WorldWideScience

Sample records for solar system online

  1. Findings from an Independent Evaluation of the AMNH's Online Seminars on Science Course: "The Solar System"

    Science.gov (United States)

    Inverness Research, 2009

    2009-01-01

    Inverness Research studied the American Museum of Natural History (AMNH) Seminars on Science program for eight years, from its inception in 1998 to 2006. In 2009, Inverness Research conducted additional studies of the AMNH's new online course, The Solar System. This paper presents teacher survey ratings for The Solar System, along with profiles of…

  2. Online Short-term Solar Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2011-01-01

    This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours.......This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours....

  3. Fourteen Thousand Solar Systems and Growing: Results From the Starchitect Online Game at One Year

    Science.gov (United States)

    Harold, J. B.

    2015-12-01

    Starchitect (www.starchitect.net) is an online, end-to-end stellar and planetary evolution game designed to teach players about a variety of astronomy and planetary topics. Supported by NASA and NSF, and developed at the National Center for Interactive Learning at the Space Science Institute, the game uses the "sporadic play" model of games such as Farmville, where players might only take actions a few times a day, but continue playing for months. This framework is a natural fit for teaching about the evolution of stars and planets. Starchitect's systems evolve at a million years a minute, so that while massive stars will supernova almost immediately, lower mass stars like our sun will live for weeks of game time, possibly evolving life before passing through a red giant stage and ending their lives as white dwarfs. The game has now been live for over a year, playable both on Facebook and externally, and over 14,000 solar systems have been created by over 11,000 players. Since the game itself is heavily instrumented we now have access to a wealth of data that can be used to examine how people are playing the game and what tasks they are successfully engaging with. Through an embedded quiz game we are even in the position to assess the prior knowledge of our audience and execute pre/post assessments tied to game play. This paper will briefly describe the game and its educational strategies, then summarize some of our current results.

  4. Online short-term solar power forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2009-01-01

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 hours. The data used is fifteen......-minute observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques....... Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to two hours...

  5. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  6. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2017-12-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.

  7. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    Science.gov (United States)

    Day, Brian

    2017-01-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.

  8. Library Online Systems.

    Science.gov (United States)

    Folda, Linda; And Others

    1989-01-01

    Issues related to library online systems are discussed in six articles. Topics covered include staff education through vendor demonstrations, evaluation of online public access catalogs, the impact of integrated online systems on cataloging operations, the merits of smart and dumb barcodes, and points to consider in planning for the next online…

  9. VizieR Online Data Catalog: Solar neighborhood XXXVIII. Nearby M dwarf systems (Winters+, 2017)

    Science.gov (United States)

    Winters, J. G.; Sevrinsky, R. A.; Jao, W.-C.; Henry, T. J.; Riedel, A. R.; Subasavage, J. P.; Lurie, J. C.; Ianna, P. A.; Finch, C. T.

    2017-07-01

    Stars reported here were targeted during the astrometry program because they were likely to be red dwarfs within 25pc with no previous published πtrig. Of the 151 systems, 93 are from previous compendia of proper motion stars, primarily based on work by Luyten (Luyten 1979nlcs.book.....L, 1980nltt.bookQ....L), and 58 are from our SuperCOSMOS-RECONS (SCR) search (Hambly et al. 2004AJ....128..437H; Henry et al. 2004AJ....128.2460H). The systems have μ=118-828mas/yr, with 143 having μ>180mas/yr, the canonical cutoff for Luyten's Two-Tenths (LTT) Catalog. For all but two objects (only one epoch of photometry was available for WT 1637 and LHS 2024 at the time of the paper), at least two epochs of absolute VJRKCIKC photometry on the Johnson-Kron-Cousins system were measured for each parallax field. Two V filters that are photometrically indistinguishable to 7 millimagnitudes (mmag) (Jao et al. 2011AJ....141..117J), one R filter, and one I filter were used for series of observations spanning 2-16years, depending on the star (the central wavelengths for the two VJ filters, the RKC filter, and the IKC filter are 5438Å, 5475Å, 6425Å, and 8075Å, respectively). The 2048*2046 Tektronix CCD camera on the CTIO/SMARTS 0.9m with a pixel (px) scale of 0.401''/px was used for both astrometric and photometric observations. In order to mitigate the effects of image distortion at the edges of the CCD, only the central quarter of the chip was used, resulting in a 6.8*6.8 square field of view. Photometry in the near-infrared JHKs filters has been extracted from the Two Micron All Sky Survey (2MASS; Cutri et al. 2003, Cat. II/246) and is rounded to the nearest hundredth magnitude in Table1. (5 data files).

  10. Solar engine system

    International Nuclear Information System (INIS)

    Tan, K.K.; Bahrom Sanugi; Chen, L.C.; Chong, K.K.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Noriah Bidin; Omar Aliman; Sahar Salehan; Sheikh Ab Rezan Sheikh A H; Tam, C.M.; Chen, Y.T.

    2001-01-01

    This paper reports the revolutionary solar engine system in Universiti Teknologi Malaysia (UTM). The solar engine is a single cylinder stirling engine driven by solar thermal energy. A first prototype solar engine has been built and demonstrated. A new-concept non-imaging focusing heliostat and a recently invented optical receiver are used in the demonstration. Second generation of prototype solar engine is described briefly. In this paper, the solar engine system development is reported. Measurement for the first prototype engine speed, temperature and specifications are presented. The benefits and potential applications for the future solar engine system, especially for the electricity generating aspect are discussed. (Author)

  11. BES online calibration system

    International Nuclear Information System (INIS)

    Zhang Bingyun; Li Xiaonan; Zhu Kejun; Zhang Jiawen; Gong Mingyu

    2003-01-01

    We constructed BES (Beijing Spectrometer) online calibration system to ensure the coherence of readout electronic channels due to huge data volume in high energy physics experiment. This paper describes the structure of hardware and software, and its characteristic and function

  12. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  13. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  14. The MICE Online Systems

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Muon Ionization Cooling Experiment (MICE) is designed to test transverse cooling of a muon beam, demonstrating an important step along the path toward creating future high intensity muon beam facilities. Protons in the ISIS synchrotron impact a titanium target, producing pions which decay into muons that propagate through the beam line to the MICE cooling channel. Along the beam line, particle identification (PID) detectors, scintillating fiber tracking detectors, and beam diagnostic tools identify and measure individual muons moving through the cooling channel. The MICE Online Systems encompass all tools; including hardware, software, and documentation, within the MLCR (MICE Local Control Room) that allow the experiment to efficiently record high quality data. Controls and Monitoring (C&M), Data Acquisition (DAQ), Online Monitoring and Reconstruction, Data Transfer, and Networking all fall under the Online Systems umbrella. C&M controls all MICE systems including the target, conventional an...

  15. Online data processing system

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Yagi, Hideyuki; Yamada, Takayuki

    1979-02-01

    A pulse height analyzer terminal system PHATS has been developed for online data processing via JAERI-TOKAI computer network. The system is controled by using a micro-computer MICRO-8 which was developed for the JAERI-TOKAI network. The system program consists of two subprograms, online control system ONLCS and pulse height analyzer control system PHACS. ONLCS links the terminal with the conversational programming system of FACOM 230/75 through the JAERI-TOKAI network and controls data processing in TSS and remote batch modes. PHACS is used to control INPUT/OUTPUT of data between pulse height analyzer and cassette-MT or typewriter. This report describes the hardware configuration and the system program in detail. In the appendix, explained are real time monitor, type of message, PEX to PEX protocol and Host to Host protocol, required for the system programming. (author)

  16. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  17. The Contribution of Solar Power Funding for Online Content ...

    African Journals Online (AJOL)

    The Contribution of Solar Power Funding for Online Content Accessibility and Sustainability of Blended Learning in Rural Africa: The Tanzania Perspective. ... Despite these appealing features, penetration of solar electricity in remote and rural areas in Tanzania is limited by high initial cost of building a stand-alone solar ...

  18. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  19. Homemade Solar Systems

    Science.gov (United States)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  20. Solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2007-01-01

    The focus in the present Ph.D. thesis is on the active use of solar energy for domestic hot water and space heating in so-called solar combi systems. Most efforts have been put into detailed investigations on the design of solar combi systems and on devices used for building up thermal...... the thermal behaviour of different components, and the theoretical investigations are used to study the influence of the thermal behaviour on the yearly thermal performance of solar combi systems. The experimental investigations imply detailed temperature measurements and flow visualization with the Particle...... Image Velocimetry measurement method. The theoretical investigations are based on the transient simulation program TrnSys and Computational Fluid Dynamics. The Ph.D. thesis demonstrates the influence on the thermal performance of solar combi systems of a number of different parameters...

  1. Exploring the solar system

    CERN Document Server

    Bond, Peter

    2012-01-01

    The exploration of our solar system is one of humanity's greatest scientific achievements. The last fifty years in particular have seen huge steps forward in our understanding of the planets, the sun, and other objects in the solar system. Whilst planetary science is now a mature discipline - involving geoscientists, astronomers, physicists, and others - many profound mysteries remain, and there is indeed still the tantalizing possibility that we may find evidence of life on another planet in our system.Drawing upon the latest results from the second golden age of Solar System exploration, aut

  2. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  3. The solar system

    International Nuclear Information System (INIS)

    Ryan, P.

    1981-01-01

    A comprehensive review is given of the most recent findings on the solar system. The physical processes in the sun are presented, their interactions in the interplanetary space, and the planets and moons of the solar system. The sun and its moon are discussed in great detail. The text is supplemented by excellent satellite pictures, including the latest pictures of Jupiter, Saturn, and their moons. (HM) [de

  4. The New Solar System

    Science.gov (United States)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to

  5. Discovering the Solar System

    Science.gov (United States)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  6. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  7. The Dimensions of the Solar System

    Science.gov (United States)

    Schneider, Stephen E.; Davis, Kathleen S.

    2007-01-01

    A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much…

  8. Online Shop System with Zencart

    OpenAIRE

    Uqbah Iqbal

    2016-01-01

    Written by Sabri Saifulsham and Syazwan Saifulsham, this book has eleven chapters that using quantitative research methodology to describes the three main components of success in building and managing online shops, namely the potential of products, obtain product and build and manage online stores. All three of these components are combined into a single system that can help anyone to build an online store even if no basic technical skills. The measures described also make it easy to use Zen...

  9. Solar system exploration

    International Nuclear Information System (INIS)

    Briggs, G.A.; Quaide, W.L.

    1986-01-01

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described

  10. Baby Solar System

    Science.gov (United States)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  11. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  12. Solar System Dynamics

    Science.gov (United States)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  13. DORS: DDC Online Retrieval System.

    Science.gov (United States)

    Liu, Songqiao; Svenonius, Elaine

    1991-01-01

    Describes the Dewey Online Retrieval System (DORS), which was developed at the University of California, Los Angeles (UCLA), to experiment with classification-based search strategies in online catalogs. Classification structures in automated information retrieval are discussed; and specifications for a classification retrieval interface are…

  14. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  15. The New Solar System

    Science.gov (United States)

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  16. Trust and Online Reputation Systems

    Science.gov (United States)

    Kwan, Ming; Ramachandran, Deepak

    Web 2.0 technologies provide organizations with unprecedented opportunities to expand and solidify relationships with their customers, partners, and employees—while empowering firms to define entirely new business models focused on sharing information in online collaborative environments. Yet, in and of themselves, these technologies cannot ensure productive online interactions. Leading enterprises that are experimenting with social networks and online communities are already discovering this fact and along with it, the importance of establishing trust as the foundation for online collaboration and transactions. Just as today's consumers must feel secure to bank, exchange personal information and purchase products and services online; participants in Web 2.0 initiatives will only accept the higher levels of risk and exposure inherent in e-commerce and Web collaboration in an environment of trust. Indeed, only by attending to the need to cultivate online trust with customers, partners and employees will enterprises ever fully exploit the expanded business potential posed by Web 2.0. But developing online trust is no easy feat. While various preliminary attempts have occurred, no definitive model for establishing or measuring it has yet been established. To that end, nGenera has identified three, distinct dimensions of online trust: reputation (quantitative-based); relationship (qualitative-based) and process (system-based). When considered together, they form a valuable model for understanding online trust and a toolbox for cultivating it to support Web 2.0 initiatives.

  17. Ionospheric data for two solar cycles available online

    International Nuclear Information System (INIS)

    Bilitza, D.; Papitashvili, N.; Grebowsky, J.; Schar, W.

    2002-01-01

    We report about a project that has as its goal to make a large volume of ionospheric satellite insitu data from the sixties, seventies and early eighties easily accessible for public use The original data exist in various machine-specific, highly compressed, binary encoding on 7- or 9-track magnetic tapes. The intent is to decode the data format and convert all data sets to a common ASCII data format and add solar and magnetic indices for user convenience. The original intent of producing CD-ROMs with these data has meanwhile been overtaken by the rapid development of the internet. Most users now prefer to obtain the data directly online and greatly value web-interfaces to browse, plot and subset the data. Accordingly, the focus has shifted to making the data available online on the anonymous ftp site of NASA's National Space Science Data Center (NSSDC) at ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/ and on the development of a web-interface (ATMOWeb, http://nssdc.gsfc.nasa.gov/ atmoweb/) to help users study the data and select interesting time periods. The data considered by this project include data sets from the Alouette I, BE-B (Explorer 22), Alouette 2, DME-A (Explorer 31) , AE-B (Explorer 32), AE-C, -D, -E, OGO-6, ESRO-4, ISIS-I, -2, AEROS-I, -2 Taiyo, ISS-b, Hinotori and DE-2 satellites. The data are primarily electron and ion densities and temperatures measured by Langmuir Probes (LP), Retarding Potential Analyzers (RPA), and Ion Mass Spectrometers (IMS) flown on these satellites. The time resolution of the measurements is typically seconds to minutes. This data base covering almost two solar cycles is a unique asset for studies of the variation and variability of ionospheric parameters. It will be an important element in the quest for a better understanding of ionospheric plasma processes and for improved predictions of ionospheric Space Weather. Current models are still very limited in their predictive capabilities especially at equatorial and auroral

  18. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  20. Design of online shopping system

    OpenAIRE

    Li, Yueyuan

    2011-01-01

    E-commerce is a kind of comprehensive activity of management automation, business information network and financial electronic technology. It is a kind of commercial activity accomplished through the information network in all kinds of business activities in the world. As a new marketing model, the emergence of online stores is an epoch-making revolution in the field of product circulation. The thesis focuses on a study of how to design a small online shopping system which is simple and f...

  1. Media Systems Online and Off

    DEFF Research Database (Denmark)

    Ørsten, Mark; Willig, Ida; Benson, Rodney

    2012-01-01

    This study examines how media system differences in the form of news change or stay the same as newspapers in the United States (liberal), Denmark (democratic corporatist), and France (polarized pluralist) move from print to online. Internet technological affordances are posited to move online news...... voices increase slightly. A lesser degree of change in France may be due to greater state insulation from market pressures; some contradictory tendencies in Denmark indicate that technological influences are shaped by contextual national factors....

  2. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  3. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  4. Concentrating Solar Power Systems

    Science.gov (United States)

    Pitz-Paal, R.

    2017-07-01

    Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.

  5. PV solar system feasibility study

    International Nuclear Information System (INIS)

    Ashhab, Moh’d Sami S.; Kaylani, Hazem; Abdallah, Abdallah

    2013-01-01

    Highlights: ► This research studies the feasibility of PV solar systems. ► The aim is to develop the theory and application of a hybrid system. ► Relevant research topics are reviewed and some of them are discussed in details. ► A prototype of the PV solar system is designed and built. - Abstract: This research studies the feasibility of PV solar systems and aims at developing the theory and application of a hybrid system that utilizes PV solar system and another supporting source of energy to provide affordable heating and air conditioning. Relevant research topics are reviewed and some of them are discussed in details. Solar heating and air conditioning research and technology exist in many developed countries. To date, the used solar energy has been proved to be inefficient. Solar energy is an abundant source of energy in Jordan and the Middle East; with increasing prices of oil this source is becoming more attractive alternative. A good candidate for the other system is absorption. The overall system is designed such that it utilizes solar energy as a main source. When the solar energy becomes insufficient, electricity or diesel source kicks in. A prototype of the PV solar system that operates an air conditioning unit is built and proper measurements are collected through a data logging system. The measured data are plotted and discussed, and conclusions regarding the system performance are extracted.

  6. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  7. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  8. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  9. Origin of solar system

    Energy Technology Data Exchange (ETDEWEB)

    Pokorny, Z.

    1984-01-01

    The generally accepted concept has it that the Sun and the planets originated almost simultaneously from nebula (the nebular hypothesis). It is assumed that the temperature of the nebula decreased in the direction from the centre which led to the segregation of elements and to the different chemical composition of the individual planets. The planets formed either from the gravitational collapse of part of the nebula or by gradual accretion. In the scenario of the origin of the solar system there are many blank spots, namely as concerns the initial stages of development and the period when the formation of the planets had ''almost been completed''.

  10. Origin of solar system

    International Nuclear Information System (INIS)

    Pokorny, Z.

    1984-01-01

    The generally accepted concept has it that the Sun and the planets originated almost simultaneously from nebula (the nebular hypothesis). It is assumed that the temperature of the nebula decreased in the direction from the centre which led to the segregation of elements and to the different chemical composition of the individual planets. The planets formed either from the gravitational collapse of part of the nebula or by gradual accretion. In the scenario of the origin of the solar system there are many blank spots, namely as concerns the initial stages of development and the period when the formation of the planets had ''almost been completed''. (Ha)

  11. The solar system

    CERN Document Server

    Jones, B W

    2013-01-01

    Presents a contemporary picture of the solar system, including a description of the Earth, Mars, Venus, cratered worlds, exotic rocks and ices, and giant planets. It is pitched at an introductory level and assumes no previous knowledge of planetary astronomy. Little mathematics is used in the text and the numerous graphs and diagrams are kept as simple as possible. End of chapter exercises are provided. The book can be used as an end in itself, or as a preparation for more advanced study, for which references are given.

  12. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  13. Immune system simulation online

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Lund, Ole; Castiglione, Filippo

    2011-01-01

    MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno...

  14. Investigations of solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2005-01-01

    ). However, it is still too early to draw conclusions on the design of solar combi systems. Among others, the following questions needs to be answered: Is an external domestic hot water preparation more desirable than an internal domestic hot water preparation? Is a stratification manifold always more......A large variety of solar combi systems are on the marked to day. The best performing systems are highly advanced energy systems with thermal stratification manifolds, an efficient boiler and only one control system, which controls both the boiler and the solar collector loop (Weiss et al., 2003...... desirable than a fixed inlet position? This paper presents experimental investigations of an advanced solar combi system with thermal stratification manifold inlets both in the solar collector loop and in the space heating system and with an external domestic hot water preparation. Theoretical...

  15. The KLOE online calibration system

    International Nuclear Information System (INIS)

    Pasqualucci, E.; Alexander, G.; Aloisio, A.

    2001-01-01

    Based on all the features of the KLOE online software, the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed. A calibration manager process controls the system, implementing the interface to the online system, receiving information from the run control and translating its state transitions to a separate state machine. It acts as a 'calibration run controller' and performs failure recovery when requested by a set of process checkers. The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms. A client library and C, fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an book-like interface. Several calibration processes running in parallel in a distributed, multiplatform environment can fill the same histograms, allowing fast external information check. A monitor thread allow remote browsing for visual inspection. Pre-filtered data are read in non-privileged spy mode from the data acquisition system via the Kloe Integrated Dataflow. The main characteristics of the system are presented

  16. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  17. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics: A Text for the Science of Planetary Systems covers the field of solar system astrophysics beginning with basic tools of spherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. After a basic treatment of the two- and restricted three-body system motions in Background Science and the Inner Solar System, perturbations are discussed, followed by the Earth's gravitational potential field and its effect on satellite orbits. This is followed by analysis of the Earth-Moon system and the interior planets. In Planetary Atmospheres and the Outer Solar System, the atmospheres chapters include detailed discussions of circulation, applicable also to the subsequent discussion of the gas giants. The giant planets are discussed together, and the thermal excesses of three of them are highlighted. This is followed by chapters on moons and rings, mainly in the context of dynamical stability, comets and meteors, m...

  18. Online-Expert: An Expert System for Online Database Selection.

    Science.gov (United States)

    Zahir, Sajjad; Chang, Chew Lik

    1992-01-01

    Describes the design and development of a prototype expert system called ONLINE-EXPERT that helps users select online databases and vendors that meet users' needs. Search strategies are discussed; knowledge acquisition and knowledge bases are described; and the Analytic Hierarchy Process (AHP), a decision analysis technique that ranks databases,…

  19. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth’s gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, are pedagogically well written, providing cl...

  20. Dynamics of the solar system

    International Nuclear Information System (INIS)

    Sidlichovsky, M.

    1987-01-01

    The conference proceedings contains a total of 31 papers of which 7 have not been incorporated in INIS. The papers mainly discuss the mathematical methods of calculating the movement of planets, their satellites and asteroids in the solar system and the mathematical modelling of the past development of the solar system. Great attention is also devoted to resonance in the solar system and to the study of many celestial bodies. Four papers are devoted to planetary rings and three to modern astrometry. (M.D.). 63 figs., 10 tabs., 520 refs

  1. A CONCEPT OF SOLAR TRACKER SYSTEM DESIGN

    OpenAIRE

    Meita Rumbayan *, Muhamad Dwisnanto Putro

    2017-01-01

    Improvement of solar panel efficiency is an ongoing research work recently. Maximizing the output power by integrating with the solar tracker system becomes a interest point of the research. This paper presents the concept in designing a solar tracker system applied to solar panel. The development of solar panel tracker system design that consist of system display prototype design, hardware design, and algorithm design. This concept is useful as the control system for solar tracker to improve...

  2. Origin of the solar system

    International Nuclear Information System (INIS)

    Nakazawa, Kiyoshi; Nakagawa, Yoshitsugu

    1982-01-01

    Many studies on the origin of the solar system have so far been made until now. These are divided into three categories; Cameron's model, Safronov's model and Kyoto model. In Cameron's model, as an initial stage of the formation of the solar system, a massive solar nebula is assumed whose mass is as large as one solar mass. This solar nebula is unstable against gravitational fragmentation, which leads to massive gaseous protoplanets. On the other hand, in both models of Safronov and us, the mass of the nebula is of the order of a few percent of the solar mass or less. However, a significant difference between Safronov's and ours lies in the continuing accumulation process of planetesimals; in the former, the accumulation is assumed to proceed in a gas-free space, but in the latter, the gas drag effect of the solar nebula is fully taken into account on the planetary growth. In this paper, the scenario of Kyoto model is reviewed, which has been developed by Hayashi and his co-workers in Kyoto group for these ten years. We will see that the gas of the solar nebula has played extensively important roles on the various stages of the planetary formation. (author)

  3. Origin of the solar system

    International Nuclear Information System (INIS)

    Hayashi, Chushiro; Nakazawa, Kiyoshi; Miyama, S.M.

    1989-01-01

    The study on the origin of the solar system entered a stage of synthetic and positivistic science around 1960, as the observation and the theory of protostars began to develop, the solar chemical composition became almost definite, and the amounts of chemical and mineralogical data greatly increased. In accordance with this scientific situation, the first research meeting in Japan on the origin of the solar system was held in 1965 at the Research Institute for Fundamental Physics, Kyoto University. It was discussed how a variety of the data on the solar system can be explained in a unified way. Since 1977, the workshop on the origin has been held annually. Through a series of the workshops, so-called Kyoto model has been talked and discussed frequently. For three years from 1985, the workshop in Kyoto was supported by the Ministry of Education, Science and Culture, and one of the main items of this grant was to publish the results of the workshop as the Supplement of the Progress of Theoretical Physics. The chronology of the solar system, the formation processes of protostars, the stability of solar nebulae, the physical processes in solar nebulae, the physical processes related to planetary growth, the growth of planets, and the formation of asteroids and meteorites are described in this book. (K.I.)

  4. Eyes on the Solar System

    Data.gov (United States)

    National Aeronautics and Space Administration — Eyes on the Solar System is a software package developed by NASA Jet Propulsion Laboratory and the California Institute of Technology using data provided by NASA's...

  5. Views of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  6. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  7. The solar system barometer

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Not all solar eclipses are fascinating visual spectacles. The 'eclipse' that the thermal solar sector underwent between the 1984 oil price's collapse and the beginning of the 90's almost succeeded in sending it straight into a 'black hole'. Luckily, the steadfastness of some sector professionals and the intrinsic qualities of an energy which can be adapted to a great number of different situations got the better of this difficult period. After ten lean years, the sector has been experiencing a new youth for the past four years now. (author)

  8. Solar home systems in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Henryson, Jessica; Haakansson, Teresa

    1999-04-01

    Photovoltaic (PV) technology is a clean and environmentally friendly technology that does not require any fuels. The high reliability of operation and little need for maintenance makes it ideally suited for rural areas. Today PV systems are used in Nepal to power telecommunications centres, navigational aids, in pumping systems for irrigation and drinking water, and for household electrification. A solar home system consists of a PV module, a battery, a charge controller and 3-4 fluorescent light bulbs with fixture. The system provides power for lighting and operation of household appliances for several hours. The success of donor supported programs have shown that solar home systems can be a practical solution for many rural households. In 1996 the Government of Nepal launched a subsidy program for solar home systems, which dramatically has increased the demand for solar home systems among rural customers. This report includes a survey of 52 households with solar home systems in two villages. The field-study shows that the villagers are very happy with their systems and the technical performance of the systems in both villages is satisfactory. The study also shows the positive impact electricity has on education, health, income generation and quality of life. The beneficiaries of introducing electricity in remote areas are the children and the women 39 refs, 18 tabs. Examination paper

  9. Online Faculty Development and Assessment System (OFDAS)

    Science.gov (United States)

    Villar, Luis M.; Alegre, Olga M.

    2006-01-01

    The rapid growth of online learning has led to the development of faculty inservice evaluation models focused on quality improvement of degree programs. Based on current "best practices" of student online assessment, the Online Faculty Development and Assessment System (OFDAS), created at the Canary Islands, was designed to serve the…

  10. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  11. K2 & Solar System Science

    Science.gov (United States)

    Lissauer, Jack

    2015-01-01

    All of the fields that K2 observes are near the ecliptic plane in order to minimize the spin-up of the spacecraft in response to the effects of solar irradiation. The fields observed by K2 are thus rich in Solar System objects including planets, asteroids and trans-Neptunian objects (TNOs). K2 has already performed observations of Neptune and its large moon Triton, 68 Trojan and Hilda asteroids, 5 TNOs (including Pluto) and Comet C/2013 A1 (Siding Springs). About 10,000 main-belt asteroids that fell into the pixel masks of stars have been serendipitously observed. Observations of small bodies are especially useful for determining rotation periods. Uranus will be observed in a future campaign (C8), as will many more small Solar System bodies. The status of various K2 Solar System studies will be reviewed and placed within the context of our current knowledge of the objects being observed.

  12. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  13. Solar System Update

    CERN Document Server

    Blondel, Philippe

    2006-01-01

    This book, the first in a series of forthcoming volumes, consists of topical and timely reviews of a number of carefully selected topics in solar systemn science. Contributions, in form of up-to-date reviews, are mainly aimed at professional astronomers and planetary scientists wishing to inform themselves about progress in fields closely related to their own field of expertise.

  14. New views of the solar system

    CERN Document Server

    2009-01-01

    Is your library up to date on the Solar System? When the International Astronomical Union redefined the term "planet," Pluto was stripped of its designation as the solar system''s ninth planet. New Views of the Solar System looks at scientists'' changing perspectives on the solar system, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid and detailed images of the solar system.

  15. Origins of Inner Solar Systems

    Science.gov (United States)

    Dawson, Rebekah Ilene

    2017-06-01

    Over the past couple decades, thousands of extra-solar planetshave been discovered orbiting other stars. The exoplanets discovered to date exhibit a wide variety of orbital and compositional properties; most are dramatically different from the planets in our own Solar System. Our classical theories for the origins of planetary systems were crafted to account for the Solar System and fail to account for the diversity of planets now known. We are working to establish a new blueprint for the origin of planetary systems and identify the key parameters of planet formation and evolution that establish the distribution of planetary properties observed today. The new blueprint must account for the properties of planets in inner solar systems, regions of planetary systems closer to their star than Earth’s separation from the Sun and home to most exoplanets detected to data. I present work combining simulations and theory with data analysis and statistics of observed planets to test theories of the origins of inner solars, including hot Jupiters, warm Jupiters, and tightly-packed systems of super-Earths. Ultimately a comprehensive blueprint for planetary systems will allow us to better situate discovered planets in the context of their system’s formation and evolution, important factors in whether the planets may harbor life.

  16. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  17. Magnetotails in the solar system

    CERN Document Server

    Keiling, Andreas; Delamere, Peter

    2014-01-01

    All magnetized planets in our solar system (Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune) interact strongly with the solar wind and possess well developed magnetotails. It is not only the strongly magnetized planets that have magnetotails. Mars and Venus have no global intrinsic magnetic field, yet they possess induced magnetotails. Comets have magnetotails that are formed by the draping of the interplanetary magnetic field. In the case of planetary  satellites (moons), the magnetotail refers to the wake region behind the satellite in the flow of either the solar wind or the magnetosp

  18. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  19. Solar tracking system

    Science.gov (United States)

    White, P. R.; Scott, D. R. (Inventor)

    1981-01-01

    A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.

  20. Chaos in the Solar System

    Science.gov (United States)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  1. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  2. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  3. Solar thermophotovoltaic system using nanostructures.

    Science.gov (United States)

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  4. Origin of Outer Solar System

    Science.gov (United States)

    Holman, Matthew J.; Lindstrom, David (Technical Monitor)

    2005-01-01

    Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of small bodies in the outer solar system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer solar system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; ( 2 ) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; ( 5 ) measuring and relating the physical properties of different types of KBOs to those of other solar system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets.

  5. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  6. Force convective solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ibarahim, Z.

    2006-01-01

    This paper presents design and performance of V-groove back-pass solar collector for solar drying system. In this study three V-groove back-pass solar collector each with dimension of 4.6 m x 1.0 m x 0.15 m have been fabricated for solar drying system. An outdoor test at mean solar intensity for 600-800 Wm -2 by using 0.15m 3 s -1 of air flow rate which also been suggested by (Zeroul et al. 1994) was carried out at Solar Research Energy Park. Universiti Kebangsaan Malaysia. Analysis on the collector performance based on daily data was reported that the value of FR ) e and FRUL was 0.709 ± 0.001 and 5.89 ± 0.31 Wm -2o C -1 respectively with 60-70 o C of output temperature (Ruslan et al. 2001). The three V-groove collectors each with dimension 4.6 m x 0.15 m were connected in series array mounted on the roof of a solar assisted drying system. By using two electric fans of 85W and 2700 rpm each, the speed of air was regulated at 0.11 kgs -1 to 0.31 kgs -1 using a voltage regulator. Performance of the collector based on the thermal analysis showed that at mean daily solar radiation 700 Wm -2 , the output temperature of 52 o C to 73 o C could be achieved using 0.11-0.31 kgs -1 of flow rate. Thermal analysis also showed that the efficiencies of 45% to 61% could be obtains using the same flow rate and solar radiation. Analysis of daily data showed that for radiation from 300 Wm -2 to 1000 Wm -2 the power generated from the collector was within 1.5 kW to 8.9 kW. The study concluded that the levels of the levels of the solar radiation and flow rate used influenced the performance of the collector

  7. Encyclopedia of the solar system

    CERN Document Server

    Spohn, Tilman; Johnson, Torrence

    2014-01-01

    The Encyclopedia of the Solar System, Third Edition-winner of the 2015 PROSE Award in Cosmology & Astronomy from the Association of American Publishers-provides a framework for understanding the origin and evolution of the solar system, historical discoveries, and details about planetary bodies and how they interact-with an astounding breadth of content and breathtaking visual impact. The encyclopedia includes the latest explorations and observations, hundreds of color digital images and illustrations, and over 1,000 pages. It stands alone as the definitive work in this field, and will serve

  8. Our Solar System. Our Solar System Topic Set

    Science.gov (United States)

    Phelan, Glen

    2006-01-01

    This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.

  9. Encyclopedia of the solar system

    CERN Document Server

    Weissman, Paul; Johnson, Torrence

    1998-01-01

    The Encyclopedia of the Solar System provides a series of comprehensive and authoritative articles written by more than 50 eminent planetary and space scientists. Each chapter is self-contained yet linked by cross-references to other related chapters. This beautifully designed book is a must for the library of professional astronomers and amateur star-gazers alike, in fact for anyone who wishes to understand the nature of our solar system.Key Features* Cross-referenced throughout for easy comprehension* Superbly illustrated with over 700 photos, drawings, and diagrams, including 36 color plates* Provides 40 thematically organized chapters by more than 50 eminent contributors* Convenient glossaries of technical terms introduce each chapter* Academic Press maintains a web site for the Encyclopedia at www.academicpress.com/solar; Author-recommended web resources for additional information, images, and research developments related to each chapter of this volume, are available here

  10. Sizing up the Solar System

    Science.gov (United States)

    Wiebke, Heidi; Rogers, Meredith Park; Nargund-Joshi, Vanashri

    2011-01-01

    The American Association for the Advancement of Science (AAAS 1993) states that by the end of fifth grade, students should understand that a model, such as those depicting the solar system, is a smaller version of the real product, making it easier to physically work with and therefore learn from. However, for students and even adults,…

  11. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  12. Solar system for soil drainage

    International Nuclear Information System (INIS)

    Kocic, Z.R.; Stojanovic, J.B.; Antic, M.A.; Pavlovic, T.M.

    1999-01-01

    The paper reviews solar system for drainage of the cultivable agricultural surfaces which can be situated near the rivers in plains. These are usually very fertile surfaces which cannot be cultivated die to constant presence of the water. Using such solar systems should increase the percentage of cultivable surfaces. These systems can also be installed on the cultivable agricultural surfaces, where the water surfaces or so called still waters appear, which make impossible the application of agritechnical measures on these surfaces, significantly decreasing crops and creating conditions for the growth of pond plants and animals. Increasing the percentage of cultivable agricultural surfaces would increase national agricultural income. At the same time, increasing the percentage of cultivable agricultural surfaces decreases the surfaces of unhealthy bog, swamp and marshland soils, where many insect breed. They are the cause for soil spraying from the air, which causes the pollution of environment. Solar systems do not pollute the environment because they use solar energy as the purest source of energy. Their usage has special significance in the places where there is no electricity distribution network

  13. Solar active region display system

    Science.gov (United States)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  14. ICE Online Detainee Locator System

    Data.gov (United States)

    Department of Homeland Security — The Online Detainee Locator datasets provide the location of a detainee who is currently in ICE custody, or who was release from ICE custody for any reason with the...

  15. State Online Query System (SOLQ)

    Data.gov (United States)

    Social Security Administration — Designed specifically for State Human Service agencies, SOLQ allows States real-time online access to SSA's SSN verification service and, if permitted, retrieval of...

  16. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  17. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  18. Study on Online Hotel Reservation Systems

    OpenAIRE

    Alleweldt, Frank; Tonner, Klaus; McDonald, Marc

    2009-01-01

    This study, conducted by Civic Consulting, looks at both pre-contractual and contractual matters concerning online hotel reservation systems, examines relevant Community rules, identifies gaps and, where needed, discusses possible policy options. Key conclusions The study shows that the impact of Community law on online hotel

  19. Teaching Dance with Online Course Management Systems

    Science.gov (United States)

    Colombi, Erika; Knosp, Suzanne

    2017-01-01

    As a result of easier access to and functionality of the Internet, online course management systems (CMSs) began to be developed in the mid-1990s. These technological tools were created to fill a need in the growing field of teaching through online courses.Most notable of these course tools are Blackboard (2015) and Desire2Learn (1999). Both of…

  20. Adaptive, full-spectrum solar energy system

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  1. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  2. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  3. CDC WONDER: Online Tuberculosis Information System (OTIS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Online Tuberculosis Information System (OTIS) on CDC WONDER contains information on verified tuberculosis (TB) cases reported to the Centers for Disease Control...

  4. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  5. Shawnee Mission's On-Line Cataloging System

    Directory of Open Access Journals (Sweden)

    Ellen Wasby Miller

    1971-03-01

    Full Text Available An on-line cataloging pilot project for two elementary schools is discussed. The system components are 2740 terminals, upper-lower-case input, IBM's FASTER generalized software package, and usual cards/labels output. Reasons for choosing FASTER, software and hardware features, operating procedures, system performance and costs are detailed. Future expansion to cataloging 100,000 annual K-12 acquisitions, on-line circulation, retrospective conversion, and union book catalogs is set forth.

  6. Wonders of the solar system

    CERN Document Server

    Cox, Brian

    2011-01-01

    The Sunday Times Bestseller In Wonders of the Solar System - the book of the acclaimed BBC TV series - Professor Brian Cox will take us on a journey of discovery where alien worlds from your imagination become places we can see, feel and visit. The Wonders of the Solar System - from the giant ice fountains of Enceladus to the liquid methane seas of Titan and from storms twice the size of the Earth to the tortured moon of Io with its giant super-volcanoes - is the Solar System as you have never seen it before. In this series, Professor Brian Cox will introduce us to the planets and moons beyond our world, finding the biggest, most bizarre, most powerful natural phenomena. Using the latest scientific imagery along with cutting edge CGI and some of the most spectacular and extreme locations on Earth, Brian will show us Wonders never thought possible. Employing his trademark clear, authoritative, yet down-to-earth approach, Brian will explore how these previously unseen phenomena have dramatically expanded our ho...

  7. Origin of the solar system

    International Nuclear Information System (INIS)

    Alfven, H.

    1976-01-01

    The methodology of the problem of the origin and evolution of the Solar System is analysed and it is pointed out that one can approach it in two different ways. (1) One can postulate that long ago there was a certain more or less likely-state, and then calculate how this developed into the present state. In principle this approach is 'mythological' and it differs from the old myths mainly in the respect that it is formulated in a mathematical way. (2) One can start from the present state and reconstruct increasingly older states. This is what the geologists call the 'actualist approach' and is the only one which can claim to be scientific. The 'Laplacean' type of theories is criticized. There is no indication that there was a 'Laplacean' homogeneous disc as an intermediate state, and there is no acceptable mechanism through which the present solar system could be formed from such a disc. The solar system today has a band structure, the planets as well as the satellites all fall in certain bands characterized by certain values of the gravitational potential. The band structure is explained as a result of the ionization of infalling matter when its velocity has reached the 'critical velocity' for ionization. (Auth.)

  8. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  9. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  10. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  11. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  12. Investigations of medium sized solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    A large variety of solar combi systems are on the market, but it is still too early to draw conclusions on optimum design of solar combi systems. Among others, the following questions need to be answered: Is an external domestic hot water preparation more desirable than an internal? What...... is the advantage by using inlet stratifiers? To answer the questions, theoretical investigations are carried out for differently designed solar combi systems. The work is carried out within the Solar Heating and Cooling Programme of the International Energy Agency (IEA SHC), Task 32 Advanced storage concepts...... for solar houses and low energy buildings....

  13. CORBA Evaluations for the BABAR Online System

    International Nuclear Information System (INIS)

    Glanzman, Thomas

    1998-01-01

    The Common Object Request Broker Architecture (CORBA) is a software system to deal with distributed object computing. The release of CORBA version 2, and real implementations from numerous vendors (both freeware and payware) have made its use very attractive for interprocess and interprocessor communication within an object-oriented software system. A number of object request brokers (ORBs) were evaluated for possible use within the BABAR Online system. Given an expectation for a reasonable level of performance within the Online system, it was essential to characterize the behavior and test the response of these products prior to their adoption. This paper summarizes the results of a systematic performance study of six ORB products. The products tested include: Visibroker, Orbix, DAIS, Omnibroker, OmniORB2, and TAO. Performance results of ORB products, including a test of TCP/IP sockets, are compared. These tests resulted in the adoption of the TAO ORB for use within the BABAR Online system

  14. On-line Dynamic Security Assessment in Power Systems

    DEFF Research Database (Denmark)

    Weckesser, Johannes Tilman Gabriel

    and solar radiation. Moreover, ongoing research suggests that demand response will be introduced to maintain power balance between generation and consumption at all times. Due to these changes the operating point of the power system will be less predictable and today’s stability and security assessment...... for early prediction of critical voltage sags is described. The method’s performance is compared to other prediction approaches. The results show that the proposed method succeeds in early, accurately and consistently predicting critically low voltage sags. An efficient on-line DSA not only identifies...

  15. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  16. Tracking system for solar collectors

    Science.gov (United States)

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  17. Solar-gas systems impact analysis study

    Science.gov (United States)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  18. MODEL DRIVEN DEVELOPMENT OF ONLINE BANKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bresfelean Vasile Paul

    2011-07-01

    Full Text Available In case of online applications the cycle of software development varies from the routine. The online environment, the variety of users, the treatability of the mass of information created by them, the reusability and the accessibility from different devices are all factors of these systems complexity. The use of model drive approach brings several advantages that ease up the development process. Working prototypes that simplify client relationship and serve as the base of model tests can be easily made from models describing the system. These systems make possible for the banks clients to make their desired actions from anywhere. The user has the possibility of accessing information or making transactions.

  19. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit...... and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water...

  20. Isotopic ratios in the solar system

    International Nuclear Information System (INIS)

    1985-01-01

    This colloquium is aimed at presentation of isotope ratio measurements in different objects of solar system and surrounding interstellar space and evaluation of what information on composition and structure of primitive solar nebula and on chemical evolution of interstellar space in this part of the galaxy can be deduced from it. Isotope ratio in solar system got from laboratory study of extraterrestrial materials is a subject of this colloquium. Then isotope ratio measured in solar wind, planets and comets. Measurements either are made in-situ by mass spectrometry of ions in solar wind or planetery atmosphere gases either are remote measurements of spectra emitted by giant planets and comets. At last, planetology and astrophysics implications are presented and reviewed. Consraints for solar system formation model can be deduced from isotope ratio measurement. Particularly, isotope anomalies are marks of the processes, which have influenced the primitive solar nebula contraction [fr

  1. Online reinforcement learning control for aerospace systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Reinforcement Learning (RL) methods are relatively new in the field of aerospace guidance, navigation, and control. This dissertation aims to exploit RL methods to improve the autonomy and online learning of aerospace systems with respect to the a priori unknown system and environment, dynamical

  2. An online infertility clinical decision support system

    Directory of Open Access Journals (Sweden)

    Fabio Diniz de Souza

    2017-01-01

    Full Text Available Objective: To explore some possibilities of computer applications in medicine, and to discuss an online infertility clinical decision support system.Methods: Retrospective data were obtained from 52 couples, and then entered into the online tool. Both its results and the initial diagnoses obtained by the treating physicians were compared with the final diagnoses established by laparoscopy and other diagnostic tests (semen analysis, hormone analysis, endometrial biopsy, ultrasound and hysteroscopy. The initial hypothesis of the research was that the online tool's output was statistically associated with the final diagnoses. In order to verify that hypothesis, a chi-square (χ2 test with Yates' correction for continuity (P<0.05 was performed to verify if the online tool's and the doctor's diagnoses were statistically associated with the final diagnoses.Results: Four etiological factors were present in more than 50% of the couples (ovarian, tubal-peritoneal, uterine, and endometriosis. The statistical results confirmed the research hypothesis for eight out of the nine etiological factors (ovarian, tubal-peritoneal, uterine, cervical, male, vaginal, psychosomatic, and endometriosis; P<0.05. Since there were no cases related to the immune factor in the sample, further clinical data are necessary in order to assess the online tool's performance for that factor.Conclusions: The online tool tends to present more false-positives than false-negatives, whereas the expert physician tends to present more false-negatives than false-positives. Therefore, the online tool and the doctor seem to complement each other. Finally, the obtained results suggest that the infertility online tool discussed herein might be a useful research and instructional tool.

  3. An online infertility clinical decision support system

    Directory of Open Access Journals (Sweden)

    Fabio Diniz de Souza

    2017-09-01

    Full Text Available Objective: To explore some possibilities of computer applications in medicine, and to discuss an online infertility clinical decision support system. Methods: Retrospective data were obtained from 52 couples, and then entered into the online tool. Both its results and the initial diagnoses obtained by the treating physicians were compared with the final diagnoses established by laparoscopy and other diagnostic tests (semen analysis, hormone analysis, endometrial biopsy, ultrasound and hysteroscopy. The initial hypothesis of the research was that the online tool’s output was statistically associated with the final diagnoses. In order to verify that hypothesis, a chi-square (氈2 test with Yates’ correction for continuity (P<0.05 was performed to verify if the online tool’s and the doctor’s diagnoses were statistically associated with the final diagnoses. Results: Four etiological factors were present in more than 50% of the couples (ovarian, tubal-peritoneal, uterine, and endometriosis. The statistical results confirmed the research hypothesis for eight out of the nine etiological factors (ovarian, tubal-peritoneal, uterine, cervical, male, vaginal, psychosomatic, and endometriosis; P<0.05. Since there were no cases related to the immune factor in the sample, further clinical data are necessary in order to assess the online tool’s performance for that factor. Conclusions: The online tool tends to present more false-positives than false negatives, whereas the expert physician tends to present more false-negatives than false-positives. Therefore, the online tool and the doctor seem to complement each other. Finally, the obtained results suggest that the infertility online tool discussed herein might be a useful research and instructional tool.

  4. Online mass storage system detailed requirements document

    Science.gov (United States)

    1976-01-01

    The requirements for an online high density magnetic tape data storage system that can be implemented in a multipurpose, multihost environment is set forth. The objective of the mass storage system is to provide a facility for the compact storage of large quantities of data and to make this data accessible to computer systems with minimum operator handling. The results of a market survey and analysis of candidate vendor who presently market high density tape data storage systems are included.

  5. Developing solar: PV solar system markets in Africa

    International Nuclear Information System (INIS)

    Asali, Karim

    2002-01-01

    Governments, NGO's and UN organisations are increasingly convinced that renewable energies not only help to solve energy problems in Africa but are indispensable in alleviating regional disparities, social problems and bridging the digital gap. Still, many years after introducing high efficiency solar PV systems the necessary breakthrough of implementing them on a mass scale is still not a reality. The author provides perspectives on developing solar PV in Africa. (Author)

  6. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  7. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  8. Biospheres and solar system exploration

    Science.gov (United States)

    Paine, Thomas O.

    1990-01-01

    The implications of biosphere technology is briefly examined. The exploration status and prospects of each world in the solar system is briefly reviewed, including the asteroid belt, the moon, and comets. Five program elements are listed as particularly critical for future interplanetary operations during the coming extraterrestrial century. They include the following: (1) a highway to Space (earth orbits); (2) Orbital Spaceports to support spacecraft assembly, storage, repair, maintenance, refueling, launch, and recovery; (3) a Bridge Between Worlds to transport cargo and crews to the moon and beyond to Mars; (4) Prospecting and Resource Utilization Systems to map and characterize the resources of planets, moons, and asteroids; and (5) Closed Ecology Biospheres. The progress in these five field is reviewed.

  9. Methanogens in the Solar System

    Science.gov (United States)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to

  10. Solar-energy drying systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Atul; Chen, C.R.; Vu Lan, Nguyen [Department of Mechanical Engineering, Kun Shan University, 949, Da-Wan Road, Yung-Kang City, Tainan Hsien 71003 (China)

    2009-08-15

    In many countries of the world, the use of solar thermal systems in the agricultural area to conserve vegetables, fruits, coffee and other crops has shown to be practical, economical and the responsible approach environmentally. Solar heating systems to dry food and other crops can improve the quality of the product, while reducing wasted produce and traditional fuels - thus improving the quality of life, however the availability of good information is lacking in many of the countries where solar food processing systems are most needed. Solar food dryers are available in a range of size and design and are used for drying various food products. It is found that various types of driers are available to suit the needs of farmers. Therefore, selection of dryers for a particular application is largely a decision based on what is available and the types of dryers currently used widely. A comprehensive review of the various designs, details of construction and operational principles of the wide variety of practically realized designs of solar-energy drying systems reported previously is presented. A systematic approach for the classification of solar-energy dryers has been evolved. Two generic groups of solar-energy dryers can be identified, viz. passive or natural-circulation solar-energy dryers and active or forced-convection solar-energy dryers. Some very recent developments in solar drying technology are highlighted. (author)

  11. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  12. Online Scheduling in Distributed Message Converter Systems

    NARCIS (Netherlands)

    Risse, Thomas; Wombacher, Andreas; Surridge, Mike; Taylor, Steve; Aberer, Karl

    The optimal distribution of jobs among hosts in distributed environments is an important factor to achieve high performance. The optimal strategy depends on the application. In this paper we present a new online scheduling strategy for distributed EDI converter system. The strategy is based on the

  13. The Solar System Origin Revisited

    Science.gov (United States)

    Johnson, Fred M.

    2016-10-01

    A novel theory will be presented based in part on astronomical observations, plasma physics experiments, principles of physics and forensic techniques. The new theory correctly predicts planetary distances with a 1% precision. It accounts for energy production mechanism inside all of the planets including our Earth. A log-log mass-luminosity plot of G2 class stars and solar system planets results in a straight line plot, whose slope implies that a fission rather than a proton-proton fusion energy production is operating. Furthermore, it is a confirmation that all our planets had originated from within our Sun. Other still-born planets continue to appear on the Sun's surface, they are mislabeled as sunspots.

  14. Gamma ray observations of the solar system

    International Nuclear Information System (INIS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed

  15. Gamma ray observations of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  16. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  17. The origin of the solar system

    International Nuclear Information System (INIS)

    Dormand, J.R.; Woolfson, M.M.

    1989-01-01

    This book describes in detail the capture theory of the origin of the solar system. Traces the history of solar system theories from pre-Christian Greece through the late 1920's. The authors examine the shortcomings of modern theories, and show how new knowledge supports the capture hypothesis

  18. Pumps for medium sized solar systems

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated.......The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated....

  19. New views of the solar system

    CERN Document Server

    2007-01-01

    Suitable for ages 10-17, this work takes a look at the developments in research about the solar system, including articles on Pluto, the eight chief planets, and dwarf planets. It includes photos and drawings that showcase the planets, asteroids, comets, and also a collection of images of the solar system.

  20. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  1. Small solar system bodies as granular systems

    Science.gov (United States)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  2. Grid-connected distributed solar power systems

    Science.gov (United States)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  3. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  4. The Solar System and Its Origin

    Science.gov (United States)

    Dormand, J. R.

    1973-01-01

    Presents a brief explanation of the solar system, including planets, asteroids, satellites, comets, planetary orbits, as well as, old and recent cosmogonic theories. Indicates that man is nearer a solution to the origin of the planetary system than ever before.

  5. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  6. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  7. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  8. A Novel Enclosed Online Control System for Microalgae Production

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-03-01

    Full Text Available Microalgae are single celled microscopic organisms which, like plants, convert solar energy into bio-energy through photosynthesis. They can be used to produce a variety of bio-based products, such as bio-food and biodiesel. Large scale algae production can be achieved in open or closed systems. An enclosed online microalgae control production system is presented in this paper. The designed system is composed of a reactor which is placed inside a box with light reflecting surface. Lighting system, CO2 supply, heating, as well as online cell mass monitoring via spectrophotometer, were integrated. The online monitoring of cell mass concentration is coupled to two pumps which remove a certain amount of cell suspension, and take fresh media as an alternative. Also, a LabView program was developed to collect data from a spectrophotometer and processed in a computer. Considering the limited experimental conditions and the pollution possibility for its high productivity if liquid is not properly disposed, food color was used to test the designed novel system in this paper. The results showed that, the system could detect a change in absorption over time with periodic sampling for every 4.8 minutes. When absorption value reach a pre-set gate, pump1 immediately starts to pump out a certain amount of solution?then pump2 starts to pump in fresh media according to the calculated time. The concentration could be controlled below the threshold value. From the continuous test using food color, the designed system showed good stability and controlling accuracy. It provides a good reference for the following microalgae testing experiment in future. Considering the applications of microalgae in agriculture, this research also provides resources for bio-fertilizer.

  9. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  10. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  11. Developing a solar panel testing system

    Directory of Open Access Journals (Sweden)

    Árpád Rácz

    2009-10-01

    Full Text Available Solar energy is increasingly used togenerate electricity for individual households. There isa wide variety of solar panel technologies, whichshould be tested at an individual level during theirlifetime. In this paper, the development of a testingstation at the University of Debrecen is presented. Thetesting system can be used for research andeducational purposes and for in field applicationsequally well.

  12. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  13. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  14. Adaptive optics system for the IRSOL solar observatory

    Science.gov (United States)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  15. Value of Recommendation Systems for Online Investors

    OpenAIRE

    Rustam Vahidov; Raafat Saade; Ahmed Eldiwany

    2012-01-01

    Internet allows investors to use friendly tools which help them to make and implement their investment choices in an online environment. Individuals can have access to volumes of information related to alternative financial instruments and craft their strategies according to their needs and preferences. However, in the presence of multiple choices, investors with limited experience and knowledge may need support in making adequate decisions. Recommendations systems have been used in e-commerc...

  16. Available online Efficiency potential of indirectly heated solar reforming with different types of solar air receivers

    International Nuclear Information System (INIS)

    Storch, Henrik von; Roeb, Martin; Stadler, Hannes; Sattler, Christian; Hoffschmidt, Bernhard

    2016-01-01

    Highlights: • A process for indirectly heated solar reforming of natural gas with air as heat transfer fluid is proposed. • Different solar receivers are modeled and implemented into the reforming process. • The overall efficiency of the process with different solar receivers is determined. • Optimum solar receiver characteristics for application in a solar reforming process are determined. - Abstract: In solar reforming, the heating value of natural gas is increased by utilization of concentrated solar radiation. Hence, it is a process for storing solar energy in a stable and transportable form that also permits further conversion into liquid fuels like methanol. This process has the potential to significantly decrease the natural gas consumption and the associated CO_2-emissions of methanol production with only few open questions to be addressed prior to commercialization. In the medium and long term, it has the potential to generate methanol as an environmentally friendly fuel for both transport as well as flexible electricity production in combined cycle gas turbines, when biogas is used as reactant. In a previous study the high potential of indirectly heated solar reforming with solar air receivers was shown; however, the efficiency is limited when using state of the art open volumetric receivers. Therefore, different types of air receivers are implemented into an indirectly heated solar reforming process and the overall efficiency potential is assessed in the present study. The implemented receivers are an open volumetric cavity receiver, a closed volumetric cavity receiver and a tubular cavity receiver. The open volumetric cavity receiver and tubular cavity receiver achieve the best results due to their capability of operating efficiently at temperatures well above 700 °C. For these receivers peak efficiencies up to 29% and 27% respectively are predicted. As the utilization of an open volumetric cavity receiver constitutes an open heat transfer

  17. LHCb Online Log Analysis and Maintenance System

    CERN Document Server

    Garnier, J-C

    2011-01-01

    History has shown, many times computer logs are the only information an administrator may have for an incident, which could be caused either by a malfunction or an attack. Due to the huge amount of logs that are produced from large-scale IT infrastructures, such as LHCb Online, critical information may be overlooked or simply be drowned in a sea of other messages. This clearly demonstrates the need for an automatic system for long-term maintenance and real time analysis of the logs. We have constructed a low cost, fault tolerant centralized logging system which is able to do in-depth analysis and cross-correlation of every log. This system is capable of handling O(10000) different log sources and numerous formats, while trying to keep the overhead as low as possible. It provides log gathering and management, Offline analysis and online analysis. We call Offline analysis the procedure of analyzing old logs for critical information, while Online analysis refer to the procedure of early alerting and reacting. ...

  18. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  19. Environmental benefits of domestic solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, Soteris A.

    2004-01-01

    All nations of the world depend on fossil fuels for their energy needs. However the obligation to reduce CO 2 and other gaseous emissions in order to be in conformity with the Kyoto agreement is the reason behind which countries turn to non-polluting renewable energy sources. In this paper the pollution caused by the burning of fossil fuels is initially presented followed by a study on the environmental protection offered by the two most widely used renewable energy systems, i.e. solar water heating and solar space heating. The results presented in this paper show that by using solar energy, considerable amounts of greenhouse polluting gasses are avoided. For the case of a domestic water heating system, the saving, compared to a conventional system, is about 80% with electricity or Diesel backup and is about 75% with both electricity and Diesel backup. In the case of space heating and hot water system the saving is about 40%. It should be noted, however, that in the latter, much greater quantities of pollutant gasses are avoided. Additionally, all systems investigated give positive and very promising financial characteristics. With respect to life cycle assessment of the systems, the energy spent for manufacture and installation of the solar systems is recouped in about 1.2 years, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 9.5 years according to the fuel and the particular pollutant considered. Moreover, due to the higher solar contribution, solar water heating systems have much shorter payback times than solar space heating systems. It can, therefore, be concluded that solar energy systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future

  20. Possible mass distributions in the nebulae of other solar systems

    International Nuclear Information System (INIS)

    Brown, W.K.

    1987-01-01

    The supernova shell fragmentation model of solar system formation - previously shown to be successful in describing the mass distribution of our solar system - is used to calculate the mass distributions of other solar nebulae. (Auth.)

  1. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  2. Consumer attitudes towards domestic solar power systems

    International Nuclear Information System (INIS)

    Faiers, Adam; Neame, Charles

    2006-01-01

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies some of the barriers to adoption. The study utilises Diffusion of Innovations theory to identify attitudes towards system attributes, and isolates the characteristics that are preventing a pragmatic 'early majority' from adopting the technology. A group of 'early adopters', and a group of assumed 'early majority' adopters of solar power were surveyed and the results show that overall, although the 'early majority' demonstrate a positive perception of the environmental characteristics of solar power, its financial, economic and aesthetic characteristics are limiting adoption. Differences exist between the two groups showing support for the concept of a 'chasm' between adopter categories after Moore (Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream Customers, second ed. Harper Perennial, New York). However, if consumers cannot identify the relative advantage of solar power over their current sources of power, which is supplied readily and cheaply through a mains system, it is unlikely that adoption will follow. Recommendations concerning the marketing and development of solar products are identified

  3. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  4. Voltage Quality Improvement Using Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Denisa Galzina

    2015-06-01

    This paper briefly shows the methods of power quality improvement, and then the results of on-site power quality measurements in the grid before and after the connection of the solar photovoltaic system.

  5. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  6. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model...... gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this paper....

  7. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions...

  8. Origin of the solar system. I

    International Nuclear Information System (INIS)

    Prentice, A.J.R.

    1978-01-01

    A theory for the origin of the solar system, which is based on ideas of supersonic turbulent convection and indicates the possibility that the original Laplacian hypothesis may by valid, is presented. (Auth.)

  9. Online thesis guidance management information system

    Science.gov (United States)

    Nasution, T. H.; Pratama, F.; Tanjung, K.; Siregar, I.; Amalia, A.

    2018-03-01

    The development of internet technology in education is still not maximized, especially in the process of thesis guidance between students and lecturers. Difficulties met the lecturers to help students during thesis guidance is the limited communication time and the compatibility of schedule between students and lecturer. To solve this problem, we designed an online thesis guidance management information system that helps students and lecturers to do thesis tutoring process anytime, anywhere. The system consists of a web-based admin app for usage management and an android-based app for students and lecturers.

  10. Audit trails in an online accountability system

    International Nuclear Information System (INIS)

    Jamison, C.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an online computer system that was developed by Rockwell International to track the accounting and processing of nuclear materials from the time it arrives at Rocky Flats Plant through its life cycle. A major contributor to the success of SAN is the use of audit trails. They have proven to be invaluable for the management and safeguarding of these sensitive materials at Rocky Flats. Producing effective audit trails requires the recording of all pertinent transactions and the capability to access and report the information in a timely fashion. This paper discusses the implementation and application of these audit trails on the Rocky Flats SAN system

  11. Audit trails in an online accountability system

    International Nuclear Information System (INIS)

    Jamison, C.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an online computer system that was developed by Rockwell International to track the accounting and processing of nuclear materials from the time it arrives at Rocky Flats Plant through its life cycle. A major contributor to the success of SAN is the use of audit trails. They have proven to be invaluable for the management and safeguarding of these sensitive materials at Rocky Flats. Producing effective audit trails requires the recording of all pertinent transactions and the capability to access and report the information in a timely fashion. This paper discusses the implementation and application of these audit trials on the Rocky Flats SAN system. 1 fig

  12. Expanding Public Outreach: The Solar System Ambassadors Program

    Science.gov (United States)

    Ferrari, K.

    2001-12-01

    The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. These competitively selected volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums. In 2001, 206 Ambassadors from almost all 50 states bring the excitement of space to the public. Ambassadors are space enthusiasts, who come from all walks of life. Last year, Ambassadors conducted almost 600 events that reached more than one-half million people in communities across the United States. The Solar System Ambassadors Program is sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California, an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA). Participating JPL organizations include Cassini, Galileo, STARDUST, Outer Planets mission, Genesis, Ulysses, Voyager, Mars missions, Discovery missions NEAR and Deep Impact, Deep Space Network, Solar System Exploration Forum and the Education and Public Outreach Office. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide limited supplies of materials, online resource links and information. Integrating volunteers across the country in a public-engagement program helps optimize project funding set aside for education and outreach purposes, establishing a nationwide network of regional contacts. At the same time

  13. Tehachapi solar thermal system first annual report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  14. Solar thermochemical processing system and method

    Science.gov (United States)

    Wegeng, Robert S.; Humble, Paul H.; Krishnan, Shankar; Leith, Steven D.; Palo, Daniel R.; Dagle, Robert A.

    2018-04-24

    A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.

  15. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    Stoev, M.; Katerski, A.; Williams, A.

    2000-01-01

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  16. New views of the solar system

    CERN Document Server

    2010-01-01

    Are you up to date on the solar system? When the International Astronomical Union redefined the term ""planet,"" Pluto was downgraded to a lower status. New Views of the Solar System looks at scientists' changing perspectives, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid images.

  17. New views of the solar system

    CERN Document Server

    2013-01-01

    Are you up to date on the solar system?  When the International Astronomical Union redefined the term ""planet,"" Pluto was downgraded to a lower status. New Views of the Solar System 2013 looks at scientists' changing perspectives, with articles on Pluto, the eight chief planets, and dwarf planets, new missions, updates for ongoing missions, newly-discovered moons, and updated tables. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid images.

  18. Comparative study on current trading system and online trading: the ...

    African Journals Online (AJOL)

    Comparative study on current trading system and online trading: the case of ... of online trading and factors affecting its feasibility of implementation in ECX. ... The study found that there is significant capacity problem with major skills gap with ...

  19. The design and implementation of online medical record system ...

    African Journals Online (AJOL)

    The design and implementation of online medical record system (OMRS) ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) ... International Journal of Natural and Applied Sciences. Journal Home ...

  20. Monitoring of Danish marketed solar heating systems

    International Nuclear Information System (INIS)

    Ellehauge, K.

    1993-01-01

    The paper describes the monitoring of manufactured solar heating systems for domestic hot water combined with space heating and systems for domestic hot water only. Results from the monitoring of 5 marketed combined systems for domestic hot water and space heating are presented. The systems situated at one family houses at different sites in Denmark have been monitored from January/February 1992. For the detailed monitoring of manufactured systems only for domestic hot water a test facility for simultaneous monitoring of 5 solar heating systems has been established at the Thermal Insulation Laboratory. (au)

  1. Solar Powered Automatic Shrimp Feeding System

    Directory of Open Access Journals (Sweden)

    Dindo T. Ani

    2015-12-01

    Full Text Available - Automatic system has brought many revolutions in the existing technologies. One among the technologies, which has greater developments, is the solar powered automatic shrimp feeding system. For instance, the solar power which is a renewable energy can be an alternative solution to energy crisis and basically reducing man power by using it in an automatic manner. The researchers believe an automatic shrimp feeding system may help solve problems on manual feeding operations. The project study aimed to design and develop a solar powered automatic shrimp feeding system. It specifically sought to prepare the design specifications of the project, to determine the methods of fabrication and assembly, and to test the response time of the automatic shrimp feeding system. The researchers designed and developed an automatic system which utilizes a 10 hour timer to be set in intervals preferred by the user and will undergo a continuous process. The magnetic contactor acts as a switch connected to the 10 hour timer which controls the activation or termination of electrical loads and powered by means of a solar panel outputting electrical power, and a rechargeable battery in electrical communication with the solar panel for storing the power. By undergoing through series of testing, the components of the modified system were proven functional and were operating within the desired output. It was recommended that the timer to be used should be tested to avoid malfunction and achieve the fully automatic system and that the system may be improved to handle changes in scope of the project.

  2. Design and Implementation of Dual Axis Solar Tracking system

    OpenAIRE

    Sirigauri N,; Raghav S

    2015-01-01

    Solar energy is a promising technology that can have huge long term benefits. Solar cells convert the solar energy into electrical energy. Solar tracking system is the most suited technology to improve the efficiency and enhance the performance by utilizing maximum solar energy through the solar cell. In hardware development we utilize LDR’s as sensors and two servomotors to direct the position of the solar panel. The software part is implemented on a code written using an Arduino...

  3. Combined solar collector and storage systems

    International Nuclear Information System (INIS)

    Norton, B.; Smyth, M.; Eames, P.; Lo, S.N.G.

    2000-01-01

    The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems

  4. 24 CFR 203.18a - Solar energy system.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  5. An on-line diagnostic expert system

    International Nuclear Information System (INIS)

    Felkel, L.

    1987-01-01

    As experience with on-line information systems, experts systems and artificial intelligence tools grows, the authors retreat from the first euphoria that AI could help them solve the problem they were unable to solve with conventional programming. The major effort of the development time goes into building the knowledge-base. There is no such thing as a generic knowledge-base for nuclear power plants as there is, for example, for the diagnosis of a Boeing 747 aircraft. AI-methods, tools and hardware are still in a state which does not optimally lend itself to real-time application. The ability of developing prototype systems to investigate variants otherwise too costly to justify is one advantage that the authors gladly accept. Last, but no least the tools provide a flexible and adaptable user interface (desktop window systems) etc. The development of such tools in a project would be prohibitive and room for experimentation would be limited

  6. A Universal Logging System for LHCb Online

    International Nuclear Information System (INIS)

    Nikolaidis, Fotis; Brarda, Loic; Garnier, Jean-Christophe; Neufeld, Niko

    2011-01-01

    A log is recording of system's activity, aimed to help system administrator to traceback an attack, find the causes of a malfunction and generally with troubleshooting. The fact that logs are the only information an administrator may have for an incident, makes logging system a crucial part of an IT infrastructure. In large scale infrastructures, such as LHCb Online, where quite a few GB of logs are produced daily, it is impossible for a human to review all of these logs. Moreover, a great percentage of them as just n oise . That makes clear that a more automated and sophisticated approach is needed. In this paper, we present a low-cost centralized logging system which allow us to do in-depth analysis of every log.

  7. ONLINE BANKING IN THE ROMANIAN BANKING SYSTEM

    Directory of Open Access Journals (Sweden)

    IMOLA DRIGĂ

    2014-12-01

    Full Text Available In the world of banking, the development of IT has a huge effect on development of more flexible payments methods and more user-friendly banking services. Recently, modern electronic banking services, internet and mobile banking, have rejuvenated banking transactions. Electronic banking over the Internet is one of the newest e-banking services with several benefits both for banks and for customers. The paper aims to provide an overview of online banking services highlighting various aspects globally as well as in the Romanian banking system. Even if there already are several studies on web banking, this topic still remains a resourceful area for academic research in the next decade.

  8. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  9. New Isotopic clues to solar system formation

    International Nuclear Information System (INIS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides 26 Al and 107 Pd with half-lives approx.10 6 years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rare gas and oxygen isotopic abundance variations [''anomalies''] relative to the ''cosmic'' composition were observed in a variety of planetary objects indicating that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthetic components permeate of the entire solar system. The correlated nuclear [''FUN''] anomalies in O, Mg, Si, Ca, Sr, Ba, Nd, and Sm were found in three rare inclusions in the Allende meteorite, which show large mass-dependent isotopic fractionation effects. The signature of the nuclear component required to explain these anomalies suggests a source which has received a catastrophic neutron burst [e.g., an r-process event]. These extinct nuclides and nucleosynthetic anomalies provide new clues to solar system formation. In particular, these results have led to the speculation that a nearby supernova had injected freshly synthesized material into the early solar nebula and possibly triggered the collapse of the proto-solar interstellar cloud. Furthermore, these new results have major implications on cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  10. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  11. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  12. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  13. Solar power generation system. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Ohaku, T [Toshiba Corp., Kawasaki (Japan)

    1990-12-21

    In a conventional solar power generation system having shunt elements for controlling generated power and supplying the controlled power to a load, it is difficult to carry out a stable power control, because the shunt characteristics of an analogue shunt element driving circuit vary widely as compared with a digital shunt element driving circuit, as the temperature varies. According to the present invention, in a solar power generation system having a plurality of solar cells divided into two of the first and second cell groups and a first and a second shunt element driving means provided for the first and second cell groups, the first shunt element driving means is composed of a combination of a resisance and level shift diode arranged, and the second shunt element driving means is composed of a combination of a transistor and level shift diode arranged. A stable current control of the shunt elements can be therefore realized, because the control voltage range of the first and second shunt element driving means is changed so as to be expanded, as the temperature varies, so that their overlapped voltage range is kept constant. 7 figs.

  14. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  15. Extracting the information backbone in online system.

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  16. Online Analysis of Wind and Solar Part I: Ramping Tool

    Energy Technology Data Exchange (ETDEWEB)

    Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Subbarao, Krishnappa

    2012-01-31

    To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.

  17. The solar system in close-up

    CERN Document Server

    Wilkinson, John

    2016-01-01

    In response to the new information gained about the Solar System from recent space probes and space telescopes, the experienced science author Dr. John Wilkinson presents the state-of-the art knowledge on the Sun, solar system planets and small solar system objects like comets and asteroids. He also describes space missions like the New Horizon’s space probe that provided never seen before pictures of the Pluto system; the Dawn space probe, having just visited the asteroid Vesta, and the dwarf planet Ceres; and the Rosetta probe inorbit around comet 67P/Churyumov–Gerasimenko that has sent extraordinary and most exciting pictures. Those and a number of other probes are also changing our understanding of the solar system and providing a wealth of new up close photos. This book will cover all these missions and discuss observed surface features of planets and moons like their compositions, geisers, aurorae, lightning phenomena etc. Presenting the fascinating aspects of solar system astronomy this book is a c...

  18. Protecting solar collector systems from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.

  19. Development of a Solar System Concept Inventory

    Science.gov (United States)

    Hornstein, Seth D.; Duncan, D.; S, C. A. T.

    2009-01-01

    Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. Preliminary development of the SSCI was completed at the University of Colorado and involved over 400 students. A larger, national, multi-institutional field test is planned for Spring 2009 as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We present here the results from the preliminary development and proposed changes for the next stage of research. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  20. Development of the Solar System Concept Inventory

    Science.gov (United States)

    Hornstein, S.; Prather, E.

    2009-12-01

    Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. The SSCI has been through two semesters of national, multi-institutional field-testing, involving over 1500 students. After the first semester of testing, question statistics were used to flag ineffective questions and flagged questions were revised or eliminated. We will present an overall outline of the SSCI development as well as our question-flagging criteria and question analyses from the latest round of field-testing. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  1. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  2. Solar warming systems of water installed in Colombia. Photovoltaic solar systems installed in the Country

    International Nuclear Information System (INIS)

    Rodriguez P, F.

    1995-01-01

    Between the systems that operate as of solar energy, the solar collectors to heat water have had wide use and application in the Country. Basically, a solar collector is constituted by: Box, thermal insulator, ducts and transparent roof. Generally, the used materials are the following: As thermal insulator: Polyurethane or glass fiber; as absorbent plate: Copper or aluminum, painting in dull black or selective surfaces; for the ducts: Generally it is used copper pipeline; and for the cover: Common glass or temperate glass

  3. Application and design of solar photovoltaic system

    International Nuclear Information System (INIS)

    Li Tianze; Lu Hengwei; Jiang Chuan; Hou Luan; Zhang Xia

    2011-01-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  4. Consumer attitudes towards domestic solar power systems

    Energy Technology Data Exchange (ETDEWEB)

    Faiers, Adam [Institute of Water and Environment, Cranfield University at Silsoe, Silsoe, Bedfordshire, MK45 4DT (United Kingdom)]. E-mail: a.j.faiers.so2@cranfield.ac.uk; Neame, Charles [Institute of Water and Environment, Cranfield University at Silsoe, Silsoe, Bedfordshire, MK45 4DT (United Kingdom)]. E-mail: c.neame@cranfield.ac.uk

    2006-09-15

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies some of the barriers to adoption. The study utilises Diffusion of Innovations theory to identify attitudes towards system attributes, and isolates the characteristics that are preventing a pragmatic 'early majority' from adopting the technology. A group of 'early adopters', and a group of assumed 'early majority' adopters of solar power were surveyed and the results show that overall, although the 'early majority' demonstrate a positive perception of the environmental characteristics of solar power, its financial, economic and aesthetic characteristics are limiting adoption. Differences exist between the two groups showing support for the concept of a 'chasm' between adopter categories after Moore (Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream Customers, second ed. Harper Perennial, New York). However, if consumers cannot identify the relative advantage of solar power over their current sources of power, which is supplied readily and cheaply through a mains system, it is unlikely that adoption will follow. Recommendations concerning the marketing and development of solar products are identified.

  5. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  6. Pump efficiency in solar-energy systems

    Science.gov (United States)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  7. Allowed planetary orbits in the solar system

    International Nuclear Information System (INIS)

    Pintr, P.; Perinova, V.; Luks, A.

    2008-01-01

    A new law of the Titius-Bode type for planetary distances from the Sun is proposed. These distances for each planet are determined using appropriate nodal circle of a vibrating membrane. Regularities in the distribution of bodies in the solar system and in the systems of giant planets and some exoplanets are pointed out

  8. STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Law, E. S.; Day, B. H.

    2018-01-01

    This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.

  9. Health Professionals' Use of Online Information Retrieval Systems and Online Evidence.

    Science.gov (United States)

    Lialiou, Paschalina; Pavlopoulou, Ioanna; Mantas, John

    2016-01-01

    Across-sectional survey was designed to determine health professionals' awareness and usage of online evidence retrieval systems in clinical practice. A questionnaire was used to measure professionals' behavior and utilization of online evidences, as well as, reasons and barriers on information retrieval. 439 nurses and physicians from public and private hospitals in Greece formulate the study's sample. The two most common reasons that individuals are using online information systems were for writing scientific manuscripts or filling a knowledge gap. A positive correlation was found between participants with postgraduate studies and information system usage. The majority of them (90,6%) believe that online information systems improves patient care and 67,6% of them had their own experiences on this. More support is needed to nurses and physicians in order to use the online evidence and as a result to improve the provided care and practices.

  10. The space-age solar system

    International Nuclear Information System (INIS)

    Baugher, J.F.

    1988-01-01

    This book is a description of the sun, planets, moons, asteroids, and comets in the solar system. Discussion is based heavily on results obtained from recent space probes to Mercury, Venus, Mars Jupiter, Saturn, and Uranus. Offers detailed descriptions of the moons of Jupiter and Saturn, and the results of the recent probes of Halley's comet. A discussion of meteorites leads to a description of the current models of the solar system. Introductory chapters present theories of the solar system from the ancient Greeks to the present day. Other topics covered include the sun, its structure, and how it generates energy; the surfaces, internal structures, and histories of the planets, from innermost Mercury to farthest Pluto, and their moons

  11. Cryovolcanism in the outer solar system

    Science.gov (United States)

    Geissler, Paul E.

    2015-01-01

    Cryovolcanism is defined as the extrusion of liquids and vapors of materials that would be frozen solid at the planetary surface temperatures of the icy bodies of the outer solar system. Active cryovolcanism is now known to occur on Saturn's moon Enceladus and on Neptune's moon Triton and is suspected on Jupiter's moon Europa, while evidence for past cryovolcanic activity is widespread throughout the outer solar system. This chapter examines the mechanisms and manifestations of cryovolcanism, beginning with a review of the materials that make up these unusual ‘‘magmas’’ and the means by which they might erupt and concluding with a volcanologist's tour of the farthest reaches of the solar system.

  12. An automated tool for solar power systems

    International Nuclear Information System (INIS)

    Natsheh, E.M.; Natsheh, A.R.; Albarbar, AH

    2014-01-01

    In this paper a novel model of smart grid-connected solar power system is developed. The model is implemented using MatLab/SIMULINK software package. Artificial neural network (ANN) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The dynamic behavior of the proposed model is examined under different operating conditions. Solar irradiance, and temperature data are gathered from a grid connected, 28.8 kW solar power system located in central Manchester. The developed system and its control strategy exhibit excellent performance with tracking efficiency exceed 94.5%. The proposed model and its control strategy offer a proper tool for smart grid performance optimization. (author)

  13. Solar System Evolution through Planetesmial Collisions

    Science.gov (United States)

    Trierweiler, Isabella; Laughlin, Greg

    2018-01-01

    Understanding planet formation is crucial to unraveling the history of our Solar System. Refining our theory of planet formation has become particularly important as the discovery of exoplanet systems through missions like Kepler have indicated that our system is incredibly unique. Compared to other systems around Sun-like stars, we are missing a significant amount of mass in the inner region of our solar system.A leading explanation for the low mass of the terrestrial planets is Jupiter’s Grand Tack. In this theory, the existence of the rocky planets is thought to be the result of the migration of Jupiter through the inner solar system. This migration could spark a collisional cascade of planetesimals, allowing planetesimals to drift inwards and shepherd an original set of massive planets into the Sun, thus explaining the absence of massive planets in our current system. The remnants of the planetesimals would them become the building blocks for a new generation of smaller, rocky planets.Using the N-body simulator REBOUND, we investigate the dynamics of the Grand Tack. We focus in particular on collisional cascades, which are thought to cause the inward planetesimal drift. We first modify the simulator to account for fragmentation outcomes in planetesimal collisions. Modeling disks of varying initial conditions, we then characterize the disk conditions needed to begin a cascade and shed light on the solar system’s dynamics just prior to the formation of the terrestrial planets.

  14. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  15. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  16. Solar heating systems for houses. A design handbook for solar combisystems

    International Nuclear Information System (INIS)

    Weiss, W.

    2003-11-01

    A handbook giving guidance on systems for providing combined solar space heating and solar water heating for houses has been produced by an international team. The guidance focuses on selection of the optimum combi-system for groups of single-family houses and multi-family houses. Standard classification and evaluation procedures are described. The book should be a valuable tool for building engineers, architects, solar manufacturers and installers of solar solar energy systems, and anyone interested in optimizing combined water and space heating solar systems

  17. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  18. High throughput solar cell ablation system

    Science.gov (United States)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  19. Testing relativity with solar system dynamics

    Science.gov (United States)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.

  20. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System

    Directory of Open Access Journals (Sweden)

    Lorentz Jäntschi

    2008-02-01

    Full Text Available The paper presents a solar radiation monitoring system, using two scientificpyranometers and an on-line computer home-made data acquisition system. The firstpyranometer measures the global solar radiation and the other one, which is shaded,measure the diffuse radiation. The values of total and diffuse solar radiation arecontinuously stored into a database on a server. Original software was created for dataacquisition and interrogation of the created system. The server application acquires the datafrom pyranometers and stores it into a database with a baud rate of one record at 50seconds. The client-server application queries the database and provides descriptivestatistics. A web interface allow to any user to define the including criteria and to obtainthe results. In terms of results, the system is able to provide direct, diffuse and totalradiation intensities as time series. Our client-server application computes also derivateheats. The ability of the system to evaluate the local solar energy potential is highlighted.

  1. A hybrid system for solar irradiance specification

    Science.gov (United States)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  2. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  3. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  4. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  5. Exploring the Trans-Neptunian Solar System

    Science.gov (United States)

    1998-01-01

    A profound question for scientists, philosophers and, indeed, all humans concerns how the solar system originated and subsequently evolved. To understand the solar system's formation, it is necessary to document fully the chemical and physical makeup of its components today, particularly those parts thought to retain clues about primordial conditions and processes.] In the past decade, our knowledge of the outermost, or trans-neptunian, region of the solar system has been transformed as a result of Earth-based observations of the Pluto-Charon system, Voyager 2's encounter with Neptune and its satellite Triton, and recent discoveries of dozens of bodies near to or beyond the orbit of Neptune. As a class, these newly detected objects, along with Pluto, Charon, and Triton, occupy the inner region of a hitherto unexplored component of the solar system, the Kuiper Belt. The Kuiper Belt is believed to be a reservoir of primordial objects of the type that formed in the solar nebula and eventually accreted to form the major planets. The Kuiper Belt is also thought to be the source of short-period comets and a population of icy bodies, the Centaurs, with orbits among the giant planets. Additional components of the distant outer solar system, such as dust and the Oort comet cloud, as well as the planet Neptune itself, are not discussed in this report. Our increasing knowledge of the trans-neptunian solar system has been matched by a corresponding increase in our capabilities for remote and in situ observation of these distant regions. Over the next 10 to 15 years, a new generation of ground- and space-based instruments, including the Keck and Gemini telescopes and the Space Infrared Telescope Facility, will greatly expand our ability to search for and conduct physical and chemical studies on these distant bodies. Over the same time span, a new generation of lightweight spacecraft should become available and enable the first missions designed specifically to explore the icy

  6. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  7. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  8. Solar dynamic power systems for space station

    Science.gov (United States)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  9. Solar Irradiance & On Grid Solar Power Systems with Net Metering in Pakistan

    Directory of Open Access Journals (Sweden)

    Haleema Qamar

    2016-06-01

    Full Text Available This paper presents a case study of solar irradiance and scope of on-grid solar power systems with net-metering in Pakistan. Detailed analysis of solar irradiance in Pakistan is being carried out by developing the dedicated solar excel sheets. The need of on grid solar power systems for the present energy crisis in developing countries like Pakistan is also discussed. It also presents the inclination of many countries especially USA and Europe towards it. Identification of barriers for implementing on grid net metered solar power systems in Pakistan along with solutions of these barriers is carried out.

  10. Solar system installation at Louisville, Kentucky

    Science.gov (United States)

    1978-01-01

    The installation of a solar space heating and domestic hot water system is described. The overall philosophy used was to install both a liquid and a hot air system retrofitted to existing office and combined warehouse building. The 1080 sq. ft. office space is heated first and excess heat is dumped into the warehouse. The two systems offer a unique opportunity to measure the performance and compare results of both air and liquid at one site.

  11. Extracting the information backbone in online system.

    Directory of Open Access Journals (Sweden)

    Qian-Ming Zhang

    Full Text Available Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  12. Extracting the Information Backbone in Online System

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  13. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    2008-01-01

    Presents a history of unmanned missions of exploration of our Solar System. This book provides technical descriptions of the spacecraft, of their mission designs and of instrumentations. It discusses scientific results together with details of mission management. It covers missions from the 1950s and some of the other missions and their results.

  14. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  15. Embodying Earth's Place in the Solar System

    Science.gov (United States)

    Plummer, Julia

    2015-01-01

    Elementary students find it difficult to connect the apparent motion of objects in the sky with how celestial objects actually move in the solar system. As a university astronomy education researcher, the author has been investigating methods to help children learn astronomy through workshops and summer camps at science museums and planetariums.…

  16. Assessment of a Solar System Walk

    Science.gov (United States)

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  17. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her

    2017-01-01

    was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  18. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  19. Reliability and durability in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-10-01

    The reliability and durability in solar energy systems for residential buildings is discussed. It is concluded that although strides have been made in design and manufacturing over the past years, the reliability and durability of the equipment depends on the proper installation. (MJF)

  20. New Low Cost Structure for Dual Axis Mount Solar Tracking System Using Adaptive Solar Sensor

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2010-01-01

    A solar tracking system is designed to optimize the operation of solar energy receivers. The objective of this paper is proposing a new tracking system structure with two axis. The success strategy of this new project focuses on the economical analysis of solar energy. Therefore it is important...... to determine the most cost effective design, to consider the costs of production and maintenance, and operating. The proposed tracking system uses a new solar sensor position with an adaptive feature....

  1. Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Annual Report, Year Two; 1 September 2003--31 August 2004

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, T.

    2005-02-01

    Energy Conversion Devices, Inc. (ECD) has developed and built 7 generations of roll-to-roll amorphous silicon PV production equipment. In the ECD/United Solar Ovonic production process, we deposit about a 1-mm-thick, 12-layer coating consisting of a metal/oxide backreflector, a - layer a-Si/a-SiGe alloy triple-junction solar cell, and a top transparent conductive oxide coating onto 125-mm-thick, 35.5-cm-wide stainless steel webs in a series of three roll-to-roll deposition machines. ECD has now completed the Phase II work for this program. In the following report, we summarize the Phase II work in each of these tasks. We have involved United Solar production personnel in each of these Tasks. This is important for two reasons: Firstly, the collaboration of ECD and United Solar personnel keeps the projects responsive to the developing needs at United Solar. Secondly, most of the tasks affect operations and consequently need the support of United Solar production and QA/QC managers. In the process, we have developed a good working relationship between the production personnel and good balance between optimizing production, while also ''adiabatically'' improving the manufacturing equipment.

  2. Planning for Online Education: A Systems Model

    Science.gov (United States)

    Picciano, Anthony G.

    2015-01-01

    The purpose of this article is to revisit the basic principles of technology planning as applied to online education initiatives. While not meant to be an exhaustive treatment of the topic, the article is timely because many colleges and universities are considering the development and expansion of online education as part of their planning…

  3. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    AYDOGMUS, O.

    2012-08-01

    Full Text Available A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used for balanced the motor power and PV power to obtain a high efficiency. The results are performed by using MATLAB/SimPowerSystem blocks. In addition, the PV array is modeled to allow for the possibility of running as on-line adjustable in simulation environment without using lookup table. The performances of motor, MPPT and drive system are analyzed in different conditions as temperature and irradiation of PV array.

  4. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  5. Malaysian Education Index (MEI): An Online Indexing and Repository System

    Science.gov (United States)

    Kabilan, Muhammad Kamarul; Ismail, Hairul Nizam; Yaakub, Rohizani; Yusof, Najeemah Mohd; Idros, Sharifah Noraidah Syed; Umar, Irfan Naufal; Arshad, Muhammad Rafie Mohd.; Idrus, Rosnah; Rahman, Habsah Abdul

    2010-01-01

    This "Project Sheet" describes an on-going project that is being carried out by a group of educational researchers, computer science researchers and librarians from Universiti Sains Malaysia, Penang. The Malaysian Education Index (MEI) has two main functions--(1) Online Indexing System, and (2) Online Repository System. In this brief…

  6. Security analysis of electronic voting and online banking systems

    OpenAIRE

    Tjøstheim, Thomas

    2007-01-01

    The main focus of this dissertation is on security analysis of electronic voting and online banking systems. Six papers form the basis of the thesis and include the following topics: a model for analysis of voting systems, a case study where we apply the proposed model, a new scheme for remote electronic voting, and three case studies of commercial online banking solutions in Norway.

  7. An Expert System Approach to Online Catalog Subject Searching.

    Science.gov (United States)

    Khoo, Christopher S. G.; Poo, Danny C. C.

    1994-01-01

    Reviews methods to improve online catalogs for subject searching and describes the design of an expert system front-end to improve subject access in online public access catalogs that focuses on search strategies. Implementation of a prototype system at the National University of Singapore is described, and reformulation strategies are discussed.…

  8. How Normal is Our Solar System?

    Science.gov (United States)

    Kohler, Susanna

    2015-10-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because

  9. A Solar System Perspective on Laboratory Astrophysics

    Science.gov (United States)

    Cruikshank, Dale P.

    2002-01-01

    Planetary science deals with a wide variety of natural materials in a wide variety of environments. These materials include metals, minerals, ices, gases, plasmas, and organic chemicals. In addition, the newly defined discipline of astrobiology introduces biological materials to planetary science. The environments range from the interiors of planets with megapascal pressures to planetary magnetospheres, encompassing planetary mantles, surfaces, atmospheres, and ionospheres. The interplanetary environment includes magnetic and electrical fields, plasma, and dust. In order to understand planetary processes over these vast ranges, the properties of materials must be known, and most of the necessary information comes from the laboratory. Observations of the bodies and materials in the Solar System are accomplished over the full range of the electromagnetic spectrum by remote sensing from Earth or spacecraft. Comets exemplify this; molecular and atomic identifications are made from the hard ultraviolet to radio wavelengths, while X-rays are emitted as comets interact with the solar wind. Gamma rays from the surfaces of the Moon and asteroids are diagnostic of the mineral and ice content of those bodies; eventually, gamma rays will also be observed by probes to comets. A number of planetary materials are available in the laboratory for extensive Study: rocks from the Moon, Mars, several asteroids, as well as dust from comets (and perhaps the Kuiper Belt) are closely studied at every level, including atomic (isotopic). Even pre-solar interstellar grains isolated from meteorites are scrutinized for composition and crystalline structure. Beyond the materials themselves, various agents and processes have altered them over the 4.6-Gy age of the Solar System. Solar radiation, solar wind particles, trapped magnetospheric particles, cosmic rays, and micrometeoroid impacts have produced chemical, physical, and morphological changes in the atmospheres and on the surfaces of all

  10. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  11. Evolution of the solar system in the presence of a solar companion star

    International Nuclear Information System (INIS)

    Hut, P.

    1986-01-01

    A review is presented of the dynamical implications of a companion star in a wide orbit around the sun, with a semimajor axis of about half a parsec. The motivation behind the hypothesis of a solar companion star is reviewed briefly along with alternative hypotheses, and the general problem of solar system dynamics with a solar companion star is discussed. Four principal questions are posed and answered concerning the consistency of the solar companion theory in providing the required modulation in comet arrival times: (1) What is the expected lifetime of a solar companion? (2) How stable is the orbital period? (3) Does a single perihelion passage of a solar companion perturb enough comets? (4) Do repeated perihelion passages of a solar companion perturb too many comets? Some applications outside the solar system involving wide binaries, interstellar clouds, and dark matter in the Galactic disk are discussed, and the viability of the solar companion theory is critically assessed

  12. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  13. Commercial dissemination approaches for solar home systems

    Energy Technology Data Exchange (ETDEWEB)

    Terrado, E.

    1997-12-01

    The author discusses the issue of providing solar home systems to primarily rural areas from the perspective of how to commercialize the process. He considers two different approaches, one an open market approach and the other an exclusive market approach. He describes examples of the exclusive market approach which are in process in Argentina and Brazil. Coming from a banking background, the business aspects are discussed in detail. He points out the strengths and weaknesses of both approaches toward developing such systems.

  14. ABOUT SYSTEM OF DISTANCE LEARNING IN OPEN ONLINE COURSE

    Directory of Open Access Journals (Sweden)

    V.М. Kukharenko

    2012-03-01

    Full Text Available This paper describes the first part of the open online course "E-Learning from A to Z", dedicated to the creation and development of system of distance learning (university or corporation. The results of the learning process and discussion on the workshop at NTU "KPI" in 2012 is shown the interest of teachers in a new form of online course and lack of development of personal learning environment. The open online courses can contribute to society practice.

  15. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  16. Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Phase I Annual Report, 23 April 2003--31 August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, T.

    2004-08-01

    This subcontract report describes how Energy Conversion Devices, Inc., has developed and built 7 generations of roll-to-roll amorphous silicon PV production equipment. In the ECD/United Solar production process, we deposit about a 1-mm-thick, 12-layer coating consisting of a metal/oxide backreflector, a 9-layer a-Si/a-SiGe alloy triple-junction solar cell, and top transparent conductive oxide coating onto 125-mm-thick, 35.5-cm-wide stainless-steel webs in a series of three roll-to-roll deposition machines. In the PV Manufacturing R&D 6 program, ECD is building upon these accomplishments to enhance the operation of the present production machine, and lay the foundation for improvements in the next-generation machine. ECD has completed the Phase I work for the first two Tasks, and will complete the Phase I work for the second two tasks within the next two months. In the following report, we summarize the Phase I work in each of these tasks. We have involved United Solar production personnel in each of these Tasks. This is important for two reasons: First, the collaboration of ECD and United Solar personnel keeps the projects responsive to the developing needs at United Solar; and most of the tasks affect operations and consequently need the support of United Solar production and QA/QC managers. In the process we have developed a good working relationship between the production personnel, whose mantra is''change nothing,'' and the R&D personnel, who mantra is''change everything.''

  17. SIMS prototype system 1: Design data brochure. [solar heating system

    Science.gov (United States)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  18. Distributed Online Learning in Social Recommender Systems

    Science.gov (United States)

    Tekin, Cem; Zhang, Simpson; van der Schaar, Mihaela

    2014-08-01

    In this paper, we consider decentralized sequential decision making in distributed online recommender systems, where items are recommended to users based on their search query as well as their specific background including history of bought items, gender and age, all of which comprise the context information of the user. In contrast to centralized recommender systems, in which there is a single centralized seller who has access to the complete inventory of items as well as the complete record of sales and user information, in decentralized recommender systems each seller/learner only has access to the inventory of items and user information for its own products and not the products and user information of other sellers, but can get commission if it sells an item of another seller. Therefore the sellers must distributedly find out for an incoming user which items to recommend (from the set of own items or items of another seller), in order to maximize the revenue from own sales and commissions. We formulate this problem as a cooperative contextual bandit problem, analytically bound the performance of the sellers compared to the best recommendation strategy given the complete realization of user arrivals and the inventory of items, as well as the context-dependent purchase probabilities of each item, and verify our results via numerical examples on a distributed data set adapted based on Amazon data. We evaluate the dependence of the performance of a seller on the inventory of items the seller has, the number of connections it has with the other sellers, and the commissions which the seller gets by selling items of other sellers to its users.

  19. MOIDSS?- Mobile Online Intelligent Decision Support System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — GRID has had a successfully completed Phase I 'Mobile Online Intelligent Decision Support System' (MOIDSS). The system developed into a total solution that supports...

  20. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    On-line methanol sensor system development for recombinant human serum ... of the methanol sensor system was done in a medium environment with yeast cells ... induction at a low temperature and a pH where protease does not function.

  1. On-line control systems in power plants

    International Nuclear Information System (INIS)

    Freymeyer, P.

    1981-01-01

    This report is a review of on-line control systems as a complex system connected with all problems like, development, planning, degree of automation, economics, service, quality and documentation. (orig.) [de

  2. Solar cosmic rays in the system of solar terrestrial relations

    Science.gov (United States)

    Miroshnichenko, Leonty I.

    2008-02-01

    In this brief review, we discuss a number of geophysical effects of solar energetic particles (SEPs) or solar cosmic rays (SCR). We concentrate mainly on the observational evidence and proposed mechanisms of some expected effects and/or poor-studied phenomena discovered within the last three decades, in particular, depletion of the ozone layer, perturbations in the global electric current, effects on the winter storm vorticity, change of the atmospheric transparency and production of nitrates. Some "archaeological" data on SCR fluxes in the past and upper limit of total energy induced by SEPs are also discussed. Due attention is paid to the periodicities in the solar particle fluxes. Actually, many solar, heliospheric and terrestrial parameters changing generally in phase with the solar activity are subjected to a temporary depression close to the solar maximum ("Gnevyshev Gap"). A similar gap has been found recently in the yearly numbers of the >10 MeV proton events. All the above-mentioned findings are evidently of great importance in the studies of general proton emissivity of the Sun and long-term trends in the behaviour of solar magnetic fields. In addition, these data can be very helpful for elaborating the methods for prediction of the radiation conditions in space and for estimation of the SEPs' contribution to solar effects on the geosphere, their relative role in the formation of terrestrial weather and climate and in the problem of solar-terrestrial relations (STR) on the whole.

  3. GEO 600 online detector characterization system

    International Nuclear Information System (INIS)

    Balasubramanian, R; Babak, S; Churches, D; Cokelaer, T

    2005-01-01

    A world-wide network of interferometric gravitational wave detectors is currently operational. The detectors in the network are still in their commissioning phase and are expected to achieve their design sensitivity over the next year or so. Each detector is a complex instrument involving many optical, mechanical and electronic subsystems and each subsystem is a source of noise at the output of the detector. Therefore, in addition to recording the main gravitational wave data channel at the output of the interferometer, the state of each detector subsystem is monitored and recorded. The analysis of these subsidiary data serves a dual purpose: first, it helps us to identify the primary sources of noise which could then be either removed altogether or reduced substantially and second, it helps us in vetoing spurious signals at the output of the interferometer. However, since these subsidiary data are both large in volume (1 MB s -1 ) as well as complex in nature, it is not possible to look at all these data manually. We require an online monitoring and analysis tool which can process all the data channels for various noise artefacts such as transients, drifting of narrowband noise sources, noise couplings between data channels etc, and summarize the results of the analysis in a manner that can be accessed and interpreted conveniently. In this paper we describe the GEO 600 online detector characterization system (GODCS), which is the tool that is being used to monitor the output of the GEO 600 gravitational wave detector situated near Hanover in Germany. We describe the various algorithms that we use and how the results of several algorithms can be combined to make meaningful statements about the state of the detector. We also give implementation details such as the software architecture and the storage and retrieval of the output of GODCS. This paper will be useful to researchers in the area of gravitational wave astronomy as a record of the various analyses and

  4. Elementary Students' Mental Models of the Solar System

    Science.gov (United States)

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  5. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  6. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  7. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  8. A manifesto for conscientious design of hybrid online social systems

    OpenAIRE

    Noriega, Pablo; Verhagen, Harko; d’Inverno, Mark; Padget, Julian A.

    2016-01-01

    Online Social Systems such as community forums, social media, e-commerce and gaming are having an increasingly significant impact on our lives. They affect the way we accomplish all sorts of collective activities, the way we relate to others, and the way we construct are own self-image. These systems often have both human and artificial agency creating what we call online hybrid social systems. However, when systems are designed and constructed, the psychological and sociological impact of su...

  9. Life in the solar system and beyond

    CERN Document Server

    Jones, Barrie W

    2004-01-01

    In Life in the Solar System and Beyond, Professor Jones has written a broad introduction to the subject, addressing important topics such as, what is life?, the origins of life and where to look for extraterrestrial life The chapters are arranged as follows Chapter 1 is a broad introduction to the cosmos, with an emphasis on where we might find life In Chapters 2 and 3 Professor Jones discusses life on Earth, the one place we know to be inhabited Chapter 4 is a brief tour of the Solar system, leading us in Chapters 5 and 6 to two promising potential habitats, Mars and Europa In Chapter 7 the author discusses the fate of life in the Solar system, which gives us extra reason to consider life further afield Chapter 8 focuses on the types of stars that might host habitable planets, and where in the Galaxy these might be concentrated Chapters 9 and 10 describe the instruments and techniques being employed to discover planets around other stars (exoplanetary systems), and those that will be employed in the near fut...

  10. Online scheduling of 2-re-entrant flexible manufacturing systems

    NARCIS (Netherlands)

    Pinxten, J. van; Waqas, U.; Geilen, M.; Basten, T.; Somers, L.

    2017-01-01

    Online scheduling of operations is essential to optimize productivity of flexible manufacturing systems (FMSs) where manufacturing requests arrive on the fly. An FMS processes products according to a particular flow through processing stations. This work focusses on online scheduling of re-entrant

  11. Online Testing of Real-time Systems Using Uppaal

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Mikucionis, Marius; Nielsen, Brian

    2005-01-01

    We present T-Uppaal{} -- a new tool for online black-box testing of real-time embedded systems from non-deterministic timed automata specifications. We describe a sound and complete randomized online testing algorithm and how to implement it using symbolic state representation and manipulation te...

  12. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  13. Solar system constraints on disformal gravity theories

    International Nuclear Information System (INIS)

    Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy

    2015-01-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology

  14. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  15. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2018-01-30

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  16. The Science of Solar System Ices

    CERN Document Server

    Castillo-Rogez, Julie

    2013-01-01

    The Science of Solar System Ices The role of laboratory research and simulations in advancing our understanding of solar system ices (including satellites, KBOs, comets, and giant planets) is becoming increasingly important. Understanding ice surface radiation processing, particle and radiation penetration depths, surface and subsurface chemistry, morphology, phases, density, conductivity, etc., are only a few examples of the inventory of issues that are being addressed by Earth-based laboratory research. As a response to the growing need for cross-disciplinary dialog and communication in the planetary ices science community, this book aims to foster focused collaborations among the observational, modeling, and laboratory research communities. The book is a compilation of articles from experts in ices: experimentalists, modelers, and observers (ground-based telescopes and space missions). Most of the contributors featured in this book are renowned experts in their respective fields. Many of these scientists h...

  17. Solar panel truss mounting systems and methods

    Science.gov (United States)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  18. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  19. Solar energy collector/storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  20. Multistep Methods for Integrating the Solar System

    Science.gov (United States)

    1988-07-01

    Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects

  1. Solar-hydrogen energy systems: an authoritative review of water-splitting systems by solar beam and solar heat : hydrogen production, storage, and utilisation

    National Research Council Canada - National Science Library

    Ōta, Tokio

    1979-01-01

    ... An Authoritative Review of Watersplitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilisation edited by TOKIO OHTA Professor of Materials Science and Energy System Yoko...

  2. The Cambridge Guide to the Solar System

    Science.gov (United States)

    Lang, Kenneth R.

    2003-10-01

    The Cambridge Guide to the Solar System provides a comprehensive, funamental, and up-to-date description of the solar system. It is written in a concise, light and uniform style, without being unnecessarily weighted down with specialized materials or the variable writing of multiple authors. It is filled with vital facts and information for astronomers of all types and for anyone with a scientific interest in the Earth, our Moon, all the other planets and their satellites, and related topics such as asteroids, comets, meteorites and meteors. The language, style, ideas and profuse illustrations will attract the general reader as well as professionals. A thorough report for general readers, it includes much compact reference data. Metaphors, similes and analogies will be of immense help to the lay person or non-science student, and they add to the enjoyment of the material. Vignettes containing historical, literary and even artistic material make this book unusual and interesting, and enhance its scientific content. Kenneth Lang is professor of astronomy in the Physics and Astronomy Department at Tufts University. He is the author of several astrophysics books, including The Sun from Space (Springer Verlag, 2000), Astrophysical Formulae: Radiation, Gas Processes, and High Energy Physics (Springer Verlag, 1999), Sun, Earth and Sky (Copernicus Books, 1997), Astrophysical Data: Planets and Stars (Springer Verlag, 1993), and Wanderers in Space: Exploration and Discovery in the Solar System (Cambridge, 1991),

  3. Spacewatch Survey of the Solar System

    Science.gov (United States)

    McMillan, Robert S.

    2000-01-01

    The purpose of the Spacewatch project is to explore the various populations of small objects throughout the solar system. Statistics on all classes of small bodies are needed to infer their physical and dynamical evolution. More Earth Approachers need to be found to assess the impact hazard. (We have adopted the term "Earth Approacher", EA, to include all those asteroids, nuclei of extinct short period comets, and short period comets that can approach close to Earth. The adjective "near" carries potential confusion, as we have found in communicating with the media, that the objects are always near Earth, following it like a cloud.) Persistent and voluminous accumulation of astrometry of incidentally observed main belt asteroids MBAs will eventually permit the Minor Planet Center (MPQ to determine the orbits of large numbers (tens of thousands) of asteroids. Such a large body of information will ultimately allow better resolution of orbit classes and the determinations of luminosity functions of the various classes, Comet and asteroid recoveries are essential services to planetary astronomy. Statistics of objects in the outer solar system (Centaurs, scattered-disk objects, and Trans-Neptunian Objects; TNOs) ultimately will tell part of the story of solar system evolution. Spacewatch led the development of sky surveying by electronic means and has acted as a responsible interface to the media and general public on this discipline and on the issue of the hazard from impacts by asteroids and comets.

  4. Gravitational anomalies in the solar system?

    Science.gov (United States)

    Iorio, Lorenzo

    2015-02-01

    Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.

  5. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  6. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    Xiaodi, Xue; Hongfei, Zheng; Kaiyan, He; Zhili, Chen; Tao, Tao; Guo, Xie

    2010-01-01

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m 2 , the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  7. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  8. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  9. Addressing firefighter safety around solar PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. [Sustainable Energy Technologies, Calgary, AB (Canada)

    2010-11-15

    The article discussed new considerations for installing photovoltaic (PV) systems that address the needs of fire service personnel. The presence of a PV system presents a multitude of dangers for firefighters, including electrical shock, the inhalation of toxic gases from being unable to cut a hole through the roof, falling debris and flying glass, and dead loading on a compromised structure and tripping on conduits. Mapping systems should be modified so that buildings with PV systems are identified for first responders, including firefighters who should learn that solar modules present an electrical hazard during the day but not at night; covering PV modules with foam or salvage covers may not shut the system down to a safe level; it takes a few moments for the power in PV modules to reduce to zero; and PV modules or conduit should never be cut, broke, chopped, or walked upon. The California Department of Forestry and Fire Protection recommends creating pathways and allowing easier access to the roof by setting the modules back from roof edges, creating a structurally sound pathway for firefighters to walk on and space to cut ventilation holes. However, the setback rule makes the economics of solar installation less viable for residential applications. The technological innovations aimed at addressing system safety all focus on limiting firefighter contact with live electrical components to within the extra-low-voltage (ELV) band. Some of the inverters on the market that support ELV system architecture were described. 1 fig.

  10. Ages of the solar system: Isotopic dating

    International Nuclear Information System (INIS)

    Turner, G.

    1982-01-01

    The major concern of this section will be to outline the ways in which measurements of isotope abundances have been used to determine the chronology of the origin and evolution of the solar system. In passing it should be remembered that the use of isotopic information is by no means restricted simply to the measurement of time scales and, particularly in recent years, isotope abundances have been used to investigate problems as diverse as the heat sources in the early solar nebula and the chemical evolution of the Earth's mantle. The fundamental property of isotopes which makes them especially useful for dating and other applications is the fact that, apart from a limited amount of mass fractionation, the composition of an isotopic mixture is unaffected by chemical processes. In those cases where mass fractionation does occur this effect may itself be useful, particularly as a source of information on temperatures. Since our main theme is time the events discussed in this section will be most conveniently presented as a chronological sequence, progressing from some time before the solar system existed down to the present day. (orig./WL)

  11. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  12. Solar Thermal System Evaluation in China

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2015-01-01

    Full Text Available More than 581 solar thermal systems (STSs, 98 counties, and 47 renewable application demonstration cites in China need to be inspected by the end of 2015. In this study, the baseline for performance and economic evaluation of STSs are presented based on the site test data and related references. An index used to evaluate STSs was selected, and methods to acquire the parameters used to calculate the related index were set. The requirements for sensors for testing were specified. The evaluation method was applied to three systems and the result shows that the evaluation method is suitable for the evaluation of STSs in China.

  13. Chaotic diffusion in the Solar System

    OpenAIRE

    Laskar, Jacques

    2008-01-01

    A statistical analysis is performed over more than 1001 different integrations of the secular equations of the Solar system over 5 Gyr. With this secular system, the probability of the eccentricity of Mercury to reach 0.6 in 5 Gyr is about 1 to 2 %. In order to compare with (Ito and Tanikawa, 2002), we have performed the same analysis without general relativity, and obtained even more orbits of large eccentricity for Mercury. We have performed as well a direct integration of the planetary orb...

  14. Beach Advisory and Closing Online Notification (BEACON) system

    Data.gov (United States)

    U.S. Environmental Protection Agency — Beach Advisory and Closing Online Notification system (BEACON) is a colletion of state and local data reported to EPA about beach closings and advisories. BEACON is...

  15. Effects of Platform Design on the Customer Experience in an Online Solar PV Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Leibowicz, Benjamin [The University of Texas at Austin; Punjabi, Kunal [The University of Texas at Austin

    2018-05-09

    We analyze a unique dataset of residential solar PV quotes offered in an online marketplace to understand how platform design changes affect customer outcomes. Three of the four design changes are associated with statistically significant and robust reductions in offer prices, though none of the policies were designed explicitly to reduce prices. The results suggest that even small changes in how prospective solar PV customers interact with installers can affect customer outcomes such as prices. Specifically, the four changes we evaluate are: 1) a customer map that shows potential new EnergySage registrants the locations of nearby customers; 2) a quote cap that precludes more than seven installers from bidding on any one customer; 3) a price guidance feature that informs installers about competitive prices in the customer's market before they submit quotes; and 4) no pre-quote messaging to prohibit installers from contacting customers prior to offering quotes. We calculate descriptive statistics to investigate whether each design change accomplished its specific objectives. Then, we econometrically evaluate the impacts of the design changes on PV quote prices and purchase prices using a regression discontinuity approach.

  16. Interactions in the early solar system

    International Nuclear Information System (INIS)

    Dormand, J.R.; Woolfson, M.M.

    1977-01-01

    The capture theory of the origin of the solar system predicts protoplanets formed in near coplanar elliptical orbits with fairly high eccentricities. A resisting medium, which would be a byproduct of the capture event, would serve to round-off the orbits in a time which is short compared to the age of the solar system. It is shown that such a medium would also give rise to differential rotations of the lines of apses of the early planetary orbits, leading to a high probability of close interactions or collisions between planets. The consequences of a collision between two planets are considered. It is found that the larger planet could, in some cases, be expelled from the solar system and that the fragments of the small planet could give rise to some of the terrestrial planets. Moreover, it is suggested that the Earth-Moon system could be formed as as result of the capture of a major satellite of one of the colliding planets by a large fragment of the other planet. Mars is also identified in the satellite system of the ejected planet. Various types of debris from the collision could have produced the asteroids, meteorites and comets. An alternative explanation, in terms of the original event, is also given for the comets. The hypothesis is examined that Pluto is a byproduct of the collision, reaching its present orbit by interactions with Neptune. It is shown that as a consequence of such an interaction, Triton could have been perturbed sufficiently to reverse an initially prograde orbital motion. The transfer of Pluto from the collision region to the vicinity of Neptune could have occurred through multiple planetary perturbation. The outer satellites of Jupiter and Saturn are discussed in relation to the proposition that they originated from the debris of asteroid collisions within the spheres of influence of those planets. (author)

  17. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  18. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  19. Space Object and Light Attribute Rendering (SOLAR) Projection System

    Science.gov (United States)

    2017-05-08

    depicting the proposed SOLAR projection system. The installation process is shown in Fig. 3. SOLAR system comprises of a dome that houses Digitairum’s...imaging process. A fiberglass dome system was erected to make the SOLAR system a self contained facility. Calibration process was carried out to register...Separate software solutions were implemented to model the light transport processes involved in the imaging process. A fiberglass dome system was erected to

  20. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  1. Economic and policy analysis for solar PV systems in Indiana

    International Nuclear Information System (INIS)

    Jung, Jinho; Tyner, Wallace E.

    2014-01-01

    In recent years, the energy market in the US and globally is expanding the production of renewable energy. Solar energy for electricity is also expanding in the US. Indiana is one of the states expanding solar energy with solar photovoltaic (PV) systems. Therefore, we conduct benefit cost analysis with several uncertain input variables to determine the economics of adopting solar PV systems in Indiana based on policy instruments that could increase adoption of solar PV systems. The specific objectives are analyses of the cost distribution of solar PV systems compared with grid electricity in homes and estimating the probability that solar can be cheaper than electricity from grids under different policy combinations. We first do the analysis under current policy and then the analysis under potential policy options for a variety of scenarios. Also, the results inform government policy makers on how effective the alternative policies for encouraging solar PV systems are. The results show that current policies are important in reducing the cost of solar PV systems. However, with current policies, there is only 50–50 chance of solar being cheaper than electricity from grids. If potential policies are implemented, solar PV systems can be more economical than grid electricity. - Highlights: • We investigate the economics of solar PV systems based on policy instruments. • We do scenario analyses under different combinations of policies. • We examine the probability of solar being cheaper than grid electricity for each scenario. • With current policies, there is 50–50 chance of solar being cheaper than the grid. • With depreciation and carbon tax, solar is much more economical than the grid

  2. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  3. The Impacts of System and Human Factors on Online Learning Systems Use and Learner Satisfaction

    Science.gov (United States)

    Alshare, Khaled A.; Freeze, Ronald D.; Lane, Peggy L.; Wen, H. Joseph

    2011-01-01

    Success in an online learning environment is tied to both human and system factors. This study illuminates the unique contributions of human factors (comfort with online learning, self-management of learning, and perceived Web self-efficacy) to online learning system success, which is measured in terms of usage and satisfaction. The research model…

  4. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  5. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  6. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  7. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  8. Solar-system Education for the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-10-01

    I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.

  9. An Online Interactive Competition Model for E-Learning System ...

    African Journals Online (AJOL)

    An Online Interactive Competition Model for E-Learning System. ... A working prototype of the system was developed using MySQL Database Management System (DBMS), PHP as the scripting language and Apache as the web server. The system was tested and the results were presented graphically in this paper.

  10. Electron Radiation Belts of the Solar System

    Science.gov (United States)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  11. ONLINE BANKING IN THE ROMANIAN BANKING SYSTEM

    OpenAIRE

    IMOLA DRIGĂ

    2014-01-01

    In the world of banking, the development of IT has a huge effect on development of more flexible payments methods and more user-friendly banking services. Recently, modern electronic banking services, internet and mobile banking, have rejuvenated banking transactions. Electronic banking over the Internet is one of the newest e-banking services with several benefits both for banks and for customers. The paper aims to provide an overview of online banking services highlighting various aspect...

  12. Online information system for data collection of cattle quality

    Science.gov (United States)

    Sugiharti, E.; Arifudin, R.; Putra, A. T.

    2018-03-01

    Innovation and development of the science and technology which proclaimed by the government through Ristekdikti need to be supported. On the other hand, the Department of Animal Husbandry and Fisheries began introducing the Cattle Card system that contains the identity of each farm animal. Therefore, UNNES especially the Department of Computer Science of FMIPA UNNES, need to give positive contribution in the field of Science and Technology to support the manual system of Cattle Card, through the preparation of prototype of the online information system of data collection of cattle in Semarang regency. The main problem is how to monitor the data of cattle quality through online information system in Semarang regency? The purpose of this research is to produce the prototype of an online information system for data collection of cattle quality in Semarang regency. Main activities: (1) Prepare the flowchart of an online system for data collection of cattle quality. (2) Collecting data to obtain data on identity descriptions of each cattle, owners, mutation records, and health records of livestock cattle. (3) Creation of the prototype of an online information system for data collection of cattle quality in Semarang Regency. The results, (1) had been produced the prototype of an online information system for data collection of cattle in the region of Semarang regency. (2) Socialization of the online information system for cattle quality data collection and exploring input from various related stakeholders. (3) There had been a limited trial of prototypes of the system in Pabelan district in the working area of the Department of Animal Husbandry and Fisheries of Semarang regency and succeeded well.

  13. Material cycling solar system modeled ecosystem; Seitaikei wo model to shita busshitsu junkangata solar system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    It is proposed to establish an integrated system close to a natural ecosystem for an industrial complex, taking that in Hachinohe City, Aomori Pref. as the conceptual site. It is a system in which materials are recycled by solar energy and industrial waste heat for a complex food industry. The conceptual site, although blessed with various marine products, are sometimes attacked by cold weather. Waste heat from a 250,000kW power plant, if transported by EHD heat pipes to the site, could provide roughly 400 times the heat required for production of agricultural and marine products, such as cabbages and fish meat. The waste heat, coupled with solar energy, should solve the problems resulting from hot waste water, if they could be utilized for the industrial purposes. The food industrial site that produces agricultural and marine products is considered to be suited as the center of the solar industrial complex incorporating farms. 5 refs., 3 figs.

  14. Combined heat and power solar system

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    An Australian-designed photovoltaic (PV) power system that also supplies hot water is close to commercial release. PVs have been around for decades and solar concentrators have been efficiently heating water for nearly a century. The Australian National University, Department of Engineering - Centre for Sustainable Energy systems (CSES), has designed a domestic scale modular system that not only generates electricity but also provides concentrated thermal energy to heat water for a Solahart hot water system and is designed to be deployed into small to medium scale applications such as hospitals, schools and dwellings with an easily assembled galvanised steel frame. A market research was carried out and is envisaged that at least 7,500 units will be installed annually by the year 2005 and up to 25,000 units by 2008

  15. Development of solar thermophotovoltaic systems = Desarrollo de sistemas termofotovoltaicos solares

    OpenAIRE

    Datas Medina, Alejandro

    2011-01-01

    Esta tesis aborda el análisis, tanto teórico como experimental, de los sitemas termofotovoltaicos solares. En estos sistemas, un material (emisor) se calienta hasta la incandescencia mediante radiaci ón solar. La radiación térmica emitida por dicho material se dirige hacia una célula fotovoltaica, que convierte dicha radiación en electricidad. En esta configuración, se pueden emplear elementos de control espectral para lograr que los fotones no útiles para el proceso de conversión fotovoltáic...

  16. A Charge Controller Design For Solar Power System

    OpenAIRE

    Nandar Oo; Kyaw Soe Lwin; Hla Myo Tun

    2015-01-01

    This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart...

  17. Dark matter in the outer solar system

    Science.gov (United States)

    Owen, T.; Cruikshank, D.; De Bergh, C.; Geballe, T.

    1994-01-01

    There are now a large number of small bodies in the outer solar system that are known to be covered with dark material. Attempts to identify that material have been thwarted by the absence of discrete absorption features in the reflection spectra of these planetesimals. An absorption at 2.2 micrometers that appeared to be present in several objects has not been confirmed by new observations. Three absorptions in the spectrum of the unusually red planetesimal 5145 Pholus are well-established, but their identity remains a mystery.

  18. Solar System Moons Discovery and Mythology

    CERN Document Server

    Blunck, Jürgen

    2010-01-01

    Starting from Mars outward this concise handbook provides thorough information on the satellites of the planets in the solar system. Each chapter begins with a section on the discovery and the naming of the planet's satellites or rings. This is followed by a section presenting the historic sources of those names. The book contains tables with the orbital and physical parameters of all satellites and is illustrated throughout with modern photos of the planets and their moons as well as historical and mythological drawings. The Cyrillic transcriptions of the satellite names are provided in a register. Readers interested in the history of astronomy and its mythological backgrounds will enjoy this beautiful volume.

  19. SPHEREx: Science Opportunities for Solar System Astronomy

    Science.gov (United States)

    Lisse, Carey Michael; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 µm in R = 41 filters, and with R = 135 coverage from 4.2 - 5.0 µm, reaching L ~ 19 (5-sigma).SPHEREx has high potential for solar system science. The 96-band survey will cover the entire sky 4 times over the course of 2 years, including thousands of foreground solar system asteroids, comets, Trojans, and KBOs. By canvassing the entire solar system for 2 years, SPHEREx has the potential not only to achieve a relatively complete sensitivity limited survey of the solar system's bodies, but also some capability to search for variation in these bodies over time.For example, the large legacy dataset of SPHEREx will update the WISE catalogue of asteroid sizes and albedos by providing a spectral survey of tens of thousands of bodies. It will provide spectral classification of hundreds of Trojan asteroids, allowing for direct comparison to the asteroid results. It will extend optical surveys of comet composition by dynamical type to hundreds of objects in the NIR, while determining water/dust/CO/CO2 activity vs distance. SPHEREx will also map in great temporal and spatial detail the zodiacal dust debris disk cloud that these bodies produce, providing an unprecedented level of information concerning the sources and sinks of this material.In this paper, we discuss the data release schedule and some example science studies the planetary astronomy community will be able to access using the SPHEREx database. We also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies, enabling a large number of scientific studies while finding interesting targets for follow

  20. A PEDAGOGICAL CRITICAL REVIEW OF ONLINE LEARNING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dwi SULISWORO

    2016-08-01

    Full Text Available E-learning which have various shapes such as blog, classroom learning which is facilitated the World Wide Web; a mix of online instruction and meeting the class known as additional models or hybrid; or the full online experience, where all assessment and instruction is done electronically. Object relationship of learning and constructivist educational philosophy and confirmed that online learning has the orientation which is basically a constructivist ideology, where the combination of some of the knowledge is an inquiry-oriented activities and authentic and also promote the progress of the construction of new knowledge. Description of the online learning system in theory and practice can be illustrated in a few examples that have been found in the research that has been done and found new discoveries obtained in the study, but not everything can be done because of several factors. Please note that the components in the online learning system can serve as a learning system which is very strong influence on learning in the class. The objective of this research is to a pedagogical critical review of online learning system in theory and practice that can be applied by teachers in the teaching process in the classroom. The results obtained in this study were teachers and students need extra effort to make online classes and virtual. Further research is needed on appropriate strategies in order to determine the next result is more useful. There some advices for any studies that discuss online learning system are done in certain areas, namely the use of electricity and other disciplines such as social and humanities.

  1. OLDASS: On-line data acquisition system at SF cyclotron

    International Nuclear Information System (INIS)

    Omata, Kazuo; Yasue, Masaharu; Hamagaki, Hideki

    1982-01-01

    The on-line data acquisition system in the Institute for Nuclear Study, the University of Tokyo, is composed of 2 systems of Fujitsu mini-computer PFU-400 for data processing at the high energy synchrotron and one system of that computer for low energy cyclotron as terminals, the host computer being M 180 II AD of the same company. This system has been developed to have the features of being the on-line system capable of following the improvement of host computer performance, being capable of developing the on-line programmes of other experimenting groups in parallel with batch jobs or the operation of the on-line system, and capable of developing programmes using FORTRAN. The result of about 220 KB/s was obtained for the data transfer rate between the programmes of the host computer and terminals, and this fulfilled the aimed performance. The terminal system on the low energy side is provided with an ADC interface and a display interface specified particularly in addition to the miniature computer PFU400 and standard I/O devices of the manufacture. The accumulating type graphic display of the I/O devices can be switched to be connected to the host computer, and immediately displays the results transferred to the host computer and analyzed. Hard copy is also available. The above hardware and software are explained. The on-line system insures 80 K bytes of the total memory of 224 K bytes for data area. (Wakatsuki, Y.)

  2. An innovative deployable solar panel system for Cubesats

    Science.gov (United States)

    Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-02-01

    One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.

  3. Simulation of solar system in a house; Simulacion de un sistema solar en una vivienda unifamiliar

    Energy Technology Data Exchange (ETDEWEB)

    Rey, F. J.; Velasco, E.; Herrero, R.; Varela, F.; Nunez, M. J.; Lopez, L. M.

    2004-07-01

    Building sustainable development make necessary the rational use of already existing Energy Resources and the use of the Renewable Energies as the Thermal Solar Energy. The technological advance of the last years has allowed the development and improvement of Solar Energy Systems. As today the Thermal Solar Energy is available technical and economically reducing the environmental impact. In the present work it has been developed a TRNSYS simulation of a thermal Solar System for Hot water consumption and Space Heating by radiant Flooring in a single house. The Thermal Solar installation Simulation allows the hour-by-hour system parameters treatment to determine the energy consumptions, yields, solar contribution etc. Also, it has been studied the Energy Qualification of the building by TRNSYS and the AEV methodology developed by the Termotecnia Department of Valladolid University ( UVA). (Author)

  4. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  5. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  6. On-line diagnostics for a real time system

    International Nuclear Information System (INIS)

    Sreenivasan, P.

    1976-01-01

    The purpose of an on-line diagnostics is to infuse the ability of self diagnosing in an online computer to enhance its dependability in a real time system. Such a diagnostics evolved for the CDPS of the Fast Breeder Test Reactor at Kalpakkam is reported. The two phases of the diagnostics, i.e., the malfunction detection and post detection action are described in some detail. (A.K.)

  7. Development of an online preparation system for multitracer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kasamatsu, Yoshitaka [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: kasamatsu.yoshitaka@jaea.go.jp; Yatsukawa, Makoto; Sato, Wataru; Ninomiya, Kazuhiko; Ohki, Toshihiro; Takahashi, Naruto [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yokoyama, Akihiko [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Kikunaga, Hidetoshi [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Kinoshita, Norikazu [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Shibata, Sadao [Nuclear Safety Technology Center, Rokkasho, Aomori 039-3212 (Japan); Shinohara, Atsushi [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2008-03-15

    We have developed a new target-irradiation system for the online preparation of multitracer solutions, where the nuclear-reaction products recoiling out of the target are directly implanted in a solvent as a liquid catcher. A rapid online transportation of the solution has enabled highly efficient recovery of the multitracer solutions having even short-lived radioactive isotopes without any chemical treatments. It has been suggested that the collection efficiency depends on the chemical properties of the recoil elements.

  8. Development of an online preparation system for multitracer solutions

    International Nuclear Information System (INIS)

    Kasamatsu, Yoshitaka; Yatsukawa, Makoto; Sato, Wataru; Ninomiya, Kazuhiko; Ohki, Toshihiro; Takahashi, Naruto; Yokoyama, Akihiko; Kikunaga, Hidetoshi; Kinoshita, Norikazu; Shibata, Sadao; Shinohara, Atsushi

    2008-01-01

    We have developed a new target-irradiation system for the online preparation of multitracer solutions, where the nuclear-reaction products recoiling out of the target are directly implanted in a solvent as a liquid catcher. A rapid online transportation of the solution has enabled highly efficient recovery of the multitracer solutions having even short-lived radioactive isotopes without any chemical treatments. It has been suggested that the collection efficiency depends on the chemical properties of the recoil elements

  9. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  10. Quarterly overviews of thermal solar energy systems 1993

    International Nuclear Information System (INIS)

    Warmerdam, J.M.; Stap, C.A.M.

    1994-08-01

    The title overviews were compiled to support the market introduction campaign for solar water heaters in the Netherlands. Use has been made of the data-banks of the Dutch subsidy administrator 'Senter'. 88% of the 1,883 systems, that were installed in 1993, are solar water heaters. Considering the solar collector surface the largest contribution is from the use of mainly uncovered collectors in swimming pools: 51% (37% for the collector surface of solar water heaters). Energy utilities are involved in the installation of 70% of the solar heating systems (even 77% for the solar water heaters). Next to the quarterly overviews, the subsidy data for the period 1988 up to and including 1993 are analyzed. 70% of the installed systems has been purchased and 30% was rented. At the end of 1993 preparations were made to install more than 3,000 solar boilers in 1994 and 1995. 3 figs., 21 tabs

  11. Residency Applicants Prefer Online System for Scheduling Interviews

    Directory of Open Access Journals (Sweden)

    Wills, Charlotte

    2015-03-01

    Full Text Available Introduction: Residency coordinators may be overwhelmed when scheduling residency interviews. Applicants often have to coordinate interviews with multiple programs at once, and relying on verbal or email confirmation may delay the process. Our objective was to determine applicant mean time to schedule and satisfaction using online scheduling. Methods: This pilot study is a retrospective analysis performed on a sample of applicants offered interviews at an urban county emergency medicine residency. Applicants were asked their estimated time to schedule with the online system compared to their average time using other methods. In addition, they were asked on a five-point anchored scale to rate their satisfaction. Results: Of 171 applicants, 121 completed the survey (70.8%. Applicants were scheduling an average of 13.3 interviews. Applicants reported scheduling interviews using the online system in mean of 46.2 minutes (median 10, range 1-1800 from the interview offer as compared with a mean of 320.2 minutes (median 60, range 3-2880 for other programs not using this system. This difference was statistically significant. In addition, applicants were more likely to rate their satisfaction using the online system as “satisfied” (83.5% vs 16.5%. Applicants were also more likely to state that they preferred scheduling their interviews using the online system rather than the way other programs scheduled interviews (74.2% vs 4.1% and that the online system aided them coordinating travel arrangements (52.1% vs 4.1%. Conclusion: An online interview scheduling system is associated with higher satisfaction among applicants both in coordinating travel arrangements and in overall satisfaction. [West J Emerg Med. 2015;16(2:352-354.

  12. A Conceptual Framework for Evolving, Recommender Online Learning Systems

    Science.gov (United States)

    Peiris, K. Dharini Amitha; Gallupe, R. Brent

    2012-01-01

    A comprehensive conceptual framework is developed and described for evolving recommender-driven online learning systems (ROLS). This framework describes how such systems can support students, course authors, course instructors, systems administrators, and policy makers in developing and using these ROLS. The design science information systems…

  13. Online Patent Searching: Guided by an Expert System.

    Science.gov (United States)

    Ardis, Susan B.

    1990-01-01

    Describes the development of an expert system for online patent searching that uses menu driven software to interpret the user's knowledge level and the general nature of the search problem. The discussion covers the rationale for developing such a system, current system functions, cost effectiveness, user reactions, and plans for future…

  14. Online evaluation of point-of-interest recommendation systems

    NARCIS (Netherlands)

    Dean-Hall, A.; Clarke, C.L.A.; Kamps, J.; Kiseleva, J.

    2015-01-01

    In this work we describe a system to evaluate multiple point- of-interest recommendation systems. In this system each recommendation service will be exposed online and crowd-sourced assessors will interact with merged results from multiple services, which are responding to suggestion requests live,

  15. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    Science.gov (United States)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  16. Dark matter, neutrinos, and our solar system

    CERN Document Server

    Prakash, Nirmala

    2013-01-01

    Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrinos and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures (baryonic and non-baryonic, massive and non-massive, interacting and non-interacting) and second, in terms of facilities available to detect these structures (large and small). Neutrinos (an important component of dark matter) are treated as a separate entity. A detailed study of these elusive (sub-atomic) particles is done, from the year 1913 when they were found as byproducts of beta decay -- until the discovery in 2007 which confirmed that neutrino flavors were not more than three (as speculated by some). The last chapter of the book details t...

  17. Solar-System Tests of Gravitational Theories

    Science.gov (United States)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  18. Analysis of a solar powered absorption system

    International Nuclear Information System (INIS)

    Said, S.A.M.; El-Shaarawi, M.A.I.; Siddiqui, M.U.

    2015-01-01

    Highlights: • Conventional absorption system modified to increase COP. • Results indicated increase of 10% in COP due to dephlegmator heat recovery. • Results indicated increase of 8% in COP due to refrigerant storage unit. • Results indicated increase of 18% in COP due to combined effect of modifications. • Simulation results indicated a very good agreement with the measured results. - Abstract: Today, fossil fuel is the primary extensively used source of energy. However, its negative impact on the environment have forced the energy research continuity to seriously consider renewable sources of energy. Solar energy, in particular, has been the main focus in this regard because it is a source of clean energy and naturally available. This study presents the design and analysis of a solar powered absorption refrigeration system modified to increase its coefficient of performance (COP). The modifications include recovering of waste heat from a dephlegmator and utilization of a refrigerant storage unit. The simulation results indicate an increase of 10% in the COP of the conventional design using dephlegmator heat recovery and an increase of 8% in the COP of the conventional design due to the use of a refrigerant storage. The analysis for the combined effect of modifications indicates an increase of 18% in the COP compared to conventional design. Calculated values of coefficient of performance indicate a very good agreement with the ones obtained based on measurement

  19. A Ninth Planet in Our Solar System?

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The recent discovery that the orbits of some Kuiper belt objects (KBOs) share properties has proved puzzling. A pair of scientists have now proposed a bold explanation: there may be a planet-sized object yet undetected in our solar system.Mysterious ClusteringKBOs, the population of mainly small objects beyond Neptune, have proven an especially interesting subject of study in the last decade as many small, distant bodies (such as Eris, the object that led to the demotion of Pluto to dwarf planet) have been discovered.Previous studies have recently discovered that some especially distant KBOs those that orbit with semimajor axes of a 150 AU, nearly four times that of Pluto all cross the ecliptic at a similar phase in their elliptical trajectories. This is unexpected, since gravitational tugs from the giant planets should have randomized this parameter over our solar systems multi-billion-year lifespan.Physical alignment of the orbits of Kuiper belt objects with a 250 AU (and two objects with a 150 AU that are dynamically stable). [Batygin Brown 2016]Two scientists at California Institute of Technology, Konstantin Batygin and Michael Brown (you might recognize Brown as the man who killed Pluto) have now increased the mystery. In a recently published a study, they demonstrate that for KBOs that have orbits with a 250 AU, the orbits are actually physically aligned.To explain this unexpected alignment which Batygin and Brown calculate has only a 0.007% probability of having occurred by chance the authors ask an exciting question: could this be caused by the presence of an unseen, large, perturbing body further out in the solar system?Simulating a Ninth PlanetThe authors test this hypothesis by carrying out both analytical calculations and numerical N-body simulations designed to determine if the gravitational influence of a distant, planetary-mass companion can explain the behavior we observe from the large-orbit KBOs.Simulation of the effect of a distant planet (M = 10

  20. Potential of solar home systems in Pakistan

    International Nuclear Information System (INIS)

    Memon, M.; Harijan, K.; Uqaili, M. A.

    2007-01-01

    About 68% of the population of Pakistan resides in rural areas. Most of the rural households have no access to electricity and meet lighting requirements through kerosene which is a major source of indoor air pollution and other environmental and health hazards. Rural villages are scattered over a large area and located far from the main electric grids. They have low population density and requires small load. About 67% of the conventional electricity in Pakistan is generated from fossil fuels with 51% and 16% share of gas and oil respectively. The indigenous reserves of oil and gas are limited and the country heavily depends on imported oil. The oil import bill is a serious strain on the country's economy. The combustion of fossil fuels also causes serious environmental pollution. The conventional power is even not sufficient for meeting the growing demand of electricity from the existing customers. Further more the extension of existing centralized grid system to far away from grid line rural areas with very low population density and small-scattered loads are economically and technically unfeasible. Hence there are remote chances of getting grid connection to most of the rural population in the near future. This whole situation requires urgent measures on priority basis for the development of indigenous, environment friendly, renewable energy sources such as solar energy. This paper presents the assessment of potential of solar home systems (SHS) for rural electrification in Pakistan. The country lies in an excellent solar belt range and receives 16-21 MJ/m 2 per day of solar radiation as an annual mean value, with 19 MJ/m 2 per day over most areas of the country. It is estimated that about 7 million households in Pakistan do not have access to electricity (in 2004). Assuming that about 50% of the households in rural areas without electricity today would be electrified up to 2010, and only 25% of the remaining households could afford and would be willing to pay

  1. Solar cooling systems. Classification and energetic evaluation; Solare Kuehlsysteme. Klassifizierung und energetische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Jakob [Technische Univ. Bergakademie Freiberg (Germany); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway); Eikevik, Trygve M. [NTNU, Trondheim (Norway)

    2012-07-01

    The investigation of alternative, sustainable concepts for cold production is worthwhile in times of increasing energy demand for cooling and air conditioning applications. Energy sources such as solar radiation can help to reduce the burden on the environment and energy networks. Solar electricity from photovoltaic cells or solar power from solar collectors can be used in refrigerating equipment (such as cold vapor compression chiller, absorption chiller, adsorption chillers, open systems, thermo-mechanical systems or ejector-based systems) are fed in order to produce the desired coldness. In many cases, the temporal coincidence of radiation supply and cooling requirements makes the solar cooling to a promising concept, especially at sites with a high solar radiation, large cooling demand, high energy prices, or insufficient access to public power grids. A model-based investigation of different solar cooling systems with an equivalent cooling capacity was carried out. The results show that the performance potential strongly depends on the selected technology and the site of the system. A balanced daily energy balance can be achieved with an appropriately dimensioned solar power plant with cooling concept. Depending on the system and interpretation, primary energy savings or a primary energy overhead can be achieved within a year in comparison to a conventional system.

  2. Solar Distillation Practice For Water Desalination Systems

    OpenAIRE

    Mahian, Omid; Kianifar, Ali; Jumpholkul, Chaiwat; Thiangtham, Phubate; Wongwises, Somchai; Srisomba, Raviwat

    2015-01-01

    references, it is suggested to add a chapter concerning CFD simulations of solar stills. In addition, a part can be devoted to using novel technologies such as nanotechnology for productivity enhancement of solar stills

  3. Development and application of online Stelmor Controlled Cooling System

    International Nuclear Information System (INIS)

    Yu Wanhua; Chen Shaohui; Kuang Yonghai; Cao Kaichao

    2009-01-01

    An online Stelmor Controlled Cooling System (SCCS) has been developed successfully for the Stelmor production line, which can communicate with the material flow management system and Program Logic Control System (PLCs) automatically through local network. This online model adopts Implicit Finite Difference Time Domain (FDTD) method to calculate temperature evolution and phase transformation during the production process and predicts final properties. As Continuous Cooling Temperature (CCT) curves of various steels can be coupled in the model, it can predict the latent heat rise and range of phase transformation for various steels, which can provide direct guidance for new steel development and optimization of present Stelmor cooling process. This unique online system has been installed in three Stelmor production lines at present with good results.

  4. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  5. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  6. Implementation of optimum solar electricity generating system

    International Nuclear Information System (INIS)

    Singh, Balbir Singh Mahinder; Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-01-01

    Under the 10 th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels

  7. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  8. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  9. Project development and commercialization of on-line analysis systems

    International Nuclear Information System (INIS)

    Watt, J.S.

    1997-01-01

    A project team first in the Australian Atomic Energy Commission (AAEC) and since 1982 in CSIRO has developed many on-line analysis systems for the mineral and energy industries. The development of these projects has followed a common pattern of laboratory R and D, field trials, commercialisation and technology transfer. This successful pattern is illustrated using examples of the development of systems for the on-line analysis of mineral slurries, for determination of the ash content of coal on conveyors, and for determination of the flow rates of oil, water and gas in pipelines. The first two systems are licensed to Australian companies, Amdel Ltd and Mineral Control Instrumentation Ltd. Both systems are used by industry worldwide, and are the market leaders for radioisotope gauges in their application field. The third system, the multiphase flow meter, was licensed in 1997 to Kvaerner FSSL Ltd of Aberdeen. This meter has even greater potential than the other two systems for economic benefit from its used and for numbers of installations. The on-line analysis systems have been developed to increase the productivity of the Australian mineral and energy industries, and to provide economic benefit to Australia. The economic benefit sought is predominantly improved process control based on use of the instrument, rather than from its sale. Sales of instruments are significant, however, with about A$80 million from the analysis systems and their derivatives since the 1970s. Some of the issues associated with the development of the on-line analysis system are outlined

  10. A pilot solar water disinfecting system: performance analysis and testing

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, T.S.; El-Ghetany, H.H. [Tohoku University, Sendai (Japan). Dept. of Aeronautics and Space Engineering

    2002-07-01

    In most countries, contaminated water is the major cause of most water-borne diseases. Disinfection of water may be accomplished by a number of different physical-chemical treatments including direct application of thermal energy, chemical and filtration techniques. Solar energy also can be used effectively in this field because inactivation of microorganisms is done either by heating water to a disinfecting temperature or by exposing it to ultraviolet solar radiation. A pilot solar system for disinfecting contaminated water is designed, constructed and tested. Investigations are carried out to evaluate the performance of a wooden hot box solar facility as a solar disinfectant. Experimental data show that solar energy is viable for the disinfection process. A solar radiation model is presented and compared with the experimental data. A mathematical model of the solar disinfectant is also presented. The governing equations are solved numerically via the fourth-order Runge-Kutta method. The effects of environmental conditions (ambient temperature, wind speed, solar radiation, etc.) on the performance of the solar disinfectant are examined. Results showed that the system is affected by ambient temperature, wind speed, ultraviolet solar radiation intensity, the turbidity of the water, the quantity of water exposed, the contact area between the transparent water container in the solar disinfectant and the absorber plate as well as the geometrical parameters of the system. It is pointed out that for partially cloudy conditions with a low ambient temperature and high wind speeds, the thermal efficiency of the solar disinfectant is at a minimum. The use of solar energy for the disinfection process will increase the productivity of the system while completely eliminating the coliform group bacteria at the same time. (author)

  11. The Solar system.Stars and constellations

    Science.gov (United States)

    Horia Minda, Octavian

    2017-04-01

    It is important for students to understand what is in our Solar System. The Students need to know that there are other things besides the Earth, Sun and Moon in the solar sky. The students will learn about the other eight planets and a few other celestial objects like stars and constellations. Constellations are useful because they can help people to recognize stars in the sky. By looking for patterns, the stars and locations can be much easier to spot. The constellations had uses in ancient times. They were used to help keep track of the calendar. This was very important so that people knew when to plant and harvest crops. Another important use for constellations was navigation. By finding Ursa Minor it is fairly easy to spot the North Star (Polaris). Using the height of the North Star in the sky, navigators could figure out their latitude helping ships to travel across the oceans. Objective: 1. The students will be introduced to the origin of the stars they see at night. 2. They will learn that there are groups of stars called constellations. The students will individually create their own constellations. They will be given the chance to tell the class a small story explaining their constellation. Evaluation of Children: The children will be evaluated through the creation of their constellations and ability to work in groups on the computers.

  12. Performance analysis of online health care system | Kohli ...

    African Journals Online (AJOL)

    This paper deals with selection of appropriate indexing techniques applied on MySQL database for a health care system and its related performance issues. The proposed Smart Card based Online Health Care System deals with frequent data storage, exchange and retrieval of data from the database servers. Speed and ...

  13. ORION-the Omega Remote Interactive On-line System

    CERN Document Server

    Russell, R D; Levratt, B; Lipps, H; Sparrman, P

    1974-01-01

    ORION is a system which permits the manipulation of files, records and characters, remote job submittal and retrieval of output files including the direct loading of remote on-line computers. The system uses the computer hardware of the OMEGA project at CERN and is designed to assist researchers in development and debugging of their programs. (10 refs).

  14. ORION - the OMEGA Remote Interactive On-line System

    CERN Document Server

    Russell, R D; Krieger, M

    1973-01-01

    ORION is a system which permits the manipulation of files, records and characters, remote job submittal and retrieval of output files including the direct loading of remote on-line computers. The system uses the computer hardware of the OMEGA project at CERN, and is designed to assist researchers in development and debugging of their programs.

  15. Booth Library On-Line Circulation System (BLOC

    Directory of Open Access Journals (Sweden)

    Paladugu V. Rao

    1971-06-01

    Full Text Available An on-line circulation system developed at a relatively small university library demonstrates that academic libraries with limited funds can develop automated systems utilizing parent institution's computer facilities in a time-sharing mode. In operation since September 1968, using an IBM 360/50 computer and associated peripheral equipment, it provides control over all stack books.

  16. Economic analyses of central solar heating systems with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D; Keinonen, R.S.

    1986-10-01

    Economic optimization of large active community solar heating systems with annual thermal storage is discussed. The economic evaluation is based on a thermal performance simulation model employing one hour time steps and on detailed up-date data. Different system configurations and sub-system sizes have been considered. For Northern European weather conditions (60/sup 0/N) and with at least 400-500 residential units, the life-cycle cost of delivered solar heat was 6.5-7.5 c/kWh for 50% fraction of non-purchased energy. For a solar fraction of 70%, the solar energy price would be 8 c/kWh.

  17. Online monitoring and diagnostic system on RA-6 nuclear reactor

    International Nuclear Information System (INIS)

    Garcia Peyrano, O. A.; Marticorena, M.; Koch, R. G.; Martinez, J. S; Berruti, G. E.; Nunez, W. M.; Gonzales, L. A.; Tarquini, L. D.; Sotelo, J. P

    2009-01-01

    This paper presents the Online Automatic Monitoring and Diagnostic System for mechanical components, installed on RA-6 Nuclear Reactor (San Carlos de Bariloche, Argentina). This system has been designed, installed and set-up by the Vibrations and Mechatronics Laboratory (Centro Atomico Bariloche, Comision Nacional de Energia Atomica) and Sitrack.com Argentina SA. This system provides an online mechanical diagnostic of the main reactor components, allowing incipient failures to be early detected and identified, avoiding unscheduled shut-downs and reducing maintenance times. The diagnostic is accomplished by an online analysis of the vibratory signature of the mechanical components, obtained by vibrations sensors on the main pump and the decay tank. The mechanical diagnostic and the main operational parameters are displayed on the reactor control room and published on the internet. [es

  18. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  19. 78 FR 78998 - 60-Day Notice of Proposed Information Collection: HUD Environmental Review Online System (HEROS)

    Science.gov (United States)

    2013-12-27

    ... Information Collection: HUD Environmental Review Online System (HEROS) AGENCY: Office of Community Planning... Information Collection Title of Information Collection: HUD Environmental Review Online System (HEROS). OMB... online tool called the HUD Environmental Review Online System (HEROS), which will allow users to complete...

  20. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  1. Modeling Jovian Magnetospheres Beyond the Solar System

    Science.gov (United States)

    Williams, Peter K. G.

    2018-06-01

    Low-frequency radio observations are believed to represent one of the few means of directly probing the magnetic fields of extrasolar planets. However, a half-century of low-frequency planetary observations within the Solar System demonstrate that detailed, physically-motivated magnetospheric models are needed to properly interpret the radio data. I will present recent work in this area focusing on the current state of the art: relatively high-frequency observations of relatively massive objects, which are now understood to have magnetospheres that are largely planetary in nature. I will highlight the key challenges that will arise in future space-based observations of lower-mass objects at lower frequencies.

  2. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and managment of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This third volume in the series covers launches in the period 1997 to 2003 and features: - a chapter entirely devoted to the Cassini-Huygens mission to Saturn; - coverage of planetary missions of the period, including the Deep Space 1 mission and the Stardust and Hayabusa sample returns from comets and asteroids; - extensive coverage of Mars exploration, the failed 1999 missions, Mars Odyssey, Mars Express, and the twin rovers Spirit and Opportunity. The story will continue in Part 4.

  3. An on-line adaptive core monitoring system

    International Nuclear Information System (INIS)

    Verspeek, J.A.; Bruggink, J.C.; Karuza, J.

    1997-01-01

    An on-line core monitoring system has been in operation for three years in the Dodewaard Nuclear Power Plant. The core monitor uses the on-line measured reactor data as an input for a power distribution calculation. The measurements are frequently performed. The system is used for monitoring as well as for predicting purposes. The limiting thermal hydraulic parameters are monitored as well as the pellet-clad interaction limits. The data are added to a history file used for cycle burn-up calculations and trending of parameters. The reactor states are presented through a convenient graphical user interface. (authors)

  4. Online data quality monitoring system at BES Ⅲ

    International Nuclear Information System (INIS)

    Sun Xiaodong; Hu Jifeng; Zhao Haisheng; Ji Xiaobin; Wang Yifang; Liu Beijiang; Zheng Yangheng

    2012-01-01

    The online Data Quality Monitoring (DQM) tool plays an important role in the data recording process of HEP experiments. The BES Ⅲ DQM collects data from the online data flow, reconstructs them with offline reconstruction software and automatically analyzes the reconstructed data with user-defined algorithms. The DQM software is a scalable distributed system. The monitored results are gathered and displayed in various formats, which provides the shifter with current run information that can be used to identify problems quickly. This paper gives an overview of the DQM system at BES Ⅲ. (authors)

  5. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  6. Methane clathrates in the solar system.

    Science.gov (United States)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  7. Compact solar heating systems - back on the way up

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2001-01-01

    This article discusses the upward trend being noted in the installation of compact solar heating systems in Switzerland. The contribution of these complete, easy-to-install systems to the increasing number of solar heating units on the market is discussed and the role played by the Solar Collector and Systems Testing Facility at the Institute of Solar Technology in Rapperswil, Switzerland, is emphasised. One of this institute's important publications is a list of certified compact solar heating systems. The high technical standards of the systems and the current price situation are discussed. The article is rounded off by an interview with a four-person family on their motivation to install such a hot-water system and their experience with its operation. Finally, future trends in the area are discussed

  8. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  9. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  10. CHAOTIC DISINTEGRATION OF THE INNER SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Morbidelli, Alessandro [Department Lagrange, Observatoire de la Côte d' Azur, F-06304 Nice (France); Holman, Mathew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-02-01

    On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.

  11. Online Voting System Based on Image Steganography and Visual Cryptography

    Directory of Open Access Journals (Sweden)

    Biju Issac

    2017-01-01

    Full Text Available This paper discusses the implementation of an online voting system based on image steganography and visual cryptography. The system was implemented in Java EE on a web-based interface, with MySQL database server and Glassfish application server as the backend. After considering the requirements of an online voting system, current technologies on electronic voting schemes in published literature were examined. Next, the cryptographic and steganography techniques best suited for the requirements of the voting system were chosen, and the software was implemented. We have incorporated in our system techniques like the password hashed based scheme, visual cryptography, F5 image steganography and threshold decryption cryptosystem. The analysis, design and implementation phase of the software development of the voting system is discussed in detail. We have also used a questionnaire survey and did the user acceptance testing of the system.

  12. Space Moves: Adding Movement to Solar System Lessons

    Science.gov (United States)

    Jenkins, Deborah Bainer; Heidorn, Brent

    2009-01-01

    Earth and space science figure prominently in the National Science Education Standards for levels 5-8 (NRC 1996). The Earth in the Solar System standard focuses on students' ability to understand (1) the composition of the solar system (Earth, Moon, Sun, planets with their moons, and smaller objects like asteroids and comets) and (2) that…

  13. Why Are So Many Things in the Solar System Round?

    Science.gov (United States)

    Heilig, Steven J.

    2010-01-01

    Several years ago a student asked why so many things in the solar system were round. He noted that many objects in the solar system, although not all, are round. The standard answer, which he knew, is that the mutual gravitational attraction of the molecules pulls them into the shape that gets them as close to each other as possible: a sphere.…

  14. The role of Solar thermal in Future Energy Systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth

    This report deals with solar thermal technologies and investigates possible roles for solar thermal in future energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period started in January 2014 and finished by October 2017. This report is based...

  15. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    Solar water heating systems are usually designed using simplified equation of annual efficiency of the heating system from solar radiation incident on the collector during the year and empirical values of annual efficiency. The pe1formance of the preliminary design is predicted by using either/chart method or by translate it ...

  16. Design and Realization of Online Monitoring System of Distributed New Energy and Renewable Energy

    Science.gov (United States)

    Tang, Yanfen; Zhou, Tao; Li, Mengwen; Zheng, Guotai; Li, Hao

    2018-01-01

    Aimed at difficult centralized monitoring and management of current distributed new energy and renewable energy generation projects due to great varieties, different communication protocols and large-scale difference, this paper designs a online monitoring system of new energy and renewable energy characterized by distributed deployment, tailorable functions, extendible applications and fault self-healing performance. This system is designed based on international general standard for grid information data model, formulates unified data acquisition and transmission standard for different types of new energy and renewable energy generation projects, and can realize unified data acquisition and real-time monitoring of new energy and renewable energy generation projects, such as solar energy, wind power, biomass energy, etc. within its jurisdiction. This system has applied in Beijing. At present, 576 projects are connected to the system. Good effect is achieved and stability and reliability of the system have been validated.

  17. Online NPP monitoring with neuro-expert system

    International Nuclear Information System (INIS)

    Nabeshima, K.

    2002-01-01

    This study present a hybrid monitoring system for nuclear power plant utilizing neural networks and a rule-based expert system. The whole monitoring system including a data acquisition system and the advisory displays has been tested by an on-line simulator of pressurized water reactor. From the testing results, it was shown that the neural network in the monitoring system successfully modeled the plant dynamics and detected the symptoms of anomalies earlier than the conventional alarm system. The expert system also worked satisfactorily in diagnosing and displaying the system status by using the outputs of neural networks and a priori knowledge base

  18. TECDO-online, documentation system for nuclear engineering data

    International Nuclear Information System (INIS)

    Hoepfner, K.A.; Keusenhoff, J.; Riedel, U.

    1993-01-01

    TECDO-online is the database offered by GRS for information on nuclear installations. The system contains full-text information, illustrations and drawings, which are transmitted online to the PC of the user. The TECDO-online database has been established for the purpose of supplying a centralized database with expertly analysed, evaluated and processed data, offering a userfriendly retrieval and data handling software for the geographically distributed users, and regular file updating and compatibility checking by the database supplier. The system is fully implemented and meets with increasing interest among users. It currently contains approx. 120,000 full-text pages, 40000 images (pictures, drawings, and reproduced textual information) as well as data on about 25,000 large-size technical drawings from the drawing archive of the GRS. (orig./DG) [de

  19. The Usage of ROOT in the LHCb Online System

    CERN Document Server

    Frank, M

    2013-01-01

    The online system in the LHCb experiment uses ROOT in various areas. ROOT is used in all processes participating in event data processing. The degree of usage varies quite significantly - from the very rudimentary usage of the ROOT plugin mechanism to fully equipped applications filling histograms with data describing online the detector status for monitoring purposes and the display of these data. An increasing number of processes uses the python binding offered by PyROOT to configure these processes. PyROOT also allows to efficiently and quickly manipulate certain corners of the experiment controls system where necessary. Beside these areas, where the LHCb online team advocated the usage of ROOT, in other areas other technologies were chosen. These deliberate choices like e.g. in the area of persistency of event data from particle collisions will be discussed.

  20. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  1. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  2. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  3. Aluminum-26 in the early solar system - Fossil or fuel

    Science.gov (United States)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  4. New Thematic Solar System Exploration Products for Scientists and Educators

    Science.gov (United States)

    Lowes, Lesile; Wessen, Alice; Davis, Phil; Lindstrom, Marilyn

    2004-01-01

    The next several years are an exciting time in the exploration of the solar system. NASA and its international partners have a veritable armada of spaceships heading out to the far reaches of the solar system. We'll send the first spacecraft beyond our solar system into interstellar space. We'll launch our first mission to Pluto and the Kuiper Belt and just our second to Mercury (the first in 30 years). We'll continue our intensive exploration of Mars and begin our detailed study of Saturn and its moons. We'll visit asteroids and comets and bring home pieces of the Sun and a comet. This is truly an unprecedented period of exploration and discovery! To facilitate access to information and to provide the thematic context for these missions NASA s Solar System Exploration Program and Solar System Exploration Education Forum have developed several products.

  5. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  6. Development of the prototype data management system of the solar H-alpha full disk observation

    Science.gov (United States)

    Wei, Ka-Ning; Zhao, Shi-Qing; Li, Qiong-Ying; Chen, Dong

    2004-06-01

    The Solar Chromospheric Telescope in Yunnan Observatory generates about 2G bytes fits format data per day. Huge amounts of data will bring inconvenience for people to use. Hence, data searching and sharing are important at present. Data searching, on-line browsing, remote accesses and download are developed with a prototype data management system of the solar H-alpha full disk observation, and improved by the working flow technology. Based on Windows XP operating system and MySQL data management system, a prototype system of browse/server model is developed by JAVA and JSP. Data compression, searching, browsing, deletion need authority and download in real-time have been achieved.

  7. Solar system design for water pumping

    Science.gov (United States)

    Abdelkader, Hadidi; Mohammed, Yaichi

    2018-05-01

    In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  8. Solar system design for water pumping

    Directory of Open Access Journals (Sweden)

    Abdelkader Hadidi

    2018-01-01

    Full Text Available In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  9. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  10. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  11. On-Line Systems: Promise and Pitfalls

    Science.gov (United States)

    Cuadra, Carlos A.

    1971-01-01

    The virtues of interactive systems are speed, intimacy, and - if time-sharing is involved - economy. The major problems are the cost of the large computers and files necessary for bibliographic data, the still-high cost of communications, and the generally poor design of the user-system interfaces. (Author)

  12. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  13. The Bochum on-line data acquisition system

    International Nuclear Information System (INIS)

    Paul, H.J.; Freiesleben, H.

    1986-01-01

    We describe an on-line data acquisition system based on a PDP 11 computer with CAMAC hardware. The software fully exploits the real-time features of the RSX-11M operating system. The basic characteristics of the program package, mainly written in FORTRAN 77, are: multitasking, shared common blocks, dynamical access to CAMAC hardware and data, and command orientated user interface. The system is particularly tailored for data acquisition in list mode of up to 64 parameters. (orig.)

  14. An Online Evaluation of Operating Reserve for System Security

    OpenAIRE

    Le-Ren Chang-Chien; Yin-Juin Lin; Chin-Chung Wu

    2007-01-01

    Utilities use operating reserve for frequency regulation.To ensure that the operating frequency and system security are well maintained, the operating grid codes always specify that the reserve quantity and response rate should meet some prescribed levels. This paper proposes a methodology to evaluate system's contingency reserve for an isolated power network. With the presented algorithm to estimate system's frequency response characteristic, an online allocation of contingency reserve would...

  15. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  16. Monocrystalline silicon solar cells applied in photovoltaic system

    OpenAIRE

    L.A. Dobrzański; A. Drygała; M. Giedroć; M. Macek

    2012-01-01

    Purpose: The aim of the paper is to fabricate the monocrystalline silicon solar cells using the conventional technology by means of screen printing process and to make of them photovoltaic system.Design/methodology/approach: The investigation of current – voltage characteristic to determinate basic electrical properties of monocrystalline silicon solar cells were investigated under Standard Test Condition. Photovoltaic module was produced from solar cells with the largest short-circuit curren...

  17. A new electrostatic on-line collection-system

    International Nuclear Information System (INIS)

    Dufour, J.P.; Del Moral, R.; Fleury, A.; Hubert, F.; Llabador, Y.; Mauhourat, M.B.; Bimbot, R.; Gardes, D.; Rivet, M.F.

    1981-01-01

    The working conditions of a new on-line electrostatic collection system are presented. The main characteristics are high efficiency (reaching 20%) and short delay time (down to the millisecond). The salient features of specific devices for measurements of absolute cross sections, recoil range distributions and angular distributions are given. (orig.)

  18. Beach Advisory and Closing Online Notification (BEACON) system

    Science.gov (United States)

    Beach Advisory and Closing Online Notification system (BEACON) is a colletion of state and local data reported to EPA about beach closings and advisories. BEACON is the public-facing query of the Program tracking, Beach Advisories, Water quality standards, and Nutrients database (PRAWN) which tracks beach closing and advisory information.

  19. MVP and Instructional Systems Design in Online Courses

    Science.gov (United States)

    Franklin, Jennifer L.

    2017-01-01

    This chapter is based on three premises. The first premise is that the use of instructional systems design (ISD) methods is important in online as well as traditional classroom settings. A second premise is that improving the motivational design of instruction brings benefits to teachers and learners alike. The third premise, specific to this…

  20. A new electrostatic on-line collection-system

    International Nuclear Information System (INIS)

    Dufour, J.P.; Del Moral, R.; Fleury, A.

    1981-06-01

    The working conditions of a new on-line electrostatic collection system are presented. The main charactersitics are high efficiency (reaching 20%) and short delay time (down to the millisecond). The salient features of specific devices for measurements of absolute cross sections, recoil range distributions and angular distributions are given

  1. Online System Adoption and K-12 Academic Outcomes

    Science.gov (United States)

    Kimmons, R.

    2015-01-01

    This study seeks to understand the relationship between K-12 online system adoption (e.g., Blackboard, Edmodo, WordPress) and school-level academic achievement ratings. Utilizing a novel approach to data collection via website data extraction and indexing of all school websites in a target state in the United States (n?=?732) and merging these…

  2. Curriculum Online Review System: Proposing Curriculum with Collaboration

    Science.gov (United States)

    Rhinehart, Marilyn; Barlow, Rhonda; Shafer, Stu; Hassur, Debby

    2009-01-01

    The Curriculum Online Review System (CORS) at Johnson County Community College (JCCC) uses SharePoint as a Web platform for the JCCC Curriculum Proposals Process. The CORS application manages proposals throughout the approval process using collaboration tools and workflows to notify all stakeholders. This innovative new program has changed the way…

  3. Solar system science with ESA Euclid

    Science.gov (United States)

    Carry, B.

    2018-01-01

    Context. The ESA Euclid mission has been designed to map the geometry of the dark Universe. Scheduled for launch in 2020, it will conduct a six-year visible and near-infrared imaging and spectroscopic survey over 15 000 deg2 down to VAB 24.5. Although the survey will avoid ecliptic latitudes below 15°, the survey pattern in repeated sequences of four broadband filters seems well-adapted to detect and characterize solar system objects (SSOs). Aims: We aim at evaluating the capability of Euclid of discovering SSOs and of measuring their position, apparent magnitude, and spectral energy distribution. We also investigate how the SSO orbits, morphology (activity and multiplicity), physical properties (rotation period, spin orientation, and 3D shape), and surface composition can be determined based on these measurements. Methods: We used the current census of SSOs to extrapolate the total amount of SSOs that will be detectable by Euclid, that is, objects within the survey area and brighter than the limiting magnitude. For each different population of SSO, from neighboring near-Earth asteroids to distant Kuiper-belt objects (KBOs) and including comets, we compared the expected Euclid astrometry, photometry, and spectroscopy with the SSO properties to estimate how Euclid will constrain the SSOs dynamical, physical, and compositional properties. Results: With the current survey design, about 150 000 SSOs, mainly from the asteroid main-belt, should be observable by Euclid. These objects will all have high inclination, which is a difference to many SSO surveys that focus on the ecliptic plane. Euclid may be able to discover several 104 SSOs, in particular, distant KBOs at high declination. The Euclid observations will consist of a suite of four sequences of four measurements and will refine the spectral classification of SSOs by extending the spectral coverage provided by Gaia and the LSST, for instance, to 2 microns. Combined with sparse photometry such as measured by Gaia

  4. Solar ultraviolet radiation effects on biological systems

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1991-01-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK)

  5. Solar ultraviolet radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, B.L. (Dryburn Hospital, Durham (UK). Regional Medical Physics Dept.)

    1991-03-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK).

  6. Progress commercializing solar-electric power systems

    International Nuclear Information System (INIS)

    Dracker, R.; De Laquil, P. III

    1996-01-01

    The commercial status of the principal solar electric technologies -- photovoltaic and solar thermal -- is reviewed. Current and near-term market niches are identified, and projected longer-term markets are explored along with the key strategies for achieving them, including technological breakthroughs, manufacturing developments, economies of scale and mass production, and market creation. Market barriers and public policy impacts on commercialization are discussed

  7. Magnesium Hall Thruster for Solar System Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  8. Solar heating and cooling technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  9. A dissipative model of solar system

    Science.gov (United States)

    Vladimir, V. G.

    2009-04-01

    In classical model of Solar system of a planet are represented by the material points cooperating under the law of universal gravitation. This model remains fair if planet to consider as absolutely firm spheres with spherical distribution of density. The gravitational potential of such body coincides with potential of a material point, and rotation of each sphere concerning his centre of weights occurs to constant angular speed. Movement concerning the centre of weights of a sphere is represented by rotation with constant angular speed concerning an axis of an any direction, and movement of the centers of weights of spherical planets identically to movement in the appropriate problem of N points. Let's notice, that forms of planets of Solar system are close to spherical as dominant forces at formation of planets are gravitational forces to which forces of molecular interaction in substance of a planet counteract. The model of the isolated Solar system submitted in a not indignant condition N by homogeneous viscoelastic spheres is considered. Under action of own rotation and tidal gravitational forces the spherical planet changes the form: there is "flattening" a planet in a direction of a vector of its angular speed and formation of tidal humps on the lines connecting the centre of a planet with the centers of other planets. From a variational principle of Hamilton the full system of the equations describing movements of the centers of weights of planets, rotations of systems of coordinates, by integrated image connected with planets, and deformations of planets be relative these of systems of coordinates is received. It is supposed, that tidal gravitational, centrifugal and elastic forces result in small change of the spherical form of a planet. In system there are small parameters - inversely proportional of the Young modules of materials of the planets, providing small deformations of planets at influence on them of the centrifugal forces produced by own

  10. Reuniting the Solar System: Integrated Education and Public Outreach Projects for Solar System Exploration Missions and Programs

    Science.gov (United States)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Klug, Sheri

    2003-01-01

    The Solar System Exploration Education Forum has worked for five years to foster Education and Public Outreach (E/PO) cooperation among missions and programs in order to leverage resources and better meet the needs of educators and the public. These efforts are coming together in a number of programs and products and in '2004 - The Year of the Solar System.' NASA's practice of having independent E/PO programs for each mission and its public affairs emphasis on uniqueness has led to a public perception of a fragmented solar system exploration program. By working to integrate solar system E/PO, the breadth and depth of the solar system exploration program is revealed. When emphasis is put on what missions have in common, as well as their differences, each mission is seen in the context of the whole program.

  11. Solar desalination system of combined solar still and humidification-dehumidification unit

    Science.gov (United States)

    Ghazy, Ahmed; Fath, Hassan E. S.

    2016-11-01

    Solar stills, as a simple technology, have many advantages such as simple design; unsophisticated fabrication; low capital and operation costs and easily maintained. However, their low daily production has put constraints on their usage. A radical improvement in the performance of solar stills can be achieved by the partial recovery of the energy losses from the glass cover of the still. This paper simulates a direct solar distillation system of combined solar still with an air heating humidification-dehumidification (HDH) sub-system. The main objective of the Still-HDH system is to improve the productivity and thermal efficiency of the conventional solar still by partially recovering the still energy losses to the ambient for additional water production. Various procedures have been employed to improve the thermal performance of the integrated system by recovering heat losses from one component in another component of the system. Simulations have been carried out for the performance of the Still-HDH system under different weather conditions. A comparison has been held between the Still-HDH system and a conventional solar still of the same size and under the same operating conditions.

  12. Ultraviolet Radiation in the Solar System

    CERN Document Server

    Vázquez, M

    2006-01-01

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequ...

  13. Chinese National Optical Education Small Private Online Course system

    Science.gov (United States)

    Zhang, XiaoJie; Lin, YuanFang; Liu, Xu; Liu, XiangDong; Cen, ZhaoFeng; Li, XiaoTong; Zheng, XiaoDong; Wang, XiaoPing

    2017-08-01

    In order to realize the sharing of high quality course resources and promote the deep integration of `Internet+' higher education and talent training, a new on-line to off-line specialized courses teaching mode was explored in Chinese colleges and universities, which emphasized different teaching places, being organized asynchronously and localized. The latest progress of the Chinese National Optical Education Small Private On-line Course (CNOESPOC) system set up by Zhejiang University and other colleges and universities having disciplines in the field of optics and photonics under the guidance of the Chinese National Steering Committee of Optics and Photonics (CNSCOP) was introduced in this paper. The On-line to Off-line (O2O) optical education teaching resource sharing practice offers a new good example for higher education in China under the background of Internet +.

  14. Solar energy system economic evaluation for Wormser Columbia, South Carolina

    Science.gov (United States)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  15. PSO Based PI Controller Design for a Solar Charger System

    OpenAIRE

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously....

  16. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  17. Data transfer in on-line systems

    International Nuclear Information System (INIS)

    Zacharov, V.

    1978-01-01

    The problem of transfer of data in both directions between experimental equipment and process systems on the one hand, and hardware processors on the other, is an important one. This fundamental question is discussed in the coxtent of contemporary practice, where the principal processing element is the minicomputer. Although several interface conventions are considered, practice is dominated by the CAMAC system, and the main emphasis is to review recent developments in that system, particularly in the area of distributed configurations. The impact of new microcircuit technology on the way in which data transfers are performed is only beginning. The present discussion trys to assess this impact and to identify the main changes that are expected to occur. (Auth.)

  18. MICROCONTROLLER BASED SOLAR-TRACKING SYSTEM AND ITS IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Okan BİNGÖL

    2006-02-01

    Full Text Available In this paper, a new micro-controller based solar-tracking system is proposed, implemented and tested. The scheme presented here can be operated as independent of the geographical location of the site of setting up. The system checks the position of the sun and controls the movement of a solar panel so that radiation of the sun comes normally to the surface of the solar panel. The developed-tracking system tracks the sun both in the azimuth as well as in the elevation plane. PC based system monitoring facility is also included in the design.

  19. Observed ices in the Solar System

    Science.gov (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  20. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  1. A Charge Controller Design For Solar Power System

    Directory of Open Access Journals (Sweden)

    Nandar Oo

    2015-08-01

    Full Text Available This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart is also provided.

  2. Pressure and temperature development in solar heating system during stagnation

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Chen, Ziqian

    2010-01-01

    of the pipes of the solar collector loop. During the investigation the pre-pressure of the expansion vessel and system filling pressure was changed. The investigations showed that a large pressurised expansion vessel will protect the collector loop from critically high temperatures as long as the solar......This paper presents an investigation of stagnation in solar collectors and the effects it will have on the collector loop. At a laboratory test stand at the Technical University of Denmark, a pressurized solar collector loop was designed to test different numbers of collectors and different designs...

  3. The International Nuclear Information System online services

    International Nuclear Information System (INIS)

    Romanenko, A.G.; Todeschini, C.

    Development of the bibliographic data base covering the world-wide nuclear science literature is described along with the network arrangements by which the data base and associated services are made available. The consequences of the system's decentralized operating philosophy are also addressed. (U.K.)

  4. Testing for Dark Matter Trapped in the Solar System

    Science.gov (United States)

    Krisher, Timothy P.

    1996-01-01

    We consider the possibility of dark matter trapped in the solar system in bound solar orbits. If there exist mechanisms for dissipating excess kinetic energy by an amount sufficient for generating bound solar orbits, then trapping of galactic dark matter might have taken place during formation of the solar system, or could be an ongoing process. Possible locations for acumulation of trapped dark matter are orbital resonances with the planets or regions in the outer solar system. It is posible to test for the presence of unseen matter by detecting its gravitational effects. Current results for dynamical limits obtained from analyses of planetary ephemeris data and spacecraft tracking data are presented. Possible future improvements are discussed.

  5. Cloud Computing Platform for an Online Model Library System

    Directory of Open Access Journals (Sweden)

    Mingang Chen

    2013-01-01

    Full Text Available The rapid developing of digital content industry calls for online model libraries. For the efficiency, user experience, and reliability merits of the model library, this paper designs a Web 3D model library system based on a cloud computing platform. Taking into account complex models, which cause difficulties in real-time 3D interaction, we adopt the model simplification and size adaptive adjustment methods to make the system with more efficient interaction. Meanwhile, a cloud-based architecture is developed to ensure the reliability and scalability of the system. The 3D model library system is intended to be accessible by online users with good interactive experiences. The feasibility of the solution has been tested by experiments.

  6. On-line thermal dependence study of the main solar cell electrical photoconversion parameters using low thermal emission lamps.

    Science.gov (United States)

    Gallardo, J J; Navas, J; Alcántara, R; Fernández-Lorenzo, C; Aguilar, T; Martín-Calleja, J

    2012-06-01

    This paper presents a non-conventional methodology and an instrumental system to measure the effect of temperature on the photovoltaic properties of solar cells. The system enables the direct measurement of the evolution of open-circuit voltage and short-circuit current intensity in relation to a continuously decreasing temperature. The system uses a high-intensity white light-emitting diode light source with low emissions of radiation in the infrared region of the electromagnetic spectrum, resulting in a reduced heating of the photovoltaic devices by the irradiation source itself. To check the goodness of the system and the methodology designed, several measurements were performed with monocrystalline silicon solar cells, dye-sensitized solar cells, and thin-film amorphous silicon solar cells, showing similar tendencies to those reported in the literature.

  7. Mathematical and computational modeling simulation of solar drying Systems

    Science.gov (United States)

    Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...

  8. Solar home systems in Kenya: unlocking consumer finance

    International Nuclear Information System (INIS)

    Simm, Ian; Haq, Amir; Widge, V.

    2000-01-01

    The article reports on the International Finance Corporation's support of projects in Kenya where the funding is being used to enlarge the solar lending of a network of financial organisations which can reach a large number of rural Kenyans. The demand, advantages and potential of photovoltaics and solar systems generally in Kenya are discussed. Kenya's fragile financial institutions are mentioned

  9. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  10. A Federated Recommender System for Online Learning Environments

    OpenAIRE

    Zhou, Lei; El Helou, Sandy; Moccozet, Laurent; Opprecht, Laurent; Benkacem, Omar; Salzmann, Christophe; Gillet, Denis

    2012-01-01

    From e-commerce to social networking sites, recommender systems are gaining more and more interest. They provide connections, news, resources, or products of interest. This paper presents a federated recommender system, which exploits data from different online learning platforms and delivers personalized recommendation. The underlying educational objective is to enable academic institutions to provide a Web 2.0 dashboard bringing together open resources from the Cloud and proprietary content...

  11. Joint Opaque booking systems for online travel agencies

    OpenAIRE

    Ogonowska , Malgorzata; Torre , Dominique

    2010-01-01

    This paper analyzes the properties of the advanced Opaque booking systems used by the online travel agencies in conjunction with their traditional transparent booking system. In section 2 we present an updated literature review. This review underlines the interest and the specicities of Opaque goods in the Tourism Industry. It also characterizes properties of the Name-Your-Own-Price (NYOP) channel introduced by Priceline and oering probabilistic goods to potential travelers. In the section 3 ...

  12. A decision support system for on-line leakage localization

    OpenAIRE

    Meseguer, Jordi; Mirats-Tur, Josep M.; Cembrano, Gabriela; Puig, Vicenç; Quevedo, Joseba; Pérez, Ramon; Sanz, Gerard; Ibarra, David

    2014-01-01

    This paper describes a model-driven decision-support system (software tool) implementing a model-based methodology for on-line leakage detection and localization which is useful for a large class of water distribution networks. Since these methods present a certain degree of complexity which limits their use to experts, the proposed software tool focuses on the integration of a method emphasizing its use by water network managers as a decision support system. The proposed software tool integr...

  13. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  14. More solar systems thanks to 'Buyer Groups'

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2000-01-01

    The article describes how the founding of 'Buyer Groups' can help reduce the costs and raise the attractiveness of solar water heating. The success already enjoyed by groups that have been set up in Holland, Denmark, Sweden, Switzerland and Canada is used to illustrate the idea, which is being promoted globally be the International Energy Agency (IEA). The article describes the support offered by the Swiss Solar Energy Society (SSES) to the addressees of the campaign, including energy utilities, building co-operatives and real estate developers. An example is given of a 'Buyer Group' project in Basel, Switzerland, where a '222 solar roofs for Basel' campaign was successful implemented

  15. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  16. Hearing of the Swiss Solar Energy Society (SSES). The ombudsman for solar heating systems as a quality assurance element

    International Nuclear Information System (INIS)

    Brugger-Mariani, G.

    1999-01-01

    Following an invitation issued by the Swiss Solar Energy Society (SSES),14 solar energy specialists hold a hearing on quality assurance for solar heating systems. Anticipating the introduction of taxes in favour of renewable energy sources and the expected rapid solar market development, the delegates discussed about the creation of a neutral ombudsman office for unsatisfied clients of the solar industry. Clearly, the solar heating system market can only expand if system quality is in accordance with the clients' expectations. The needed know-how may be found since several years in well presented reference books. However, at the moment, not all industry people follow these instructions yet [de

  17. Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems

    International Nuclear Information System (INIS)

    Muhs, J.D.

    2001-01-01

    This paper describes a systems-level design and analysis of a new approach for improving the energy efficiency and affordability of solar energy in buildings, namely, hybrid solar lighting and full-spectrum solar energy systems. By using different portions of the solar spectrum simultaneously for multiple end-use applications in buildings, the proposed system offers unique advantages over other alternatives for using sunlight to displace electricity (conventional topside daylighting and solar technologies). Our preliminary work indicates that hybrid solar lighting, a method of collecting and distributing direct sunlight for lighting purposes, will alleviate many of the problems with passive daylighting systems of today, such as spatial and temporal variability, glare, excess illumination, cost, and energy efficiency. Similarly, our work suggests that the most appropriate use of the visible portion of direct, nondiffuse sunlight from an energy-savings perspective is to displace electric light rather than generate electricity. Early estimates detailed in this paper suggest an anticipated system cost of well under$2.0/Wp and 5-11(cents)/kWh for displaced and generated electricity in single-story commercial building applications. Based on a number of factors discussed in the paper, including sunlight availability, building use scenarios, time-of-day electric utility rates, cost, and efficacy of the displaced electric lights, the simple payback of this approach in many applications could eventually be well under 5 years

  18. Event streaming in the online system

    CERN Document Server

    Klous, S; The ATLAS collaboration

    2010-01-01

    The Large Hadron Collider (LHC), currently in operation at CERN in Geneva, is a circular 27-kilometer-circumference machine, accelerating bunches of protons in opposite directions. The bunches will cross at four different interaction points with a bunch-crossing frequency of 40MHz. ATLAS, the largest LHC experiment, registers the signals induced by particles traversing the detector components on each bunch crossing. When this happens a total of around 1.5MB of data are collected. This results in a data rate of around 60 TB/s flowing out of the detector. Note that the available event storage space is limited to about 6 PB per year. With an operational period of about 20 million seconds per year, this requires a data reduction factor of 200:000 in the trigger and data acquisition (TDAQ) system. Events included in the recording rate budget are already subdivided and organized by ATLAS during data acquisition. So, the TDAQ system does not only take care of data reduction, but also organizes the collected events. ...

  19. On-line monitoring of solar cell module production by ellipsometry technique

    International Nuclear Information System (INIS)

    Fried, M.

    2014-01-01

    Non-destructive analyzing tools are needed at all stages of thin film photovoltaic (PV) development, and on production lines. In thin film PV, layer thicknesses, micro-structure, composition, layer optical properties, and their uniformity (because each elementary cell is connected electrically in series within a big panel) serve as an important starting point in the evaluation of the performance of the cell or module. An important focus is to express the dielectric functions of each component material in terms of a handful of wavelength independent parameters whose variation can cover all process variants of that material. With the resulting database, spectroscopic ellipsometry coupled with multilayer analysis can be developed for on-line point-by-point mapping and on-line line-by-line imaging. This work tries to review the investigations of different types of PV-layers (anti-reflective coating, transparent-conductive oxide (TCO), multi-diode-structure, absorber and window layers) showing the existing dielectric function databases for the thin film components of CdTe, CuInGaSe 2 , thin Si, and TCO layers. Off-line point-by-point mapping can be effective for characterization of non-uniformities in full scale PV panels in developing labs but it is slow in the on-line mode when only 15 points can be obtained (within 1 min) as a 120 cm long panel moves by the mapping station. In the last years [M. Fried et al., Thin Solid Films 519, 2730 (2011)], instrumentation was developed that provides a line image of spectroscopic ellipsometry (wl = 350–1000 nm) data. Up to now a single 30 point line image can be collected in 10 s over a 15 cm width of PV material. This year we are building a 30 and a 60 cm width expanded beam ellipsometer the speed of which will be increased by 10 ×. Then 1800 points can be mapped in a 1 min traverse of a 60 ∗ 120 cm PV panel or flexible roll-to-roll substrate. - Highlights: • Instrumentation developed provides a line image of

  20. On-line monitoring of solar cell module production by ellipsometry technique

    Energy Technology Data Exchange (ETDEWEB)

    Fried, M., E-mail: fried@mfa.kfki.hu

    2014-11-28

    Non-destructive analyzing tools are needed at all stages of thin film photovoltaic (PV) development, and on production lines. In thin film PV, layer thicknesses, micro-structure, composition, layer optical properties, and their uniformity (because each elementary cell is connected electrically in series within a big panel) serve as an important starting point in the evaluation of the performance of the cell or module. An important focus is to express the dielectric functions of each component material in terms of a handful of wavelength independent parameters whose variation can cover all process variants of that material. With the resulting database, spectroscopic ellipsometry coupled with multilayer analysis can be developed for on-line point-by-point mapping and on-line line-by-line imaging. This work tries to review the investigations of different types of PV-layers (anti-reflective coating, transparent-conductive oxide (TCO), multi-diode-structure, absorber and window layers) showing the existing dielectric function databases for the thin film components of CdTe, CuInGaSe{sub 2}, thin Si, and TCO layers. Off-line point-by-point mapping can be effective for characterization of non-uniformities in full scale PV panels in developing labs but it is slow in the on-line mode when only 15 points can be obtained (within 1 min) as a 120 cm long panel moves by the mapping station. In the last years [M. Fried et al., Thin Solid Films 519, 2730 (2011)], instrumentation was developed that provides a line image of spectroscopic ellipsometry (wl = 350–1000 nm) data. Up to now a single 30 point line image can be collected in 10 s over a 15 cm width of PV material. This year we are building a 30 and a 60 cm width expanded beam ellipsometer the speed of which will be increased by 10 ×. Then 1800 points can be mapped in a 1 min traverse of a 60 ∗ 120 cm PV panel or flexible roll-to-roll substrate. - Highlights: • Instrumentation developed provides a line image of

  1. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  2. Solar combi system based on a mantle tank

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2007-01-01

    A solar combisystem based on a mantle tank is investigated numerically and experimentally. Three different houses with four different radiator systems are considered for the simulations. The needed temperature for the auxiliary heater is determined for different houses and radiator systems....... The thermal performance of the solar combisystem is compared to the thermal performance of a solar domestic hot water system based on a mantle tank. In the experimental study, tank temperatures and the heat transfer coefficient for the top mantle for a discharge test is determined. The investigations showed...

  3. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  4. Development of a Solar Assisted Drying System Using Double-Pass Solar Collector with Finned Absorber

    Science.gov (United States)

    Azmi, M. S. M.; Othman, M. Y.; Sopian, K.; Ruslan, M. H.; Majid, Z. A. A.; Fudholi, A.; Yasin, J. M.

    2012-09-01

    The Solar Energy Research Group, Universiti Kebangsaan Malaysia, International Islamic University Malaysia and Yayasan FELDA has designed and constructed a solar assisted drying system at OPF FELDA Factory, Felda Bukit Sagu 2, Kuantan, Pahang. The drying system has a total of six double-pass solar collectors. Each collector has a length of 480 cm and a width of 120 cm. The first channel depth is 3.5 cm and the second channel depth is 7 cm. Longitudinal fins made of angle aluminium, 0.8 mm thickness were attached to the bottom surface of the absorber plate. The solar collectors are arranged as two banks of three collectors each in series. Internal manifold are used to connect the collectors. Air enters through the first channel and then through the second channel of the collector. An auxiliary heater source is installed to supply heat under unfavourable solar radiation condition. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 70-75 °C can be achieved at solar radiation range of 800-900 W/m2 and flow rate of 0.12 kg/s. The average thermal efficiency of a solar collector is approximately 37%.

  5. Design of a solar-assisted drying system using the double-pass solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Daud, W.R.; Supranto; Othman, M.Y.; Yatim, B.

    2000-01-01

    A solar-assisted drying system that uses the double-pass solar collector with porous media in the second channel has been designed and constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. The drying system has a total of six double-pass solar collectors. Each collector has a length of 240 cm and a width of 120 cm. The upper channel depth is 3.5 cm and the lower channel depth is 10.5 cm. The lower channel is filled up with steel wool as the porous media. The solar collectors are arranged as 2 banks of 3 collectors each in series. Internal manifold are used to connect the collectors. An auxiliary heater source is installed to supply heat under unfavourable solar radiation conditions. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 80-90 0 C can be achieved at a solar radiation range of 800-900 W/m 3 , ambient temperature of 29 degree C and flow rate of O.20 kg/s. (Author)

  6. Development of a Solar Assisted Drying System Using Double-Pass Solar Collector with Finned Absorber

    International Nuclear Information System (INIS)

    Azmi, M S M; Sopian, K; Ruslan, M H; Fudholi, A; Majid, Z A A; Yasin, J M; Othman, M Y

    2012-01-01

    The Solar Energy Research Group, Universiti Kebangsaan Malaysia, International Islamic University Malaysia and Yayasan FELDA has designed and constructed a solar assisted drying system at OPF FELDA Factory, Felda Bukit Sagu 2, Kuantan, Pahang. The drying system has a total of six double-pass solar collectors. Each collector has a length of 480 cm and a width of 120 cm. The first channel depth is 3.5 cm and the second channel depth is 7 cm. Longitudinal fins made of angle aluminium, 0.8 mm thickness were attached to the bottom surface of the absorber plate. The solar collectors are arranged as two banks of three collectors each in series. Internal manifold are used to connect the collectors. Air enters through the first channel and then through the second channel of the collector. An auxiliary heater source is installed to supply heat under unfavourable solar radiation condition. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 70–75 °C can be achieved at solar radiation range of 800–900 W/m 2 and flow rate of 0.12 kg/s. The average thermal efficiency of a solar collector is approximately 37%.

  7. On-line process control monitoring system

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Van Hare, D.R.; Prather, W.S.

    1992-01-01

    This patent describes apparatus for monitoring at a plurality of locations within a system the concentration of at least one chemical substance involved in a chemical process. It comprises plurality of process cells; first means for carrying the light; second means for carrying the light; means for producing a spectrum from the light received by the second carrying means; multiplexing means for selecting one process cell of the plurality of process cells at a time so that the producing means can produce a process spectrum from the one cell of the process cells; a reference cell for producing a reference spectrum for comparison to the process spectrum; a standard cell for producing a standard spectrum for comparison to the process spectrum; and means for comparing the reference spectrum, the standard spectrum and the process spectrum and determining the concentration of the chemical substance in the process cell

  8. Development of environmental education system using online element analysis

    International Nuclear Information System (INIS)

    Niizeki, T.; Yoshihara, T.; Tsuchiya, K.; Kawasaki, K.; Komiya, K.

    2007-01-01

    We have constructed a network system which enables one to access and analyze environmental data obtained at different and distant laboratories. As a preliminary feasibility test of the system, we studied the elements in the water of the Tesio River using PIXE and ion chromatography. Students used the data online to carry out analysis via internet. We found two factors with different features in calcium from the factor analysis. The comparison of the specific result and relevant geology information has revealed a remarkable presence of Ca 2+ which might come from dissolution of limestone in the upper Tesio River. PIXE data gave crucial information to draw such a conclusion. The present system has been found useful in environmental education in universities, online sharing of PIXE data in particular. (author)

  9. On-line analyzers to distributed control system linking

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.F.; Buchanan, B.R.; Sanders, M.A.

    1990-01-01

    The Analytical Development Section (ADS) of the Savannah River Laboratory is developing on-line analyzers to monitor various site processes. Data from some of the on-line analyzers (OLA's) will be used for process control by distributed control systems (DCS's) such as the Fisher PRoVOX. A problem in the past has been an efficient and cost effective way to get analyzer data onto the DCS data highway. ADS is developing a system to accomplish the linking of OLA's to PRoVOX DCS's. The system will be described, and results of operation in a research and development environment given. Plans for the installation in the production environment will be discussed.

  10. Nonimaging optics maximizing exergy for hybrid solar system

    Science.gov (United States)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  11. A parametric study of solar operated cooling system

    International Nuclear Information System (INIS)

    Zagalei, Abdullatif Salin

    2006-01-01

    Because of energy for air conditioning has been the fastest-growing segment of energy of consumption market in Libya and generally in north Africa, and with the realization depleting nature of fossil fuel, solar cooling of buildings which leads to the improvement of human comfort represents a potentially significant application of solar energy where the availability of solar radiation meets with the cooling load demand. This application has been shown to be technically feasible but the equipment needs further investigative research to improve its performance and feasibility. A solar operated absorption cooling system with energy storage is selected. A latent heat storage would be a space saver for such application for solar energy. A system modeling is an essential activity in order to go for system simulation. A complete solar cooling system to be modeled through the thermodynamic analysis of each system components. Resulting a package of equations used directly to the system simulation in order to predict the system performance to obtain the optimum working conditions for the selected cooling system. A computer code which is used to simulate a series of calculations was written in Fortran language according to the constructed information flow diagram and simulation program flow char. For a typical input data a set of results are reported and discussed and shows that the selected system promises to be a good choice for air conditioning application in Libya specially for large building as storehouses, shopping centers, public administrative.(Author)

  12. General review of solar-powered closed sorption refrigeration systems

    International Nuclear Information System (INIS)

    Sarbu, Ioan; Sebarchievici, Calin

    2015-01-01

    Highlights: • Provide review of development in solar sorption refrigeration technologies. • Theoretical basis and applications of absorption and adsorption cycles are discussed. • Thermodynamic properties of most common working pairs have been reviewed. • Development of hybrid or thermal energy storage adsorption systems was explored. • A comparison between solar-powered absorption and adsorption systems was performed. - Abstract: The negative environmental impacts of burning fossil fuels have forced the energy research community seriously to consider renewable sources, such as naturally available solar energy. Thermally powered refrigeration technologies are classified into two categories: thermo-mechanical technology and sorption technology (open systems or closed systems). This paper provides a detailed review of the solar closed sorption (absorption and adsorption) refrigeration systems, which utilise working pairs (fluids). After an introduction of the basic principles of these systems, the history of development and recent advances in solar sorption refrigeration technologies are reported. The adsorption cooling typically has a lower heat source temperature requirement than the absorption cooling. Based on the coefficient of performance (COP), the absorption systems are preferred over the adsorption systems, and the higher temperature issues can be easily handled with solar adsorption systems. The thermodynamic properties of most common working fluids, as well as the use of ternary mixtures in solar-powered absorption systems, have been reviewed in this study. The paper also refers to new approaches to increase the efficiency and sustainability of the basic adsorption cycles, such as the development of hybrid or thermal energy storage adsorption systems. This research shows that solar-powered closed sorption refrigeration technologies can be attractive alternatives not only to serve the needs for air-conditioning, refrigeration, ice making, thermal

  13. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  14. Search for Primitive Matter in the Solar System

    Science.gov (United States)

    Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.

    2017-01-01

    Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.

  15. Design and realization of an autonomous solar system

    Science.gov (United States)

    Gaga, A.; Diouri, O.; Es-sbai, N.; Errahimi, F.

    2017-03-01

    The aim of this work is the design and realization of an autonomous solar system, with MPPT control, a regulator charge/discharge of batteries, an H-bridge multi-level inverter with acquisition system and supervising based on a microcontroller. The proposed approach is based on developing a software platform in the LabVIEW environment which gives the system a flexible structure for controlling, monitoring and supervising the whole system in real time while providing power maximization and best quality of energy conversion from DC to AC power. The reliability of the proposed solar system is validated by the simulation results on PowerSim and experimental results achieved with a solar panel, a Lead acid battery, solar regulator and an H-bridge cascaded topology of single-phase inverter.

  16. Virtual Social Networks Online and Mobile Systems

    Directory of Open Access Journals (Sweden)

    Maytham Safar

    2009-01-01

    Full Text Available Location-based applications are one of the most anticipated new segments of the mobile industry. These new applications are enabled by GPS-equipped phones (e.g., emergency applications, buddy finders, games, location-based advertising, etc.. These services are designed to give consumers instant access to personalized, local content of their immediate location. Some applications couple LBS with notification services, automatically alerting users when they are close to a pre-selected destination. With the advances in the Internet and communications/mobile technology, it became vital to analyze the effect of such technologies on human communications. This work studies how humans can construct social networks as a method for group communications using the available technologies. We constructed and analyzed a friends network using different parameters. The parameters that were calculated to analyze the network are the distribution sequence, characteristic path length, clustering coefficient and centrality measures. In addition, we built a PDA application that implements the concept of LBS using two system modules. In the first module, we have developed an application for entertainment purpose; an application program which enables end users to send their birth year and get their horoscope in return. The second part of the project was, to build an application, which helps people to stay in touch with their friends and family members (Find Friend. It helps users to find which of their buddies are within the same area they are in.

  17. The design of multiplayer online video game systems

    Science.gov (United States)

    Hsu, Chia-chun A.; Ling, Jim; Li, Qing; Kuo, C.-C. J.

    2003-11-01

    The distributed Multiplayer Online Game (MOG) system is complex since it involves technologies in computer graphics, multimedia, artificial intelligence, computer networking, embedded systems, etc. Due to the large scope of this problem, the design of MOG systems has not yet been widely addressed in the literatures. In this paper, we review and analyze the current MOG system architecture followed by evaluation. Furthermore, we propose a clustered-server architecture to provide a scalable solution together with the region oriented allocation strategy. Two key issues, i.e. interesting management and synchronization, are discussed in depth. Some preliminary ideas to deal with the identified problems are described.

  18. Virtualization for the LHCb Online system

    International Nuclear Information System (INIS)

    Bonaccorsi, Enrico; Brarda, Loic; Moine, Gary; Neufeld, Niko

    2011-01-01

    Virtualization has long been advertised by the IT-industry as a way to cut down cost, optimise resource usage and manage the complexity in large data-centers. The great number and the huge heterogeneity of hardware, both industrial and custom-made, has up to now led to reluctance in the adoption of virtualization in the IT infrastructure of large experiment installations. Our experience in the LHCb experiment has shown that virtualization improves the availability and the manageability of the whole system. We have done an evaluation of available hypervisors / virtualization solutions and find that the Microsoft HV technology provides a high level of maturity and flexibility for our purpose. We present the results of these comparison tests, describing in detail, the architecture of our virtualization infrastructure with a special emphasis on the security for services visible to the outside world. Security is achieved by a sophisticated combination of VLANs, firewalls and virtual routing - the cost and benefits of this solution are analysed. We have adapted our cluster management tools, notably Quattor, for the needs of virtual machines and this allows us to migrate smoothly services on physical machines to the virtualized infrastructure. The procedures for migration will also be described. In the final part of the document we describe our recent R and D activities aiming to replacing the SAN-backend for the virtualization by a cheaper iSCSI solution - this will allow to move all servers and related services to the virtualized infrastructure, excepting the ones doing hardware control via non-commodity PCI plugin cards.

  19. Experimental study of a combined system of solar Kang and solar air collector

    International Nuclear Information System (INIS)

    Wei, Wei; Ji, Jie; Chow, Tin-Tai; He, Wei; Chen, Haifei; Guo, Chao; Yu, Hancheng

    2015-01-01

    Highlights: • A combined system of solar Kang and solar air collector is proposed. • An experimental study on the combined system is made. • The mean air temperature reaches 18.5 °C and maintains above 18 °C for 13 h. • The corresponding mean indoor air temperature of the reference room is 8.9 °C. • The Kang surface temperature reaches 27 °C and maintains above 18 °C for 23 h. - Abstract: Chinese Kang is widely used as heated bed and for heat recovery of cooking stove in Northern China. However there are main drawbacks of indoor and outdoor air pollutant generation and heavy demands on solid fuel handling. A novel combined Kang system, which integrates solar Kang and solar air collector, is here proposed. Experiments were conducted to examine the alternative operating modes: (i) only solar air collector in service, (ii) only solar Kang in service, and (iii) both solar Kang and solar air collector in service. The results show that these three modes behave differently and have distinct effects on room thermal environment in winter. When this pollution-free system operates under the third combined mode, the room temperature increases significantly and the vertical temperature gradient reduces. The Kang surface temperature increases and its uniformity is improved. It is also found that the room air temperature is closely related to the Kang surface temperature. Furthermore, most of the time the thermal environment meets the occupant need. This paper reports the experimental work and investigates into the effects on indoor thermal environment as in rural residences in Northern China

  20. Novel configurations of solar distillation system for potable water production

    Science.gov (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.

    2013-06-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  1. Novel configurations of solar distillation system for potable water production

    International Nuclear Information System (INIS)

    Riahi, A; Yusof, K W; Sapari, N; Hashim, A M; Singh, B S

    2013-01-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  2. Validated TRNSYS Model for Solar Assisted Space Heating System

    International Nuclear Information System (INIS)

    Abdalla, Nedal

    2014-01-01

    The present study involves a validated TRNSYS model for solar assisted space heating system as applied to a residential building in Jordan using new detailed radiation models of the TRNSYS 17.1 and geometric building model Trnsys3d for the Google SketchUp 3D drawing program. The annual heating load for a building (Solar House) which is located at the Royal ScientiFIc Society (RS5) in Jordan is estimated under climatological conditions of Amman. The aim of this Paper is to compare measured thermal performance of the Solar House with that modeled using TRNSYS. The results showed that the annual measured space heating load for the building was 6,188 kWh while the heati.ng load for the modeled building was 6,391 kWh. Moreover, the measured solar fraction for the solar system was 50% while the modeled solar fraction was 55%. A comparison of modeled and measured data resulted in percentage mean absolute errors for solar energy for space heating, auxiliary heating and solar fraction of 13%, 7% and 10%, respectively. The validated model will be useful for long-term performance simulation under different weather and operating conditions.(author)

  3. The complex planetary synchronization structure of the solar system

    Science.gov (United States)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  4. On-line Monitoring System for Power Transformers

    Directory of Open Access Journals (Sweden)

    Alexandru HOTEA

    2016-12-01

    Full Text Available Power transformers are the most important and expensive equipment from the electricity transmission system, so it is very important to know the real state of health of such equipment in every moment. De-energizing the power transformer accidentally due to internal defects can generate high costs. Annual maintenance proved to be ineffective in many cases to determine the internal condition of the equipment degradation due to faults rapidly evolving. An On-line Monitoring System for Power Transformers help real-time condition assessment and to detect errors early enough to take action to eliminate or minimize them. After abnormality detected, it is still important to perform full diagnostic tests to determine the exact condition of the equipment. On-line monitoring systems can help increase the level of availability and reliability of power transformers and lower costs of accidental interruption. This paper presents cases studies on several power transformers equipped with on-line monitoring systems from Transelectrica substation.

  5. Objective Evaluation in an Online Geographic Information System Certificate Program

    Directory of Open Access Journals (Sweden)

    Scott L. WALKER

    2005-01-01

    Full Text Available Objective Evaluation in an Online Geographic Information System Certificate Program Asst. Professor. Dr. Scott L. WALKER Texas State University-San Marcos San Marcos, Texas, USA ABSTRACT Departmental decisions regarding distance education programs can be subject to subjective decision-making processes influenced by external factors such as strong faculty opinions or pressure to increase student enrolment. This paper outlines an evaluation of a departmental distance-education program. The evaluation utilized several methods that strived to inject objectivity in evaluation and subsequent decision-making. A rapid multi-modal approach included evaluation methods of (1 considering the online psychosocial learning environment, (2 content analyses comparing the online version of classes to face-to-face versions, (3 cost comparisons in online vs. face-to-face classes, (4 student outcomes, (5 student retention, and (6 benchmarking. These approaches offer opportunities for departmental administrators and decision-making committees to make judgments informed by facts rather than being influenced by the emotions, beliefs, or opinions of organizational dynamics.

  6. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Drury, E.; Margolis, R.

    2009-09-01

    The Solar Deployment System (SolarDS) model is a bottom-up, market penetration model that simulates the potential adoption of photovoltaics (PV) on residential and commercial rooftops in the continental United States through 2030. NREL developed SolarDS to examine the market competitiveness of PV based on regional solar resources, capital costs, electricity prices, utility rate structures, and federal and local incentives. The model uses the projected financial performance of PV systems to simulate PV adoption for building types and regions then aggregates adoption to state and national levels. The main components of SolarDS include a PV performance simulator, a PV annual revenue calculator, a PV financial performance calculator, a PV market share calculator, and a regional aggregator. The model simulates a variety of installed PV capacity for a range of user-specified input parameters. PV market penetration levels from 15 to 193 GW by 2030 were simulated in preliminary model runs. SolarDS results are primarily driven by three model assumptions: (1) future PV cost reductions, (2) the maximum PV market share assumed for systems with given financial performance, and (3) PV financing parameters and policy-driven assumptions, such as the possible future cost of carbon emissions.

  7. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  8. Thermodynamic analysis of solar assisted multi-functional trigeneration system

    Directory of Open Access Journals (Sweden)

    Önder KIZILKAN

    2016-02-01

    Full Text Available In this study, modelling and thermodynamic analysis of solar assisted trigeneration system was carried out. The required thermal energy for gas and vapor cycles were supplied from solar tower which is a new concept for gas cycle applications. Additionally, an absorption refrigeration cycle, vapor production process, drying process and water heating process were integrated to the system. Energy and exergy efficiencies of the trigeneration system were determined by the application of first and second law analyses. The results showed that the gas cycle efficiency was found to be 31%, vapor cycle efficiency was found to be 28% and coefficient of performance (COP values of the refrigeration system was found to be 0.77. Also the highest exergy destruction rate was found to be 4154 kW in solar tower.Keywords: Solar tower, Trigeneration, Gas cycle, Vapor cycle, Energy, Exergy

  9. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  10. The ancient heritage of water ice in the solar system.

    Science.gov (United States)

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems. Copyright © 2014, American Association for the Advancement of Science.

  11. Solar energy system economic evaluation: Contemporary Newman, Georgia

    Science.gov (United States)

    1980-01-01

    An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.

  12. Robust, Highly Scalable Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar array systems currently under development are focused on near-term missions with designs optimized for the 30-50 kW power range. However, NASA has a vital...

  13. Will 3552 Don Quixote escape from the Solar System?

    Directory of Open Access Journals (Sweden)

    Suryadi Siregar

    2011-05-01

    Full Text Available Asteroid 1983 SA, well known as 3552 Don Quixote, is one of Near Earth Asteroids (NEAs which is the most probable candidate for the cometary origin, or otherwise as Jupiter-Family-Comets (JFCs. The aim of this study is to investigate the possibility of 3552 Don Quixote to be ejected from the Solar System. This paper presents an orbital evolution of 100 hypothetical asteroids generated by cloning 3552 Don Quixote. Investigation of its orbital evolution is conducted by using the SWIFT subroutine package, where the gravitational perturbations of eight major planets in the Solar System are considered. Over very short time scales (220 kyr relative to the Solar System life time (10 Gyr, the asteroid 3552 Don Quixote gave an example of chaotic motion that can cause asteroid to move outward and may be followed by escaping from the Solar System. Probability of ejection within the 220 kyr time scale is 50%.

  14. Issues and Opportunities on Implementing an Online Faculty Review System.

    Science.gov (United States)

    Erstad, Brian L; Oxnam, Maliaca G; Miller, Tom P; Draugalis, JoLaine R

    2018-04-01

    Intensifying accountability pressures have led to an increased attention to assessments of teaching, but teaching generally represents only a portion of faculty duties. Less attention has been paid to how evaluations of faculty members can be used to gather data on teaching, research, clinical work, and outreach to integrate clinical and academic contributions and fill in information gaps in strategic areas such as technology transfer and commercialization where universities are being pressed to do more. Online reporting systems can enable departments to gather comprehensive data on faculty activities that can be aggregated for accreditation assessments, program reviews, and strategic planning. As detailed in our case study of implementing such a system at a research university, online annual reviews can also be used to publicize faculty achievements, to document departmental achievements, foster interdisciplinary and community collaborations, recognize service contributions (and disparities), and provide a comprehensive baseline for salary and budgetary investments.

  15. Laser systems for on-line laser ion sources

    International Nuclear Information System (INIS)

    Geppert, Christopher

    2008-01-01

    Since its initiation in the middle of the 1980s, the resonant ionization laser ion source has been established as a reliable and efficient on-line ion source for radioactive ion beams. In comparison to other on-line ion sources it comprises the advantages of high versatility for the elements to be ionized and of high selectivity and purity for the ion beam generated by resonant laser radiation. Dye laser systems have been the predominant and pioneering working horses for laser ion source applications up to recently, but the development of all-solid-state titanium:sapphire laser systems has nowadays initiated a significant evolution within this field. In this paper an overview of the ongoing developments will be given, which have contributed to the establishment of a number of new laser ion source facilities worldwide during the last five years.

  16. A Flexible Online Metadata Editing and Management System

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Raul [Arizona State University; Pan, Jerry Yun [ORNL; Gries, Corinna [Arizona State University; Inigo, Gil San [University of New Mexico, Albuquerque; Palanisamy, Giri [ORNL

    2010-01-01

    A metadata editing and management system is being developed employing state of the art XML technologies. A modular and distributed design was chosen for scalability, flexibility, options for customizations, and the possibility to add more functionality at a later stage. The system consists of a desktop design tool or schema walker used to generate code for the actual online editor, a native XML database, and an online user access management application. The design tool is a Java Swing application that reads an XML schema, provides the designer with options to combine input fields into online forms and give the fields user friendly tags. Based on design decisions, the tool generates code for the online metadata editor. The code generated is an implementation of the XForms standard using the Orbeon Framework. The design tool fulfills two requirements: First, data entry forms based on one schema may be customized at design time and second data entry applications may be generated for any valid XML schema without relying on custom information in the schema. However, the customized information generated at design time is saved in a configuration file which may be re-used and changed again in the design tool. Future developments will add functionality to the design tool to integrate help text, tool tips, project specific keyword lists, and thesaurus services. Additional styling of the finished editor is accomplished via cascading style sheets which may be further customized and different look-and-feels may be accumulated through the community process. The customized editor produces XML files in compliance with the original schema, however, data from the current page is saved into a native XML database whenever the user moves to the next screen or pushes the save button independently of validity. Currently the system uses the open source XML database eXist for storage and management, which comes with third party online and desktop management tools. However, access to

  17. Is position of solar system in the Galaxy anything exceptional

    International Nuclear Information System (INIS)

    Marochnik, L.

    1984-01-01

    The latest astrophysical knowledge shows that the solar system is in the vicinity of the so-called corotation circle. It rotates around the nucleus of the galaxy almost synchronously with the density wave, i.e., with the spiral structure, which has created specific conditions for the development of the pre-solar cloud from which has evolved our solar system. This development took place between the arms of the galaxy, i.e., in a relatively calm area which probably made possible the origin of life. (Ha)

  18. Development of Solar Electricity Supply System in India: An Overview

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Gupta

    2013-01-01

    Full Text Available Solar electricity supply system has grown at very rapid pace in India during the last few years. A total of 1047.84 MW of grid connected photovoltaic projects and 160.8 MW of off-grid systems have been commissioned under different policy mechanisms between January 2010 and November 2012. It is observed that solar capacity development has achieved a greater height under state policies (689.81 MW than others. A study is made in this paper of various national and state level schemes, incentives, packages, instruments, and different mechanisms to promote solar photovoltaics and its effectiveness.

  19. Advanced Solar Cells for Satellite Power Systems

    Science.gov (United States)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  20. Objective Evaluation in an Online Geographic Information System Certificate Program

    OpenAIRE

    Scott L. WALKER

    2005-01-01

    Objective Evaluation in an Online Geographic Information System Certificate Program Asst. Professor. Dr. Scott L. WALKER Texas State University-San Marcos San Marcos, Texas, USA ABSTRACT Departmental decisions regarding distance education programs can be subject to subjective decision-making processes influenced by external factors such as strong faculty opinions or pressure to increase student enrolment. This paper outlines an evaluation of a departmental distance-education program....

  1. Massive open online courses in foreign and Russian education system

    Directory of Open Access Journals (Sweden)

    Сергей Дмитриевич Каракозов

    2014-12-01

    Full Text Available The article discusses the phenomenon of MOOC (Massive Open Online Courses, which opened up new opportunities for the distance learning. Shows the advantages and disadvantages of the MOOC, the prospects of their use in the education system of Russia and in particular in the sector of teacher education. Research is executed within the State task Ministry of Education and Science of the Russian Federation, number of the state registration - 01201153724.

  2. Digistylus - An Online Information System For Palaeography Teaching and Research

    OpenAIRE

    Cartelli, Antonio; Palma, Marco

    2009-01-01

    This paper starts by describing the experiences the authors recently had with online information systems for teaching and research in palaeography. The study also considers the differences in the students' access to the site "Teaching Materials for Latin Palaeography" when they attended the palaeography courses, as it was usually used in the lectures by one of the authors. With the increase in the quantity of plates (reproducing pages or parts of them from medieval manuscripts) and texts (con...

  3. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  4. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  5. FINANCIAL ANALYSIS OF SOLAR ENERGY APPLICATIONS WITH ENDOGENOUS SYSTEM SIZING

    OpenAIRE

    Gunter, Lewell F.; Smathers, Webb M., Jr.

    1984-01-01

    This paper is concerned with analysis of economic feasibility of solar energy systems. Methodology for estimating energy output from different sized systems is briefly presented, and this is used to determine technical coefficients for a mixed integer model which optimizes the size of the solar heating unit for a particular use. An empirical example of hot water heating on a Georgia dairy is presented. Cost curves are provided for the dairy example to illustrate the effect of sizing on the ec...

  6. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  7. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  8. The influence of solar system oscillation on the variability of the total solar irradiance

    Science.gov (United States)

    Yndestad, Harald; Solheim, Jan-Erik

    2017-02-01

    Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past. This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability. The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo. We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.

  9. Core on-line monitoring and computerized procedures systems

    International Nuclear Information System (INIS)

    Gangloff, W.C.

    1986-01-01

    The availability of operating nuclear power plants has been affected significantly by the difficulty people have in coping with the complexity of the plants and the operating procedures. Two ways to use modern computer technology to ease the burden of coping are discussed in this paper, an on-line core monitoring system with predictive capability and a computerized procedures system using live plant data. These systems reduce human errors by presenting information rather than simply data, using the computer to manipulate the data, but leaving the decisions to the plant operator

  10. An Online Banking System Based on Quantum Cryptography Communication

    Science.gov (United States)

    Zhou, Ri-gui; Li, Wei; Huan, Tian-tian; Shen, Chen-yi; Li, Hai-sheng

    2014-07-01

    In this paper, an online banking system has been built. Based on quantum cryptography communication, this system is proved unconditional secure. Two sets of GHZ states are applied, which can ensure the safety of purchase and payment, respectively. In another word, three trading participants in each triplet state group form an interdependent and interactive relationship. In the meantime, trading authorization and blind signature is introduced by means of controllable quantum teleportation. Thus, an effective monitor is practiced on the premise that the privacy of trading partners is guaranteed. If there is a dispute or deceptive behavior, the system will find out the deceiver immediately according to the relationship mentioned above.

  11. Characterizing chemical systems with on-line computers and graphics

    International Nuclear Information System (INIS)

    Frazer, J.W.; Rigdon, L.P.; Brand, H.R.; Pomernacki, C.L.

    1979-01-01

    Incorporating computers and graphics on-line to chemical experiments and processes opens up new opportunities for the study and control of complex systems. Systems having many variables can be characterized even when the variable interactions are nonlinear, and the system cannot a priori be represented by numerical methods and models. That is, large sets of accurate data can be rapidly acquired, then modeling and graphic techniques can be used to obtain partial interpretation plus design of further experimentation. The experimenter can thus comparatively quickly iterate between experimentation and modeling to obtain a final solution. We have designed and characterized a versatile computer-controlled apparatus for chemical research, which incorporates on-line instrumentation and graphics. It can be used to determine the mechanism of enzyme-induced reactions or to optimize analytical methods. The apparatus can also be operated as a pilot plant to design control strategies. On-line graphics were used to display conventional plots used by biochemists and three-dimensional response-surface plots

  12. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  13. SOLAR ENERGY APPLICATION IN HOUSES HEATING SYSTEMS IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Zhanna Mingaleva

    2017-06-01

    Full Text Available The solar energy is widely used around the world for electricity generation and heating systems in municipal services. But its use is complicated in the number of territories with uneven receipts of solar radiation on the earth’s surface and large number of cloudy days during a year. A hypothesis on the possibility of application of individual solar collectors for heating of houses in the number of cities of Russia has been tested. The existing designs of solar collectors and checking the possibility of their application in northern territories of Russia are investigated. The analysis was carried out taking into account features of relief and other climatic conditions of the Perm and Sverdlovsk regions. As the result of research, the basic recommended conditions for application of solar batteries in houses of the northern Russian cities have been resumed.

  14. A simple high efficiency solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, W.S.; Hodgson, D.A. [Colorado State University, Fort Collins, CO (United States). Dept. of Mechanical Engineering

    2005-07-01

    A new passive solar water pasteurization system based on density difference flow principles has been designed, built and tested. The system contains no valves and regulates flow based on the density difference between two columns of water. The new system eliminates boiling problems encountered in previous designs. Boiling is undesirable because it may contaminate treated water. The system with a total absorber area of 0.45 m2 has achieved a peak flow rate of 19.3 kg/h of treated water. Experiments with the prototype systems presented in this paper show that density driven systems are an attractive option to existing solar water pasteurization approaches. (author)

  15. Solar hot water systems application to the solar building test facility and the Tech House

    Science.gov (United States)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  16. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  17. An experimental study of a solar humidifier for HDD systems

    International Nuclear Information System (INIS)

    Ghazal, M.T.; Atikol, U.; Egelioglu, F.

    2014-01-01

    Highlights: • Solar water and air heating and humidification processes have been merged in one unit. • The effectiveness of the solar humidifier was improved. • Bubbles regeneration enhanced the mass and heat transfer to air. • Reflector mirror enhanced the productivity of the system. - Abstract: This paper investigates the performance of a solar humidification prototype suitable for using in humidification dehumidification desalination (HDD) systems. This unit replaces the solar air heater, solar water heater and the evaporator of the traditional HDD plants, facilitating compact system designs. The prototype is composed of a solar collector, filled with water, through which air is forced to travel upwards in the form of bubbles. Experiments are conducted under the weather conditions of North Cyprus. It is discovered that the air temperature is found to approach the hot water temperature in the collector (thus increasing the vapor carrying capacity) and the relative humidity is raised to almost 100% at the exit. The collector inlet and outlet temperatures and relative humidity values are recorded for different flow rates in the period between the 1st and the 14th of December, 2012. It was found that for an average intensity of solar radiation of 700 W/m 2 and a mass flow rate of 12.6 kg/h of air; the amount of water evaporated was 0.75 kg/h on a square meter basis. Introduction of a reflector mirror at the bottom side of the humidifier increased the average absolute humidity by 32%

  18. NASA's Solar System Exploration Research Virtual Institute: Building Collaboration Through International Partnerships

    Science.gov (United States)

    Gibbs, K. E.; Schmidt, G. K.

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  19. VizieR Online Data Catalog: Solar activity reconstructed for 3 millennia (Usoskin+, 2014)

    Science.gov (United States)

    Usoskin, I. G.; Hulot, G.; Gallet, Y.; Roth, R.; Licht, A.; Joos, F.; Kovaltsov, G. A.; Thebault, E.; Khokhlov, A.

    2014-02-01

    Indices of solar activity reconstructed from 14C using the m used in the paper. Two indices are provided - the sunspot number and the cosmic ray modulation potential, both with the 95% confidence intervals. The data sets are provided with decadal resolution, thus the individual solar cycles are not resolved. (2 data files).

  20. Solar proton events and their effect on space systems

    International Nuclear Information System (INIS)

    Tranquille, C.

    1994-01-01

    Solar protons present a major problem to space systems because of the ionisation and displacement effects which arise from their interaction with matter. This is likely to become a greater problem in the future due to the use of more sensitive electronic components and the proposed expansion of manned activities in space. An outline is provided of the physical processes associated with individual solar events, the solar activity cycle and the transport of solar particles between the Sun and the Earth. The problems of predicting solar event fluences, both over short- and long-term periods, are discussed. The currently available solar proton event models used for long-term forecasting are briefly reviewed, and the advantages and deficiencies of each model are investigated. Predictions using the models are compared to measurements made by the GOES-7 satellite during the rising phase of the current solar cycle. These measurements are also used to illustrate the sensitivity of the models to the choice of confidence level and to the spectral form used for extrapolation over the solar proton energy range. (author)