WorldWideScience

Sample records for solar surface variations

  1. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  2. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    International Nuclear Information System (INIS)

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-01-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  3. Toward Spectroscopically Detecting the Global Latitudinal Temperature Variation on the Solar Surface

    Science.gov (United States)

    Takeda, Y.; UeNo, S.

    2017-09-01

    A very slight rotation-induced latitudinal temperature variation (presumably on the order of several kelvin) on the solar surface is theoretically expected. While recent high-precision solar brightness observations reported its detection, confirmation by an alternative approach using the strengths of spectral lines is desirable, for which reducing the noise due to random fluctuation caused by atmospheric inhomogeneity is critical. Toward this difficult task, we carried out a pilot study of spectroscopically investigating the relative variation of temperature (T) at a number of points in the solar circumference region near to the limb (where latitude dependence should be detectable, if any exists) based on the equivalent widths (W) of 28 selected lines in the 5367 - 5393 Å and 6075 - 6100 Å regions. We paid special attention to i) clarifying which types of lines should be employed and ii) how much precision is attainable in practice. We found that lines with strong T-sensitivity (|log W/log T|) should be used and that very weak lines should be avoided because they inevitably suffer strong relative fluctuations (Δ W/W). Our analysis revealed that a precision of Δ T/T ≈ 0.003 (corresponding to ≈ 15 K) can be achieved at best by a spectral line with comparatively large |log W/log T|, although this can possibly be further improved When a number of lines are used all together. Accordingly, if many such favorable lines could be measured with subpercent precision of Δ W/W and by averaging the resulting Δ T/T from each line, the random noise would eventually be reduced to ≲ 1 K and detection of a very subtle amount of global T-gradient might be possible.

  4. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  5. Lunar rock surfaces as detectors of solar processes

    International Nuclear Information System (INIS)

    Hartung, J.B.; Hunter College, New York, NY)

    1980-01-01

    Lunar rock surfaces exposed at or just below the lunar surface are considered as detectors of the solar wind, solar flares and solar-derived magnetic fields through their interactions with galactic cosmic rays. The degradation of the solar detector capabilities of lunar surface rocks by meteoroid impact erosion, accreta deposition, loose dust, and sputtering, amorphous layer formation and accelerated diffusion due to solar particles and illumination is discussed, and it is noted that the complex interactions of factors affecting the outer micron of exposed surface material has so far prevented the development of a satisfactory model for a particle detector on the submicron scale. Methods for the determination of surface exposure ages based on the accumulation of light solar wind noble gases, Fe and Mg, impact craters, solar flare tracks, and cosmogenic Kr isotopes are examined, and the systematic variations in the ages determined by the various clocks are discussed. It is concluded that a means of obtaining satisfactory quantitative rate or flux data has not yet been established

  6. Solar cycle variations in IMF intensity

    International Nuclear Information System (INIS)

    King, J.H.

    1979-01-01

    Annual averages of logarithms of hourly interplanetary magnetic field (IMF) intensities, obtained from geocentric spacecraft between November 1963 and December 1977, reveal the following solar cycle variation. For 2--3 years at each solar minimum period, the IMF intensity is depressed by 10--15% relative to its mean value realized during a broad 9-year period contered at solar maximum. No systematic variations occur during this 9-year period. The solar minimum decrease, although small in relation to variations in some other solar wind parameters, is both statistically and physically significant

  7. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  8. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  9. Solar-cycle variation of zonal and meridional flow

    International Nuclear Information System (INIS)

    Komm, R; Howe, R; Hill, F; Hernandez, I Gonzalez; Haber, D

    2011-01-01

    We study the variation with the solar cycle of the zonal and meridional flows in the near-surface layers of the solar convection zone. We have analyzed MDI Dynamics-Program data with ring-diagram analysis covering the rising phase of cycle 23, while the analyzed GONG high-resolution data cover the maximum and declining phase of cycle 23. For the zonal flow, the migration with latitude of the flow pattern is apparent in the deeper layers, while for the meridional flow, a migration with latitude is apparent only in the layers close to the surface. The faster-than-average bands of the zonal flow associated with the new cycle are clearly visible. Similarly, a pattern related to the new cycle appears in the residual meridional flow. We also study the flow differences between the hemispheres during the course of the solar cycle. The difference pattern of the meridional flow is slanted in latitude straddling the faster-than-average band of the torsional oscillation pattern in the zonal flow. The difference pattern of the zonal flow, on the other hand, resembles the cycle variation of the meridional flow. In addition, the meridional flow during the minimum of cycle 23/24 appears to be slightly stronger than during the previous minimum of cycle 22/23.

  10. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  11. Variations of the core luminosity and solar neutrino fluxes

    Science.gov (United States)

    Grandpierre, Attila

    The aim of the present work is to analyze the geological and astrophysical data as well as presenting theoretical considerations indicating the presence of dynamic processes present in the solar core. The dynamic solar model (DSM) is suggested to take into account the presence of cyclic variations in the temperature of the solar core. Comparing the results of calculations of the CO2 content, albedo and solar evolutionary luminosity changes with the empirically determined global earthly temperatures, and taking into account climatic models, I determined the relation between the earthly temperature and solar luminosity. These results indicate to the observed maximum of 10o change on the global terrestrial surface temperature a related solar luminosity change around 4-5 % on a ten million years timescale, which is the timescale of heat diffusion from the solar core to the surface. The related solar core temperature changes are around 1 % only. At the same time, the cyclic luminosity changes of the solar core are shielded effectively by the outer zones since the radiation diffusion takes more than 105 years to reach the solar surface. The measurements of the solar neutrino fluxes with Kamiokande 1987-1995 showed variations higher than 40 % around the average, at the Super-Kamiokande the size of the apparent scatter decreased to 13 %. This latter scatter, if would be related completely to stochastic variations of the central temperature, would indicate a smaller than 1 % change. Fourier and wavelet analysis of the solar neutrino fluxes indicate only a marginally significant period around 200 days (Haubold, 1998). Helioseismic measurements are known to be very constraining. Actually, Castellani et al. (1999) remarked that the different solar models lead to slightly different sound speeds, and the different methods of regularization yield slightly different sound speeds, too. Therefore, they doubled the found parameter variations, and were really conservative assuming

  12. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  13. Characteristics of seasonal variation and solar activity dependence of the geomagnetic solar quiet daily variation

    Science.gov (United States)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.

    2017-12-01

    Characteristics of seasonal variation and solar activity dependence of the X- and Y-components of the geomagnetic solar quiet (Sq) daily variation at Memanbetsu in mid-latitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1-h time resolution from 1957 to 2016. In this analysis, we defined the quiet day when the maximum value of the Kp index is less than 3 for that day. In this analysis, we used the monthly average of the adjusted daily F10.7 corresponding to geomagnetically quiet days. For identification of the monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y), we first determined the baseline of the X and Y components from the average value from 22 to 2 h (LT: local time) for each quiet day. Next, we calculated a deviation from the baseline of the X- and Y-components of the geomagnetic field for each quiet day, and computed the monthly mean value of the deviation for each local time. As a result, Sq-X and Sq-Y shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities, and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and Sq-X and Sq-Y shows almost the linear relationship, but the slope and intercept of the linear fitted line varies as function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The local time dependence of the offset value of Sq-Y at Guam and its seasonal variation suggest a magnetic field produced by inter-hemispheric field-aligned currents (FACs). From the sign of the offset value of Sq-Y, it is infer that the inter-hemispheric FACs flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in

  14. Solar UV Variations During the Decline of Cycle 23

    Science.gov (United States)

    DeLand, Matthew, T.; Cebula, Richard P.

    2011-01-01

    Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements

  15. Solar cycle variations of geocoronal balmer α emission

    International Nuclear Information System (INIS)

    Nossal, S.; Reynolds, R.J.; Roesler, F.L.; Scherb, F.

    1993-01-01

    Observations of the geocoronal Balmer in nightglow have been made from Wisconsin for more than a solar cycle with an internally consistent intensity reference to standard astronomical nebulae. These measurements were made with a double etalon, pressure-scanned, 15-cm aperture Fabry-Perot interferometer. The resulting long time data provides an opportunity to examine solar cycle influence on the mid-latitude exosphere and to address accompanying questions concerning the degree to which the exosphere is locally static or changing. The exospheric Balmer α absolute intensity measurements reported here show no statistically significant variations throughout the solar cycle when the variation with viewing geometry is removed by normalizing the data to reference exospheric model predictions by Anderson et al. However, the relative intensity dependence on solar depression angle does show a solar cycle variation. This variation suggests a possible related variation in the exospheric hydrogen density profile, although other interpretations are also possible. The results suggest that additional well-calibrated data taken over a longer time span could probe low-amplitude variations over the solar cycle and test predictions of a slow monotonic increase in exospheric hydrogen arising from greenhouse gases. 21 refs., 9 figs., 2 tabs

  16. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  17. Solar cycle variations in the ionosphere of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.

    2016-07-01

    Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)

  18. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  19. Models of Solar Irradiance Variations: Current Status Natalie A ...

    Indian Academy of Sciences (India)

    Abstract. Regular monitoring of solar irradiance has been carried out since 1978 to show that solar total and spectral irradiance varies at different time scales. Whereas variations on time scales of minutes to hours are due to solar oscillations and granulation, variations on longer time scales are driven by the evolution of the ...

  20. Cause of solar wind speed variations observed at 1 a.u

    International Nuclear Information System (INIS)

    Hakamada, K.; Akasofu, S.

    1981-01-01

    An attempt is made to interpret solar wind variations observed at the earth's distance, namely the solar cycle variations, the semi-annual variations, and the 27-day variations, as well as the polarity changes of the interplanetary magnetic field, mainly in terms of two effects, a positive latitudinal gradient of the solar wind speed and a wobbling solar dipole, combined with the annual (heliospheric) latitudinal excursion of the earth. It is shown that a significant part of the solar wind variations observed at the earth's distance and the changes of polarity pattern of the interplanetary magnetic field can be reasonably well reproduced by the two effects

  1. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    Science.gov (United States)

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  2. Latitudinal variation of the solar photospheric intensity

    OpenAIRE

    Rast, Mark P.; Ortiz, Ada; Meisner, Randle W.

    2007-01-01

    We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement $\\sim0.1 - 0.2%$ corresponding to a brightness temperature enhancement of $\\sim2.5{\\rm K}$). This appears to be thermal in ...

  3. Determination of variations of the solar radius from solar eclipse observations

    Science.gov (United States)

    Sofia, S.; Dunham, D. W.; Fiala, A. D.

    1980-01-01

    This paper describes the method to determine the solar radius and its variations from observations made during total solar eclipses. In particular, the procedure to correct the spherical moon predictions for the effects of lunar mountains and valleys on the width and location of the path of totality is addressed in detail. The errors affecting this technique are addressed, a summary of the results of its application to three solar eclipses are presented, and the implications of the results on the constancy of the solar constant are described.

  4. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  5. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  6. [Fluctuations in biophysical measurements as a result of variations in solar activity].

    Science.gov (United States)

    Peterson, T F

    1995-01-01

    A theory is proposed to explain variations in the net electrical charge of biological substances at the Earth's surface. These are shown to occur in association with changes in the solar wind and geomagnetic field. It is suggested that a liquid dielectric's net volume charge will imitate pH effects, influence chemical reaction rates, and alter ion transfer mechanisms in biophysical systems. An experiment is described which measures dielectric volume charge, or non-neutrality, to allow correlation of this property with daily, 28-day, and 11-year fluctuation patterns in geophysical and satellite data associated with solar activity and the interplanetary magnetic field.

  7. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  8. Variation of sodium on Mercury with solar radiation pressure

    International Nuclear Information System (INIS)

    Potter, A.E.; Morgan, T.H.

    1987-01-01

    It has been suggested that nonthermal Na atoms with velocities in excess of 2.1 km/sec in the Mercury atmosphere can be accelerated off the planet by solar radiation pressure; Na abundance may accordingly be expected to decrease with increasing radiation pressure. While this is confirmed by the present measurements, high resolution line profile measurements on Na emission indicate that very little, if any, of the Na is nonthermal, while the bulk is at a temperature approaching that of the planetary surface. Attention is given to explanations for the observed variation. 11 references

  9. Lunar and solar daily variations of ionospheric electron content at Delhi

    International Nuclear Information System (INIS)

    Bhuyan, P.K.; Tyagi, T.R.

    1986-01-01

    Ionospheric electron content measurements obtained at Delhi during the period 1975-1980 have been analysed by the Chapman-Miller method to compute lunar and solar daily variations. The results show that the magnitude of the lunar harmonic components is about one-tenth that of the solar harmonic components. Significant seasonal and solar cycle variations were observed for both the lunar and the solar terms. The lunar semi-diurnal component, the most significant term, can be explained as due to the additional 'fountain' effect caused by the lunar semi-diurnal variation of the electric field at the equatorial region. The lunar semi-diurnal variations were found to have significant oceanic and ionospheric components. (author)

  10. Voltage variation due to solar photovoltaic in distribution network

    International Nuclear Information System (INIS)

    Azad, H I; Ramachandaramurthy, V K; Maleki, Hesamaldin

    2013-01-01

    Grid integration of solar photovoltaic (PV) plant offers reduction in greenhouse emissions and independence from fossil fuels for power generation. The integration of such forms of power generation also brings with it a variety of policy and technical issues. One of the technical issues is the variation in grid voltages in the presence of solar photovoltaic (PV) plant, resulting in degradation of power quality. In this paper, the application of a dq current controller to limit the voltage variation at the point of common coupling (PCC) due to a 2 MW solar photovoltaic (PV) plant will be discussed. The controller's goal is to ensure that the voltage variation meets the momentary voltage change limits specified in TNB's Technical Guidebook for the connection of distributed generation. The proposed dq current controller is shown to be able to limit the voltage variation.

  11. HEIGHT VARIATION OF THE VECTOR MAGNETIC FIELD IN SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Suárez, D. Orozco; Ramos, A. Asensio; Bueno, J. Trujillo, E-mail: dorozco@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-04-20

    Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.

  12. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  13. Long-term solar wind electron variations between 1971 and 1978

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1979-01-01

    Imp solar wind electron data measured between 1971 and 1978 were studied with the aim of determining long-term variations near the earth. Two separate sets of parameter variations were observed: (1) in 1976--1977 the solar wind density, the electron temperature, and the interplanetary electrostatic potential were all enhanced, and (2) the halo density and associated electron parameters were all depressed during a 1 1/2-year period centered on the last 6 months of 1976. Although interpretation of these results in terms of corresponding coronal and interplanetary variations is not unique, it may be significant that measured solar wind parameters near the minimum of solar cycle 20 agree better with the Hartle-Sturrock model of the coronal expansion than they do during other epochs

  14. Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2010-12-01

    Full Text Available We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002 than low solar activity (2006-2008. It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF Bs (IMF Bz <0 component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

  15. Helioseismic measurements in the solar envelope using group velocities of surface waves

    Science.gov (United States)

    Vorontsov, S. V.; Baturin, V. A.; Ayukov, S. V.; Gryaznov, V. K.

    2014-07-01

    At intermediate- and high-degree l, solar p and f modes can be considered as surface waves. Using variational principle, we derive an integral expression for the group velocities of the surface waves in terms of adiabatic eigenfunctions of normal modes, and address the benefits of using group-velocity measurements as a supplementary diagnostic tool in solar seismology. The principal advantage of using group velocities, when compared with direct analysis of the oscillation frequencies, comes from their smaller sensitivity to the uncertainties in the near-photospheric layers. We address some numerical examples where group velocities are used to reveal inconsistencies between the solar models and the seismic data. Further, we implement the group-velocity measurements to the calibration of the specific entropy, helium abundance Y, and heavy-element abundance Z in the adiabatically stratified part of the solar convective envelope, using different recent versions of the equation of state. The results are in close agreement with our earlier measurements based on more sophisticated analysis of the solar oscillation frequencies. These results bring further support to the downward revision of the solar heavy-element abundances in recent spectroscopic measurements.

  16. Variations of surface temparature with solar activity at two stations in ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... A consistent and persistent diurnal variation in surface air temperature exists which shows an almost constant level in the early morning hours (0000 0600 hours LT.); a rise at sunrise till about 1500 hr LT., a subsequent fall to the constant level by about 1900 hr LT. at sunset.

  17. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  18. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  19. Observed solar near UV variability: A contribution to variations of the solar constant

    International Nuclear Information System (INIS)

    London, J.; Pap, J.; Rottman, G.J.

    1989-01-01

    Continuous Measurements of the Solar UV have been made by an instrument on the Solar Mesosphere Explorer (SME) since October 1981. The results for the wavelength interval 200 to 300 nm show an irradiance decrease to a minimum in early 1987 and a subsequent increase to mid-April 1989. The observed UV changes during part of solar cycles 21 to 22 represent approx. 35 percent (during the decreasing phase) and 25 percent (during the increasing phase) of the observed variations of the solar constant for the same time period as the SME measurements

  20. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  1. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  2. Effects in atmospheric electricity daily variation controlled by solar wind

    International Nuclear Information System (INIS)

    Ptitsyna, N.G.; Tyasto, M.I.; Levitin, A.E.; Gromova, L.A.; Tuomi, T.; AN SSSR, Moscow

    1995-01-01

    An analysis of fair weather atmospheric electricity, one of the environmental factors which affects the biosphere, is conducted. A distinct difference in the diurnal variation of atmospheric electric field at Helsinki is found between disturbed and extremely quiet conditions in the magnetosphere in winter before midnight. The comparison with the numerical model of the ionospheric electric field based on the solar wind parameters reveals that the maximum contribution of the magnetospheric-ionospheric generator to atmospheric electric field is about 100-150 v/m which assumes values of about 30% of the surface field. 8 refs.; 2 figs

  3. Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data

    Science.gov (United States)

    KIM, J. H.; Chang, H. Y.

    2017-12-01

    We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.

  4. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  5. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  6. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  7. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  8. Spatial Representativeness of Surface-Measured Variations of Downward Solar Radiation

    Science.gov (United States)

    Schwarz, M.; Folini, D.; Hakuba, M. Z.; Wild, M.

    2017-12-01

    When using time series of ground-based surface solar radiation (SSR) measurements in combination with gridded data, the spatial and temporal representativeness of the point observations must be considered. We use SSR data from surface observations and high-resolution (0.05°) satellite-derived data to infer the spatiotemporal representativeness of observations for monthly and longer time scales in Europe. The correlation analysis shows that the squared correlation coefficients (R2) between SSR times series decrease linearly with increasing distance between the surface observations. For deseasonalized monthly mean time series, R2 ranges from 0.85 for distances up to 25 km between the stations to 0.25 at distances of 500 km. A decorrelation length (i.e., the e-folding distance of R2) on the order of 400 km (with spread of 100-600 km) was found. R2 from correlations between point observations and colocated grid box area means determined from satellite data were found to be 0.80 for a 1° grid. To quantify the error which arises when using a point observation as a surrogate for the area mean SSR of larger surroundings, we calculated a spatial sampling error (SSE) for a 1° grid of 8 (3) W/m2 for monthly (annual) time series. The SSE based on a 1° grid, therefore, is of the same magnitude as the measurement uncertainty. The analysis generally reveals that monthly mean (or longer temporally aggregated) point observations of SSR capture the larger-scale variability well. This finding shows that comparing time series of SSR measurements with gridded data is feasible for those time scales.

  9. Lunar nitrogen: Secular variation or mixing?

    International Nuclear Information System (INIS)

    Norris, S.J.; Wright, I.P.; Pillinger, C.T.

    1986-01-01

    The two current models to explain the nearly 40% variation of the lunar nitrogen isotopic composition are: (1) secular variation of solar wind nitrogen; and (2) a two component mixing model having a constant, heavy solar wind admixed with varying amounts of indigenous light lunar N (LLN). Both models are needed to explain the step pyrolysis extraction profile. The secular variation model proposes that the low temperature release is modern day solar wind implanted into grain surfaces, the 900 C to 1100 C release is from grain surfaces which were once exposed to the ancient solar wind but which are now trapped inside agglutinates, and the >1100 C release as spallogenic N produced by cosmic rays. The mixing model ascribes the components to solar wind, indigenous lunar N and spallogenic N respectively. An extension of either interpretation is that the light N seen in lunar breccias or deep drill cores represent conditions when more N-14 was available to the lunar surface

  10. Solar cycle 22 control on daily geomagnetic variation at Terra Nova Bay (Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1998-06-01

    Full Text Available Nine summer geomagnetic observatory data (1986-1995 from Terra Nova Bay Base, Antarctica (Lat.74.690S, Long. 164.120E, 80.040S magnetic latitude are used to investigate the behaviour of the daily variation of the geomagnetic field at polar latitude. The instrumentation includes a proton precession magnetometer for total intensity |F| digital recordings; DI magnetometers for absolute measuring of the angular elements D and I and a three axis flux-gate system for acquiring H,D Z time variation data. We find that the magnetic time variation amplitude follows the solar cycle evolution and that the ratio between minimum solar median and maximum solar median is between 2-3 for intensive elements (H and Z and 1.7 for declination(D. The solar cycle effect on geomagnetic daily variation elements amplitude in Antarctica, in comparison with previous studies, is then probably larger than expected. As a consequence, the electric current system that causes the daily magnetic field variation reveals a quite large solar cycle effect at Terra Nova Bay.

  11. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  12. Variational method for the minimization of entropy generation in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Sjoerd; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2015-04-07

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.

  13. Response of noctilucent cloud brightness to daily solar variations

    Science.gov (United States)

    Dalin, P.; Pertsev, N.; Perminov, V.; Dubietis, A.; Zadorozhny, A.; Zalcik, M.; McEachran, I.; McEwan, T.; Černis, K.; Grønne, J.; Taustrup, T.; Hansen, O.; Andersen, H.; Melnikov, D.; Manevich, A.; Romejko, V.; Lifatova, D.

    2018-04-01

    For the first time, long-term data sets of ground-based observations of noctilucent clouds (NLC) around the globe have been analyzed in order to investigate a response of NLC to solar UV irradiance variability on a day-to-day scale. NLC brightness has been considered versus variations of solar Lyman-alpha flux. We have found that day-to-day solar variability, whose effect is generally masked in the natural NLC variability, has a statistically significant effect when considering large statistics for more than ten years. Average increase in day-to-day solar Lyman-α flux results in average decrease in day-to-day NLC brightness that can be explained by robust physical mechanisms taking place in the summer mesosphere. Average time lags between variations of Lyman-α flux and NLC brightness are short (0-3 days), suggesting a dominant role of direct solar heating and of the dynamical mechanism compared to photodissociation of water vapor by solar Lyman-α flux. All found regularities are consistent between various ground-based NLC data sets collected at different locations around the globe and for various time intervals. Signatures of a 27-day periodicity seem to be present in the NLC brightness for individual summertime intervals; however, this oscillation cannot be unambiguously retrieved due to inevitable periods of tropospheric cloudiness.

  14. Response of Solar Irradiance to Sunspot-area Variations

    Science.gov (United States)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  15. Solar variations and their influence on trends in upper stratospheric ozone and temperature

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.

    1990-10-01

    Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidal variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period

  16. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-01-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes

  17. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  18. On the presence of fictitious solar neutrino flux variations in radiochemical experiments

    International Nuclear Information System (INIS)

    Vladimirskii, B.M.; Bruns, A.V.

    2004-01-01

    The currently available data on solar neutrino flux variation in radiochemical experiments and Cherenkov measurements have so far defied a simple interpretation. Some of the results concerning these variations are indicative of their relationship to processes on the solar surface. It may well be that a poorly understood, uncontrollable factor correlating with solar activity indices affects the neutrino flux measurements. This factor is assumed to modulate the detection efficiency on different detectors in different ways. To test this assumption, we have analyzed all available radiochemical measurements obtained with the Brookhaven (1970-1994, 108 runs), GALLEX (1991-1997, 65 runs), and SAGE (1989-2000, 80 runs) detectors for possible instability of the detection efficiency. We consider the heliophysical situation at the final stage of the run, the last 7-27 days, when the products of the neutrino reaction with the target material had already been accumulated. All of the main results obtained previously by other authors were found to be reproduced for chlorine-argon measurements. The neutrino flux anticorrelates with the sunspot numbers only for an odd solar cycle. A similar behavior is observed for the critical frequencies of the E-ionosphere. The neutrino flux probably correlates with the A p magnetic activity index only for an even solar cycle. The predominance of a certain sign of the radial interplanetary magnetic field (IMF) in the last 14 (or 7) days of the run has the strongest effect on the recorded neutrino flux. The effect changes sign when the polarity of the general solar magnetic field is reversed and is most pronounced for the shortest runs (less than 50 days). The dependence of the flux on IMF polarity completely disappears if the corresponding index is taken for the first rather than the last days of the run. The IMF effect on the recorded neutrino flux was also found for short runs in the gallium-germanium experiment, but this effect for a given

  19. Solar ultraviolet radiation induced variations in the stratosphere and mesosphere

    Science.gov (United States)

    Hood, L. L.

    1987-01-01

    The detectability and interpretation of short-term solar UV induced responses of middle atmospheric ozone, temperature, and dynamics are reviewed. The detectability of solar UV induced perturbations in the middle atmosphere is studied in terms of seasonal and endogenic dynamical variations. The interpretation of low-latitude ozone and possible temperature responses on the solar rotation time scale is examined. The use of these data to constrain or test photochemical model predictions is discussed.

  20. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    Science.gov (United States)

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2  = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site

  1. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  2. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    Science.gov (United States)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  3. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  4. Investigation of back surface fields effect on bifacial solar cells

    Science.gov (United States)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  5. Origin of uranium isotope variations in early solar nebula condensates.

    Science.gov (United States)

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  6. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  7. Geographic variation of solar water performance in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y. [University of Ulster (United Kingdom). Faculty of Engineering; Popel, O.; Frid, S. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperatures; Norton, B. [Dublin Institute of Technology (Ireland)

    2006-07-01

    Solar water heater (SWH) performance has been analysed using the 'number of days' method for 147 different sites in all European countries. The total number of days that the temperature of delivered solar heated water reaches or exceeds specified demand temperatures is correlated with solar radiation on a horizontal surface for summer, warm half-year, and whole year periods. Maps are presented and discussed showing the contours for the number of days that an illustrative SWH met different hot water demand temperatures. Correlations between number of days water is provided at a specified temperature and solar fractions for the same periods are determined. (author)

  8. Surface etching technologies for monocrystalline silicon wafer solar cells

    Science.gov (United States)

    Tang, Muzhi

    With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.

  9. Semi-annual Sq-variation in solar activity cycle

    Science.gov (United States)

    Pogrebnoy, V.; Malosiev, T.

    The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).

  10. Solar tri-diurnal variation of cosmic rays in a wide range of rigidity

    Science.gov (United States)

    Mori, S.; Ueno, H.; Fujii, Z.; Morishita, I.; Nagashima, K.

    1985-01-01

    Solar tri-diurnal variations of cosmic rays have been analyzed in a wide range of rigidity, using data from neutron monitors, and the surface and underground muon telescopes for the period 1978-1983. The rigidity spectrum of the anisotropy in space is assumed to be of power-exponential type as (P/gamma P sub o) to the gamma exp (gamma-P/P sub o). By means of the best-fit method between the observed and the expected variations, it is obtained that the spectrum has a peak at P (=gamma P sub o) approx = 90 GV, where gamma=approx 3.0 and P sub o approx. 30 GV. The phase in space of the tri-diurnal variation is also obtained as 7.0 hr (15 hr and 23 hr LT), which is quite different from that of approx. 1 hr. arising from the axisymmetric distribution of cosmic rays with respect to the IMF.

  11. a Study of the Impact of Doubling Carbon Dioxide and Solar Radiation Variations on the Climate System.

    Science.gov (United States)

    Chu, Shaoping

    The exchange of moisture and heat between the atmosphere and the Earth's surface fundamentally affect the dynamics and thermodynamics of the climate system. In order to trace moisture flow through the climate system and examine its impact on climate, a hydrologic cycle and a land energy balance have been developed and incorporated into a coupled climate-thermodynamic sea ice (CCSI) model. The expanded CCSI model has been tested by comparing computed climate parameters with available observations and GCM modeling results. In general, the expanded model does a good job in simulating the large scale features of the atmospheric circulation and precipitation in both space and time. The expanded model has been used to examine the possibility that increased levels of CO_2 in the atmosphere may induce the growth of Northern Hemisphere ice sheets. Results of the study indicate that if summer ice albedo is high enough, and there is some mechanism for initially maintaining ice through the summer season, then it may be possible to have ice sheet growth under the conditions CO_2 induced warming, mainly the result of decreased summer ice melt in response to the higher land ice albedo, and not an increase in precipitation. The expanded model has also been used to examine the impact of Milankovitch solar radiation variations on the climate system, to study the mechanisms that produce glacial-interglacial cycles, especially with respect to the initiation of ice sheets. The results show the Milankovitch solar radiation variations affect the climate system most in the polar regions with the mean annual surface air temperature varying directly in response to changes in the annually averaged incoming solar radiation. However, the seasonal variations in the surface air temperatures are much more complex with large magnitude variations for brief times during the year. The study indicates that ice sheets may start to grow under the conditions of low insolation that occurred at 25, 70, and

  12. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  13. Experimental test of a novel multi-surface trough solar concentrator for air heating

    International Nuclear Information System (INIS)

    Zheng Hongfei; Tao Tao; Ma Ming; Kang Huifang; Su Yuehong

    2012-01-01

    Highlights: ► We made a prototype novel multi-surface trough solar concentrator for air heating. ► Circular and rectangular types of receiver were chosen for air heating in the test. ► The changes of instantaneous system efficiency with different air flow were obtained. ► The system has the advantage of high collection temperature, which can be over 140 °C. ► The average efficiency can exceed 45% at the outlet temperature of above 60 °C. - Abstract: This study presents the experimental test of a novel multi-surface trough solar concentrator for air heating. Three receivers of different air flow channels are individually combined with the solar concentrator. The air outlet temperature and solar irradiance were recorded for different air flow rates under the real weather condition and used to determine the collection efficiency and time constant of the air heater system. The characteristics of the solar air heater with different airflow channels are compared, and the variation of the daily efficiency with the normalized temperature change is also presented. The testing results indicates that the highest temperature of the air heater with a circular glass receiver can be over 140 °C. When the collection temperature is around 60 °C, the collection efficiency can be over 45%. For the rectangular receivers, the system also has a considerable daily efficiency at a larger air flow rate. The air heater based on the novel trough solar concentrator would be suitable for space heating and drying applications.

  14. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    Science.gov (United States)

    Chintzoglou, Georgios

    2016-04-01

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging

  15. An introduction to selective surfaces for solar applications

    Science.gov (United States)

    Neal, W. E. J.

    1983-12-01

    The desired characteristics of spectrally selective surfaces for solar thermal applications include a high-level absorption of radiation in the solar region of the spectrum (from 0.3 to 2.5 microns) combined with a low value of emission in the IR region (greater than two microns). There are three energy collector temperature ranges for specific solar applications, taking into account a range from 25 to 40 C for swimming pools, a range from 40 to 150 C for space and water heating and air conditioning, and temperatures above 150 C for the production of steam and the generation of electricity. Flat plate and low concentrating collectors with suitable selective surfaces can be employed in connection with the first two temperature ranges. Various types of selective surfaces are presented in a table, giving attention to the absorptive properties for solar radiation and the emissive properties in the IR region.

  16. Long-period variations of wind parameters in the mesopause region and the solar cycle dependence

    International Nuclear Information System (INIS)

    Greisiger, K.M.; Schminder, R.; Kuerschner, D.

    1987-01-01

    A solar dependence of wind parameters below 100 km was found by Sprenger and Schminder on the basis of long-term continuous ionospheric drift measurements. For winter they obtained for the prevailing wind a positive correlation with solar activity and for the amplitude of the semi-diurnal tidal wind a negative correlation. However, after the years 1973-1974 we found a significant negative correlation with solar activity with an indication of a new change after 1983. We conclude that this long-term behaviour points rather to a climatic variation with an internal atmospheric cause than to a direct solar control. Recent satellite data of the solar u.v. radiation and the upper stratospheric ozone have shown that the possible variation of the thermal tidal excitation during the solar cycle amounts to only a few per cent. This is, therefore, insufficient to account for the 40-70% variation of the tidal amplitudes. Some other possibilities of explaining this result are discussed. (author)

  17. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  18. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.

    2017-11-01

    This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures

  19. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres

    2018-05-02

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine. Chemical passivation of the surfaces is equally important, and it can be combined with population control to implement carrier-selective, passivating contacts for solar cells. This paper discusses different approaches to suppress surface recombination and to manipulate the concentration of carriers by means of doping, work function and charge. It also describes some of the many surface-passivating contacts that are being developed for silicon solar cells, restricted to experiments performed by the authors.

  20. Studying the effect of spectral variations intensity of the incident solar radiation on the Si solar cells performance

    Directory of Open Access Journals (Sweden)

    Ahmed Elsayed Ghitas

    2012-12-01

    Full Text Available Solar spectral variation is important in characterization of photovoltaic devices. We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of multicrystalline silicon photovoltaic module. The investigation concentrate on the analysis of outdoor solar spectral measurements carried out at 1 min intervals on clear sky days. Short circuit current and open circuit voltage have been measured to describe the module electrical performance. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of the module. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effect of the spectral variation on the performance of the photovoltaic module is reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the radiation spectra account for the decreased current collection and hence power of the module.

  1. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  2. Solar irridiance variations and solar activity

    International Nuclear Information System (INIS)

    Willson, R.C.

    1982-01-01

    A mean value for the 1 AU total solar irradiance of 1368.2 W/m 2 and a downward trend of 0.05% per year were derived from measurements by the Active Cavity Radiometer Irradiance Monitor (ACRIM) experiment on the Solar Maximum Mission during 1980. Distinct temporary solar irradiance decreases associated with solar activity maxima were observed with a series of nine dips from April to October recurring at fairly regular intervals averaging 24 days. The decreases correlate inversely with sunspot area, 2800-MHz flux, and Zurich sunspot number. Dominant periods common to the irradiance and sunspot area power spectra link the irradiance decreases to sunspot flux deficit in solar active regions. Evidence of significant total irradiance modulation by facular flux excess is cited. A persistent radiative cycle of active regions consistent with the ACRIM irradiance results and the morphology of solar active regions was found. The pattern of regularly recurrent active region maxima between April and October suggests an asymmetry in solar activity generation during this period

  3. Cosmic ray variations of solar origin in relation to human physiological state during the December 2006 solar extreme events

    Science.gov (United States)

    Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K. M.; Mertzanos, G. A.; Petropoulos, B.

    2009-02-01

    There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.

  4. Theoretical investigation on heterojunction solar cell

    International Nuclear Information System (INIS)

    Prema, K.; Geetha, K.

    1986-11-01

    The study of thin film solar cells has proved that the surface is rough. A two-dimensional method based on the integral equation technique to analyse thin film solar cells has been developed by DeMey et al. In this paper we present our analysis of a thin film solar cell using the above techniques. Variation of the minority carrier concentration, the saturation current and the junction current of the solar cell with surface roughness is presented. (author). 8 refs, 4 figs

  5. Performance of solar still with a concave wick evaporation surface

    International Nuclear Information System (INIS)

    Kabeel, A.E.

    2009-01-01

    Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m 2 and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m 2 after solar noon. An estimated cost of 1 l of distillate was 0.065 $ for the presented solar still.

  6. The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

    Science.gov (United States)

    Pipin, V. V.; Tomozov, V. M.

    2018-04-01

    Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP 10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar-stellar analogies.

  7. Color Variation on the Surfaces of Jupiter’s Greek and Trojan Asteroids

    Science.gov (United States)

    Chatelain, Joseph; Trilling, David E.; Emery, Joshua P.

    2017-10-01

    The L4 and L5 Lagrange points of Jupiter are populated with thousands of known, and possibly hundreds of thousands of unknown, Greek and Trojan Asteroids. Understanding the environmental and weathering conditions experienced by these objects over their lifetimes could constrain formation models for the Solar System. In an effort to shine some light on this issue, we have collected partial, simultaneous, lightcurves in both Johnson-Cousins V and I filters for a dozen large Jupiter Trojans. We found significant signs of color variation over the surfaces of four of these objects, and more subtle signs on an additional four. The most convincing examples of variation occur on (4709) Ennomos and (4833) Meges. Such a variation in color with rotation likely implies a large surface feature such as a recent crater. That such a high fraction of observed Trojans display these signatures could imply a more active collisional history for Jupiter Trojans than previously thought. It is therefore likely that one or more of the targets for the Lucy mission will have experienced a large, relatively recent, cratering event. This may help us obtain a much more in-depth understanding of the evolutionary processes ongoing for the Jupiter Trojan populations.

  8. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  9. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  10. Performance of solar still with a concave wick evaporation surface

    Energy Technology Data Exchange (ETDEWEB)

    Kabeel, A.E. [Mechanical Power Department, Faculty of Engineering, Tanta University (Egypt)

    2009-10-15

    Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m{sup 2} and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m{sup 2} after solar noon. An estimated cost of 1l of distillate was 0.065 $ for the presented solar still. (author)

  11. Solar and lunar daily geomagnetic variations at Dourbes

    International Nuclear Information System (INIS)

    De Meyer, F.

    1980-01-01

    Spectral analysis of the Dourbes H component hourly data from the period 1960-1978 revealed the existence of a number of minor terms, in addition to the main solar and lunar peaks. The relative amplitudes of oscillations in the geomagnetic spectrum are unrelated with those predicted through lunar tide theory. The minor terms agree more closely with the 27-day amplitude modulation mechanism. A high frequency resolution power spectrum clearly shows the splitting of the solar diurnal and semi-diurnal line, and even of the lunar semi-diurnal line by the annual variation and its harmonics. The correlation between the amplitude of the M 2 wave and the mean sunspot number is of no significance. (author)

  12. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  13. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  14. Solar wind velocity and daily variation of cosmic rays

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.; Riker, J.F.

    1985-01-01

    Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for the post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed

  15. Nanolayer surface passivation schemes for silicon solar cells

    NARCIS (Netherlands)

    Dingemans, G.

    2011-01-01

    This thesis is concerned with nanolayer surface passivation schemes and corresponding deposition processes, for envisaged applications in crystalline silicon solar cells. Surface passivation, i.e. the reduction of electronic recombination processes at semiconductor surfaces, is essential for

  16. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  17. Overlapping constraint for variational surface reconstruction

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Solem, J.E.

    2005-01-01

    In this paper a counter example, illustrating a shortcoming in most variational formulations for 3D surface estimation, is presented. The nature of this shortcoming is a lack of an overlapping constraint. A remedy for this shortcoming is presented in the form of a penalty function with an analysi...... of the effects of this function on surface motion. For practical purposes, this will only have minor influence on current methods. However, the insight provided in the analysis is likely to influence future developments in the field of variational surface reconstruction....

  18. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  19. Evolution of the solar 'constant'

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M J

    1980-06-01

    Variations in solar luminosity over geological time are discussed in light of the effect of the solar constant on the evolution of life on earth. Consideration is given to long-term (5 - 7% in a billion years) increases in luminosity due to the conversion of hydrogen into helium in the solar interior, temporary enhancements to solar luminosity due to the accretion of matter from the interstellar medium at intervals on the order of 100 million years, and small-amplitude rapid fluctuations of luminosity due to the stochastic nature of convection on the solar surface. It is noted that encounters with dense interstellar clouds could have had serious consequences for life on earth due to the peaking of the accretion-induced luminosity variation at short wavelengths.

  20. Solar Cycle variations in Earth's open flux content measured by the SuperDARN radar network

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-09-01

    We present a long term study, from 1996 - 2012, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection and is here used as a proxy for the amount of open flux in the polar cap. The mean HMB latitude (measured at midnight) is found to be at 64 degrees during the entire period, with secondary peaks at lower latitudes during the solar maximum of 2003, and at higher latitudes during the recent extreme solar minimum of 2008-2011. We associate these large scale statistical variations in open flux content with solar cycle variations in the solar wind parameters leading to changes in the intensity of the coupling between the solar wind and the magnetosphere.

  1. Titanium-based spectrally selective surfaces for solar thermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A D; Holmes, J P

    1983-10-01

    A study of spectrally selective surfaces based on anodic oxide films on titanium is presented. These surfaces have low values of solar absorptance, 0.77, due to the nonideal optical properties of the anodic TiO2 for antireflection of titanium. A simple chemical etching process is described which gives a textured surface with dimensions similar to the wavelengths of solar radiation, leading to spectral selectivity. The performance of this dark-etched surface can be further improved by anodising, and optimum absorbers have been produced with alpha(s) 0.935 and hemispherical emittances (400 K) 0.23. The surface texturing effects a significant improvement in alpha(s) at oblique incidence.

  2. Precise estimation of total solar radiation on tilted surface

    African Journals Online (AJOL)

    rajeev

    rarely available required for precise sizing of energy systems. The total solar radiation at different orientation and slope is needed to calculate the efficiency of the installed solar energy systems. To calculate clearness index (Kt) used by Gueymard (2000) for estimating solar irradiation H, irradiation at the earth's surface has ...

  3. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation

    Directory of Open Access Journals (Sweden)

    Richard Müller

    2015-06-01

    Full Text Available Solar surface radiation data of high quality is essential for the appropriate monitoring and analysis of the Earth's radiation budget and the climate system. Further, they are crucial for the efficient planning and operation of solar energy systems. However, well maintained surface measurements are rare in many regions of the world and over the oceans. There, satellite derived information is the exclusive observational source. This emphasizes the important role of satellite based surface radiation data. Within this scope, the new satellite based CM-SAF SARAH (Solar surfAce RAdiation Heliosat data record is discussed as well as the retrieval method used. The SARAH data are retrieved with the sophisticated SPECMAGIC method, which is based on radiative transfer modeling. The resulting climate data of solar surface irradiance, direct irradiance (horizontal and direct normal and clear sky irradiance are covering 3 decades. The SARAH data set is validated with surface measurements of the Baseline Surface Radiation Network (BSRN and of the Global Energy and Balance Archive (GEBA. Comparison with BSRN data is performed in order to estimate the accuracy and precision of the monthly and daily means of solar surface irradiance. The SARAH solar surface irradiance shows a bias of 1.3 \\(W/m^2\\ and a mean absolute bias (MAB of 5.5 \\(W/m^2\\ for monthly means. For direct irradiance the bias and MAB is 1 \\(W/m^2\\ and 8.2 \\(W/m^2\\ respectively. Thus, the uncertainty of the SARAH data is in the range of the uncertainty of ground based measurements. In order to evaluate the uncertainty of SARAH based trend analysis the time series of SARAH monthly means are compared to GEBA. It has been found that SARAH enables the analysis of trends with an uncertainty of 1 \\(W/m^2/dec\\; a remarkable good result for a satellite based climate data record. SARAH has been also compared to its legacy version, the satellite based CM-SAF MVIRI climate data record. Overall

  4. The comparison of SRs' variation affected by solar events observed in America and in China

    Science.gov (United States)

    Yu, H.; Williams, E.

    2017-12-01

    Schumann Resonances(SRs) are the electromagnetic resonance wave propagating in the earth-ionosphere cavity. Its characteristic of propagation are modified by the variation of ionosphere. So SRs can be the tools of monitoring the ionosphere which is often perturbed by solar events, x-ray emission and some other space-weather events (Roldugin et.al., 2004, De et al., 2010; Satori et.al., 2015). In present work, the amplitude and intrinsic frequencies of SRs observed at RID station in America and YSH station in China are compared. The variation of SRs during the solar flare on Feb. 15, 2011 are analyzed. Two-Dimensional Telegraph Equation(TDTE) method is used to simulate the perturbation of ionosphere by solar proton events. From the simulation and observation, the asymmetric construction of ionoshphere which is perturbed by the solar event will affect the amplitudes and frequencies of SRs. Due to the interfere influence of forward and backward propagation of electromagnetic field, the SR amplitude on different station will present different variation. The distance among the lightning source, observer and perturbed area will produce the different variation of amplitude and frequency for different station' SR.

  5. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  6. Annual reconstruction of the solar cycle from atmospheric 14C variations

    International Nuclear Information System (INIS)

    Murphy, J.O.

    1990-01-01

    Initially, the rise and fall components of the 11-year solar sunspot cycle are approximated by separate least-squares polynomials for four cycle classifications, which are determined by the magnitude of the average of the annual sunspot numbers per cycle. Following a method is formulated to generate detailed reconstruction of the annual variation of a solar cycle based on this cycle average, and the results obtained for cycles -4 through to 21 are compared with the annual Zurich values. This procedure is then employed to establish annual sunspot numbers using published average cycle values obtained from atmospheric carbon 14 variations, which have been derived from the chemical analysis of tree ring sections. The reconstructed sequences are correlated with the observed cycle values and with tree ring width index chronologies which exhibit a significant 11-year periodicity. It is anticipated that the long carbon 14 records and parallel dendrochronological data could be employed to obtain a more detailed portrayal of previous periods of strong solar activity than that given by current estimates based on historical records. 17 refs., 2 tabs., 9 figs

  7. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    International Nuclear Information System (INIS)

    Chang, Chao-Hsuan; Lin, Hsin-Han; Chen, Chin-Cheng; Hong, Franklin C.-N.

    2014-01-01

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O 2 plasma treatment and further immersed in titanium tetrachloride (TiCl 4 ) solution. The process conditions for producing a very thin TiO 2 blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO 2 nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm 2 using backside illumination mode. Surface treatments of Ti substrate and TiO 2 anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%

  8. On the surface physics affecting solar oscillation frequencies

    DEFF Research Database (Denmark)

    Houdek, G.; Trampedach, R.; Aarslev, M. J.

    2017-01-01

    . In this Letter, we address the physical processes of turbulent convection that are predominantly responsible for the frequency differences between standard models and observations, also called 'surface effects'. We compare measured solar frequencies from the Michelson Doppler Imager instrument on the SOlar...... physics in our model computation, we are able to reproduce the observed solar frequencies to less than or similar to 3 mu Hz without the need of any additional ad hoc functional corrections....

  9. Solar cooling. Dynamic computer simulations and parameter variations; Solare Kuehlung. Dynamische Rechnersimulationen und Parametervariationen

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Mario; Lohmann, Sandra [Fachhochschule Duesseldorf (Germany). E2 - Erneuerbare Energien und Energieeffizienz

    2011-05-15

    The research project 'Solar cooling in the Hardware-in-the-Loop-Test' is funded by the BMBF and deals with the modeling of a pilot plant for solar cooling with the 17.5 kW absorption chiller of Yazaki in the simulation environment of MATLAB/ Simulink with the toolboxes Stateflow and CARNOT. Dynamic simulations and parameter variations according to the work-efficient methodology of design of experiments are used to select meaningful system configurations, control strategies and dimensioning of the components. The results of these simulations will be presented and a view of the use of acquired knowledge for the planned laboratory field tests on a hardware-in-the-loop test stand will be given. (orig.)

  10. The magnetic field in the pile-up region at Mars, and its variation with the solar wind

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Olsen, Nils; Purucker, M.

    2003-01-01

    [1] The magnetic measurements from the Mars Global Surveyor satellite are used to study the magnetic field on the Martian dayside, and its variation with the solar wind. Because of the lack of solar wind measurements near Mars, solar wind measurements near Earth during a period centered on a Mars......-Earth conjunction are used. Concurrent variations at Mars and Earth related to the interplanetary sector-structure and dynamic pressure variations are demonstrated. The study is confined to the northern hemisphere of Mars in regions where the crustal anomalies are weak. Here we find a close association between...

  11. Variation of the Solar Microwave Spectrum in the Last Half Century

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi; Saito, Masao [National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), Mitaka, Tokyo, 181-8588 (Japan); Iwai, Kazumasa [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Chikusa-ku, Nagoya, 464-8601 (Japan); Asai, Ayumi [Kwasan and Hida Observatories, Kyoto University, Sakyo-ku, Kyoto, 606-8502 (Japan); Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki, 310-8512 (Japan); Minamidani, Tetsuhiro, E-mail: masumi.shimojo@nao.ac.jp [Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo, 181-8588 (Japan)

    2017-10-10

    The total solar fluxes at 1, 2, 3.75, and 9.4 GHz were observed continuously from 1957 to 1994 at Toyokawa, Japan, and from 1994 until now at Nobeyama, Japan, with the current Nobeyama Radio Polarimeters. We examined the multi-frequency and long-term data sets, and found that not only the microwave solar flux but also its monthly standard deviation indicate the long-term variation of solar activity. Furthermore, we found that the microwave spectra at the solar minima of Cycles 20–24 agree with each other. These results show that the average atmospheric structure above the upper chromosphere in the quiet-Sun has not varied for half a century, and suggest that the energy input for atmospheric heating from the sub-photosphere to the corona have not changed in the quiet-Sun despite significantly differing strengths of magnetic activity in the last five solar cycles.

  12. Possible variations in atmospheric ozone related to the eleven year solar cycle

    International Nuclear Information System (INIS)

    Penner, J.E.; Chang, J.S.

    1978-07-01

    Changes in ozone, temperature, and other minor constituents resulting from eleven year variations in the solar flux between 180 and 340 nm are presented. Results were computed using a one-dimensional time dependent model that allows for all major feedbacks and time delays which may result from changing photolysis rates in the O/sub x/--NO/sub x/--HO/sub x/--ClO/sub x/ system. Since the 1950's the chlorine content of the stratosphere has been increasing. The effect of this increase on ozone variability during the last two solar cycles is analyzed. Expected variations in O 3 and temperature resulting from changes in the uv flux are compared to available measurements

  13. Error sources in the real-time NLDAS incident surface solar radiation and an evaluation against field observations and the NARR

    Science.gov (United States)

    Park, G.; Gao, X.; Sorooshian, S.

    2005-12-01

    the diurnal cycle of NLDAS. Because LSMs are designed to simulate radiation diurnal variation, they are always running at high temporal resolution (30-minutes to several hours). The NLDAS solar radiation data clearly show much smoothened diurnal cycles than observation in cloudy days, which is due to the lower spatial resolution of the NLDAS inherited from the GOES and the EDAS. Taking these problems discovered above into consideration, it is suggested that the NLDAS project work on reducing the systematic biases in the surface solar radiation estimates, so that the users could take full advantage from the data.

  14. Photovoltaic array for Martian surface power

    Science.gov (United States)

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  15. Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.

    2014-01-01

    As an alternative to the wet chemical etching method, dry chemical etching processes for Phosphorus silicate glass [PSG} layer removal using Trifluormethane/Sulfur Hexafluoride (CHF 3 / SF 6 ) gas mixture in commercial silicon-nitride plasma enhanced chemical vapour deposition (SiN-PECVD) system is applied. The dependence of the solar cell performance on the etching temperature is investigated and optimized. It is found that the SiN-PECVD system temperature variation has a significant impact on the whole solar cell characteristics. A dry plasma cleaning treatment of the Si wafer surface after the PSG removal step is also investigated and developed. The cleaning step is used to remove the polymer film which is formed during the PSG etching using both oxygen and hydrogen gases. By applying an additional cleaning step, the polymer film deposited on the silicon wafer surface after PSG etching is eliminated. The effect of different plasma cleaning conditions on solar cell performance is investigated. After optimization of the plasma operating conditions, the performance of the solar cell is improved and the overall gain in efficiency of 0.6% absolute is yielded compared to a cell without any further cleaning step. On the other hand, the best solar cell characteristics can reach values close to that achieved by the conventional wet chemical etching processes demonstrating the effectiveness of the additional O 2 /H 2 post cleaning treatment.(author)

  16. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    International Nuclear Information System (INIS)

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  17. Solar wind dynamic pressure variations and transient magnetospheric signatures

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Baumjohann, W.

    1989-01-01

    Contrary to the prevailing popular view, we find some transient ground events with bipolar north-south signatures are related to variations in solar wind dynamic pressure and not necessarily to magnetic merging. We present simultaneous solar wind plasma observations for two previously reported transient ground events observed at dayside auroral latitudes. During the first event, originally reported by Lanzerotti et al. [1987], conjugate ground magnetometers recorded north-south magetic field deflections in the east-west and vertical directions. The second event was reported by Todd et al. [1986], we noted ground rader observations indicating strong northward then southward ionospheric flows. The events were associated with the postulated signatures of patchy, sporadic, merging of magnetosheath and magnetospheric magnetic field lines at the dayside magnetospause, known as flux transfer events. Conversely, we demonstrate that the event reported by Lanzerotti et al. was accompanied by a sharp increase in solar wind dynamic pressure, a magnetospheric compression, and a consequent ringing of the magnetospheric magnetic field. The event reported by Todd et al. was associated with a brief but sharp increase in the solar wind dynamic pressure. copyright American Geophysical Union 1989

  18. The effects of solar variability on climate

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1990-01-01

    It has been hypothesized for at least a century that some of the observed variance in global temperature records arises from variations in solar output. Theories of solar-variability effects on climate could not be tested directly prior to satellite measurements because uncertainties in ground-based measurements of solar irradiance were larger than the solar variations themselves. Measurements by the Active Cavity Radiometer (ACRIM) onboard the Solar Max satellite and by the Earth Radiation Budget (ERB) instrument onboard Nimbus 6 are now available which indicate solar-constant variations are positively correlated with solar activity over an 11-yr solar cycle, and are of order ± 1.0 W m -2 relative to a mean solar constant of S 0 = 1,367 W m -2 , ΔS/S 0 ∼ ± 0.07%. For a typical climate sensitivity parameter of β = S 0 ∂T/∂S ∼ 100 C, the corresponding variations in radiative equilibrium temperature at the Earth's surface are ΔT e ∼ ± 0.07 C. The realized temperature variations from solar forcing, ΔT, can be significantly smaller because of thermal damping by the ocean. The author considers effects of solar variability on the observed and projected history of the global temperature record in light of this data using an upwelling-diffusion ocean model to assess the effect of ocean thermal inertia on the thermal response. The response to harmonic variations of the 11-yr sunspot cycle is of order ΔT ∼ ± 0.02 C, though the coupling between response and forcing is stronger for long-term variations in the envelope of the solar cycle which more nearly match the thermal response time of the deep ocean

  19. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  20. Observations of Fe XIV Line Intensity Variations in the Solar Corona During the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Johnson, Payton; Ladd, Edwin

    2018-01-01

    We present time- and spatially-resolved observations of the inner solar corona in the 5303 Å line of Fe XIV, taken during the 21 August 2017 solar eclipse from a field observing site in Crossville, TN. These observations are used to characterize the intensity variations in this coronal emission line, and to compare with oscillation predictions from models for heating the corona by magnetic wave dissipation.The observations were taken with two Explore Scientific ED 102CF 102 mm aperture triplet apochromatic refractors. One system used a DayStar custom-built 5 Å FWHM filter centered on the Fe XIV coronal spectral line and an Atik Titan camera for image collection. The setup produced images with a pixel size of 2.15 arcseconds (~1.5 Mm at the distance to the Sun), and a field of view of 1420 x 1060 arcseconds, covering approximately 20% of the entire solar limb centered near the emerging sunspot complex AR 2672. We obtained images with an exposure time of 0.22 seconds and a frame rate of 2.36 Hz, for a total of 361 images during totality.An identical, co-aligned telescope/camera system observed the same portion of the solar corona, but with a 100 Å FWHM Baader Planetarium solar continuum filter centered on a wavelength of 5400 Å. Images with an exposure time of 0.01 seconds were obtained with a frame rate of 4.05 Hz. These simultaneous observations are used as a control to monitor brightness variations not related to coronal line oscillations.

  1. Solar flux incident on an orbiting surface after reflection from a planet

    Science.gov (United States)

    Modest, M. F.

    1980-01-01

    Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.

  2. Solar cycle and long term variations of mesospheric ice layers

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Kiliani, Johannes; Baumgarten, Gerd; Fiedler, Jens; Gerding, Michael

    2010-05-01

    Ice layers in the summer mesosphere at middle and polar latitudes, frequently called `noctilucent clouds' (NLC) or `polar mesosphere clouds'(PMC), are considered to be sensitive indicators of long term changes in the middle atmosphere. We present a summary of long term observations from the ground and from satellites and compare with results from the LIMA model (Leibniz Institute Middle Atmosphere Model). LIMA nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and thereby the morphology of ice clouds. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this give s negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. As will be shown, these trends originate in the stratosphere. Solar cycle effects are expected in ice layers due to variations in background temperatures and water paper. We will present results from LIMA regarding solar cycle variations and compare with NLC observations at our lidar stations in Kühlungsborn (54°N) and ALOMAR (69°N), and also with satellite measurements.

  3. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    Science.gov (United States)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  4. ON THE ORIGIN OF THE SLOW SPEED SOLAR WIND: HELIUM ABUNDANCE VARIATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cara E.; Laming, J. Martin [Space Science Division, Naval Research Laboratory Code 7674L, Washington, DC 20375 (United States)

    2012-07-20

    The first ionization potential (FIP) effect is the by now well-known enhancement in abundance over photospheric values of Fe and other elements with FIP below about 10 eV observed in the solar corona and slow speed solar wind. In our model, this fractionation is achieved by means of the ponderomotive force, arising as Alfven waves propagate through or reflect from steep density gradients in the solar chromosphere. This is also the region where low FIP elements are ionized, and high FIP elements are largely neutral leading to the fractionation as ions interact with the waves but neutrals do not. Helium, the element with the highest FIP and consequently the last to remain neutral as one moves upward, can be depleted in such models. Here, we investigate this depletion for varying loop lengths and magnetic field strengths. Variations in this depletion arise as the concentration of the ponderomotive force at the top of the chromosphere varies in response to Alfven wave frequency with respect to the resonant frequency of the overlying coronal loop, the magnetic field, and possibly also the loop length. We find that stronger depletions of He are obtained for weaker magnetic field, at frequencies close to or just above the loop resonance. These results may have relevance to observed variations of the slow wind solar He abundance with wind speed, with slower slow speed solar wind having a stronger depletion of He.

  5. Reactive solid surface morphology variation via ionic diffusion.

    Science.gov (United States)

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  6. Temporal Variation of Large Scale Flows in the Solar Interior ...

    Indian Academy of Sciences (India)

    tribpo

    Temporal Variation of Large Scale Flows in the Solar Interior. 355. Figure 2. Zonal and meridional components of the time-dependent residual velocity at a few selected depths as marked above each panel, are plotted as contours of constant velocity in the longitude-latitude plane. The left panels show the zonal component, ...

  7. Seasonal, Diurnal, and Solar-Cycle Variations of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2012-01-01

    Full Text Available We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar during three solar cycles (from cycle 20 to cycle 22, that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz. The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.

  8. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  9. Variation of the solar wind velocity following solar flares

    International Nuclear Information System (INIS)

    Huang, Y.; Lee, Y.

    1975-01-01

    By use of the superposed epoch method, changes in the solar wind velocity following solar flares have been investigated by using the solar wind velocity data obtained by Pioneer 6 and 7 and Vela 3, 4, and 5 satellites. A significant increase of the solar wind velocity has been found on the second day following importance 3 solar flares and on the third day following importance 2 solar flares. No significant increase of the solar wind velocity has been found for limb flares. (auth)

  10. L'assorbimento della radiazione solare su scala planetaria

    Directory of Open Access Journals (Sweden)

    S. SCIARRATTA

    1968-06-01

    Full Text Available In the present paper the AA. search an eventual phenomenon
    with the universal diurnal variation, which may influence the
    natural terrestrial phenomena. Considering that the first cause of the
    diurnal variations is the solar radiation arriving 011 the Earth, such a phenomenon
    may be founded in the diurnal rotation of the Earth, therefore
    1 lie regions illuminated by the sun are different according to the universal
    time. Since the regions of the Earth have different albedo, the solar radiation
    absorbed by the entire Earth will have an universal diurnal variation.
    The A A. have calculated the apparent surface (with the sun as a point
    of view of the lands and of the seas at different hours (U.T. and in the
    different period of the year.
    In order of include in computation the absorption of the solar radiation
    by the atmosphere, the AA. have calculated these surfaces with a
    correction due to this absorption. In these computations the eventual
    cloudiness not appears, because in this first approximation the cloudiness
    is supposed equal 011 the entire Earth. These surfaces with the correction
    of the atmospheric absorption are proportional to the solar energy really
    absorbed by the entire Earth.
    By the comparison of the universal diurnal variation of those surfaces
    with that of a natural phenomenon (the atmospheric electric field, the
    AA. show that it is possible, with some reductions, to make these variations
    coincide. These reductions are an advance of the maximum (4 hours and
    a coefficient which reckons the albedo's difference.
    The AA. recognize that it is no possible with this preliminary study
    to explain the influence of the solar energy absorbed by the entire Earth
    011 the atmospheric electric field; but according to the AA. this correlation
    will take an important contribution also to the researches for the general

  11. Solar Radius at Subterahertz Frequencies and Its Relation to Solar Activity

    Science.gov (United States)

    Menezes, Fabian; Valio, Adriana

    2017-12-01

    The Sun emits radiation at several wavelengths of the electromagnetic spectrum. In the optical band, the solar radius is 695 700 km, and this defines the photosphere, which is the visible surface of the Sun. However, as the altitude increases, the electromagnetic radiation is produced at other frequencies, causing the solar radius to change as a function of wavelength. These measurements enable a better understanding of the solar atmosphere, and the radius dependence on the solar cycle is a good indicator of the changes that occur in the atmospheric structure. We measure the solar radius at the subterahertz frequencies of 0.212 and 0.405 THz, which is the altitude at which these emissions are primarily generated, and also analyze the radius variation over the 11-year solar activity cycle. For this, we used radio maps of the solar disk for the period between 1999 and 2017, reconstructed from daily scans made by the Solar Submillimeter-wave Telescope (SST), installed at El Leoncito Astronomical Complex (CASLEO) in the Argentinean Andes. Our measurements yield radii of 966.5'' ±2.8'' for 0.2 THz and 966.5'' ±2.7'' for 0.4 THz. This implies a height of 5.0 ±2.0 ×106 m above the photosphere. Furthermore, we also observed a strong anticorrelation between the radius variation and the solar activity at both frequencies.

  12. Seasonal Variation in Solar Ultra Violet Radiation and Early Mortality in Extremely Preterm Infants.

    Science.gov (United States)

    Salas, Ariel A; Smith, Kelly A; Rodgers, Mackenzie D; Phillips, Vivien; Ambalavanan, Namasivayam

    2015-11-01

    Vitamin D production during pregnancy promotes fetal lung development, a major determinant of infant survival after preterm birth. Because vitamin D synthesis in humans is regulated by solar ultraviolet B (UVB) radiation, we hypothesized that seasonal variation in solar UVB doses during fetal development would be associated with variation in neonatal mortality rates. This cohort study included infants born alive with gestational age (GA) between 23 and 28 weeks gestation admitted to a neonatal unit between 1996 and 2010. Three infant cohort groups were defined according to increasing intensities of solar UVB doses at 17 and 22 weeks gestation. The primary outcome was death during the first 28 days after birth. Outcome data of 2,319 infants were analyzed. Mean birth weight was 830 ± 230 g and median gestational age was 26 weeks. Mortality rates were significantly different across groups (p = 0.04). High-intensity solar UVB doses were associated with lower mortality when compared with normal intensity solar UVB doses (hazard ratio: 0.70; 95% confidence interval: 0.54-0.91; p = 0.01). High-intensity solar UVB doses during fetal development seem to be associated with risk reduction of early mortality in preterm infants. Prospective studies are needed to validate these preliminary findings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  14. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region

    Science.gov (United States)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; hide

    2016-01-01

    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of region and investigated the short (regions. As the result, we found the regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.

  15. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  16. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles....... The two glasses are identical, except for the fact that one of them is equipped with antireflection surfaces by the company SunArc A/ S. The transmittance was increased by 5–9%-points due to the antireflection surfaces. The increase depends on the incidence angle. The efficiency at incidence angles of 08...... and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces...

  17. Solar Wind Variation with the Cycle I. S. Veselovsky,* A. V. Dmitriev ...

    Indian Academy of Sciences (India)

    tribpo

    The knowledge of the solar cycle variations in the heliospheric plasma and magnetic fields was .... El Borie, Μ. Α., Duldig, Μ. L., Humble, J. Ε. 1997, 25th International Cosmic Ray ... White, O. R. (Boulder: Colorado University Press), Chapter V.

  18. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  19. Solar Variability Magnitudes and Timescales

    Science.gov (United States)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  20. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    Science.gov (United States)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  1. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    Science.gov (United States)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  2. Seasonal variations of solar neutrino rates in lithium detector

    OpenAIRE

    Kopylov, Anatoly; Petukhov, Valery

    2002-01-01

    The presence of two monochromatic lines of approximately equal intensity: $^{7}$Be- and pep-neutrinos in the sensitivity plot of lithium detector makes the pattern of the seasonal variations of the effect from solar neutrinos very characteristic in case if the long-wave vacuum oscillations are realized. This can give the very high accuracy in the measurement of the parameters of neutrino oscillations especially if combined with the results obtained by the detector sensitive mainly to $^{7}$Be...

  3. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic

    Science.gov (United States)

    Xiao, Ziniu; Li, Delin

    2016-06-01

    The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.

  4. Characterization of the solar climate in Malawi using NASA's surface ...

    African Journals Online (AJOL)

    user

    Characterization of the solar climate in Malawi using. NASA's surface meteorology and solar energy. (SSE) model. Senganimalunje, T. C.1 and Tenthani, C. M. 2*. 1Malawi Bureau of Standards, Metrology Services Department, Box 946, Blantyre, Malawi. 2Physics and Biochemical Sciences Department, Malawi Polytechnic, ...

  5. Seismic Study of Magnetic Field in the Solar Interior H. M. Antia

    Indian Academy of Sciences (India)

    It is clear that the surface term is well correlated with the observed magnetic flux at the solar surface. Thus it is quite likely that observed asphericity near the solar surface is actually due to magnetic field. The left panel in Fig. 3 shows δc2/c2 obtained using MDI data. These results clearly show some temporal variations, but a ...

  6. Application of various surface passivation layers in solar cells

    International Nuclear Information System (INIS)

    Lee, Ji Youn; Lee, Soo Hong

    2004-01-01

    In this work, we have used different techniques for surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layers have been investigated both on phosphorus non-diffused p-type Float Zone (FZ) silicon wafers and on diffused emitters (100 Ω/□ and 40 Ω/□). CTO/SiN 1 passivates very well not only on a non-diffused surface (τ eff = 1361 μs) but also on an emitter (τ eff = 414 μs). However, we concluded that RTO/SiN 1 and RTO/SiN 2 stacks were more suitable than CTO/SiN stacks for surface passivation in solar cells since those stacks had relatively good passivation qualities and suitable optical reflections. RTO/SiN 1 for rear-surface passivation and RTO/SiN 2 for front-surface passivation were applied to the fabrication of solar cells. We achieved efficiencies of 18.5 % and 18.8 % on 0.5 Ω-cm (FZ) silicon with planar and textured front surfaces, respectively. An excellent open circuit voltage (V oc ) of 675.6 mV was obtained for the planar cell.

  7. Estimation of monthly solar exposure on horizontal surface by Angstrom-type regression equation

    International Nuclear Information System (INIS)

    Ravanshid, S.H.

    1981-01-01

    To obtain solar flux intensity, solar radiation measuring instruments are the best. In the absence of instrumental data there are other meteorological measurements which are related to solar energy and also it is possible to use empirical relationships to estimate solar flux intensit. One of these empirical relationships to estimate monthly averages of total solar radiation on a horizontal surface is the modified angstrom-type regression equation which has been employed in this report in order to estimate the solar flux intensity on a horizontal surface for Tehran. By comparing the results of this equation with four years measured valued by Tehran's meteorological weather station the values of meteorological constants (a,b) in the equation were obtained for Tehran. (author)

  8. MEASUREMENT OF SURFACE SOLAR UV-B RADIATION AT TROPICAL COASTAL STATION BAKKHALI IN WEST BENGAL, INDIA

    OpenAIRE

    R. BHATTACHARYA; A. BHOUMICK

    2012-01-01

    Surface solar ultraviolet irradiance has been measured at Bakkhali (21.8ºN, 87.8ºE), a tropical rural station on the coast of Bay of Bengal, India in West Bengal. The measurements show a remarkable variation in UV-B load exists with a peak value at noon. The blockage of direct UV radiation in mangrove forest of costal site appears low when compared with UV load beneath the multiple trees of Mangifera indica in an inland site of Kalyani (22058' N, 88028' E), West Bengal. Mangrove forests have ...

  9. Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century

    Directory of Open Access Journals (Sweden)

    A. Sanchez-Lorenzo

    2012-09-01

    Full Text Available Our knowledge on trends in surface solar radiation (SSR involves uncertainties due to the scarcity of long-term time series of SSR, especially with records before the second half of the 20th century. Here we study the trends of all-sky SSR from 1885 to 2010 in Switzerland, which have been estimated using a homogenous dataset of sunshine duration series. This variable is shown to be a useful proxy data of all-sky SSR, which can help to solve some of the current open issues in the dimming/brightening phenomenon. All-sky SSR has been fairly stable with little variations in the first half of the 20th century, unlike the second half of the 20th century that is characterized also in Switzerland by a dimming from the 1950s to the 1980s and a subsequent brightening. Cloud cover changes seem to explain the major part of the decadal variability observed in all-sky SSR, at least from 1885 to the 1970s; at this point, a discrepancy in the sign of the trend is visible in the all-sky SSR and cloud cover series from the 1970s to the present. Finally, an attempt to estimate SSR series for clear-sky conditions, based also on sunshine duration records since the 1930s, has been made for the first time. The mean clear-sky SSR series shows no relevant changes between the 1930s to the 1950s, then a decrease, smaller than the observed in the all-sky SSR, from the 1960s to 1970s, and ends with a strong increase from the 1980s up to the present. During the three decades from 1981 to 2010 the estimated clear-sky SSR trends reported in this study are in line with previous findings over Switzerland based on direct radiative flux measurements. Moreover, the signal of the El Chichón and Pinatubo volcanic eruption visible in the estimated clear-sky SSR records further demonstrates the potential to infer aerosol-induced radiation changes from sunshine duration observations.

  10. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    International Nuclear Information System (INIS)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-01-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  11. Temporal Variation of the Rotation of the Solar Mean Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-04-01

    Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.

  12. Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)

    Science.gov (United States)

    Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven

    2002-01-01

    Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that

  13. A variational approach to closed bosonic strings on bordered Riemann surfaces

    International Nuclear Information System (INIS)

    Ohrndorf, T.

    1987-01-01

    Polyakov's path integral for bosonic closed strings defined on a bordered Riemann surface is investigated by variational methods. It is demonstrated that boundary variations are generated by the Virasoro operators. The investigation is performed for both, simply connected Riemann surfaces as well as ringlike domains. It is shown that the form of the variational operator is the same on both kinds of surfaces. The Virasoro algebra arises as a consistency condition for the variation. (orig.)

  14. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  15. Implementation of solar-reflective surfaces: Materials and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  16. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  17. Solar activity indices as a proxy for the variation of ionospheric Total Electron Content (TEC) over Bahir Dar, Ethiopia during the year 2010-2014

    Science.gov (United States)

    Kassa, Tsegaye; Tilahun, Samson; Damtie, Baylie

    2017-09-01

    This paper was aimed at investigating the solar variations of vTEC as a function of solar activity parameters, EUV and F10.7 radio flux. The daily values of ionospheric vertical Total Electron Content (vTEC) were observed using a dual frequency GPS receiver deployed at Bahir Dar (11.6°N and 37.36°E), Ethiopia. Measurements were taken during the period of 2010-2014 for successive five years and analysis was done on only quiet day observations. A quadratic fit was used as a model to describe the daily variation of vTEC in relation to solar parameters. Linear and non-linear coefficients of the vTEC variations were calculated in order to capture the trend of the variation. The variation of vTEC have showed good agreement with the trend of solar parameters in almost all of the days we consider during the period of our observations. We have explicitly observed days with insignificant TECU deviation (eg. modeling with respect to EUV, DOY = 49 in 2010 and modeling with respect to F10.7, DOY = 125 in 2012 and the like) and days with maximum deviation (about 50 TECU). A maximum deviation were observed, on average, during months of equinox whereas minimum during solstice months. This implies that there is a need to consider more parameters, including EUV and F10.7, that can affect the variation of vTEC during equinox seasons. Relatively, small deviations was observed in modeling vTEC as a function of EUV compared to that of the variation due to F10.7 cm flux. This may also tell us that EUV can be more suitable in modeling the solar variation of vTEC especially for longterm trends. Even though, the linear trend of solar variations of vTEC was frequently observed, significant saturation and amplification trends of the solar variations of vTEC were also observed to some extent across the months of the years we have analyzed. This mixed trend of the solar variation of vTEC implies the need for thorough investigation on the effect of solar parameters on TEC. However, based on

  18. Corrosion protection of PVD and paint coatings for selective solar absorber surfaces

    OpenAIRE

    Nunes, A.; Carvalho, M. J.; Diamantino, Teresa C.; Fernandes, J. C. S.

    2015-01-01

    The selective solar absorber surface is a fundamental part of a solar thermal collector, as it is responsible for the solar radiation absorption and for reduction of radiation heat losses. The surface’s optical properties, the solar absorption (á) and the emittance (å), have great impact on the solar thermal collector efficiency. In this work, two coatings types were studied: coatings obtained by physical vapor deposition (PVDs) and coatings obtained by projection with different paints (PCs) ...

  19. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  20. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  1. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  2. Interannual Variation of the Surface Temperature of Tropical Forests from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Huilin Gao

    2016-01-01

    Full Text Available Land surface temperatures (LSTs within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I and the Special Sensor Microwave Imager Sounder (SSMIS, providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability of cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP reanalysis data.

  3. Concentration of sunlight to solar-surface levels using non-imaging optics

    Science.gov (United States)

    Gleckman, Philip; O'Gallagher, Joseph; Winston, Roland

    1989-05-01

    An account is given of the design and operational principles of a solar concentrator that employs nonimaging optics to achieve a solar flux equal to 56,000 times that of ambient sunlight, yielding temperatures comparable to, and with further development of the device, exceeding those of the solar surface. In this scheme, a parabolic mirror primary concentrator is followed by a secondary concentrator, designed according to the edge-ray method, which is filled with a transparent oil. The device may be used in materials-processing, waste-disposal, and solar-pumped laser applications.

  4. Seasonal variation of solar radiation and underwater irradiance in the Seto inland sea

    International Nuclear Information System (INIS)

    Endo, T.; Matsuda, O.; Imabayashi, H.

    1983-01-01

    The recent rapid eutrophication of the coastal seas of Japan has had a remarkable effect on the turbidity and transparency of the sea water, hence on the attenuation of underwater irradiance, which in turn influences the phytoplankton communities and primary productivity of the area. The present study deals with the continuous three years observation of the total short-wave radiation, direct short-wave radiation, diffused short-wave radiation and photosynthetically active radiation of tlle Seto Inland Sea. Along with these observations, reflected short-wave radiation from the sea and transmitted short-wave radiation into the sea were determined. The availability of solar radiation for primary production, vertical distribution of spectral irradiance and attenuation coefficient were also discussed in relation to the optical water type of the region. 1. A typical seasonal variation in the monthly mean daily solar radiation (total short-wave radiation) was observed, with a maximal value of 17.0 MJ 2 in July and minimal values of 7.4 to 7.5 MJ 2 through November to January. 2. Seasonal variation of direct short-wave radiation was nearly identical to that of total short-wave radiation, with 9.3 MJ 2 at maximum and 4.1MJ 2 at minimum. Diffused short-wave radiation increased in June and decreased in January. The ratio of diffused short-wave radiation to total short-wave radiation ranged from 394000 62% with an average of 49%.0 3. Seasonal variation of photosynthetically active radiation was very similar to that of direct short-wave radiation, with values of 7.3 MJ 2 in July and of 3.3 MJ 2 in December 4. The albedo at the sea surface changed according to the incidence angle and surface conditions. Average daily values ranged from 2.9% on a fine summer day to 10% on an overcasted day in winter. 5. Underwater irradiance at a depth of 50cm varied widely according to such parameters as turbidity and the surface condition of the water. Observation revealed a remarkable decrease

  5. CLASP/SJ Observations of Rapid Time Variations in the Ly α Emission in a Solar Active Region

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Shin-nosuke [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252–5210 (Japan); Kubo, Masahito; Katsukawa, Yukio; Kano, Ryouhei; Narukage, Noriyuki; Ishikawa, Ryohko; Bando, Takamasa [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Trujillo Bueno, Javier [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Auchère, Frédéric, E-mail: s.ishikawa@solar.isas.jaxa.jp [Institut d’Astrophysique Spatiale, CNRS/Univ. Paris-Sud 11, Bätiment 121, F-91405 Orsay (France)

    2017-09-10

    The Chromospheric Ly α SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on 2015 September 3 to investigate the solar chromosphere and transition region. The slit-jaw (SJ) optical system captured Ly α images with a high time cadence of 0.6 s. From the CLASP/SJ observations, many variations in the solar chromosphere and transition region emission with a timescale of <1 minute were discovered. In this paper, we focus on the active region within the SJ field of view and investigate the relationship between short (<30 s) temporal variations in the Ly α emission and the coronal structures observed by Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). We compare the Ly α temporal variations at the coronal loop footpoints observed in the AIA 211 Å (≈2 MK) and AIA 171 Å (≈0.6 MK) channels with those in the regions with bright Ly α features without a clear association with the coronal loop footpoints. We find more short (<30 s) temporal variations in the Ly α intensity in the footpoint regions. Those variations did not depend on the temperature of the coronal loops. Therefore, the temporal variations in the Ly α intensity at this timescale range could be related to the heating of the coronal structures up to temperatures around the sensitivity peak of 171 Å. No signature was found to support the scenario that these Ly α intensity variations were related to the nanoflares. Waves or jets from the lower layers (lower chromosphere or photosphere) are possible causes for this phenomenon.

  6. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    International Nuclear Information System (INIS)

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  7. Example Solar Electric Propulsion System asteroid tours using variational calculus

    Science.gov (United States)

    Burrows, R. R.

    1985-01-01

    Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.

  8. Optimum tilt angle and orientation for solar collectors in Syria

    International Nuclear Information System (INIS)

    Skeiker, Kamal

    2009-01-01

    One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle) for the solar collector in the main Syrian zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle) maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of approximately 30% more than the case of a solar collector fixed on a horizontal surface.

  9. Variations of Solar Non-axisymmetric Activity

    Science.gov (United States)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    The temporal behaviour of solar active longitudes has been examined by using two sunspot catalogues, the Greenwich Photoheliographic Results (GPR) and the Debrecen Photoheliographic Data (DPD). The time-longitude diagrams of the activity distribution reveal the preferred longitudinal zones and their migration with respect to the Carrington frame. The migration paths outline a set of patterns in which the activity zone has alternating prograde/retrograde angular velocities with respect to the Carrington rotation rate. The time profiles of these variations can be described by a set of successive parabolae. Two similar migration paths have been selected from these datasets, one northern path during cycles 21 - 22 and one southern path during cycles 13 - 14, for closer examination and comparison of their dynamical behaviours. The rates of sunspot emergence exhibited in both migration paths similar periodicities, close to 1.3 years. This behaviour may imply that the active longitude is connected to the bottom of convection zone.

  10. Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere

    Directory of Open Access Journals (Sweden)

    Igino Coco

    2011-01-01

    Full Text Available We show the results of a statistical study on the effects in the high-latitude ionosphere of abrupt variations of solar wind dynamic pressure, using Super Dual Auroral Radar Network (SuperDARN data in both hemispheres. We find that, during periods of quiet ionospheric conditions, the amount of radar backscatter increases when a variation in the dynamic pressure occurs, both positive (increase of the pressure and negative (decrease of the pressure. We also investigate the behaviour of the Cross-Polar Cap Potential (CPCP during pressure variations and show preliminary results.

  11. Sunspot variation and selected associated phenomena: a look at solar cycle 21 and beyond

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1982-02-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated

  12. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  13. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Hoeksema, J. Todd [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-01-10

    We have analyzed daily microwave images of the Sun at 17 GHz obtained with the Nobeyama Radioheliograph (NoRH) in order to study the solar cycle variations of the enhanced brightness in the polar regions. Unlike in previous works, the averaged brightness of the polar regions is obtained from individual images rather than from synoptic maps. We confirm that the brightness is anti-correlated with the solar cycle and that it has generally declined since solar cycle 22. Including images up to 2013 October, we find that the 17 GHz brightness temperature of the south polar region has decreased noticeably since 2012. This coincides with a significant decrease in the average magnetic field strength around the south pole, signaling the arrival of solar maximum conditions in the southern hemisphere more than a year after the northern hemisphere. We do not attribute the enhanced brightness of the polar regions at 17 GHz to the bright compact sources that occasionally appear in synthesized NoRH images. This is because they have no correspondence with small-scale bright regions in images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory with a broad temperature coverage. Higher-quality radio images are needed to understand the relationship between microwave brightness and magnetic field strength in the polar regions.

  14. A comparison between evaporation ponds and evaporation surfaces as a source of the concentrated salt brine for salt gradient maintenance at Tajoura solar pond

    International Nuclear Information System (INIS)

    Ramadan, Abdulghani M.; Agha, Khairy R.; Abughres, M.

    2012-01-01

    One of the main problems that negatively affect the operation of salt gradient solar ponds and influence its thermal stability is the maintenance of salt gradient profile. Evaporation pond (EP) is designed to generate the salt which lost upward salt diffusion from the lower convective zone (LCZ) of the solar pond. Another attractive method is the evaporation surface facility (ES). Regions with moderate to high precipitation favor Evaporation Surface over Evaporation Ponds. Dry climates will generally favor Evaporation Ponds for the brine re-concentration. In previous studies [1-3], the authors have shown that the (EP) of Tajoura's Experimental Solar Pond (TESP) is under sized and can provide only about 30% of the salt required by a Salt Gradient Solar Pond (SGSP). The anticipated size of (EP) was estimated and presented in those studies under different design conditions, including Summer, Autumn and Spring designs, while the winter design was excluded due to the low rates of net evaporation during the winter season. In addition, the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the (EP) of (TESP) and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by SGSP were predicted for both cases of surface water flushing (fresh water and sea-water) under the different design conditions as shown in Table 1. This paper investigates the differences between (EP) and (ES) both as a source for salt brine generation by evaporation. The effect of (EP) depth on the area ratio and daily variations of salt concentrations for three years of operation is shown. Results show that evaporation can be a reasonable method for salt brine generation. Reducing the depth of (EP) improves the capability of (EP) for brine re-concentration. It also increases the (EP) surface area for the same quantity of

  15. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    Science.gov (United States)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  16. Analysis of satellite-derived solar irradiance over the Netherlands

    Science.gov (United States)

    Dirksen, Marieke; Fokke Meirink, Jan; Sluiter, Raymond

    2017-04-01

    Measurements from geostationary satellites allow the retrieval of surface solar irradiance homogeneously over large areas, thereby providing essential information for the solar energy sector. In this paper, the SICCS solar irradiance data record derived from 12 years of Meteosat Second Generation satellite measurements is analysed with a focus on the Netherlands, where the spatial resolution is about 6 by 3 km2. Extensive validation of the SICCS data with pyranometer observations is performed, indicating a bias of approximately 3 W/m2 and RMSE of 11 W/m2 for daily data. Long term averages and seasonal variations of solar irradiance show regional patterns related to the surface type (e.g., coastal waters, forests, cities). The inter-annual variability over the time frame of the data record is quantified. Methods to merge satellite and surface observations into an optimized data record are explored.

  17. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    Energy Technology Data Exchange (ETDEWEB)

    Scargle, Jeffrey D.; Worden, Simon P. [NASA Ames Research Center, Moffett Field, CA, 94035 (United States); Keil, Stephen L. [National Solar Observatory, P.O. Box 57, Sunspot, NM 88349 (United States)

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  18. Solar activity variations of equatorial spread F occurrence and sustenance during different seasons over Indian longitudes: Empirical model and causative mechanisms

    Science.gov (United States)

    Madhav Haridas, M. K.; Manju, G.; Arunamani, T.

    2018-05-01

    A comprehensive analysis using nearly two decades of ionosonde data is carried out on the seasonal and solar cycle variations of Equatorial Spread F (ESF) irregularities over magnetic equatorial location Trivandrum (8.5°N, 77°E). The corresponding Rayleigh Taylor (RT) instability growth rates (γ) are also estimated. A seasonal pattern of ESF occurrence and the corresponding γ is established for low solar (LSA), medium solar (MSA) and high solar (HSA) activity periods. For LSA, it is seen that the γ maximizes during post sunset time with comparable magnitudes for autumnal equinox (AE), vernal equinox (VE) and winter solstice (WS), while for summer solstice (SS) it maximizes in the post-midnight period. Concurrent responses are seen in the ESF occurrence pattern. For MSA, γ maximizes during post-sunset for VE followed by WS and AE while SS maximises during post-midnight period. The ESF occurrence for MSA is highest for VE (80%), followed by AE (70%), WS (60%) and SS (50%). In case of HSA, maximum γ occurs for VE followed by AE, WS and SS. The concurrent ESF occurrence maximizes for VE and AE (90%), WS and SS at 70%. The solar cycle variation of γ is examined. γ shows a linear variation with F10.7 cm flux. Further, ESF percentage occurrence and duration show an exponential and linear variation respectively with γ. An empirical model on the solar activity dependence of ESF occurrence and sustenance time over Indian longitudes is arrived at using the database spanning two solar cycles for the first time.

  19. A solar radiation database for Chile.

    Science.gov (United States)

    Molina, Alejandra; Falvey, Mark; Rondanelli, Roberto

    2017-11-01

    Chile hosts some of the sunniest places on earth, which has led to a growing solar energy industry in recent years. However, the lack of high resolution measurements of solar irradiance becomes a critical obstacle for both financing and design of solar installations. Besides the Atacama Desert, Chile displays a large array of "solar climates" due to large latitude and altitude variations, and so provides a useful testbed for the development of solar irradiance maps. Here a new public database for surface solar irradiance over Chile is presented. This database includes hourly irradiance from 2004 to 2016 at 90 m horizontal resolution over continental Chile. Our results are based on global reanalysis data to force a radiative transfer model for clear sky solar irradiance and an empirical model based on geostationary satellite data for cloudy conditions. The results have been validated using 140 surface solar irradiance stations throughout the country. Model mean percentage error in hourly time series of global horizontal irradiance is only 0.73%, considering both clear and cloudy days. The simplicity and accuracy of the model over a wide range of solar conditions provides confidence that the model can be easily generalized to other regions of the world.

  20. Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity

    NARCIS (Netherlands)

    Mauquoy, D; van Geel, B; Blaauw, Maarten; van der Plicht, J

    2002-01-01

    Fluctuations in Holocene atmospheric radiocarbon concentrations have been shown to be due to variations in solar activity. Analyses of both Be-10 and C-14 nuclides confirm that production-rate changes during the Holocene were largely modulated by solar activity. Analyses of peat samples from two

  1. Time-causal decomposition of geomagnetic time series into secular variation, solar quiet, and disturbance signals

    Science.gov (United States)

    Rigler, E. Joshua

    2017-04-26

    A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.

  2. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres; Wan, Yimao; Yan, Di; Samundsett, Christian; Allen, Thomas; Zhang, Xinyu; Cui, Jie; Bullock, James

    2018-01-01

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine

  3. METHOD AND APPARATUS FOR CHARACTERIZATION OF A SOLAR CELL

    DEFF Research Database (Denmark)

    2017-01-01

    ; and estimating variations in the solar cell, thereby electrically characterizing the solar cell. The disclosure further relates to a solar cell characterization apparatus for characterization of a solar cell, comprising: a light source for generating an optical probe light; a modulation unit, configured...... to produce modulated probe light by modulating the optical probe light with a modulation frequency of between 100 kHz and 0 MHz; a light scanning unit for scanning the modulated probe light such that said modulated probe light is incident on at least a part of the surface of the solar cell; and a 1 signal...

  4. Surface transformation hardening on steels treated with solar energy in central tower and heliostats field

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G.P.; Lopez, V.; de Damborenea, J.J.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas CENIM/CSIC, Madrid (Spain)

    1995-04-28

    The possibility of surface hardening on AISI 4140 steel treated with concentrated solar energy in solar installations for electricity production has been studied. The samples were slides from a 35 mm diameter steel bar and their height was 35 mm. The quenching was made in water but also was considered the possibility of self-quenching by cooling in air. The amount of the surface hardness and the different structures obtained in both cases are presented, and some discussion is made with reference to the surface hardness, the hardness profiles and the structures obtained. The heating of steel with concentrated solar energy may produce similar hardening to that obtained with more conventional techniques of surface hardening

  5. Optimization of imprintable nanostructured a-Si solar cells: FDTD study.

    Science.gov (United States)

    Fisker, Christian; Pedersen, Thomas Garm

    2013-03-11

    We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.

  6. Spectro-Polarimetry of Fine-Grained Ice and Dust Surfaces Measured in the Laboratory to Study Solar System Objects and Beyond

    Science.gov (United States)

    Poch, O.; Cerubini, R.; Pommerol, A.; Thomas, N.; Schmid, H. M.; Potin, S.; Beck, P.; Schmitt, B.; Brissaud, O.; Carrasco, N.; Szopa, C.; Buch, A.

    2017-12-01

    The polarization of the light is very sensitive to the size, morphology, porosity and composition of the scattering particles. As a consequence, polarimetric observations could significantly complement observations performed in total light intensity, providing additional constraints to interpret remote sensing observations of Solar System and extra-solar objects. This presentation will focus on measurements performed in the laboratory on carefully characterized surface samples, providing reference data that can be used to test theoretical models and predict or interpret spectro-polarimetric observations. Using methods developed in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern, we produce well-characterized and reproducible surfaces made of water ice particles having different grain sizes and porosities, as well as mineral/organic dusts, pure or mixed together, as analogues of planetary or small bodies surfaces. These surface samples are illuminated with a randomly polarized light source simulating the Sun. The polarization of their scattered light is measured at multiple phase angles and wavelengths, allowing to study the shape of the polarimetric phase curves and their spectral dependence, with two recently developed setups: The POLarimeter for Icy Samples (POLICES), at the University of Bern, allows the measurement of the weak polarization of ice surfaces from 400 to 800 nm, with direct application to icy satellites. Using a precision Stokes polarimeter, this setup is also used to study the spectral variations of circular polarization in the light scattered by biotic versus abiotic surfaces. The Spectrogonio radiometer with cHanging Angles for Detection Of Weak Signals (SHADOWS), at IPAG (University of Grenoble Alpes), measures linear polarization spectra from 0.35 to 5 μm in the light scattered by dark meteorite powders or icy samples, with application to primitive objects of the Solar System (asteroids, comets).

  7. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  8. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  9. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  10. 27-day variation in solar-terrestrial parameters: Global characteristics and an origin based approach of the signals

    Science.gov (United States)

    Poblet, Facundo L.; Azpilicueta, Francisco

    2018-05-01

    The Earth and the near interplanetary medium are affected by the Sun in different ways. Those processes generated in the Sun that induce perturbations into the Magnetosphere-Ionosphere system are called geoeffective processes and show a wide range of temporal variations, like the 11-year solar cycle (long term variations), the variation of ∼27 days (recurrent variations), solar storms enduring for some days, particle acceleration events lasting for some hours, etc. In this article, the periodicity of ∼27 days associated with the solar synodic rotation period is investigated. The work is mainly focused on studying the resulting 27-day periodic signal in the magnetic activity, by the analysis of the horizontal component of the magnetic field registered on a set of 103 magnetic observatories distributed around the world. For this a new method to isolate the periodicity of interest has been developed consisting of two main steps: the first one consists of removing the linear trend corresponding to every calendar year from the data series, and the second one of removing from the resulting series a smoothed version of it obtained by applying a 30-day moving average. The result at the end of this process is a data series in which all the signal with periods larger than 30 days are canceled. The most important characteristics observed in the resulting signals are two main amplitude modulations: the first and most prominent related to the 11-year solar cycle and the second one with a semiannual pattern. In addition, the amplitude of the signal shows a dependence on the geomagnetic latitude of the observatory with a significant discontinuity at approx. ±60°. The processing scheme was also applied to other parameters that are widely used to characterize the energy transfer from the Sun to the Earth: F10.7 and Mg II indices and the ionospheric vertical total electron content (vTEC) were considered for radiative interactions; and the solar wind velocity for the non

  11. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    Science.gov (United States)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  12. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  13. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  14. Mapping of the seasonal dynamic properties of building walls in actual periodic conditions and effects produced by solar radiation incident on the outer and inner surfaces of the wall

    International Nuclear Information System (INIS)

    Mazzeo, D.; Oliveti, G.; Arcuri, N.

    2016-01-01

    Highlights: • Dynamic thermal behaviour of building walls subjected to actual periodic loadings. • Dynamic parameters of wall in terms of energy and of heat flux are defined. • Different solar absorption coefficients and orientations of wall are considered. • On the internal surface is present or absent a shortwave radiant field. • Seasonal thermal characteristics for different plant operating regime are provided. - Abstract: In this work, the dynamic characteristics of the external walls of air-conditioned buildings subject to the joint action of periodic non-sinusoidal external and internal loadings are determined. The dynamic parameters used are the energy decrement factor, which is evaluated by means of the fluctuating heat flux in a semi-period exiting and entering the wall, the decrement factor of the maximum peak and minimum peak of the heat flux in a period and the relative time lags. The fluctuating heat flux in the wall in steady periodic regime conditions is determined with an analytical model obtained by resolving the equivalent electrical circuit. The preceding parameters are used for a study of the influence of solar radiation on the dynamic characteristics of the walls in summer and winter air-conditioning. Solar radiation is considered as operating on the external surface and on the internal surface due to the presence in the indoor environments of a shortwave radiant field. The absorbed solar heat flux by the external surface varies, modifying the solar absorption coefficient and wall orientation. Indoors, we considered a continuous operating regime of the plant and a regime with nocturnal attenuation. The results obtained, relating to 1152 different boundary conditions, were used for the construction of maps of dynamic characteristics, different on variation of the plant functioning regime and of the shortwave radiant load on the internal surface. The maps show the dependence of the decrement factors and of the time lags on variation of

  15. Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells

    Directory of Open Access Journals (Sweden)

    Lubomir Scholtz

    2014-01-01

    Full Text Available Increasing efficiency of solar cells is still a discussed problem. Even if it is well-known that specially formed substrates as Asahi U-type for solar cells are produced, there is still a continuing attention given to the applications of surface roughness to achieve better light trapping and absorptance in solar cells. It was found out the even an exact interface morphology can play an important role in light trapping. In this paper we focused on the issue how final absorptance of a solar cell structure could be affected and possibly increased. The goal of this article is to show which of interfaces has the greatest influence on specular absorptance of the whole structure.

  16. Design of a solar concentrator considering arbitrary surfaces

    Science.gov (United States)

    Jiménez-Rodríguez, Martín.; Avendaño-Alejo, Maximino; Verduzco-Grajeda, Lidia Elizabeth; Martínez-Enríquez, Arturo I.; García-Díaz, Reyes; Díaz-Uribe, Rufino

    2017-10-01

    We study the propagation of light in order to efficiently redirect the reflected light on photocatalytic samples placed inside a commercial solar simulator, and we have designed a small-scale prototype of Cycloidal Collectors (CCs), resembling a compound parabolic collector. The prototype consists of either cycloidal trough or cycloidal collector having symmetry of rotation, which has been designed considering an exact ray tracing assuming a bundle of rays propagating parallel to the optical axis and impinging on a curate cycloidal surface, obtaining its caustic surface produced by reflection.

  17. Surface texture generation during cylindrical milling in the aspect of cutting force variations

    International Nuclear Information System (INIS)

    Wojciechowski, S; Twardowski, P; Pelic, M

    2014-01-01

    The work presented here concentrates on surface texture analysis, after cylindrical milling of hardened steel. Cutting force variations occurring in the machining process have direct influence on the cutter displacements and thus on the generated surface texture. Therefore, in these experiments, the influence of active number of teeth (z c ) on the cutting force variations was investigated. Cutting forces and cutter displacements were measured during machining process (online) using, namely piezoelectric force dynamometer and 3D laser vibrometer. Surface roughness parameters were measured using stylus surface profiler. The surface roughness model including cutting parameters (f z , D) and cutting force variations was also developed. The research revealed that in cylindrical milling process, cutting force variations have immediate influence on surface texture generation

  18. ANALYSIS OF THE INTRA-CITY VARIATION OF URBAN HEAT ISLAND AND ITS RELATION TO LAND SURFACE/COVER PARAMETERS

    Directory of Open Access Journals (Sweden)

    D. Gerçek

    2016-06-01

    Full Text Available Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI, imperviousness (NDISI, albedo, solar insolation, Sky View Factor (SVF, building

  19. Analysis of the Intra-City Variation of Urban Heat Island and its Relation to Land Surface/cover Parameters

    Science.gov (United States)

    Gerçek, D.; Güven, İ. T.; Oktay, İ. Ç.

    2016-06-01

    Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope

  20. Long-period variations of wind parameters in the mesopause region and the solar cycle dependence

    International Nuclear Information System (INIS)

    Greisiger, K.M.; Schminder, R.; Kuerschner, D.

    1987-01-01

    The solar cycle dependence of wind parameters below 100 km on the basis of long term continuous ionospheric drift measurements in the low frequency range is discussed. For the meridional prevailing wind no significant variation was found. The same comparison as for winter was done for summer where the previous investigations gave no correlation. Now the radar meteor wind measurement values, too, showed a significant negative correlation of the zonal prevailing wind with solar activity for the years 1976 to 1983. The ionospheric drift measurement results of Collm have the same tendency but a larger dispersion due to the lower accuracy of the harmonic analysis because of the shorter daily measuring interval in summer. Continuous wind observations in the upper mesopause region over more than 20 years revealed distinct long term variations, the origin of which cannot be explained with the present knowledge

  1. Modeling and Zoning Solar Energy Received at the Earth's Surface in Arid and Semiarid Regions of Central Iran

    Directory of Open Access Journals (Sweden)

    azam gholamnia

    2017-02-01

    Full Text Available Introduction: Solar radiation (Rs energy received at the Earth's surface is measured usingclimatological variables in horizontal surface and is widely used in various fields. Domination of hot and dry climates especially in the central regions of Iran results from decreasing cloudiness and precipitation and increasing sunshine hours, which shows the high potential of solar energy in Iran. There is a reasonable climatic field and solar radiation in most of regions and seasons which have provided an essential and suitable field to use and extend new and pure energy. Materials and Methods: One of the common methods to estimate the solar energy received by the earthis usingtemperature variables in any place . An empirical model is proposed to estimate the solar energy as a function of other climatic variables (maximum temperature recorded in 50 climatological, conventional stations; this model is helpful inextending the climatological solar-energy estimation in the study area. The mean values of both measured and estimated solar energy wereobjectively mapped to fill the observation gaps and reduce the noise associated with inhomogeneous statistics and estimation errors. This analysis and the solar irradiation estimation method wereapplied to 50 different climatologicalstations in Iran for monthly data during1980–2005. The main aim of this study wasto map and estimate the solar energy received in four provinces of Yazd, Esfahan, Kerman and Khorasan-e-Jonoubi.The data used in this analysis and its processing, as well as the formulation of an empirical model to estimate the climatological incident of solar energy as a function of other climatic variables, which is complemented with an objective mapping to obtain continuous solar-energy maps. Therefore, firstly the Rswasestimated using a valid model for 50 meteorological stations in which the amounts of solar radiation weren't recorded for arid and semi-arid areas in Iran. Then, the appropriate method

  2. Sb₂S₃ surface modification induced remarkable enhancement of TiO₂ core/shell nanowries solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiuqing, E-mail: xqmeng@semi.ac.cn [Research Center for Light Emitting Diodes (LED), Zhejiang Normal University, Jinhua 321004 (China); Wang, Xiaozhou; Zhong, Mianzeng; Wu, Fengmin; Fang, Yunzhang [Research Center for Light Emitting Diodes (LED), Zhejiang Normal University, Jinhua 321004 (China)

    2013-05-01

    This study presents the fabrication of a novel dye-sensitized solar cell with Sb₂S₃-modified TiO₂ nanowire (NW) arrays/TiO₂ nanoparticles (NP) (TiO₂(NWs)/TiO₂(NPs)/Sb₂S₃) as the anodes and N719 dye as the sensitizer. A solar conversion efficiency of 4.91% at 1 sun illumination was achieved for the composite cell, which is markedly higher than the efficiency rates obtained using TiO₂ and TiO₂(NWs)/Sb₂S₃/TiO₂(NPs) NW cells, calculated at 2.36% and 3.11%, respectively. The improved efficiency results from the large surface area of the NPs, as well as the expansion of the light absorption region and high absorption coefficient by Sb₂S₃ surface modification. - Graphical abstract: A novel TiO₂(NWs)/TiO₂(NPs)/Sb₂S₃ dye sensitized solar cells (DSSCs) is fabricated, a solar conversion efficiency of 4.91 % at 1 sun illumination is achieved. Highlights: • We fabricate sandwich structured TiO₂ dye-sensitized solar cells. • The anode of the solar cells consist of Sb₂S₃ modified TiO₂ nanowire arrays/TiO₂ nanopartices. • A solar conversion efficiency of 4.91% at 1 sun illumination is achieved. • The high efficiency results from large surface area and expanded light adsorption of the anode.

  3. Latitudinal variation of the topside electron temperature at different levels of solar activity

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila

    2009-01-01

    Roč. 44, č. 6 (2009), s. 693-700 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300420603 Grant - others: NASA (US) NNH06CD17C Institutional research plan: CEZ:AV0Z30420517 Keywords : Electron temperature * Solar activity variation * Latitudinal dependence Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.079, year: 2009

  4. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  5. Development of Surfaces Optically Suitable for Flat Solar Panels

    Science.gov (United States)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  6. Detecting drift bias and exposure errors in solar and photosynthetically active radiation data

    Science.gov (United States)

    All-black thermopile pyranometers are commonly used to measure solar radiation. Ensuring that the sensors are stable and free of drift is critical to accurately measure small variations in global solar irradiance (K'), which is a potential driver of changes in surface temperature. We demonstrate tha...

  7. Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

    International Nuclear Information System (INIS)

    Al Touma, Albert; Ghali, Kamel; Ghaddar, Nesreen; Ismail, Nagham

    2016-01-01

    This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%. The proposed system is applied to a typical office space to analyze its effectiveness in reducing the window temperature, the space load and radiation asymmetry, while maintaining the indoor comfort conditions. Results have shown that the system is reduced the space load by −19.8% and attenuated the radiation asymmetry significantly for office spaces having window-to-wall ratio of 40% in climate of Riyadh, KSA. The system performance diminished when applied in locations suffering from humid weather climates. - Highlights: • A passive evaporative-cooled solar chimney system is introduced to decrease window temperature. • A mathematical model is developed of the system to predict induce air flow and window surface temperature. • The model is validated with experiments in twin room climatic chamber and using artificial solar lamps. • The system reduces window maximum temperature by 5 °C in the hot dry climate of Riyadh, KSA. • It reduced the space load by 19.4% for office spaces at window-to-wall ratio of 40% in Riyadh, KSA.

  8. Variation of Magnetic Field (By , Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    OpenAIRE

    Ga-Hee Moon

    2011-01-01

    It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...

  9. Variational reconstruction using subdivision surfaces with continuous sharpness control

    Institute of Scientific and Technical Information of China (English)

    Xiaoqun Wu; Jianmin Zheng; Yiyu Cai; Haisheng Li

    2017-01-01

    We present a variational method for subdivision surface reconstruction from a noisy dense mesh.A new set of subdivision rules with continuous sharpness control is introduced into Loop subdivision for better modeling subdivision surface features such as semi-sharp creases,creases,and corners.The key idea is to assign a sharpness value to each edge of the control mesh to continuously control the surface features.Based on the new subdivision rules,a variational model with L1 norm is formulated to find the control mesh and the corresponding sharpness values of the subdivision surface that best fits the input mesh.An iterative solver based on the augmented Lagrangian method and particle swarm optimization is used to solve the resulting non-linear,non-differentiable optimization problem.Our experimental results show that our method can handle meshes well with sharp/semi-sharp features and noise.

  10. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Linfang; Wang, Dan; Ye, Yuqian; Qian, Jun; He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Zuo, Lijian; Chen, Hongzheng [Department of Polymer Science and Engineering, State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2011-03-15

    We use gold nanospheres (Au NSs) to improve the performance of polymer organic solar cells. Au NSs with a diameter of about 5 nm or 15 nm were doped into the buffer layer of organic solar cells. We attribute the efficiency improvement to the size-dependent localized surface plasmon resonance (LSPR) effect of Au NSs, which can enhance the light harvest ability of active layer around the Au NSs, and increase the probability of the exciton generation and dissociation. Our results show that solar cells doped with 15 nm-diameter Au NSs exhibit significant improvement of the efficiency (from 1.99% to 2.36%), while solar cells doped with only 5 nm-diameter Au NSs did not give obvious improvement of the performance. (author)

  11. Study of double porous silicon surfaces for enhancement of silicon solar cell performance

    Science.gov (United States)

    Razali, N. S. M.; Rahim, A. F. A.; Radzali, R.; Mahmood, A.

    2017-09-01

    In this work, design and simulation of double porous silicon surfaces for enhancement of silicon solar cell is carried out. Both single and double porous structures are constructed by using TCAD ATHENA and TCAD DEVEDIT tools of the SILVACO software respectively. After the structures were created, I-V characteristics and spectral response of the solar cell were extracted using ATLAS device simulator. Finally, the performance of the simulated double porous solar cell is compared with the performance of both single porous and bulk-Si solar cell. The results showed that double porous silicon solar cell exhibited 1.8% efficiency compared to 1.3% and 1.2% for single porous silicon and bulk-Si solar cell.

  12. Towards corrosion testing of unglazed solar absorber surfaces in simulated acid rain

    International Nuclear Information System (INIS)

    Salo, T.; Pehkonen, A.; Konttinen, P.; Lund, P.

    2005-01-01

    Electrochemical impedance spectroscopy and potentiodynamic polarization tests were utilized for determining corrosion probabilities of unglazed C/Al 2 O 3 /Al solar absorber surfaces in simulated acid rain. Previously, the main degradation mechanism found was exponentially temperature-related hydration of aluminium oxide. In acid rain tests the main corrosion determinant was the pH value of the rain. Results indicate that these methods measure corrosion characteristics of Al substrate instead of the C/Al 2 O 3 /Al surface, probably mainly due to the rough and non-uniform microstructure of the latter. Further analyses of the test methods are required in order to estimate their applicability on Al-based uniform sputtered absorber surfaces. (author) (C/Al 2 O 3 /Al solar absorber; Acid rain; Corrosion; Electrochemical tests)

  13. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    Science.gov (United States)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  14. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  15. Solar and Geomagnetic Activity Variations Correlated to Italian M6+ Earthquakes Occurred in 2016

    Science.gov (United States)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2017-04-01

    Between August 2016 and October 2016 in Italy were recorded three strong earthquakes: M6.2 on August 2016 at 01:36:32 UTC; M6.1 on October 26, 2016 at 19:18:08 UTC and M6,6 on October 30, 2016 at 06:40:18 UTC. The authors of this study wanted to verify the existence of a correlation between these earthquakes and solar/geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the three earthquakes. The data relating to the three earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark; Dikson Geomagnetic Observatory (DIK), Russia and by Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already ascertained by authors from 2012, have confirmed that the three strong Italian earthquakes were preceded by a clear increase of the solar wind proton density which

  16. Activity of processes on the visible surface of planets of Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  17. Plane-concentrators solar collectors: analysis of the heating performance using surface resistances; Coletores solares plano-concentradores: analise do desempenho termico utilizando resistencias superficiais

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, I.M.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C.M. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1984-12-31

    In this work it is developed theoretical model which utilizes the Oppenheim concepts of surface and spatial resistances for thermal radiation transfer on solid surfaces in order to determine the heating performance of plane-concentrators solar collectors. It is shown that the shape factor for trapezoidal geometries, which includes the reflecting surfaces, may be utilized to determine the solar concentration chamber effective absorptivity with reasonable degree of accuracy. The experimental results measured on 2:1 plane-concentrators confirm the theoretical values. (author). 13 refs., 5 figs

  18. Plane-concentrators solar collectors: analysis of the heating performance using surface resistances; Coletores solares plano-concentradores: analise do desempenho termico utilizando resistencias superficiais

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, I M.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C M [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1985-12-31

    In this work it is developed theoretical model which utilizes the Oppenheim concepts of surface and spatial resistances for thermal radiation transfer on solid surfaces in order to determine the heating performance of plane-concentrators solar collectors. It is shown that the shape factor for trapezoidal geometries, which includes the reflecting surfaces, may be utilized to determine the solar concentration chamber effective absorptivity with reasonable degree of accuracy. The experimental results measured on 2:1 plane-concentrators confirm the theoretical values. (author). 13 refs., 5 figs

  19. Efficiency enhancement of InP nanowire solar cells by surface cleaning

    NARCIS (Netherlands)

    Cui, Y.; Wang, J.; Plissard, S.R.; Cavalli, A.; Vu, T.T.T.; Veldhoven, van P.J.; Gao, L.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p–n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We

  20. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  1. Investigation of variations and trends in solar radiation in Klang Valley Region, Malaysia

    International Nuclear Information System (INIS)

    Mohamed Elnour Yassen, Jamaluddin Mohd Jahi

    2006-01-01

    The objective of this study is to investigate variations and trends in the global solar radiation in Klang Valley region. The least square method was used for the trend analysis. Since the available time series covers 27 years, linear regression was preferred for the trend analysis. The linear trend is used mainly to test the change in solar radiation and to set limits on the rate of change. Trend line and values and significance levels of the slopes have been found. The seasonal and the annual average values were computed from the monthly average radiation data. The seasonal and annual average solar radiation values were designated as dependent variables, and thus, were fitted linearly for season and annual means for each station. The results showed that the mean of maximum incoming global radiation in Sepember with a value of 21.1 MJ m-2 at Petaling Jaya, while the mean minimum in November and December with values of 10.7 and 10.9 MJ m-2 at Petaling Jaya. The low amounts of solar radiation received in November and December are due to greater cloudiness during the period coinciding with the northeast monsoon season. On rainy days, very little global solar radiation received in November and December are due to greater cloudiness during the period coinciding with the northeast monsoon season. On rainy days, very little global solar radiation is received. The distribution of the seasonal mean values of solar radiation exhibits a high symmetry. Inter-monsoon seasons (April-May) and (October-November) show a similar behavior, just like the northeast monsoon season. The overall average rate of change in global solar radiation during 1975-2002 and 1977-2000 is represented by the slope of the linear regression was small (-0.126 and -0.314 MJ m-2 per year for Subang Airport and Petaling Jaya respectively)

  2. Secular variations in composition of the solar wind - Evidence and causes

    International Nuclear Information System (INIS)

    Kerridge, J.F.

    1980-01-01

    Variations in the composition of the regolith due to irradiation by the solar wind are examined by categorizing the exposure history recorded in each sample. The history can be defined by two parameters: the duration of solar wind exposure (maturity) and a measure of how long the exposure took place (antiquity). Three partially successful methods for determining antiquity are described: the regolith contains small amounts of unsupported, trapped radiogenic noble gases, the most common being Ar-40. Assuming relatively prompt outgassing of the lunar interior, the amount of Ar-40 implanted per unit time should be proportional to the lunar content of K-40, and thus should have decayed exponentially over the lifetime of the moon. Normalization to constant exposure duration is achieved by taking the ratio Ar-40/Ar-36 in trapped gas, Ar-36 being an efficiently trapped solar wind species. The second method involves the interaction between galactic cosmic rays and lunar material producing certain spallogenic nuclides which may be analyzed in terms of a cosmic ray exposure age. The third method deals with the fact that there is a general tendency for depth within a core to be related to time deposition; two variants of this method are presented

  3. Commentary Relative to the Emission Spectrum of the Solar Atmosphere: Further Evidence for a Distinct Solar Surface

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere and corona of the Sun represent tenuous regions which are characterized by numerous optically thin emission lines in the ultraviolet and X-ray bands. When observed from the center of the solar disk outward, these emission lines experience modest brightening as the limb is approached. The intensity of many ultraviolet and X-ray emission lines nearly doubles when observation is extended just beyond the edge of the disk. These findings indicate that the solar body is opaque in this frequency range and that an approximately two fold greater region of the solar atmosphere is being sampled outside the limb. These observations provide strong support for the presence of a distinct solar surface. Therefore, the behavior of the emission lines in this frequency range constitutes the twenty fifth line of evidence that the Sun is comprised of condensed matter

  4. TEMPORAL AND SPATIAL VARIATION IN SOLAR RADIATION AND PHOTO-ENHANCED TOXICITY RISKS OF SPILLED OIL IN PRINCE WILLIAM SOUND, ALASKA

    Science.gov (United States)

    Solar irradiance (W/m2) and downwelling diffuse attenuation coefficients (Kd; m-1) were determined in several locations in Prince William Sound, Alaska, USA, between April 2003 and December 2005 to assess temporal and spatial variation in solar radiation and the risks of photoenh...

  5. Variational mesh segmentation via quadric surface fitting

    KAUST Repository

    Yan, Dongming; Wang, Wen Ping; Liu, Yang; Yang, Zhouwang

    2012-01-01

    We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

  6. Variational mesh segmentation via quadric surface fitting

    KAUST Repository

    Yan, Dongming

    2012-11-01

    We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

  7. Characteristic studies on solar x-ray flares and solar radio bursts during descending phases of solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Bhattacharya, J.; De, B.K.; Guha, A.

    2014-01-01

    In this paper, a comparative study between the solar X-ray flares and solar radio bursts in terms of their duration and energy has been done. This has been done by analyzing the data in a statistical way covering the descending phase of the 22nd and 23rd solar cycles. It has been observed that the most probable value of duration of both solar X-ray flares and solar radio bursts remain same for a particular cycle. There is a slight variation in the most probable value of duration in going from 22nd cycle to 23rd cycle in the case of both kinds of events. This small variation may be due to the variation of polar field. A low correlation has been observed between energy fluxes in solar X-ray flares and in solar radio bursts. This has been attributed to the non symmetric contribution of energy to the solar radio and X-ray band controlled by solar magnetic field

  8. Pressure effects on interfacial surface contacts and performance of organic solar cells

    NARCIS (Netherlands)

    Agyei-Tuffour, B.; Doumon, Nutifafa Y.; Rwenyagila, E. R.; Asare, J.; Oyewole, O. K.; Shen, Z.; Petoukhoff, C. E.; Zebaze Kana, M. G.; Ocarroll, D. M.; Soboyejo, W. O.

    2017-01-01

    This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and

  9. Measuring solar reflectance - Part II: Review of practical methods

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23 ], and to within 0.02 for surface slopes up to 12:12 [45 ]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R{sub g,0}{sup *}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R{sub g,0}{sup *} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R{sub g,0}{sup *} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R{sub g,0}{sup *} to within about 0.01. (author)

  10. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  11. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  12. Effect of solar radiation on surface ozone in Cairo

    Energy Technology Data Exchange (ETDEWEB)

    Rizk, H F.S. [National Research Centre, Air Pollution Research Dept., Cairo (Egypt)

    1992-04-01

    Measurements of surface ozone content over an urban area in Cairo were conducted during a year, May 1989 to April 1990, while solar radiation at the same area was measured. Low and high concentrations of ozone are compared with those recommended by the WHO expert committee regarding the daily cycle of ozone concentration. 15 refs.

  13. Seasonal variation and solar activity dependence of the quiet-time ionospheric trough

    Science.gov (United States)

    Ishida, T.; Ogawa, Y.; Kadokura, A.; Hiraki, Y.; Häggström, I.

    2014-08-01

    We have conducted a statistical analysis of the ionospheric F region trough, focusing on its seasonal variation and solar activity dependence under geomagnetically quiet and moderate conditions, using plasma parameter data obtained via Common Program 3 observations performed by the European Incoherent Scatter (EISCAT) radar between 1982 and 2011. We have confirmed that there is a major difference in frictional heating between the high- and low-latitude sides of the EISCAT field of view (FOV) at ~73°0'N-60°5'N (geomagnetic latitude) at an altitude of 325 km, which is associated with trough formation. Our statistical results show that the high-latitude and midlatitude troughs occur on the high- and low-latitude sides of the FOV, respectively. Seasonal variations indicate that dissociative recombination accompanied by frictional heating is a main cause of trough formation in sunlit regions. During summer, therefore, the occurrence rate is maintained at 80-90% in the postmidnight high-latitude region owing to frictional heating by eastward return flow. Solar activity dependence on trough formation indicates that field-aligned currents modulate the occurrence rate of the trough during the winter and equinox seasons. In addition, the trough becomes deeper via dissociative recombination caused by an increased ion temperature with F10.7, at least in the equinox and summer seasons but not in winter.

  14. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K., E-mail: mathew.munji@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa); Dyk, E.E. van; Vorster, F.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa)

    2009-12-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V{sub oc}) and short circuit current (I{sub sc}) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  15. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    International Nuclear Information System (INIS)

    Munji, M.K.; Dyk, E.E. van; Vorster, F.J.

    2009-01-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V oc ) and short circuit current (I sc ) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  16. Surface Traps in Colloidal Quantum Dot Solar Cells, their Mitigation and Impact on Manufacturability

    KAUST Repository

    Kirmani, Ahmad R.

    2017-07-30

    Colloidal quantum dots (CQDs) are potentially low-cost, solution-processable semiconductors which are endowed, through their nanoscale dimensions, with strong absorption, band gap tunability, high dielectric constants and enhanced stability. CQDs are contenders as a standalone PV technology as well as a potential back layer for augmenting established photovoltaic (PV) technologies, such as Si. However, owing to their small size (ca. few nanometers), CQDs are prone to surface trap states that inhibit charge transport and threaten their otherwise wonderful optoelectronic properties. Surface traps have also, indirectly, impeded scalable and industry-compatible fabrication of these solar cells, as all of the reports, to date, have relied on spin-coating with sophisticated and tedious ligand exchange schemes, some of which need to be performed in low humidity environments. In this thesis, we posit that an in-depth understanding of the process-structure-property-performance relationship in CQDs can usher in fresh insights into the nature and origin of surface traps, lead to novel ways to mitigate them, and finally help achieve scalable fabrication. To this end, we probe the CQD surfaces and their interactions with process solvents, linkers, and ambient environment employing a suite of spectroscopic techniques. These fundamental insights help us develop facile chemical and physical protocols to mitigate surface traps such as solvent engineering, remote molecular doping, and oxygen doping, directly leading to better-performing solar cells. Our efforts finally culminate in the realization of >10% efficient, air-stable CQD solar cells scalably fabricated in an ambient environment of high, uncontrolled R.H. (50-65%). As-prepared solar cells fabricated in high humidity ambient conditions are found to underperform, however, an oxygen-doping recipe is devised to mitigate the moisture-induced surface traps and recover device performances. Importantly, these solar cells are

  17. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  18. Solar Wind Implantation into Lunar Regolith II: Monte Carlo Simulations of Hydrogen Retention in a Surface with Defects and the Hydrogen (H, H2) Exosphere

    Science.gov (United States)

    Tucker, O. J.; Farrell, W. M.; Killen, R. M.; Hurley, D. M.

    2018-01-01

    Recently, the near-infrared observations of the OH veneer on the lunar surface by the Moon Mineralogy Mapper (M3) have been refined to constrain the OH content to 500-750 parts per million (ppm). The observations indicate diurnal variations in OH up to 200 ppm possibly linked to warmer surface temperatures at low latitude. We examine the M3 observations using a statistical mechanics approach to model the diffusion of implanted H in the lunar regolith. We present results from Monte Carlo simulations of the diffusion of implanted solar wind H atoms and the subsequently derived H and H2 exospheres.

  19. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    International Nuclear Information System (INIS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-01-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 x 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density (J sc ) and 92.7% enhancement in conversion efficiency (η) over the untreated solar cell are obtained.

  20. Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2014-12-01

    Full Text Available Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS and stages from Envisat radar altimetry. Surface water storage variations over 2003–2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95, the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73 after removing seasonal effects. Mean annual variations in surface water volume represented ~170 km3, contributing to ~45% of the Gravity Recovery and Climate Experiment (GRACE-derived total water storage variations and representing ~13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

  1. Unraveling surface and bulk trap states in lead halide perovskite solar cells using impedance spectroscopy

    Science.gov (United States)

    Han, Changfeng; Wang, Kai; Zhu, Xixiang; Yu, Haomiao; Sun, Xiaojuan; Yang, Qin; Hu, Bin

    2018-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been widely recognized as an excellent candidate for next-generation photovoltaic materials because of their highly efficient power conversion. Acquiring a complete understanding of trap states and dielectric properties in OIHP-based solar cells at the steady state is highly desirable in order to further explore and improve their optoelectronic functionalities and properties. We report CH3NH3PbI3-x Cl x -based planar solar cells with a power conversion efficiency (PCE) of 15.8%. The illumination intensity dependence of the current density-voltage (J-V) revealed the presence of trap-assisted recombination at low fluences. Non-destructive ac impedance spectroscopy (ac-IS) was applied to characterize the device at the steady state. The capacitance-voltage (C-V) spectra exhibited some distinct variations at a wide range of ac modulation frequencies with and without photo-excitations. Since the frequency-dependent chemical capacitance ({{C}μ }) is concerned with the surface and bulk related density of states (DOS) in CH3NH3PbI3-x Cl x , we verified this by fitting the corresponding DOS by a Gaussian distribution function. We ascertained that the electronic sub-gap trap states present in the solution processed CH3NH3PbI3-x Cl x and their distribution differs from the surface to the bulk. In fact, we demonstrated that both surfaces that were adjacent to the electron and hole transport layers featured analogous DOS. Despite this, photo- and bias-induced giant dielectric responses (i.e. both real and imaginary parts) were detected. A remarkable reduction of {{C}μ } at higher frequencies (i.e. more than 100 kHz) was ascribed to the effect of dielectric loss in CH3NH3PbI3-x Cl x .

  2. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    Science.gov (United States)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  3. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2014-05-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780-1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2-3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 years after volcanic eruption, while the solar signal and the different

  4. Impact of solar vs. volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2013-11-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles vs. volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, 1780-1840 AD). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate-model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decrease global mean temperature by up to 0.5 K for 2-3 yr after the eruption. However, while the volcanic effect is clearly discernible in the southern hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree-ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease of the ocean heat content (OHC) between the 0 and 300 m of depth, whereas the changes in irradiance at λ < 250 nm or in energetic particle have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 yr after volcanic eruption, while the solar signal and the different

  5. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  6. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  7. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  8. Role of solar influences on geomagnetosphere and upper atmosphere

    Science.gov (United States)

    Kumar Tripathi, Arvind

    The Earth's magnetosphere and upper atmosphere can be greatly perturbed by variations in the solar luminosity caused by disturbances on the solar surface. The state of near-Earth space environment is governed by the Sun and is very dynamic on all spatial and temporal scale. The geomagnetic field which protects the Earth from solar wind and cosmic rays is also essential to the evolution of life; its variations can have either direct or indirect effect on human physiology and health state even if the magnitude of the disturbance is small. Geomagnetic disturbances are seen at the surface of the Earth as perturbations in the components of the geomagnetic field, caused by electric currents flowing in the magnetosphere and upper atmosphere. Ionospheric and thermospheric storms also result from the redistribution of particles and fields. Global thermospheric storm winds and composition changes are driven by energy injection at high latitudes. These storm effects may penetrate downwards to the lower thermosphere and may even perturb the mesosphere. Many of the ionospheric changes at mid-latitude can be understood as a response to thermospheric perturbations. The transient bursts of solar energetic particles, often associated with large solar transients, have been observed to have effects on the Earth's middle and lower atmosphere, including the large-scale destruction of polar stratospheric and tropospheric ozone. In the present, we have discussed effect of solar influences on earth's magnetosphere and upper atmosphere that are useful to space weather and global warming, on the basis of various latest studies.

  9. Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region

    Science.gov (United States)

    Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.

    2017-12-01

    This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match

  10. Global Distribution and Variations of NO Infrared Radiative Flux and Its Responses to Solar Activity and Geomagnetic Activity in the Thermosphere

    Science.gov (United States)

    Tang, Chaoli; Wei, Yuanyuan; Liu, Dong; Luo, Tao; Dai, Congming; Wei, Heli

    2017-12-01

    The global distribution and variations of NO infrared radiative flux (NO-IRF) are presented during 2002-2016 in the thermosphere covering 100-280 km altitude based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) data set. For investigating the spatial variations of the mutual relationship between NO-IRF and solar activity, the altitude ranges from 100 km to 280 km are divided into 90 altitude bins, and the latitude regions of 83°S-83°N are divided into 16 latitude bins. By processing about 1.8E9 NO-IRF observation values from about 5E6 vertical nighttime profiles recorded in SABER data set, we obtained more than 4.1E8 samples of NO-IRF. The annual-mean values of NO-IRF are then calculated by all available NO-IRF samples within each latitude and altitude bin. Local latitudinal maxima in NO-IRF are found between 120 and 145 km altitude, and the maximum NO-IRF located at polar regions are 3 times more than that of the minimum at equatorial region. The influences of solar and geomagnetic activity on the spatial variations of NO-IRF are investigated. Both the NO-IRF and its response to solar and geomagnetic activity show nearly symmetric distribution between the two hemispheres. It is demonstrated that the observed changes in NO-IRF at altitudes between 100 and 225 km correlate well with the changes in solar activity. The NO-IRF at solar maximum is about 4 times than that at solar minimum, and the current maximum of NO-IRF in 2014 is less than 70% of the prior maximum in 2001. For the first time, the response ranges of the NO-IRF to solar and geomagnetic activity at different altitudes and latitudes are reported.

  11. A new structure for comparing surface passivation materials of GaAs solar cells

    Science.gov (United States)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  12. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    OpenAIRE

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Lee, William J.; Tsai, Song-Yeu; Lu, Yung-An; Liou, Jia-Jhe; Chang, Shun-Hsyung; Wang, Kang L.

    2010-01-01

    The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si) wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD). The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been d...

  13. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  14. Solar radiation on Mars: Update 1991

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  15. Diamagnetic effect in the foremoon solar wind observed by Kaguya

    Science.gov (United States)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-04-01

    Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.

  16. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  17. The variations of oxygen emissions in corresponding to Earth's aurora in low latitude region under influence of solar wind dynamics

    Science.gov (United States)

    Jamlongkul, P.; Wannawichian, S.

    2017-12-01

    Earth's aurora in low latitude region was studied via time variations of oxygen emission spectra, simultaneously with solar wind data. The behavior of spectrum intensity, in corresponding with solar wind condition, could be a trace of aurora in low latitude region including some effects of high energetic auroral particles. Oxygen emission spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) at 2.4-m diameter telescope at Thai National Observatory, Inthanon Mountain, Chiang Mai, Thailand, during 1-5 LT on 5 and 6 February 2017. The observed spectral lines were calibrated via Dech95 - 2D image processing program and Dech-Fits spectra processing program for spectrum image processing and spectrum wavelength calibration, respectively. The variations of observed intensities each day were compared with solar wind parameters, which are magnitude of IMF (|BIMF|) including IMF in RTN coordinate (BR, BT, BN), ion density (ρ), plasma flow pressure (P), and speed (v). The correlation coefficients between oxygen spectral emissions and different solar wind parameters were found to vary in both positive and negative behaviors.

  18. Solar cycle variations of magnetopause locations

    Czech Academy of Sciences Publication Activity Database

    Němeček, Z.; Šafránková, J.; Lopez, R. E.; Dušík, Š.; Nouzák, L.; Přech, J.; Šimůnek, Jiří; Shue, J.-H.

    2016-01-01

    Roč. 58, č. 2 (2016), s. 240-248 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GA14-19376S Institutional support: RVO:68378289 Keywords : magnetopause location * F-10.7 flux * solar cycle * solar wind velocity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.401, year: 2016 http://www.sciencedirect.com/science/article/pii/S0273117715007115

  19. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    Science.gov (United States)

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Local time, seasonal, and solar cycle dependency of longitudinal variations of TEC along the crest of EIA over India

    Science.gov (United States)

    Sunda, Surendra; Vyas, B. M.

    2013-10-01

    global wave number 4 structure in the Indian longitudinal region spanning from ~70 to 95°E forming the upward slope of the peak in the total electron content (TEC) are reported along the crest of equatorial ionization anomaly (EIA). The continuous and simultaneous measurements from five GPS stations of GPS Aided Geo Augmented Navigation (GAGAN) network are used in this study. The long-term database (2004-2012) is utilized for examining the local time, seasonal, and solar cycle dependency on the longitudinal variations of TEC. Our results confirm the existence of longitudinal variations of TEC in accordance with wave number 4 longitudinal structure including its strength. The results suggest that these variations, in general, start to develop at ~09 LT, achieve maximum strength at 12-15 LT, and decay thereafter, the decay rate depending on the season. They are more pronounced in equinoctial season followed by summer and winter. The longitudinal variations persist beyond midnight in equinox seasons, whereas in winter, they are conspicuously absent. Interestingly, they also exhibit significant solar cycle dependence in the solstices, whereas in the equinoxes, they are independent of solar activity. The comparison of crest-to-trough ratio (CTR) in the eastern (92°E) and western (72°E) extreme longitudes reveals higher CTR on the eastern side than over the western extreme, suggesting the role of nonmigrating tides in modulating the ExB vertical drift and the consequential EIA crest formation.

  1. Simulation with an O-AGCM of the influence of variations of the solar constant on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Crowley, T.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography

    1996-07-01

    Two simulations have been carried out with a global coupled ocean-atmosphere circulation model to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability induces a similar pattern of surface temperature change as the increase of greenhouse gases, i.e. an increase of the land-sea contrast. However, the solarinduced warming pattern over the ocean during northern hemispheric summer is more centered over the northern hemisphere subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. Finally, the magnitude of the estimated solar warming during the 20th century is not sufficient to explain the observed warming. The recent observed 30-year trends are inconsistent with the solar forcing simulation at an estimated 90% significance level. Also, the observed trend pattern agrees better with the greenhouse warming pattern. (orig.)

  2. Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Liu, Shoudong

    2013-09-01

    Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.

  3. An overview of global solar radiation measurements in Ghardaia area, south Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Gairaa, Kacem; Bakelli, Yahia [Applied Research Unit for Renewables Energies, Ouargla Road, Ghardaia (Algeria)

    2011-07-01

    This paper presents an overview of actual solar radiation data measurements in Ghardaia site (32.360 N, 3.810 W, 450 m above MSL). Global solar radiation and surface temperatures were measured and analyzed for one complete year from 1 January-31December 2005. The data thus recorded are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar energy-model. Hourly, daily and monthly solar radiation was made from five-minute recorded by EKO Pyranometer. The highest measured daily and monthly mean solar radiation was found to be 369 and 326 (W/m2), and the highest five minute averaged solar radiation values up to 1268 (W/m2) were observed in the summer season from May to September, and the yearly average daily energy input was 21.83 (MJ/m2/day). Besides the global solar radiation, the daily and monthly average temperature variations are discussed. The collected data indicate that Ghardaia has a strong potential for solar energy applications.

  4. Time variation of meteorological elements as controlled by the quasi-biennial periodicity in the solar phenomena

    International Nuclear Information System (INIS)

    Inoue, Michiharu; Sakurai, Kunitomo

    1981-01-01

    It is shown that the quasi-biennial oscillation observed on some meteorological elements as the ozone content at middle latitudes, both north and south, the zonal wind velocity at the equator and the ground-level temperature at middle latitudes, is produced by the variation of the ultraviolet flux emitted from the sun, which is varying with the solar activity with the period of about 26 months. The ozone content is varying in phase with the ultraviolet flux and the solar activity, whereas the other two elements mentioned above are changing out of phase with these phenomena. There is a possibility that both these meteorological elements and the solar activity are varying quasi-biennially while being modulated by the 26 month periodicity in the efficiency of thermonuclear fusions at the central core of the sun. (author)

  5. Measurement of solar energy radiation in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, P.O. Box 2533 (United Arab Emirates)

    2009-04-15

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 N, 54.45 E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m{sup 2}, respectively. The highest one-minute average daily solar radiation was 1041 W/m{sup 2}. Yearly average daily energy input was 18.48 MJ/m{sup 2}/day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture. (author)

  6. Measurement of solar energy radiation in Abu Dhabi, UAE

    International Nuclear Information System (INIS)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A.

    2009-01-01

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 deg. N, 54.45 deg. E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m 2 , respectively. The highest one-minute average daily solar radiation was 1041 W/m 2 . Yearly average daily energy input was 18.48 MJ/m 2 /day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture

  7. Correlation of trace element content in air particulates with solar meteorological data in the atmosphere of Athens

    International Nuclear Information System (INIS)

    Kanias, G.D.; Grimanis, A.P.; Viras, L.G.

    2003-01-01

    Relation between the trace element content in air particulates and solar meteorological data in the atmospheric environment of Athens, Greece, was studied. For this purpose, Sm, Br, As, Na, K, La, Ce, Cr, Ag, Sc, Fe, Zn, Co, Sb, Th were determined by INAA in respirable aerosols collected during winter 1993-1994. The results showed that the average cloudiness, sunshine, and the total solar radiation (sun and sky) on a horizontal surface, (3 variables) have no relation with trace element variation. However, diffuse solar radiation (sun and sky) on a horizontal surface seems to have statistically significant relationship with some of the trace element variation. It forms a single component with some trace elements after the application of the factor analysis. The increase of the same solar variable in the Athens City center, is one of the factors which cannot permit the emission of trace elements in the atmospheric environment from dust soil and car tires. (author)

  8. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    Science.gov (United States)

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  9. Radiation aspects on the Earth's surface during solar flares

    International Nuclear Information System (INIS)

    Mansurov, K.Zh.; Aitmukhambetov, A.A.

    2002-01-01

    In the paper the results of investigation of radiation solution in the space near the Earth at the different altitudes of the Earth atmosphere and at the ground level in dependence on geo-coordinates and solar activity during 1957-1999 are presented. Radiation is due to the Galactic cosmic ray flux for different periods of the Solar activity: - the radiation doses of the radioactive clouds at latitudes ∼12-13 km which go ground the Earth two or three times were created; - it seems to years that these clouds make a certain contribution to the ecological situation in the Earth atmosphere and on the surface. The radiation near ground level of the Earth for the last 1500 years was calculated also using the data of radioactive carbon 14 C intensity investigation

  10. (90377) SEDNA: INVESTIGATION OF SURFACE COMPOSITIONAL VARIATION

    International Nuclear Information System (INIS)

    Barucci, M. A.; De Bergh, C.; Merlin, F.; Morea Dalle Ore, C.; Cruikshank, D.; Alvarez-Candal, A.; Dumas, C.

    2010-01-01

    The dwarf planet (90377) Sedna is one of the most remote solar system objects accessible to investigations. To better constrain its surface composition and to investigate the possible heterogeneity of the surface of Sedna, several observations have been carried out at ESO-VLT with the powerful spectrometer SINFONI observing simultaneously the H and K bands. The analyzed spectra (obtained in 2005, 2007, and 2008) show a non-uniform spectral signature, particularly in the K band. Spectral modeling using the Shkuratov radiative transfer code for surface scattering has been performed using the various sets of data, including previous observations at visible wavelengths and photometry at 3.6 and 4.5 μm by the Spitzer Space Telescope. The visible and near-infrared spectra can be modeled with organic materials (triton and titan tholin), serpentine, and H 2 O ice in fairly significant amounts, and CH 4 , N 2 , and C 2 H 6 in varying trace amounts. One of the spectra obtained in 2005 October shows a different signature in the K band and is best modeled with CH 3 OH in place of CH 4 , with reduced amounts of serpentine and with the addition of olivine. The compositional surface heterogeneity can give input on the past history as well clues to the origin of this peculiar, distant object.

  11. A new method of presentation the large-scale magnetic field structure on the Sun and solar corona

    Science.gov (United States)

    Ponyavin, D. I.

    1995-01-01

    The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.

  12. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  13. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  14. Influence of structural variations in push-pull zinc porphyrins on photovoltaic performance of dye-sensitized solar cells.

    Science.gov (United States)

    Yi, Chenyi; Giordano, Fabrizio; Cevey-Ha, Ngoc-Le; Tsao, Hoi Nok; Zakeeruddin, Shaik M; Grätzel, Michael

    2014-04-01

    We designed and synthesized two new zinc porphyrin dyes for dye-sensitized solar cells (DSCs). Subtle molecular structural variation in the dyes significantly influenced the performance of the DSC devices. By utilizing these dyes in combination with a cobalt-based redox electrolyte using a photoanode made of mesoporous TiO2 , we achieved a power conversion efficiency (PCE) of up to 12.0 % under AM 1.5 G (100 mW cm(-2)) simulated solar light. Moreover, we obtained a high PCE of 6.4 % for solid-state dye-sensitized solar cells by using 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene as a hole-transporting material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  16. Surface passivation of InP solar cells with InAlAs layers

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.

    1993-01-01

    The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.

  17. PHOTOMETRIC TRENDS IN THE VISIBLE SOLAR CONTINUUM AND THEIR SENSITIVITY TO THE CENTER-TO-LIMB PROFILE

    International Nuclear Information System (INIS)

    Peck, C. L.; Rast, M. P.

    2015-01-01

    Solar irradiance variations over solar rotational timescales are largely determined by the passage of magnetic structures across the visible solar disk. Variations on solar cycle timescales are thought to be similarly due to changes in surface magnetism with activity. Understanding the contribution of magnetic structures to total solar irradiance and solar spectral irradiance requires assessing their contributions as a function of disk position. Since only relative photometry is possible from the ground, the contrasts of image pixels are measured with respect to a center-to-limb intensity profile. Using nine years of full-disk red and blue continuum images from the Precision Solar Photometric Telescope at the Mauna Loa Solar Observatory, we examine the sensitivity of continuum contrast measurements to the center-to-limb profile definition. Profiles which differ only by the amount of magnetic activity allowed in the pixels used to determine them yield oppositely signed solar cycle length continuum contrast trends, either agreeing with previous results and showing negative correlation with solar cycle or disagreeing and showing positive correlation with solar cycle. Changes in the center-to-limb profile shape over the solar cycle are responsible for the contradictory contrast results, and we demonstrate that the lowest contrast structures, internetwork and network, are most sensitive to these. Thus the strengths of the full-disk, internetwork, and network photometric trends depend critically on the magnetic flux density used in the quiet-Sun definition. We conclude that the contributions of low contrast magnetic structures to variations in the solar continuum output, particularly to long-term variations, are difficult, if not impossible, to determine without the use of radiometric imaging

  18. Performance of ultra high efficiency thin germanium p-n junction solar cells intended for solar thermophotovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Vera, E S; Loferski, J J; Spitzer, M; Schewchun, J

    1981-01-01

    The theoretical upper limit conversion efficiency as a function of cell thickness and junction position is calculated for a germanium p-n junction solar cell intended for solar thermophotovoltaic energy conversion which incorporates minority carrier mirrors and optical mirrors on both the front and back boundaries of the active part of the device. The optical mirrors provide light confinement reducing the thickness required for optimum performance while minority carrier mirrors diminish surface recombination of carriers which seriously reduce short circuit current and limit open circuit voltage. The role of non-ideal optical and minority carrier mirrors and the effect of resistivity variations are studied. The calculations are conducted under conditions of high incident power (2-25 W/cm/sup 2/) which are encountered in solar thermophotovoltaic energy conversion systems. 14 refs.

  19. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  20. Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Campante, T. L.; Chaplin, W. J.; Handberg, R.; Miglio, A.; Davies, G. R.; Elsworth, Y. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, M. N.; Arentoft, T.; Christensen-Dalsgaard, J.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Huber, D. [NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 (United States); Hekker, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Amsterdam (Netherlands); García, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot (France); IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Corsaro, E. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Basu, S. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Bedding, T. R. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Kawaler, S. D., E-mail: campante@bison.ph.bham.ac.uk [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); and others

    2014-03-10

    We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  1. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    Directory of Open Access Journals (Sweden)

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  2. Materials surface treatments by concentrated solar light: a renewable energy option

    International Nuclear Information System (INIS)

    Martinez, D.; Rodriguez, J.

    1998-01-01

    The possible applications of solar furnaces to materials surface treatment are explained in an illustrative manner. A brief description of these systems is exposed, as well as an overview of the feasible industrial or testing applications for which their validity has been proven. (Author) 5 refs

  3. Modeling Surface Processes Occurring on Moons of the Outer Solar System

    Science.gov (United States)

    Umurhan, O. M.; White, O. L.; Moore, J. M.; Howard, A. D.; Schenk, P.

    2016-12-01

    A variety of processes, some with familiar terrestrial analogs, are known to take place on moon surfaces in the outer solar system. In this talk, we discuss the observed features of mass wasting and surface transport seen on both Jupiter's moon Calisto and one of Saturn's Trojan moons Helene. We provide a number of numerical models using upgraded version of MARSSIM in support of several hypotheses suggested on behalf of the observations made regarding these objects. Calisto exhibits rolling plains of low albedo materials surrounding relatively high jutting peaks harboring high albedo deposits. Our modeling supports the interpretation that Calisto's surface is a record of erosion driven by the sublimation of CO2 and H2O contained in the bedrock. Both solar insolation and surface re-radiation drives the sublimation leaving behind debris which we interpret to be the observed darkened regolith and, further, the high albedo peaks are water ice deposits on surface cold traps. On the other hand, the 45 km scale Helene, being a milligravity environment, exhibits mysterious looking streaks and grooves of very high albedo materials extending for several kilometers with a down-sloping grade of 7o-9o. Helene's cratered terrain also shows evidence of narrowed septa. The observed surface features suggest some type of advective processes are at play in this system. Our modeling lends support to the suggestion that Helene's surface materials behave as a Bingham plastic material - our flow modeling with such rheologies can reproduce the observed pattern of streakiness depending upon the smoothness of the underlying bedrock; the overall gradients observed; and the narrowed septa of inter-crater regions.

  4. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  5. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  6. Relation of lifetime to surface passivation for atomic-layer-deposited Al2O3 on crystalline silicon solar cell

    International Nuclear Information System (INIS)

    Cho, Young Joon; Song, Hee Eun; Chang, Hyo Sik

    2015-01-01

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al 2 O 3 layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al 2 O 3 passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al 2 O 3 growth. In the solar-cell manufacturing process, ALD Al 2 O 3 passivation is utilized to obtain higher conversion efficiency. ALD Al 2 O 3 shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al 2 O 3 surface passivation

  7. Temporal and radial variation of the solar wind temperature-speed relationship

    Science.gov (United States)

    Elliott, H. A.; Henney, C. J.; McComas, D. J.; Smith, C. W.; Vasquez, B. J.

    2012-09-01

    The solar wind temperature (T) and speed (V) are generally well correlated at ˜1 AU, except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We perform a comprehensive analysis of both the temporal and radial variation in the temperature-speed (T-V) relationship of the non-transient wind, and our analysis provides insight into both the causes of the T-V relationship and the sources of the temperature variability. Often at 1 AU the speed-temperature relationship is well represented by a single linear fit over a speed range spanning both the slow and fast wind. However, at times the fast wind from coronal holes can have a different T-V relationship than the slow wind. A good example of this was in 2003 when there was a very large and long-lived outward magnetic polarity coronal hole at low latitudes that emitted wind with speeds as fast as a polar coronal hole. The long-lived nature of the hole made it possible to clearly distinguish that some holes can have a different T-V relationship. In an earlier ACE study, we found that both the compressions and rarefactions T-V curves are linear, but the compression curve is shifted to higher temperatures. By separating compressions and rarefactions prior to determining the radial profiles of the solar wind parameters, the importance of dynamic interactions on the radial evolution of the solar wind parameters is revealed. Although the T-V relationship at 1 AU is often well described by a single linear curve, we find that the T-V relationship continually evolves with distance. Beyond ˜2.5 AU the differences between the compressions and rarefactions are quite significant and affect the shape of the overall T-V distribution to the point that a simple linear fit no longer describes the distribution well. Since additional heating of the ambient solar wind outside of interaction regions can be associated with Alfvénic fluctuations and the turbulent energy cascade, we also estimate the heating rate

  8. Modulated surface textures for enhanced scattering in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.; Battaglia, C.; Ballif, C.; Zeman, M.

    2012-01-01

    Nano-scale randomly textured front transparent oxides are superposed on micro-scale etched glass substrates to form modulated surface textures. The resulting enhanced light scattering is implemented in single and double junction thin-film silicon solar cells.

  9. Urbanization Process and Variation of Energy Budget of Land Surfaces

    Directory of Open Access Journals (Sweden)

    Ciro Gardi

    2007-06-01

    Full Text Available Urban areas are increasing at a rate much higher than human population growth in many part of the world; actually more than 73 towns in the world are larger than 1000 km2. The European Environmental Agency indicates an urban area average growth rate, over the last 20 years, of 20%. The urbanization process, and the consequent soil sealing, determines not only the losses of the ecological functions of the soil, but also a variation of the energy budget of land surfaces, that affect the microclimatic conditions (heat islands. The alteration of the energy budget are determined by the variations of albedo and roughness of surfaces, but especially by the net losses of evapotranspirating areas. In the present research we have assessed the variation of Parma territory energy budget, induced by the change in land use over the last 122 years. The urban area increase between 1881 and 2003 was 535%.

  10. Empirical Mode Decomposition on the sphere: application to the spatial scales of surface temperature variations

    Directory of Open Access Journals (Sweden)

    N. Fauchereau

    2008-06-01

    Full Text Available Empirical Mode Decomposition (EMD is applied here in two dimensions over the sphere to demonstrate its potential as a data-adaptive method of separating the different scales of spatial variability in a geophysical (climatological/meteorological field. After a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its application on the sphere are explained, in particular via the use of a zonal equal area partitioning. EMD is first applied to an artificial dataset, demonstrating its capability in extracting the different (known scales embedded in the field. The decomposition is then applied to a global mean surface temperature dataset, and we show qualitatively that it extracts successively larger scales of temperature variations related, for example, to topographic and large-scale, solar radiation forcing. We propose that EMD can be used as a global data-adaptive filter, which will be useful in analysing geophysical phenomena that arise as the result of forcings at multiple spatial scales.

  11. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  12. Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data

    International Nuclear Information System (INIS)

    Lukač, Niko; Žlaus, Danijel; Seme, Sebastijan; Žalik, Borut; Štumberger, Gorazd

    2013-01-01

    Highlights: ► A new method for estimating and rating buildings roofs’ solar potential is presented. ► Considering LiDAR geospatial data together with pyranometer measurements. ► Use of multi-resolution shadowing model with new heuristic vegetation shadowing. ► High correlation between estimated solar potential and onsite measurements. -- Abstract: The roof surfaces within urban areas are constantly attracting interest regarding the installation of photovoltaic systems. These systems can improve self-sufficiency of electricity supply, and can help to decrease the emissions of greenhouse gases throughout urban areas. Unfortunately, some roof surfaces are unsuitable for installing photovoltaic systems. This presented work deals with the rating of roof surfaces within urban areas regarding their solar potential and suitability for the installation of photovoltaic systems. The solar potential of a roof’s surface is determined by a new method that combines extracted urban topography from LiDAR data with the pyranometer measurements of global and diffuse solar irradiances. Heuristic annual vegetation shadowing and a multi-resolution shadowing model, complete the proposed method. The significance of different influential factors (e.g. shadowing) was analysed extensively. A comparison between the results obtained by the proposed method and measurements performed on an actual PV power plant showed a correlation agreement of 97.4%.

  13. Solar activity influence on air temperature regimes in caves

    Science.gov (United States)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  14. Enhanced photovoltaic performance of Sb2S3-sensitized solar cells through surface treatments

    Science.gov (United States)

    Ye, Qing; Xu, Yafeng; Chen, Wenyong; Yang, Shangfeng; Zhu, Jun; Weng, Jian

    2018-05-01

    Efficient antimony sulfide (Sb2S3)-sensitized solar cells were obtained by a sequential treatment with thioacetamide (TA) and 1-decylphosphonic acid (DPA). Compared with the untreated Sb2S3-sensitized solar cells, the power conversion efficiency of the treated Sb2S3 solar cells was improved by 1.80% to 3.23%. The TA treatment improved the Sb2S3 films by reducing impurities and decreasing the film's surface defects, which inhibited the emergence of recombination centers. The DPA treatment reduced the recombination between hole transport materials (HTMs) and the Sb2S3. Therefore, we have presented an efficient strategy to improve the performance of Sb2S3-sensitized solar cells.

  15. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  16. An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings

    Energy Technology Data Exchange (ETDEWEB)

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2012-07-01

    In the present work, investigations are made to study performance characteristics of solar flat plate collector with different selective surface coatings. Flat plate collector is one of the important solar energy trapping device which uses air or water as working fluid. Of the many solar collector concepts presently being developed, the relative simple flat plate solar collector has found the widest application so far. Its characteristics are known, and compared with other collector types, it is the easiest and least expensive to fabricate, install, and maintain. Moreover, it is capable of using both the diffuse and the direct beam solar radiation. For residential and commercial use, flat plate collectors can produce heat at sufficiently high temperatures to heat swimming pools, domestic hot water, and buildings; they also can operate a cooling unit, particularly if the incident sunlight is increased by the use of reflector. Temperatures up to 70 C are easily attained by flat plate collectors. With very careful engineering using special surfaces, reflectors to increase the incident radiation and heat resistant materials, higher operating temperatures are feasible.

  17. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  18. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuang-Tung Cheng

    2010-01-01

    Full Text Available The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD. The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been discussed in this research. Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4 coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. Open circuit (Voc is 616 mV, short circuit current (Jsc is 34.1 mA/cm2, and minority carrier diffusion length is 474.16 μm. The isotropic texturing and silicon nitride layers coating approach contribute to lowering cost and achieving high efficiency in mass production.

  19. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  20. The inconstant solar constant

    International Nuclear Information System (INIS)

    Willson, R.C.; Hudson, H.

    1984-01-01

    The Active Cavity Radiometer Irradiance Monitor (ACRIM) of the Solar Maximum Mission satellite measures the radiant power emitted by the sun in the direction of the earth and has worked flawlessly since 1980. The main motivation for ACRIM's use to measure the solar constant is the determination of the extent to which this quantity's variations affect earth weather and climate. Data from the solar minimum of 1986-1987 is eagerly anticipated, with a view to the possible presence of a solar cycle variation in addition to that caused directly by sunspots

  1. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    International Nuclear Information System (INIS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-01-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K p >3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  2. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  3. Surface Passivation of CIGS Solar Cells Using Gallium Oxide

    KAUST Repository

    Garud, Siddhartha

    2018-02-27

    This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5 nm passivation layer show an substantial absolute improvement of 56 mV in open-circuit voltage (VOC), 1 mA cm−2 in short-circuit current density (JSC), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).

  4. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  5. Fluctuation characteristics of solar radiation in crop cultivation

    International Nuclear Information System (INIS)

    Hayashi, S.; Suzuki, H.

    1996-01-01

    The objective of this study was to clarify the fluctuation of solar radiation for long and short periods, which is very crucial for plant growth. Data obtained from a meteorological observatory were used to investigate solar radiation and sunshine duration for a long period. For a short period, observation of global solar radiation and sky solar radiation were conducted in a glass house and at an open field. (1) Yearly average percentage of solar radiation at Kagawa from 1973 to 1994 was 44.3%, and its coefficient of variation was 3.9%. The percentage of possible sunshine and the coefficient were larger than those of solar radiation, 47.3% and 56% respectively. (2) Percentage of possible solar radiation and percentage of possible sunshine showed seasonal variation. Those coefficients of variation both increased exponentially with cloud amount. (3) Variations of global solar radiation and direct solar radiation were more remarkable in the glass house than those in the open field, while variations of sky solar radiation were small in the house and at the open field. (4) The fluctuation of solar radiation observed every 5 minutes was presented as the difference of radiation, present value minus the preceding value. The difference was positive in the morning, negative in the afternoon at the open field. In the house both positive and negative values were obtained the whole day. (5) Diurnal variation of ratio of direct solar radiation to sky solar radiation showed a parabolic effect, whereas it had irregular and large fluctuations at the open field

  6. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    Directory of Open Access Journals (Sweden)

    Wen Guoyong

    2017-01-01

    Full Text Available We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor based, the other the SATIRE (Spectral And Total Irradiance REconstruction modeled, as inputs to the GISS (Goddard Institute for Space Studies GCMAM (Global Climate Middle Atmosphere Model to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm and total solar irradiance (TSI. From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of ~0.1 °C to SATIRE solar forcing compared to ~0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  7. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.

    Science.gov (United States)

    Tulsani, Srikanth Reddy; Rath, Arup Kumar

    2018-07-15

    The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells

    Science.gov (United States)

    Werthen, J. G.; Fahrenbruch, A. L.; Bube, R. H.; Zesch, J. C.

    1983-05-01

    The effects of CdTe surface preparation and subsequent junction formation have been investigated through characterization of ITO/CdTe and CdS/CdTe heterojunction solar cells formed by electron beam evaporation of indium-tin-oxide (ITO) and CdS onto single crystal p-type CdTe. Surfaces investigated include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and teh latter surfaces subjected to a hydrogen heat treatment. Both air-cleaved and hydrogen heat treated surfaces have a stoichiometric Cd to Te ratio. The ITO/CdTe junction formation process involves an air heat treatment, which ahs serious effects on the behavior of junctions formed on these surfaces. Etched surfaces which have a large excesss of Te, are less affected by the junction formation process and result in ITO/CdTe heterojunctions with solar efficiencies of 9% (Vsc =20 mA/cm2). Use of low-doped CdTe results in junctions characterized by considerably larger open-circuit votages (Voc =0.81 V) which are attributable to increasing diode factors caused by a shift from interfacial recombination to recombination in the depletion region. Resulting solar efficiencies reach 10.5% which is the highest value reported to date for a genuine CdTe heterojunction, CdS/CdTe heterojunctions show a strong dependence on CdTe surface condition, but less influence on the junction formation process. Solar efficiencies of 7.5% on an etched and heat treated surface are observed. All of these ITO/CdTe and CdS/CdTe heterojunctions have been stable for at least 10 months.

  9. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    Science.gov (United States)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  10. Observational investigation of the solar oblateness

    International Nuclear Information System (INIS)

    Stebbins, R.T.

    1975-01-01

    The solar oblateness provides important information for solar physics and experimental relativity. After the solar neutrino flux, the sun's shape is the most revealing probe of the solar interior. Rapidly rotating interiors suggested to explain the solar neutrino paradox produce sizeable oblatenesses. Certain types of surface phenomena can also be investigated with precision diameter measurements. The relativistic advance of Mercury's perihelion has long been the principal experimental support for Einstein's theory of general relativity. Recent measurements of the solar oblateness have suggested that the relativistic advance is smaller than originally thought due to a contribution from a solar mass quadrupole moment. This interpretation of the perihelion advance would shift the experimental support to the scalar-tensor theory of gravitation. A debate over the interpretation of the oblateness measurements has resulted. In light of these circumstances, solar oblateness observations have been attempted. Improved experimental techniques have been devised, including a daytime astrometric telescope and an explicit definition of the sun's edge. Observations reveal a time varying excess equatorial brightness, that is, a variation in the limb darkening function between equator and pole, which would preclude accurate interpretation of previous solar oblateness measurements. This vindicates the alternate interpretations of other solar oblateness measurements. From these results, it can be concluded that the Mercury perihelion evidence firmly supports Einstein's General Theory of Relativity, the solar interiors cannot be rotating fast enough to account for the low solar neutrino flux, and a time varying excess equatorial brightness exists

  11. Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface

    International Nuclear Information System (INIS)

    Xiong, Jianyin; Xie, Guo; Zheng, Hongfei

    2013-01-01

    Highlights: • A novel multi-effect solar still with enhanced condensation surface is designed. • The overall desalination efficiency and performance ratio can reach 0.91 and 1.86. • A numerical model characterizing the heat and mass transfer process is developed. - Abstract: A novel multi-effect solar desalination system with enhanced condensation surface is designed. Compared to traditional solar still, it has two main merits: (1) the application of corrugated shape stacked trays decreases the condensation resistance, thus improves the desalination performance and (2) the simultaneous heating both from the collector in the bottom and coating in the top efficiently uses the solar energy, which increases the freshwater yield. Field test is then carried out to study the temperature and freshwater yield characteristics. It is observed that the solar still can generate freshwater not only in the daytime but also in the night, with the latter taking up about 40% of the total freshwater yield. When the starting temperature is relatively high, the overall desalination efficiency and performance ratio of the equipment can reach 0.91 and 1.86, respectively. Furthermore, a numerical model characterizing the heat and mass transfer process in the solar still is developed. The good agreement between the model prediction and experimental data demonstrates the effectiveness of the proposed model. For the present solar still, a phenomenon of reverse temperature difference in the second stacked tray is emerged due to the special simultaneous heating pattern, which is also validated by the numerical model

  12. Investigation of spectral distribution and variation of irradiance with the passage time of CSI lamps which constitute a solar simulator; Solar simulator ni shiyosuru CSI lamp no supekutoru bunpu, hosha shodo no keiji henka ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T; Yamada, T; Noguchi, T [Japan Quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    Study was made on time-variation of the performance of CSI lamps for solar simulators. In order to accurately evaluate the standard heat collection performance of solar systems in a room, MITI installed an artificial solar light source in the Solar Techno-Center of Japan Quality Assurance Organization for trial use and evaluation. CSI lamp is superior in durability, and can simulate the solar light in the daytime. The light source is composed of 72 metal halide lamps of 1kW arranged in a plane of 3.5times3.5m. The study result on time-variation of a spectral distribution and irradiance by intermittent switching of lamps showed a sufficient durability of 2000h. To ensure the accuracy of a solar heat collector measurement system enough, periodic calibration is being carried out using reference goods. To ensure the reliability and stability for a switching system, periodic maintenance of a power source, stabilizer and electric system is also being carried out in addition to CSI lamps. The stable irradiance and accuracy are being kept by such maintenance and periodic exchange of lamps. 6 figs., 4 tabs.

  13. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  14. Non-storm irregular variation of the Dst index

    Directory of Open Access Journals (Sweden)

    S. Nakano

    2012-01-01

    Full Text Available The Dst index has a long-term variation that is not associated with magnetic storms. We estimated the long-term non-storm component of the Dst variation by removing the short-term variation related to magnetic storms. The results indicate that the variation of the non-storm component includes not only a seasonal variation but also an irregular variation. The irregular long-term variation is likely to be due to an anti-correlation with the long-term variation of solar-wind activity. In particular, a clear anti-correlation is observed between the non-storm component of Dst and the long-term variation of the solar-wind dynamic pressure. This means that in the long term, the Dst index tends to increase when the solar-wind dynamic pressure decreases. We interpret this anti-correlation as an indication that the long-term non-storm variation of Dst is influenced by the tail current variation. The long-term variation of the solar-wind dynamic pressure controls the plasma sheet thermal pressure, and the change of the plasma sheet thermal pressure would cause the non-storm tail current variation, resulting in the non-storm variation of Dst.

  15. Sb2S3 surface modification induced remarkable enhancement of TiO2 core/shell nanowries solar cells

    International Nuclear Information System (INIS)

    Meng, Xiuqing; Wang, Xiaozhou; Zhong, Mianzeng; Wu, Fengmin; Fang, Yunzhang

    2013-01-01

    This study presents the fabrication of a novel dye-sensitized solar cell with Sb 2 S 3 -modified TiO 2 nanowire (NW) arrays/TiO 2 nanoparticles (NP) (TiO 2(NWs) /TiO 2(NPs) /Sb 2 S 3 ) as the anodes and N719 dye as the sensitizer. A solar conversion efficiency of 4.91% at 1 sun illumination was achieved for the composite cell, which is markedly higher than the efficiency rates obtained using TiO 2 and TiO 2(NWs) /Sb 2 S 3 /TiO 2(NPs) NW cells, calculated at 2.36% and 3.11%, respectively. The improved efficiency results from the large surface area of the NPs, as well as the expansion of the light absorption region and high absorption coefficient by Sb 2 S 3 surface modification. - Graphical abstract: A novel TiO 2(NWs) /TiO 2(NPs) /Sb 2 S 3 dye sensitized solar cells (DSSCs) is fabricated, a solar conversion efficiency of 4.91 % at 1 sun illumination is achieved. Highlights: ► We fabricate sandwich structured TiO 2 dye-sensitized solar cells. ► The anode of the solar cells consist of Sb 2 S 3 modified TiO 2 nanowire arrays/TiO 2 nanopartices. ► A solar conversion efficiency of 4.91% at 1 sun illumination is achieved. ► The high efficiency results from large surface area and expanded light adsorption of the anode

  16. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    International Nuclear Information System (INIS)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis

    2010-01-01

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of ≥10 5 G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of ∼2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.

  17. Large Scale Automatic Analysis and Classification of Roof Surfaces for the Installation of Solar Panels Using a Multi-Sensor Aerial Platform

    Directory of Open Access Journals (Sweden)

    Luis López-Fernández

    2015-09-01

    Full Text Available A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbor solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the areas, tilts, orientations and the existence of obstacles to locate the optimal zones inside each roof surface for the installation of solar panels. This information is complemented with the estimation of the solar irradiation received by each surface. This way, large areas may be efficiently analyzed obtaining as final result the optimal locations for the placement of solar panels as well as the information necessary (location, orientation, tilt, area and solar irradiation to estimate the productivity of a solar panel from its technical characteristics.

  18. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    Science.gov (United States)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  19. Solar neutrinos and solar accretion of interstellar matter

    International Nuclear Information System (INIS)

    Newman, M.J.; Talbot, R.J. Jr.

    1976-01-01

    It is argued that if the Hoyle-Lyttleton mass accretion rate applies (Proc. Camb. Phil. Soc., Math. Phys. Sci. 35: 405 (1939)) the accretion of interstellar matter by the Sun is sufficient to enhance the surface heavy element abundances. This will also apply to other solar-type stars. The enhancement may be sufficient to allow the construction of consistent solar models with an interior heavy element abundance significantly lower than the observed surface abundance. This state of affairs lowers the predicted solar neutrino flux. It has been suggested that a similar enhancement of surface abundances might occur due to accretion of 'planetesimals' left over after formation of the solar system, and both processes may occur, thereby increasing the effect. The simple accretion model of Hoyle and Lyttleton is discussed mathematically. A crucial question to be answered by future research, however, is whether or not accretion on to the solar surface actually occurs. One of the most obvious obstacles is the outward flowing solar wind, and this is discussed. It appears that the outward flow can be reversed to an inward flow for certain interstellar cloud densities. (U.K.)

  20. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  1. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  2. Short-time variations of the solar neutrino luminosity (Fourier analysis of the argon-37 production rate data)

    International Nuclear Information System (INIS)

    Haubold, H.J.; Gerth, E.

    1985-01-01

    We continue the Fourier analysis of the argon-37 production rate for runs 18--80 observed in Davis' well known solar neutrino experiment. The method of Fourier analysis with the unequally-spaced data of Davis and associates is described and the discovered periods we compare with our recently published results for the analysis of runs 18--69 (Haubold and Gerth, 1983). The harmonic analysis of the data of runs 18--80 shows time variations of the solar neutrino flux with periods π = 8.33; 5.26; 2.13; 1.56; 0.83; 0.64; 0.54; and 0.50 years, respectively, which confirms our earlier computations

  3. Study of the temporal and spatial variation of climate and solar radiation in th metropolitan Phoenix area. Final technical progress report, July 1, 1977-June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Durrenberger, R.W.

    1978-09-29

    The research performed was designed to identify spatial or temporal variation of any atmospheric parameters that might affect the operation of devices utilizing solar energy in the metropolitan Phoenix area. The first part of the research involved the analysis of all available solar and climatic data to determine their validity and comparability. For the standard climatic parameters, few difficulties were encountered, but the task of determining comparability of solar radiation data involved many pitfalls. It was concluded that most of the solar data acquired before January 1977 could not be used for purposes of identifying spatial variability. And, a year and a half of data does not represent a long enough period of time upon which to base sound conclusions about spatial and temporal variability of solar radiation in the metropolitan Phoenix region. The data currently available to us do not indicate any great variation of solar radiation in the metropolitan Phoenix area. However, any meaningful statements about spatial and temporal variability of solar radiation in the metropolitan Phoenix area must await the acquisition of additional data from well-calibrated equipment.

  4. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  5. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  6. Variations of surface ozone concentration across the Klang Valley, Malaysia

    Science.gov (United States)

    Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew

    2012-12-01

    Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.

  7. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    Science.gov (United States)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  8. Skylab investigations of solar corona

    International Nuclear Information System (INIS)

    Krivsky, L.

    1976-01-01

    The findings are reported obtained by the observation of the Sun and its corona from Skylab. The most important findings include the discovery of explosive loop structures induced by eruptive phenomena below the corona, in the chromosphere. The front edge of the explosive loop structure was observed at a distance of 1,700,000 to 2,800,000 km from the Sun. The rate of prominence was around 500 km/s. The loop structure disturbed the original shape of the corona above the solar disk edge. A graph was plotted of the variation of the release of the expanding loop structure from the solar surface in millions of kilometers with time. The graph aided in refuting the erroneous assumption that the prominence was not associated with radio bursts similar to those induced by plasma shock waves. It was also shown that a prominent shock wave is present in the vicinity of the expanding structure front which, at lower levels, got released from the eruptive flare above the solar ''surface''. The knowledge obtained does not involve the Sun alone but is also valuable from the point of view of the prognosis of consequent magnetic anomalies in the interstellar space and geomagnetic disturbances on the Earth. (Z.S.)

  9. Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations

    Science.gov (United States)

    Salabert, D.; García, R. A.; Turck-Chièze, S.

    2015-06-01

    Solar activity has significantly changed over the last two Schwabe cycles. After a long and deep minimum at the end of Cycle 23, the weaker activity of Cycle 24 contrasts with the previous cycles. In this work, the response of the solar acoustic oscillations to solar activity is used in order to provide insights into the structural and magnetic changes in the sub-surface layers of the Sun during this on-going unusual period of low activity. We analyze 18 yr of continuous observations of the solar acoustic oscillations collected by the Sun-as-a-star GOLF instrument on board the SoHO spacecraft. From the fitted mode frequencies, the temporal variability of the frequency shifts of the radial, dipolar, and quadrupolar modes are studied for different frequency ranges that are sensitive to different layers in the solar sub-surface interior. The low-frequency modes show nearly unchanged frequency shifts between Cycles 23 and 24, with a time evolving signature of the quasi-biennial oscillation, which is particularly visible for the quadrupole component revealing the presence of a complex magnetic structure. The modes at higher frequencies show frequency shifts that are 30% smaller during Cycle 24, which is in agreement with the decrease observed in the surface activity between Cycles 23 and 24. The analysis of 18 yr of GOLF oscillations indicates that the structural and magnetic changes responsible for the frequency shifts remained comparable between Cycle 23 and Cycle 24 in the deeper sub-surface layers below 1400 km as revealed by the low-frequency modes. The frequency shifts of the higher-frequency modes, sensitive to shallower regions, show that Cycle 24 is magnetically weaker in the upper layers of Sun. Appendices are available in electronic form at http://www.aanda.orgThe following 68 GOLF frequency tables are available and Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  10. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  11. Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, Adel S.

    2009-01-01

    The measured data of global solar radiation on a horizontal surface, as well as the number of sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover, for Jeddah (latitude 21 deg. 42'37''N, longitude 39 deg. 11'12''E), Saudi Arabia for the period 1996-2006 are analyzed. The data are divided into two sets. The sub-data set 1 (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and various meteorological parameters. The nonlinear Angstroem type model developed by Sen and the trigonometric function model proposed by Bulut and Bueyuekalaca are also evaluated. New empirical constants for these two models have been obtained for Jeddah. The sub-data set 2 (2005, 2006) are then used to evaluate the derived correlations. Comparisons between measured and calculated values of H have been performed. It is indicated that, the Sen and Bulut and Bueyuekalaca models satisfactorily describe the horizontal global solar radiation for Jeddah. All the proposed correlations are found to be able to predict the annual average of daily global solar radiation with excellent accuracy. Therefore, the long term performance of solar energy devices can be estimated.

  12. Seasonal variations of U.S. mortality rates: Roles of solar ultraviolet-B doses, vitamin D, gene exp ression, and infections.

    Science.gov (United States)

    Grant, William B; Bhattoa, Harjit Pal; Boucher, Barbara J

    2017-10-01

    Death rates in the U.S. show a pronounced seasonality. The broad seasonal variation shows about 25% higher death rates in winter than in summer with an additional few percent increase associated with the Christmas and New Year's holidays. A pronounced increase in death rates also starts in mid-September, shortly after the school year begins. The causes of death with large contributions to the observed seasonality include diseases of the circulatory system; the respiratory system; the digestive system; and endocrine, nutritional, and metabolic diseases. Researchers have identified several factors showing seasonal variation that could possibly explain the seasonal variations in mortality rate. These factors include seasonal variations in solar ultraviolet-B(UVB) doses and serum 25-hydroxyvitamin D [25(OH)D] concentrations, gene expression, ambient temperature and humidity, UVB effects on environmental pathogen load, environmental pollutants and allergens, and photoperiod (or length of day). The factors with the strongest support in this analysis are seasonal variations in solar UVB doses and 25(OH)D concentrations. In the U.S., population mean 25(OH)D concentrations range from 21ng/mL in March to 28ng/mL in August. Measures to ensure that all people had 25(OH)D concentrations >36ng/mL year round would probably reduce death rates significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  14. Variation of reflected radiation from all reflectors of a flat plate solar collector during a year

    International Nuclear Information System (INIS)

    Pavlović, Zoran T.; Kostić, Ljiljana T.

    2015-01-01

    In this paper the impact of flat plate reflectors (bottom, top, left and right reflectors) made of Al, on total solar radiation on a solar collector during a day time over a whole year is analyzed. An analytical model for determining optimum tilt angles of a collector and reflectors for any point on the Earth is proposed. Variations of reflectors' optimal inclination angles with changes of the collector's optimal tilt angle during the year are also calculated. Optimal inclination angles of the reflectors for the South directed solar collector are calculated and compared to experimental data. It is shown that optimal inclination of the bottom reflector is the lowest in December and the highest in June, while for the top reflector the lowest value is in June and the highest value is in December. On the other hand, optimal inclination of the left and right side reflectors for optimum tilt angle of the collector does not change during the year and it is 66°. It is found that intensity of the solar radiation on the collector increases for about 80% in the summer period (June–September) by using optimally inclined reflectors, in comparison to the collector without reflectors. - Highlights: • The impacts of flat plate reflectors on solar radiation on the collector are given. • The results of the optimal inclinations of reflectors during the year are shown. • The solar radiation on the collector with reflectors is 80% higher in the summer. • This model may be applied on thermal, PV, PV/T and energy harvesting systems

  15. Thermal performance of climber greenwalls: Effects of solar irradiance and orientation

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Highlights: • Field experiment tested solar irradiance effect on greenwall thermal performance. • Climber greenwalls were planted on four orientations of circular concrete tank. • High solar-energy input had high bare-surface temperature but maximum cooling. • Threshold solar intensity of 300 Wm −2 was needed for effective greenwall cooling. • Transpiration cooled anterior air better than shading and thermal insulation. - Abstract: Thermal performance of greenwalls, a critical and common concern, is regulated by solar irradiance vis-à-vis orientation and shading. A field experiment was conducted in humid-tropical Hong Kong to address the research question under typical summer-weather scenarios: sunny, cloudy and rainy. On a large circular concrete tank, climber-greenwall experimental plots were established with duplication in four cardinal compass directions. Air and infrared-radiometer surface temperature sensors monitored at different greenwall positions: ambient-air (control), bare-concrete-surface (control), vegetation-surface, behind-mesh-airgap, and behind-mesh-concrete surface. Pyranometers were installed vertically at four orientations and horizontally at tank-top (control) to monitor solar-energy input. Habitat verticality induces notable variations in solar-energy capture at four orientations by daily total, peak level, intensity, duration and timing. On sunny day, solar fraction reaching east side was only 37.1% of tank-top. Early morning sunshine striking east side nearly perpendicularly brings maximum intensity. South side facing the sun but at tangential incident angle has only 23.3% reception. Strong irradiance drives high control-surface temperature, but also induces notable vegetation-surface and adjacent ambient-air cooling by transpiration. A threshold solar intensity of about 300 Wm −2 is necessary to impart notable cooling-effect. Summer-sunny day and rainy-day sunshine-burst episodes could satisfy this condition; cloudy day and

  16. Solar center-limb variation of the Ca II K line and the Wilson-Bappu effect

    International Nuclear Information System (INIS)

    Engvold, O.; Marstad, N.C.

    1983-01-01

    New observations of the quiet Sun Ca II K line center-to-limb (C-L) have been made. The separation of the K 2 intensity peaks, the K 1 intensity minima and the intermediate width W 0 (the Wilson-Bappu width) are presented. It is shown that the C-L variation of all three parameters can be accounted for as a dependence on chromospheric column mass. The corresponding Ca II K line with parameters of 41 late type stars are also shown to vary in accordance with the inferred chromospheric column mass of the stars. The solar C-L and the stellar variation of the widths ΔK 1 and W 0 are found to have nearly indentical factors of proportionality with respect to log (column mass)

  17. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    Science.gov (United States)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  18. Solar spectral irradiance variability of some chromospheric emission lines through the solar activity cycles 21-23

    Directory of Open Access Journals (Sweden)

    Göker Ü.D.

    2017-01-01

    Full Text Available A study of variations of solar spectral irradiance (SSI in the wave-length ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV spectral lines and international sunspot number (ISSN from interactive data centers such as SME (NSSDC, UARS (GDAAC, SORCE (LISIRD and SIDC, respectively. We reduced these data by using the MATLsoftware package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs, contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  19. Unexpected and Unexplained Surface Temperature Variations on Mimas

    Science.gov (United States)

    Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team

    2010-12-01

    Until recently it was thought one of the most interesting things about Mimas, Saturn’s innermost classical icy moon, was its resemblance to Star Wars’ Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassini’s Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassini’s closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145° W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundary’s apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturn’s radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas’ leading hemisphere at low latitudes where they

  20. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik; McDonnell, Stephen; Barrera, Diego; Guo, Zaibing; Azcatl, Angelica; Wang, Jian; Zhu, Hui; Hinkle, Christopher L.; Quevedo-Lopez, Manuel; Alshareef, Husam N.; Colombo, Luigi; Hsu, Julia W P; Wallace, Robert M.

    2015-01-01

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  1. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  2. Climatology of UVA and ozone variations and the global solar UV-index

    International Nuclear Information System (INIS)

    Roy, C.R.; Gies, H.P.; Toomey, S.J.

    1996-01-01

    Human overexposure to solar ultraviolet radiation (UVR) can result in acute and chronic adverse health effects on both the skin and the eye. Skin cancer (both non-melanoma and malignant melanoma) and cataract impose a huge social and cost burden on many societies throughout the world. Such human health problems can be avoided if the individual reduces their UVR exposure. Unfortunately enlightenment may not help persons who have experienced high episodic exposures during childhood as this appears to be an important causal factor in melanoma. In some countries public educational campaigns have been underway for decades in other countries they are just beginning; the global solar uv-index provides a globally consistent means of reporting or predicting UVR as part of public education on UVR exposure. There are now indications that some of these programs have been effective in halting the climb in melanoma incidence. The UVR, and in particular UVB, reaching the earth's surface varies with both latitude and time (both of the day and year). The transmission of the extraterrestrial radiation through the atmosphere is determined by ozone clouds, aerosols and to a lesser extent, trace gases. In recent decades there has been considerable concern that long-term changes in ozone and perhaps clouds and aerosols may result in changes in the UVB at the earth's surface. (author)

  3. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  4. The influence of solar system oscillation on the variability of the total solar irradiance

    Science.gov (United States)

    Yndestad, Harald; Solheim, Jan-Erik

    2017-02-01

    Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past. This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability. The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo. We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.

  5. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?

    International Nuclear Information System (INIS)

    Modak, Angshuman; Bala, Govindasamy; Cao, Long; Caldeira, Ken

    2016-01-01

    Many previous studies have shown that a solar forcing must be greater than a CO 2 forcing to cause the same global mean surface temperature change but a process-based mechanistic explanation is lacking in the literature. In this study, we investigate the physical mechanisms responsible for the lower efficacy of solar forcing compared to an equivalent CO 2 forcing. Radiative forcing is estimated using the Gregory method that regresses top-of-atmosphere (TOA) radiative flux against the change in global mean surface temperature. For a 2.25% increase in solar irradiance that produces the same long term global mean warming as a doubling of CO 2 concentration, we estimate that the efficacy of solar forcing is ∼80% relative to CO 2 forcing in the NCAR CAM5 climate model. We find that the fast tropospheric cloud adjustments especially over land and stratospheric warming in the first four months cause the slope of the regression between the TOA net radiative fluxes and surface temperature to be steeper in the solar forcing case. This steeper slope indicates a stronger net negative feedback and hence correspondingly a larger solar forcing than CO 2 forcing for the same equilibrium surface warming. Evidence is provided that rapid land surface warming in the first four months sets up a land-sea contrast that markedly affects radiative forcing and the climate feedback parameter over this period. We also confirm the robustness of our results using simulations from the Hadley Centre climate model. Our study has important implications for estimating the magnitude of climate change caused by volcanic eruptions, solar geoengineering and past climate changes caused by change in solar irradiance such as Maunder minimum. (letter)

  6. Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Most greenwall studies focus on cooling and energy conservation in the warm season, and tropical cold-season has received little attention. This field-experimental study in humid-subtropical Hong Kong evaluated winter thermal behavior of climber greenwalls. Orientation and weather factors regulated solar-irradiation regimes with critical impact on vegetation thermal responses. Temperature differentiation occurred mainly on sunny day, with subdued variations on cloudy and rainy days. The south greenwall on sunny day received the highest solar-energy input, bringing divergent surface temperature in three climber species. The daytime descending cooling sequence was: Control-air > Pyrostegia venusta > Bauhinia corymbosa > Ficus pumila > Control-surface. Heat-sink effect related to foliage-thickness and moisture-content influenced climber thermal responses. Exceeding a solar-irradiance threshold of 500 Wm"−"2 was a prerequisite for notable solar-warming and transpiration-cooling, bringing well-differentiated climber-surface temperature. Cooling of vegetation-surface and Anterior-ambient-air was contrasted by warming behind the greenwall. Posterior-airgap with trapped stagnant air and Posterior-concrete-surface were warmed consistently above control concrete-surface on sunny and cloudy days. This winter passive warming mechanism denotes a new dimension in thermal benefits operating behind the greenwall. The thermal-gradient can transmit heat into indoor space, with benefits on human comfort, health and energy conservation. - Highlights: • Cold-season thermal regimes and benefits of climber greenwalls in tropics was studied. • Greenwall plots were installed as a field-experiment to evaluated six related factors. • Descending cooling sequence: Pyrostegia venusta > Bauhinia corymbosa > Ficus pumila. • Solar radiation intensity and foliage heat-sink effect determined climber cooling. • Posterior airgap and Posterior concrete-surface were warmed to provide indoor

  7. Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon

    International Nuclear Information System (INIS)

    Chen, H. Y.; Peng, Y.; Hong, M.; Zhang, Y. B.; Cai, Bin; Zhu, Y. M.; Yuan, G. D.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Li, J. M.

    2014-01-01

    We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production

  8. Statistical analysis of geomagnetic field variations during the partial solar eclipse on 2011 January 4 in Turkey

    International Nuclear Information System (INIS)

    Ateş, Abdullah; Levent Ekinci, Yunus; Buyuksarac, Aydin; Aydemir, Attila; Demirci, Alper

    2015-01-01

    Some geophysical parameters, such as those related to gravitation and the geomagnetic field, could change during solar eclipses. In order to observe geomagnetic fluctuations, geomagnetic measurements were carried out in a limited time frame during the partial solar eclipse that occurred on 2011 January 4 and was observed in Canakkale and Ankara, Turkey. Additionally, records of the geomagnetic field spanning 24 hours, obtained from another observatory (in Iznik, Turkey), were also analyzed to check for any peculiar variations. In the data processing stage, a polynomial fit, following the application of a running average routine, was applied to the geomagnetic field data sets. Geomagnetic field data sets indicated there was a characteristic decrease at the beginning of the solar eclipse and this decrease can be well-correlated with previous geomagnetic field measurements that were taken during the total solar eclipse that was observed in Turkey on 2006 March 29. The behavior of the geomagnetic field is also consistent with previous observations in the literature. As a result of these analyses, it can be suggested that eclipses can cause a shielding effect on the geomagnetic field of the Earth. (paper)

  9. Surface Tension of Multi-phase Flow with Multiple Junctions Governed by the Variational Principle

    International Nuclear Information System (INIS)

    Matsutani, Shigeki; Nakano, Kota; Shinjo, Katsuhiko

    2011-01-01

    We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie et al. (J Comput Phys 113:134–147, 1994) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N-phase, N ≥ 2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation for motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

  10. Surface- and interface-engineered heterostructures for solar hydrogen generation

    Science.gov (United States)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  11. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vermang, Bart, E-mail: Bart.Vermang@angstrom.uu.se [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); ESAT-KU Leuven, University of Leuven, Leuven 3001 (Belgium); Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); Gunnarsson, Rickard; Pilch, Iris; Helmersson, Ulf [Plasma & Coatings Physics, University of Linköping, Linköping 58183 (Sweden); Kotipalli, Ratan; Henry, Frederic; Flandre, Denis [ICTEAM/IMNC, Université Catholique de Louvain, Louvain-la-Neuve 1348 (Belgium)

    2015-05-01

    Al{sub 2}O{sub 3} rear surface passivated ultra-thin Cu(In,Ga)Se{sub 2} (CIGS) solar cells with Mo nano-particles (NPs) as local rear contacts are developed to demonstrate their potential to improve optical confinement in ultra-thin CIGS solar cells. The CIGS absorber layer is 380 nm thick and the Mo NPs are deposited uniformly by an up-scalable technique and have typical diameters of 150 to 200 nm. The Al{sub 2}O{sub 3} layer passivates the CIGS rear surface between the Mo NPs, while the rear CIGS interface in contact with the Mo NP is passivated by [Ga]/([Ga] + [In]) (GGI) grading. It is shown that photon scattering due to the Mo NP contributes to an absolute increase in short circuit current density of 3.4 mA/cm{sup 2}; as compared to equivalent CIGS solar cells with a standard back contact. - Highlights: • Proof-of-principle ultra-thin CIGS solar cells have been fabricated. • The cells have Mo nano-particles (NPs) as local rear contacts. • An Al{sub 2}O{sub 3} film passivates the CIGS rear surface between these nano-particles. • [Ga]/([Ga] + [In]) grading is used to reduce Mo-NP/CIGS interface recombination.

  12. Solar Cycle Variation of Interplanetary Coronal Mass Ejection ...

    Indian Academy of Sciences (India)

    2010-08-25

    Aug 25, 2010 ... 3Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences ... ICME-associated CME latitudes during solar cycle 23 using Song et al.'s method. ..... latitudes during the three phases of cycle 23 separately for the northern (left panel) and southern. (right panel) ...

  13. Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM).

    Science.gov (United States)

    Moosavi, Fatemeh Sadat; Tavakoli, Touraj

    2016-11-01

    In this study, the solar photocatalytic process in a pilot plant with compound parabolic collectors (CPCs) was performed for amoxicillin (AMX) degradation, an antibiotic widely used in the world. The response surface methodology (RSM) based on Box-Behnken statistical experiment design was used to optimize independent variables, namely TiO 2 dosage, antibiotic initial concentration, and initial pH. The results showed that AMX degradation efficiency affected by positive or negative effect of variables and their interactions. The TiO 2 dosage, pH, and interaction between AMX initial concentration and TiO 2 dosage exhibited a synergistic effect, while the linear and quadratic term of AMX initial concentration and pH showed antagonistic effect in the process response. Response surface and contour plots were used to perform process optimization. The optimum conditions found in this regard were TiO 2 dosage = 1.5 g/L, AMX initial concentration = 17 mg/L, and pH = 9.5 for AMX degradation under 240 min solar irradiation. The photocatalytic degradation of AMX after 34.95 kJ UV /L accumulated UV energy per liter of solution was 84.12 % at the solar plant.

  14. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  15. Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model

    Science.gov (United States)

    Brown, Steven; Bilitza, Dieter; Yiǧit, Erdal

    2018-06-01

    A new monthly ionospheric index, IGNS, is presented to improve the representation of the solar cycle variation of the ionospheric F2 peak plasma frequency, foF2. IGNS is calculated using a methodology similar to the construction of the "global effective sunspot number", IG, given by Liu et al. (1983) but selects ionosonde observations based on hemispheres. We incorporated the updated index into the International Reference Ionosphere (IRI) model and compared the foF2 model predictions with global ionospheric observations. We also investigated the influence of the underlying foF2 model on the IG index. IRI has two options for foF2 specification, the CCIR-66 and URSI-88 foF2 models. For the first time, we have calculated IG using URSI-88 and assessed the impact on model predictions. Through a retrospective model-data comparison, results show that the inclusion of the new monthly IGNS index in place of the current 12-month smoothed IG index reduce the foF2 model prediction errors by nearly a factor of two. These results apply to both day-time and nightime predictions. This is due to an overall improved prediction of foF2 seasonal and solar cycle variations in the different hemispheres.

  16. Surface Traps in Colloidal Quantum Dot Solar Cells, their Mitigation and Impact on Manufacturability

    KAUST Repository

    Kirmani, Ahmad R.

    2017-01-01

    charge transport and threaten their otherwise wonderful optoelectronic properties. Surface traps have also, indirectly, impeded scalable and industry-compatible fabrication of these solar cells, as all of the reports, to date, have relied on spin

  17. Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency.

    Science.gov (United States)

    Reinhard, Patrick; Bissig, Benjamin; Pianezzi, Fabian; Hagendorfer, Harald; Sozzi, Giovanna; Menozzi, Roberto; Gretener, Christina; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-05-13

    Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.

  18. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  19. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    Science.gov (United States)

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  20. A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain

    International Nuclear Information System (INIS)

    Yun, J.I.

    2009-01-01

    Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio (W i ) between sloping and horizontal surface is defined as multiplication of the relative solar intensity (k i ) and the slope irradiance ratio (r i ) at an hourly interval. The k i is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The r i is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of W i on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano (c.a., 570 m diameter for the bottom circle and 90 m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error (RMSE) of 1.61 MJ m −2 for the whole period but the RMSE for April to October (i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape

  1. Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing

    Science.gov (United States)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.

  2. The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during γ-ray events

    Science.gov (United States)

    Plotnikov, I.; Rouillard, A. P.; Share, G. H.

    2017-12-01

    Context. The observation of >100 MeV γ-rays in the minutes to hours following solar flares suggests that high-energy particles interacting in the solar atmosphere can be stored and/or accelerated for long time periods. The occasions when γ-rays are detected even when the solar eruptions occurred beyond the solar limb as viewed from Earth provide favorable viewing conditions for studying the role of coronal shocks driven by coronal mass ejections (CMEs) in the acceleration of these particles. Aims: In this paper, we investigate the spatial and temporal evolution of the coronal shocks inferred from stereoscopic observations of behind-the-limb flares to determine if they could be the source of the particles producing the γ-rays. Methods: We analyzed the CMEs and early formation of coronal shocks associated with γ-ray events measured by the Fermi-Large Area Telescope (LAT) from three eruptions behind the solar limb as viewed from Earth on 2013 Oct. 11, 2014 Jan. 06 and Sep. 01. We used a 3D triangulation technique, based on remote-sensing observations to model the expansion of the CME shocks from above the solar surface to the upper corona. Coupling the expansion model to various models of the coronal magnetic field allowed us to derive the time-dependent distribution of shock Mach numbers and the magnetic connection of particles produced by the shock to the solar surface visible from Earth. Results: The reconstructed shock fronts for the three events became magnetically connected to the visible solar surface after the start of the flare and just before the onset of the >100 MeV γ-ray emission. The shock surface at these connections also exhibited supercritical Mach numbers required for significant particle energization. The strongest γ-ray emissions occurred when the flanks of the shocks were connected in a quasi-perpendicular geometry to the field lines reaching the visible surface. Multipoint, in situ, measurements of solar energetic particles (SEPs) were

  3. Fabrication of solar panels on the surface of a solar car

    OpenAIRE

    Bañales Izco, Fernando

    2010-01-01

    Glyndwr University will participate in South Africa Solar Challenge, a race that involves cars that run exclusively with solar energy. This technology is a mix of electrical cars that are being developed today, with solar cells, getting the car to supply for itself, and besides, it is clean energy. The manufacture and adaptation of cells in that car was one of our goals, getting the most output. The design of the car was made in Solid Works and energy was calculated with the help ...

  4. Solar surface magnetism and irradiance on time scales

    NARCIS (Netherlands)

    Domingo, V.; Ermolli, I.; Fox, P.; Fröhlich, C.; Haberreiter, M.; Krivova, N.; Kopp, G.; Schmutz, W.; Solanki, S.K.; Spruit, H.C.; Unruh, Y.C.; Vögler, A.

    2009-01-01

    The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance

  5. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    International Nuclear Information System (INIS)

    Arora, Swati; Singh, Vinamrita; Arora, Manoj; Pal Tandon, Ram

    2012-01-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10 12 -10 13 cm -2 eV -1 , which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  6. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  7. Orintsol. Surfaces with assorted inclination: software to calculate the solar radiation; Orientsol. Superficies con distinta inclinacion Software para el calculo de la radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Rus, C.; Almonacid, F.; Hontoria, L.; Perez, P. J.; Munoz, F. J.

    2009-07-01

    The Universidad de Jaen, conscious of the importance of using energy sources respectful with the environment, offers in its Technical Industry Engineer degree, in the specialties of: Mechanics, Electricity and Industrial electronics the optional subjects Solar electricity and Photovoltaic Facilities. With these matters is intended that the students acquire the capability of design, calculate, analyze their different applications. A fundamental aspect in solar facilities is how to know the incident radiation in the plant which we want to analyze or the size. Orintsol software tool, with a didactic aim, facilitates so teaching as learning about solar radiation received on inclined surfaces. (Author) 8 refs.

  8. Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as a guide for future development of physics-based transposition models.

  9. Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1993-01-01

    Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.

  10. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  11. Variations and asymmetries in regional brain surface in the genus Homo.

    Science.gov (United States)

    Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique

    2012-06-01

    Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright

  12. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface.

    Science.gov (United States)

    Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng

    2014-11-12

    Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.

  13. COMPARISON OF SOLAR SURFACE FLOWS INFERRED FROM TIME-DISTANCE HELIOSEISMOLOGY AND COHERENT STRUCTURE TRACKING USING HMI/SDO OBSERVATIONS

    International Nuclear Information System (INIS)

    Švanda, Michal; Roudier, Thierry; Rieutord, Michel; Burston, Raymond; Gizon, Laurent

    2013-01-01

    We compare measurements of horizontal flows on the surface of the Sun using helioseismic time-distance inversions and coherent structure tracking of solar granules. Tracking provides two-dimensional horizontal flows on the solar surface, whereas the time-distance inversions estimate the full three-dimensional velocity flows in the shallow near-surface layers. Both techniques use Helioseismic and Magnetic Imager observations as input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the three-dimensional time-distance inversion.

  14. Possible biophysical mechanism of the effect of the solar activity on the human central nervous system

    Science.gov (United States)

    Mikhailova, G. A.; Mikhailov, Y. M.

    Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the

  15. MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd; Köhler, Jan; Appel, Jan K.; Böhm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Lohf, Henning; Martin, Cesar [Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel (Germany); Zeitlin, Cary [Southwest Research Institute, Earth, Oceans and Space Department, Durham, NH (United States); Rafkin, Scot; Hassler, Donald M.; Ehresmann, Bent [Southwest Research Institute, Space Science and Engineering Division, Boulder, CO (United States); Posner, Arik [NASA Headquarters, Science Mission Directorate, Washington, DC (United States); Brinza, David E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Kahanpää, H. [Finnish Meteorological Institute, Helsinki (Finland); Reitz, Günther, E-mail: guo@physik.uni-kiel.de [Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt, Köln (Germany)

    2015-09-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activity and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.

  16. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Cui, Jin [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Li, Junpeng [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); Cao, Kun; Yuan, Shuai [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Cheng, Yibing [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Wang, Mingkui, E-mail: mingkui.wang@mail.hust.edu.cn [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China)

    2015-09-15

    Highlights: • SPR effect from Au-nanostructures was first investigated in NiO-based solar cells. • Enhanced photocurrent generation was observed in p-DSC and perovskite solar cell. • Au-nanorods SPR effect induced charge kinetics were investigated. - Abstract: Surface plasma resonance (SPR) effect has been demonstrated to improve solar cell performance. This work reports on the SPR effect from Au nanorod@SiO{sub 2} on p-type dye-sensitized solar cells. Au nanorod@SiO{sub 2} works as an antenna to transform photons with long wavelength into electric field followed by an enhanced excitation of dye. The devices using the NiO electrode containing Au nanorod@SiO{sub 2} shows overall power conversion efficiencies of about 0.2% in combination with I{sup −}/I{sub 3}{sup −} electrolyte, and 0.29% with T{sup −}/T{sub 2} electrolyte, which are superior to those without adding Au nanorods. Detailed investigation including spectroscopy and transient photovoltage decay measurements reveals that plasma effect of Au nanorod@SiO{sub 2} contribute to charge injection efficiency, and thus on the photocurrent. The effect of Au NRs can be further extended to the inverted planar perovskite solar cells, showing obviously improvement in photocurrent.

  17. A new high-efficiency GaAs solar cell structure using a heterostructure back-surface field

    Science.gov (United States)

    Gale, R. P.; Fan, J. C. C.; Turner, G. W.; Chapman, R. L.

    1984-01-01

    Shallow-homojunction GaAs solar cells are fabricated with a back-surface field (BSF) produced by a GaAs/Al(0.2)Ga(0.8)As heterostructure. These cells exhibit higher open-circuit voltages and conversion efficiencies than control cells made with a p-GaAs/p(+)-GaAs BSF. Conversion efficiencies of over 22 percent (AM1, total area) have been obtained with this new structure. The use of a higher bandgap material below the active region not only provides an enhanced BSF but will also permit the implementation of two solar-cell designs: a GaAs cell with a back-surface reflector and an AlGaAs cell that can be used as the upper cell in tandem configurations.

  18. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation at Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    A. V. Lindfors

    2013-04-01

    Full Text Available Pyranometer measurements of the solar surface radiation (SSR are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  19. Estimating the solar radiation environment on the soil surface between rows using crop canopy architectural models

    International Nuclear Information System (INIS)

    Yuge, K.; Haraguchi, T.; Nakano, Y.; Kuroda, M.; Funakoshi, T.

    2002-01-01

    The objective of this study is quantification of the solar radiation in the farmland located in the hilly and mountainous areas, considering the effect of the shelter adjacent to the field, such as the forest (This effect is called as the edge-effect in this study.). To evaluate the edge-effect on the solar radiation environment in the farmland, solar radiations are measured at the center and edge of the study site adjacent to the forest. The simulation model is composed, coupling with the fish-eye projection method and procedure for the separating direct and diffuse solar radiations. Using this model, the diurnal solar radiations are simulated at the center and edge of the study site. The simulation result showed good agreement with the observation. The spatial distribution of the solar radiation in an observational field is quantified by this method, considering the edge-effect. The simulation result indicated that the solar radiation environment on the field surface is affected by the shelter adjacent to the field and the field direction. (author)

  20. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2017-09-01

    Full Text Available Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface–atmosphere system to maintain turbulent fluxes over day and night, while the land surface–atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface–atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface–atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  1. Modifying TiO{sub 2} surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rajmohan, Gayathri Devi [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Dai, Xiujuan J., E-mail: jane.dai@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Tsuzuki, Takuya; Lamb, Peter R. [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001 (Australia); Huang, Fuzhi; Cheng, Yi-Bing [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia)

    2013-10-31

    Oxygen plasma treatment of TiO{sub 2} films has been used to improve the efficiency of dye sensitized solar cells. Both a commercial TiO{sub 2} sample and a TiO{sub 2} thin film synthesized by a sol-gel technique were treated using a custom built inductively coupled plasma apparatus. X-ray photoelectron spectroscopy revealed that oxygen-plasma treatment increased the number of oxygen functional groups (hydroxyl groups) and introduced some Ti{sup 3+} species on the surface of TiO{sub 2}. A sample solar cell with plasma treated TiO{sub 2} showed an overall solar-to-electricity conversion efficiency of 4.3%, about a 13% increase over untreated TiO{sub 2}. The photon conversion efficiency for the plasma treated TiO{sub 2} was 34% higher than untreated TiO{sub 2}. This enhanced cell-performance is partly due to increased dye adsorption from an increase in surface oxygen functional groups and also may be partly due to Ti{sup 3+} states on the surface of TiO{sub 2}. - Highlights: • Oxygen plasma is used to generate hydroxyl groups on the surface of TiO{sub 2} • Parallel study was conducted using a spin coated TiO{sub 2} and a Commercial TiO{sub 2} film. • The plasma functionalization caused increased dye uptake. • Some species in Ti{sup 3+} state are also generated after oxygen plasma. • Dye sensitised solar cell with functionalised electrode showed improved efficiency.

  2. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Directory of Open Access Journals (Sweden)

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  3. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  4. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2016-12-01

    Full Text Available This data article contains data related to the research article entitled “Global land cover classification based on microwave polarization and gradient ratio (MPGR” [1] and “Microwave polarization and gradient ratio (MPGR for global land surface phenology” [2]. This data article presents land surface characteristics and snow cover variation information from sensors like EOS Advanced Microwave Scanning Radiometer (AMSR-E. This data article use the HDF Explorer, Matlab, and ArcGIS software to process the pixel latitude, longitude, snow water equivalent (SWE, digital elevation model (DEM and Brightness Temperature (BT information from AMSR-E satellite data to provide land surface characteristics and snow cover variation data in all-weather condition at any time. This data information is useful to discriminate different land surface cover types and snow cover variation, which is turn, will help to improve monitoring of weather, climate and natural disasters.

  5. COMPARING CORONAL AND HELIOSPHERIC MAGNETIC FIELDS OVER SEVERAL SOLAR CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K., E-mail: jennimari.koskela@oulu.fi [University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland)

    2017-01-20

    Here we use the PFSS model and photospheric data from Wilcox Solar Observatory, SOHO /MDI, SDO/HMI, and SOLIS to compare the coronal field with heliospheric magnetic field measured at 1 au, compiled in the NASA/NSSDC OMNI 2 data set. We calculate their mutual polarity match and the power of the radial decay, p , of the radial field using different source surface distances and different number of harmonic multipoles. We find the average polarity match of 82% for the declining phase, 78%–79% for maxima, 76%–78% for the ascending phase, and 74%–76% for minima. On an average, the source surface of 3.25 R{sub S} gives the best polarity match. We also find strong evidence for solar cycle variation of the optimal source surface distance, with highest values (3.3 R{sub S}) during solar minima and lowest values (2.6 R{sub S}–2.7 R{sub S}) during the other three solar cycle phases. Raising the number of harmonic terms beyond 2 rarely improves the polarity match, showing that the structure of the HMF at 1 au is most of the time rather simple. All four data sets yield fairly similar polarity matches. Thus, polarity comparison is not affected by photospheric field scaling, unlike comparisons of the field intensity.

  6. Stationary nonimaging lenses for solar concentration.

    Science.gov (United States)

    Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay

    2010-09-20

    A novel approach for the design of refractive lenses is presented, where the lens is mounted on a stationary aperture and the Sun is tracked by a moving solar cell. The purpose of this work is to design a quasi-stationary concentrator by replacing the two-axis tracking of the Sun with internal motion of the miniaturized solar cell inside the module. Families of lenses are designed with a variation of the simultaneous multiple surface technique in which the sawtooth genetic algorithm is implemented to optimize the geometric variables of the optic in order to produce high fluxes for a range of incidence angles. Finally, we show examples of the technique for lenses with 60° and 30° acceptance half-angles, with low to medium attainable concentrations.

  7. Time variations of oxygen emission lines and solar wind dynamic parameters in low latitude region

    Science.gov (United States)

    Jamlongkul, P.; Wannawichian, S.; Mkrtichian, D.; Sawangwit, U.; A-thano, N.

    2017-09-01

    Aurora phenomenon is an effect of collision between precipitating particles with gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The particles’ precipitation occurs normally around polar regions. However, some auroral particles can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence of the aurora as well. This work studies time variations of oxygen emission lines and solar wind parameters, simultaneously. The emission’s spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing program. The correlations between oxygen emission lines and solar wind dynamics will be analyzed. This result could be an evidence of the aurora in low latitude region.

  8. Summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The diagrams in this section of the publication illustrate the summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow observed in Japan. For convenience, the observational results are arranged by the solar rotation number. The aim of this illustration is to disseminate an outline of daily events observed in Japan for the benefit of active research workers who plan to make detailed study of the specific solar and terrestrial events. Therefore, the illustrations do not show all observational results in Japan but only representative ones at some key stations in Japan. They will suffice for the present purpose. The method of illustration shown in the instruction on the next page is still a preliminary one, and it is subject to change resulting from the kind advice of the users of this part of the publication. We welcome any advice for making the data arrangement and expression better and more convenient. (auth.)

  9. Establishment of a solar utilisation plan

    International Nuclear Information System (INIS)

    Gernhardt, D.; Mohr, M.; Unger, H.

    1992-01-01

    One of the main bases of the project ''Analysis of Possibilities of Solar Power Supply in Nordrhein-Westfalen and its Development until 2020'' is the achievement of a solar surface utilization plan. The duty of this plan is to indicate usefull areas for solar application in Nordrhein-Westfalen. This report shows the task of the solar surface utilization plan and explains attributes to describe surfaces for solar applications. (orig.) [de

  10. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    Science.gov (United States)

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  11. Open Surface Solar Irradiance Observations - A Challenge

    Science.gov (United States)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    The newly started project ConnectinGEO funded by the European Commission aims at improving the understanding on which environmental observations are currently available in Europe and subsequently providing an informational basis to close gaps in diverse observation networks. The project complements supporting actions and networking activities with practical challenges to test and improve the procedures and methods for identifying observation data gaps, and to ensure viability in real world scenarios. We present a challenge on future concepts for building a data sharing portal for the solar energy industry as well as the state of the art in the domain. Decision makers and project developers of solar power plants have identified the Surface Solar Irradiance (SSI) and its components as an important factor for their business development. SSI observations are crucial in the process of selecting suitable locations for building new plants. Since in-situ pyranometric stations form a sparse network, the search for locations starts with global satellite data and is followed by the deployment of in-situ sensors in selected areas for at least one year. To form a convincing picture, answers must be sought in the conjunction of these EO systems, and although companies collecting SSI observations are willing to share this information, the means to exchange in-situ measurements across companies and between stakeholders in the market are still missing. We present a solution for interoperable exchange of SSI data comprising in-situ time-series observations as well as sensor descriptions based on practical experiences from other domains. More concretely, we will apply concepts and implementations of the Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC). The work is based on an existing spatial data infrastructure (SDI), which currently comprises metadata, maps and coverage data, but no in-situ observations yet. This catalogue is already registered in the

  12. The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; McFadden, J.; Halekas, J. S.; DiBraccio, G. A.; Connerney, J. E. P.; Eparvier, F.; Brain, D.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2017-11-01

    We present multi-instrument observations of the effects of solar wind on ion escape fluxes on Mars based on the Mars Atmosphere and Volatile EvolutioN (MAVEN) data from 1 November 2014 to 15 May 2016. Losses of oxygen ions through different channels (plasma sheet, magnetic lobes, boundary layer, and ion plume) as a function of the solar wind and the interplanetary magnetic field variations were studied. We have utilized the modified Mars Solar Electric (MSE) coordinate system for separation of the different escape routes. Fluxes of the low-energy (≤30 eV) and high-energy (≥30 eV) ions reveal different trends with changes in the solar wind dynamic pressure, the solar wind flux, and the motional electric field. Major oxygen fluxes occur through the tail of the induced magnetosphere. The solar wind motional electric field produces an asymmetry in the ion fluxes and leads to different relations between ion fluxes supplying the tail from the different hemispheres and the solar wind dynamic pressure (or flux) and the motional electric field. The main driver for escape of the high-energy oxygen ions is the solar wind flux (or dynamic pressure). On the other hand, the low-energy ion component shows the opposite trend: ion flux decreases with increasing solar wind flux. As a result, the averaged total oxygen ion fluxes reveal a low variability with the solar wind strength. The large standard deviations from the averages values of the escape fluxes indicate the existence of mechanisms which can enhance or suppress the efficiency of the ion escape. It is shown that the Martian magnetosphere possesses the properties of a combined magnetosphere which contains different classes of field lines. The existence of the closed magnetic field lines in the near-Mars tail might be responsible for suppression of the ion escape fluxes.

  13. Back surface studies of Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Simchi, Hamed

    Cu(In,Ga)Se2 thin film solar cells have attracted a lot of interest because they have shown the highest achieved efficiency (21%) among thin film photovoltaic materials, long-term stability, and straightforward optical bandgap engineering by changing relative amounts of present elements in the alloy. Still, there are several opportunities to further improve the performance of the Cu(In,Ga)Se2 devices. The interfaces between layers significantly affect the device performance, and knowledge of their chemical and electronic structures is essential in identifying performance limiting factors. The main goal of this research is to understand the characteristics of the Cu(In,Ga)Se2-back contact interface in order to design ohmic back contacts for Cu(In,Ga)Se2-based solar cells with a range of band gaps and device configurations. The focus is on developing either an opaque or transparent ohmic back contact via surface modification or introduction of buffer layers in the back surface. In this project, candidate back contact materials have been identified based on modeling of band alignments and surface chemical properties of the absorber layer and back contact. For the first time, MoO3 and WO 3 transparent back contacts were successfully developed for Cu(In,Ga)Se 2 solar cells. The structural, optical, and surface properties of MoO 3 and WO3 were optimized by controlling the oxygen partial pressure during reactive sputtering and post-deposition annealing. Valence band edge energies were also obtained by analysis of the XPS spectra and used to characterize the interface band offsets. As a result, it became possible to illuminate of the device from the back, resulting in a recently developed "backwall superstrate" device structure that outperforms conventional substrate Cu(In,Ga)Se2 devices in the absorber thickness range 0.1-0.5 microm. Further enhancements were achieved by introducing moderate amounts of Ag into the Cu(In,Ga)Se2 lattice during the co-evaporation method

  14. EXPERIMENTAL INVESTIGATION OF HEAT STORAGE CHARACTERISTIC OF UREA AND BORAX SALT GRADIENT SOLAR PONDS

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2006-03-01

    Full Text Available Salt gradient solar ponds are simple and low cost solar energy system for collecting and storing solar energy. In this study, heat storage characteristic of urea and borax solutions in the solar pond were examined experimentally. Establishing density gradients in different concentration, variations in the temperature and density profiles were observed in four different experiments. Maximum storage temperatures were measured as 28ºC and 36 ºC for the ponds with urea and borax solution, respectively. The temperature difference between the bottom and the surface of the pond were measured as 13 ºC for urea and 17 ºC for borax- solutions. According to these results, heat storage characteristic of the solar pond with borax solution was found to be better than urea solution.

  15. Solar influence on meteor rates and atmospheric density variations at meteor heights

    International Nuclear Information System (INIS)

    Ellyett, C.

    1977-01-01

    A full analysis of radar-determined meteor rates from New Zealand, involving 3,085,574 meteors recorded over a total of 3 1/2 years, and 12,391,976 meteors recorded by the National Research Council of Canada in 8 1/2 years confirms an inverse relationship between meteor rates and solar activity as measured by sunspot numbers. The relationship, significant at the 1% level, appears in the Canadian annual average when the abnormal 1963 increase is removed, in monthly and 1/3-monthly results for the total Canadian period, and in monthly intervals for 1 year of the New Zealand data. This proven relationship of meteor rates with the solar cycle calls for a significant density gradient change over the solar cycle in the 70- to-120-km height range. Although some definite negative results have been reported, no unambiguous positive results are yet available supporting such a density gradient change. It is possible that density variations due to annual, semiannual, diurnal, and latitudinal changes obscure any 11-year density gradient change occurring at these heights. It is uncertain whether the 1963 increase represents density gradient changes in the meteor ablation region regularly brought about 1-2 years before each sunspot minimum or is a special event due to volcanic dust. The following additional facts have emerged from the present analysis. (1) Within a 1-year period the seasonal rate change of astronomical origin overrides any density gradient change in controlling the meteor rates in one of the two hemispheres. (2) The earth's daily rotation alters rates in phase with probable diurnal density gradient changes. (3) An effect due to D region absorption has been observed in the Canadian data

  16. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  17. Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Martínez-Val, J.M.; Ramos, A.

    2012-01-01

    The main objective of concentrated solar power is to increase the thermal energy of a fluid, for the fluid to be used, for example, in a power cycle to generate electricity. Such applications present the requirement of appropriately designing the receiver active absorber surface, as the incident radiation flux can be very high. Besides that, the solar image in the receiver is not uniform, so conventional boilers designs are not well suited for these purposes. That point is particularly critical in solar central receivers systems (CRS), where concentrated solar flux is usually above 500 kW/m 2 , causing thermal and mechanical stress in the absorber panels. This paper analyzes a new thermofluidynamic design of a solar central receiver, which optimizes the heat transfer in the absorber surface. This conceptual receiver presents the following characteristics: the fluid flow pattern is designed according to the radiation flux map symmetry, so more uniform fluid temperatures at the receiver outlet are achieved; the heat transfer irreversibilities are reduced by circulating the fluid from the lower temperature region to the higher temperature region of the absorber surface; the width of each pass is adjusted to the solar flux gradient, to get lower temperature differences between the side tubes of the same pass; and the cooling requirement is ensured by means of adjusting the fluid flow velocity per tube, taking into account the pressure drop. This conceptual scheme has been applied to the particular case of a molten salt single cavity receiver, although the configuration proposed is suitable for other receiver designs and working fluids. - Highlights: ► The solar receiver design proposed optimizes heat transfer in the absorber surface. ► The fluid flow pattern is designed according to the solar flux map symmetry at noon. ► The fluid circulates from the lower to the higher temperature regions. ► The width of each pass is adjusted to the solar flux gradient.

  18. Solar Cell Polymer Based Active Ingredients PPV and PCBM

    Science.gov (United States)

    Hardeli, H.; Sanjaya, H.; Resikarnila, R.; Nitami H, R.

    2018-04-01

    A polymer solar cell is a solar cell based on a polymer bulk heterojunction structure using the method of thin film, which can convert solar energy into electrical energy. Absorption of light is carried by active material layer PPV: PCBM. This study aims to make solar cells tandem and know the value of converting solar energy into electrical energy and increase the value of efficiency generated through morphological control, ie annealing temperature and the ratio of active layer mixture. The active layer is positioned above the PEDOT:PSS layer on ITO glass substrate. The characterization results show the surface morphology of the PPV:PCBM active layer is quite evenly at annealing temperature of 165 ° C. The result of conversion of electrical energy with a UV light source in annealing samples with temperature 165 ° C is 0.03 mA and voltage of 4.085 V with an efficiency of 2.61% and mixed ratio variation was obtained in comparison of P3HT: PCBM is 1: 3

  19. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  20. Contribution of Topography and Incident Solar Radiation to Variation of Soil and Plant Litter at an Area with Heterogeneous Terrain

    Directory of Open Access Journals (Sweden)

    Felipe Cito Nettesheim

    2015-06-01

    Full Text Available Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radiation throughout the year since its topography has slopes predominantly facing opposing geographic directions. Soil data (pH, C, N, P, H+Al, Ca, Mg, K, Al, Na, sand, and silt and plant litter data (N, K, Ca, P, and Mg were gathered together with the geographic coordinates (to model the spatial structure of 40 sampling units established at two sites composed of slopes predominantly facing northwest and southeast (20 units each. Soil and litter chemical properties varied more among slopes within similar geographic orientations than between the slopes facing opposing directions. Both the incident solar radiation and the spatial structure of the area were relevant in explaining the patterns detected in variation of soil and plant litter. Individual contributions of incident solar radiation to explain the variation in the properties evaluated suggested that this and other environmental factors may play a particularly relevant role in determining soil and plant litter distribution in tropical areas with heterogeneous topography. Furthermore, this study corroborates that the spatial structure of the area also plays an important role in the distribution of soil and litter within this type of landscape, which appears to be consistent with the action of water movement mechanisms in such areas.

  1. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  2. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  3. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  4. Asteroseismic modelling of solar-type stars: internal systematics from input physics and surface correction methods

    Science.gov (United States)

    Nsamba, B.; Campante, T. L.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Rendle, B. M.; Reese, D. R.; Verma, K.

    2018-04-01

    Asteroseismic forward modelling techniques are being used to determine fundamental properties (e.g. mass, radius, and age) of solar-type stars. The need to take into account all possible sources of error is of paramount importance towards a robust determination of stellar properties. We present a study of 34 solar-type stars for which high signal-to-noise asteroseismic data is available from multi-year Kepler photometry. We explore the internal systematics on the stellar properties, that is, associated with the uncertainty in the input physics used to construct the stellar models. In particular, we explore the systematics arising from: (i) the inclusion of the diffusion of helium and heavy elements; and (ii) the uncertainty in solar metallicity mixture. We also assess the systematics arising from (iii) different surface correction methods used in optimisation/fitting procedures. The systematics arising from comparing results of models with and without diffusion are found to be 0.5%, 0.8%, 2.1%, and 16% in mean density, radius, mass, and age, respectively. The internal systematics in age are significantly larger than the statistical uncertainties. We find the internal systematics resulting from the uncertainty in solar metallicity mixture to be 0.7% in mean density, 0.5% in radius, 1.4% in mass, and 6.7% in age. The surface correction method by Sonoi et al. and Ball & Gizon's two-term correction produce the lowest internal systematics among the different correction methods, namely, ˜1%, ˜1%, ˜2%, and ˜8% in mean density, radius, mass, and age, respectively. Stellar masses obtained using the surface correction methods by Kjeldsen et al. and Ball & Gizon's one-term correction are systematically higher than those obtained using frequency ratios.

  5. PECVD-ONO: A New Deposited Firing Stable Rear Surface Passivation Layer System for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Hofmann

    2008-01-01

    Full Text Available A novel plasma-enhanced chemical vapour deposited (PECVD stack layer system consisting of a-SiOx:H, a-SiNx:H, and a-SiOx:H is presented for silicon solar cell rear side passivation. Surface recombination velocities below 60 cm/s (after firing and below 30 cm/s (after forming gas anneal were achieved. Solar cell precursors without front and rear metallisation showed implied open-circuit voltages Voc values extracted from quasi-steady-state photoconductance (QSSPC measurements above 680 mV. Fully finished solar cells with up to 20.0% energy conversion efficiency are presented. A fit of the cell's internal quantum efficiency using software tool PC1D and a comparison to a full-area aluminium-back surface field (Al-BSF and thermal SiO2 is shown. PECVD-ONO was found to be clearly superior to Al-BSF. A separation of recombination at the metallised and the passivated area at the solar cell's rear is presented using the equations of Fischer and Kray. Nuclear reaction analysis (NRA has been used to evaluate the hydrogen depth profile of the passivation layer system at different stages.

  6. Investigation of a connection of variations of atmospheric radiocarbon activity with some geophysical and astrophysical phenomena

    International Nuclear Information System (INIS)

    Kocharov, G.E.; Chernov, S.B.

    1980-01-01

    Relation of the radiocarbon concentration is dendrochronologically dated wood samples to solar activity, geomagnetic field variations and changes of global temperature near the earth surface for the last 500 years is studied. It is found that averaged 10-year Δ 14 C fluctuations of radiocarbon content in annual rings of trees experience noticeable variations with the 0.5% amplitude. To reveal the effect in the best way the Δ 14 C values averaged in the intervals equal to 11-year solar activity cycles and with a 4-year shift in relation to the latter, are obtained. It is shown that in the 1700-1805 period of time the Δ 14 C averaged values corresponding to peak values of the even 11-year solar activity cycles are mainly lower than the Δ 14 C averaged values corresponding to the odd cycle maximum values. In the 1835-1900 period the 14 C averaged values corresponding to the odd solar cycle maximum values are lesser than the Δ 14 C averaged values corresponding to the even cycle peaks [ru

  7. Determining the Optimum Tilt Angle and Orientation for Solar Energy Collection Based on Measured Solar Radiance Data

    OpenAIRE

    Li, Danny H. W.; Lam, Tony N. T.

    2007-01-01

    A prior requirement to the design of any solar-based conversion systems is the knowledge of optimum orientation and tilt surface at which peak solar energy can be collected. In many parts of the world, however, the solar radiation data for the surfaces of interest are not always available. This paper presents a numerical approach to calculate the solar radiation on sloped planes by integrating the measured sky radiance distributions. The annual total solar yield at different sloped surfaces ...

  8. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    Science.gov (United States)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRVSi surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and

  9. Periodic Variation of the North-South Asymmetry of Solar Activity ...

    Indian Academy of Sciences (India)

    Abstract. We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8-23. In the study we have used sunspot data for the period 1832—. 1976, flare index data for the period 1936-1993, Hα flare data 1993-1998 and solar active prominences data ...

  10. Influence of Different Surface Modifications on the Photovoltaic Performance and Dark Current of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    XU Weiwei; DAI Songyuan; HU Linhua; ZHANG Changneng; XIAO Shangfeng; LUO Xiangdong; JING Weiping; WANG Kongjia

    2007-01-01

    The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TiCU treatment. A suitable concentration and number of times for TiCU treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TiCU will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interfacial link in the conductive glass substrate/dye interface and dye/TiO2 interface.

  11. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  12. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  13. A three-dimensional model for solar prominences

    International Nuclear Information System (INIS)

    Demoulin, P.; Priest, E.R.; Anzer, U.

    1989-01-01

    Prominences have been modelled largely as one-or two-dimensional structures, and yet observations show them to possess important variations in the third dimension along the prominence axis with great arches with feet reaching down towards the solar surface. As an initial attempt to understand this structure we consider a three-dimensional linear force-free field model for the global magnetic field around a quiescent prominence. It consists of a fundamental together with a harmonic that is periodic along the prominence. At the solar surface there is a series of flux concentrations spaced out periodically on both sides of the prominence. Between a pair of oppositely directed flux concentration, the magnetic field in the prominence is stronger and tends to be less highly sheared than elsewhere. This modulation of the field strength and shear angle along the prominence decreases with height and almost disappears above 10 Mm. Prominence fields that increase with height occur when the shear is large and the length-scale for field variations perpendicular to the prominence exceeds that along it. The variation of the prominence height along the prominence is calculated and it is suggested that feet occur where the prominence sags down to low heights. For prominences of Normal polarity this tends to occur near supergranule centres where the transverse field is least, whereas for those of Inverse polarity it usually takes place near the chromospheric network where the transverse field is greatest. The effect of concentrating the base flux by including extra harmonics is also included. For Normal polarity prominences it tends to make the foot wider, and for Inverse polarity configurations, it usually creates deeper and narrower feet

  14. Measurement of global solar radiation over Brunei Darussalam

    International Nuclear Information System (INIS)

    Malik, A.Q.; Ak Abd Malik Abd Raub Pg Ghani

    2006-01-01

    Measurements of global solar radiation on a horizontal surface were carried out for a period of 11 months starting from June 2001 to April 2002. The pyrano meter (Kipp and Zonen) was placed at the top of the library building of University of Brunei Darussalam, which affords optimum exposure to the instrument sensor without appreciable obstacle for incoming global radiation. The maximum and minimum monthly-averaged global irradiations of 553 W/m 2 and 433 W/m 2 were recorded for the months of March and October respectively. The variation of global solar radiation can be divided into two distinct groups - the low radiation values being associated with cloud and turbidity while the high values are associated with less turbid and cloudy periods

  15. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (

  16. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  17. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    International Nuclear Information System (INIS)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-01-01

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  18. An estimation of impact of anthropogenic aerosols in atmosphere of Tirana on solar insolation. Part II: Modification of solar energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Buzra, Urim, E-mail: rimibuzra@yahoo.com; Berberi, Pellumb; Mitrushi, Driada; Muda, Valbona [Department of Engineering Physics, FIMIF, PUT, Tirana (Albania); Halili, Daniela [Department of physics, FNS, AXHU, Elbasan (Albania); Berdufi, Irma [Institute of Nuclear Physics, INP, TU, Tirana (Albania)

    2016-03-25

    Change of irradiative properties of the atmosphere during clear days is an indicator, among others, of existence of atmospheric aerosols and can be used as an indicator for assessment both air pollution and local modifications of solar energy potentials. The main objective of this study is estimation of influence of anthropogenic aerosols on solar energy falling in a horizontal surface during a cloudless day. We have analyzed and quantified the effect of aerosols on reducing the amount of solar energy that falls on the horizontal ground surface in cloudless sky conditions, estimating temporal evolution, both in daily and hour scale, considering also, side effects caused by relative humidity of the air wind speed and geometric factor. As an indicator of concentration of aerosols in atmosphere, we agreed to use the attenuation of solar radiation after the last rainy day. All data were corrected by factors such as, variations of relative humidity, wind speed and daily change of incident angle of solar radiation. We studied the change of solar insolation in three sites with different traffic intensity, one in city of Shkodra and two in city of Tirana. Fifteen days after last rainy day, approximate time needed to achieve saturation, the insolation drops only 3.1% in the city of Shkodra, while in two sites in city of Tirana are 8.5 % and 18.4%. These data show that reduction of solar insolation is closely related with anthropogenic activity, mainly traffic around the site of the meteorological station. The day to day difference tends to decrease with increasing of number of days passed from the last rainy day, which is an evidence of a trend toward a dynamic equilibrium between decantation process of aerosols during the night and their generation during the day.

  19. Radiocarbon evidence for low frequency solar oscillations

    International Nuclear Information System (INIS)

    Damon, P.E.; Jirikowic, I.

    1992-01-01

    From the spectrum of Δ 14 C variations attributed to solar activity modulation of cosmogenic isotope production, a long-period variation (the Hallstattzeit) of 2120±20 years was deduced with 93% statistical confidence. Although most Hallstattzeit harmonic overtones may be shape-related, two also behave as fundamentals: that of 212 years (Suess) and of 88 years (Gleissberg). These exceptional harmonic overtones modulate the 11-year Schwabe solar cycle determined from indices of sunspots. The Hallstattzeit period may be associated with dramatic secular changes in solar behavior. Sun-like stars exhibit quiet and active states consistent with such long-period secular variations. The climate impact of solar output changes may partially explain periods of rapid climate change such as the Little Ice Age associated with 14 C anomalies. (author) 9 tabs., 8 figs., 23 refs

  20. Record of the solar corpuscular radiation in minerals from lunar soils - A comparative study of noble gases and tracks

    International Nuclear Information System (INIS)

    Wieler, R.; Etique, P.

    1980-01-01

    A comparative study is made of trapped light noble gases and solar flare tracks in mineral separates from lunar soils in an investigation aimed at detecting possible temporal variations of the ratio between solar flare and solar wind activity. He, Ne, Ar and solar flare tracks are measured on plagioclase separates of 12 surface soils and two Apollo 15 drill core samples, and track density histograms are compared with gas concentration distributions obtained from aliquot samples. Results show that solar wind Ar is probably well retained in all minerals. He, Ne, and Ar are not saturated macroscopically, and semi-microscopic or microscopic saturation is very rare for Ar, even in gas-rich plagioclase populations. All grains contain trapped noble gases, even in relatively gas-poor mineral populations, and for clean minerals in the size range of 150-200 microns, the time between the first and last surface exposure is in the order of 10 to the 7th to 10 to the 8th years

  1. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    Science.gov (United States)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  2. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    International Nuclear Information System (INIS)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-01-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence

  3. Influence of the receiver’s back surface radiative characteristics on the performance of a heat-pipe evacuated-tube solar collector

    International Nuclear Information System (INIS)

    Zheng, Hongfei; Xiong, Jianying; Su, Yuehong; Zhang, Haiyin

    2014-01-01

    Highlights: • A model for describing the heat transfer characteristics of the ETSC is derived. • A method by performing roughness treatment is proposed to change the emissivity. • Increasing the receiver’s back surface emissivity can greatly affect the heat loss. • Real weather test verifies the proposed method in controlling overheat phenomenon. - Abstract: The receiver’s back surface radiative characteristics of a heat-pipe evacuated-tube solar collector (ETSC) may have a significant influence on its performance. This influence is generally related to the back surface emissivity and temperature; however it has been not studied previously. This paper firstly presents a heat transfer model for the ETSC, which is then derived to characterize the relationship between the heat loss and the back surface emissivity of the ETSC. A steady state experiment has been also performed to measure the heat loss of ETSC with different back surface emissivity values. The experimental results indicate that the heat loss of the ETSC increases with the increase of the back surface emissivity, but the rate of increase differs for different operation temperatures. When the back surface emissivity increases from 0.03 to 0.12, the heat loss of ETSC only increases by 31% when the operation temperature is below 100 °C, but the heat loss will increase to 96% when the operation temperature is over 200 °C. This means that the change of back surface emissivity can significantly affect the performance of the ETSC at higher temperature but affect little at lower temperature. Based on this, a novel method by performing roughness treatment on the receiver’s back surface is proposed to solve the overheating problem of ETSC in summer. Two solar water heaters including 6 ETSCs with standard and roughness-treated tubes were tested under real weather condition. Experiment reveals that when the water temperature in tank is below 60 °C, the two solar water heaters own similar temperature

  4. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    Science.gov (United States)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for cloud properties over the Arctic Ocean.

  5. Preparation and surface modification of hierarchical nanosheets-based ZnO microstructures for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Yongming; Lin, Yu, E-mail: linyuyrr@163.com; Lin, Yibing; Yang, Jiyuan

    2014-02-15

    This paper reports a simple one-step hydrothermal route for the preparation of hierarchical nanosheets-based ZnO microstructures and their application to dye-sensitized solar cells. The morphologies of the products were controlled by the dosage of the reactants. Their physical characteristics were detected by X-ray diffraction, a field-emission scanning electron microscope and a surface analyzer. It is proved that the sample of ZnO microspheres with larger surface area and stronger light-trapping capacity since the superiority of their entirely spherical structures exhibits better photoelectrochemical properties than the mixtures of ZnO microspheres and ZnO microflowers. A dye-sensitized solar cell assembled by the ZnO microspheres as photoanode shows an energy conversion efficiency of 2.94% after surface modification by tetrabutyl titanate solution at 90 {sup °}C. This result is over 1.6 times higher than the non-modified cell fabricated by the ZnO microspheres on the basis of the external improvement and the stability enhancement for the dye-sensitized ZnO photoanode. - Graphical abstract: Influences on energy conversion efficiency of the dye-sensitized solar cells assembled by decorating hierarchical nanosheets-based ZnO microstructures with tetrabutyl titanate solution at different temperatures. Display Omitted - Highlights: • Hierarchical nanosheets-based ZnO microstructures were controllably synthesized. • The ZnO microspheres show good optical and electrochemical properties. • The ZnO microspheres were modified by C{sub 16}H{sub 36}O{sub 4}Ti solution. • Remarkable increase of conversion efficiency is observed after surface modification.

  6. Improving solar radiation absorbance of high refractory sintered ceramics by fs Ti:sapphire laser surface treatment

    International Nuclear Information System (INIS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Bellucci, A.; Lettino, A.; Trucchi, D.M.

    2014-01-01

    Samples of high refractory pressure-less sintered carbide ceramics (HfC based), polished by mechanical grinding to a surface roughness R a ∼ 40 nm, have been surface treated, in vacuum, by fs Ti:sapphire laser, operating at 800 nm wavelength, 1000 Hz repetition rate and 100 fs pulse duration, at fluence varying in the range (∼6–25 J/cm 2 ), to optimize their solar radiation absorbance, in such a way that they could operate as absorber material in an innovative conversion module of solar radiation into electrical energy. To this aim, an area of approximately 9.6 cm 2 was treated by the fs laser beam. The beam strikes perpendicular to the sample, placed on a stage set in motion in the x, y, z-directions, thus generating a scanning pattern of parallel lines. The experimental conditions of laser treatment (energy fluence, speed of transition, overlapping and lateral step distance) were varied in order to optimize the radiation absorption properties of the patterned surface. In laser treated samples the absorption value is increased by about 15%, compared to the original untreated surface, up to a value of final absorbance of about 95%, all over the range of solar radiation spectrum (from UV to IR). The morphological and chemical effects of the treatment have been evaluated by SEM–EDS analysis. At very high fluence, we obtained the characteristic ablation craters and local material decomposition, while at lower fluence (in any case above the threshold) typical periodic nano-structures have been obtained, exploitable for their modified optical properties.

  7. Variation of sulfur content in Cu(In,Ga)(S,Se){sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Knipper, Martin; Knecht, Robin; Riedel, Ingo; Parisi, Juergen [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg (Germany)

    2011-07-01

    Chalcopyrite thin film solar cells made of the compound semiconductor Cu(In,Ga)(S,Se){sub 2} (CIGSSe) have a strong potential for achieving high efficiencies at low production costs. Volume production of CIGSSe-modules has already started to exploit their favorable attributes such as low cost processing and reasonable module efficiency. In this study we studied industrially produced CIGSSe modules obtained from rapid thermal processing (RTP) for sulfurization. In detail, we investigated the effect of sulfur offer and RTP temperature (500 C to 580 C) on the photoelectric characteristics of small-area solar cells cut from the modules. Current-voltage profiling under standard test conditions revealed a strong influence of the particular process recipe on the open circuit voltage whereas significant variations of the maximum quantum efficiency can be observed. X-ray diffraction was employed to relate these effects to the crystallographic structure of the actual CIGSSe films. Lock-in thermographic imaging was employed to link apparent film inhomogeneities and disruptions to the specific process recipe.

  8. Solar radiation in Germany - observed trends and an assessment of their causes. Pt. 1; Regional approach

    Energy Technology Data Exchange (ETDEWEB)

    Liepert, B [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Fabian, P [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-02-01

    The possible longterm variation of daily sums of global solar radiation (direct plus diffuse solar radiation) in West-Germany was analysed for twelve stations of the German Weather Service (DWD). The global solar radiation decreased remarkably at seven stations (List/Sylt, Norderney, Hamburg, Braunlage, Wuerzburg, Weihenstephan, Hohenpeissenberg) and showed no significant variations at the remaining five stations (Braunschweig, Bocholt, Gelsenkirchen, Trier and Freiburg). The average decline is 3.7[+-]1.3% per decade in the last 15 to 39 years. The locally varying causes for the decline are changes in cloud parameters, fog occurrence and tropospheric aerosol. In this part of the article some possible causes, such as solar variability, increased number of contrails, decreased surface reflectivity, increased volcanic aerosol load in the 1980's or increased water vapour column content could be excluded. With a more sophisticated statistical procedure the effect of changes in cloud parameters and the effect of changed clear sky turbidity could not only be separated for each month for Hohenpeissenberg and Wuerzburg but also made mainly responsible for the observed trend. In Part II (Grabbe, Grassl), more detailed observations of solar radiation hourly averages of Hamburg were analysed. (orig.)

  9. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, F-91191 Gif-Sur-Yvette (France); Fournier, Alexandre [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris (France); Talagrand, Olivier [Laboratoire de météorologie dynamique, UMR 8539, Ecole Normale Supérieure, Paris Cedex 05 (France)

    2015-12-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales.

  10. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    International Nuclear Information System (INIS)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha; Fournier, Alexandre; Talagrand, Olivier

    2015-01-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales

  11. Solar Luminosity on the Main Sequence, Standard Model and Variations

    Science.gov (United States)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  12. Study on a Mid-Temperature Trough Solar Collector with Multisurface Concentration

    Directory of Open Access Journals (Sweden)

    Zhengliang Li

    2015-01-01

    Full Text Available A new trough solar concentrator which is composed of multiple reflection surfaces is developed in this paper. The concentrator was analyzed firstly by using optical software. The variation curves of the collecting efficiency affected by tracking error and the deviation angle were given out. It is found that the deviation tolerance for the collector tracking system is about 8 degrees when the receiver is a 90 mm flat. The trough solar concentrators were tested under real weather conditions. The experiment results indicate that, the new solar concentrator was validated to have relative good collecting efficiency, which can be more than 45 percent when it operated in more 145°C. It also has the characteristics of rdust, wind, and snow resistance and low tracking precision requirements.

  13. EVIDENCE OF FILAMENT UPFLOWS ORIGINATING FROM INTENSITY OSCILLATIONS ON THE SOLAR SURFACE

    International Nuclear Information System (INIS)

    Cao, Wenda; Goode, Philip R.; Ning, Zongjun; Yurchyshyn, Vasyl; Ji Haisheng

    2010-01-01

    A filament footpoint rooted in an active region (NOAA 11032) was well observed for about 78 minutes with the 1.6 m New Solar Telescope at the Big Bear Solar Observatory on 2009 November 18 in Hα ±0.75 A. This data set had high cadence (∼15 s) and high spatial resolution (∼0.''1) and offered a unique opportunity to study filament dynamics. As in previous findings from space observations, several dark intermittent upflows were identified, and they behave in groups at isolated locations along the filament. However, we have two new findings. First, we find that the dark upflows propagating along the filament channel are strongly associated with the intensity oscillations on the solar surface around the filament footpoints. The upflows start at the same time as the peak in the oscillations, illustrating that the upflow velocities are well correlated with the oscillations. Second, the intensity of one of the seven upflows detected in our data set exhibits a clear periodicity when the upflow propagates along the filament. The periods gradually vary from ∼10 to ∼5 minutes. Our results give observational clues on the driving mechanism of the upflows in the filament.

  14. Modelling of the dose-rate variations with depth in the Martian regolith using GEANT4

    International Nuclear Information System (INIS)

    Morthekai, P.; Jain, M.; Dartnell, L.; Murray, A.S.; Botter-Jensen, L.; Desorgher, L.

    2007-01-01

    The environmental radiation field at the Martian surface consists mainly of Galactic Cosmic Rays (GCR) and charged particles ejected during the Solar Particle Events (SPE). Interactions between these radiation fluxes and the regolith result in a complex radiation field that varies both as a function of depth and time and can only be quantified using radiation transport models. We first describe here the main issues and constraints in deriving Martian dose rates. Preliminary results, obtained using the GEANT4 Monte Carlo simulation tool kit, suggest the surface dose rate is ∼63 mGy a -1 during quiet periods in solar activity. The accuracy of the model predictions has been tested by comparison with published observations of cosmic ray dose-rate variation in the Earth's atmosphere

  15. Solar and interplanetary particles at 2 to 4 MEV during solar cycles 21, solar cycle variations of event sizes, and compositions

    International Nuclear Information System (INIS)

    Armstrong, T.P.; Shields, J.C.; Briggs, P.R.; Eckes, S.

    1985-01-01

    In this paper 2 to 4 MeV/nucleon protons, alpha particles, and medium (CNO) nuclei in the near-Earth interplanetary medium during the years 1974 to 1981 are studied. This period contains both the solar activity minimum in 1976 and the very active onset phase of Solar Cycle 21. Characteristic compositional differences between the solar minimum and solar maximum ion populations have been investigated. Previous studies of interplanetary composition at these energies have concentrated on well-defined samples of the heliospheric medium. During flare particle events, the ambient plasma is dominated by ions accelerated in specific regions of the solar atmosphere; observation of the proton/alpha and alpha/medium ratios for flare events shows that there is marked compositional variability both during an event and from event to event suggesting the complicated nature of flare particle production and transport

  16. Spectral and angle dependent emission of solar fluorescence collectors

    Energy Technology Data Exchange (ETDEWEB)

    Straeter, Hendrik; Knabe, Sebastian; Bauer, Gottfried H. [Institute of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg (Germany)

    2011-07-01

    Fluorescence collectors (FCs) provide the option for concentration and simultaneous spectral selection of solar photons of direct or diffuse light. The energetic and commercial benefit of these systems depend on the yield of the conversion of solar photons into luminescence photons and on the efficiency of their respective conductance to the edges of the FC where they are coupled into appropriate solar cells. For the characterization of the performance of FCs and the identification of losses, we have performed angle and spectrally resolved measurements of fluorescence photons from FC with two different types of optical designs, a PMMA substrate with homogeneous depth dependent dye concentration and a novel type of FC, which consist of a transparent substrate with a thin overlayer containing the absorbing and emitting dye. We have recorded the edge fluorescence when illuminating the entire FC surface laterally homogeneously, as well as for slit-like excitation on the front surface with variation of the distance of the illuminated slit from the edge. We compare the experimental fluorescence results with a 2-dimensional ray-tracing approach and verify the spectral and angle dependent edge emission. Moreover we illuminate the FC with long wavelength photons which are not absorbed and conclude, again from angle dependent and spectrally resolved edge emission, on scattering losses at surfaces and in the bulk.

  17. Variation of the height of the grain bed of an indirect solar bin dryer; Variacion de la altura del lecho del grano en un secador solar indirecto

    Energy Technology Data Exchange (ETDEWEB)

    Sima, Efrain; Alvarez, Gabriela; Garcia, Saul [CENIDET, Cuernavaca, Morelos (Mexico)

    2000-07-01

    This paper presents the effect of the variation of the size of the grain bed of an indirect solar bin dryer. This solar dryer was designed and built at the Instituto Tecnologico de Zacatepec and Sima performed the thermal evaluation. The solar bin dryer consists of a bin dryer of 0.92 m diameter and 1 m height (the maximum height of the grain bed is 0.6 m). a 2 m{sup 2} solar collector, a blower and an electronic card to control the inlet air flow of the bin. A load of 36 kg, 45 kg, 52 kg and 64 kg of corn were dried. The heights of the grain were 7.5 cm, 10 cm, 12.5 cm and 17 cm respectively. Solar radiation, inlet air velocity of the solar collector, pressure drop, grain temperature and humidity, ambient temperature and humidity of the drying air were recorded. The initial grain humidity was 27.2% and the final was 11.8%. [Spanish] En este trabajo se presenta el efecto de la variacion del lecho del grano en el proceso de secado de maiz, en un prototipo de secador solar de tipo indirecto. El secador fue disenado y construido en el Tecnologico de Zacatepec y evaluado por Sima, consta de una camara de secado de 0.92 m de diametro y una altura de 1 m. (la altura del lecho maximo de grano posible es de 0.6 m.), un colector solar con un area de 2 m{sup 2}, un extractor de aire y un control electronico para el flujo de aire. El secado de maiz se llevo a cabo con cargas de maiz de 36, 45, 52 y 64 kg. Las alturas en el lecho del grano fueron 7.5, 10, 12.5 y 17 cm. Para cada altura de lecho de grano se realizo una prueba. Durante cada prueba se realizaron mediciones de: radiacion solar, velocidad del aire a la entrada, caida de presion, temperatura del grano, humedad del grano, temperatura del aire ambiente, temperatura y humedad del aire de secado a la entrada y salida del secador. La humedad inicial del grano fue alrededor de 27.2% y la final de 11.8%.

  18. Validation of solar radiation surfaces from MODIS and reanalysis data over topographically complex terrain

    Science.gov (United States)

    Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang

    2009-01-01

    The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...

  19. Inhibition of solar wind impingement on Mercury by planetary induction currents

    International Nuclear Information System (INIS)

    Hood, L.L.; Schubert, G.

    1979-01-01

    The simple compression of a planetary magnetosphere by varying solar wind stagnation pressure is limited by currents induced in the electrically conducting parts of the planet. This inhibition is especially important for Mercury, since the radius of the electrically conducting iron core is a large fraction of the planetary radius, which in turn is a significant fraction of the subsolar magnetospheric radius b. Previous treatments of solar wind standoff distance variations at Mercury using the terrestrial analogue b 6 assumption have neglected this phenomenon. Using the lowest suggested value of the planetary dipole moment, 2.4 x 10 22 G cm 3 , we estimate that a minimum pressure of approx.38P 0 where P 0 is the external stagnation pressure in the steady state, is required to force the standoff distance down to the subsolar surface of Mercury if the pressure change persists for at least 1 day. This value is 4.3 times that which would be predicted if Mercury had no core, and it is larger than the maximum pressure predicted at Mercury's orbit (approx.25P 0 ) on the basis of hourly averaged solar wind statistics at 1 AU. Thus a direct interaction at any time of solar wind plasma with the surface of Mercury due to external compression effects alone is unlikely for solar wind conditions similar to those at present

  20. Long term ionospheric electron content variations over Delhi

    Directory of Open Access Journals (Sweden)

    J. K. Gupta

    Full Text Available Ionospheric electron content (IEC observed at Delhi (geographic co-ordinates: 28.63°N, 77.22°E; geomagnetic co-ordinates: 19.08°N, 148.91°E; dip Latitude 24.8°N, India, for the period 1975–80 and 1986–89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations. The diurnal variation of seasonal mean of IEC on quiet days shows a secondary peak comparable to the daytime peak in equinox and winter in high solar activity. IECmax (daytime maximum value of IEC, one per day shows winter anomaly only during high solar activity at Delhi. Further, IECmax shows positive correlation with F10.7 up to about 200 flux units at equinox and 240 units both in winter and summer; for greater F10.7 values, IECmax is substantially constant in all the seasons. IECmax and magnetic activity (Ap are found to be positively correlated in summer in high solar activity. Winter IECmax shows positive correlation with Ap in low solar activity and negative correlation in high solar activity in both the solar cycles. In equinox IECmax is independent of Ap in both solar cycles in low solar activity. A study of day-to-day variations in IECmax shows single day and alternate day abnormalities, semi-annual and annual variations controlled by the equatorial electrojet strength, and 27-day periodicity attributable to the solar rotation.

    Key words: Ionosphere (equatorial ionosphere · Magnetospheric physics (magnetosphere · ionosphere interactions · Radio science (ionospheric physics

  1. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  2. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    Science.gov (United States)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  3. Analysis of Water Vapour Flux Between Alpine Wetlands Underlying the Surface and Atmosphere in the Source Region of the Yellow River

    Science.gov (United States)

    Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.

    2017-12-01

    Wetland underlying surface is sensitive to climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Previous studies, which focused on the forest, grassland and farmland ecosystems, lack research on the alpine wetlands. In addition, research on the environmental control mechanism of latent heat flux is still qualitative and lacks quantitative evaluations and calculations. Using data from the observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors (solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows: Due to the diurnal variations of solar radiation and wind speed, the diurnal variations of the Ω factor present a trend in which the Ω factor are small in the morning and large in the evening. Due to the vegetation growing cycle, the seasonal variations of the Ω factor present a reverse "U" trend . These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over the latent heat flux. This conforms to omega theory. The values for average absolute atmospheric factor (surface factor or total ) control exercised by solar radiation and water vapour pressure are 0.20 (0.02 or 0.22 ) and 0.005 (-0.07 or -0.06) W·m-2·Pa-1, respectively.. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on the latent heat flux. The average Ω factor is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between the

  4. Time Variations of Observed H α Line Profiles and Precipitation Depths of Nonthermal Electrons in a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Falewicz, Robert; Radziszewski, Krzysztof; Rudawy, Paweł; Berlicki, Arkadiusz, E-mail: falewicz@astro.uni.wroc.pl, E-mail: radziszewski@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: berlicki@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, 51-622 Wrocław, ul. Kopernika 11 (Poland)

    2017-10-01

    We compare time variations of the H α and X-ray emissions observed during the pre-impulsive and impulsive phases of the C1.1-class solar flare on 2013 June 21 with those of plasma parameters and synthesized X-ray emission from a 1D hydrodynamic numerical model of the flare. The numerical model was calculated assuming that the external energy is delivered to the flaring loop by nonthermal electrons (NTEs). The H α spectra and images were obtained using the Multi-channel Subtractive Double Pass spectrograph with a time resolution of 50 ms. The X-ray fluxes and spectra were recorded by RHESSI . Pre-flare geometric and thermodynamic parameters of the model and the delivered energy were estimated using RHESSI data. The time variations of the X-ray light curves in various energy bands and those of the H α intensities and line profiles were well correlated. The timescales of the observed variations agree with the calculated variations of the plasma parameters in the flaring loop footpoints, reflecting the time variations of the vertical extent of the energy deposition layer. Our result shows that the fast time variations of the H α emission of the flaring kernels can be explained by momentary changes of the deposited energy flux and the variations of the penetration depths of the NTEs.

  5. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    Science.gov (United States)

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  6. Surface modification of porous nanocrystalline TiO2 films for dye-sensitized solar cell application by various gas plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-01-01

    Titanium dioxide (TiO 2 ) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO 2 surfaces. They investigated the influence of different gas plasma treatments of TiO 2 film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J sc ), open-circuit photovoltage (V oc ), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O 2 - and N 2 -treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF 4 -plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO 2 film was measured by time-of-flight secondary ion mass spectrometry. TiO 2 surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure

  7. Modeling of a solar photovoltaic water pumping system under the influence of panel cooling

    Directory of Open Access Journals (Sweden)

    Chinathambi Gopal

    2017-01-01

    Full Text Available In this paper, the performance of a solar photovoltaic water pumping system was improved by maintaining the cell temperature in the range between 30°C and 40°C. Experiments have been conducted on a laboratory experimental set-up installed with 6.4 m2 solar panel (by providing air cooling either on the top surface or over the beneath surface of the panel to operate a centrifugal pump with a rated capacity of 0.5 HP. The performance characteristics of the photovoltaic panel (such as, cell temperature, photovoltaic panel output, and photovoltaic efficiency, pump performance characteristics (such as pump efficiency and discharge, and system performance characteristics are observed with reference to solar irradiation, ambient temperature and wind velocity. A thermal model has been developed to predict the variations of photovoltaic cell temperature based on the measured glass and tedlar temperatures. The influences of cell temperature and solar irradiation on the performance of the system are described. The results concluded that cooling of photovoltaic panel on beneath surface has maintained the cell temperature in the range between 30°C and 40°C and improved the overall efficiency by about 1.8% when compared to the system without panel cooling.

  8. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  9. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  10. Solar system for soil drainage

    International Nuclear Information System (INIS)

    Kocic, Z.R.; Stojanovic, J.B.; Antic, M.A.; Pavlovic, T.M.

    1999-01-01

    The paper reviews solar system for drainage of the cultivable agricultural surfaces which can be situated near the rivers in plains. These are usually very fertile surfaces which cannot be cultivated die to constant presence of the water. Using such solar systems should increase the percentage of cultivable surfaces. These systems can also be installed on the cultivable agricultural surfaces, where the water surfaces or so called still waters appear, which make impossible the application of agritechnical measures on these surfaces, significantly decreasing crops and creating conditions for the growth of pond plants and animals. Increasing the percentage of cultivable agricultural surfaces would increase national agricultural income. At the same time, increasing the percentage of cultivable agricultural surfaces decreases the surfaces of unhealthy bog, swamp and marshland soils, where many insect breed. They are the cause for soil spraying from the air, which causes the pollution of environment. Solar systems do not pollute the environment because they use solar energy as the purest source of energy. Their usage has special significance in the places where there is no electricity distribution network

  11. Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint

    International Nuclear Information System (INIS)

    Colon, C. J.; Merrigan, T.

    2001-01-01

    The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection

  12. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    Science.gov (United States)

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  13. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  14. Variations in the electrical short-circuit current decay for recombination lifetime and velocity measurements

    Science.gov (United States)

    Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost

    1987-01-01

    An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.

  15. Silver nanoparticles-incorporated Nb2O5 surface passivation layer for efficiency enhancement in dye-sensitized solar cells.

    Science.gov (United States)

    Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P

    2018-08-15

    Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  17. Solar activity effects on cosmic ray intensity and geomagnetic field variation

    International Nuclear Information System (INIS)

    Shukla, A.K.; Shukla, J.P.; Sharma, S.M.; Singh, R.L.; Agrawal, S.P.

    1978-01-01

    An analysis has been performed to statistically correlate the date of solar flare occurrence and its importance with the short term cosmic ray intensity decreases (observed by the high latitude neutron monitors) as well as with the geomagnetic field fluctuation indices (Asub(p) and Dsub(st)), during the period 1973-1976. This period has the particular advantage of being close to a solar minimum to avoid the ambiguity due to closely spaced solar flares. It is found that the intensity decrease starts at least 2-3 days after the date of bright solar flares of Imp 1B, 2B or 3B and the amplitude of the decrease increases with the importance of the solar flare. (author)

  18. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  19. Responses of Solar Irradiance and the Ionosphere to an Intense Activity Region

    Science.gov (United States)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2018-03-01

    Solar rotation (SR) variation dominates solar extremely ultraviolet (EUV) changes on the timescale of days. The F10.7 index is usually used as an indicator for solar EUV. The SR variation of F10.7 significantly enhanced during the 2008th-2009th Carrington rotations (CRs) owing to an intense active region; F10.7 increased about 180 units during that SR period. That was the most prominent SR variation of F10.7 during solar cycle 23. In this paper, global electron content (GEC) is used to investigate ionospheric response to that strong variation of solar irradiance indicated by F10.7. The variation of GEC with F10.7 was anomalous (GEC-F10.7 slope significantly decreased) during the 2008th-2009th CRs; however, GEC versus EUV variation during that period was consistent with that during adjacent time intervals when using Solar Heliospheric Observatory/Solar EUV Monitor 26-34 nm EUV measurements. The reason is that F10.7 response to that intense active region was much stronger than EUV response; thus, the EUV-F10.7 slope decreased. We confirmed decreased EUV-F10.7 slope during the 2008th-2009th CRs for different wavelengths within 27-120 nm using Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Solar EUV Experiment high spectral resolution EUV measurements. And on the basis of Solar Heliospheric Observatory/Solar EUV Monitor EUV measurements during solar cycle 23, we further presented that EUV-F10.7 slope statistically tends to decrease when the SR variation of F10.7 significantly enhances. Moreover, we found that ionospheric time lag effect to EUV is exaggerated when using F10.7, owing to the time lag effect of EUV to F10.7.

  20. A mechanism of midlatitude noontime foE long-term variations inferred from European observations

    Science.gov (United States)

    Mikhailov, A. V.; Perrone, L.; Nusinov, A. A.

    2017-04-01

    Manually scaled June noontime monthly median foE values at three European stations Rome, Juliusruh, and Slough/Chilton were used to understand the mechanism of foE long-term variations. The 11 year running mean smoothed foE manifests long-term (for some solar cycles) variations with the rising phase at the end of 1960-1985 and the falling phase after 1985. A close relationship (even in details) between (foEave)11y and (R12)11y variations with the correlation coefficient of 0.996 (absolutely significant according to Fisher F criterion) suggests that the Sun is the source of these (foEave)11y long-term variations. After removing solar activity long-term variations the residual (foEave)11y trend is very small ( 0.029% per decade) being absolutely insignificant. This means that all (foEave)11y variations are removed with one solar activity index, (R12)11y, i.e., this means that long-term variations are fully controlled by solar activity. Theory of midlatitude daytime E region tells us that long-term variations of solar EUV in two lines λ = 977 Å (CIII) and λ = 1025.7 Å (HLyβ) and X-ray radiation with λ foE long-term variations have a natural (not anthropogenic) origin related to long-term variations of solar activity. No peculiarities in relation with the last deep solar minimum in 2008-2009 have been revealed.

  1. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index; Influencia das caracteristicas da superficie no indice de refletancia solar de telhas ceramicas esmaltadas

    Energy Technology Data Exchange (ETDEWEB)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M., E-mail: luciana.maccarini@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil)

    2016-07-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  2. Near-ground cooling efficacies of trees and high-albedo surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen M. [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1997-05-01

    Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.

  3. Effects of annular solar eclipse of 15 January 2010 on meteorological parameters in the 0 to 65 km region over Thumba, India

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, K.V.S.; Dileep, P.K.; Mammen, Koshy [Indian Space Research Organisation, Thiruvananthapuram (India). Meteorology Facility; Ramkumar, Geetha; Kiran Kumar, N.V.P. [Indian Space Research Organisation, Thiruvananthapuram (India). Space Physics Lab.; Sreenivasan, S.; Suneel Kumar, B.; Manchanda, R.K. [Tata Institute of Fundamental Research, Hyderabad (India). Balloon Facility

    2011-12-15

    Surface meteorological observations along with high altitude balloon and rocket flights provided various meteorological parameters in the 0 to 65 km height region, (over the peninsular Indian coastal station Thumba) which could be utilized to investigate variations associated with the annular solar eclipse of 15 January 2010. Parameters like surface and soil temperature, relative humidity, sunshine duration, turbulence, surface scalar wind speed and direction were analysed to look into the solar eclipse induced perturbations. Surface and soil temperature dip, diminished surface layer turbulence, reduction of surface wind speed and veering in wind direction, temperature increase in the stratospheric levels, Atmospheric Boundary Layer (ABL) relative humidity hike, wind enhancements at different heights, tropospheric wind shear reduction and ozone decrease are the prominent features observed from the present study. (orig.)

  4. Solar Atmosphere to Earth's Surface: Long Lead Time dB/dt Predictions with the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Manchester, W.; Savani, N.; Sokolov, I.; van der Holst, B.; Jin, M.; Toth, G.; Liemohn, M. W.; Gombosi, T. I.

    2017-12-01

    The future of space weather prediction depends on the community's ability to predict L1 values from observations of the solar atmosphere, which can yield hours of lead time. While both empirical and physics-based L1 forecast methods exist, it is not yet known if this nascent capability can translate to skilled dB/dt forecasts at the Earth's surface. This paper shows results for the first forecast-quality, solar-atmosphere-to-Earth's-surface dB/dt predictions. Two methods are used to predict solar wind and IMF conditions at L1 for several real-world coronal mass ejection events. The first method is an empirical and observationally based system to estimate the plasma characteristics. The magnetic field predictions are based on the Bz4Cast system which assumes that the CME has a cylindrical flux rope geometry locally around Earth's trajectory. The remaining plasma parameters of density, temperature and velocity are estimated from white-light coronagraphs via a variety of triangulation methods and forward based modelling. The second is a first-principles-based approach that combines the Eruptive Event Generator using Gibson-Low configuration (EEGGL) model with the Alfven Wave Solar Model (AWSoM). EEGGL specifies parameters for the Gibson-Low flux rope such that it erupts, driving a CME in the coronal model that reproduces coronagraph observations and propagates to 1AU. The resulting solar wind predictions are used to drive the operational Space Weather Modeling Framework (SWMF) for geospace. Following the configuration used by NOAA's Space Weather Prediction Center, this setup couples the BATS-R-US global magnetohydromagnetic model to the Rice Convection Model (RCM) ring current model and a height-integrated ionosphere electrodynamics model. The long lead time predictions of dB/dt are compared to model results that are driven by L1 solar wind observations. Both are compared to real-world observations from surface magnetometers at a variety of geomagnetic latitudes

  5. SYSTEMATIC AND STOCHASTIC VARIATIONS IN PULSAR DISPERSION MEASURES

    International Nuclear Information System (INIS)

    Lam, M. T.; Cordes, J. M.; Chatterjee, S.; Jones, M. L.; McLaughlin, M. A.; Armstrong, J. W.

    2016-01-01

    We analyze deterministic and random temporal variations in the dispersion measure (DM) from the full three-dimensional velocities of pulsars with respect to the solar system, combined with electron-density variations over a wide range of length scales. Previous treatments have largely ignored pulsars’ changing distances while favoring interpretations involving changes in sky position from transverse motion. Linear trends in pulsar DMs observed over 5–10 year timescales may signify sizable DM gradients in the interstellar medium (ISM) sampled by the changing direction of the line of sight to the pulsar. We show that motions parallel to the line of sight can also account for linear trends, for the apparent excess of DM variance over that extrapolated from scintillation measurements, and for the apparent non-Kolmogorov scalings of DM structure functions inferred in some cases. Pulsar motions through atomic gas may produce bow-shock ionized gas that also contributes to DM variations. We discuss the possible causes of periodic or quasi-periodic changes in DM, including seasonal changes in the ionosphere, annual variations of the solar elongation angle, structure in the heliosphere and ISM boundary, and substructure in the ISM. We assess the solar cycle’s role on the amplitude of ionospheric and solar wind variations. Interstellar refraction can produce cyclic timing variations from the error in transforming arrival times to the solar system barycenter. We apply our methods to DM time series and DM gradient measurements in the literature and assess their consistency with a Kolmogorov medium. Finally, we discuss the implications of DM modeling in precision pulsar timing experiments

  6. Spatial Distribution and Semiannual Variation of Cold-Dense Plasma Sheet

    Science.gov (United States)

    Bai, Shichen; Shi, Quanqi; Tian, Anmin; Nowada, Motoharu; Degeling, Alexander W.; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rae, I. Jonathan; Fu, Suiyan; Zhang, Hui; Pu, Zuyin; Fazakerly, Andrew N.

    2018-01-01

    The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help us better understand the long-term variation of plasma exchange between the solar wind and magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature. In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from 1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data (1996-2015) are used to investigate the seasonal variation of IMF Bz under northward IMF conditions. We find a semiannual variation of IMF Bz, which is consistent with the Russell-McPherron (R-M) effect. We therefore suggest that the semiannual variation of CDPS may be related to the R-M effect.

  7. Erratum: Correction to: Long- and Mid-Term Variations of the Soft X-ray Flare Character in Solar Cycles

    Science.gov (United States)

    Chertok, I. M.; Belov, A. V.

    2018-03-01

    Correction to: Solar Phys https://doi.org/10.1007/s11207-017-1169-1 We found an important error in the text of our article. On page 6, the second sentence of Section 3.2 "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± one Carrington rotation with a step of two rotations." should instead read "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± 2.5 Carrington rotations with a step of two rotations." We regret the inconvenience. The online version of the original article can be found at https://doi.org/10.1007/s11207-017-1169-1

  8. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  9. Utilization of solar energy by means of photovoltaic cells on a captive balloon. Sonnenstrahlenenergienutzung durch photovoltaische Zellen auf Fesselballon

    Energy Technology Data Exchange (ETDEWEB)

    Scheib, A.

    1988-02-25

    For the use of solar energy photovoltaic cells are used which are deposited on the envelope of a captive balloon which floats over the ground according to the hot air principle in a sufficient height free of atmospheric influences (about 10 km) and whose stay ropes are used for the transfer of generated electric power. The part of the envelope of the balloon equipped with solar cells is to be made as a plane surface and this solar cell surface can be positioned by means of a variation of the free stay rope lengths controlled automatically in an optimal way according to the sun beam direction. In connection with the absence of atmospheric influences, a generation of maximum energy in great constancy during nearly the whole daytime, is made possible.

  10. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  11. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  12. Photospheric Observations of Surface and Body Modes in Solar Magnetic Pores

    Science.gov (United States)

    Keys, Peter H.; Morton, Richard J.; Jess, David B.; Verth, Gary; Grant, Samuel D. T.; Mathioudakis, Mihalis; Mackay, Duncan H.; Doyle, John G.; Christian, Damian J.; Keenan, Francis P.; Erdélyi, Robertus

    2018-04-01

    Over the past number of years, great strides have been made in identifying the various low-order magnetohydrodynamic wave modes observable in a number of magnetic structures found within the solar atmosphere. However, one aspect of these modes that has remained elusive, until now, is their designation as either surface or body modes. This property has significant implications for how these modes transfer energy from the waveguide to the surrounding plasma. Here, for the first time to our knowledge, we present conclusive, direct evidence of these wave characteristics in numerous pores that were observed to support sausage modes. As well as outlining methods to detect these modes in observations, we make estimates of the energies associated with each mode. We find surface modes more frequently in the data, as well as that surface modes appear to carry more energy than those displaying signatures of body modes. We find frequencies in the range of ∼2–12 mHz, with body modes as high as 11 mHz, but we do not find surface modes above 10 mHz. It is expected that the techniques we have applied will help researchers search for surface and body signatures in other modes and in differing structures from those presented here.

  13. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  14. Surface treatments and properties of CuGaSe{sub 2} thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, S.; Ennaoui, A.; Schuler, S.; Siebentritt, S.; Lux-Steiner, M.Ch

    2003-05-01

    Polycrystalline CuGaSe{sub 2} (CGS) films with slightly Ga-rich composition were prepared on Mo/soda-lime substrates by the 'bi-layer' process. The film surfaces were modified by chemical bath treatment with In{sub 2}(SO{sub 4}){sub 3}, thioacetamid, and triethanolamin to improve the performance in solar cell applications. The film compositions were characterized by X-ray fluorescence and the surface of treated films was investigated by X-ray photoelectron spectroscopy (XPS). Solar cells with ZnO/CdS/CGS/Mo/soda-lime glass structure were fabricated, and the current-voltage properties and the quantum efficiency were analyzed. Improvement of the spectral response, especially in the long wavelength region, was observed for the samples treated with the chemical bath, which results in increase in a short circuit current density. An increase in the parallel and series resistance of the cells was also observed with the treatment. The surface compositions of the CGS thin films modified by the chemical bath are discussed on the base of the results of XPS.

  15. Periodicities observed on solar flux index (F10.7) during geomagnetic disturbances

    Science.gov (United States)

    Adhikari, B.; Narayan, C.; Chhatkuli, D. N.

    2017-12-01

    Solar activities change within the period of 11 years. Sometimes the greatest event occurs in the period of solar maxima and the lowest activity occurs in the period of solar minimum. During the time period of solar activity sunspots number will vary. A 10.7 cm solar flux measurement is a determination of the strength of solar radio emission. The solar flux index is more often used for the prediction and monitoring of the solar activity. This study mainly focused on the variation on solar flux index and amount of electromagnetic wave in the atmosphere. Both seasonal and yearly variation on solar F10.7 index. We also analyzed the dataset obatained from riometer.Both instruments show seasonal and yearly variations. We also observed the solar cycle dependence on solar flux index and found a strong dependence on solar activity. Results also show that solar intensities higher during the rising phase of solar cycle. We also observed periodicities on solar flux index using wavelet analysis. Through this analysis, it was found that the power intensities of solar flux index show a high spectral variability.

  16. Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%

    Science.gov (United States)

    Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun

    2017-08-01

    We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.

  17. Understanding the Effect of Atmospheric Density on the Cosmic Ray Flux Variations at the Earth Surface

    OpenAIRE

    Dayananda, Mathes; Zhang, Xiaohang; Butler, Carola; He, Xiaochun

    2013-01-01

    We report in this letter for the first time the numerical simulations of muon and neutron flux variations at the surface of the earth with varying air densities in the troposphere and stratosphere. The simulated neutron and muon flux variations are in very good agreement with the measured neutron flux variation in Oulu and the muon flux variation in Atlanta. We conclude from this study that the stratosphere air density variation dominates the effects on the muon flux changes while the density...

  18. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany); Doyle, S. [Synchrotron Light Source ANKA, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviations from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.

  19. Numerical study of desirable solar-collector orientations for the coastal region of South China

    International Nuclear Information System (INIS)

    Chow, T.T.; Chan, A.L.S.

    2004-01-01

    The overall performance of any solar energy project depends very much on the availability of solar radiation and the orientations of solar collectors. Presented in this paper is a numerical analysis of the solar irradiation received at the coastal region of South China. This region, with latitudes from 20.5 deg. N to 24 deg. N, belongs to the subtropical monsoon climatic zone. The computations were based on the typical meteorological year (TMY) weather data of Macau, compiled as a result of the ASHRAE International Weather for Energy Calculations Project. The hourly data were applied to the ESP-r building simulation program with the adoption of the Perez solar model. The analyses estimated the solar irradiation received on inclined surfaces at different orientations and slopes, and for different periods of the year. It was found that a solar collector facing the south-west direction could be most desirable for a wide range of tilt angles, and for maximizing the annual yield. The trends of variations towards other directions, tilt angles, and shorter periods of the year are also explored

  20. Neutrino magnetic moments and the solar neutrino problem

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.Kh. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Valencia Univ. (Spain). Dept. de Fisica Teorica

    1994-08-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.

  1. Neutrino magnetic moments and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Valencia Univ.

    1994-01-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2θ o approx-gt 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar bar ν e 's

  2. SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, A. G. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Duvall, T. L. Jr. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-04-10

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s{sup -1} slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  3. SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS

    International Nuclear Information System (INIS)

    Zhao Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, A. G.; Duvall, T. L. Jr.

    2012-01-01

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s –1 slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  4. Systematic Center-To-Limb Variation in Measured Helioseismic Travel Times and Its Effect on Inferences of Solar Interior Meridional Flows

    Science.gov (United States)

    Zhao, Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, Alexander; Duvall, T. L., Jr.

    2012-01-01

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s-1 slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  5. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  6. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  7. A three-layer model of self-assembly induced surface-energy variation experimentally extracted by using nanomechanically sensitive cantilevers

    International Nuclear Information System (INIS)

    Zuo Guomin; Li Xinxin

    2011-01-01

    This research is aimed at elucidating surface-energy (or interfacial energy) variation during the process of molecule-layer self-assembly on a solid surface. A quasi-quantitative plotting model is proposed and established to distinguish the surface-energy variation contributed by the three characteristic layers of a thiol-on-gold self-assembled monolayer (SAM), namely the assembly-medium correlative gold/head-group layer, the chain/chain interaction layer and the tail/medium layer, respectively. The data for building the model are experimentally extracted from a set of correlative thiol self-assemblies in different media. The variation in surface-energy during self-assembly is obtained by in situ recording of the self-assembly induced nanomechanical surface-stress using integrated micro-cantilever sensors. Based on the correlative self-assembly experiment, and by using the nanomechanically sensitive self-sensing cantilevers to monitor the self-assembly induced surface-stressin situ, the experimentally extracted separate contributions of the three layers to the overall surface-energy change aid a comprehensive understanding of the self-assembly mechanism. Moreover, the quasi-quantitative modeling method is helpful for optimal design, molecule synthesis and performance evaluation of molecule self-assembly for application-specific surface functionalization.

  8. Super-quasi-conformal transformation and Schiffer variation on super-Riemann surface

    International Nuclear Information System (INIS)

    Takahasi, Wataru

    1990-01-01

    A set of equations which characterizes the super-Teichmueller deformations is proposed. It is a supersymmetric extension of the Beltrami equation. Relations between the set of equations and the Schiffer variations with the KN bases are discussed. This application of the KN bases shows the powerfulness of the KN theory in the study of super-Riemann surfaces. (author)

  9. Modelling the solar magnetism: from its internal origin to its manifestations at the surface

    International Nuclear Information System (INIS)

    Jouve, Laurene

    2008-01-01

    This thesis is part of the general study of dynamical processes involved in stars such as convection, rotation or magnetic fields and of their nonlinear interactions. The results of numerical simulations using the 2D finite element code STELEM and the pseudo-spectral 3D code ASH are presented. The first part of this work focuses on the global modeling of the solar dynamo. Through 2D simulations using mean-field theory, I studied the influence of a complex profile of meridional flow in Babcock-Leighton models. We show that there may be doubts about the ability of such models to reproduce the main characteristics of the solar cycle. In order to better constrain the effects of solar variability on the Earth climate, we present a first application in solar physics of sophisticated prediction methods which are used in meteorology. I also computed the first 3D MHD simulations in spherical geometry of a key step in the solar dynamo: the nonlinear evolution of magnetic structures from the base of the convection zone up to the surface where they produce active regions. Weak fields are likely to be modulated by convective motions, thus creating favored longitudes of emergence. If these structures are sufficiently arched, the orientation of bipolar spots corresponds to Joy's law. The introduction of an atmosphere in these models is a step towards a 3D global vision of our Sun. (author) [fr

  10. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  11. FIVE YEARS OF SYNTHESIS OF SOLAR SPECTRAL IRRADIANCE FROM SDID/SISA AND SDO /AIA IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Fontenla, J. M. [NorthWest Research Associates, Boulder, CO 80301 (United States); Codrescu, M. [Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO 80305 (United States); Fedrizzi, M.; Fuller-Rowell, T. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Hill, F. [National Solar Observatory, Boulder, CO 80303 (United States); Landi, E. [Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Woods, T., E-mail: johnf@digidyna.com [Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303 (United States)

    2017-01-01

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm is used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010–2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010–2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere–ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.

  12. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  13. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey)

    International Nuclear Information System (INIS)

    Duzen, Hacer; Aydin, Harun

    2012-01-01

    Highlights: ► The global solar radiation at Lake Van region is estimated. ► This study is unique for the Lake Van region. ► Solar radiation around Lake Van has the highest value at the east-southeast region. ► The annual average solar energy potential is obtained as 750–2458 kWh/m 2 . ► Results can be used to estimate evaporation. - Abstract: In this study several sunshine-based regression models have been evaluated to estimate monthly average daily global solar radiation on horizontal surface of Lake Van region in the Eastern Anatolia region in Turkey by using data obtained from seven different meteorological stations. These models are derived from Angström–Prescott linear regression model and its derivatives such as quadratic, cubic, logarithmic and exponential. The performance of this regression models were evaluated by comparing the calculated clearness index and the measured clearness index. Several statistical tests were used to control the validation and goodness of the regression models in terms of the coefficient of determination, mean percent error, mean absolute percent error, mean biased error, mean absolute biased error, root mean square error and t-statistic. The results of all the regression models are within acceptable limits according to the statistical tests. However, the best performances are obtained by cubic regression model for Bitlis, Gevaş, Hakkari, Muş stations and by quadratic regression model for Malazgirt, Tatvan and Van stations to predict global solar radiation. The spatial distributions of the monthly average daily global solar radiation around the Lake Van region were obtained with interpolation of calculated solar radiation data that acquired from best fit models of the stations. The annual average solar energy potential for Lake Van region is obtained between 750 kWh/m 2 and 2485 kWh/m 2 with annual average of 1610 kWh/m 2 .

  14. Genetic variation and significance of hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    ZHANG Zhenhua

    2013-11-01

    Full Text Available Hepatitis B virus (HBV is prone to genetic variation because there is reverse transcription in the process of HBV replication. The gene mutation of hepatitis B surface antigen may affect clinical diagnosis of HBV infection, viral replication, and vaccine effect. The current research and existing problems are discussed from the following aspects: the mechanism and biological and clinical significance of S gene mutation. Most previous studies focused on S gene alone, so S gene should be considered as part of HBV DNA in the future research on S gene mutation.

  15. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen; Kumar, Vinod

    2017-01-01

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking, delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.

  16. Solar reflection panels

    Science.gov (United States)

    Diver, Jr., Richard B.; Grossman, James W [Albuquerque, NM; Reshetnik, Michael [Boulder, CO

    2006-07-18

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  17. Surface Passivation and Antireflection Behavior of ALD on n-Type Silicon for Solar Cells

    Directory of Open Access Journals (Sweden)

    Ing-Song Yu

    2013-01-01

    Full Text Available Atomic layer deposition, a method of excellent step coverage and conformal deposition, was used to deposit TiO2 thin films for the surface passivation and antireflection coating of silicon solar cells. TiO2 thin films deposited at different temperatures (200°C, 300°C, 400°C, and 500°C on FZ n-type silicon wafers are in the thickness of 66.4 nm ± 1.1 nm and in the form of self-limiting growth. For the properties of surface passivation, Si surface is effectively passivated by the 200°C deposition TiO2 thin film. Its effective minority carrier lifetime, measured by the photoconductance decay method, is improved 133% at the injection level of  cm−3. Depending on different deposition parameters and annealing processes, we can control the crystallinity of TiO2 and find low-temperature TiO2 phase (anatase better passivation performance than the high-temperature one (rutile, which is consistent with the results of work function measured by Kelvin probe. In addition, TiO2 thin films on polished Si wafer serve as good ARC layers with refractive index between 2.13 and 2.44 at 632.8 nm. Weighted average reflectance at AM1.5G reduces more than half after the deposition of TiO2. Finally, surface passivation and antireflection properties of TiO2 are stable after the cofire process of conventional crystalline Si solar cells.

  18. Deciphering Solar Magnetic Activity: Spotting Solar Cycle 25

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Leamon, Robert J., E-mail: mscott@ucar.edu [Department of Astronomy, University of Maryland, College Park, MD (United States)

    2017-06-26

    We present observational signatures of solar cycle 25 onset. Those signatures are visibly following a migratory path from high to low latitudes. They had starting points that are asymmetrically offset in each hemisphere at times that are 21–22 years after the corresponding, same polarity, activity bands of solar cycle 23 started their migration. Those bands define the so-called “extended solar cycle.” The four magnetic bands currently present in the system are approaching a mutually cancelling configuration, and solar minimum conditions are imminent. Further, using a tuned analysis of the daily band latitude-time diagnostics, we are able to utilize the longitudinal wave number (m = 1) variation in the data to more clearly reveal the presence of the solar cycle 25 bands. This clarification illustrates that prevalently active longitudes (different in each hemisphere) exist at mid-latitudes presently, lasting many solar rotations, that can be used for detailed study over the next several years with instruments like the Spectrograph on IRIS, the Spectropolarimeter on Hinode, and, when they come online, similar instruments on the Daniel K. Inouye Solar Telescope (DKIST) as we watch those bands evolve following the cancellation of the solar cycle 24 activity bands at the equator late in 2019.

  19. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  20. Hilbert-Huang transform analysis of long-term solar magnetic activity

    Science.gov (United States)

    Deng, Linhua

    2018-04-01

    Astronomical time series analysis is one of the hottest and most important problems, and becomes the suitable way to deal with the underlying dynamical behavior of the considered nonlinear systems. The quasi-periodic analysis of solar magnetic activity has been carried out by various authors during the past fifty years. In this work, the novel Hilbert-Huang transform approach is applied to investigate the yearly numbers of polar faculae in the time interval from 1705 to 1999. The detected periodicities can be allocated to three components: the first one is the short-term variations with periods smaller than 11 years, the second one is the mid- term variations with classical periods from 11 years to 50 years, and the last one is the long-term variations with periods larger than 50 years. The analysis results improve our knowledge on the quasi-periodic variations of solar magnetic activity and could be provided valuable constraints for solar dynamo theory. Furthermore, our analysis results could be useful for understanding the long-term variations of solar magnetic activity, providing crucial information to describe and forecast solar magnetic activity indicators.