejia, Miguel; Wolpert Kuri, Jorge [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    A hybrid solar/diesel water heating system for therapy in a hospital in Mexico is described in this paper. The use of solar energy in hospitals and clinics, represent an environmentally friendly alternative to the burning of fossil fuels. Analysis is made regarding the feasibility of integrating both solar energy and conventional energy (fuel oil) as back up, to satisfy the hot water demand for hydrotherapy in a hospital. Results from simulation show that solar energy is a cheap means to provide up to 60% of the hot water demand. The solar assisted system proposed uses flat plate solar collectors integrated with an existing hot water tank, where water is heated with vapor from a diesel ran boiler. This represents significant savings on the solar system cost. [Spanish] La utilizacion de la energia solar en hospitales y clinicas, representa una posibilidad para obtener ahorros importantes de energia para satisfacer la demanda de agua caliente. En el presente estudio se analiza la demanda de agua caliente para uso en medicina fisica (hidroterapia), en un hospital ubicado en la Cd. De Mexico y la factibilidad de usar la energia solar, empleando como apoyo el sistema tradicional de combustible fosil (diesel). Mediante un analisis termico se determina el calor necesario para satisfacer la demanda de agua caliente. El analisis economico muestra los costos del sistema solar, los ahorros que se tendran y el periodo de recuperacion de la inversion. Los resultados muestran que la utilizacion de la energia solar es factible debido a la disminucion tanto del consumo de combustible, como de las emisiones atmosfericas. Se propone la instalacion de un sistema solar con colectores planos y el aprovechamiento de uno de los dos tanques de agua caliente existentes, donde se efectua la trasferencia de calor al agua por medio de vapor, lo cual disminuye el costo del sistema solar. La aportacion solar puede ser mayor del 60%, el complemento sera aportado por el sistema tradicional con

  19. Performance test of solar energy distillation system; Taiyonetsu riyo kaisui tansuika system no zosui seino shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, T; Toyoshima, Y [Keio University, Tokyo (Japan); Narasaki, Y; Kamiya, I [Ebara Corp., Tokyo (Japan); Sato, H [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-11-25

    In order to develop a seawater desalination equipment utilizing solar heat, a performance test was performed on a three-stage solar heat vacuum distiller. The equipment can evaporate and condense water at low temperatures by reducing the pressure in a distilling section. Solar heat is collected by a heat collecting plate, by which water as the working fluid is evaporated and moved to a heat conducting section in an evaporation pipe in a state of steam. The steam is condensed in a low-temperature heat conducting pipe, the heat is released outside the heat conducting pipe, and seawater is evaporated under low pressure condition. The working fluid is circulated for repetitive use. Solar cells are used as a motive power source for a vacuum pump, hence the system is self-sustainable even if installed in a desert area and the like places. The construction is simple, highly durable, and easy in maintenance. The system has high water producing performance, uses no harmful substances whatsoever such as fluorocarbons, and is a friendly system to the global environment. Because of evaporation at low temperatures, heat loss to the surroundings and sensible heat due to temperature rise are small, and the system response is quick. The solar heat can be utilized more effectively as multiple effects. When a heat collecting plate of 7.76 m {sup 2} was used, maximum yield of 105.45 kg/day was obtained. The system`s distillation efficiency is higher than other types of solar heat utilizing distillers. 7 refs., 5 figs.

  20. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Science.gov (United States)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  1. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  2. Solar photocatalytic cleaning of polluted water. Solare Reinigung verschmutzter Waesser mittels Photokatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, D

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI)

  3. Numerical model of simulation for solar collector of water heating; Modelo de simulaco numerica para colector solar de aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A. C. G. C.; Dutra, J. C. C.; Henriquez, J. R.; Michalewicz, J. S.

    2008-07-01

    Before being installed a solar heater, It must be tested, numerical or experimentally to get his characteristic equation, which is the efficiency curve, plotted as a function on the temperature of entry and solar incident radiation on the collector. In this work was developed a tool for numerical simulation of heating water flat-plate solar collectors. This tool has been developed from a mathematical model which is composed of a system of equations. In the model are included equations of balance energy for the collector, equation of the first law, the law of cooling equation of Newton, convective heat transfer coefficient correlations, equations for calculating the solar incident radiation, and one equation that calculates of the water flow due to the siphon effect. The solution of the equations system was obtained by the multidimensional version of the Newton-Raphson method. the model was validated with experimental data from literature. The results shows, that it is a very interesting tool to simulate efficiency curve of the solar collector. (Author)

  4. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of solar systems for condominiums); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-01

    This project is aimed at technological development of economical solar energy systems for air conditioning and hot water supply for condominiums. The major items for the FY 1977 programs include (1) designs and fabrication of equipment for a test building, (2) development of the equipment materials, and (3) system analysis. The jobs for item (1) include management of the designs and construction, placing an order for the building, and fabrication of an air conditioner expander and heat pump; those for item (2) include simplification of a condensing type and plate type heat collector structures, weather-resistance of the plate type heat collector structure, and materials for selective absorbing membranes and reflectors; and those for item (3) include estimation of heat loads in a model building, first to third floors as the test building, and fourth to 14th floors as the conventional box-shaped building. The heat collector installation area is investigated for a multistory building, for which solar radiation intensity at the heat-receiving plane and the like are taken into account. It is found that the solar system can be installed, when an area of 50m{sup 2} can be allocated to the system in each story. There is a limit to story number for the solar system to economically work for air conditioning and hot water supply. Sufficient insulation of the system and reduction in pipe length by zoning are the necessary measures against heat losses. (NEDO)

  5. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  6. Solar heating systems for heating and hot water

    Energy Technology Data Exchange (ETDEWEB)

    Schnaith, G; Dittrich, K

    1980-07-01

    Deutsche Bundesbahn has shown an interest in solar heating systems, too. The items discussed include the useful radiation energy, design features of collectors, heat carrier media, safeguards and profitability studies. The system installed by Deutsche Bundesbahn in the social services building of the Munich-Laim railway workshop is described. In conclusion, the test results of the first few months of service are given. In order to obtain unambiguous results, it appears indispensable to arrange for an additional total trial period of not less than two years and to conduct tests also on further systems presently under construction.

  7. FY 1977 Annual report on Sunshine Project results. Research on solar energy systems for air conditioning and hot water supply; 1977 nendo taiyo netsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at research and development of utilization of solar energy for air conditioning and hot water supply, as part of the researches on systems under Sunshine Project for utilization of solar energy. This project is focused on the research items, selected from those pursued by the 3-year project beginning in FY1974 as the ones considered to be important for the future diffusion and promotion of the systems for utilization of solar energy. The 3-year project has produced the software and hardware results, based on development of the devices and construction of a solar house. At this stage of time, it is pointed out that studies on economic viability of the system, development of the software for diffusion of the solar systems, and development of new, more suitable systems and methods for utilization of solar energy are important. In this fiscal year, the four themes (studies on economic viability of the conceptual solar system designs, simplified methods for designing the systems, evaluation of system performance, and studies on energy-saving effects and economic viability) are taken up, viewed from development of the software for diffusion and promotion of the systems for utilizing solar energy, based on the results obtained by the previous 3-year project. (NEDO)

  8. Solar Heating in Uppsala : A case study of the solar heating system in the neighbourhood Haubitsen in Uppsala

    OpenAIRE

    Blomqvist, Emelie; Häger, Klara; Wiborgh, Malin

    2012-01-01

    The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar heating system is expectedto generate and which factors could improve theefficiency. Simulations suggest that the solar heatingsystem can to cover about 22 per cent of the domestichot water demand in Haubitsen, which corresponds to50 MWh for a year. If some factors, such as the tilt ofthe solar collectors would have be...

  9. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  10. Solar heating and cooling system installed at Leavenworth, Kansas

    Science.gov (United States)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  11. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  12. PERFORMANCE OF EVACUATED TUBE SOLAR COLLECTOR USING WATER-BASED TITANIUM OXIDE NANOFLUID

    Directory of Open Access Journals (Sweden)

    M. Mahendran

    2012-12-01

    Full Text Available Experiments are undertaken to determine the efficiency of an evacuated tube solar collector using water-based Titanium Oxide (TiO2 nanofluid at the Pekan Campus (3˚32’ N, 103˚25’ E, Faculty of Mechanical Engineering, University Malaysia Pahang, for the conversion of solar thermal energy. Malaysia lies in the equatorial zone with an average daily solar insolation of more than 900 W/m², which can reach a maximum of 1200 W/m² for most of the year. Traditionally water is pumped through the collector at an optimum flow rate, for the extraction of solar thermal energy. If the outlet temperature of the water is high, further circulation of the water through the collector is useless. This is due to the low thermal conductivity of water of 0.6 W/m.K compared to metals which is many orders higher. Hence it is necessary to reduce the surface temperature either by pumping water at a higher flow rate or by enhancing the fluid’s properties by the dispersion of nanoparticles. Pumping water at higher flow rates is not advantageous as the overall efficiency of the system is lowered. Liquids in which nanosized particles of metal or their oxides are dispersed in a base liquid such as water are known as 'Nanofluids'. This results in higher values of thermal conductivity compared to the base liquid. The thermal conductivity increases with the concentration and temperature of the nanofluid. The increase in thermal conductivity with temperature is advantageous for application in collectors as the solar insolation varies throughout the day, with a minimum in the morning reaching a maximum at 2.00p.m and reducing thereafter. The efficiency of the collector estimated using a TiO2 nanofluid of 0.3% concentration is about 0.73, compared to water which is about 0.58. The efficiency is enhanced by 16.7% maximum with 30–50nm sized TiO2 nanoparticles dispersed in the water, compared to the system working solely with water. The flow rate is fixed at 2.7 liters per

  13. The Development of a Roof Integrated Solar Hot Water System

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Infrastructure and DER Dept.; Moss, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solar Technologies Dept.; Palomino, G. Ernest [Salt River Project (SRP), Tempe, AZ (United States)

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  14. Experimental investigation of the higher coefficient of thermal performance for water-in-glass evacuated tube solar water heaters in China

    International Nuclear Information System (INIS)

    Zhang, Xinyu; You, Shijun; Xu, Wei; Wang, Min; He, Tao; Zheng, Xuejing

    2014-01-01

    Highlights: • The energy grades system for solar water heater (SWH) in China was introduced. • Heat loss and capacity of heat collection mainly affected SWH thermal performance. • Optimum ratio of tank volume to collector area for solar water heater is 57 to 72 L/m 2 . • The recommendation polyurethane insulation layer should be around 50 mm thick. • SWH with shorter tube has a better thermal performance. - Abstract: Solar water heaters (SWHs), now widely used in China, represent an environmentally friendly way to heat water. We tested the performance of more than 1000 water-in-glass evacuated tube SWHs according to Chinese standards and found that the heat loss from the storage tank and capacity of the solar collector affected their thermal performance. The optimum parameters to maximize the performance of water-in-glass evacuated tube SWHs included a ratio of tank volume to collector area of 57–72 L/m 2 , which should give a system efficiency of 0.49–0.57, meaning that the temperature of water in the tank will exceed 45 °C after one day of heat collection. In addition, the polyurethane insulation layer should be around 50 mm thick with a free foaming density of about 35 kg/m 3 , and the evacuated tube should be short. The tilt angle did not affect the performance of the SWHs. These results should aid in the design of highly efficient SWHs

  15. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkahshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S; Mizuno, T [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    Optimal operation control was discussed on a forced-circulation solar water heater using solar cells not only as the power supply of a heat collecting pump, but also for controlling operation of the heat collecting pump. With this system, when the amount of power generated by solar cells reaches a sufficient level for operating the heat collecting pump, the heat collecting pump starts operation, wherein the heat collecting medium circulates in the system. The discussion was given by using simulation based on experimental expressions such as the relation expression between insolation and heat collecting medium flow rate as derived from the result of the system`s heat collecting performance test. As a result, the following conclusions were obtained: optimal insolation for activating the discussed system is from 50 to 100 W/m {sup 2}, and the heat collected within this range is within -1.5% of the collected heat amount at an optimum value; optimal activating insolation for the case of 1000 to 2000 W/m {sup 2} with low daily cumulative insolation is from 0 to 50 W/m {sup 2}, whereas the optimal activating insolation amount increases as the daily cumulative insolation amount increases; and the optimal activating insolation amount increases as water to be supplied requires higher temperature. 1 ref., 17 figs., 2 tabs.

  16. Performance comparison between ethanol phase-change immersion and active water cooling for solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Wen, Chen; Huang, Qunwu; Kang, Xue; Chen, Miao; Wang, Huilin

    2017-01-01

    Highlights: • Thermal performances of ethanol phase-change immersion and active water cooling are compared. • Effects of operation parameters on ethanol phase-change immersion are studied. • Optimum filling ratio is 30% for ethanol phase-change immersion cooling system. • Exergy efficiency of ethanol phase-change immersion method increases by 57%. - Abstract: This paper presents an optimized ethanol phase-change immersion cooling method to obtain lower temperature of dense-array solar cells in high concentrating photovoltaic system. The thermal performances of this system were compared with a conventional active water cooling system with minichannels from the perspectives of start-up characteristic, temperature uniformity, thermal resistance and heat transfer coefficient. This paper also explored the influences of liquid filling ratio, absolute pressure and water flow rate on thermal performances. Dense-array LEDs were used to simulate heat power of solar cells worked under high concentration ratios. It can be observed that the optimal filling ratio was 30% in which the thermal resistance was 0.479 °C/W and the heat transfer coefficient was 9726.21 W/(m 2 ·°C). To quantify the quality of energy output of two cooling systems, exergy analysis are conducted and maximum exergy efficiencies were 17.70% and 11.27%, respectively. The experimental results represent an improvement towards thermal performances of ethanol phase-change immersion cooling system due to the reduction in contact thermal resistance. This study improves the operation control and applications for ethanol phase-change immersion cooling technology.

  17. Techno-economıc Analysıs of Evacuated Tube Solar Water Heater usıng F-chart Method

    Science.gov (United States)

    Fayaz, H.; Rahim, N. A.; Saidur, R.; Hasanuzzaman, M.

    2018-05-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in recent decades. Solar water heating systems based on thermal collector alone or connected with photovoltaic called as photovoltaic-thermal (PVT) are practical applications to replace the use of electrical water heaters but weather dependent performance of these systems is not linear. Therefore on the basis of short term or average weather conditions, accurate analysis of performance is quite difficult. The objective of this paper is to show thermal and economic analysis of evacuated tube collector solar water heaters. Analysis done by F-Chart shows that evacuated tube solar water heater achieves fraction value of 1 to fulfil hot water demand of 150liters and above per day for a family without any auxiliary energy usage. Evacuated tube solar water heater show life cycle savings of RM 5200. At water set temperature of 100°C, RM 12000 is achieved and highest life cycle savings of RM 6100 at the environmental temperature of 18°C are achieved. Best thermal and economic performance is obtained which results in reduction of household greenhouse gas emissions, reduction of energy consumption and saves money on energy bills.

  18. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  19. Development of a direct expansion solar assisted heat pump for hot water supply

    International Nuclear Information System (INIS)

    Abdesselam Hamloui; Ong, K.S.; Than Cheok Fah; Masjuki Hassan

    2000-01-01

    Experimental investigations were conducted on the direct expansion solar assisted Heat Pump (DESAHP). Refrigerant R-22 was expanded in the solar collector which also acted as the evaporator in a conventional vapor compression refrigerating machine. The experiments were conducted under conditions of high and low solar radiation, with evaporator completely shaded from the sun, and at night. System thermal performance was determined by measuring refrigerant flow rate, temperature and pressure at numerous points in the system. The results showed that 227-l of water could be heated from 3O degree to 55 degree C in about 105 minutes. Higher water temperatures were obtained during hot sunny days. The coefficient of performance of heating, COP h , ranged from 11 to 4.7, depending upon operating conditions. The total saving of electric energy during hot sunny days was about 460 %. It means that for 1 kWh of electrical input to the system, we achieve 4.6 kWh. This percentage decreases as the evaporator temperature decreases and is a function of solar energy input. (Author)

  20. An overview of the development of solar water heater industry in China

    International Nuclear Information System (INIS)

    Runqing, Hu; Peijun, Sun; Zhongying, Wang

    2012-01-01

    This article introduce the development of China solar water heater industry .Gives an overview of stages, market, manufacturing, application and testing about China solar water heater industry. Show the market data from 1998 to 2009. Analyze the experiences and features about the industry. The article also introduces the policy for solar hot water industry in China. These policies have accelerated the development of industry in which the main two incentive policies have the greatest influence on solar water heater industry. First one is the policy of mandatory installation of solar water heater implemented since 2007 by some local governments at provincial and municipal levels. Second is the subsidy policy for solar water heaters in the household appliances going to the countryside scheme implemented since 2009. At last the article gives the reason why China solar water heater industry have so rapid growth. From technology research, industrialization, prices and policy environment gives analysis. - Highlights: ► We compared International and China market about solar thermal products. ► The reason for rapid development of China solar water heater is explained. ► The experience of China solar water heater industry would give reference to other develop country. ► “Meet the demands of customer” is the main driver for the solar water heater industry development. ► The policy framework about China solar thermal industry was introduced. The industry achieved commercial operation without subsidy.

  1. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  2. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  3. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  4. Thermodynamic analysis of solar assisted multi-functional trigeneration system

    Directory of Open Access Journals (Sweden)

    Önder KIZILKAN

    2016-02-01

    Full Text Available In this study, modelling and thermodynamic analysis of solar assisted trigeneration system was carried out. The required thermal energy for gas and vapor cycles were supplied from solar tower which is a new concept for gas cycle applications. Additionally, an absorption refrigeration cycle, vapor production process, drying process and water heating process were integrated to the system. Energy and exergy efficiencies of the trigeneration system were determined by the application of first and second law analyses. The results showed that the gas cycle efficiency was found to be 31%, vapor cycle efficiency was found to be 28% and coefficient of performance (COP values of the refrigeration system was found to be 0.77. Also the highest exergy destruction rate was found to be 4154 kW in solar tower.Keywords: Solar tower, Trigeneration, Gas cycle, Vapor cycle, Energy, Exergy

  5. Multifunctional Solar Systems Based On Two-Stage Regeneration Absorbent Solution

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-04-01

    Full Text Available The concepts of multifunctional dehumidification solar systems, heat supply, cooling, and air conditioning based on the open absorption cycle with direct absorbent regeneration developed. The solar systems based on preliminary drainage of current of air and subsequent evaporated cooling. The solar system using evaporative coolers both types (direct and indirect. The principle of two-stage regeneration of absorbent used in the solar systems, it used as the basis of liquid and gas-liquid solar collectors. The main principle solutions are designed for the new generation of gas-liquid solar collectors. Analysis of the heat losses in the gas-liquid solar collectors, due to the mechanism of convection and radiation is made. Optimal cost of gas and liquid, as well as the basic dimensions and configuration of the working channel of the solar collector identified. Heat and mass transfer devices, belonging to the evaporative cooling system based on the interaction between the film and the gas stream and the liquid therein. Multichannel structure of the polymeric materials used to create the tip. Evaporative coolers of water and air both types (direct and indirect are used in the cooling of the solar systems. Preliminary analysis of the possibilities of multifunctional solar absorption systems made reference to problems of cooling media and air conditioning on the basis of experimental data the authors. Designed solar systems feature low power consumption and environmental friendliness.

  6. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  7. Training plumbers to design and install solar water heating systems for households (''SHINE 21'')

    International Nuclear Information System (INIS)

    2001-01-01

    This report summarises the findings of a project to develop training materials to help the plumbing industry take advantage of the growth in the UK solar water heating market. Details are given of a questionnaire survey of plumbers relating to their experience of solar water heating and their attitudes to training, and the development of a new training course file, video, CD-ROM, trainer's pack, and business skills module. The development and piloting of the training programmes and the development of models for regional co-operation are described along with methods for driving the demand for training and co-operation with other European Member states. Recommendations for further work are given

  8. A review of large-scale solar heating systems in Europe

    International Nuclear Information System (INIS)

    Fisch, M.N.; Guigas, M.; Dalenback, J.O.

    1998-01-01

    Large-scale solar applications benefit from the effect of scale. Compared to small solar domestic hot water (DHW) systems for single-family houses, the solar heat cost can be cut at least in third. The most interesting projects for replacing fossil fuels and the reduction of CO 2 -emissions are solar systems with seasonal storage in combination with gas or biomass boilers. In the framework of the EU-APAS project Large-scale Solar Heating Systems, thirteen existing plants in six European countries have been evaluated. lie yearly solar gains of the systems are between 300 and 550 kWh per m 2 collector area. The investment cost of solar plants with short-term storage varies from 300 up to 600 ECU per m 2 . Systems with seasonal storage show investment costs twice as high. Results of studies concerning the market potential for solar heating plants, taking new collector concepts and industrial production into account, are presented. Site specific studies and predesign of large-scale solar heating plants in six European countries for housing developments show a 50% cost reduction compared to existing projects. The cost-benefit-ratio for the planned systems with long-term storage is between 0.7 and 1.5 ECU per kWh per year. (author)

  9. Experimental analysis on a novel solar collector system achieved by supercritical CO2 natural convection

    International Nuclear Information System (INIS)

    Chen, Lin; Zhang, Xin-Rong

    2014-01-01

    Highlights: • Supercritical CO 2 flow is proposed for natural circulation solar water heater system. • Experimental system established and consists of supercritical fluid high pressure side and water side. • Stable supercritical CO 2 natural convective flow is well induced and water heating process achieved. • Seasonal solar collector system efficiency above 60% achieved and optimization discussed. - Abstract: Solar collector has become a hot topic both in scientific research and engineering applications. Among the various applications, the hot water supply demand accounts for a large part of social energy consumption and has become one promising field. The present study deals with a novel solar thermal conversion and water heater system achieved by supercritical CO 2 natural circulation. Experimental systems are established and tested in Zhejiang Province (around N 30.0°, E 120.6°) of southeast China. The current system is designed to operate in the supercritical region, thus the system can be compactly made and achieve smooth high rate natural convective flow. During the tests, supercritical CO 2 pipe flow with Reynolds number higher than 6700 is found. The CO 2 fluid temperature in the heat exchanger can be as high as 80 °C and a stable supply of hot water above 45 °C is achieved. In the seasonal tests, relative high collector efficiency generally above 60.0% is obtained. Thermal and performance analysis is carried out with the experiment data. Comparisons between the present system and previous solar water heaters are also made in this paper

  10. Looking beyond installation: Why households struggle to make the most of solar hot water systems

    International Nuclear Information System (INIS)

    Gill, Nicholas; Osman, Peter; Head, Lesley; Voyer, Michelle; Harada, Theresa; Waitt, Gordon; Gibson, Chris

    2015-01-01

    This paper examines household responses to sustainability issues and adoption of energy saving technologies. Our example of solar hot water systems highlights the complexity and variability of responses to low-carbon technologies. While SHW systems have the potential to provide the majority of household hot water and to lower carbon emissions, little research has been done to investigate how SHW systems are integrated into everyday life. We draw on cultural understandings of the household to identify passive and active users of SHW systems and utilize a model that illustrates how technology use is dependent on inter-relations between cultural norms, systems of provision, the material elements of homes, and practice. A key finding is that households can be ill-prepared to make the most of their SHW systems and lack post-installation support to do so. Thus, informed and efficient use of SHW systems is hit and miss. Current policy is largely aimed at subsidizing purchase and installation on the assumption that this is sufficient for emission reduction goals. Our analysis provides evidence to the contrary. Areas we highlight for policy and practice improvement are independent pre-purchase advice, installation quality, and practical guidance on system operation and interaction with patterns of hot water use. - Highlights: • We interview Australian households about their experience with SHW systems. • We identify active and passive users of SHW. Active users tend to be dissatisfied with their system. • Passive users tend to be satisfied but have relatively inefficient systems. • Householders struggle to integrate hot water use and system operation, compromising efficiency. • Policy should encompass pre and post-installation support as much as incentives to install.

  11. Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia

    Science.gov (United States)

    1980-07-01

    The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.

  12. Nanophotonics-enabled solar membrane distillation for off-grid water purification.

    Science.gov (United States)

    Dongare, Pratiksha D; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R; Hogan, Nathaniel J; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J

    2017-07-03

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.

  13. Assessing the economic aspects of solar hot water production in Greece

    International Nuclear Information System (INIS)

    Haralambopoulos, D.; Kovras, H.

    1997-01-01

    The long-term performance of various systems was determined and the economic aspects of solar hot water production were investigated in this work. The effect of the collector inclination angle, collector area and storage volume was examined for all systems, and various climatic conditions and their payback period was calculated. It was found that the collector inclination angle does not have a significant effect on system performance. Large collector areas have a diminishing effect on the system's overall efficiency. The increase in storage volume has a detrimental effect for small daily load volumes, but a beneficial one when there is a large daily consumption. Solar energy was found to be truly competitive when the conventional fuel being substituted is electricity, and it should not replace diesel oil on pure economic grounds. Large daily load volumes and large collector areas are in general associated with shorter payback periods. Overall, the systems are oversized and are economically suitable for large daily hot water load volumes. (Author)

  14. Theoretical comparison of solar water/space-heating combi systems and stratification design options

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2007-01-01

    A theoretical analysis of differently designed solar combi systems is performed with weather data from the Danish Design Reference Year (55ºN). Three solar combi system designs found on the market are investigated. The investigation focuses on the influence of stratification on the thermal perfor...

  15. Effluents treatment by solar photocatalysis; Tratamiento de efluentes con fotocatalisis solar

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J; Malato, S; Richter, C [Plataforma Solar de almeria, Almeria (Spain); Carmona, F; Martinez, F [Deretil, Almeria (Spain)

    1996-12-31

    A solar photocatalytic system is being developed at the Plataforma Solar De Almeria to destroy organic contaminants in water. Test with common water contaminants were conducted at the Solar Detoxification loop with real sun light and large quantities of water flowing through glass tubes were the solar UV light is concentrated. Experiments at this scale provide verification of laboratory studies and allow the design and operation of real preindustrial detoxification systems. (Author)

  16. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  17. Solar power water distillation unit

    International Nuclear Information System (INIS)

    Hameed, Kamran; Khan, Muhammad Muzammil; Ateeq, Ijlal Shahrukh; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-01-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  18. Solar energy system installed at the North Georgia APDC office building

    Science.gov (United States)

    1979-01-01

    A hydronic, automatic drain-down solar heating and cooling system is described. The system provides solar heat exchange from a 2,001 square foot effective collector area and supplies 65-70 percent of the building's cooling demand, 90-95 percent of the heating demand, and domestic hot water. The acceptance test plan and results, system operation and maintenance, and predicted system performance are presented.

  19. Solar Distillation Practice For Water Desalination Systems

    OpenAIRE

    Mahian, Omid; Kianifar, Ali; Jumpholkul, Chaiwat; Thiangtham, Phubate; Wongwises, Somchai; Srisomba, Raviwat

    2015-01-01

    references, it is suggested to add a chapter concerning CFD simulations of solar stills. In addition, a part can be devoted to using novel technologies such as nanotechnology for productivity enhancement of solar stills

  20. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the