WorldWideScience

Sample records for solar surface variations

  1. Toward Spectroscopically Detecting the Global Latitudinal Temperature Variation on the Solar Surface

    Science.gov (United States)

    Takeda, Y.; UeNo, S.

    2017-09-01

    A very slight rotation-induced latitudinal temperature variation (presumably on the order of several kelvin) on the solar surface is theoretically expected. While recent high-precision solar brightness observations reported its detection, confirmation by an alternative approach using the strengths of spectral lines is desirable, for which reducing the noise due to random fluctuation caused by atmospheric inhomogeneity is critical. Toward this difficult task, we carried out a pilot study of spectroscopically investigating the relative variation of temperature (T) at a number of points in the solar circumference region near to the limb (where latitude dependence should be detectable, if any exists) based on the equivalent widths (W) of 28 selected lines in the 5367 - 5393 Å and 6075 - 6100 Å regions. We paid special attention to i) clarifying which types of lines should be employed and ii) how much precision is attainable in practice. We found that lines with strong T-sensitivity (|log W/log T|) should be used and that very weak lines should be avoided because they inevitably suffer strong relative fluctuations (Δ W/W). Our analysis revealed that a precision of Δ T/T ≈ 0.003 (corresponding to ≈ 15 K) can be achieved at best by a spectral line with comparatively large |log W/log T|, although this can possibly be further improved When a number of lines are used all together. Accordingly, if many such favorable lines could be measured with subpercent precision of Δ W/W and by averaging the resulting Δ T/T from each line, the random noise would eventually be reduced to ≲ 1 K and detection of a very subtle amount of global T-gradient might be possible.

  2. Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century

    Directory of Open Access Journals (Sweden)

    A. Sanchez-Lorenzo

    2012-09-01

    Full Text Available Our knowledge on trends in surface solar radiation (SSR involves uncertainties due to the scarcity of long-term time series of SSR, especially with records before the second half of the 20th century. Here we study the trends of all-sky SSR from 1885 to 2010 in Switzerland, which have been estimated using a homogenous dataset of sunshine duration series. This variable is shown to be a useful proxy data of all-sky SSR, which can help to solve some of the current open issues in the dimming/brightening phenomenon. All-sky SSR has been fairly stable with little variations in the first half of the 20th century, unlike the second half of the 20th century that is characterized also in Switzerland by a dimming from the 1950s to the 1980s and a subsequent brightening. Cloud cover changes seem to explain the major part of the decadal variability observed in all-sky SSR, at least from 1885 to the 1970s; at this point, a discrepancy in the sign of the trend is visible in the all-sky SSR and cloud cover series from the 1970s to the present. Finally, an attempt to estimate SSR series for clear-sky conditions, based also on sunshine duration records since the 1930s, has been made for the first time. The mean clear-sky SSR series shows no relevant changes between the 1930s to the 1950s, then a decrease, smaller than the observed in the all-sky SSR, from the 1960s to 1970s, and ends with a strong increase from the 1980s up to the present. During the three decades from 1981 to 2010 the estimated clear-sky SSR trends reported in this study are in line with previous findings over Switzerland based on direct radiative flux measurements. Moreover, the signal of the El Chichón and Pinatubo volcanic eruption visible in the estimated clear-sky SSR records further demonstrates the potential to infer aerosol-induced radiation changes from sunshine duration observations.

  3. Variations of surface temparature with solar activity at two stations in ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... A consistent and persistent diurnal variation in surface air temperature exists which shows an almost constant level in the early morning hours (0000 0600 hours LT.); a rise at sunrise till about 1500 hr LT., a subsequent fall to the constant level by about 1900 hr LT. at sunset.

  4. Spatial Representativeness of Surface-Measured Variations of Downward Solar Radiation

    Science.gov (United States)

    Schwarz, M.; Folini, D.; Hakuba, M. Z.; Wild, M.

    2017-12-01

    When using time series of ground-based surface solar radiation (SSR) measurements in combination with gridded data, the spatial and temporal representativeness of the point observations must be considered. We use SSR data from surface observations and high-resolution (0.05°) satellite-derived data to infer the spatiotemporal representativeness of observations for monthly and longer time scales in Europe. The correlation analysis shows that the squared correlation coefficients (R2) between SSR times series decrease linearly with increasing distance between the surface observations. For deseasonalized monthly mean time series, R2 ranges from 0.85 for distances up to 25 km between the stations to 0.25 at distances of 500 km. A decorrelation length (i.e., the e-folding distance of R2) on the order of 400 km (with spread of 100-600 km) was found. R2 from correlations between point observations and colocated grid box area means determined from satellite data were found to be 0.80 for a 1° grid. To quantify the error which arises when using a point observation as a surrogate for the area mean SSR of larger surroundings, we calculated a spatial sampling error (SSE) for a 1° grid of 8 (3) W/m2 for monthly (annual) time series. The SSE based on a 1° grid, therefore, is of the same magnitude as the measurement uncertainty. The analysis generally reveals that monthly mean (or longer temporally aggregated) point observations of SSR capture the larger-scale variability well. This finding shows that comparing time series of SSR measurements with gridded data is feasible for those time scales.

  5. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-01-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes

  6. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  7. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  8. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  9. Solar cycle variations in IMF intensity

    International Nuclear Information System (INIS)

    King, J.H.

    1979-01-01

    Annual averages of logarithms of hourly interplanetary magnetic field (IMF) intensities, obtained from geocentric spacecraft between November 1963 and December 1977, reveal the following solar cycle variation. For 2--3 years at each solar minimum period, the IMF intensity is depressed by 10--15% relative to its mean value realized during a broad 9-year period contered at solar maximum. No systematic variations occur during this 9-year period. The solar minimum decrease, although small in relation to variations in some other solar wind parameters, is both statistically and physically significant

  10. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  11. Solar irridiance variations and solar activity

    International Nuclear Information System (INIS)

    Willson, R.C.

    1982-01-01

    A mean value for the 1 AU total solar irradiance of 1368.2 W/m 2 and a downward trend of 0.05% per year were derived from measurements by the Active Cavity Radiometer Irradiance Monitor (ACRIM) experiment on the Solar Maximum Mission during 1980. Distinct temporary solar irradiance decreases associated with solar activity maxima were observed with a series of nine dips from April to October recurring at fairly regular intervals averaging 24 days. The decreases correlate inversely with sunspot area, 2800-MHz flux, and Zurich sunspot number. Dominant periods common to the irradiance and sunspot area power spectra link the irradiance decreases to sunspot flux deficit in solar active regions. Evidence of significant total irradiance modulation by facular flux excess is cited. A persistent radiative cycle of active regions consistent with the ACRIM irradiance results and the morphology of solar active regions was found. The pattern of regularly recurrent active region maxima between April and October suggests an asymmetry in solar activity generation during this period

  12. Latitudinal variation of the solar photospheric intensity

    OpenAIRE

    Rast, Mark P.; Ortiz, Ada; Meisner, Randle W.

    2007-01-01

    We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement $\\sim0.1 - 0.2%$ corresponding to a brightness temperature enhancement of $\\sim2.5{\\rm K}$). This appears to be thermal in ...

  13. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    International Nuclear Information System (INIS)

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-01-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  14. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  15. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  16. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  17. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  18. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  19. Solar cycle variations in the ionosphere of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.

    2016-07-01

    Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)

  20. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  1. Models of Solar Irradiance Variations: Current Status Natalie A ...

    Indian Academy of Sciences (India)

    Abstract. Regular monitoring of solar irradiance has been carried out since 1978 to show that solar total and spectral irradiance varies at different time scales. Whereas variations on time scales of minutes to hours are due to solar oscillations and granulation, variations on longer time scales are driven by the evolution of the ...

  2. Characteristics of seasonal variation and solar activity dependence of the geomagnetic solar quiet daily variation

    Science.gov (United States)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.

    2017-12-01

    Characteristics of seasonal variation and solar activity dependence of the X- and Y-components of the geomagnetic solar quiet (Sq) daily variation at Memanbetsu in mid-latitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1-h time resolution from 1957 to 2016. In this analysis, we defined the quiet day when the maximum value of the Kp index is less than 3 for that day. In this analysis, we used the monthly average of the adjusted daily F10.7 corresponding to geomagnetically quiet days. For identification of the monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y), we first determined the baseline of the X and Y components from the average value from 22 to 2 h (LT: local time) for each quiet day. Next, we calculated a deviation from the baseline of the X- and Y-components of the geomagnetic field for each quiet day, and computed the monthly mean value of the deviation for each local time. As a result, Sq-X and Sq-Y shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities, and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and Sq-X and Sq-Y shows almost the linear relationship, but the slope and intercept of the linear fitted line varies as function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The local time dependence of the offset value of Sq-Y at Guam and its seasonal variation suggest a magnetic field produced by inter-hemispheric field-aligned currents (FACs). From the sign of the offset value of Sq-Y, it is infer that the inter-hemispheric FACs flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in

  3. Solar UV Variations During the Decline of Cycle 23

    Science.gov (United States)

    DeLand, Matthew, T.; Cebula, Richard P.

    2011-01-01

    Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements

  4. Variations of the core luminosity and solar neutrino fluxes

    Science.gov (United States)

    Grandpierre, Attila

    The aim of the present work is to analyze the geological and astrophysical data as well as presenting theoretical considerations indicating the presence of dynamic processes present in the solar core. The dynamic solar model (DSM) is suggested to take into account the presence of cyclic variations in the temperature of the solar core. Comparing the results of calculations of the CO2 content, albedo and solar evolutionary luminosity changes with the empirically determined global earthly temperatures, and taking into account climatic models, I determined the relation between the earthly temperature and solar luminosity. These results indicate to the observed maximum of 10o change on the global terrestrial surface temperature a related solar luminosity change around 4-5 % on a ten million years timescale, which is the timescale of heat diffusion from the solar core to the surface. The related solar core temperature changes are around 1 % only. At the same time, the cyclic luminosity changes of the solar core are shielded effectively by the outer zones since the radiation diffusion takes more than 105 years to reach the solar surface. The measurements of the solar neutrino fluxes with Kamiokande 1987-1995 showed variations higher than 40 % around the average, at the Super-Kamiokande the size of the apparent scatter decreased to 13 %. This latter scatter, if would be related completely to stochastic variations of the central temperature, would indicate a smaller than 1 % change. Fourier and wavelet analysis of the solar neutrino fluxes indicate only a marginally significant period around 200 days (Haubold, 1998). Helioseismic measurements are known to be very constraining. Actually, Castellani et al. (1999) remarked that the different solar models lead to slightly different sound speeds, and the different methods of regularization yield slightly different sound speeds, too. Therefore, they doubled the found parameter variations, and were really conservative assuming

  5. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  6. Solar-cycle variation of zonal and meridional flow

    International Nuclear Information System (INIS)

    Komm, R; Howe, R; Hill, F; Hernandez, I Gonzalez; Haber, D

    2011-01-01

    We study the variation with the solar cycle of the zonal and meridional flows in the near-surface layers of the solar convection zone. We have analyzed MDI Dynamics-Program data with ring-diagram analysis covering the rising phase of cycle 23, while the analyzed GONG high-resolution data cover the maximum and declining phase of cycle 23. For the zonal flow, the migration with latitude of the flow pattern is apparent in the deeper layers, while for the meridional flow, a migration with latitude is apparent only in the layers close to the surface. The faster-than-average bands of the zonal flow associated with the new cycle are clearly visible. Similarly, a pattern related to the new cycle appears in the residual meridional flow. We also study the flow differences between the hemispheres during the course of the solar cycle. The difference pattern of the meridional flow is slanted in latitude straddling the faster-than-average band of the torsional oscillation pattern in the zonal flow. The difference pattern of the zonal flow, on the other hand, resembles the cycle variation of the meridional flow. In addition, the meridional flow during the minimum of cycle 23/24 appears to be slightly stronger than during the previous minimum of cycle 22/23.

  7. Variations of Solar Non-axisymmetric Activity

    Science.gov (United States)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    The temporal behaviour of solar active longitudes has been examined by using two sunspot catalogues, the Greenwich Photoheliographic Results (GPR) and the Debrecen Photoheliographic Data (DPD). The time-longitude diagrams of the activity distribution reveal the preferred longitudinal zones and their migration with respect to the Carrington frame. The migration paths outline a set of patterns in which the activity zone has alternating prograde/retrograde angular velocities with respect to the Carrington rotation rate. The time profiles of these variations can be described by a set of successive parabolae. Two similar migration paths have been selected from these datasets, one northern path during cycles 21 - 22 and one southern path during cycles 13 - 14, for closer examination and comparison of their dynamical behaviours. The rates of sunspot emergence exhibited in both migration paths similar periodicities, close to 1.3 years. This behaviour may imply that the active longitude is connected to the bottom of convection zone.

  8. Effects in atmospheric electricity daily variation controlled by solar wind

    International Nuclear Information System (INIS)

    Ptitsyna, N.G.; Tyasto, M.I.; Levitin, A.E.; Gromova, L.A.; Tuomi, T.; AN SSSR, Moscow

    1995-01-01

    An analysis of fair weather atmospheric electricity, one of the environmental factors which affects the biosphere, is conducted. A distinct difference in the diurnal variation of atmospheric electric field at Helsinki is found between disturbed and extremely quiet conditions in the magnetosphere in winter before midnight. The comparison with the numerical model of the ionospheric electric field based on the solar wind parameters reveals that the maximum contribution of the magnetospheric-ionospheric generator to atmospheric electric field is about 100-150 v/m which assumes values of about 30% of the surface field. 8 refs.; 2 figs

  9. Variation of sodium on Mercury with solar radiation pressure

    International Nuclear Information System (INIS)

    Potter, A.E.; Morgan, T.H.

    1987-01-01

    It has been suggested that nonthermal Na atoms with velocities in excess of 2.1 km/sec in the Mercury atmosphere can be accelerated off the planet by solar radiation pressure; Na abundance may accordingly be expected to decrease with increasing radiation pressure. While this is confirmed by the present measurements, high resolution line profile measurements on Na emission indicate that very little, if any, of the Na is nonthermal, while the bulk is at a temperature approaching that of the planetary surface. Attention is given to explanations for the observed variation. 11 references

  10. Lunar rock surfaces as detectors of solar processes

    International Nuclear Information System (INIS)

    Hartung, J.B.; Hunter College, New York, NY)

    1980-01-01

    Lunar rock surfaces exposed at or just below the lunar surface are considered as detectors of the solar wind, solar flares and solar-derived magnetic fields through their interactions with galactic cosmic rays. The degradation of the solar detector capabilities of lunar surface rocks by meteoroid impact erosion, accreta deposition, loose dust, and sputtering, amorphous layer formation and accelerated diffusion due to solar particles and illumination is discussed, and it is noted that the complex interactions of factors affecting the outer micron of exposed surface material has so far prevented the development of a satisfactory model for a particle detector on the submicron scale. Methods for the determination of surface exposure ages based on the accumulation of light solar wind noble gases, Fe and Mg, impact craters, solar flare tracks, and cosmogenic Kr isotopes are examined, and the systematic variations in the ages determined by the various clocks are discussed. It is concluded that a means of obtaining satisfactory quantitative rate or flux data has not yet been established

  11. Variation of the solar wind velocity following solar flares

    International Nuclear Information System (INIS)

    Huang, Y.; Lee, Y.

    1975-01-01

    By use of the superposed epoch method, changes in the solar wind velocity following solar flares have been investigated by using the solar wind velocity data obtained by Pioneer 6 and 7 and Vela 3, 4, and 5 satellites. A significant increase of the solar wind velocity has been found on the second day following importance 3 solar flares and on the third day following importance 2 solar flares. No significant increase of the solar wind velocity has been found for limb flares. (auth)

  12. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  13. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  14. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  15. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  16. HEIGHT VARIATION OF THE VECTOR MAGNETIC FIELD IN SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Suárez, D. Orozco; Ramos, A. Asensio; Bueno, J. Trujillo, E-mail: dorozco@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-04-20

    Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.

  17. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  18. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  19. Solar ultraviolet radiation induced variations in the stratosphere and mesosphere

    Science.gov (United States)

    Hood, L. L.

    1987-01-01

    The detectability and interpretation of short-term solar UV induced responses of middle atmospheric ozone, temperature, and dynamics are reviewed. The detectability of solar UV induced perturbations in the middle atmosphere is studied in terms of seasonal and endogenic dynamical variations. The interpretation of low-latitude ozone and possible temperature responses on the solar rotation time scale is examined. The use of these data to constrain or test photochemical model predictions is discussed.

  20. Solar cycle variations of geocoronal balmer α emission

    International Nuclear Information System (INIS)

    Nossal, S.; Reynolds, R.J.; Roesler, F.L.; Scherb, F.

    1993-01-01

    Observations of the geocoronal Balmer in nightglow have been made from Wisconsin for more than a solar cycle with an internally consistent intensity reference to standard astronomical nebulae. These measurements were made with a double etalon, pressure-scanned, 15-cm aperture Fabry-Perot interferometer. The resulting long time data provides an opportunity to examine solar cycle influence on the mid-latitude exosphere and to address accompanying questions concerning the degree to which the exosphere is locally static or changing. The exospheric Balmer α absolute intensity measurements reported here show no statistically significant variations throughout the solar cycle when the variation with viewing geometry is removed by normalizing the data to reference exospheric model predictions by Anderson et al. However, the relative intensity dependence on solar depression angle does show a solar cycle variation. This variation suggests a possible related variation in the exospheric hydrogen density profile, although other interpretations are also possible. The results suggest that additional well-calibrated data taken over a longer time span could probe low-amplitude variations over the solar cycle and test predictions of a slow monotonic increase in exospheric hydrogen arising from greenhouse gases. 21 refs., 9 figs., 2 tabs

  1. Solar cycle variations of magnetopause locations

    Czech Academy of Sciences Publication Activity Database

    Němeček, Z.; Šafránková, J.; Lopez, R. E.; Dušík, Š.; Nouzák, L.; Přech, J.; Šimůnek, Jiří; Shue, J.-H.

    2016-01-01

    Roč. 58, č. 2 (2016), s. 240-248 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GA14-19376S Institutional support: RVO:68378289 Keywords : magnetopause location * F-10.7 flux * solar cycle * solar wind velocity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.401, year: 2016 http://www.sciencedirect.com/science/article/pii/S0273117715007115

  2. Overlapping constraint for variational surface reconstruction

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Solem, J.E.

    2005-01-01

    In this paper a counter example, illustrating a shortcoming in most variational formulations for 3D surface estimation, is presented. The nature of this shortcoming is a lack of an overlapping constraint. A remedy for this shortcoming is presented in the form of a penalty function with an analysi...... of the effects of this function on surface motion. For practical purposes, this will only have minor influence on current methods. However, the insight provided in the analysis is likely to influence future developments in the field of variational surface reconstruction....

  3. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  4. Voltage variation due to solar photovoltaic in distribution network

    International Nuclear Information System (INIS)

    Azad, H I; Ramachandaramurthy, V K; Maleki, Hesamaldin

    2013-01-01

    Grid integration of solar photovoltaic (PV) plant offers reduction in greenhouse emissions and independence from fossil fuels for power generation. The integration of such forms of power generation also brings with it a variety of policy and technical issues. One of the technical issues is the variation in grid voltages in the presence of solar photovoltaic (PV) plant, resulting in degradation of power quality. In this paper, the application of a dq current controller to limit the voltage variation at the point of common coupling (PCC) due to a 2 MW solar photovoltaic (PV) plant will be discussed. The controller's goal is to ensure that the voltage variation meets the momentary voltage change limits specified in TNB's Technical Guidebook for the connection of distributed generation. The proposed dq current controller is shown to be able to limit the voltage variation.

  5. Geographic variation of solar water performance in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y. [University of Ulster (United Kingdom). Faculty of Engineering; Popel, O.; Frid, S. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperatures; Norton, B. [Dublin Institute of Technology (Ireland)

    2006-07-01

    Solar water heater (SWH) performance has been analysed using the 'number of days' method for 147 different sites in all European countries. The total number of days that the temperature of delivered solar heated water reaches or exceeds specified demand temperatures is correlated with solar radiation on a horizontal surface for summer, warm half-year, and whole year periods. Maps are presented and discussed showing the contours for the number of days that an illustrative SWH met different hot water demand temperatures. Correlations between number of days water is provided at a specified temperature and solar fractions for the same periods are determined. (author)

  6. Abundance variations in solar active regions

    Science.gov (United States)

    Strong, K. T.; Lemen, J. R.; Linford, G. A.

    1991-01-01

    The diversity in the published values of coronal abundances is unsettling, especially as the range of results seems to be beyond the quoted uncertainties. Measurements of the relative abundance of iron and neon derived from soft X-ray spectra of active regions are presented. From a data base of over 200 spectra taken by the Solar Maximum Mission Flat Crystal Spectrometer, it is found that the relative abundance can vary by as much as a factor of about 7 and can change on timescales of less than 1 h.

  7. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    Science.gov (United States)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  8. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  9. Observed solar near UV variability: A contribution to variations of the solar constant

    International Nuclear Information System (INIS)

    London, J.; Pap, J.; Rottman, G.J.

    1989-01-01

    Continuous Measurements of the Solar UV have been made by an instrument on the Solar Mesosphere Explorer (SME) since October 1981. The results for the wavelength interval 200 to 300 nm show an irradiance decrease to a minimum in early 1987 and a subsequent increase to mid-April 1989. The observed UV changes during part of solar cycles 21 to 22 represent approx. 35 percent (during the decreasing phase) and 25 percent (during the increasing phase) of the observed variations of the solar constant for the same time period as the SME measurements

  10. Determination of variations of the solar radius from solar eclipse observations

    Science.gov (United States)

    Sofia, S.; Dunham, D. W.; Fiala, A. D.

    1980-01-01

    This paper describes the method to determine the solar radius and its variations from observations made during total solar eclipses. In particular, the procedure to correct the spherical moon predictions for the effects of lunar mountains and valleys on the width and location of the path of totality is addressed in detail. The errors affecting this technique are addressed, a summary of the results of its application to three solar eclipses are presented, and the implications of the results on the constancy of the solar constant are described.

  11. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  12. Response of noctilucent cloud brightness to daily solar variations

    Science.gov (United States)

    Dalin, P.; Pertsev, N.; Perminov, V.; Dubietis, A.; Zadorozhny, A.; Zalcik, M.; McEachran, I.; McEwan, T.; Černis, K.; Grønne, J.; Taustrup, T.; Hansen, O.; Andersen, H.; Melnikov, D.; Manevich, A.; Romejko, V.; Lifatova, D.

    2018-04-01

    For the first time, long-term data sets of ground-based observations of noctilucent clouds (NLC) around the globe have been analyzed in order to investigate a response of NLC to solar UV irradiance variability on a day-to-day scale. NLC brightness has been considered versus variations of solar Lyman-alpha flux. We have found that day-to-day solar variability, whose effect is generally masked in the natural NLC variability, has a statistically significant effect when considering large statistics for more than ten years. Average increase in day-to-day solar Lyman-α flux results in average decrease in day-to-day NLC brightness that can be explained by robust physical mechanisms taking place in the summer mesosphere. Average time lags between variations of Lyman-α flux and NLC brightness are short (0-3 days), suggesting a dominant role of direct solar heating and of the dynamical mechanism compared to photodissociation of water vapor by solar Lyman-α flux. All found regularities are consistent between various ground-based NLC data sets collected at different locations around the globe and for various time intervals. Signatures of a 27-day periodicity seem to be present in the NLC brightness for individual summertime intervals; however, this oscillation cannot be unambiguously retrieved due to inevitable periods of tropospheric cloudiness.

  13. Origin of uranium isotope variations in early solar nebula condensates.

    Science.gov (United States)

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  14. Temporal Variation of Large Scale Flows in the Solar Interior ...

    Indian Academy of Sciences (India)

    tribpo

    Temporal Variation of Large Scale Flows in the Solar Interior. 355. Figure 2. Zonal and meridional components of the time-dependent residual velocity at a few selected depths as marked above each panel, are plotted as contours of constant velocity in the longitude-latitude plane. The left panels show the zonal component, ...

  15. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  16. Variational mesh segmentation via quadric surface fitting

    KAUST Repository

    Yan, Dongming

    2012-11-01

    We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

  17. Variational mesh segmentation via quadric surface fitting

    KAUST Repository

    Yan, Dongming; Wang, Wen Ping; Liu, Yang; Yang, Zhouwang

    2012-01-01

    We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

  18. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    Science.gov (United States)

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  19. (90377) SEDNA: INVESTIGATION OF SURFACE COMPOSITIONAL VARIATION

    International Nuclear Information System (INIS)

    Barucci, M. A.; De Bergh, C.; Merlin, F.; Morea Dalle Ore, C.; Cruikshank, D.; Alvarez-Candal, A.; Dumas, C.

    2010-01-01

    The dwarf planet (90377) Sedna is one of the most remote solar system objects accessible to investigations. To better constrain its surface composition and to investigate the possible heterogeneity of the surface of Sedna, several observations have been carried out at ESO-VLT with the powerful spectrometer SINFONI observing simultaneously the H and K bands. The analyzed spectra (obtained in 2005, 2007, and 2008) show a non-uniform spectral signature, particularly in the K band. Spectral modeling using the Shkuratov radiative transfer code for surface scattering has been performed using the various sets of data, including previous observations at visible wavelengths and photometry at 3.6 and 4.5 μm by the Spitzer Space Telescope. The visible and near-infrared spectra can be modeled with organic materials (triton and titan tholin), serpentine, and H 2 O ice in fairly significant amounts, and CH 4 , N 2 , and C 2 H 6 in varying trace amounts. One of the spectra obtained in 2005 October shows a different signature in the K band and is best modeled with CH 3 OH in place of CH 4 , with reduced amounts of serpentine and with the addition of olivine. The compositional surface heterogeneity can give input on the past history as well clues to the origin of this peculiar, distant object.

  20. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  1. Solar wind velocity and daily variation of cosmic rays

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.; Riker, J.F.

    1985-01-01

    Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for the post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed

  2. Response of Solar Irradiance to Sunspot-area Variations

    Science.gov (United States)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  3. [Fluctuations in biophysical measurements as a result of variations in solar activity].

    Science.gov (United States)

    Peterson, T F

    1995-01-01

    A theory is proposed to explain variations in the net electrical charge of biological substances at the Earth's surface. These are shown to occur in association with changes in the solar wind and geomagnetic field. It is suggested that a liquid dielectric's net volume charge will imitate pH effects, influence chemical reaction rates, and alter ion transfer mechanisms in biophysical systems. An experiment is described which measures dielectric volume charge, or non-neutrality, to allow correlation of this property with daily, 28-day, and 11-year fluctuation patterns in geophysical and satellite data associated with solar activity and the interplanetary magnetic field.

  4. Example Solar Electric Propulsion System asteroid tours using variational calculus

    Science.gov (United States)

    Burrows, R. R.

    1985-01-01

    Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.

  5. Seasonal variations of solar neutrino rates in lithium detector

    OpenAIRE

    Kopylov, Anatoly; Petukhov, Valery

    2002-01-01

    The presence of two monochromatic lines of approximately equal intensity: $^{7}$Be- and pep-neutrinos in the sensitivity plot of lithium detector makes the pattern of the seasonal variations of the effect from solar neutrinos very characteristic in case if the long-wave vacuum oscillations are realized. This can give the very high accuracy in the measurement of the parameters of neutrino oscillations especially if combined with the results obtained by the detector sensitive mainly to $^{7}$Be...

  6. Nanolayer surface passivation schemes for silicon solar cells

    NARCIS (Netherlands)

    Dingemans, G.

    2011-01-01

    This thesis is concerned with nanolayer surface passivation schemes and corresponding deposition processes, for envisaged applications in crystalline silicon solar cells. Surface passivation, i.e. the reduction of electronic recombination processes at semiconductor surfaces, is essential for

  7. Rock discontinuity surface roughness variation with scale

    Science.gov (United States)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.

  8. Cause of solar wind speed variations observed at 1 a.u

    International Nuclear Information System (INIS)

    Hakamada, K.; Akasofu, S.

    1981-01-01

    An attempt is made to interpret solar wind variations observed at the earth's distance, namely the solar cycle variations, the semi-annual variations, and the 27-day variations, as well as the polarity changes of the interplanetary magnetic field, mainly in terms of two effects, a positive latitudinal gradient of the solar wind speed and a wobbling solar dipole, combined with the annual (heliospheric) latitudinal excursion of the earth. It is shown that a significant part of the solar wind variations observed at the earth's distance and the changes of polarity pattern of the interplanetary magnetic field can be reasonably well reproduced by the two effects

  9. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  10. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  11. Semi-annual Sq-variation in solar activity cycle

    Science.gov (United States)

    Pogrebnoy, V.; Malosiev, T.

    The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).

  12. Solar cycle and long term variations of mesospheric ice layers

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Kiliani, Johannes; Baumgarten, Gerd; Fiedler, Jens; Gerding, Michael

    2010-05-01

    Ice layers in the summer mesosphere at middle and polar latitudes, frequently called `noctilucent clouds' (NLC) or `polar mesosphere clouds'(PMC), are considered to be sensitive indicators of long term changes in the middle atmosphere. We present a summary of long term observations from the ground and from satellites and compare with results from the LIMA model (Leibniz Institute Middle Atmosphere Model). LIMA nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and thereby the morphology of ice clouds. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this give s negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. As will be shown, these trends originate in the stratosphere. Solar cycle effects are expected in ice layers due to variations in background temperatures and water paper. We will present results from LIMA regarding solar cycle variations and compare with NLC observations at our lidar stations in Kühlungsborn (54°N) and ALOMAR (69°N), and also with satellite measurements.

  13. Solar wind dynamic pressure variations and transient magnetospheric signatures

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Baumjohann, W.

    1989-01-01

    Contrary to the prevailing popular view, we find some transient ground events with bipolar north-south signatures are related to variations in solar wind dynamic pressure and not necessarily to magnetic merging. We present simultaneous solar wind plasma observations for two previously reported transient ground events observed at dayside auroral latitudes. During the first event, originally reported by Lanzerotti et al. [1987], conjugate ground magnetometers recorded north-south magetic field deflections in the east-west and vertical directions. The second event was reported by Todd et al. [1986], we noted ground rader observations indicating strong northward then southward ionospheric flows. The events were associated with the postulated signatures of patchy, sporadic, merging of magnetosheath and magnetospheric magnetic field lines at the dayside magnetospause, known as flux transfer events. Conversely, we demonstrate that the event reported by Lanzerotti et al. was accompanied by a sharp increase in solar wind dynamic pressure, a magnetospheric compression, and a consequent ringing of the magnetospheric magnetic field. The event reported by Todd et al. was associated with a brief but sharp increase in the solar wind dynamic pressure. copyright American Geophysical Union 1989

  14. Precise estimation of total solar radiation on tilted surface

    African Journals Online (AJOL)

    rajeev

    rarely available required for precise sizing of energy systems. The total solar radiation at different orientation and slope is needed to calculate the efficiency of the installed solar energy systems. To calculate clearness index (Kt) used by Gueymard (2000) for estimating solar irradiation H, irradiation at the earth's surface has ...

  15. Solar and lunar daily geomagnetic variations at Dourbes

    International Nuclear Information System (INIS)

    De Meyer, F.

    1980-01-01

    Spectral analysis of the Dourbes H component hourly data from the period 1960-1978 revealed the existence of a number of minor terms, in addition to the main solar and lunar peaks. The relative amplitudes of oscillations in the geomagnetic spectrum are unrelated with those predicted through lunar tide theory. The minor terms agree more closely with the 27-day amplitude modulation mechanism. A high frequency resolution power spectrum clearly shows the splitting of the solar diurnal and semi-diurnal line, and even of the lunar semi-diurnal line by the annual variation and its harmonics. The correlation between the amplitude of the M 2 wave and the mean sunspot number is of no significance. (author)

  16. Investigation of back surface fields effect on bifacial solar cells

    Science.gov (United States)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  17. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  18. Open Surface Solar Irradiance Observations - A Challenge

    Science.gov (United States)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    The newly started project ConnectinGEO funded by the European Commission aims at improving the understanding on which environmental observations are currently available in Europe and subsequently providing an informational basis to close gaps in diverse observation networks. The project complements supporting actions and networking activities with practical challenges to test and improve the procedures and methods for identifying observation data gaps, and to ensure viability in real world scenarios. We present a challenge on future concepts for building a data sharing portal for the solar energy industry as well as the state of the art in the domain. Decision makers and project developers of solar power plants have identified the Surface Solar Irradiance (SSI) and its components as an important factor for their business development. SSI observations are crucial in the process of selecting suitable locations for building new plants. Since in-situ pyranometric stations form a sparse network, the search for locations starts with global satellite data and is followed by the deployment of in-situ sensors in selected areas for at least one year. To form a convincing picture, answers must be sought in the conjunction of these EO systems, and although companies collecting SSI observations are willing to share this information, the means to exchange in-situ measurements across companies and between stakeholders in the market are still missing. We present a solution for interoperable exchange of SSI data comprising in-situ time-series observations as well as sensor descriptions based on practical experiences from other domains. More concretely, we will apply concepts and implementations of the Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC). The work is based on an existing spatial data infrastructure (SDI), which currently comprises metadata, maps and coverage data, but no in-situ observations yet. This catalogue is already registered in the

  19. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    Science.gov (United States)

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2  = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site

  20. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  1. Solar tri-diurnal variation of cosmic rays in a wide range of rigidity

    Science.gov (United States)

    Mori, S.; Ueno, H.; Fujii, Z.; Morishita, I.; Nagashima, K.

    1985-01-01

    Solar tri-diurnal variations of cosmic rays have been analyzed in a wide range of rigidity, using data from neutron monitors, and the surface and underground muon telescopes for the period 1978-1983. The rigidity spectrum of the anisotropy in space is assumed to be of power-exponential type as (P/gamma P sub o) to the gamma exp (gamma-P/P sub o). By means of the best-fit method between the observed and the expected variations, it is obtained that the spectrum has a peak at P (=gamma P sub o) approx = 90 GV, where gamma=approx 3.0 and P sub o approx. 30 GV. The phase in space of the tri-diurnal variation is also obtained as 7.0 hr (15 hr and 23 hr LT), which is quite different from that of approx. 1 hr. arising from the axisymmetric distribution of cosmic rays with respect to the IMF.

  2. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  3. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  4. On the surface physics affecting solar oscillation frequencies

    DEFF Research Database (Denmark)

    Houdek, G.; Trampedach, R.; Aarslev, M. J.

    2017-01-01

    . In this Letter, we address the physical processes of turbulent convection that are predominantly responsible for the frequency differences between standard models and observations, also called 'surface effects'. We compare measured solar frequencies from the Michelson Doppler Imager instrument on the SOlar...... physics in our model computation, we are able to reproduce the observed solar frequencies to less than or similar to 3 mu Hz without the need of any additional ad hoc functional corrections....

  5. Solar cooling. Dynamic computer simulations and parameter variations; Solare Kuehlung. Dynamische Rechnersimulationen und Parametervariationen

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Mario; Lohmann, Sandra [Fachhochschule Duesseldorf (Germany). E2 - Erneuerbare Energien und Energieeffizienz

    2011-05-15

    The research project 'Solar cooling in the Hardware-in-the-Loop-Test' is funded by the BMBF and deals with the modeling of a pilot plant for solar cooling with the 17.5 kW absorption chiller of Yazaki in the simulation environment of MATLAB/ Simulink with the toolboxes Stateflow and CARNOT. Dynamic simulations and parameter variations according to the work-efficient methodology of design of experiments are used to select meaningful system configurations, control strategies and dimensioning of the components. The results of these simulations will be presented and a view of the use of acquired knowledge for the planned laboratory field tests on a hardware-in-the-loop test stand will be given. (orig.)

  6. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  7. Characterization of the solar climate in Malawi using NASA's surface ...

    African Journals Online (AJOL)

    user

    Characterization of the solar climate in Malawi using. NASA's surface meteorology and solar energy. (SSE) model. Senganimalunje, T. C.1 and Tenthani, C. M. 2*. 1Malawi Bureau of Standards, Metrology Services Department, Box 946, Blantyre, Malawi. 2Physics and Biochemical Sciences Department, Malawi Polytechnic, ...

  8. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    International Nuclear Information System (INIS)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-01-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  9. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres; Wan, Yimao; Yan, Di; Samundsett, Christian; Allen, Thomas; Zhang, Xinyu; Cui, Jie; Bullock, James

    2018-01-01

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine

  10. Performance of solar still with a concave wick evaporation surface

    Energy Technology Data Exchange (ETDEWEB)

    Kabeel, A.E. [Mechanical Power Department, Faculty of Engineering, Tanta University (Egypt)

    2009-10-15

    Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m{sup 2} and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m{sup 2} after solar noon. An estimated cost of 1l of distillate was 0.065 $ for the presented solar still. (author)

  11. Performance of solar still with a concave wick evaporation surface

    International Nuclear Information System (INIS)

    Kabeel, A.E.

    2009-01-01

    Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m 2 and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m 2 after solar noon. An estimated cost of 1 l of distillate was 0.065 $ for the presented solar still.

  12. Surface etching technologies for monocrystalline silicon wafer solar cells

    Science.gov (United States)

    Tang, Muzhi

    With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.

  13. An introduction to selective surfaces for solar applications

    Science.gov (United States)

    Neal, W. E. J.

    1983-12-01

    The desired characteristics of spectrally selective surfaces for solar thermal applications include a high-level absorption of radiation in the solar region of the spectrum (from 0.3 to 2.5 microns) combined with a low value of emission in the IR region (greater than two microns). There are three energy collector temperature ranges for specific solar applications, taking into account a range from 25 to 40 C for swimming pools, a range from 40 to 150 C for space and water heating and air conditioning, and temperatures above 150 C for the production of steam and the generation of electricity. Flat plate and low concentrating collectors with suitable selective surfaces can be employed in connection with the first two temperature ranges. Various types of selective surfaces are presented in a table, giving attention to the absorptive properties for solar radiation and the emissive properties in the IR region.

  14. Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2010-12-01

    Full Text Available We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002 than low solar activity (2006-2008. It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF Bs (IMF Bz <0 component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

  15. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  16. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  17. Deterministic prediction of surface wind speed variations

    Directory of Open Access Journals (Sweden)

    G. V. Drisya

    2014-11-01

    Full Text Available Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  18. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  19. Solar variations and their influence on trends in upper stratospheric ozone and temperature

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.

    1990-10-01

    Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidal variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period

  20. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres

    2018-05-02

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine. Chemical passivation of the surfaces is equally important, and it can be combined with population control to implement carrier-selective, passivating contacts for solar cells. This paper discusses different approaches to suppress surface recombination and to manipulate the concentration of carriers by means of doping, work function and charge. It also describes some of the many surface-passivating contacts that are being developed for silicon solar cells, restricted to experiments performed by the authors.

  1. On the presence of fictitious solar neutrino flux variations in radiochemical experiments

    International Nuclear Information System (INIS)

    Vladimirskii, B.M.; Bruns, A.V.

    2004-01-01

    The currently available data on solar neutrino flux variation in radiochemical experiments and Cherenkov measurements have so far defied a simple interpretation. Some of the results concerning these variations are indicative of their relationship to processes on the solar surface. It may well be that a poorly understood, uncontrollable factor correlating with solar activity indices affects the neutrino flux measurements. This factor is assumed to modulate the detection efficiency on different detectors in different ways. To test this assumption, we have analyzed all available radiochemical measurements obtained with the Brookhaven (1970-1994, 108 runs), GALLEX (1991-1997, 65 runs), and SAGE (1989-2000, 80 runs) detectors for possible instability of the detection efficiency. We consider the heliophysical situation at the final stage of the run, the last 7-27 days, when the products of the neutrino reaction with the target material had already been accumulated. All of the main results obtained previously by other authors were found to be reproduced for chlorine-argon measurements. The neutrino flux anticorrelates with the sunspot numbers only for an odd solar cycle. A similar behavior is observed for the critical frequencies of the E-ionosphere. The neutrino flux probably correlates with the A p magnetic activity index only for an even solar cycle. The predominance of a certain sign of the radial interplanetary magnetic field (IMF) in the last 14 (or 7) days of the run has the strongest effect on the recorded neutrino flux. The effect changes sign when the polarity of the general solar magnetic field is reversed and is most pronounced for the shortest runs (less than 50 days). The dependence of the flux on IMF polarity completely disappears if the corresponding index is taken for the first rather than the last days of the run. The IMF effect on the recorded neutrino flux was also found for short runs in the gallium-germanium experiment, but this effect for a given

  2. High temperature solar energy absorbing surfaces

    Science.gov (United States)

    Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.

    A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.

  3. Helioseismic measurements in the solar envelope using group velocities of surface waves

    Science.gov (United States)

    Vorontsov, S. V.; Baturin, V. A.; Ayukov, S. V.; Gryaznov, V. K.

    2014-07-01

    At intermediate- and high-degree l, solar p and f modes can be considered as surface waves. Using variational principle, we derive an integral expression for the group velocities of the surface waves in terms of adiabatic eigenfunctions of normal modes, and address the benefits of using group-velocity measurements as a supplementary diagnostic tool in solar seismology. The principal advantage of using group velocities, when compared with direct analysis of the oscillation frequencies, comes from their smaller sensitivity to the uncertainties in the near-photospheric layers. We address some numerical examples where group velocities are used to reveal inconsistencies between the solar models and the seismic data. Further, we implement the group-velocity measurements to the calibration of the specific entropy, helium abundance Y, and heavy-element abundance Z in the adiabatically stratified part of the solar convective envelope, using different recent versions of the equation of state. The results are in close agreement with our earlier measurements based on more sophisticated analysis of the solar oscillation frequencies. These results bring further support to the downward revision of the solar heavy-element abundances in recent spectroscopic measurements.

  4. Solar Cycle Variation of Interplanetary Coronal Mass Ejection ...

    Indian Academy of Sciences (India)

    2010-08-25

    Aug 25, 2010 ... 3Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences ... ICME-associated CME latitudes during solar cycle 23 using Song et al.'s method. ..... latitudes during the three phases of cycle 23 separately for the northern (left panel) and southern. (right panel) ...

  5. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  6. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  7. Solar Luminosity on the Main Sequence, Standard Model and Variations

    Science.gov (United States)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  8. Titanium-based spectrally selective surfaces for solar thermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A D; Holmes, J P

    1983-10-01

    A study of spectrally selective surfaces based on anodic oxide films on titanium is presented. These surfaces have low values of solar absorptance, 0.77, due to the nonideal optical properties of the anodic TiO2 for antireflection of titanium. A simple chemical etching process is described which gives a textured surface with dimensions similar to the wavelengths of solar radiation, leading to spectral selectivity. The performance of this dark-etched surface can be further improved by anodising, and optimum absorbers have been produced with alpha(s) 0.935 and hemispherical emittances (400 K) 0.23. The surface texturing effects a significant improvement in alpha(s) at oblique incidence.

  9. Lunar and solar daily variations of ionospheric electron content at Delhi

    International Nuclear Information System (INIS)

    Bhuyan, P.K.; Tyagi, T.R.

    1986-01-01

    Ionospheric electron content measurements obtained at Delhi during the period 1975-1980 have been analysed by the Chapman-Miller method to compute lunar and solar daily variations. The results show that the magnitude of the lunar harmonic components is about one-tenth that of the solar harmonic components. Significant seasonal and solar cycle variations were observed for both the lunar and the solar terms. The lunar semi-diurnal component, the most significant term, can be explained as due to the additional 'fountain' effect caused by the lunar semi-diurnal variation of the electric field at the equatorial region. The lunar semi-diurnal variations were found to have significant oceanic and ionospheric components. (author)

  10. Solar Wind Variation with the Cycle I. S. Veselovsky,* A. V. Dmitriev ...

    Indian Academy of Sciences (India)

    tribpo

    The knowledge of the solar cycle variations in the heliospheric plasma and magnetic fields was .... El Borie, Μ. Α., Duldig, Μ. L., Humble, J. Ε. 1997, 25th International Cosmic Ray ... White, O. R. (Boulder: Colorado University Press), Chapter V.

  11. Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data

    Science.gov (United States)

    KIM, J. H.; Chang, H. Y.

    2017-12-01

    We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.

  12. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation

    Directory of Open Access Journals (Sweden)

    Richard Müller

    2015-06-01

    Full Text Available Solar surface radiation data of high quality is essential for the appropriate monitoring and analysis of the Earth's radiation budget and the climate system. Further, they are crucial for the efficient planning and operation of solar energy systems. However, well maintained surface measurements are rare in many regions of the world and over the oceans. There, satellite derived information is the exclusive observational source. This emphasizes the important role of satellite based surface radiation data. Within this scope, the new satellite based CM-SAF SARAH (Solar surfAce RAdiation Heliosat data record is discussed as well as the retrieval method used. The SARAH data are retrieved with the sophisticated SPECMAGIC method, which is based on radiative transfer modeling. The resulting climate data of solar surface irradiance, direct irradiance (horizontal and direct normal and clear sky irradiance are covering 3 decades. The SARAH data set is validated with surface measurements of the Baseline Surface Radiation Network (BSRN and of the Global Energy and Balance Archive (GEBA. Comparison with BSRN data is performed in order to estimate the accuracy and precision of the monthly and daily means of solar surface irradiance. The SARAH solar surface irradiance shows a bias of 1.3 \\(W/m^2\\ and a mean absolute bias (MAB of 5.5 \\(W/m^2\\ for monthly means. For direct irradiance the bias and MAB is 1 \\(W/m^2\\ and 8.2 \\(W/m^2\\ respectively. Thus, the uncertainty of the SARAH data is in the range of the uncertainty of ground based measurements. In order to evaluate the uncertainty of SARAH based trend analysis the time series of SARAH monthly means are compared to GEBA. It has been found that SARAH enables the analysis of trends with an uncertainty of 1 \\(W/m^2/dec\\; a remarkable good result for a satellite based climate data record. SARAH has been also compared to its legacy version, the satellite based CM-SAF MVIRI climate data record. Overall

  13. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    ckaonga

    2015-03-12

    Mar 12, 2015 ... addition, the concentration of carbon dioxide over Malawi within the same period as temperature and solar radiation data ... plant diseases and pests which may have adverse effects ... object that absorbs and emits radiation).

  14. Reactive solid surface morphology variation via ionic diffusion.

    Science.gov (United States)

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  15. Effect of solar radiation on surface ozone in Cairo

    Energy Technology Data Exchange (ETDEWEB)

    Rizk, H F.S. [National Research Centre, Air Pollution Research Dept., Cairo (Egypt)

    1992-04-01

    Measurements of surface ozone content over an urban area in Cairo were conducted during a year, May 1989 to April 1990, while solar radiation at the same area was measured. Low and high concentrations of ozone are compared with those recommended by the WHO expert committee regarding the daily cycle of ozone concentration. 15 refs.

  16. Variational method for the minimization of entropy generation in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Sjoerd; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2015-04-07

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.

  17. Solar Cycle variations in Earth's open flux content measured by the SuperDARN radar network

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-09-01

    We present a long term study, from 1996 - 2012, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection and is here used as a proxy for the amount of open flux in the polar cap. The mean HMB latitude (measured at midnight) is found to be at 64 degrees during the entire period, with secondary peaks at lower latitudes during the solar maximum of 2003, and at higher latitudes during the recent extreme solar minimum of 2008-2011. We associate these large scale statistical variations in open flux content with solar cycle variations in the solar wind parameters leading to changes in the intensity of the coupling between the solar wind and the magnetosphere.

  18. Long-term solar wind electron variations between 1971 and 1978

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1979-01-01

    Imp solar wind electron data measured between 1971 and 1978 were studied with the aim of determining long-term variations near the earth. Two separate sets of parameter variations were observed: (1) in 1976--1977 the solar wind density, the electron temperature, and the interplanetary electrostatic potential were all enhanced, and (2) the halo density and associated electron parameters were all depressed during a 1 1/2-year period centered on the last 6 months of 1976. Although interpretation of these results in terms of corresponding coronal and interplanetary variations is not unique, it may be significant that measured solar wind parameters near the minimum of solar cycle 20 agree better with the Hartle-Sturrock model of the coronal expansion than they do during other epochs

  19. Variational reconstruction using subdivision surfaces with continuous sharpness control

    Institute of Scientific and Technical Information of China (English)

    Xiaoqun Wu; Jianmin Zheng; Yiyu Cai; Haisheng Li

    2017-01-01

    We present a variational method for subdivision surface reconstruction from a noisy dense mesh.A new set of subdivision rules with continuous sharpness control is introduced into Loop subdivision for better modeling subdivision surface features such as semi-sharp creases,creases,and corners.The key idea is to assign a sharpness value to each edge of the control mesh to continuously control the surface features.Based on the new subdivision rules,a variational model with L1 norm is formulated to find the control mesh and the corresponding sharpness values of the subdivision surface that best fits the input mesh.An iterative solver based on the augmented Lagrangian method and particle swarm optimization is used to solve the resulting non-linear,non-differentiable optimization problem.Our experimental results show that our method can handle meshes well with sharp/semi-sharp features and noise.

  20. Cosmic Ray Daily Variation And SOLAR Activity On Anomalous Days

    International Nuclear Information System (INIS)

    Mishra, Rajesh Kumar; Mishra, Rekha Agarwal

    2008-01-01

    A study is carried out on the long-term changes in the diurnal anisotropy of cosmic rays using the ground based Deep River neutron monitor data during significantly low amplitude anisotropic wave train events in cosmic ray intensity for the period 1981-94. It has been observed that the phase of the diurnal anisotropy for majority of the low amplitude anisotropic wave train events significantly shifts towards earlier hours as compared to the co-rotational direction. The long-term behaviour of the amplitude of the diurnal anisotropy can be explained in terms of the occurrence of low amplitude anisotropic wave train events. The occurrence of these events is dominant during solar activity minimum years. The amplitude of the diurnal anisotropy is well correlated with the solar cycle but the direction of the anisotropy is not correlated with the solar cycle and shows a systematic shift to earlier hours. (authors)

  1. Development of Surfaces Optically Suitable for Flat Solar Panels

    Science.gov (United States)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  2. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  3. Urbanization Process and Variation of Energy Budget of Land Surfaces

    Directory of Open Access Journals (Sweden)

    Ciro Gardi

    2007-06-01

    Full Text Available Urban areas are increasing at a rate much higher than human population growth in many part of the world; actually more than 73 towns in the world are larger than 1000 km2. The European Environmental Agency indicates an urban area average growth rate, over the last 20 years, of 20%. The urbanization process, and the consequent soil sealing, determines not only the losses of the ecological functions of the soil, but also a variation of the energy budget of land surfaces, that affect the microclimatic conditions (heat islands. The alteration of the energy budget are determined by the variations of albedo and roughness of surfaces, but especially by the net losses of evapotranspirating areas. In the present research we have assessed the variation of Parma territory energy budget, induced by the change in land use over the last 122 years. The urban area increase between 1881 and 2003 was 535%.

  4. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  5. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2014-05-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780-1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2-3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 years after volcanic eruption, while the solar signal and the different

  6. Impact of solar vs. volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2013-11-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles vs. volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, 1780-1840 AD). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate-model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decrease global mean temperature by up to 0.5 K for 2-3 yr after the eruption. However, while the volcanic effect is clearly discernible in the southern hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree-ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease of the ocean heat content (OHC) between the 0 and 300 m of depth, whereas the changes in irradiance at λ < 250 nm or in energetic particle have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 yr after volcanic eruption, while the solar signal and the different

  7. Cosmic ray variations of solar origin in relation to human physiological state during the December 2006 solar extreme events

    Science.gov (United States)

    Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K. M.; Mertzanos, G. A.; Petropoulos, B.

    2009-02-01

    There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.

  8. Application of various surface passivation layers in solar cells

    International Nuclear Information System (INIS)

    Lee, Ji Youn; Lee, Soo Hong

    2004-01-01

    In this work, we have used different techniques for surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layers have been investigated both on phosphorus non-diffused p-type Float Zone (FZ) silicon wafers and on diffused emitters (100 Ω/□ and 40 Ω/□). CTO/SiN 1 passivates very well not only on a non-diffused surface (τ eff = 1361 μs) but also on an emitter (τ eff = 414 μs). However, we concluded that RTO/SiN 1 and RTO/SiN 2 stacks were more suitable than CTO/SiN stacks for surface passivation in solar cells since those stacks had relatively good passivation qualities and suitable optical reflections. RTO/SiN 1 for rear-surface passivation and RTO/SiN 2 for front-surface passivation were applied to the fabrication of solar cells. We achieved efficiencies of 18.5 % and 18.8 % on 0.5 Ω-cm (FZ) silicon with planar and textured front surfaces, respectively. An excellent open circuit voltage (V oc ) of 675.6 mV was obtained for the planar cell.

  9. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  10. Implementation of solar-reflective surfaces: Materials and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  11. Solar cycle 22 control on daily geomagnetic variation at Terra Nova Bay (Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1998-06-01

    Full Text Available Nine summer geomagnetic observatory data (1986-1995 from Terra Nova Bay Base, Antarctica (Lat.74.690S, Long. 164.120E, 80.040S magnetic latitude are used to investigate the behaviour of the daily variation of the geomagnetic field at polar latitude. The instrumentation includes a proton precession magnetometer for total intensity |F| digital recordings; DI magnetometers for absolute measuring of the angular elements D and I and a three axis flux-gate system for acquiring H,D Z time variation data. We find that the magnetic time variation amplitude follows the solar cycle evolution and that the ratio between minimum solar median and maximum solar median is between 2-3 for intensive elements (H and Z and 1.7 for declination(D. The solar cycle effect on geomagnetic daily variation elements amplitude in Antarctica, in comparison with previous studies, is then probably larger than expected. As a consequence, the electric current system that causes the daily magnetic field variation reveals a quite large solar cycle effect at Terra Nova Bay.

  12. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  13. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  14. The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

    Science.gov (United States)

    Pipin, V. V.; Tomozov, V. M.

    2018-04-01

    Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP 10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar-stellar analogies.

  15. Variation of the Solar Microwave Spectrum in the Last Half Century

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi; Saito, Masao [National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), Mitaka, Tokyo, 181-8588 (Japan); Iwai, Kazumasa [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Chikusa-ku, Nagoya, 464-8601 (Japan); Asai, Ayumi [Kwasan and Hida Observatories, Kyoto University, Sakyo-ku, Kyoto, 606-8502 (Japan); Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki, 310-8512 (Japan); Minamidani, Tetsuhiro, E-mail: masumi.shimojo@nao.ac.jp [Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo, 181-8588 (Japan)

    2017-10-10

    The total solar fluxes at 1, 2, 3.75, and 9.4 GHz were observed continuously from 1957 to 1994 at Toyokawa, Japan, and from 1994 until now at Nobeyama, Japan, with the current Nobeyama Radio Polarimeters. We examined the multi-frequency and long-term data sets, and found that not only the microwave solar flux but also its monthly standard deviation indicate the long-term variation of solar activity. Furthermore, we found that the microwave spectra at the solar minima of Cycles 20–24 agree with each other. These results show that the average atmospheric structure above the upper chromosphere in the quiet-Sun has not varied for half a century, and suggest that the energy input for atmospheric heating from the sub-photosphere to the corona have not changed in the quiet-Sun despite significantly differing strengths of magnetic activity in the last five solar cycles.

  16. Sunspot variation and selected associated phenomena: a look at solar cycle 21 and beyond

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1982-02-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated

  17. Long-period variations of wind parameters in the mesopause region and the solar cycle dependence

    International Nuclear Information System (INIS)

    Greisiger, K.M.; Schminder, R.; Kuerschner, D.

    1987-01-01

    A solar dependence of wind parameters below 100 km was found by Sprenger and Schminder on the basis of long-term continuous ionospheric drift measurements. For winter they obtained for the prevailing wind a positive correlation with solar activity and for the amplitude of the semi-diurnal tidal wind a negative correlation. However, after the years 1973-1974 we found a significant negative correlation with solar activity with an indication of a new change after 1983. We conclude that this long-term behaviour points rather to a climatic variation with an internal atmospheric cause than to a direct solar control. Recent satellite data of the solar u.v. radiation and the upper stratospheric ozone have shown that the possible variation of the thermal tidal excitation during the solar cycle amounts to only a few per cent. This is, therefore, insufficient to account for the 40-70% variation of the tidal amplitudes. Some other possibilities of explaining this result are discussed. (author)

  18. Design of a solar concentrator considering arbitrary surfaces

    Science.gov (United States)

    Jiménez-Rodríguez, Martín.; Avendaño-Alejo, Maximino; Verduzco-Grajeda, Lidia Elizabeth; Martínez-Enríquez, Arturo I.; García-Díaz, Reyes; Díaz-Uribe, Rufino

    2017-10-01

    We study the propagation of light in order to efficiently redirect the reflected light on photocatalytic samples placed inside a commercial solar simulator, and we have designed a small-scale prototype of Cycloidal Collectors (CCs), resembling a compound parabolic collector. The prototype consists of either cycloidal trough or cycloidal collector having symmetry of rotation, which has been designed considering an exact ray tracing assuming a bundle of rays propagating parallel to the optical axis and impinging on a curate cycloidal surface, obtaining its caustic surface produced by reflection.

  19. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  20. Solar photospheric network properties and their cycle variation

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, K.; Charbonneau, P.; Béland, M., E-mail: kim@astro.umontreal.ca-a, E-mail: paulchar@astro.umontreal.ca-b, E-mail: michel.beland@calculquebec.ca-c [Département de Physique et Calcul Québec, Université de Montréal, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4 (Canada)

    2014-11-20

    We present a numerical simulation of the formation and evolution of the solar photospheric magnetic network over a full solar cycle. The model exhibits realistic behavior as it produces large, unipolar concentrations of flux in the polar caps, a power-law flux distribution with index –1.69, a flux replacement timescale of 19.3 hr, and supergranule diameters of 20 Mm. The polar behavior is especially telling of model accuracy, as it results from lower-latitude activity, and accumulates the residues of any potential modeling inaccuracy and oversimplification. In this case, the main oversimplification is the absence of a polar sink for the flux, causing an amount of polar cap unsigned flux larger than expected by almost one order of magnitude. Nonetheless, our simulated polar caps carry the proper signed flux and dipole moment, and also show a spatial distribution of flux in good qualitative agreement with recent high-latitude magnetographic observations by Hinode. After the last cycle emergence, the simulation is extended until the network has recovered its quiet Sun initial condition. This permits an estimate of the network relaxation time toward the baseline state characterizing extended periods of suppressed activity, such as the Maunder Grand Minimum. Our simulation results indicate a network relaxation time of 2.9 yr, setting 2011 October as the soonest the time after which the last solar activity minimum could have qualified as a Maunder-type Minimum. This suggests that photospheric magnetism did not reach its baseline state during the recent extended minimum between cycles 23 and 24.

  1. Photometric measurements of solar irradiance variations due to sunspots

    International Nuclear Information System (INIS)

    Chapman, G.A.; Herzog, A.D.; Laico, D.E.; Lawrence, J.K.; Templer, M.S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage. 23 refs

  2. Experimental test of a novel multi-surface trough solar concentrator for air heating

    International Nuclear Information System (INIS)

    Zheng Hongfei; Tao Tao; Ma Ming; Kang Huifang; Su Yuehong

    2012-01-01

    Highlights: ► We made a prototype novel multi-surface trough solar concentrator for air heating. ► Circular and rectangular types of receiver were chosen for air heating in the test. ► The changes of instantaneous system efficiency with different air flow were obtained. ► The system has the advantage of high collection temperature, which can be over 140 °C. ► The average efficiency can exceed 45% at the outlet temperature of above 60 °C. - Abstract: This study presents the experimental test of a novel multi-surface trough solar concentrator for air heating. Three receivers of different air flow channels are individually combined with the solar concentrator. The air outlet temperature and solar irradiance were recorded for different air flow rates under the real weather condition and used to determine the collection efficiency and time constant of the air heater system. The characteristics of the solar air heater with different airflow channels are compared, and the variation of the daily efficiency with the normalized temperature change is also presented. The testing results indicates that the highest temperature of the air heater with a circular glass receiver can be over 140 °C. When the collection temperature is around 60 °C, the collection efficiency can be over 45%. For the rectangular receivers, the system also has a considerable daily efficiency at a larger air flow rate. The air heater based on the novel trough solar concentrator would be suitable for space heating and drying applications.

  3. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  4. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    Science.gov (United States)

    Chintzoglou, Georgios

    2016-04-01

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging

  5. Studying the effect of spectral variations intensity of the incident solar radiation on the Si solar cells performance

    Directory of Open Access Journals (Sweden)

    Ahmed Elsayed Ghitas

    2012-12-01

    Full Text Available Solar spectral variation is important in characterization of photovoltaic devices. We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of multicrystalline silicon photovoltaic module. The investigation concentrate on the analysis of outdoor solar spectral measurements carried out at 1 min intervals on clear sky days. Short circuit current and open circuit voltage have been measured to describe the module electrical performance. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of the module. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effect of the spectral variation on the performance of the photovoltaic module is reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the radiation spectra account for the decreased current collection and hence power of the module.

  6. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Hoeksema, J. Todd [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-01-10

    We have analyzed daily microwave images of the Sun at 17 GHz obtained with the Nobeyama Radioheliograph (NoRH) in order to study the solar cycle variations of the enhanced brightness in the polar regions. Unlike in previous works, the averaged brightness of the polar regions is obtained from individual images rather than from synoptic maps. We confirm that the brightness is anti-correlated with the solar cycle and that it has generally declined since solar cycle 22. Including images up to 2013 October, we find that the 17 GHz brightness temperature of the south polar region has decreased noticeably since 2012. This coincides with a significant decrease in the average magnetic field strength around the south pole, signaling the arrival of solar maximum conditions in the southern hemisphere more than a year after the northern hemisphere. We do not attribute the enhanced brightness of the polar regions at 17 GHz to the bright compact sources that occasionally appear in synthesized NoRH images. This is because they have no correspondence with small-scale bright regions in images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory with a broad temperature coverage. Higher-quality radio images are needed to understand the relationship between microwave brightness and magnetic field strength in the polar regions.

  7. Variations of surface ozone concentration across the Klang Valley, Malaysia

    Science.gov (United States)

    Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew

    2012-12-01

    Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.

  8. Radiation aspects on the Earth's surface during solar flares

    International Nuclear Information System (INIS)

    Mansurov, K.Zh.; Aitmukhambetov, A.A.

    2002-01-01

    In the paper the results of investigation of radiation solution in the space near the Earth at the different altitudes of the Earth atmosphere and at the ground level in dependence on geo-coordinates and solar activity during 1957-1999 are presented. Radiation is due to the Galactic cosmic ray flux for different periods of the Solar activity: - the radiation doses of the radioactive clouds at latitudes ∼12-13 km which go ground the Earth two or three times were created; - it seems to years that these clouds make a certain contribution to the ecological situation in the Earth atmosphere and on the surface. The radiation near ground level of the Earth for the last 1500 years was calculated also using the data of radioactive carbon 14 C intensity investigation

  9. Surface Passivation of CIGS Solar Cells Using Gallium Oxide

    KAUST Repository

    Garud, Siddhartha

    2018-02-27

    This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5 nm passivation layer show an substantial absolute improvement of 56 mV in open-circuit voltage (VOC), 1 mA cm−2 in short-circuit current density (JSC), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).

  10. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  11. Seasonal Variation in Solar Ultra Violet Radiation and Early Mortality in Extremely Preterm Infants.

    Science.gov (United States)

    Salas, Ariel A; Smith, Kelly A; Rodgers, Mackenzie D; Phillips, Vivien; Ambalavanan, Namasivayam

    2015-11-01

    Vitamin D production during pregnancy promotes fetal lung development, a major determinant of infant survival after preterm birth. Because vitamin D synthesis in humans is regulated by solar ultraviolet B (UVB) radiation, we hypothesized that seasonal variation in solar UVB doses during fetal development would be associated with variation in neonatal mortality rates. This cohort study included infants born alive with gestational age (GA) between 23 and 28 weeks gestation admitted to a neonatal unit between 1996 and 2010. Three infant cohort groups were defined according to increasing intensities of solar UVB doses at 17 and 22 weeks gestation. The primary outcome was death during the first 28 days after birth. Outcome data of 2,319 infants were analyzed. Mean birth weight was 830 ± 230 g and median gestational age was 26 weeks. Mortality rates were significantly different across groups (p = 0.04). High-intensity solar UVB doses were associated with lower mortality when compared with normal intensity solar UVB doses (hazard ratio: 0.70; 95% confidence interval: 0.54-0.91; p = 0.01). High-intensity solar UVB doses during fetal development seem to be associated with risk reduction of early mortality in preterm infants. Prospective studies are needed to validate these preliminary findings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    Directory of Open Access Journals (Sweden)

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  13. Observations of Fe XIV Line Intensity Variations in the Solar Corona During the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Johnson, Payton; Ladd, Edwin

    2018-01-01

    We present time- and spatially-resolved observations of the inner solar corona in the 5303 Å line of Fe XIV, taken during the 21 August 2017 solar eclipse from a field observing site in Crossville, TN. These observations are used to characterize the intensity variations in this coronal emission line, and to compare with oscillation predictions from models for heating the corona by magnetic wave dissipation.The observations were taken with two Explore Scientific ED 102CF 102 mm aperture triplet apochromatic refractors. One system used a DayStar custom-built 5 Å FWHM filter centered on the Fe XIV coronal spectral line and an Atik Titan camera for image collection. The setup produced images with a pixel size of 2.15 arcseconds (~1.5 Mm at the distance to the Sun), and a field of view of 1420 x 1060 arcseconds, covering approximately 20% of the entire solar limb centered near the emerging sunspot complex AR 2672. We obtained images with an exposure time of 0.22 seconds and a frame rate of 2.36 Hz, for a total of 361 images during totality.An identical, co-aligned telescope/camera system observed the same portion of the solar corona, but with a 100 Å FWHM Baader Planetarium solar continuum filter centered on a wavelength of 5400 Å. Images with an exposure time of 0.01 seconds were obtained with a frame rate of 4.05 Hz. These simultaneous observations are used as a control to monitor brightness variations not related to coronal line oscillations.

  14. The comparison of SRs' variation affected by solar events observed in America and in China

    Science.gov (United States)

    Yu, H.; Williams, E.

    2017-12-01

    Schumann Resonances(SRs) are the electromagnetic resonance wave propagating in the earth-ionosphere cavity. Its characteristic of propagation are modified by the variation of ionosphere. So SRs can be the tools of monitoring the ionosphere which is often perturbed by solar events, x-ray emission and some other space-weather events (Roldugin et.al., 2004, De et al., 2010; Satori et.al., 2015). In present work, the amplitude and intrinsic frequencies of SRs observed at RID station in America and YSH station in China are compared. The variation of SRs during the solar flare on Feb. 15, 2011 are analyzed. Two-Dimensional Telegraph Equation(TDTE) method is used to simulate the perturbation of ionosphere by solar proton events. From the simulation and observation, the asymmetric construction of ionoshphere which is perturbed by the solar event will affect the amplitudes and frequencies of SRs. Due to the interfere influence of forward and backward propagation of electromagnetic field, the SR amplitude on different station will present different variation. The distance among the lightning source, observer and perturbed area will produce the different variation of amplitude and frequency for different station' SR.

  15. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  16. Corrosion protection of PVD and paint coatings for selective solar absorber surfaces

    OpenAIRE

    Nunes, A.; Carvalho, M. J.; Diamantino, Teresa C.; Fernandes, J. C. S.

    2015-01-01

    The selective solar absorber surface is a fundamental part of a solar thermal collector, as it is responsible for the solar radiation absorption and for reduction of radiation heat losses. The surface’s optical properties, the solar absorption (á) and the emittance (å), have great impact on the solar thermal collector efficiency. In this work, two coatings types were studied: coatings obtained by physical vapor deposition (PVDs) and coatings obtained by projection with different paints (PCs) ...

  17. Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere

    Directory of Open Access Journals (Sweden)

    Igino Coco

    2011-01-01

    Full Text Available We show the results of a statistical study on the effects in the high-latitude ionosphere of abrupt variations of solar wind dynamic pressure, using Super Dual Auroral Radar Network (SuperDARN data in both hemispheres. We find that, during periods of quiet ionospheric conditions, the amount of radar backscatter increases when a variation in the dynamic pressure occurs, both positive (increase of the pressure and negative (decrease of the pressure. We also investigate the behaviour of the Cross-Polar Cap Potential (CPCP during pressure variations and show preliminary results.

  18. Genetic variation and significance of hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    ZHANG Zhenhua

    2013-11-01

    Full Text Available Hepatitis B virus (HBV is prone to genetic variation because there is reverse transcription in the process of HBV replication. The gene mutation of hepatitis B surface antigen may affect clinical diagnosis of HBV infection, viral replication, and vaccine effect. The current research and existing problems are discussed from the following aspects: the mechanism and biological and clinical significance of S gene mutation. Most previous studies focused on S gene alone, so S gene should be considered as part of HBV DNA in the future research on S gene mutation.

  19. Seasonal variation of solar radiation and underwater irradiance in the Seto inland sea

    International Nuclear Information System (INIS)

    Endo, T.; Matsuda, O.; Imabayashi, H.

    1983-01-01

    The recent rapid eutrophication of the coastal seas of Japan has had a remarkable effect on the turbidity and transparency of the sea water, hence on the attenuation of underwater irradiance, which in turn influences the phytoplankton communities and primary productivity of the area. The present study deals with the continuous three years observation of the total short-wave radiation, direct short-wave radiation, diffused short-wave radiation and photosynthetically active radiation of tlle Seto Inland Sea. Along with these observations, reflected short-wave radiation from the sea and transmitted short-wave radiation into the sea were determined. The availability of solar radiation for primary production, vertical distribution of spectral irradiance and attenuation coefficient were also discussed in relation to the optical water type of the region. 1. A typical seasonal variation in the monthly mean daily solar radiation (total short-wave radiation) was observed, with a maximal value of 17.0 MJ 2 in July and minimal values of 7.4 to 7.5 MJ 2 through November to January. 2. Seasonal variation of direct short-wave radiation was nearly identical to that of total short-wave radiation, with 9.3 MJ 2 at maximum and 4.1MJ 2 at minimum. Diffused short-wave radiation increased in June and decreased in January. The ratio of diffused short-wave radiation to total short-wave radiation ranged from 394000 62% with an average of 49%.0 3. Seasonal variation of photosynthetically active radiation was very similar to that of direct short-wave radiation, with values of 7.3 MJ 2 in July and of 3.3 MJ 2 in December 4. The albedo at the sea surface changed according to the incidence angle and surface conditions. Average daily values ranged from 2.9% on a fine summer day to 10% on an overcasted day in winter. 5. Underwater irradiance at a depth of 50cm varied widely according to such parameters as turbidity and the surface condition of the water. Observation revealed a remarkable decrease

  20. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  1. Color Variation on the Surfaces of Jupiter’s Greek and Trojan Asteroids

    Science.gov (United States)

    Chatelain, Joseph; Trilling, David E.; Emery, Joshua P.

    2017-10-01

    The L4 and L5 Lagrange points of Jupiter are populated with thousands of known, and possibly hundreds of thousands of unknown, Greek and Trojan Asteroids. Understanding the environmental and weathering conditions experienced by these objects over their lifetimes could constrain formation models for the Solar System. In an effort to shine some light on this issue, we have collected partial, simultaneous, lightcurves in both Johnson-Cousins V and I filters for a dozen large Jupiter Trojans. We found significant signs of color variation over the surfaces of four of these objects, and more subtle signs on an additional four. The most convincing examples of variation occur on (4709) Ennomos and (4833) Meges. Such a variation in color with rotation likely implies a large surface feature such as a recent crater. That such a high fraction of observed Trojans display these signatures could imply a more active collisional history for Jupiter Trojans than previously thought. It is therefore likely that one or more of the targets for the Lucy mission will have experienced a large, relatively recent, cratering event. This may help us obtain a much more in-depth understanding of the evolutionary processes ongoing for the Jupiter Trojan populations.

  2. Unexpected and Unexplained Surface Temperature Variations on Mimas

    Science.gov (United States)

    Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team

    2010-12-01

    Until recently it was thought one of the most interesting things about Mimas, Saturn’s innermost classical icy moon, was its resemblance to Star Wars’ Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassini’s Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassini’s closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145° W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundary’s apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturn’s radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas’ leading hemisphere at low latitudes where they

  3. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic

    Science.gov (United States)

    Xiao, Ziniu; Li, Delin

    2016-06-01

    The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.

  4. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  5. ON THE ORIGIN OF THE SLOW SPEED SOLAR WIND: HELIUM ABUNDANCE VARIATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cara E.; Laming, J. Martin [Space Science Division, Naval Research Laboratory Code 7674L, Washington, DC 20375 (United States)

    2012-07-20

    The first ionization potential (FIP) effect is the by now well-known enhancement in abundance over photospheric values of Fe and other elements with FIP below about 10 eV observed in the solar corona and slow speed solar wind. In our model, this fractionation is achieved by means of the ponderomotive force, arising as Alfven waves propagate through or reflect from steep density gradients in the solar chromosphere. This is also the region where low FIP elements are ionized, and high FIP elements are largely neutral leading to the fractionation as ions interact with the waves but neutrals do not. Helium, the element with the highest FIP and consequently the last to remain neutral as one moves upward, can be depleted in such models. Here, we investigate this depletion for varying loop lengths and magnetic field strengths. Variations in this depletion arise as the concentration of the ponderomotive force at the top of the chromosphere varies in response to Alfven wave frequency with respect to the resonant frequency of the overlying coronal loop, the magnetic field, and possibly also the loop length. We find that stronger depletions of He are obtained for weaker magnetic field, at frequencies close to or just above the loop resonance. These results may have relevance to observed variations of the slow wind solar He abundance with wind speed, with slower slow speed solar wind having a stronger depletion of He.

  6. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    International Nuclear Information System (INIS)

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  7. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  8. Surface- and interface-engineered heterostructures for solar hydrogen generation

    Science.gov (United States)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  9. Investigation of variations and trends in solar radiation in Klang Valley Region, Malaysia

    International Nuclear Information System (INIS)

    Mohamed Elnour Yassen, Jamaluddin Mohd Jahi

    2006-01-01

    The objective of this study is to investigate variations and trends in the global solar radiation in Klang Valley region. The least square method was used for the trend analysis. Since the available time series covers 27 years, linear regression was preferred for the trend analysis. The linear trend is used mainly to test the change in solar radiation and to set limits on the rate of change. Trend line and values and significance levels of the slopes have been found. The seasonal and the annual average values were computed from the monthly average radiation data. The seasonal and annual average solar radiation values were designated as dependent variables, and thus, were fitted linearly for season and annual means for each station. The results showed that the mean of maximum incoming global radiation in Sepember with a value of 21.1 MJ m-2 at Petaling Jaya, while the mean minimum in November and December with values of 10.7 and 10.9 MJ m-2 at Petaling Jaya. The low amounts of solar radiation received in November and December are due to greater cloudiness during the period coinciding with the northeast monsoon season. On rainy days, very little global solar radiation received in November and December are due to greater cloudiness during the period coinciding with the northeast monsoon season. On rainy days, very little global solar radiation is received. The distribution of the seasonal mean values of solar radiation exhibits a high symmetry. Inter-monsoon seasons (April-May) and (October-November) show a similar behavior, just like the northeast monsoon season. The overall average rate of change in global solar radiation during 1975-2002 and 1977-2000 is represented by the slope of the linear regression was small (-0.126 and -0.314 MJ m-2 per year for Subang Airport and Petaling Jaya respectively)

  10. Solar surface magnetism and irradiance on time scales

    NARCIS (Netherlands)

    Domingo, V.; Ermolli, I.; Fox, P.; Fröhlich, C.; Haberreiter, M.; Krivova, N.; Kopp, G.; Schmutz, W.; Solanki, S.K.; Spruit, H.C.; Unruh, Y.C.; Vögler, A.

    2009-01-01

    The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance

  11. a Study of the Impact of Doubling Carbon Dioxide and Solar Radiation Variations on the Climate System.

    Science.gov (United States)

    Chu, Shaoping

    The exchange of moisture and heat between the atmosphere and the Earth's surface fundamentally affect the dynamics and thermodynamics of the climate system. In order to trace moisture flow through the climate system and examine its impact on climate, a hydrologic cycle and a land energy balance have been developed and incorporated into a coupled climate-thermodynamic sea ice (CCSI) model. The expanded CCSI model has been tested by comparing computed climate parameters with available observations and GCM modeling results. In general, the expanded model does a good job in simulating the large scale features of the atmospheric circulation and precipitation in both space and time. The expanded model has been used to examine the possibility that increased levels of CO_2 in the atmosphere may induce the growth of Northern Hemisphere ice sheets. Results of the study indicate that if summer ice albedo is high enough, and there is some mechanism for initially maintaining ice through the summer season, then it may be possible to have ice sheet growth under the conditions CO_2 induced warming, mainly the result of decreased summer ice melt in response to the higher land ice albedo, and not an increase in precipitation. The expanded model has also been used to examine the impact of Milankovitch solar radiation variations on the climate system, to study the mechanisms that produce glacial-interglacial cycles, especially with respect to the initiation of ice sheets. The results show the Milankovitch solar radiation variations affect the climate system most in the polar regions with the mean annual surface air temperature varying directly in response to changes in the annually averaged incoming solar radiation. However, the seasonal variations in the surface air temperatures are much more complex with large magnitude variations for brief times during the year. The study indicates that ice sheets may start to grow under the conditions of low insolation that occurred at 25, 70, and

  12. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    Science.gov (United States)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  13. Long-period variations of wind parameters in the mesopause region and the solar cycle dependence

    International Nuclear Information System (INIS)

    Greisiger, K.M.; Schminder, R.; Kuerschner, D.

    1987-01-01

    The solar cycle dependence of wind parameters below 100 km on the basis of long term continuous ionospheric drift measurements in the low frequency range is discussed. For the meridional prevailing wind no significant variation was found. The same comparison as for winter was done for summer where the previous investigations gave no correlation. Now the radar meteor wind measurement values, too, showed a significant negative correlation of the zonal prevailing wind with solar activity for the years 1976 to 1983. The ionospheric drift measurement results of Collm have the same tendency but a larger dispersion due to the lower accuracy of the harmonic analysis because of the shorter daily measuring interval in summer. Continuous wind observations in the upper mesopause region over more than 20 years revealed distinct long term variations, the origin of which cannot be explained with the present knowledge

  14. Time-causal decomposition of geomagnetic time series into secular variation, solar quiet, and disturbance signals

    Science.gov (United States)

    Rigler, E. Joshua

    2017-04-26

    A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.

  15. Possible variations in atmospheric ozone related to the eleven year solar cycle

    International Nuclear Information System (INIS)

    Penner, J.E.; Chang, J.S.

    1978-07-01

    Changes in ozone, temperature, and other minor constituents resulting from eleven year variations in the solar flux between 180 and 340 nm are presented. Results were computed using a one-dimensional time dependent model that allows for all major feedbacks and time delays which may result from changing photolysis rates in the O/sub x/--NO/sub x/--HO/sub x/--ClO/sub x/ system. Since the 1950's the chlorine content of the stratosphere has been increasing. The effect of this increase on ozone variability during the last two solar cycles is analyzed. Expected variations in O 3 and temperature resulting from changes in the uv flux are compared to available measurements

  16. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  17. Latitudinal variation of the topside electron temperature at different levels of solar activity

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila

    2009-01-01

    Roč. 44, č. 6 (2009), s. 693-700 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300420603 Grant - others: NASA (US) NNH06CD17C Institutional research plan: CEZ:AV0Z30420517 Keywords : Electron temperature * Solar activity variation * Latitudinal dependence Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.079, year: 2009

  18. The magnetic field in the pile-up region at Mars, and its variation with the solar wind

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Olsen, Nils; Purucker, M.

    2003-01-01

    [1] The magnetic measurements from the Mars Global Surveyor satellite are used to study the magnetic field on the Martian dayside, and its variation with the solar wind. Because of the lack of solar wind measurements near Mars, solar wind measurements near Earth during a period centered on a Mars......-Earth conjunction are used. Concurrent variations at Mars and Earth related to the interplanetary sector-structure and dynamic pressure variations are demonstrated. The study is confined to the northern hemisphere of Mars in regions where the crustal anomalies are weak. Here we find a close association between...

  19. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  20. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  1. Temporal Variation of the Rotation of the Solar Mean Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-04-01

    Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.

  2. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.

    2017-11-01

    This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures

  3. A variational approach to closed bosonic strings on bordered Riemann surfaces

    International Nuclear Information System (INIS)

    Ohrndorf, T.

    1987-01-01

    Polyakov's path integral for bosonic closed strings defined on a bordered Riemann surface is investigated by variational methods. It is demonstrated that boundary variations are generated by the Virasoro operators. The investigation is performed for both, simply connected Riemann surfaces as well as ringlike domains. It is shown that the form of the variational operator is the same on both kinds of surfaces. The Virasoro algebra arises as a consistency condition for the variation. (orig.)

  4. Variation of Magnetic Field (By , Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    OpenAIRE

    Ga-Hee Moon

    2011-01-01

    It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...

  5. Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity

    NARCIS (Netherlands)

    Mauquoy, D; van Geel, B; Blaauw, Maarten; van der Plicht, J

    2002-01-01

    Fluctuations in Holocene atmospheric radiocarbon concentrations have been shown to be due to variations in solar activity. Analyses of both Be-10 and C-14 nuclides confirm that production-rate changes during the Holocene were largely modulated by solar activity. Analyses of peat samples from two

  6. Seasonal, Diurnal, and Solar-Cycle Variations of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2012-01-01

    Full Text Available We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar during three solar cycles (from cycle 20 to cycle 22, that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz. The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.

  7. Stable perovskite solar cells by surface modification with surfactant molecules

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia, E-mail: mholandabsb@outlook.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH{sub 3}NH{sub 3}PbI{sub 3} was prepared by single step method using a solution containing PbI{sub 2} and CH{sub 3}NH{sub 3}I on DMF:DMSO (2:1) on a concentration of 0.88 mol L{sup -1}. The film was deposited over a planar film of TiO{sub 2}, previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL{sup -1} solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple

  8. Stable perovskite solar cells by surface modification with surfactant molecules

    International Nuclear Information System (INIS)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia

    2016-01-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH 3 NH 3 PbI 3 was prepared by single step method using a solution containing PbI 2 and CH 3 NH 3 I on DMF:DMSO (2:1) on a concentration of 0.88 mol L -1 . The film was deposited over a planar film of TiO 2 , previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL -1 solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple preparation method to improve the stability of

  9. Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.

    2014-01-01

    As an alternative to the wet chemical etching method, dry chemical etching processes for Phosphorus silicate glass [PSG} layer removal using Trifluormethane/Sulfur Hexafluoride (CHF 3 / SF 6 ) gas mixture in commercial silicon-nitride plasma enhanced chemical vapour deposition (SiN-PECVD) system is applied. The dependence of the solar cell performance on the etching temperature is investigated and optimized. It is found that the SiN-PECVD system temperature variation has a significant impact on the whole solar cell characteristics. A dry plasma cleaning treatment of the Si wafer surface after the PSG removal step is also investigated and developed. The cleaning step is used to remove the polymer film which is formed during the PSG etching using both oxygen and hydrogen gases. By applying an additional cleaning step, the polymer film deposited on the silicon wafer surface after PSG etching is eliminated. The effect of different plasma cleaning conditions on solar cell performance is investigated. After optimization of the plasma operating conditions, the performance of the solar cell is improved and the overall gain in efficiency of 0.6% absolute is yielded compared to a cell without any further cleaning step. On the other hand, the best solar cell characteristics can reach values close to that achieved by the conventional wet chemical etching processes demonstrating the effectiveness of the additional O 2 /H 2 post cleaning treatment.(author)

  10. Variation of reflected radiation from all reflectors of a flat plate solar collector during a year

    International Nuclear Information System (INIS)

    Pavlović, Zoran T.; Kostić, Ljiljana T.

    2015-01-01

    In this paper the impact of flat plate reflectors (bottom, top, left and right reflectors) made of Al, on total solar radiation on a solar collector during a day time over a whole year is analyzed. An analytical model for determining optimum tilt angles of a collector and reflectors for any point on the Earth is proposed. Variations of reflectors' optimal inclination angles with changes of the collector's optimal tilt angle during the year are also calculated. Optimal inclination angles of the reflectors for the South directed solar collector are calculated and compared to experimental data. It is shown that optimal inclination of the bottom reflector is the lowest in December and the highest in June, while for the top reflector the lowest value is in June and the highest value is in December. On the other hand, optimal inclination of the left and right side reflectors for optimum tilt angle of the collector does not change during the year and it is 66°. It is found that intensity of the solar radiation on the collector increases for about 80% in the summer period (June–September) by using optimally inclined reflectors, in comparison to the collector without reflectors. - Highlights: • The impacts of flat plate reflectors on solar radiation on the collector are given. • The results of the optimal inclinations of reflectors during the year are shown. • The solar radiation on the collector with reflectors is 80% higher in the summer. • This model may be applied on thermal, PV, PV/T and energy harvesting systems

  11. Annual reconstruction of the solar cycle from atmospheric 14C variations

    International Nuclear Information System (INIS)

    Murphy, J.O.

    1990-01-01

    Initially, the rise and fall components of the 11-year solar sunspot cycle are approximated by separate least-squares polynomials for four cycle classifications, which are determined by the magnitude of the average of the annual sunspot numbers per cycle. Following a method is formulated to generate detailed reconstruction of the annual variation of a solar cycle based on this cycle average, and the results obtained for cycles -4 through to 21 are compared with the annual Zurich values. This procedure is then employed to establish annual sunspot numbers using published average cycle values obtained from atmospheric carbon 14 variations, which have been derived from the chemical analysis of tree ring sections. The reconstructed sequences are correlated with the observed cycle values and with tree ring width index chronologies which exhibit a significant 11-year periodicity. It is anticipated that the long carbon 14 records and parallel dendrochronological data could be employed to obtain a more detailed portrayal of previous periods of strong solar activity than that given by current estimates based on historical records. 17 refs., 2 tabs., 9 figs

  12. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  13. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    Science.gov (United States)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  14. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  15. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  16. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    International Nuclear Information System (INIS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-01-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K p >3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  17. Interannual Variation of the Surface Temperature of Tropical Forests from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Huilin Gao

    2016-01-01

    Full Text Available Land surface temperatures (LSTs within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I and the Special Sensor Microwave Imager Sounder (SSMIS, providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability of cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP reanalysis data.

  18. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    International Nuclear Information System (INIS)

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  19. Solar and Geomagnetic Activity Variations Correlated to Italian M6+ Earthquakes Occurred in 2016

    Science.gov (United States)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2017-04-01

    Between August 2016 and October 2016 in Italy were recorded three strong earthquakes: M6.2 on August 2016 at 01:36:32 UTC; M6.1 on October 26, 2016 at 19:18:08 UTC and M6,6 on October 30, 2016 at 06:40:18 UTC. The authors of this study wanted to verify the existence of a correlation between these earthquakes and solar/geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the three earthquakes. The data relating to the three earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark; Dikson Geomagnetic Observatory (DIK), Russia and by Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already ascertained by authors from 2012, have confirmed that the three strong Italian earthquakes were preceded by a clear increase of the solar wind proton density which

  20. Modeling solar radiation at the Earth's surface recent advances

    CERN Document Server

    Badescu, Viorel

    2008-01-01

    Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of f

  1. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  2. Titan's Surface Composition from Cassini VIMS Solar Occultation Observations

    Science.gov (United States)

    McCord, Thomas; Hayne, Paul; Sotin, Christophe

    2013-04-01

    Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass water ice for the majority of the low-to-mid latitude area covered by VIMS measurements. Four compositional units are defined and mapped on Titan's surface based on the positions of data clusters in 5-mm vs. 2.8/2.7-mm scatter plots; a simple ternary mixture of H2O, hydrocarbons and CO2 might explain the reflectance properties of these surface units. The vast equatorial "dune seas" are compositionally very homogeneous, perhaps suggesting transport and mixing of particles over very large distances and/or and very consistent formation process and source material. The composi-tional branch characterizing Tui Regio and Hotei Regio is

  3. Understanding the Effect of Atmospheric Density on the Cosmic Ray Flux Variations at the Earth Surface

    OpenAIRE

    Dayananda, Mathes; Zhang, Xiaohang; Butler, Carola; He, Xiaochun

    2013-01-01

    We report in this letter for the first time the numerical simulations of muon and neutron flux variations at the surface of the earth with varying air densities in the troposphere and stratosphere. The simulated neutron and muon flux variations are in very good agreement with the measured neutron flux variation in Oulu and the muon flux variation in Atlanta. We conclude from this study that the stratosphere air density variation dominates the effects on the muon flux changes while the density...

  4. Estimation of monthly solar exposure on horizontal surface by Angstrom-type regression equation

    International Nuclear Information System (INIS)

    Ravanshid, S.H.

    1981-01-01

    To obtain solar flux intensity, solar radiation measuring instruments are the best. In the absence of instrumental data there are other meteorological measurements which are related to solar energy and also it is possible to use empirical relationships to estimate solar flux intensit. One of these empirical relationships to estimate monthly averages of total solar radiation on a horizontal surface is the modified angstrom-type regression equation which has been employed in this report in order to estimate the solar flux intensity on a horizontal surface for Tehran. By comparing the results of this equation with four years measured valued by Tehran's meteorological weather station the values of meteorological constants (a,b) in the equation were obtained for Tehran. (author)

  5. Unraveling surface and bulk trap states in lead halide perovskite solar cells using impedance spectroscopy

    Science.gov (United States)

    Han, Changfeng; Wang, Kai; Zhu, Xixiang; Yu, Haomiao; Sun, Xiaojuan; Yang, Qin; Hu, Bin

    2018-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been widely recognized as an excellent candidate for next-generation photovoltaic materials because of their highly efficient power conversion. Acquiring a complete understanding of trap states and dielectric properties in OIHP-based solar cells at the steady state is highly desirable in order to further explore and improve their optoelectronic functionalities and properties. We report CH3NH3PbI3-x Cl x -based planar solar cells with a power conversion efficiency (PCE) of 15.8%. The illumination intensity dependence of the current density-voltage (J-V) revealed the presence of trap-assisted recombination at low fluences. Non-destructive ac impedance spectroscopy (ac-IS) was applied to characterize the device at the steady state. The capacitance-voltage (C-V) spectra exhibited some distinct variations at a wide range of ac modulation frequencies with and without photo-excitations. Since the frequency-dependent chemical capacitance ({{C}μ }) is concerned with the surface and bulk related density of states (DOS) in CH3NH3PbI3-x Cl x , we verified this by fitting the corresponding DOS by a Gaussian distribution function. We ascertained that the electronic sub-gap trap states present in the solution processed CH3NH3PbI3-x Cl x and their distribution differs from the surface to the bulk. In fact, we demonstrated that both surfaces that were adjacent to the electron and hole transport layers featured analogous DOS. Despite this, photo- and bias-induced giant dielectric responses (i.e. both real and imaginary parts) were detected. A remarkable reduction of {{C}μ } at higher frequencies (i.e. more than 100 kHz) was ascribed to the effect of dielectric loss in CH3NH3PbI3-x Cl x .

  6. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles....... The two glasses are identical, except for the fact that one of them is equipped with antireflection surfaces by the company SunArc A/ S. The transmittance was increased by 5–9%-points due to the antireflection surfaces. The increase depends on the incidence angle. The efficiency at incidence angles of 08...... and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces...

  7. Commentary Relative to the Emission Spectrum of the Solar Atmosphere: Further Evidence for a Distinct Solar Surface

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere and corona of the Sun represent tenuous regions which are characterized by numerous optically thin emission lines in the ultraviolet and X-ray bands. When observed from the center of the solar disk outward, these emission lines experience modest brightening as the limb is approached. The intensity of many ultraviolet and X-ray emission lines nearly doubles when observation is extended just beyond the edge of the disk. These findings indicate that the solar body is opaque in this frequency range and that an approximately two fold greater region of the solar atmosphere is being sampled outside the limb. These observations provide strong support for the presence of a distinct solar surface. Therefore, the behavior of the emission lines in this frequency range constitutes the twenty fifth line of evidence that the Sun is comprised of condensed matter

  8. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  9. Secular variations in composition of the solar wind - Evidence and causes

    International Nuclear Information System (INIS)

    Kerridge, J.F.

    1980-01-01

    Variations in the composition of the regolith due to irradiation by the solar wind are examined by categorizing the exposure history recorded in each sample. The history can be defined by two parameters: the duration of solar wind exposure (maturity) and a measure of how long the exposure took place (antiquity). Three partially successful methods for determining antiquity are described: the regolith contains small amounts of unsupported, trapped radiogenic noble gases, the most common being Ar-40. Assuming relatively prompt outgassing of the lunar interior, the amount of Ar-40 implanted per unit time should be proportional to the lunar content of K-40, and thus should have decayed exponentially over the lifetime of the moon. Normalization to constant exposure duration is achieved by taking the ratio Ar-40/Ar-36 in trapped gas, Ar-36 being an efficiently trapped solar wind species. The second method involves the interaction between galactic cosmic rays and lunar material producing certain spallogenic nuclides which may be analyzed in terms of a cosmic ray exposure age. The third method deals with the fact that there is a general tendency for depth within a core to be related to time deposition; two variants of this method are presented

  10. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    International Nuclear Information System (INIS)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha; Fournier, Alexandre; Talagrand, Olivier

    2015-01-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales

  11. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, F-91191 Gif-Sur-Yvette (France); Fournier, Alexandre [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris (France); Talagrand, Olivier [Laboratoire de météorologie dynamique, UMR 8539, Ecole Normale Supérieure, Paris Cedex 05 (France)

    2015-12-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales.

  12. Seasonal variation and solar activity dependence of the quiet-time ionospheric trough

    Science.gov (United States)

    Ishida, T.; Ogawa, Y.; Kadokura, A.; Hiraki, Y.; Häggström, I.

    2014-08-01

    We have conducted a statistical analysis of the ionospheric F region trough, focusing on its seasonal variation and solar activity dependence under geomagnetically quiet and moderate conditions, using plasma parameter data obtained via Common Program 3 observations performed by the European Incoherent Scatter (EISCAT) radar between 1982 and 2011. We have confirmed that there is a major difference in frictional heating between the high- and low-latitude sides of the EISCAT field of view (FOV) at ~73°0'N-60°5'N (geomagnetic latitude) at an altitude of 325 km, which is associated with trough formation. Our statistical results show that the high-latitude and midlatitude troughs occur on the high- and low-latitude sides of the FOV, respectively. Seasonal variations indicate that dissociative recombination accompanied by frictional heating is a main cause of trough formation in sunlit regions. During summer, therefore, the occurrence rate is maintained at 80-90% in the postmidnight high-latitude region owing to frictional heating by eastward return flow. Solar activity dependence on trough formation indicates that field-aligned currents modulate the occurrence rate of the trough during the winter and equinox seasons. In addition, the trough becomes deeper via dissociative recombination caused by an increased ion temperature with F10.7, at least in the equinox and summer seasons but not in winter.

  13. Solar flux incident on an orbiting surface after reflection from a planet

    Science.gov (United States)

    Modest, M. F.

    1980-01-01

    Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.

  14. Surface Traps in Colloidal Quantum Dot Solar Cells, their Mitigation and Impact on Manufacturability

    KAUST Repository

    Kirmani, Ahmad R.

    2017-01-01

    charge transport and threaten their otherwise wonderful optoelectronic properties. Surface traps have also, indirectly, impeded scalable and industry-compatible fabrication of these solar cells, as all of the reports, to date, have relied on spin

  15. Modulated surface textures for enhanced scattering in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.; Battaglia, C.; Ballif, C.; Zeman, M.

    2012-01-01

    Nano-scale randomly textured front transparent oxides are superposed on micro-scale etched glass substrates to form modulated surface textures. The resulting enhanced light scattering is implemented in single and double junction thin-film silicon solar cells.

  16. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  17. Concentration of sunlight to solar-surface levels using non-imaging optics

    Science.gov (United States)

    Gleckman, Philip; O'Gallagher, Joseph; Winston, Roland

    1989-05-01

    An account is given of the design and operational principles of a solar concentrator that employs nonimaging optics to achieve a solar flux equal to 56,000 times that of ambient sunlight, yielding temperatures comparable to, and with further development of the device, exceeding those of the solar surface. In this scheme, a parabolic mirror primary concentrator is followed by a secondary concentrator, designed according to the edge-ray method, which is filled with a transparent oil. The device may be used in materials-processing, waste-disposal, and solar-pumped laser applications.

  18. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation at Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    A. V. Lindfors

    2013-04-01

    Full Text Available Pyranometer measurements of the solar surface radiation (SSR are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  19. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    Science.gov (United States)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  20. MEASUREMENT OF SURFACE SOLAR UV-B RADIATION AT TROPICAL COASTAL STATION BAKKHALI IN WEST BENGAL, INDIA

    OpenAIRE

    R. BHATTACHARYA; A. BHOUMICK

    2012-01-01

    Surface solar ultraviolet irradiance has been measured at Bakkhali (21.8ºN, 87.8ºE), a tropical rural station on the coast of Bay of Bengal, India in West Bengal. The measurements show a remarkable variation in UV-B load exists with a peak value at noon. The blockage of direct UV radiation in mangrove forest of costal site appears low when compared with UV load beneath the multiple trees of Mangifera indica in an inland site of Kalyani (22058' N, 88028' E), West Bengal. Mangrove forests have ...

  1. Modeling and Zoning Solar Energy Received at the Earth's Surface in Arid and Semiarid Regions of Central Iran

    Directory of Open Access Journals (Sweden)

    azam gholamnia

    2017-02-01

    Full Text Available Introduction: Solar radiation (Rs energy received at the Earth's surface is measured usingclimatological variables in horizontal surface and is widely used in various fields. Domination of hot and dry climates especially in the central regions of Iran results from decreasing cloudiness and precipitation and increasing sunshine hours, which shows the high potential of solar energy in Iran. There is a reasonable climatic field and solar radiation in most of regions and seasons which have provided an essential and suitable field to use and extend new and pure energy. Materials and Methods: One of the common methods to estimate the solar energy received by the earthis usingtemperature variables in any place . An empirical model is proposed to estimate the solar energy as a function of other climatic variables (maximum temperature recorded in 50 climatological, conventional stations; this model is helpful inextending the climatological solar-energy estimation in the study area. The mean values of both measured and estimated solar energy wereobjectively mapped to fill the observation gaps and reduce the noise associated with inhomogeneous statistics and estimation errors. This analysis and the solar irradiation estimation method wereapplied to 50 different climatologicalstations in Iran for monthly data during1980–2005. The main aim of this study wasto map and estimate the solar energy received in four provinces of Yazd, Esfahan, Kerman and Khorasan-e-Jonoubi.The data used in this analysis and its processing, as well as the formulation of an empirical model to estimate the climatological incident of solar energy as a function of other climatic variables, which is complemented with an objective mapping to obtain continuous solar-energy maps. Therefore, firstly the Rswasestimated using a valid model for 50 meteorological stations in which the amounts of solar radiation weren't recorded for arid and semi-arid areas in Iran. Then, the appropriate method

  2. Study of double porous silicon surfaces for enhancement of silicon solar cell performance

    Science.gov (United States)

    Razali, N. S. M.; Rahim, A. F. A.; Radzali, R.; Mahmood, A.

    2017-09-01

    In this work, design and simulation of double porous silicon surfaces for enhancement of silicon solar cell is carried out. Both single and double porous structures are constructed by using TCAD ATHENA and TCAD DEVEDIT tools of the SILVACO software respectively. After the structures were created, I-V characteristics and spectral response of the solar cell were extracted using ATLAS device simulator. Finally, the performance of the simulated double porous solar cell is compared with the performance of both single porous and bulk-Si solar cell. The results showed that double porous silicon solar cell exhibited 1.8% efficiency compared to 1.3% and 1.2% for single porous silicon and bulk-Si solar cell.

  3. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  4. Temporal and radial variation of the solar wind temperature-speed relationship

    Science.gov (United States)

    Elliott, H. A.; Henney, C. J.; McComas, D. J.; Smith, C. W.; Vasquez, B. J.

    2012-09-01

    The solar wind temperature (T) and speed (V) are generally well correlated at ˜1 AU, except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We perform a comprehensive analysis of both the temporal and radial variation in the temperature-speed (T-V) relationship of the non-transient wind, and our analysis provides insight into both the causes of the T-V relationship and the sources of the temperature variability. Often at 1 AU the speed-temperature relationship is well represented by a single linear fit over a speed range spanning both the slow and fast wind. However, at times the fast wind from coronal holes can have a different T-V relationship than the slow wind. A good example of this was in 2003 when there was a very large and long-lived outward magnetic polarity coronal hole at low latitudes that emitted wind with speeds as fast as a polar coronal hole. The long-lived nature of the hole made it possible to clearly distinguish that some holes can have a different T-V relationship. In an earlier ACE study, we found that both the compressions and rarefactions T-V curves are linear, but the compression curve is shifted to higher temperatures. By separating compressions and rarefactions prior to determining the radial profiles of the solar wind parameters, the importance of dynamic interactions on the radial evolution of the solar wind parameters is revealed. Although the T-V relationship at 1 AU is often well described by a single linear curve, we find that the T-V relationship continually evolves with distance. Beyond ˜2.5 AU the differences between the compressions and rarefactions are quite significant and affect the shape of the overall T-V distribution to the point that a simple linear fit no longer describes the distribution well. Since additional heating of the ambient solar wind outside of interaction regions can be associated with Alfvénic fluctuations and the turbulent energy cascade, we also estimate the heating rate

  5. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    Science.gov (United States)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  6. Fabrication of solar panels on the surface of a solar car

    OpenAIRE

    Bañales Izco, Fernando

    2010-01-01

    Glyndwr University will participate in South Africa Solar Challenge, a race that involves cars that run exclusively with solar energy. This technology is a mix of electrical cars that are being developed today, with solar cells, getting the car to supply for itself, and besides, it is clean energy. The manufacture and adaptation of cells in that car was one of our goals, getting the most output. The design of the car was made in Solid Works and energy was calculated with the help ...

  7. Empirical Mode Decomposition on the sphere: application to the spatial scales of surface temperature variations

    Directory of Open Access Journals (Sweden)

    N. Fauchereau

    2008-06-01

    Full Text Available Empirical Mode Decomposition (EMD is applied here in two dimensions over the sphere to demonstrate its potential as a data-adaptive method of separating the different scales of spatial variability in a geophysical (climatological/meteorological field. After a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its application on the sphere are explained, in particular via the use of a zonal equal area partitioning. EMD is first applied to an artificial dataset, demonstrating its capability in extracting the different (known scales embedded in the field. The decomposition is then applied to a global mean surface temperature dataset, and we show qualitatively that it extracts successively larger scales of temperature variations related, for example, to topographic and large-scale, solar radiation forcing. We propose that EMD can be used as a global data-adaptive filter, which will be useful in analysing geophysical phenomena that arise as the result of forcings at multiple spatial scales.

  8. Surface texture generation during cylindrical milling in the aspect of cutting force variations

    International Nuclear Information System (INIS)

    Wojciechowski, S; Twardowski, P; Pelic, M

    2014-01-01

    The work presented here concentrates on surface texture analysis, after cylindrical milling of hardened steel. Cutting force variations occurring in the machining process have direct influence on the cutter displacements and thus on the generated surface texture. Therefore, in these experiments, the influence of active number of teeth (z c ) on the cutting force variations was investigated. Cutting forces and cutter displacements were measured during machining process (online) using, namely piezoelectric force dynamometer and 3D laser vibrometer. Surface roughness parameters were measured using stylus surface profiler. The surface roughness model including cutting parameters (f z , D) and cutting force variations was also developed. The research revealed that in cylindrical milling process, cutting force variations have immediate influence on surface texture generation

  9. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region

    Science.gov (United States)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; hide

    2016-01-01

    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of region and investigated the short (regions. As the result, we found the regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.

  10. Motions of Supergranular Structures on the Solar Surface

    Czech Academy of Sciences Publication Activity Database

    Švanda, Michal; Klvaňa, Miroslav; Sobotka, Michal

    2005-01-01

    Roč. 29, č. 1 (2005), s. 39-48 ISSN 0351-2657. [Hvar astrophysical colloquium /7./: Solar activity cycle and global phenomena. Hvar, 20.09.2004-24.09.2004] R&D Projects: GA ČR GA205/04/2129; GA ČR GD205/03/H144; GA AV ČR KSK2043105 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar photosphere * velocity fields * tidal waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  11. Signatures of cosmic-ray interactions on the solar surface

    Science.gov (United States)

    Seckel, D.; Stanev, Todor; Gaisser, T. K.

    1991-01-01

    The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.

  12. Climatology of UVA and ozone variations and the global solar UV-index

    International Nuclear Information System (INIS)

    Roy, C.R.; Gies, H.P.; Toomey, S.J.

    1996-01-01

    Human overexposure to solar ultraviolet radiation (UVR) can result in acute and chronic adverse health effects on both the skin and the eye. Skin cancer (both non-melanoma and malignant melanoma) and cataract impose a huge social and cost burden on many societies throughout the world. Such human health problems can be avoided if the individual reduces their UVR exposure. Unfortunately enlightenment may not help persons who have experienced high episodic exposures during childhood as this appears to be an important causal factor in melanoma. In some countries public educational campaigns have been underway for decades in other countries they are just beginning; the global solar uv-index provides a globally consistent means of reporting or predicting UVR as part of public education on UVR exposure. There are now indications that some of these programs have been effective in halting the climb in melanoma incidence. The UVR, and in particular UVB, reaching the earth's surface varies with both latitude and time (both of the day and year). The transmission of the extraterrestrial radiation through the atmosphere is determined by ozone clouds, aerosols and to a lesser extent, trace gases. In recent decades there has been considerable concern that long-term changes in ozone and perhaps clouds and aerosols may result in changes in the UVB at the earth's surface. (author)

  13. Solar influence on meteor rates and atmospheric density variations at meteor heights

    International Nuclear Information System (INIS)

    Ellyett, C.

    1977-01-01

    A full analysis of radar-determined meteor rates from New Zealand, involving 3,085,574 meteors recorded over a total of 3 1/2 years, and 12,391,976 meteors recorded by the National Research Council of Canada in 8 1/2 years confirms an inverse relationship between meteor rates and solar activity as measured by sunspot numbers. The relationship, significant at the 1% level, appears in the Canadian annual average when the abnormal 1963 increase is removed, in monthly and 1/3-monthly results for the total Canadian period, and in monthly intervals for 1 year of the New Zealand data. This proven relationship of meteor rates with the solar cycle calls for a significant density gradient change over the solar cycle in the 70- to-120-km height range. Although some definite negative results have been reported, no unambiguous positive results are yet available supporting such a density gradient change. It is possible that density variations due to annual, semiannual, diurnal, and latitudinal changes obscure any 11-year density gradient change occurring at these heights. It is uncertain whether the 1963 increase represents density gradient changes in the meteor ablation region regularly brought about 1-2 years before each sunspot minimum or is a special event due to volcanic dust. The following additional facts have emerged from the present analysis. (1) Within a 1-year period the seasonal rate change of astronomical origin overrides any density gradient change in controlling the meteor rates in one of the two hemispheres. (2) The earth's daily rotation alters rates in phase with probable diurnal density gradient changes. (3) An effect due to D region absorption has been observed in the Canadian data

  14. Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula.

    Science.gov (United States)

    Simon, Justin I; Hutcheon, Ian D; Simon, Steven B; Matzel, Jennifer E P; Ramon, Erick C; Weber, Peter K; Grossman, Lawrence; DePaolo, Donald J

    2011-03-04

    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  15. Time variations of oxygen emission lines and solar wind dynamic parameters in low latitude region

    Science.gov (United States)

    Jamlongkul, P.; Wannawichian, S.; Mkrtichian, D.; Sawangwit, U.; A-thano, N.

    2017-09-01

    Aurora phenomenon is an effect of collision between precipitating particles with gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The particles’ precipitation occurs normally around polar regions. However, some auroral particles can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence of the aurora as well. This work studies time variations of oxygen emission lines and solar wind parameters, simultaneously. The emission’s spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing program. The correlations between oxygen emission lines and solar wind dynamics will be analyzed. This result could be an evidence of the aurora in low latitude region.

  16. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  17. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  18. Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia

    Science.gov (United States)

    Putzig, N. E.; Mellon, M. T.

    2005-12-01

    Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.

  19. Variation on wettability of anodic zirconium oxide nanotube surface

    International Nuclear Information System (INIS)

    Wang, Lu-Ning; Shen, Chen; Shinbine, Alyssa; Luo, Jing-Li

    2013-01-01

    The present study reports the effect of fabrication conditions and environmental conditions, such as anodization voltage and aging period, on the wetting of zirconium dioxide nanotube (ZrNT) surfaces. Comparing with intact zirconium foil, which was inherently less hydrophilic, possessing an approximate contact angle of 60–70°, the as-formed ZrNT surfaces were much hydrophilic with an approximate contact angle of 18°. However, the hydrophilicity of the surfaces exhibited a decrease when the nanotubular opening diameters decreased while maintaining the nanotubular layer thickness. This phenomenon was attributed to the balance of capillary force and force generated by compressed air in the ZrNTs. The annealing treatment further increased the hydrophilic property of the ZrNTs. In addition, it was found that the wettability of ZrNTs, when aged in air over a period of 105 days, demonstrated a decrease in hydrophilic characteristics and exhibited, to some extent, an increase in hydrophobic characteristics. It was believed that the surface wettability was able to be changed due to the decreasing content of hydroxyl groups in ambient atmosphere. This work can provide guidelines for improving the structural and environmental conditions responsible for changing surface wettability of ZrNT surfaces for biomedical application. - Highlights: ► Wettability of zirconium oxide nanotubes (ZrNTs) was observed and characterized. ► Increasing of nanotubular diameter decreased the hydrophilicity of ZrNTs. ► Annealing processes enhanced the hydrophilicity of ZrNTs. ► Long term aging resulted in the hydrophobicity of ZrNTs

  20. Variation in skin surface lipid composition among the Equidae.

    Science.gov (United States)

    Colton, S W; Downing, D T

    1983-01-01

    Skin surface lipids from Equus caballus, E. przewalskii, E. asinus, E. grevyi, E. hemionus onager and a mule (E. asinus/E. caballus) were analyzed in detail. In all species the surface lipid mixtures consisted of giant-ring lactones, cholesterol, cholesteryl esters and minor amounts of wax diesters. In E. caballus, the lactone hydroxyacids were entirely branched chained, while in E. asinus and E. grevyi they were almost exclusively straight chained. In E. przewalskii, the onager and the mule there were both straight and branched chain hydroxyacid lactones. These results are in harmony with published interpretations of the evolutionary relationships among Equus species.

  1. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    Science.gov (United States)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  2. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    International Nuclear Information System (INIS)

    Chang, Chao-Hsuan; Lin, Hsin-Han; Chen, Chin-Cheng; Hong, Franklin C.-N.

    2014-01-01

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O 2 plasma treatment and further immersed in titanium tetrachloride (TiCl 4 ) solution. The process conditions for producing a very thin TiO 2 blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO 2 nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm 2 using backside illumination mode. Surface treatments of Ti substrate and TiO 2 anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%

  3. Efficiency enhancement of InP nanowire solar cells by surface cleaning

    NARCIS (Netherlands)

    Cui, Y.; Wang, J.; Plissard, S.R.; Cavalli, A.; Vu, T.T.T.; Veldhoven, van P.J.; Gao, L.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p–n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We

  4. Pressure effects on interfacial surface contacts and performance of organic solar cells

    NARCIS (Netherlands)

    Agyei-Tuffour, B.; Doumon, Nutifafa Y.; Rwenyagila, E. R.; Asare, J.; Oyewole, O. K.; Shen, Z.; Petoukhoff, C. E.; Zebaze Kana, M. G.; Ocarroll, D. M.; Soboyejo, W. O.

    2017-01-01

    This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and

  5. Surface transformation hardening on steels treated with solar energy in central tower and heliostats field

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G.P.; Lopez, V.; de Damborenea, J.J.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas CENIM/CSIC, Madrid (Spain)

    1995-04-28

    The possibility of surface hardening on AISI 4140 steel treated with concentrated solar energy in solar installations for electricity production has been studied. The samples were slides from a 35 mm diameter steel bar and their height was 35 mm. The quenching was made in water but also was considered the possibility of self-quenching by cooling in air. The amount of the surface hardness and the different structures obtained in both cases are presented, and some discussion is made with reference to the surface hardness, the hardness profiles and the structures obtained. The heating of steel with concentrated solar energy may produce similar hardening to that obtained with more conventional techniques of surface hardening

  6. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    Science.gov (United States)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  7. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  8. The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; McFadden, J.; Halekas, J. S.; DiBraccio, G. A.; Connerney, J. E. P.; Eparvier, F.; Brain, D.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2017-11-01

    We present multi-instrument observations of the effects of solar wind on ion escape fluxes on Mars based on the Mars Atmosphere and Volatile EvolutioN (MAVEN) data from 1 November 2014 to 15 May 2016. Losses of oxygen ions through different channels (plasma sheet, magnetic lobes, boundary layer, and ion plume) as a function of the solar wind and the interplanetary magnetic field variations were studied. We have utilized the modified Mars Solar Electric (MSE) coordinate system for separation of the different escape routes. Fluxes of the low-energy (≤30 eV) and high-energy (≥30 eV) ions reveal different trends with changes in the solar wind dynamic pressure, the solar wind flux, and the motional electric field. Major oxygen fluxes occur through the tail of the induced magnetosphere. The solar wind motional electric field produces an asymmetry in the ion fluxes and leads to different relations between ion fluxes supplying the tail from the different hemispheres and the solar wind dynamic pressure (or flux) and the motional electric field. The main driver for escape of the high-energy oxygen ions is the solar wind flux (or dynamic pressure). On the other hand, the low-energy ion component shows the opposite trend: ion flux decreases with increasing solar wind flux. As a result, the averaged total oxygen ion fluxes reveal a low variability with the solar wind strength. The large standard deviations from the averages values of the escape fluxes indicate the existence of mechanisms which can enhance or suppress the efficiency of the ion escape. It is shown that the Martian magnetosphere possesses the properties of a combined magnetosphere which contains different classes of field lines. The existence of the closed magnetic field lines in the near-Mars tail might be responsible for suppression of the ion escape fluxes.

  9. Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface

    International Nuclear Information System (INIS)

    Xiong, Jianyin; Xie, Guo; Zheng, Hongfei

    2013-01-01

    Highlights: • A novel multi-effect solar still with enhanced condensation surface is designed. • The overall desalination efficiency and performance ratio can reach 0.91 and 1.86. • A numerical model characterizing the heat and mass transfer process is developed. - Abstract: A novel multi-effect solar desalination system with enhanced condensation surface is designed. Compared to traditional solar still, it has two main merits: (1) the application of corrugated shape stacked trays decreases the condensation resistance, thus improves the desalination performance and (2) the simultaneous heating both from the collector in the bottom and coating in the top efficiently uses the solar energy, which increases the freshwater yield. Field test is then carried out to study the temperature and freshwater yield characteristics. It is observed that the solar still can generate freshwater not only in the daytime but also in the night, with the latter taking up about 40% of the total freshwater yield. When the starting temperature is relatively high, the overall desalination efficiency and performance ratio of the equipment can reach 0.91 and 1.86, respectively. Furthermore, a numerical model characterizing the heat and mass transfer process in the solar still is developed. The good agreement between the model prediction and experimental data demonstrates the effectiveness of the proposed model. For the present solar still, a phenomenon of reverse temperature difference in the second stacked tray is emerged due to the special simultaneous heating pattern, which is also validated by the numerical model

  10. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  11. Error sources in the real-time NLDAS incident surface solar radiation and an evaluation against field observations and the NARR

    Science.gov (United States)

    Park, G.; Gao, X.; Sorooshian, S.

    2005-12-01

    the diurnal cycle of NLDAS. Because LSMs are designed to simulate radiation diurnal variation, they are always running at high temporal resolution (30-minutes to several hours). The NLDAS solar radiation data clearly show much smoothened diurnal cycles than observation in cloudy days, which is due to the lower spatial resolution of the NLDAS inherited from the GOES and the EDAS. Taking these problems discovered above into consideration, it is suggested that the NLDAS project work on reducing the systematic biases in the surface solar radiation estimates, so that the users could take full advantage from the data.

  12. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  13. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  14. Local time variations of the middle atmosphere of Venus: Solar-related structures

    Science.gov (United States)

    Zasova, L.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.

    Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1/3 days component predominates at 10 - 50 mb (68-76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm -1) is found at 8 - 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 - 1 km.

  15. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    Science.gov (United States)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  16. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    Energy Technology Data Exchange (ETDEWEB)

    Scargle, Jeffrey D.; Worden, Simon P. [NASA Ames Research Center, Moffett Field, CA, 94035 (United States); Keil, Stephen L. [National Solar Observatory, P.O. Box 57, Sunspot, NM 88349 (United States)

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  17. Core surface flow modelling from high-resolution secular variation

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils

    2006-01-01

    -flux hypothesis, but the spectrum of the SV implies that a conclusive test of frozen-flux is not possible. We parametrize the effects of diffusion as an expected misfit in the flow prediction due to departure from the frozen-flux hypothesis; at low spherical harmonic degrees, this contribution dominates...... the expected departure of the SV predictions from flow to the observed SV, while at high degrees the SV model uncertainty is dominant. We construct fine-scale core surface flows to model the SV. Flow non-uniqueness is a serious problem because the flows are sufficiently small scale to allow flow around non......-series of magnetic data and better parametrization of the external magnetic field....

  18. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    Science.gov (United States)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  19. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  20. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    OpenAIRE

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Lee, William J.; Tsai, Song-Yeu; Lu, Yung-An; Liou, Jia-Jhe; Chang, Shun-Hsyung; Wang, Kang L.

    2010-01-01

    The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si) wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD). The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been d...

  1. Periodic Variation of the North-South Asymmetry of Solar Activity ...

    Indian Academy of Sciences (India)

    Abstract. We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8-23. In the study we have used sunspot data for the period 1832—. 1976, flare index data for the period 1936-1993, Hα flare data 1993-1998 and solar active prominences data ...

  2. ANALYSIS OF THE INTRA-CITY VARIATION OF URBAN HEAT ISLAND AND ITS RELATION TO LAND SURFACE/COVER PARAMETERS

    Directory of Open Access Journals (Sweden)

    D. Gerçek

    2016-06-01

    Full Text Available Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI, imperviousness (NDISI, albedo, solar insolation, Sky View Factor (SVF, building

  3. Analysis of the Intra-City Variation of Urban Heat Island and its Relation to Land Surface/cover Parameters

    Science.gov (United States)

    Gerçek, D.; Güven, İ. T.; Oktay, İ. Ç.

    2016-06-01

    Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope

  4. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  5. 27-day variation in solar-terrestrial parameters: Global characteristics and an origin based approach of the signals

    Science.gov (United States)

    Poblet, Facundo L.; Azpilicueta, Francisco

    2018-05-01

    The Earth and the near interplanetary medium are affected by the Sun in different ways. Those processes generated in the Sun that induce perturbations into the Magnetosphere-Ionosphere system are called geoeffective processes and show a wide range of temporal variations, like the 11-year solar cycle (long term variations), the variation of ∼27 days (recurrent variations), solar storms enduring for some days, particle acceleration events lasting for some hours, etc. In this article, the periodicity of ∼27 days associated with the solar synodic rotation period is investigated. The work is mainly focused on studying the resulting 27-day periodic signal in the magnetic activity, by the analysis of the horizontal component of the magnetic field registered on a set of 103 magnetic observatories distributed around the world. For this a new method to isolate the periodicity of interest has been developed consisting of two main steps: the first one consists of removing the linear trend corresponding to every calendar year from the data series, and the second one of removing from the resulting series a smoothed version of it obtained by applying a 30-day moving average. The result at the end of this process is a data series in which all the signal with periods larger than 30 days are canceled. The most important characteristics observed in the resulting signals are two main amplitude modulations: the first and most prominent related to the 11-year solar cycle and the second one with a semiannual pattern. In addition, the amplitude of the signal shows a dependence on the geomagnetic latitude of the observatory with a significant discontinuity at approx. ±60°. The processing scheme was also applied to other parameters that are widely used to characterize the energy transfer from the Sun to the Earth: F10.7 and Mg II indices and the ionospheric vertical total electron content (vTEC) were considered for radiative interactions; and the solar wind velocity for the non

  6. Simulation with an O-AGCM of the influence of variations of the solar constant on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Crowley, T.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography

    1996-07-01

    Two simulations have been carried out with a global coupled ocean-atmosphere circulation model to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability induces a similar pattern of surface temperature change as the increase of greenhouse gases, i.e. an increase of the land-sea contrast. However, the solarinduced warming pattern over the ocean during northern hemispheric summer is more centered over the northern hemisphere subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. Finally, the magnitude of the estimated solar warming during the 20th century is not sufficient to explain the observed warming. The recent observed 30-year trends are inconsistent with the solar forcing simulation at an estimated 90% significance level. Also, the observed trend pattern agrees better with the greenhouse warming pattern. (orig.)

  7. Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region

    Science.gov (United States)

    Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.

    2017-12-01

    This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match

  8. Estimating the solar radiation environment on the soil surface between rows using crop canopy architectural models

    International Nuclear Information System (INIS)

    Yuge, K.; Haraguchi, T.; Nakano, Y.; Kuroda, M.; Funakoshi, T.

    2002-01-01

    The objective of this study is quantification of the solar radiation in the farmland located in the hilly and mountainous areas, considering the effect of the shelter adjacent to the field, such as the forest (This effect is called as the edge-effect in this study.). To evaluate the edge-effect on the solar radiation environment in the farmland, solar radiations are measured at the center and edge of the study site adjacent to the forest. The simulation model is composed, coupling with the fish-eye projection method and procedure for the separating direct and diffuse solar radiations. Using this model, the diurnal solar radiations are simulated at the center and edge of the study site. The simulation result showed good agreement with the observation. The spatial distribution of the solar radiation in an observational field is quantified by this method, considering the edge-effect. The simulation result indicated that the solar radiation environment on the field surface is affected by the shelter adjacent to the field and the field direction. (author)

  9. CLASP/SJ Observations of Rapid Time Variations in the Ly α Emission in a Solar Active Region

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Shin-nosuke [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252–5210 (Japan); Kubo, Masahito; Katsukawa, Yukio; Kano, Ryouhei; Narukage, Noriyuki; Ishikawa, Ryohko; Bando, Takamasa [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Trujillo Bueno, Javier [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Auchère, Frédéric, E-mail: s.ishikawa@solar.isas.jaxa.jp [Institut d’Astrophysique Spatiale, CNRS/Univ. Paris-Sud 11, Bätiment 121, F-91405 Orsay (France)

    2017-09-10

    The Chromospheric Ly α SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on 2015 September 3 to investigate the solar chromosphere and transition region. The slit-jaw (SJ) optical system captured Ly α images with a high time cadence of 0.6 s. From the CLASP/SJ observations, many variations in the solar chromosphere and transition region emission with a timescale of <1 minute were discovered. In this paper, we focus on the active region within the SJ field of view and investigate the relationship between short (<30 s) temporal variations in the Ly α emission and the coronal structures observed by Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). We compare the Ly α temporal variations at the coronal loop footpoints observed in the AIA 211 Å (≈2 MK) and AIA 171 Å (≈0.6 MK) channels with those in the regions with bright Ly α features without a clear association with the coronal loop footpoints. We find more short (<30 s) temporal variations in the Ly α intensity in the footpoint regions. Those variations did not depend on the temperature of the coronal loops. Therefore, the temporal variations in the Ly α intensity at this timescale range could be related to the heating of the coronal structures up to temperatures around the sensitivity peak of 171 Å. No signature was found to support the scenario that these Ly α intensity variations were related to the nanoflares. Waves or jets from the lower layers (lower chromosphere or photosphere) are possible causes for this phenomenon.

  10. Local time, seasonal, and solar cycle dependency of longitudinal variations of TEC along the crest of EIA over India

    Science.gov (United States)

    Sunda, Surendra; Vyas, B. M.

    2013-10-01

    global wave number 4 structure in the Indian longitudinal region spanning from ~70 to 95°E forming the upward slope of the peak in the total electron content (TEC) are reported along the crest of equatorial ionization anomaly (EIA). The continuous and simultaneous measurements from five GPS stations of GPS Aided Geo Augmented Navigation (GAGAN) network are used in this study. The long-term database (2004-2012) is utilized for examining the local time, seasonal, and solar cycle dependency on the longitudinal variations of TEC. Our results confirm the existence of longitudinal variations of TEC in accordance with wave number 4 longitudinal structure including its strength. The results suggest that these variations, in general, start to develop at ~09 LT, achieve maximum strength at 12-15 LT, and decay thereafter, the decay rate depending on the season. They are more pronounced in equinoctial season followed by summer and winter. The longitudinal variations persist beyond midnight in equinox seasons, whereas in winter, they are conspicuously absent. Interestingly, they also exhibit significant solar cycle dependence in the solstices, whereas in the equinoxes, they are independent of solar activity. The comparison of crest-to-trough ratio (CTR) in the eastern (92°E) and western (72°E) extreme longitudes reveals higher CTR on the eastern side than over the western extreme, suggesting the role of nonmigrating tides in modulating the ExB vertical drift and the consequential EIA crest formation.

  11. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  12. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  13. Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Liu, Shoudong

    2013-09-01

    Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.

  14. Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells

    Directory of Open Access Journals (Sweden)

    Lubomir Scholtz

    2014-01-01

    Full Text Available Increasing efficiency of solar cells is still a discussed problem. Even if it is well-known that specially formed substrates as Asahi U-type for solar cells are produced, there is still a continuing attention given to the applications of surface roughness to achieve better light trapping and absorptance in solar cells. It was found out the even an exact interface morphology can play an important role in light trapping. In this paper we focused on the issue how final absorptance of a solar cell structure could be affected and possibly increased. The goal of this article is to show which of interfaces has the greatest influence on specular absorptance of the whole structure.

  15. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Linfang; Wang, Dan; Ye, Yuqian; Qian, Jun; He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Zuo, Lijian; Chen, Hongzheng [Department of Polymer Science and Engineering, State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2011-03-15

    We use gold nanospheres (Au NSs) to improve the performance of polymer organic solar cells. Au NSs with a diameter of about 5 nm or 15 nm were doped into the buffer layer of organic solar cells. We attribute the efficiency improvement to the size-dependent localized surface plasmon resonance (LSPR) effect of Au NSs, which can enhance the light harvest ability of active layer around the Au NSs, and increase the probability of the exciton generation and dissociation. Our results show that solar cells doped with 15 nm-diameter Au NSs exhibit significant improvement of the efficiency (from 1.99% to 2.36%), while solar cells doped with only 5 nm-diameter Au NSs did not give obvious improvement of the performance. (author)

  16. Enhanced photovoltaic performance of Sb2S3-sensitized solar cells through surface treatments

    Science.gov (United States)

    Ye, Qing; Xu, Yafeng; Chen, Wenyong; Yang, Shangfeng; Zhu, Jun; Weng, Jian

    2018-05-01

    Efficient antimony sulfide (Sb2S3)-sensitized solar cells were obtained by a sequential treatment with thioacetamide (TA) and 1-decylphosphonic acid (DPA). Compared with the untreated Sb2S3-sensitized solar cells, the power conversion efficiency of the treated Sb2S3 solar cells was improved by 1.80% to 3.23%. The TA treatment improved the Sb2S3 films by reducing impurities and decreasing the film's surface defects, which inhibited the emergence of recombination centers. The DPA treatment reduced the recombination between hole transport materials (HTMs) and the Sb2S3. Therefore, we have presented an efficient strategy to improve the performance of Sb2S3-sensitized solar cells.

  17. Solar tidal variations of coefficients of second harmonic of gravitational potential of Mercury

    Science.gov (United States)

    Ferrandiz, Jose; Barkin, Yury

    2010-05-01

    Variations of coefficients of the second harmonic of Mercury potential caused by the solar tides have been studied. In the paper we use analytical expressions for tidal variations of Stoks coefficients obtained for model of the elastic celestial body with concentric distributions of masses and elastic parameters (Love numbers) and their reduced form with using fundamental elastic parameter k2 of the Mercury. Taking into account the resonant properties of the Mercury motion variations of the Mercury potential coefficients we present in the form of Fourier series on the multiple of corresponding arguments of the Mercury orbital theory. Evaluations of the amplitudes and periods of observed variations of Mercury potential have been tabulated for base elastic model of the Mercury characterized by hypothetic elastic parameter (Love number) k2=0.37 (Dehant et al., 2005). Tidal variations of polar moment of inertia of the Mercury (due to tidal deformations) lead to remarkable variations of the Mercury rotation. Tidal variations of the Mercury axial rotation also have been determined and tabulated. From our results it follows that the tide periodic variations of gravitational coefficients of the Mercury in a few orders bigger then corresponding tidal variations of Earth's geopotential coefficients (Ferrandiz, Getino, 1993). Variations coefficients of the second harmonic of Mercury potential. These variations are determined by the known formulae for variations of coefficients of the second harmonic of geopotential (Ferrandiz, Getino, 1993). Here we present these formulae in some special form as applied to the considered problem about the Mercury tidal deformations: ( ) δJ2 = - 3Tα23-2, δC22 = T α21 - α22 -4, δS22 = T α1α2-2, δC21 = Tα1α3, δS21 = T α2α3. Here T = k2(M R3 -ma3 ) = 1.667 × 10-7 is a estimation of some conditional coefficient of tidal deformation of Mercury. m and Rare the mass and the mean radius of Mercury. Here we have used standard values of

  18. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2016-12-01

    Full Text Available This data article contains data related to the research article entitled “Global land cover classification based on microwave polarization and gradient ratio (MPGR” [1] and “Microwave polarization and gradient ratio (MPGR for global land surface phenology” [2]. This data article presents land surface characteristics and snow cover variation information from sensors like EOS Advanced Microwave Scanning Radiometer (AMSR-E. This data article use the HDF Explorer, Matlab, and ArcGIS software to process the pixel latitude, longitude, snow water equivalent (SWE, digital elevation model (DEM and Brightness Temperature (BT information from AMSR-E satellite data to provide land surface characteristics and snow cover variation data in all-weather condition at any time. This data information is useful to discriminate different land surface cover types and snow cover variation, which is turn, will help to improve monitoring of weather, climate and natural disasters.

  19. Variation of the height of the grain bed of an indirect solar bin dryer; Variacion de la altura del lecho del grano en un secador solar indirecto

    Energy Technology Data Exchange (ETDEWEB)

    Sima, Efrain; Alvarez, Gabriela; Garcia, Saul [CENIDET, Cuernavaca, Morelos (Mexico)

    2000-07-01

    This paper presents the effect of the variation of the size of the grain bed of an indirect solar bin dryer. This solar dryer was designed and built at the Instituto Tecnologico de Zacatepec and Sima performed the thermal evaluation. The solar bin dryer consists of a bin dryer of 0.92 m diameter and 1 m height (the maximum height of the grain bed is 0.6 m). a 2 m{sup 2} solar collector, a blower and an electronic card to control the inlet air flow of the bin. A load of 36 kg, 45 kg, 52 kg and 64 kg of corn were dried. The heights of the grain were 7.5 cm, 10 cm, 12.5 cm and 17 cm respectively. Solar radiation, inlet air velocity of the solar collector, pressure drop, grain temperature and humidity, ambient temperature and humidity of the drying air were recorded. The initial grain humidity was 27.2% and the final was 11.8%. [Spanish] En este trabajo se presenta el efecto de la variacion del lecho del grano en el proceso de secado de maiz, en un prototipo de secador solar de tipo indirecto. El secador fue disenado y construido en el Tecnologico de Zacatepec y evaluado por Sima, consta de una camara de secado de 0.92 m de diametro y una altura de 1 m. (la altura del lecho maximo de grano posible es de 0.6 m.), un colector solar con un area de 2 m{sup 2}, un extractor de aire y un control electronico para el flujo de aire. El secado de maiz se llevo a cabo con cargas de maiz de 36, 45, 52 y 64 kg. Las alturas en el lecho del grano fueron 7.5, 10, 12.5 y 17 cm. Para cada altura de lecho de grano se realizo una prueba. Durante cada prueba se realizaron mediciones de: radiacion solar, velocidad del aire a la entrada, caida de presion, temperatura del grano, humedad del grano, temperatura del aire ambiente, temperatura y humedad del aire de secado a la entrada y salida del secador. La humedad inicial del grano fue alrededor de 27.2% y la final de 11.8%.

  20. Extrinsic passivation of silicon surfaces for solar cells

    OpenAIRE

    Bonilla, R.S.; Reichel, C.; Hermle, M.; Martins, G.; Wilshaw, P.R.

    2015-01-01

    In the present work we study the extent to which extrinsic chemical and field effect passivation can improve the overall electrical passivation quality of silicon dioxide on silicon. Here we demonstrate that, when optimally applied, extrinsic passivation can produce surface recombination velocities below 1.2 cm/s in planar 1 Omega cm n-type Si. This is largely due to the additional field effect passivation component which reduces the recombination velocity below 2.13 cm/s. On textured surface...

  1. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  2. Solar and interplanetary particles at 2 to 4 MEV during solar cycles 21, solar cycle variations of event sizes, and compositions

    International Nuclear Information System (INIS)

    Armstrong, T.P.; Shields, J.C.; Briggs, P.R.; Eckes, S.

    1985-01-01

    In this paper 2 to 4 MeV/nucleon protons, alpha particles, and medium (CNO) nuclei in the near-Earth interplanetary medium during the years 1974 to 1981 are studied. This period contains both the solar activity minimum in 1976 and the very active onset phase of Solar Cycle 21. Characteristic compositional differences between the solar minimum and solar maximum ion populations have been investigated. Previous studies of interplanetary composition at these energies have concentrated on well-defined samples of the heliospheric medium. During flare particle events, the ambient plasma is dominated by ions accelerated in specific regions of the solar atmosphere; observation of the proton/alpha and alpha/medium ratios for flare events shows that there is marked compositional variability both during an event and from event to event suggesting the complicated nature of flare particle production and transport

  3. Summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The diagrams in this section of the publication illustrate the summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow observed in Japan. For convenience, the observational results are arranged by the solar rotation number. The aim of this illustration is to disseminate an outline of daily events observed in Japan for the benefit of active research workers who plan to make detailed study of the specific solar and terrestrial events. Therefore, the illustrations do not show all observational results in Japan but only representative ones at some key stations in Japan. They will suffice for the present purpose. The method of illustration shown in the instruction on the next page is still a preliminary one, and it is subject to change resulting from the kind advice of the users of this part of the publication. We welcome any advice for making the data arrangement and expression better and more convenient. (auth.)

  4. Time variation of meteorological elements as controlled by the quasi-biennial periodicity in the solar phenomena

    International Nuclear Information System (INIS)

    Inoue, Michiharu; Sakurai, Kunitomo

    1981-01-01

    It is shown that the quasi-biennial oscillation observed on some meteorological elements as the ozone content at middle latitudes, both north and south, the zonal wind velocity at the equator and the ground-level temperature at middle latitudes, is produced by the variation of the ultraviolet flux emitted from the sun, which is varying with the solar activity with the period of about 26 months. The ozone content is varying in phase with the ultraviolet flux and the solar activity, whereas the other two elements mentioned above are changing out of phase with these phenomena. There is a possibility that both these meteorological elements and the solar activity are varying quasi-biennially while being modulated by the 26 month periodicity in the efficiency of thermonuclear fusions at the central core of the sun. (author)

  5. Influence of structural variations in push-pull zinc porphyrins on photovoltaic performance of dye-sensitized solar cells.

    Science.gov (United States)

    Yi, Chenyi; Giordano, Fabrizio; Cevey-Ha, Ngoc-Le; Tsao, Hoi Nok; Zakeeruddin, Shaik M; Grätzel, Michael

    2014-04-01

    We designed and synthesized two new zinc porphyrin dyes for dye-sensitized solar cells (DSCs). Subtle molecular structural variation in the dyes significantly influenced the performance of the DSC devices. By utilizing these dyes in combination with a cobalt-based redox electrolyte using a photoanode made of mesoporous TiO2 , we achieved a power conversion efficiency (PCE) of up to 12.0 % under AM 1.5 G (100 mW cm(-2)) simulated solar light. Moreover, we obtained a high PCE of 6.4 % for solid-state dye-sensitized solar cells by using 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene as a hole-transporting material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The selenium isotopic variations in chondrites are mass-dependent; Implications for sulfide formation in the early solar system

    Science.gov (United States)

    Labidi, J.; König, S.; Kurzawa, T.; Yierpan, A.; Schoenberg, R.

    2018-01-01

    -independent deficits ro excesses of 74Se, 76Se and 77Se are calculated relative to the observed 82Se/78Se ratios, and were observed negligible. This rules out poor mixing of nucleosynthetic components to account for the δ 82 / 78 Se variability and implies that the mass dependent Se isotopic variations were produced in a once-homogeneous disk. The mass-dependent isotopic difference between enstatite and ordinary chondrites may reflect the contribution of a kinetic sulfidation process at anomalously high H2S-H2Se contents in the region of enstatite chondrite formation. Experimental studies showed that high H2S contents favor the formation of compact sulfide layers around metallic grains. This decreases the reactive surface, which tends to inhibit the continuation of the sulfidation reaction. Under these conditions sulfide growth likely occurs under isotopic disequilibrium and favors the trapping of light S and Se isotopes in solids; This hypothesis provides an explanation for our Se isotope as well as for previously published S isotope data. On the other hand, high δ 82 / 78 Se values in carbonaceous chondrites may result from sample heterogeneities generated by parent body aqueous alteration, or could reflect the contribution of ices carrying photo-processed Se from the outer solar system.

  7. Surface adhesion and confinement variation of Staphylococcus aurius on SAM surfaces

    Science.gov (United States)

    Amroski, Alicia; Olsen, Morgan; Calabrese, Joseph; Senevirathne, Reshani; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Staphylococcus aureus is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic strain methicillin resistant Staphylococcus aureus (MRSA) and further as a study for bio-machine interfacing. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured S. aureus were used for the analysis. The SAM layered surfaces were dipped in 2 -- 4 Log/ml S. aureus solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  8. Validation of solar radiation surfaces from MODIS and reanalysis data over topographically complex terrain

    Science.gov (United States)

    Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang

    2009-01-01

    The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...

  9. Materials surface treatments by concentrated solar light: a renewable energy option

    International Nuclear Information System (INIS)

    Martinez, D.; Rodriguez, J.

    1998-01-01

    The possible applications of solar furnaces to materials surface treatment are explained in an illustrative manner. A brief description of these systems is exposed, as well as an overview of the feasible industrial or testing applications for which their validity has been proven. (Author) 5 refs

  10. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  11. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  12. The variations of oxygen emissions in corresponding to Earth's aurora in low latitude region under influence of solar wind dynamics

    Science.gov (United States)

    Jamlongkul, P.; Wannawichian, S.

    2017-12-01

    Earth's aurora in low latitude region was studied via time variations of oxygen emission spectra, simultaneously with solar wind data. The behavior of spectrum intensity, in corresponding with solar wind condition, could be a trace of aurora in low latitude region including some effects of high energetic auroral particles. Oxygen emission spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) at 2.4-m diameter telescope at Thai National Observatory, Inthanon Mountain, Chiang Mai, Thailand, during 1-5 LT on 5 and 6 February 2017. The observed spectral lines were calibrated via Dech95 - 2D image processing program and Dech-Fits spectra processing program for spectrum image processing and spectrum wavelength calibration, respectively. The variations of observed intensities each day were compared with solar wind parameters, which are magnitude of IMF (|BIMF|) including IMF in RTN coordinate (BR, BT, BN), ion density (ρ), plasma flow pressure (P), and speed (v). The correlation coefficients between oxygen spectral emissions and different solar wind parameters were found to vary in both positive and negative behaviors.

  13. Contribution of Topography and Incident Solar Radiation to Variation of Soil and Plant Litter at an Area with Heterogeneous Terrain

    OpenAIRE

    Felipe Cito Nettesheim; Tiago de Conto; Marcos Gervasio Pereira; Deivid Lopes Machado

    2015-01-01

    Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radi...

  14. Statistical analysis of solar radiation on variously oriented sloping surfaces

    International Nuclear Information System (INIS)

    Garg, H.P.; Garg, S.N.

    1985-12-01

    For four years, daily global radiation on a south facing surface and on four vertical walls namely south wall, north wall, east wall and west wall, has been computed and statistically analysed for each of the 4 stations: New Delhi, Calcutta, Poona and Madras. Daily direct radiation at normal incidence at New Delhi has also been studied. It has been found that maximum global radiation is 30 MJ/m 2 /day for a south facing tilted surface, 21 MJ/m 2 /day for a south wall, 18 MJ/m 2 /day for an east west wall and 12 MJ/m 2 /day for a north wall. Maximum direct radiation at normal incidence at New Delhi is also 30 MJ/m 2 /day. For a south facing tilted surface, nearly 80% of the days have energy between 21-27 MJ/m 2 /day. Atmospheric transmittance for direct radiation is seen to vary from 20% in July to 52% in November

  15. Regional variations in the health, environmental, and climate benefits of wind and solar generation

    OpenAIRE

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger; Apt, Jay

    2013-01-01

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. De...

  16. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Directory of Open Access Journals (Sweden)

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  17. Down-slope cascading modulated by day/night variations of solar heating

    Directory of Open Access Journals (Sweden)

    Irina P. Chubarenko

    2013-04-01

    Full Text Available Sloping sides of natural basins favour the formation of cross-shore temperature gradients (differential coastal heating/cooling, which cause significant littoral-pelagial water exchange. Autumnal denser water cascading along a sloping lake boundary, modulated by day/night variations of solar heating is considered numerically, in order to reveal the development of the cascading process in time, spatial structure of the exchange flows, and diurnal variations of volumetric flow-rate of littoral-pelagial exchange flow, as well as to compare its daily maxima at different depths/cross-sections, with known quasi-steady state predictions under constant buoyancy flux. The development of exchange flows progress through two phases: i appearance and adjustment to day/night buoyancy flux variations; and ii quasi-steady exchange, when variations of the flow rate in every next diurnal cycle are more or less the same as the previous day. The duration of the first phase depends on local depth (~1 day for depths of about 10 m, ~2 days for depths 15-25 m, and ~5 days down to 30 m for the considered initial linear vertical temperature stratification. Maximum horizontal exchange takes place in the cross-section where the thermocline meets the slope, and the cold down-slope currents detach from the bottom. The location of this cross-section advances off-shore with time, in accordance with the deepening of the upper mixed layer. The existence of a specific coastal circulation cell, with different water dynamics from those above the main part of the slope, is a characteristic feature of horizontal convective exchange. The mean value of the specific volumetric flow rate of the convective exchange, driven by day/night oscillations in its fully developed quasi-steady phase increases almost linearly with local depth, and is about twice as large as the quasi-steady exchange values, predicted by formula Q=0.0013·d1.37 (Q is measured in m2 s-1, and local depth above the

  18. An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings

    Energy Technology Data Exchange (ETDEWEB)

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2012-07-01

    In the present work, investigations are made to study performance characteristics of solar flat plate collector with different selective surface coatings. Flat plate collector is one of the important solar energy trapping device which uses air or water as working fluid. Of the many solar collector concepts presently being developed, the relative simple flat plate solar collector has found the widest application so far. Its characteristics are known, and compared with other collector types, it is the easiest and least expensive to fabricate, install, and maintain. Moreover, it is capable of using both the diffuse and the direct beam solar radiation. For residential and commercial use, flat plate collectors can produce heat at sufficiently high temperatures to heat swimming pools, domestic hot water, and buildings; they also can operate a cooling unit, particularly if the incident sunlight is increased by the use of reflector. Temperatures up to 70 C are easily attained by flat plate collectors. With very careful engineering using special surfaces, reflectors to increase the incident radiation and heat resistant materials, higher operating temperatures are feasible.

  19. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey)

    International Nuclear Information System (INIS)

    Duzen, Hacer; Aydin, Harun

    2012-01-01

    Highlights: ► The global solar radiation at Lake Van region is estimated. ► This study is unique for the Lake Van region. ► Solar radiation around Lake Van has the highest value at the east-southeast region. ► The annual average solar energy potential is obtained as 750–2458 kWh/m 2 . ► Results can be used to estimate evaporation. - Abstract: In this study several sunshine-based regression models have been evaluated to estimate monthly average daily global solar radiation on horizontal surface of Lake Van region in the Eastern Anatolia region in Turkey by using data obtained from seven different meteorological stations. These models are derived from Angström–Prescott linear regression model and its derivatives such as quadratic, cubic, logarithmic and exponential. The performance of this regression models were evaluated by comparing the calculated clearness index and the measured clearness index. Several statistical tests were used to control the validation and goodness of the regression models in terms of the coefficient of determination, mean percent error, mean absolute percent error, mean biased error, mean absolute biased error, root mean square error and t-statistic. The results of all the regression models are within acceptable limits according to the statistical tests. However, the best performances are obtained by cubic regression model for Bitlis, Gevaş, Hakkari, Muş stations and by quadratic regression model for Malazgirt, Tatvan and Van stations to predict global solar radiation. The spatial distributions of the monthly average daily global solar radiation around the Lake Van region were obtained with interpolation of calculated solar radiation data that acquired from best fit models of the stations. The annual average solar energy potential for Lake Van region is obtained between 750 kWh/m 2 and 2485 kWh/m 2 with annual average of 1610 kWh/m 2 .

  20. Solar Wind Implantation into Lunar Regolith II: Monte Carlo Simulations of Hydrogen Retention in a Surface with Defects and the Hydrogen (H, H2) Exosphere

    Science.gov (United States)

    Tucker, O. J.; Farrell, W. M.; Killen, R. M.; Hurley, D. M.

    2018-01-01

    Recently, the near-infrared observations of the OH veneer on the lunar surface by the Moon Mineralogy Mapper (M3) have been refined to constrain the OH content to 500-750 parts per million (ppm). The observations indicate diurnal variations in OH up to 200 ppm possibly linked to warmer surface temperatures at low latitude. We examine the M3 observations using a statistical mechanics approach to model the diffusion of implanted H in the lunar regolith. We present results from Monte Carlo simulations of the diffusion of implanted solar wind H atoms and the subsequently derived H and H2 exospheres.

  1. Advances on aluminum first-surface solar reflectors

    Science.gov (United States)

    Almanza, Rafael; Chen, Jiefeng; Mazari, Marcos

    1992-11-01

    Aluminum first surface mirrors have some advantages over second surface mirrors as has been discussed. At this stage of development some advantages are obtained: the first advantage was using two electron guns, one for aluminum evaporation permitting us to eliminate or to minimize the pinholes and the other to allow the evaporation of SiO without any mirror contamination as it was before due to the air when the chamber was opened to introduce the SiO, despite having only one e-gun in the laboratory. The second advantage was a better adherence between the aluminum film and the Si2O3, this last substance obtained with an oxidation of SiO with some oxygen inside the evaporation chamber (10-4 Torr). This improvement was due to the use of two e-guns that permit us not to open the chamber. These mirrors are actually under test in the environmental chamber for accelerated weather evaluations. One important aspect is the cleaning of the glass substrate. The chromic mixture cleaning is one of the most effective.

  2. Spatial and temporal variations of albedo and absorbed solar radiation during 2009 - 2016 from IKOR-M satellite program

    Science.gov (United States)

    Cherviakov, Maksim; Bogdanov, Mikhail; Spiryakhina, Anastasia; Shishkina, Elena; Surkova, Yana; Kulkova, Eugenia

    2017-04-01

    -M. This radiometer worked on board of the "Meteor-M" No 1 satellite for five years. Parameters of linear trends are estimated for the Earth's surface area albedo with approximately constant values of this characteristic and the estimate of sensitivity change over time for the radiometer is obtained. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It should be noted that cloudiness makes a significant contribution to the planetary albedo of the Earth, largely determines its spatial-temporal distribution. In particular, it is important to know what contribution cloudiness makes to albedo and what the relationship between them. Therefore, comparisons between albedo and cloudiness were conducted separately for land and oceans. The comparison of the distributions of cloudiness and albedo had identified the existence of significant correlation to the World Ocean, lower values for the World Ocean and land together and small correlation for land. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean and monitoring of the East Asian Summer Monsoon. The report will be presented more detailed results. The reported study was funded by Russian Geographical Society according financial support in the framework of a research project No 40/2016-R. Latitudinal distributions of albedo and ASR study was funded by RFBR according to the research project No.16-35-00284 mol_a. References 1. Sklyarov Yu.A., Vorob'ev V.A., Kotuma A

  3. Surface Tension of Multi-phase Flow with Multiple Junctions Governed by the Variational Principle

    International Nuclear Information System (INIS)

    Matsutani, Shigeki; Nakano, Kota; Shinjo, Katsuhiko

    2011-01-01

    We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie et al. (J Comput Phys 113:134–147, 1994) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N-phase, N ≥ 2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation for motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

  4. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    International Nuclear Information System (INIS)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-01-01

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  5. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  6. Towards corrosion testing of unglazed solar absorber surfaces in simulated acid rain

    International Nuclear Information System (INIS)

    Salo, T.; Pehkonen, A.; Konttinen, P.; Lund, P.

    2005-01-01

    Electrochemical impedance spectroscopy and potentiodynamic polarization tests were utilized for determining corrosion probabilities of unglazed C/Al 2 O 3 /Al solar absorber surfaces in simulated acid rain. Previously, the main degradation mechanism found was exponentially temperature-related hydration of aluminium oxide. In acid rain tests the main corrosion determinant was the pH value of the rain. Results indicate that these methods measure corrosion characteristics of Al substrate instead of the C/Al 2 O 3 /Al surface, probably mainly due to the rough and non-uniform microstructure of the latter. Further analyses of the test methods are required in order to estimate their applicability on Al-based uniform sputtered absorber surfaces. (author) (C/Al 2 O 3 /Al solar absorber; Acid rain; Corrosion; Electrochemical tests)

  7. Variational method for the minimization of entropy generation in solar cells

    NARCIS (Netherlands)

    Smit, S.; Kessels, W.M.M.

    2015-01-01

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy

  8. Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2014-12-01

    Full Text Available Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS and stages from Envisat radar altimetry. Surface water storage variations over 2003–2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95, the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73 after removing seasonal effects. Mean annual variations in surface water volume represented ~170 km3, contributing to ~45% of the Gravity Recovery and Climate Experiment (GRACE-derived total water storage variations and representing ~13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

  9. Time Variations of Observed H α Line Profiles and Precipitation Depths of Nonthermal Electrons in a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Falewicz, Robert; Radziszewski, Krzysztof; Rudawy, Paweł; Berlicki, Arkadiusz, E-mail: falewicz@astro.uni.wroc.pl, E-mail: radziszewski@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: berlicki@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, 51-622 Wrocław, ul. Kopernika 11 (Poland)

    2017-10-01

    We compare time variations of the H α and X-ray emissions observed during the pre-impulsive and impulsive phases of the C1.1-class solar flare on 2013 June 21 with those of plasma parameters and synthesized X-ray emission from a 1D hydrodynamic numerical model of the flare. The numerical model was calculated assuming that the external energy is delivered to the flaring loop by nonthermal electrons (NTEs). The H α spectra and images were obtained using the Multi-channel Subtractive Double Pass spectrograph with a time resolution of 50 ms. The X-ray fluxes and spectra were recorded by RHESSI . Pre-flare geometric and thermodynamic parameters of the model and the delivered energy were estimated using RHESSI data. The time variations of the X-ray light curves in various energy bands and those of the H α intensities and line profiles were well correlated. The timescales of the observed variations agree with the calculated variations of the plasma parameters in the flaring loop footpoints, reflecting the time variations of the vertical extent of the energy deposition layer. Our result shows that the fast time variations of the H α emission of the flaring kernels can be explained by momentary changes of the deposited energy flux and the variations of the penetration depths of the NTEs.

  10. Solar activity effects on cosmic ray intensity and geomagnetic field variation

    International Nuclear Information System (INIS)

    Shukla, A.K.; Shukla, J.P.; Sharma, S.M.; Singh, R.L.; Agrawal, S.P.

    1978-01-01

    An analysis has been performed to statistically correlate the date of solar flare occurrence and its importance with the short term cosmic ray intensity decreases (observed by the high latitude neutron monitors) as well as with the geomagnetic field fluctuation indices (Asub(p) and Dsub(st)), during the period 1973-1976. This period has the particular advantage of being close to a solar minimum to avoid the ambiguity due to closely spaced solar flares. It is found that the intensity decrease starts at least 2-3 days after the date of bright solar flares of Imp 1B, 2B or 3B and the amplitude of the decrease increases with the importance of the solar flare. (author)

  11. Solar radiation at the surface in the Baltic Proper

    Directory of Open Access Journals (Sweden)

    Sirje Keevallik

    2010-12-01

    Full Text Available Radiation data recorded at 12 sites around the central part of the Baltic Sea during 1996-2000 drawn from the BALTEX (Baltic Sea Experiment meteorological data archives are used to study the spatio-temporal variability of daily global radiation totals. The annual average daily global radiation total varies from about 10 MJ m-2 at Visby(on Gotland and Kołobrzeg (on the coast of Poland to less than 9 MJ m-2 at Zīlāni (inland Latvia, Šilutė (Lithuaniaand Jokioinen (Finland. The monthly average daily global radiation total over the whole region extends from 0.93 in December to 19.0 in June. The variability in global radiation is analysed on the basis of the fraction of the daily total at the top of the atmosphere.The spatial and temporal variability is the least in August - this shows that the variation in the cloud cover and atmospheric properties at this time of year is the smallest. The spatial correlation is the strongest between the two Finnish stations - Vantaa and Jokioinen. It is also high between Stockholm and Norrköping, on the east coast of Sweden. The correlation coefficients are the largest over the whole area in April. Radiation data from coastal stations are compared with an earlier parameterization basedon ship observations (Rozwadowska & Isemer 1998, Isemer & Rozwadowska 1999. It is concluded that in climatological research, actinometric data from Visby can be used to characterize the radiation field over the northern part of the Baltic Proper and those from Kołobrzeg to characterize the radiation field over the southern part of this sea.

  12. Charged particle modification of surfaces in the outer solar system

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1987-01-01

    Voyager reflectance spectra data have indicated clear leading/trailing differences in the albedo of the icy Galilean and Saturian satellites. For the Galilean satellites, these have been analyzed by Nelson, et al. and, more recently, by McEwen. They have described the longitudinal dependence of this data and attempted to interpret this in terms of plasma and meteorite modification of the surface. Primary attention has been paid to Europa at which the leading/trailing differences are the largest. This data was reanalyzed extracting the single grain albedo (w) and constructing the Espat-function, W = (1-w)/w from this. Because w is near unity, W is approximately 2(alpha)D where alpha is the absorption coefficient and D is the grain size. In doing so, a direct comparison to the longitudinal plasma bombardment flux was found for the first time. This occurs primarily in the UV and is probably due to an absorption associated with implanted S, as the UV band of Voyager overlaps the IUE data of Lane et al. The relative importance of grain size effects and implant impurity effects can now be studied

  13. TEMPORAL AND SPATIAL VARIATION IN SOLAR RADIATION AND PHOTO-ENHANCED TOXICITY RISKS OF SPILLED OIL IN PRINCE WILLIAM SOUND, ALASKA

    Science.gov (United States)

    Solar irradiance (W/m2) and downwelling diffuse attenuation coefficients (Kd; m-1) were determined in several locations in Prince William Sound, Alaska, USA, between April 2003 and December 2005 to assess temporal and spatial variation in solar radiation and the risks of photoenh...

  14. Variational analysis of topological stationary barotropic MHD in the case of single-valued magnetic surfaces

    International Nuclear Information System (INIS)

    Yahalom, A

    2014-01-01

    Variational principles for magnetohydrodynamics have been introduced by previous authors both in Lagrangian and Eulerian form. Yahalom and Lynden-Bell (2008) have previously introduced simpler Eulerian variational principles from which all the relevant equations of barotropic magnetohydrodynamics can be derived. These variational principles were given in terms of six independent functions for non-stationary barotropic flows with given topologies and three independent functions for stationary barotropic flows. This is less then the seven variables which appear in the standard equations of barotropic magnetohydrodynamics which are the magnetic field B-vector the velocity field v-vector and the density ρ. Later, Yahalom (2010) introduced a simpler variational principle in terms of four functions for non-stationary barotropic magnetohydrodynamics. It was shown that the above variational principles are also relevant for flows of non-trivial topologies and in fact using those variational variables one arrives at additional topological conservation laws in terms of cuts of variables which have close resemblance to the Aharonov- Bohm phase (Yahalom (2013)). In previous examples (Yahalom and Lynden-Bell (2008); Yahalom (2013)) the magnetic field lines with non-trivial topology were at the intersection of two surface one of which was always multivalued; in this paper an example is introduced in which the magnetic helicity is not zero yet both surfaces are single-valued

  15. Solar activity indices as a proxy for the variation of ionospheric Total Electron Content (TEC) over Bahir Dar, Ethiopia during the year 2010-2014

    Science.gov (United States)

    Kassa, Tsegaye; Tilahun, Samson; Damtie, Baylie

    2017-09-01

    This paper was aimed at investigating the solar variations of vTEC as a function of solar activity parameters, EUV and F10.7 radio flux. The daily values of ionospheric vertical Total Electron Content (vTEC) were observed using a dual frequency GPS receiver deployed at Bahir Dar (11.6°N and 37.36°E), Ethiopia. Measurements were taken during the period of 2010-2014 for successive five years and analysis was done on only quiet day observations. A quadratic fit was used as a model to describe the daily variation of vTEC in relation to solar parameters. Linear and non-linear coefficients of the vTEC variations were calculated in order to capture the trend of the variation. The variation of vTEC have showed good agreement with the trend of solar parameters in almost all of the days we consider during the period of our observations. We have explicitly observed days with insignificant TECU deviation (eg. modeling with respect to EUV, DOY = 49 in 2010 and modeling with respect to F10.7, DOY = 125 in 2012 and the like) and days with maximum deviation (about 50 TECU). A maximum deviation were observed, on average, during months of equinox whereas minimum during solstice months. This implies that there is a need to consider more parameters, including EUV and F10.7, that can affect the variation of vTEC during equinox seasons. Relatively, small deviations was observed in modeling vTEC as a function of EUV compared to that of the variation due to F10.7 cm flux. This may also tell us that EUV can be more suitable in modeling the solar variation of vTEC especially for longterm trends. Even though, the linear trend of solar variations of vTEC was frequently observed, significant saturation and amplification trends of the solar variations of vTEC were also observed to some extent across the months of the years we have analyzed. This mixed trend of the solar variation of vTEC implies the need for thorough investigation on the effect of solar parameters on TEC. However, based on

  16. Activity of processes on the visible surface of planets of Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  17. Modelling the solar magnetism: from its internal origin to its manifestations at the surface

    International Nuclear Information System (INIS)

    Jouve, Laurene

    2008-01-01

    This thesis is part of the general study of dynamical processes involved in stars such as convection, rotation or magnetic fields and of their nonlinear interactions. The results of numerical simulations using the 2D finite element code STELEM and the pseudo-spectral 3D code ASH are presented. The first part of this work focuses on the global modeling of the solar dynamo. Through 2D simulations using mean-field theory, I studied the influence of a complex profile of meridional flow in Babcock-Leighton models. We show that there may be doubts about the ability of such models to reproduce the main characteristics of the solar cycle. In order to better constrain the effects of solar variability on the Earth climate, we present a first application in solar physics of sophisticated prediction methods which are used in meteorology. I also computed the first 3D MHD simulations in spherical geometry of a key step in the solar dynamo: the nonlinear evolution of magnetic structures from the base of the convection zone up to the surface where they produce active regions. Weak fields are likely to be modulated by convective motions, thus creating favored longitudes of emergence. If these structures are sufficiently arched, the orientation of bipolar spots corresponds to Joy's law. The introduction of an atmosphere in these models is a step towards a 3D global vision of our Sun. (author) [fr

  18. Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, Adel S.

    2009-01-01

    The measured data of global solar radiation on a horizontal surface, as well as the number of sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover, for Jeddah (latitude 21 deg. 42'37''N, longitude 39 deg. 11'12''E), Saudi Arabia for the period 1996-2006 are analyzed. The data are divided into two sets. The sub-data set 1 (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and various meteorological parameters. The nonlinear Angstroem type model developed by Sen and the trigonometric function model proposed by Bulut and Bueyuekalaca are also evaluated. New empirical constants for these two models have been obtained for Jeddah. The sub-data set 2 (2005, 2006) are then used to evaluate the derived correlations. Comparisons between measured and calculated values of H have been performed. It is indicated that, the Sen and Bulut and Bueyuekalaca models satisfactorily describe the horizontal global solar radiation for Jeddah. All the proposed correlations are found to be able to predict the annual average of daily global solar radiation with excellent accuracy. Therefore, the long term performance of solar energy devices can be estimated.

  19. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Cui, Jin [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Li, Junpeng [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); Cao, Kun; Yuan, Shuai [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Cheng, Yibing [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Wang, Mingkui, E-mail: mingkui.wang@mail.hust.edu.cn [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China)

    2015-09-15

    Highlights: • SPR effect from Au-nanostructures was first investigated in NiO-based solar cells. • Enhanced photocurrent generation was observed in p-DSC and perovskite solar cell. • Au-nanorods SPR effect induced charge kinetics were investigated. - Abstract: Surface plasma resonance (SPR) effect has been demonstrated to improve solar cell performance. This work reports on the SPR effect from Au nanorod@SiO{sub 2} on p-type dye-sensitized solar cells. Au nanorod@SiO{sub 2} works as an antenna to transform photons with long wavelength into electric field followed by an enhanced excitation of dye. The devices using the NiO electrode containing Au nanorod@SiO{sub 2} shows overall power conversion efficiencies of about 0.2% in combination with I{sup −}/I{sub 3}{sup −} electrolyte, and 0.29% with T{sup −}/T{sub 2} electrolyte, which are superior to those without adding Au nanorods. Detailed investigation including spectroscopy and transient photovoltage decay measurements reveals that plasma effect of Au nanorod@SiO{sub 2} contribute to charge injection efficiency, and thus on the photocurrent. The effect of Au NRs can be further extended to the inverted planar perovskite solar cells, showing obviously improvement in photocurrent.

  20. Super-quasi-conformal transformation and Schiffer variation on super-Riemann surface

    International Nuclear Information System (INIS)

    Takahasi, Wataru

    1990-01-01

    A set of equations which characterizes the super-Teichmueller deformations is proposed. It is a supersymmetric extension of the Beltrami equation. Relations between the set of equations and the Schiffer variations with the KN bases are discussed. This application of the KN bases shows the powerfulness of the KN theory in the study of super-Riemann surfaces. (author)

  1. Spatial and temporal variation of surface waves in shallow waters along the eastern Arabian Sea.

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Shanas, P.R.

    We studied the spatial and temporal variation of surface waves along the eastern Arabian Sea during 2011 and 2012. Measured directional wave data at two shallow water locations and re-analysis datasets (ERA-Interim) at 0.751 intervals at four...

  2. Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

    International Nuclear Information System (INIS)

    Al Touma, Albert; Ghali, Kamel; Ghaddar, Nesreen; Ismail, Nagham

    2016-01-01

    This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%. The proposed system is applied to a typical office space to analyze its effectiveness in reducing the window temperature, the space load and radiation asymmetry, while maintaining the indoor comfort conditions. Results have shown that the system is reduced the space load by −19.8% and attenuated the radiation asymmetry significantly for office spaces having window-to-wall ratio of 40% in climate of Riyadh, KSA. The system performance diminished when applied in locations suffering from humid weather climates. - Highlights: • A passive evaporative-cooled solar chimney system is introduced to decrease window temperature. • A mathematical model is developed of the system to predict induce air flow and window surface temperature. • The model is validated with experiments in twin room climatic chamber and using artificial solar lamps. • The system reduces window maximum temperature by 5 °C in the hot dry climate of Riyadh, KSA. • It reduced the space load by 19.4% for office spaces at window-to-wall ratio of 40% in Riyadh, KSA.

  3. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuang-Tung Cheng

    2010-01-01

    Full Text Available The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD. The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been discussed in this research. Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4 coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. Open circuit (Voc is 616 mV, short circuit current (Jsc is 34.1 mA/cm2, and minority carrier diffusion length is 474.16 μm. The isotropic texturing and silicon nitride layers coating approach contribute to lowering cost and achieving high efficiency in mass production.

  4. Statistical analysis of geomagnetic field variations during the partial solar eclipse on 2011 January 4 in Turkey

    International Nuclear Information System (INIS)

    Ateş, Abdullah; Levent Ekinci, Yunus; Buyuksarac, Aydin; Aydemir, Attila; Demirci, Alper

    2015-01-01

    Some geophysical parameters, such as those related to gravitation and the geomagnetic field, could change during solar eclipses. In order to observe geomagnetic fluctuations, geomagnetic measurements were carried out in a limited time frame during the partial solar eclipse that occurred on 2011 January 4 and was observed in Canakkale and Ankara, Turkey. Additionally, records of the geomagnetic field spanning 24 hours, obtained from another observatory (in Iznik, Turkey), were also analyzed to check for any peculiar variations. In the data processing stage, a polynomial fit, following the application of a running average routine, was applied to the geomagnetic field data sets. Geomagnetic field data sets indicated there was a characteristic decrease at the beginning of the solar eclipse and this decrease can be well-correlated with previous geomagnetic field measurements that were taken during the total solar eclipse that was observed in Turkey on 2006 March 29. The behavior of the geomagnetic field is also consistent with previous observations in the literature. As a result of these analyses, it can be suggested that eclipses can cause a shielding effect on the geomagnetic field of the Earth. (paper)

  5. Regional variations in the health, environmental, and climate benefits of wind and solar generation.

    Science.gov (United States)

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger; Apt, Jay

    2013-07-16

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region.

  6. Longitudinal distribution of recurrent solar activity sources and its reflection in geomagnetic variations

    International Nuclear Information System (INIS)

    Letfus, V.; Apostolov, E.M.

    1980-01-01

    By analysing the autocorrelation function of the geomagnetic Asup(p)-index, a series of subsidiary maxima were found which seem to indicate that they correspond to periods considerably different from the solar rotation period. It was found that these subsidiary maxima are located symmetrically around the maxima of the first and second recurrences of the solar rotation period (and probably also around the subsequent ones). This fact leads to a model of two or more geoactive longitudes on the Sun. (author)

  7. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  8. Surface passivation of InP solar cells with InAlAs layers

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.

    1993-01-01

    The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.

  9. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  10. A new structure for comparing surface passivation materials of GaAs solar cells

    Science.gov (United States)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  11. Plane-concentrators solar collectors: analysis of the heating performance using surface resistances; Coletores solares plano-concentradores: analise do desempenho termico utilizando resistencias superficiais

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, I M.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C M [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1985-12-31

    In this work it is developed theoretical model which utilizes the Oppenheim concepts of surface and spatial resistances for thermal radiation transfer on solid surfaces in order to determine the heating performance of plane-concentrators solar collectors. It is shown that the shape factor for trapezoidal geometries, which includes the reflecting surfaces, may be utilized to determine the solar concentration chamber effective absorptivity with reasonable degree of accuracy. The experimental results measured on 2:1 plane-concentrators confirm the theoretical values. (author). 13 refs., 5 figs

  12. Plane-concentrators solar collectors: analysis of the heating performance using surface resistances; Coletores solares plano-concentradores: analise do desempenho termico utilizando resistencias superficiais

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, I.M.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C.M. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1984-12-31

    In this work it is developed theoretical model which utilizes the Oppenheim concepts of surface and spatial resistances for thermal radiation transfer on solid surfaces in order to determine the heating performance of plane-concentrators solar collectors. It is shown that the shape factor for trapezoidal geometries, which includes the reflecting surfaces, may be utilized to determine the solar concentration chamber effective absorptivity with reasonable degree of accuracy. The experimental results measured on 2:1 plane-concentrators confirm the theoretical values. (author). 13 refs., 5 figs

  13. Short-time variations of the solar neutrino luminosity (Fourier analysis of the argon-37 production rate data)

    International Nuclear Information System (INIS)

    Haubold, H.J.; Gerth, E.

    1985-01-01

    We continue the Fourier analysis of the argon-37 production rate for runs 18--80 observed in Davis' well known solar neutrino experiment. The method of Fourier analysis with the unequally-spaced data of Davis and associates is described and the discovered periods we compare with our recently published results for the analysis of runs 18--69 (Haubold and Gerth, 1983). The harmonic analysis of the data of runs 18--80 shows time variations of the solar neutrino flux with periods π = 8.33; 5.26; 2.13; 1.56; 0.83; 0.64; 0.54; and 0.50 years, respectively, which confirms our earlier computations

  14. The search for possible time variations in Davis' measurements of the argon production rate in the solar neutrino experiment

    International Nuclear Information System (INIS)

    Haubold, H.J.; Gerth, E.

    1985-01-01

    With the gradual accumulation of experimental data in the solar neutrino experiment of Davis and collaborators (runs 18-74 for 1970-1982), the question, whether there are time variations of the solar neutrino flux, is of renewed interest. We discuss the mathematical-numerical methods applied to the statistical analysis of Davis' argon-37 production rate up till now known in the literature. These methods are characterized by the arbitrary arrangement of the Davis data in a time series. We perform a certain Fourier transformation for unequally-spaced time series of the measuring data of the argon-37 production rate, discuss the discovered periods and give significance criteria with respect to each period. We find that all periods discussed in the literature are contained in our series of periods. Pointing out the more mathematical character of the time series analysis we emphasize the predominant significance of the detected periods. (author)

  15. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    OpenAIRE

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-01-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, w...

  16. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.

    Science.gov (United States)

    Tulsani, Srikanth Reddy; Rath, Arup Kumar

    2018-07-15

    The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Variability of solar radiation and CDOM in surface coastal waters of the northwestern Mediterranean sea

    OpenAIRE

    Sempéré, Richard; Para, J.; Tedetti, Marc; Charriere, B.; Mallet, M.

    2015-01-01

    Atmospheric and in-water solar radiation, including UVR-B, UVR-A and PAR, as well as chromophoric dissolved organic matter absorption [a(CDOM)()] in surface waters were monthly measured from November 2007 to December 2008 at a coastal station in the Northwestern Mediterranean Sea (Bay of Marseilles, France). Our results showed that the UVR-B/UVR-A ratio followed the same trend in the atmosphere and at 2m depth in the water (P

  18. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    International Nuclear Information System (INIS)

    Arora, Swati; Singh, Vinamrita; Arora, Manoj; Pal Tandon, Ram

    2012-01-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10 12 -10 13 cm -2 eV -1 , which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  19. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  20. Surface Traps in Colloidal Quantum Dot Solar Cells, their Mitigation and Impact on Manufacturability

    KAUST Repository

    Kirmani, Ahmad R.

    2017-07-30

    Colloidal quantum dots (CQDs) are potentially low-cost, solution-processable semiconductors which are endowed, through their nanoscale dimensions, with strong absorption, band gap tunability, high dielectric constants and enhanced stability. CQDs are contenders as a standalone PV technology as well as a potential back layer for augmenting established photovoltaic (PV) technologies, such as Si. However, owing to their small size (ca. few nanometers), CQDs are prone to surface trap states that inhibit charge transport and threaten their otherwise wonderful optoelectronic properties. Surface traps have also, indirectly, impeded scalable and industry-compatible fabrication of these solar cells, as all of the reports, to date, have relied on spin-coating with sophisticated and tedious ligand exchange schemes, some of which need to be performed in low humidity environments. In this thesis, we posit that an in-depth understanding of the process-structure-property-performance relationship in CQDs can usher in fresh insights into the nature and origin of surface traps, lead to novel ways to mitigate them, and finally help achieve scalable fabrication. To this end, we probe the CQD surfaces and their interactions with process solvents, linkers, and ambient environment employing a suite of spectroscopic techniques. These fundamental insights help us develop facile chemical and physical protocols to mitigate surface traps such as solvent engineering, remote molecular doping, and oxygen doping, directly leading to better-performing solar cells. Our efforts finally culminate in the realization of >10% efficient, air-stable CQD solar cells scalably fabricated in an ambient environment of high, uncontrolled R.H. (50-65%). As-prepared solar cells fabricated in high humidity ambient conditions are found to underperform, however, an oxygen-doping recipe is devised to mitigate the moisture-induced surface traps and recover device performances. Importantly, these solar cells are

  1. Contribution of Topography and Incident Solar Radiation to Variation of Soil and Plant Litter at an Area with Heterogeneous Terrain

    Directory of Open Access Journals (Sweden)

    Felipe Cito Nettesheim

    2015-06-01

    Full Text Available Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radiation throughout the year since its topography has slopes predominantly facing opposing geographic directions. Soil data (pH, C, N, P, H+Al, Ca, Mg, K, Al, Na, sand, and silt and plant litter data (N, K, Ca, P, and Mg were gathered together with the geographic coordinates (to model the spatial structure of 40 sampling units established at two sites composed of slopes predominantly facing northwest and southeast (20 units each. Soil and litter chemical properties varied more among slopes within similar geographic orientations than between the slopes facing opposing directions. Both the incident solar radiation and the spatial structure of the area were relevant in explaining the patterns detected in variation of soil and plant litter. Individual contributions of incident solar radiation to explain the variation in the properties evaluated suggested that this and other environmental factors may play a particularly relevant role in determining soil and plant litter distribution in tropical areas with heterogeneous topography. Furthermore, this study corroborates that the spatial structure of the area also plays an important role in the distribution of soil and litter within this type of landscape, which appears to be consistent with the action of water movement mechanisms in such areas.

  2. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  3. Orintsol. Surfaces with assorted inclination: software to calculate the solar radiation; Orientsol. Superficies con distinta inclinacion Software para el calculo de la radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Rus, C.; Almonacid, F.; Hontoria, L.; Perez, P. J.; Munoz, F. J.

    2009-07-01

    The Universidad de Jaen, conscious of the importance of using energy sources respectful with the environment, offers in its Technical Industry Engineer degree, in the specialties of: Mechanics, Electricity and Industrial electronics the optional subjects Solar electricity and Photovoltaic Facilities. With these matters is intended that the students acquire the capability of design, calculate, analyze their different applications. A fundamental aspect in solar facilities is how to know the incident radiation in the plant which we want to analyze or the size. Orintsol software tool, with a didactic aim, facilitates so teaching as learning about solar radiation received on inclined surfaces. (Author) 8 refs.

  4. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  5. Asteroseismic modelling of solar-type stars: internal systematics from input physics and surface correction methods

    Science.gov (United States)

    Nsamba, B.; Campante, T. L.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Rendle, B. M.; Reese, D. R.; Verma, K.

    2018-04-01

    Asteroseismic forward modelling techniques are being used to determine fundamental properties (e.g. mass, radius, and age) of solar-type stars. The need to take into account all possible sources of error is of paramount importance towards a robust determination of stellar properties. We present a study of 34 solar-type stars for which high signal-to-noise asteroseismic data is available from multi-year Kepler photometry. We explore the internal systematics on the stellar properties, that is, associated with the uncertainty in the input physics used to construct the stellar models. In particular, we explore the systematics arising from: (i) the inclusion of the diffusion of helium and heavy elements; and (ii) the uncertainty in solar metallicity mixture. We also assess the systematics arising from (iii) different surface correction methods used in optimisation/fitting procedures. The systematics arising from comparing results of models with and without diffusion are found to be 0.5%, 0.8%, 2.1%, and 16% in mean density, radius, mass, and age, respectively. The internal systematics in age are significantly larger than the statistical uncertainties. We find the internal systematics resulting from the uncertainty in solar metallicity mixture to be 0.7% in mean density, 0.5% in radius, 1.4% in mass, and 6.7% in age. The surface correction method by Sonoi et al. and Ball & Gizon's two-term correction produce the lowest internal systematics among the different correction methods, namely, ˜1%, ˜1%, ˜2%, and ˜8% in mean density, radius, mass, and age, respectively. Stellar masses obtained using the surface correction methods by Kjeldsen et al. and Ball & Gizon's one-term correction are systematically higher than those obtained using frequency ratios.

  6. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    International Nuclear Information System (INIS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-01-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 x 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density (J sc ) and 92.7% enhancement in conversion efficiency (η) over the untreated solar cell are obtained.

  7. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  8. Erratum: Correction to: Long- and Mid-Term Variations of the Soft X-ray Flare Character in Solar Cycles

    Science.gov (United States)

    Chertok, I. M.; Belov, A. V.

    2018-03-01

    Correction to: Solar Phys https://doi.org/10.1007/s11207-017-1169-1 We found an important error in the text of our article. On page 6, the second sentence of Section 3.2 "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± one Carrington rotation with a step of two rotations." should instead read "We studied the variations in soft X-ray flare characteristics in more detail by averaging them within the running windows of ± 2.5 Carrington rotations with a step of two rotations." We regret the inconvenience. The online version of the original article can be found at https://doi.org/10.1007/s11207-017-1169-1

  9. Solar center-limb variation of the Ca II K line and the Wilson-Bappu effect

    International Nuclear Information System (INIS)

    Engvold, O.; Marstad, N.C.

    1983-01-01

    New observations of the quiet Sun Ca II K line center-to-limb (C-L) have been made. The separation of the K 2 intensity peaks, the K 1 intensity minima and the intermediate width W 0 (the Wilson-Bappu width) are presented. It is shown that the C-L variation of all three parameters can be accounted for as a dependence on chromospheric column mass. The corresponding Ca II K line with parameters of 41 late type stars are also shown to vary in accordance with the inferred chromospheric column mass of the stars. The solar C-L and the stellar variation of the widths ΔK 1 and W 0 are found to have nearly indentical factors of proportionality with respect to log (column mass)

  10. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    Science.gov (United States)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  11. Regional variations in the health, environmental, and climate benefits of wind and solar generation

    Science.gov (United States)

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger; Apt, Jay

    2013-01-01

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region. PMID:23798431

  12. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    International Nuclear Information System (INIS)

    Lugaro, Maria; Liffman, Kurt; Ireland, Trevor R.; Maddison, Sarah T.

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16 O-rich CO and 16 O-poor H 2 O, where the H 2 O subsequently combined with interstellar dust to form relatively 16 O-poor solids within the solar nebula. Another model for creating the different reservoirs of 16 O-rich gas and 16 O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the 18 O/ 17 O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  13. Sudden transitions and grand variations in the solar dynamo, past and future

    NARCIS (Netherlands)

    de Jager, C.; Duhau, S.

    2012-01-01

    The solar dynamo is the exotic dance of the sun's two major magnetic field components, the poloidal and the toroidal, interacting in anti-phase. On the basis of new data on the geomagnetic aa index, we improve our previous forecast of the properties of the current Schwabe cycle #24. Its maximum will

  14. Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM).

    Science.gov (United States)

    Moosavi, Fatemeh Sadat; Tavakoli, Touraj

    2016-11-01

    In this study, the solar photocatalytic process in a pilot plant with compound parabolic collectors (CPCs) was performed for amoxicillin (AMX) degradation, an antibiotic widely used in the world. The response surface methodology (RSM) based on Box-Behnken statistical experiment design was used to optimize independent variables, namely TiO 2 dosage, antibiotic initial concentration, and initial pH. The results showed that AMX degradation efficiency affected by positive or negative effect of variables and their interactions. The TiO 2 dosage, pH, and interaction between AMX initial concentration and TiO 2 dosage exhibited a synergistic effect, while the linear and quadratic term of AMX initial concentration and pH showed antagonistic effect in the process response. Response surface and contour plots were used to perform process optimization. The optimum conditions found in this regard were TiO 2 dosage = 1.5 g/L, AMX initial concentration = 17 mg/L, and pH = 9.5 for AMX degradation under 240 min solar irradiation. The photocatalytic degradation of AMX after 34.95 kJ UV /L accumulated UV energy per liter of solution was 84.12 % at the solar plant.

  15. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    Science.gov (United States)

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  16. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  17. Lunar nitrogen: Secular variation or mixing?

    International Nuclear Information System (INIS)

    Norris, S.J.; Wright, I.P.; Pillinger, C.T.

    1986-01-01

    The two current models to explain the nearly 40% variation of the lunar nitrogen isotopic composition are: (1) secular variation of solar wind nitrogen; and (2) a two component mixing model having a constant, heavy solar wind admixed with varying amounts of indigenous light lunar N (LLN). Both models are needed to explain the step pyrolysis extraction profile. The secular variation model proposes that the low temperature release is modern day solar wind implanted into grain surfaces, the 900 C to 1100 C release is from grain surfaces which were once exposed to the ancient solar wind but which are now trapped inside agglutinates, and the >1100 C release as spallogenic N produced by cosmic rays. The mixing model ascribes the components to solar wind, indigenous lunar N and spallogenic N respectively. An extension of either interpretation is that the light N seen in lunar breccias or deep drill cores represent conditions when more N-14 was available to the lunar surface

  18. Variations and asymmetries in regional brain surface in the genus Homo.

    Science.gov (United States)

    Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique

    2012-06-01

    Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright

  19. Variation of air--water gas transfer with wind stress and surface viscoelasticity

    OpenAIRE

    Frew, Nelson M.; Bock, Erik J.; McGillis, Wade R.; Karachintsev, Andrey V.; Hara, Tetsu; Münsterer, Thomas; Jähne, Bernd

    1995-01-01

    Previous parameterizations of gas transfer velocity have attempted to cast this quantity as a function of wind speed or wind-stress. This study demonstrates that the presence of a surface film is effective at reducing the gas transfer velocity at constant wind-stress. Gas exchange experiments were performed at WHOI and UH using annular wind-wave tanks of different scales. Systematic variations of wind-stress and surfactant concentration (Triton-X-100) were explored to determ...

  20. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    Science.gov (United States)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  1. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  2. Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing

    Science.gov (United States)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.

  3. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik; McDonnell, Stephen; Barrera, Diego; Guo, Zaibing; Azcatl, Angelica; Wang, Jian; Zhu, Hui; Hinkle, Christopher L.; Quevedo-Lopez, Manuel; Alshareef, Husam N.; Colombo, Luigi; Hsu, Julia W P; Wallace, Robert M.

    2015-01-01

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  4. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  5. Modeling Surface Processes Occurring on Moons of the Outer Solar System

    Science.gov (United States)

    Umurhan, O. M.; White, O. L.; Moore, J. M.; Howard, A. D.; Schenk, P.

    2016-12-01

    A variety of processes, some with familiar terrestrial analogs, are known to take place on moon surfaces in the outer solar system. In this talk, we discuss the observed features of mass wasting and surface transport seen on both Jupiter's moon Calisto and one of Saturn's Trojan moons Helene. We provide a number of numerical models using upgraded version of MARSSIM in support of several hypotheses suggested on behalf of the observations made regarding these objects. Calisto exhibits rolling plains of low albedo materials surrounding relatively high jutting peaks harboring high albedo deposits. Our modeling supports the interpretation that Calisto's surface is a record of erosion driven by the sublimation of CO2 and H2O contained in the bedrock. Both solar insolation and surface re-radiation drives the sublimation leaving behind debris which we interpret to be the observed darkened regolith and, further, the high albedo peaks are water ice deposits on surface cold traps. On the other hand, the 45 km scale Helene, being a milligravity environment, exhibits mysterious looking streaks and grooves of very high albedo materials extending for several kilometers with a down-sloping grade of 7o-9o. Helene's cratered terrain also shows evidence of narrowed septa. The observed surface features suggest some type of advective processes are at play in this system. Our modeling lends support to the suggestion that Helene's surface materials behave as a Bingham plastic material - our flow modeling with such rheologies can reproduce the observed pattern of streakiness depending upon the smoothness of the underlying bedrock; the overall gradients observed; and the narrowed septa of inter-crater regions.

  6. Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model

    Science.gov (United States)

    Brown, Steven; Bilitza, Dieter; Yiǧit, Erdal

    2018-06-01

    A new monthly ionospheric index, IGNS, is presented to improve the representation of the solar cycle variation of the ionospheric F2 peak plasma frequency, foF2. IGNS is calculated using a methodology similar to the construction of the "global effective sunspot number", IG, given by Liu et al. (1983) but selects ionosonde observations based on hemispheres. We incorporated the updated index into the International Reference Ionosphere (IRI) model and compared the foF2 model predictions with global ionospheric observations. We also investigated the influence of the underlying foF2 model on the IG index. IRI has two options for foF2 specification, the CCIR-66 and URSI-88 foF2 models. For the first time, we have calculated IG using URSI-88 and assessed the impact on model predictions. Through a retrospective model-data comparison, results show that the inclusion of the new monthly IGNS index in place of the current 12-month smoothed IG index reduce the foF2 model prediction errors by nearly a factor of two. These results apply to both day-time and nightime predictions. This is due to an overall improved prediction of foF2 seasonal and solar cycle variations in the different hemispheres.

  7. Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon

    International Nuclear Information System (INIS)

    Chen, H. Y.; Peng, Y.; Hong, M.; Zhang, Y. B.; Cai, Bin; Zhu, Y. M.; Yuan, G. D.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Li, J. M.

    2014-01-01

    We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production

  8. Theoretical Calculations of the Seasonal and Solar Activity Variations for Ionospheric Collision Frequency and Debye Length over Baghdad City

    Directory of Open Access Journals (Sweden)

    Ali Hussein Ni'ma

    2017-03-01

    Full Text Available In this study, two important ionospheric factors have been calculated, the collision frequency of electron and Deby length for a height range from 80 Km to a height approaching the maximum height of the F2 region of the ionosphere above the Earth's surface. Both above factors have been calculated for two different levels of solar activity and for two seasons (winter and summer. Also, six months were adopted for every level of solar activity and season. The estimation of collision frequency of electron is depends on the contribution of neutral constituents and ions. Three neutral atmospheric gases have been adopted to calculate the collision frequency, Molecular and atomic oxygen O2 and O respectively and molecular nitrogen N2, as well as the singly charged ions were taken into account in calculation.

  9. Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as a guide for future development of physics-based transposition models.

  10. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  11. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  12. Towards better description of solar activity variation in the International Reference Ionosphere topside ion composition model

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila

    2015-01-01

    Roč. 55, č. 8 (2015), s. 2099-2105 ISSN 0273-1177 R&D Projects: GA MŠk(CZ) LH11123 Institutional support: RVO:68378289 Keywords : ion composition * topside ionosphere * solar activity * empirical model * International Reference Ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.409, year: 2015 http://www.sciencedirect.com/science/article/pii/S027311771400489X

  13. The Solar Cycle Variation of Coronal Temperature and Density During Cycle 21-22

    Science.gov (United States)

    1994-06-15

    We notice that a dramatic change in the intensity ratio implies a small change in temperature and therefore the precise calibration of each...The higher temperature material of these zones tends to lie over regions where magnetograph observations indicate a change in polarity of weak large...SPIE, 331,442, 1982. 7. Altrock, LC., Clmate Impact of Solar Variability Greenbelt, MD, NASA Conf. Publ. 3086, p. 287, 1990. 8. Fisher, LRL., McCabe, M

  14. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  15. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology.

    Science.gov (United States)

    Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R

    2018-08-01

    In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Annual variations in the solar energy conversion efficiency in a willow coppice stand

    International Nuclear Information System (INIS)

    Noronha-Sannervik, A.; Kowalik, P.

    2003-01-01

    Productivity of an experimental willow coppice forest located at Uppsala, Sweden, was monitored between 1985 and 1994. The 2.7 ha stand was planted in 1984 with a density of 20 000 cuttings per ha and was harvested three times. During the monitored period, the annual stem wood production and the cumulated values of total solar radiation during the growing season, were measured. The conversion of incoming solar radiation into stem biomass was evaluated and the results show that the solar energy conversion efficiency (ECE), for the first and fourth year of the cutting cycle, is, on average, 64% of the ECE for the second and third year of the cutting cycle. It is discussed that the low ECE of 1-year-old shoots is related to a delay in leaf canopy development at the beginning of the growing season and lack of weed control after harvest. For the 4-years-old shoots, the low ECE, is believed to be related to the increased shoot and stool mortality caused by the self-thinning process ongoing in the willow stand. It is recommended that the harvesting interval should be based on the specific development of the stand and more attention should be paid to weed control, especially in the first growing season after harvest

  17. Sudden transitions and grand variations in the solar dynamo, past and future☆

    Directory of Open Access Journals (Sweden)

    De Jager Cornelis

    2012-06-01

    Full Text Available The solar dynamo is the exotic dance of the sun’s two major magnetic field components, the poloidal and the toroidal, interacting in anti-phase. On the basis of new data on the geomagnetic aa index, we improve our previous forecast of the properties of the current Schwabe cycle #24. Its maximum will occur in 2013.5 and the maximum sunspot number Rmax will then be 62 ± 12, which is within the bounds of our earlier forecasts. The subsequent analysis, based on a phase diagram, which is a diagram showing the relation between maximum sunspot numbers and minimum geomagnetic aa index values leads to the conclusion that a new Grand Episode in solar activity has started in 2008. From the study of the natural oscillations in the sunspot number time series, as found by an analysis based on suitable wavelet base functions, we predict that this Grand Episode will be of the Regular Oscillations type, which is the kind of oscillations that also occurred between 1724 and 1924. Previous expectations of a Grand (Maunder-type Minimum of solar activity cannot be supported. We stress the significance of the Hallstatt periodicity for determining the character of the forthcoming Grand Episodes. No Grand Minimum is expected to occur during the millennium that has just started.

  18. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  19. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  20. Theoretical variations of the thermal performance of different solar collectors and solar combi systems as function of the varying yearly weather conditions in Denmark

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2009-01-01

    The thermal performances of solar collectors and solar combi systems with different solar fractions are studied under the influence of the Danish Design Reference Year, DRY data file, and measured weather data from a solar radiation measurement station situated at the Technical University of Denm...

  1. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  2. Spectro-Polarimetry of Fine-Grained Ice and Dust Surfaces Measured in the Laboratory to Study Solar System Objects and Beyond

    Science.gov (United States)

    Poch, O.; Cerubini, R.; Pommerol, A.; Thomas, N.; Schmid, H. M.; Potin, S.; Beck, P.; Schmitt, B.; Brissaud, O.; Carrasco, N.; Szopa, C.; Buch, A.

    2017-12-01

    The polarization of the light is very sensitive to the size, morphology, porosity and composition of the scattering particles. As a consequence, polarimetric observations could significantly complement observations performed in total light intensity, providing additional constraints to interpret remote sensing observations of Solar System and extra-solar objects. This presentation will focus on measurements performed in the laboratory on carefully characterized surface samples, providing reference data that can be used to test theoretical models and predict or interpret spectro-polarimetric observations. Using methods developed in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern, we produce well-characterized and reproducible surfaces made of water ice particles having different grain sizes and porosities, as well as mineral/organic dusts, pure or mixed together, as analogues of planetary or small bodies surfaces. These surface samples are illuminated with a randomly polarized light source simulating the Sun. The polarization of their scattered light is measured at multiple phase angles and wavelengths, allowing to study the shape of the polarimetric phase curves and their spectral dependence, with two recently developed setups: The POLarimeter for Icy Samples (POLICES), at the University of Bern, allows the measurement of the weak polarization of ice surfaces from 400 to 800 nm, with direct application to icy satellites. Using a precision Stokes polarimeter, this setup is also used to study the spectral variations of circular polarization in the light scattered by biotic versus abiotic surfaces. The Spectrogonio radiometer with cHanging Angles for Detection Of Weak Signals (SHADOWS), at IPAG (University of Grenoble Alpes), measures linear polarization spectra from 0.35 to 5 μm in the light scattered by dark meteorite powders or icy samples, with application to primitive objects of the Solar System (asteroids, comets).

  3. Spatial variation in spoil and vegetative characteristics of pastures on reclaimed surface mined land

    International Nuclear Information System (INIS)

    Teutsch, C.D.; Collins, M.; Ditsch, D.C.

    1999-01-01

    Kentucky has large areas of reclaimed surface mined land that could provide grazing for livestock. Research is needed to determine optimal stocking densities and to evaluate the sustainability of such grazing systems for this region. A long-term grazing study was initiated in 1997 on 151 ha of reclaimed land near Chavies, KY to determine spatial and temporal variation with stocking densities of 0, 0.28, 0.42, or 0.83 beef cow-calf units/ha. Global Positioning System and GIS technologies were used to establish pasture boundaries, locate permanent sampling markers at a density of 1 per 0.4 ha, and interpolate maps of physical, spoil, and vegetable pasture characteristics. Herbage and spoil samples were collected around the permanent markers in May of 1997. Stepwise regression was used to determine factors affecting the vegetative characteristics of the sites. Biomass density ranged from 0 to 2500 kg/ha with a mean of 570 kg/ha. Factors affecting biomass included legume and weed proportions in the sward, grazing activity, soil potassium, elevation, and potential acidity, cumulatively accounting for 32% of the variation. Ground cover ranged from 10 to 100% with an average of 74%. Soil pH, potassium, and grass in the sward accounted for 14% of the variation in ground cover. Legumes made up 0 to 61% of the sward with a mean of 13% over the pasture area. Variables affecting the amount of legume in the sward included biomass density, slope, elevation, pH, and stocking density, together accounting for 21% of the variation. Spatial variation in the physical, spoil, and vegetative characteristics of the pastures was large. Overall, regression accounted for a limited amount of the variation in the vegetative characteristics of the site indicating that other important variables exist

  4. Temporal variation of 228Ra in the near-surface Gulf of Mexico

    International Nuclear Information System (INIS)

    Reid, F.D.; Moore, W.S.; Sackett, W.M.

    1979-01-01

    The Mn-fiber technique for extracting radium from seawater has proved useful for studying the marine geochemistry of 228 Ra. In the Gulf of Mexico, this technique was used to measure the surface and near-surface distribution of 226 Ra and 228 Ra. The observed surface distribution of 228 Ra, and particularly the radium activity ratio (228/226) can be explained by known circulation patterns, or, when local surface currents are not well understood, may provide insight into their general characteristics. The radium activity ratio has increased from 0.5 in 1968 to 0.7 in 1973 in the surface Gulf of Mexico. This observed increase cannot be attributed to known anthropogenic or natural source perturbations within the Caribbean Sea-Gulf of Mexico system. Possible causes include a change in the residence time for near-surface water, or variations in the relative dominance of the two eastern Caribbean; the North Equatorial Current and the Guiana Current. The temporal distribution of 228 Ra is unstable and naturally variable over a time period less than or equal to five years in the Gulf of Mexico and by extrapolation, the Caribbean Sea. Therefore, its usefulness in calculations of eddy diffusion coefficients for these regions is greatly diminished. (Auth.)

  5. Back surface studies of Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Simchi, Hamed

    Cu(In,Ga)Se2 thin film solar cells have attracted a lot of interest because they have shown the highest achieved efficiency (21%) among thin film photovoltaic materials, long-term stability, and straightforward optical bandgap engineering by changing relative amounts of present elements in the alloy. Still, there are several opportunities to further improve the performance of the Cu(In,Ga)Se2 devices. The interfaces between layers significantly affect the device performance, and knowledge of their chemical and electronic structures is essential in identifying performance limiting factors. The main goal of this research is to understand the characteristics of the Cu(In,Ga)Se2-back contact interface in order to design ohmic back contacts for Cu(In,Ga)Se2-based solar cells with a range of band gaps and device configurations. The focus is on developing either an opaque or transparent ohmic back contact via surface modification or introduction of buffer layers in the back surface. In this project, candidate back contact materials have been identified based on modeling of band alignments and surface chemical properties of the absorber layer and back contact. For the first time, MoO3 and WO 3 transparent back contacts were successfully developed for Cu(In,Ga)Se 2 solar cells. The structural, optical, and surface properties of MoO 3 and WO3 were optimized by controlling the oxygen partial pressure during reactive sputtering and post-deposition annealing. Valence band edge energies were also obtained by analysis of the XPS spectra and used to characterize the interface band offsets. As a result, it became possible to illuminate of the device from the back, resulting in a recently developed "backwall superstrate" device structure that outperforms conventional substrate Cu(In,Ga)Se2 devices in the absorber thickness range 0.1-0.5 microm. Further enhancements were achieved by introducing moderate amounts of Ag into the Cu(In,Ga)Se2 lattice during the co-evaporation method

  6. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data

    Science.gov (United States)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.

    2018-01-01

    Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north

  7. Sb₂S₃ surface modification induced remarkable enhancement of TiO₂ core/shell nanowries solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiuqing, E-mail: xqmeng@semi.ac.cn [Research Center for Light Emitting Diodes (LED), Zhejiang Normal University, Jinhua 321004 (China); Wang, Xiaozhou; Zhong, Mianzeng; Wu, Fengmin; Fang, Yunzhang [Research Center for Light Emitting Diodes (LED), Zhejiang Normal University, Jinhua 321004 (China)

    2013-05-01

    This study presents the fabrication of a novel dye-sensitized solar cell with Sb₂S₃-modified TiO₂ nanowire (NW) arrays/TiO₂ nanoparticles (NP) (TiO₂(NWs)/TiO₂(NPs)/Sb₂S₃) as the anodes and N719 dye as the sensitizer. A solar conversion efficiency of 4.91% at 1 sun illumination was achieved for the composite cell, which is markedly higher than the efficiency rates obtained using TiO₂ and TiO₂(NWs)/Sb₂S₃/TiO₂(NPs) NW cells, calculated at 2.36% and 3.11%, respectively. The improved efficiency results from the large surface area of the NPs, as well as the expansion of the light absorption region and high absorption coefficient by Sb₂S₃ surface modification. - Graphical abstract: A novel TiO₂(NWs)/TiO₂(NPs)/Sb₂S₃ dye sensitized solar cells (DSSCs) is fabricated, a solar conversion efficiency of 4.91 % at 1 sun illumination is achieved. Highlights: • We fabricate sandwich structured TiO₂ dye-sensitized solar cells. • The anode of the solar cells consist of Sb₂S₃ modified TiO₂ nanowire arrays/TiO₂ nanopartices. • A solar conversion efficiency of 4.91% at 1 sun illumination is achieved. • The high efficiency results from large surface area and expanded light adsorption of the anode.

  8. Degradation of unglazed rough graphite-aluminium solar absorber surfaces in simulated acid and neutral rain

    International Nuclear Information System (INIS)

    Konttinen, P.; Lund, P.D.; Salo, T.

    2005-01-01

    Degradation mechanisms of unglazed solar absorber surfaces based on aluminium substrate were studied. Rough graphite-aluminium surfaces were total-immersion subjected to aerated and de-aerated simulated neutral and acid rain. Test conditions were based on calculated absorber stagnation temperature and global rain acidity measurements. Changes in optical properties, elemental composition and sample mass were examined by spectrometry, energy dispersive X-ray spectrometry and thermogravimetry, respectively. The absorbers exhibited almost no degradation at pH value of 3.5. At pH 5.5 alumina on the surface hydrated significantly degrading the optical properties of the surfaces severely in most cases. Therefore these absorber surfaces can not be recommended to be used in non-glazed applications if they are exposed to rain with pH exceeding ∼ 3.5-4.5. The total-immersion test needs to be developed further as the test results exhibited poor temperature and time dependency thus preventing accurate service lifetime estimates. Still, these tests were useful in determining favourable and non-favourable operating conditions for the absorber surfaces based on aluminium substrate. (author)

  9. Nitrate Deposition to Surface Snow at Summit, Greenland, Following the 9 November 2000 Solar Proton Event

    Science.gov (United States)

    Duderstadt, Katharine A.; Dibb, Jack E.; Schwadron, Nathan A.; Spence, Harlan E.; Jackman, Charles Herbert; Randall, Cora E.; Solomon, Stanley C.; Mills, Michael J.

    2014-01-01

    This study considers whether spurious peaks in nitrate ions in snow sampled at Summit, Greenland from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, SPE-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate ion peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies.

  10. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    International Nuclear Information System (INIS)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.; Gupta, Neeraj; Sharma, G. D.

    2016-01-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  11. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  12. EVIDENCE OF FILAMENT UPFLOWS ORIGINATING FROM INTENSITY OSCILLATIONS ON THE SOLAR SURFACE

    International Nuclear Information System (INIS)

    Cao, Wenda; Goode, Philip R.; Ning, Zongjun; Yurchyshyn, Vasyl; Ji Haisheng

    2010-01-01

    A filament footpoint rooted in an active region (NOAA 11032) was well observed for about 78 minutes with the 1.6 m New Solar Telescope at the Big Bear Solar Observatory on 2009 November 18 in Hα ±0.75 A. This data set had high cadence (∼15 s) and high spatial resolution (∼0.''1) and offered a unique opportunity to study filament dynamics. As in previous findings from space observations, several dark intermittent upflows were identified, and they behave in groups at isolated locations along the filament. However, we have two new findings. First, we find that the dark upflows propagating along the filament channel are strongly associated with the intensity oscillations on the solar surface around the filament footpoints. The upflows start at the same time as the peak in the oscillations, illustrating that the upflow velocities are well correlated with the oscillations. Second, the intensity of one of the seven upflows detected in our data set exhibits a clear periodicity when the upflow propagates along the filament. The periods gradually vary from ∼10 to ∼5 minutes. Our results give observational clues on the driving mechanism of the upflows in the filament.

  13. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    Science.gov (United States)

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  14. Solar Irradiance Changes And Photobiological Effects At Earth's Surface Following Astrophysical Ionizing Radiation Events

    Science.gov (United States)

    Thomas, Brian; Neale, Patrick

    2016-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in

  15. The Radial Variation of the Solar Wind Temperature-Speed Relationship

    Science.gov (United States)

    Elliott, H. A.; McComas, D. J.

    2010-12-01

    Generally, the solar wind temperature (T) and speed (V) are well correlated except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We have shown that at 1 AU the speed-temperature relationship is often well represented by a linear fit for a speed range spanning both the slow and fast wind. By examining all of the ACE and OMNI measurements, we found that when coronal holes are large the fast wind can have a different T-V relationship than the slow wind. The best example of this was in 2003 when there was a very large and long-lived outward polarity coronal hole at low latitudes. The long-lived nature of the hole made it possible to clearly distinguish that large holes can have a different T-V relationship. We found it to be rare that holes are large enough and last long enough to have enough data points to clearly demonstrate this effect. In this study we compare the 2003 coronal hole observations from ACE with the Ulysses polar coronal hole measurements. In an even earlier ACE study we found that both the compressions and rarefactions curves are linear, but the compression curve is shifted to higher temperatures. In this presentation we use Helios, Ulysses, and ACE measurements to examine how the T-V relationship varies with distance. The dynamic evolution of the solar wind parameters is revealed when we first separate compressions and rarefactions and then determine the radial profiles of the solar wind parameters. We find that T-V relationship varies with distance and in particular beyond 3 AU the differences between the compressions and rarefactions are quite important and at such distances a simple linear fit does not represent the T-V distribution very well.

  16. A Simple PV Inverter Power Factor Control Method Based on Solar Irradiance Variation

    DEFF Research Database (Denmark)

    Gökmen, Nuri; Hu, Weihao; Chen, Zhe

    2017-01-01

    There has been a significant rise in photovoltaic (PV) system installations throughout the last decade. This has posed some technical challenges to the distribution grid operators. Unfamiliar impacts of these relatively new energy sources now should be handled more comprehensively. The rigidity...... of these impacts mostly depends on PV penetration level, grid and weather characteristics as well as the interaction of load and generation. In this study, a reactive power control method is proposed benefitting from solar irradiance measurements in weather stations. Accordingly, power factors of PV inverters...

  17. Variation in Pockels constants of silicate glass-ceramics prepared by perfect surface crystallization

    Science.gov (United States)

    Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi

    2018-01-01

    We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.

  18. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  19. Relation of lifetime to surface passivation for atomic-layer-deposited Al2O3 on crystalline silicon solar cell

    International Nuclear Information System (INIS)

    Cho, Young Joon; Song, Hee Eun; Chang, Hyo Sik

    2015-01-01

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al 2 O 3 layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al 2 O 3 passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al 2 O 3 growth. In the solar-cell manufacturing process, ALD Al 2 O 3 passivation is utilized to obtain higher conversion efficiency. ALD Al 2 O 3 shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al 2 O 3 surface passivation

  20. Seasonal Variations in Surface Metabolite Composition of Fucus vesiculosus and Fucus serratus from the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Esther Rickert

    Full Text Available Perennial macroalgae within the genus Fucus are known to exude metabolites through their outer thallus surface. Some of these metabolites have pro- and/or antifouling properties. Seasonal fluctuations of natural fouling pressure and chemical fouling control strength against micro- and macrofoulers have previously been observed in Fucus, suggesting that control strength varies with threat. To date, a study on the seasonal composition of surface associated metabolites, responsible for much of the fouling control, has not been done. We sampled individuals of the two co-occurring species F. vesiculosus and F. serratus at monthly intervals (six per species and month during a one-year field study. We analysed the chemical composition of surface associated metabolites of both Fucus species by means of gas chromatography-mass spectrometry (GC-MS to describe temporal patterns in chemical surface composition. Additionally, we correlated abiotic and biotic parameters recorded monthly within the sampled habitat with the variation in the chemical surface landscape of Fucus. Our study revealed that the chemical surface composition of both Fucus species exhibits substantial seasonal differences between spring/summer and autumn/winter months. Light and temperature explained most of the seasonal variability in surface metabolite composition of both Fucus species. A strong summerly up-regulation of eighteen saccharides and two hydroxy acids in F. vesiculosus as well as of four fatty acids and two saccharides in F. serratus was observed. We discuss how these up-regulated molecules may have a complex effect on associated microfoulers, both promoting or decreasing fouling depending on metabolite and bacterial identity. These seasonal shifts in the surface metabolome seem to exert a compound control of density and composition of the Fucus associated biofilm.

  1. Study of the temporal and spatial variation of climate and solar radiation in th metropolitan Phoenix area. Final technical progress report, July 1, 1977-June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Durrenberger, R.W.

    1978-09-29

    The research performed was designed to identify spatial or temporal variation of any atmospheric parameters that might affect the operation of devices utilizing solar energy in the metropolitan Phoenix area. The first part of the research involved the analysis of all available solar and climatic data to determine their validity and comparability. For the standard climatic parameters, few difficulties were encountered, but the task of determining comparability of solar radiation data involved many pitfalls. It was concluded that most of the solar data acquired before January 1977 could not be used for purposes of identifying spatial variability. And, a year and a half of data does not represent a long enough period of time upon which to base sound conclusions about spatial and temporal variability of solar radiation in the metropolitan Phoenix region. The data currently available to us do not indicate any great variation of solar radiation in the metropolitan Phoenix area. However, any meaningful statements about spatial and temporal variability of solar radiation in the metropolitan Phoenix area must await the acquisition of additional data from well-calibrated equipment.

  2. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  3. Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness

    Science.gov (United States)

    Yin, Xiufeng; Kang, Shichang; de Foy, Benjamin; Cong, Zhiyuan; Luo, Jiali; Zhang, Lang; Ma, Yaoming; Zhang, Guoshuai; Rupakheti, Dipesh; Zhang, Qianggong

    2017-09-01

    Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of ˜ 5 years (January 2011 to October 2015), which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation) was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a

  4. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    Science.gov (United States)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  5. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.

    Science.gov (United States)

    Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M

    2017-11-07

    Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms

  6. Electron density variations in the F2 layer maximum during solar activity cycle

    International Nuclear Information System (INIS)

    Besprozvannaya, A.S.; Kozina, P.E.; AN Kazakhskoj SSR, Alma-Ata. Sektor Ionosfery)

    1988-01-01

    R value, characterizing for F2 relation of hourly median values in solar activity minimum and maximum, is calculated by average monthly values of F2 layer critical frequencies for June, October and December 1958 and 1964. R latitudinal-temporal distributions are plotted for different seasons according to the data from the north hemisphere west and east stations, placed within the Φ'=35-70deg latitudes interval. The following peculiarities of F2 lyer ionization relation with solar activity are pointed out. There are day-time hours, they are - winter one characterized by the gain rate increase with the widths increase, and summer one, realizing the opposite regularity. In night-time hours R value is characterized by the abnormally low values (∼ 1.2) at the latitudes to the south of the ionospheric through and to the pole from it. For all three seasons during 24 hours the periods with ionization gain maximal rate, which occur at nights in summer time and in the hours after the sunset - in winter and equinoctial months, are observed. The quantitative explanation of the peculiarities detected concerning the to-day concepts on F2 layer formation mechanisms is given

  7. Solar Cycle Variation of Upper Thermospheric Temperature Over King Sejong Station, Antarctica

    Science.gov (United States)

    Chung, Jong-Kyun; Won, Young-In; Kim, Yong-Ha; Lee, Bang-Yong; Kim, Jhoon

    2000-12-01

    A ground Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0 nm) from the thermosphere (about 250 km) at King Sejong station (KSS, geographic: 62.22oS, 301.25oE; geomagnetic: 50.65oS, 7.51oE), Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400 K in 1989 and 800 K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.

  8. Solar Cycle Variation of Upper Thermospheric Temperature Over King Sejong Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    2000-12-01

    Full Text Available A ground Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0 nm from the thermosphere (about 250 km at King Sejong station (KSS, geographic: 62.22oS, 301.25oE; geomagnetic: 50.65oS, 7.51oE, Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400 K in 1989 and 800 K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.

  9. Detection of a surface breaking crack by using the centroid variations of laser ultrasonic spectrums

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Lim, Chang Hwan; Joo, Young Sang; Jung, Hyun Kyu; Cha, Hyung Ki; Kang, Young June

    2006-01-01

    A laser ultrasonic system is a non-contact inspection device with a wide-band spectrum and a high spatial resolution. It provides absolute measurements of the moving distance and it can be applied to hard-to-access locations including curved or rough surfaces like in a nuclear power plant. In this paper, we have investigated the detection methods of the depth of a surface-breaking crack by using the surface wave of a laser ultrasound. The filtering function of a surface-breaking crack is a kind of a low-pass filter. The higher frequency components are more highly decreased in proportion to the crack depth. Also, the center frequency value of each ultrasound spectrum is decreased in proportion to the crack depth. We extracted the depth information of a surface-breaking crack by observing the centroid variation of the frequency spectrum. We describe the experimental results to detect the crack depth information by using the peak-to-valley values in the time domain and the center frequency values in the frequency domain.

  10. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    Science.gov (United States)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  11. Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters.

    Science.gov (United States)

    Kapoor, Vikram; Wendell, David

    2013-05-08

    Antibiotics are difficult to selectively remove from surface waters by present treatment methods. Bacterial efflux pumps have evolved the ability to discriminately expel antibiotics and other noxious agents via proton and ATP driven pathways. Here, we describe light-dependent removal of antibiotics by engineering the bacterial efflux pump AcrB into a proteovesicle system. We have created a chimeric protein with the requisite proton motive force by coupling AcrB to the light-driven proton pump Delta-rhodopsin (dR) via a glycophorin A transmembrane domain. This creates a solar powered protein material capable of selectively capturing antibiotics from bulk solutions. Using environmental water and direct sunlight, our AcrB-dR vesicles removed almost twice as much antibiotic as the treatment standard, activated carbon. Altogether, the AcrB-dR system provides an effective means of extracting antibiotics from surface waters as well as potential antibiotic recovery through vesicle solubilization.

  12. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  13. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products

    Science.gov (United States)

    Lai, Jiameng; Zhan, Wenfeng; Huang, Fan; Quan, Jinling; Hu, Leiqiu; Gao, Lun; Ju, Weimin

    2018-05-01

    The temporally regular and spatially comprehensive monitoring of surface urban heat islands (SUHIs) have been extremely difficult, until the advent of satellite-based land surface temperature (LST) products. However, these LST products have relatively higher errors compared to in situ measurements. This has resulted in comparatively inaccurate estimations of SUHI indicators and, consequently, may have distorted interpretations of SUHIs. Although reports have shown that LST qualities are important for SUHI interpretations, systematic investigations of the response of SUHI indicators to LST qualities across cities with dissimilar bioclimates are rare. To address this issue, we chose eighty-six major cities across mainland China and analyzed SUHI intensity (SUHII) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The LST-based SUHII differences due to inclusion or exclusion of MODIS quality control (QC) flags (i.e., ΔSUHII) were evaluated. Our major findings included, but are not limited to, the following four aspects: (1) SUHIIs can be significantly impacted by MODIS QC flags, and the associated QC-induced ΔSUHIIs generally accounted for 24.3% (29.9%) of the total SUHII value during the day (night); (2) the ΔSUHIIs differed between seasons, with considerable differences between transitional (spring and autumn) and extreme (summer and winter) seasons; (3) significant discrepancies also appeared among cities located in northern and southern regions, with northern cities often possessing higher annual mean ΔSUHIIs. The internal variations of ΔSUHIIs within individual cities also showed high heterogeneity, with ΔSUHII variations that generally exceeded 5.0 K (3.0 K) in northern (southern) cities; (4) ΔSUHIIs were negatively related to SUHIIs and cloud cover percentages (mostly in transitional seasons). No significant relationship was found in the extreme seasons. Our findings highlight the need to be extremely cautious when using LST

  14. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Science.gov (United States)

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  15. Photospheric Observations of Surface and Body Modes in Solar Magnetic Pores

    Science.gov (United States)

    Keys, Peter H.; Morton, Richard J.; Jess, David B.; Verth, Gary; Grant, Samuel D. T.; Mathioudakis, Mihalis; Mackay, Duncan H.; Doyle, John G.; Christian, Damian J.; Keenan, Francis P.; Erdélyi, Robertus

    2018-04-01

    Over the past number of years, great strides have been made in identifying the various low-order magnetohydrodynamic wave modes observable in a number of magnetic structures found within the solar atmosphere. However, one aspect of these modes that has remained elusive, until now, is their designation as either surface or body modes. This property has significant implications for how these modes transfer energy from the waveguide to the surrounding plasma. Here, for the first time to our knowledge, we present conclusive, direct evidence of these wave characteristics in numerous pores that were observed to support sausage modes. As well as outlining methods to detect these modes in observations, we make estimates of the energies associated with each mode. We find surface modes more frequently in the data, as well as that surface modes appear to carry more energy than those displaying signatures of body modes. We find frequencies in the range of ∼2–12 mHz, with body modes as high as 11 mHz, but we do not find surface modes above 10 mHz. It is expected that the techniques we have applied will help researchers search for surface and body signatures in other modes and in differing structures from those presented here.

  16. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    Science.gov (United States)

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  17. Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Campante, T. L.; Chaplin, W. J.; Handberg, R.; Miglio, A.; Davies, G. R.; Elsworth, Y. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, M. N.; Arentoft, T.; Christensen-Dalsgaard, J.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Huber, D. [NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 (United States); Hekker, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Amsterdam (Netherlands); García, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot (France); IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Corsaro, E. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Basu, S. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Bedding, T. R. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Kawaler, S. D., E-mail: campante@bison.ph.bham.ac.uk [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); and others

    2014-03-10

    We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  18. Surface Passivation and Antireflection Behavior of ALD on n-Type Silicon for Solar Cells

    Directory of Open Access Journals (Sweden)

    Ing-Song Yu

    2013-01-01

    Full Text Available Atomic layer deposition, a method of excellent step coverage and conformal deposition, was used to deposit TiO2 thin films for the surface passivation and antireflection coating of silicon solar cells. TiO2 thin films deposited at different temperatures (200°C, 300°C, 400°C, and 500°C on FZ n-type silicon wafers are in the thickness of 66.4 nm ± 1.1 nm and in the form of self-limiting growth. For the properties of surface passivation, Si surface is effectively passivated by the 200°C deposition TiO2 thin film. Its effective minority carrier lifetime, measured by the photoconductance decay method, is improved 133% at the injection level of  cm−3. Depending on different deposition parameters and annealing processes, we can control the crystallinity of TiO2 and find low-temperature TiO2 phase (anatase better passivation performance than the high-temperature one (rutile, which is consistent with the results of work function measured by Kelvin probe. In addition, TiO2 thin films on polished Si wafer serve as good ARC layers with refractive index between 2.13 and 2.44 at 632.8 nm. Weighted average reflectance at AM1.5G reduces more than half after the deposition of TiO2. Finally, surface passivation and antireflection properties of TiO2 are stable after the cofire process of conventional crystalline Si solar cells.

  19. Seasonal and solar cycle variations in the ionospheric convection reversal boundary location inferred from monthly SuperDARN data sets

    Directory of Open Access Journals (Sweden)

    A. V. Koustov

    2016-02-01

    Full Text Available Multi-year (1995–2013 velocity data collected by the Super Dual Auroral Network (SuperDARN HF radars are considered to investigate seasonal and solar cycle variations of the convection reversal boundary (CRB location for interplanetary magnetic field (IMF Bz < 0. By considering monthly data sets we show that the CRB is at higher latitudes in summer between 1995 and 2007. The poleward shifts are on the order of 2–5°. After 2007, the seasonal effect weakens, and the highest latitudes for the CRB start to occur during the winter time. We show that the CRB latitudes decrease with an increase of the IMF transverse component at a rate of (1–2°/2 nT. Because of this effect, on average, the CRB latitudes are lower during high solar activity periods with stronger IMFs. We also confirm the effect of the CRB dawn-dusk shifts related to the IMF changes in the IMF By sign.

  20. Variation of sulfur content in Cu(In,Ga)(S,Se){sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Knipper, Martin; Knecht, Robin; Riedel, Ingo; Parisi, Juergen [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg (Germany)

    2011-07-01

    Chalcopyrite thin film solar cells made of the compound semiconductor Cu(In,Ga)(S,Se){sub 2} (CIGSSe) have a strong potential for achieving high efficiencies at low production costs. Volume production of CIGSSe-modules has already started to exploit their favorable attributes such as low cost processing and reasonable module efficiency. In this study we studied industrially produced CIGSSe modules obtained from rapid thermal processing (RTP) for sulfurization. In detail, we investigated the effect of sulfur offer and RTP temperature (500 C to 580 C) on the photoelectric characteristics of small-area solar cells cut from the modules. Current-voltage profiling under standard test conditions revealed a strong influence of the particular process recipe on the open circuit voltage whereas significant variations of the maximum quantum efficiency can be observed. X-ray diffraction was employed to relate these effects to the crystallographic structure of the actual CIGSSe films. Lock-in thermographic imaging was employed to link apparent film inhomogeneities and disruptions to the specific process recipe.

  1. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  2. Solar activity variations of equatorial spread F occurrence and sustenance during different seasons over Indian longitudes: Empirical model and causative mechanisms

    Science.gov (United States)

    Madhav Haridas, M. K.; Manju, G.; Arunamani, T.

    2018-05-01

    A comprehensive analysis using nearly two decades of ionosonde data is carried out on the seasonal and solar cycle variations of Equatorial Spread F (ESF) irregularities over magnetic equatorial location Trivandrum (8.5°N, 77°E). The corresponding Rayleigh Taylor (RT) instability growth rates (γ) are also estimated. A seasonal pattern of ESF occurrence and the corresponding γ is established for low solar (LSA), medium solar (MSA) and high solar (HSA) activity periods. For LSA, it is seen that the γ maximizes during post sunset time with comparable magnitudes for autumnal equinox (AE), vernal equinox (VE) and winter solstice (WS), while for summer solstice (SS) it maximizes in the post-midnight period. Concurrent responses are seen in the ESF occurrence pattern. For MSA, γ maximizes during post-sunset for VE followed by WS and AE while SS maximises during post-midnight period. The ESF occurrence for MSA is highest for VE (80%), followed by AE (70%), WS (60%) and SS (50%). In case of HSA, maximum γ occurs for VE followed by AE, WS and SS. The concurrent ESF occurrence maximizes for VE and AE (90%), WS and SS at 70%. The solar cycle variation of γ is examined. γ shows a linear variation with F10.7 cm flux. Further, ESF percentage occurrence and duration show an exponential and linear variation respectively with γ. An empirical model on the solar activity dependence of ESF occurrence and sustenance time over Indian longitudes is arrived at using the database spanning two solar cycles for the first time.

  3. Variation of Magnetic Field (By , Bz Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2011-06-01

    Full Text Available It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME-driven storms, co-rotating interaction region (CIR-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF By and Bz components (in geocentric solar magnetospheric coordinate system coordinate during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of Bz < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF Bz (T1~T4 is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0% under the Bz < 0 condition. It is found that the correlation is highest between the time-integrated IMF Bz and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is

  4. Comparison of several databases of downward solar daily irradiation data at ocean surface with PIRATA measurements

    Science.gov (United States)

    Trolliet, Mélodie; Wald, Lucien

    2017-04-01

    The solar radiation impinging at sea surface is an essential variable in climate system. There are several means to assess the daily irradiation at surface, such as pyranometers aboard ship or on buoys, meteorological re-analyses and satellite-derived databases. Among the latter, assessments made from the series of geostationary Meteosat satellites offer synoptic views of the tropical and equatorial Atlantic Ocean every 15 min with a spatial resolution of approximately 5 km. Such Meteosat-derived databases are fairly recent and the quality of the estimates of the daily irradiation must be established. Efforts have been made for the land masses and must be repeated for the Atlantic Ocean. The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) network of moorings in the Tropical Atlantic Ocean is considered as a reference for oceanographic data. It consists in 17 long-term Autonomous Temperature Line Acquisition System (ATLAS) buoys equipped with sensors to measure near-surface meteorological and subsurface oceanic parameters, including downward solar irradiation. Corrected downward solar daily irradiation from PIRATA were downloaded from the NOAA web site and were compared to several databases: CAMS RAD, HelioClim-1, HelioClim-3 v4 and HelioClim-3 v5. CAMS-RAD, the CAMS radiation service, combines products of the Copernicus Atmosphere Monitoring Service (CAMS) on gaseous content and aerosols in the atmosphere together with cloud optical properties deduced every 15 min from Meteosat imagery to supply estimates of the solar irradiation. Part of this service is the McClear clear sky model that provides estimates of the solar irradiation that should be observed in cloud-free conditions. The second and third databases are HelioClim-1 and HelioClim-3 v4 that are derived from Meteosat images using the Heliosat-2 method and the ESRA clear sky model, based on the Linke turbidity factor. HelioClim-3 v5 is the fourth database and differs from v4 by the

  5. Solar Cycle variations of ƒoF2 from IGY to 1990

    Directory of Open Access Journals (Sweden)

    M. K. Goel

    Full Text Available Noontime monthly median values of F2-layer critical frequency foF2 (m for some ionospheric stations representing low- and mid-latitudes are examined for their dependence on solar activity for the years 1957 (IGY to 1990. This is the period for which ionospheric data in digital form is available in two CD-ROMs at the World Data Center, Boulder. It is observed that at mid-latitudes, foF2 (m shows nearly a linear relationship with R12 (the 12-month running average of the Zurich sunspot number, though this relation is nonlinear for low-latitudes. These results indicate some departures from the existing information often used in theoretical and applied areas of space research.Key words. Ionosphere (equatorial ionosphere; mid-latitude ionosphere; modelling and forecasting

  6. Theoretical interpretation of the observed interplanetary magnetic field radial variation in the outer solar system

    Science.gov (United States)

    Suess, S. T.; Thomas, B. T.; Nerney, S. F.

    1985-01-01

    Observations of the azimuthal component of the IMF are evaluated through the use of an MHD model which shows the effect of magnetic flux tubes opening in the outer solar system. It is demonstrated that the inferred meridional transport of magnetic flux is consistent with predictions by the MHD model. The computed azimuthal and radial magnetic flux deficits are almost identical to the observations. It is suggested that the simplest interpretation of the observations is that meridional flows are created by a direct body force on the plasma. This is consistent with the analytic model of Nerney and Suess (1975), in which such flux deficits in the IMF arise naturally from the meridional gradient in the spiralling field.

  7. On the relation of Hsub(α) plage brightness variations in solar active regions

    International Nuclear Information System (INIS)

    Ogir', M.B.

    1980-01-01

    The variations of hydrogen plage brightnesses in seven spot groups belonging to five active regions are discussed. The observations were made on the Crimean observatory coronograph in 1974 and 1977. The correlation in brightness variations of plages situated in the regions of growing magnetic field was obtained. This was observed in the plages on one spot group as well as in the different groups removing on about 27x10 4 km. In developed groups correlations are mainly seen within a spot group and they are expressed better during flares. The correlations of brightnesses are changing during the active region evolution. Three days observations showed good brightness correlations of all plages in the growing magnetic field region and their decrease that can be explained by the field weakening during natural active region evolution or by the strong flare influence. The existence of the simultaneous variations of brightness in the regions with the growing magnetic field speaks in favour of the simultaneous carring-out of magnetic field or its disturbances into the chromosphere [ru

  8. Spatiotemporal Variation in Surface Urban Heat Island Intensity and Associated Determinants across Major Chinese Cities

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2015-03-01

    Full Text Available Urban heat islands (UHIs created through urbanization can have negative impacts on the lives of people living in cities. They may also vary spatially and temporally over a city. There is, thus, a need for greater understanding of these patterns and their causes. While previous UHI studies focused on only a few cities and/or several explanatory variables, this research provides a comprehensive and comparative characterization of the diurnal and seasonal variation in surface UHI intensities (SUHIIs across 67 major Chinese cities. The factors associated with the SUHII were assessed by considering a variety of related social, economic and natural factors using a regression tree model. Obvious seasonal variation was observed for the daytime SUHII, and the diurnal variation in SUHII varied seasonally across China. Interestingly, the SUHII varied significantly in character between northern and southern China. Southern China experienced more intense daytime SUHIIs, while the opposite was true for nighttime SUHIIs. Vegetation had the greatest effect in the day time in northern China. In southern China, annual electricity consumption and the number of public buses were found to be important. These results have important theoretical significance and may be of use to mitigate UHI effects.

  9. [Ciliate diversity and spatiotemporal variation in surface sediments of Yangtze River estuary hypoxic zone].

    Science.gov (United States)

    Feng, Zhao; Kui-Dong, Xu; Zhao-Cui, Meng

    2012-12-01

    By using denaturing gradient gel electrophoresis (DGGE) and sequencing as well as Ludox-QPS method, an investigation was made on the ciliate diversity and its spatiotemporal variation in the surface sediments at three sites of Yangtze River estuary hypoxic zone in April and August 2011. The ANOSIM analysis indicated that the ciliate diversity had significant difference among the sites (R = 0.896, P = 0.0001), but less difference among seasons (R = 0.043, P = 0.207). The sequencing of 18S rDNA DGGE bands revealed that the most predominant groups were planktonic Choreotrichia and Oligotrichia. The detection by Ludox-QPS method showed that the species number and abundance of active ciliates were maintained at a higher level, and increased by 2-5 times in summer, as compared with those in spring. Both the Ludox-QPS method and the DGGE technique detected that the ciliate diversity at the three sites had the similar variation trend, and the Ludox-QPS method detected that there was a significant variation in the ciliate species number and abundance between different seasons. The species number detected by Ludox-QPS method was higher than that detected by DGGE bands. Our study indicated that the ciliates in Yangtze River estuary hypoxic zone had higher diversity and abundance, with the potential to supply food for the polyps of jellyfish.

  10. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    Science.gov (United States)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  11. SPATIAL AND TEMPORAL VARIATION OF LAND SURFACE TEMPERATURE IN FUJIAN PROVINCE FROM 2001 TO 2015

    Directory of Open Access Journals (Sweden)

    Y. Li

    2018-04-01

    Full Text Available Land surface temperature (LST is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1 the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2 The annual mean temperature of LST declines slightly among 15 years in Fujian. 3 Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.

  12. Spatial and Temporal Variation of Land Surface Temperature in Fujian Province from 2001 TO 2015

    Science.gov (United States)

    Li, Y.; Wang, X.; Ding, Z.

    2018-04-01

    Land surface temperature (LST) is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G) filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1) the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2) The annual mean temperature of LST declines slightly among 15 years in Fujian. 3) Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.

  13. Solar radiation influence on the decomposition process of diclofenac in surface waters

    International Nuclear Information System (INIS)

    Bartels, Peter; Tuempling, Wolf von

    2007-01-01

    Diclofenac can be detected in surface water of many rivers with human impacts worldwide. The observed decrease of the diclofenac concentration in waters and the formation of its photochemical transformation products under the impact of natural irradiation during one to 16 days are explained in this article. In semi-natural laboratory tests and in a field experiment it could be shown, that sunlight stimulates the decomposition of diclofenac in surface waters. During one day intensive solar radiation in middle European summer diclofenac decomposes in the surface layer of the water (0 to 5 cm) up to 83%, determined in laboratory exposition experiments. After two weeks in a field experiment, the diclofenac was not detectable anymore in the water surface layer (limit of quantification: 5 ng/L). At a water depth of 50 cm, within two weeks 96% of the initial concentration was degraded, while in 100 cm depth 2/3 of the initial diclofenac concentration remained. With the decomposition, stable and meta-stable photolysis products were formed and observed by UV detection. Beyond that the chemical structure of these products were determined. Three transformation products, that were not described in the literature so far, were identified and quantified with GC-MS

  14. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  15. Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell

    International Nuclear Information System (INIS)

    Dhonde, Mahesh; Sahu, Kirti; Murty, V.V.S.; Nemala, Siva Sankar; Bhargava, Parag

    2017-01-01

    Highlights: •Pure and Cu-doped TiO 2 Nanoparticles are synthesized and incorporated in DSSCs. •Addition of Cu provided high surface area and reduced charge recombination due to LSPR effect. •The highest photo conversion efficiency achieved is 8.65% with J sc of 18.8 mA cm −2 . •This efficiency is 26% higher than that of pure TiO 2 DSSC. -- Abstract: Pure and copper doped titanium dioxide nanoparticles (TiO 2 NPs) for Dye Sensitized Solar Cell (DSSC) photo anodes with different doping amounts of copper (Cu) 0.1, 0.3 and 0.5 mole% are synthesized using modified sol-gel route. Addition of Cu in TiO 2 matrix can enhance absorption towards visible spectrum and can reduce the charge carrier recombination due to Localized Surface Plasmon Resonance (LSPR). The samples are characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV–vis spectroscopy (UV-VIS), X-ray Photoelectron Spectroscopy (XPS), Electro Chemical Impedance Spectroscopy (EIS). The crystallite size is measured by XRD and surface morphology of the samples is analyzed using SEM. UV–vis measurement shows that the influence of Cu in TiO 2 lattice altered its optical properties and extended absorption in the visible region. The resistances between different junctions of the cell are measured by EIS. The J-V measurement of the cell prepared using pure and Cu-doped TiO 2 NPs is carried out by solar simulator. The optimized Cu doped DSSC with 0.3 mole% Cu in TiO 2 shows the best power conversion efficiency of 8.65% which is approximately 26% greater than the efficiency of undoped DSSC (6.41%).

  16. Investigation of spectral distribution and variation of irradiance with the passage time of CSI lamps which constitute a solar simulator; Solar simulator ni shiyosuru CSI lamp no supekutoru bunpu, hosha shodo no keiji henka ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T; Yamada, T; Noguchi, T [Japan Quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    Study was made on time-variation of the performance of CSI lamps for solar simulators. In order to accurately evaluate the standard heat collection performance of solar systems in a room, MITI installed an artificial solar light source in the Solar Techno-Center of Japan Quality Assurance Organization for trial use and evaluation. CSI lamp is superior in durability, and can simulate the solar light in the daytime. The light source is composed of 72 metal halide lamps of 1kW arranged in a plane of 3.5times3.5m. The study result on time-variation of a spectral distribution and irradiance by intermittent switching of lamps showed a sufficient durability of 2000h. To ensure the accuracy of a solar heat collector measurement system enough, periodic calibration is being carried out using reference goods. To ensure the reliability and stability for a switching system, periodic maintenance of a power source, stabilizer and electric system is also being carried out in addition to CSI lamps. The stable irradiance and accuracy are being kept by such maintenance and periodic exchange of lamps. 6 figs., 4 tabs.

  17. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    Science.gov (United States)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  18. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City

    Directory of Open Access Journals (Sweden)

    Sirous Haashemi

    2016-04-01

    Full Text Available The process of the surface urban heat island (SUHI varies with latitude, climate, topography and meteorological conditions. This study investigated the seasonal variability of SUHI in the Tehran metropolitan area, Iran, with respect to selected surface biophysical variables. Terra Moderate Resolution Imaging Spectroradiometer (MODIS Land Surface Temperature (LST was retrieved as nighttime LST data, while daytime LST was retrieved from Landsat 8 Thermal Infrared Sensor (TIRS using the split-window algorithm. Both data covered the time period from September 2013 to September 2015. To assess SUHI intensity, we employed three SUHI indicators, i.e., the LST difference of urban-rural, that of urban-agriculture and that of urban-water. Physical and biophysical surface variables, including land use and land cover (LULC, elevation, impervious surface (IS, fractional vegetation cover (FVC and albedo, were selected to estimate the relationship between LST seasonal variability and the surface properties. Results show that an inversion of the SUHI phenomenon (i.e., surface urban cool island existed at daytime with the maximal value of urban-rural LST difference of −4 K in March; whereas the maximal value of SUHI at nighttime yielded 3.9 K in May. When using the indicators of urban-agriculture and urban-water LST differences, the maximal value of SUHI was found to be 8.2 K and 15.5 K, respectively. Both results were observed at daytime, suggesting the role of bare soils in the inversion of the SUHI phenomenon with the urban-rural indicator. Maximal correlation was observed in the relationship between night LST and elevation in spring (coefficient: −0.76, night LST and IS in spring (0.60, night LST and albedo in winter (−0.53 and day LST with fractional vegetation cover in summer (−0.41. The relationship between all surface properties with LST possessed large seasonal variations, and thus, using these relationships for SUHI modeling may not be

  19. Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data

    International Nuclear Information System (INIS)

    Lukač, Niko; Žlaus, Danijel; Seme, Sebastijan; Žalik, Borut; Štumberger, Gorazd

    2013-01-01

    Highlights: ► A new method for estimating and rating buildings roofs’ solar potential is presented. ► Considering LiDAR geospatial data together with pyranometer measurements. ► Use of multi-resolution shadowing model with new heuristic vegetation shadowing. ► High correlation between estimated solar potential and onsite measurements. -- Abstract: The roof surfaces within urban areas are constantly attracting interest regarding the installation of photovoltaic systems. These systems can improve self-sufficiency of electricity supply, and can help to decrease the emissions of greenhouse gases throughout urban areas. Unfortunately, some roof surfaces are unsuitable for installing photovoltaic systems. This presented work deals with the rating of roof surfaces within urban areas regarding their solar potential and suitability for the installation of photovoltaic systems. The solar potential of a roof’s surface is determined by a new method that combines extracted urban topography from LiDAR data with the pyranometer measurements of global and diffuse solar irradiances. Heuristic annual vegetation shadowing and a multi-resolution shadowing model, complete the proposed method. The significance of different influential factors (e.g. shadowing) was analysed extensively. A comparison between the results obtained by the proposed method and measurements performed on an actual PV power plant showed a correlation agreement of 97.4%.

  20. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  1. A comparison between evaporation ponds and evaporation surfaces as a source of the concentrated salt brine for salt gradient maintenance at Tajoura solar pond

    International Nuclear Information System (INIS)

    Ramadan, Abdulghani M.; Agha, Khairy R.; Abughres, M.

    2012-01-01

    One of the main problems that negatively affect the operation of salt gradient solar ponds and influence its thermal stability is the maintenance of salt gradient profile. Evaporation pond (EP) is designed to generate the salt which lost upward salt diffusion from the lower convective zone (LCZ) of the solar pond. Another attractive method is the evaporation surface facility (ES). Regions with moderate to high precipitation favor Evaporation Surface over Evaporation Ponds. Dry climates will generally favor Evaporation Ponds for the brine re-concentration. In previous studies [1-3], the authors have shown that the (EP) of Tajoura's Experimental Solar Pond (TESP) is under sized and can provide only about 30% of the salt required by a Salt Gradient Solar Pond (SGSP). The anticipated size of (EP) was estimated and presented in those studies under different design conditions, including Summer, Autumn and Spring designs, while the winter design was excluded due to the low rates of net evaporation during the winter season. In addition, the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the (EP) of (TESP) and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by SGSP were predicted for both cases of surface water flushing (fresh water and sea-water) under the different design conditions as shown in Table 1. This paper investigates the differences between (EP) and (ES) both as a source for salt brine generation by evaporation. The effect of (EP) depth on the area ratio and daily variations of salt concentrations for three years of operation is shown. Results show that evaporation can be a reasonable method for salt brine generation. Reducing the depth of (EP) improves the capability of (EP) for brine re-concentration. It also increases the (EP) surface area for the same quantity of

  2. Spectral variations of UV-A and PAR solar radiation in estuarine waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Silveira, N.; Desa, E.; Matondkar, S; Lotlikar, A

    radiation (400 to 700 nm), PAR and ultraviolet radiation in the range 350-400 nm (UV-A) are presented here. The mean PAR values at the surface were 327 W/m sup(2) and reduced to 84 W/m sup(2) at first optical depth, Z sub(90) (m) in water. The first optical...

  3. Driving Solar Giant Cells through the Self-organization of Near-surface Plumes

    Science.gov (United States)

    Nelson, Nicholas J.; Featherstone, Nicholas A.; Miesch, Mark S.; Toomre, Juri

    2018-06-01

    Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which yield the Sun’s observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution simulations a variety of codes have encountered what has been termed the convection conundrum. As these simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D global convection simulations where driving is non-local and may provide a new approach toward addressing the convection conundrum.

  4. Hole-transport material variation in fully vacuum deposited perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl, E-mail: karl.leo@iapp.de [Institut für Angewandte Photophysik, Technische Universität Dresden, 01069 Dresden (Germany)

    2014-08-01

    This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH{sub 3}NH{sub 3}PbI{sub x−3}Cl{sub x} perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

  5. Hole-transport material variation in fully vacuum deposited perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Lauren E. Polander

    2014-08-01

    Full Text Available This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH3NH3PbIx−3Clx perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

  6. Long scale astronomical variations in our solar system: consequences for future ice ages

    International Nuclear Information System (INIS)

    Edvardsson, S.; Karlsson, K.G.

    2002-01-01

    It is well known that the Earth has gone through a number of glaciations during the last few million years. It is generally agreed that changes in the Earth's orbital parameters and obliquity play an important role in climate forcing, an idea originally due to Milutin Milankovitch. The climatic history of the Earth shows clear evidence of the precession periods (about 19 000 and 23 000 years) and changes in the obliquity (period about 41 000 years). The main period in glacial data (around 100 000 years) is, however, hard to explain in terms of orbital variations. During the last decade or so a large number of simulations of the planetary system have been reported, many of which have been concerned with the influence of variations in the Earth's orbit on climate. In former studies comparisons have been made between the astronomical parameters and the ice volume of the Earth. Generally speaking, the match between astronomical forcing and ice data has been rather poor. In this study we instead compare the parameters with changes in ice volume, which yields a much better agreement between the astronomical and the geological data. A number of climate models have been constructed to reproduce past climate history, and also to make predictions about the future. These are purely empirical models designed to match certain periods of past climate. Typically they also involve a substantial number of free parameters. (authors)

  7. Mixing and Transport of Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among Chondrules

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Simone; Burkhardt, Christoph; Budde, Gerrit; Metzler, Knut; Kleine, Thorsten, E-mail: burkhardt@uni-muenster.de [Institut für Planetologie, University of Münster, Wilhelm Klemm-Straße 10, D-48149 Münster (Germany)

    2017-05-20

    Chondrules formed by the melting of dust aggregates in the solar protoplanetary disk and as such provide unique insights into how solid material was transported and mixed within the disk. Here, we show that chondrules from enstatite and ordinary chondrites show only small {sup 50}Ti variations and scatter closely around the {sup 50}Ti composition of their host chondrites. By contrast, chondrules from carbonaceous chondrites have highly variable {sup 50}Ti compositions, which, relative to the terrestrial standard, range from the small {sup 50}Ti deficits measured for enstatite and ordinary chondrite chondrules to the large {sup 50}Ti excesses known from Ca–Al-rich inclusions (CAIs). These {sup 50}Ti variations can be attributed to the addition of isotopically heterogeneous CAI-like material to enstatite and ordinary chondrite-like chondrule precursors. The new Ti isotopic data demonstrate that isotopic variations among carbonaceous chondrite chondrules do not require formation over a wide range of orbital distances, but can instead be fully accounted for by the incorporation of isotopically anomalous “nuggets” into chondrule precursors. As such, these data obviate the need for disk-wide transport of chondrules prior to chondrite parent body accretion and are consistent with formation of chondrules from a given chondrite group in localized regions of the disk. Finally, the ubiquitous presence of {sup 50}Ti-enriched material in carbonaceous chondrites and the lack of this material in the non-carbonaceous chondrites support the idea that these two meteorite groups derive from areas of the disk that remained isolated from each other, probably through the formation of Jupiter.

  8. Global Distribution and Variations of NO Infrared Radiative Flux and Its Responses to Solar Activity and Geomagnetic Activity in the Thermosphere

    Science.gov (United States)

    Tang, Chaoli; Wei, Yuanyuan; Liu, Dong; Luo, Tao; Dai, Congming; Wei, Heli

    2017-12-01

    The global distribution and variations of NO infrared radiative flux (NO-IRF) are presented during 2002-2016 in the thermosphere covering 100-280 km altitude based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) data set. For investigating the spatial variations of the mutual relationship between NO-IRF and solar activity, the altitude ranges from 100 km to 280 km are divided into 90 altitude bins, and the latitude regions of 83°S-83°N are divided into 16 latitude bins. By processing about 1.8E9 NO-IRF observation values from about 5E6 vertical nighttime profiles recorded in SABER data set, we obtained more than 4.1E8 samples of NO-IRF. The annual-mean values of NO-IRF are then calculated by all available NO-IRF samples within each latitude and altitude bin. Local latitudinal maxima in NO-IRF are found between 120 and 145 km altitude, and the maximum NO-IRF located at polar regions are 3 times more than that of the minimum at equatorial region. The influences of solar and geomagnetic activity on the spatial variations of NO-IRF are investigated. Both the NO-IRF and its response to solar and geomagnetic activity show nearly symmetric distribution between the two hemispheres. It is demonstrated that the observed changes in NO-IRF at altitudes between 100 and 225 km correlate well with the changes in solar activity. The NO-IRF at solar maximum is about 4 times than that at solar minimum, and the current maximum of NO-IRF in 2014 is less than 70% of the prior maximum in 2001. For the first time, the response ranges of the NO-IRF to solar and geomagnetic activity at different altitudes and latitudes are reported.

  9. The impact of the year-on-year variation in the intensity of solar radiation on the energy intensity of low-energy and passive houses

    Directory of Open Access Journals (Sweden)

    Šubrt Roman

    2017-01-01

    Full Text Available Solar radiation is a significant segment of heat gains in the operation of buildings. The importance of this segment is highlighted by lowering the energy performance of buildings. The current condition of assessment considers the standard values of solar radiation but these are often very different from the fair values. In the contribution it draws attention to not only to on-year variation in solar fluctuations in the intensity of solar radiation and its significant long-term deviation from the standard values but also to the impact to energy building in reliance to its energy intensity. The attention will be focused also to different values in standards valid in the Czech Republic. This specification of energy assessment of buildings is not only necessary to approximate calculations of real state, but mainly because we can expect more disputes about if a building has declared calculating the parameters of a building with nearly zero-energy or passive house.

  10. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  11. Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models

    Science.gov (United States)

    Tang, Chao; Morel, Béatrice; Wild, Martin; Pohl, Benjamin; Abiodun, Babatunde; Bessafi, Miloud

    2018-02-01

    This study evaluates the performance of climate models in reproducing surface solar radiation (SSR) over Southern Africa (SA) by validating five Regional Climate Models (RCM, including CCLM4, HIRHAM5, RACMO22T, RCA4 and REMO2009) that participated in the Coordinated Regional Downscaling Experiment program over Africa (CORDEX-Africa) along with their ten driving General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 over SA. The model simulated SSR was thereby compared to reference data from ground-based measurements, satellite-derived products and reanalyses over the period 1990-2005. Results show that (1) the references obtained from satellite retrievals and reanalyses overall overestimate SSR by up to 10 W/m2 on average when compared to ground-based measurements from the Global Energy Balance Archive, which are located mainly over the eastern part of the southern African continent. (2) Compared to one of the satellite products (Surface Solar Radiation Data Set—Heliosat Edition 2; SARAH-2): GCMs overestimate SSR over SA in terms of their multi-model mean by about 1 W/m2 (compensation of opposite biases over sub-regions) and 7.5 W/m2 in austral summer and winter respectively; RCMs driven by GCMs show in their multimodel mean underestimations of SSR in both seasons with Mean Bias Errors (MBEs) of about - 30 W/m2 in austral summer and about - 14 W/m2 in winter compared to SARAH-2. This multi-model mean low bias is dominated by the simulations of the CCLM4, with negative biases up to - 76 W/m2 in summer and - 32 W/m2 in winter. (3) The discrepancies in the simulated SSR over SA are larger in the RCMs than in the GCMs. (4) In terms of trend during the "brightening" period 1990-2005, both GCMs and RCMs (driven by European Centre for Medium-Range Weather Forecasts Reanalysis ERA-Interim, short as ERAINT and GCMs) simulate an SSR trend of less than 1 W/m2 per decade. However, variations of SSR trend exist among different references data

  12. Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness

    Directory of Open Access Journals (Sweden)

    X. Yin

    2017-09-01

    Full Text Available Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of  ∼ 5 years (January 2011 to October 2015, which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau

  13. Evaluation of solar angle variation over digital processing of LANDSAT imagery. [Brazil

    Science.gov (United States)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1984-01-01

    The effects of the seasonal variation of illumination over digital processing of LANDSAT images are evaluated. Original images are transformed by means of digital filtering to enhance their spatial features. The resulting images are used to obtain an unsupervised classification of relief units. After defining relief classes, which are supposed to be spectrally different, topographic variables (declivity, altitude, relief range and slope length) are used to identify the true relief units existing on the ground. The samples are also clustered by means of an unsupervised classification option. The results obtained for each LANDSAT overpass are compared. Digital processing is highly affected by illumination geometry. There is no correspondence between relief units as defined by spectral features and those resulting from topographic features.

  14. Long term variations in erythema effective solar UV at Chilton, UK, from 1991 to 2015.

    Science.gov (United States)

    Hooke, R J; Higlett, M P; Hunter, N; O'Hagan, J B

    2017-11-08

    In this paper erythema effective UV radiant exposure data from the PHE solar network Chilton site for the 25 year period from 1991 to 2015 are presented. The year with the highest average daily erythema effective radiant exposure was 2003 at 1577 J m -2 and the year with the lowest average daily radiant exposure was 2010 at 1149 J m -2 . Overall, the average daily radiant exposure per year ranged from 5655 J m -2 to 9.98 J m -2 with the average being 1306 J m -2 . A preliminary analysis of the data set is carried out. A statistically significant (p = 0.01) increase in annual radiant exposure of 4.4% per year was observed from 1991-1995. Thereafter a small decrease in annual erythema effective radiant exposure of 0.8% (p = 0.002) per year was observed from 1995-2015 with a slightly faster rate of decrease from 2000-2015 of 1.0% (p = 0.007) per year. In terms of seasonal analyses, a statistically significant increase in erythema effective UV radiant exposure of 5.1% (p = 0.02) per year in the summer during 1991-1995 has been found along with small decreases in spring and summer during 1995-2015 (-1.0%; p = 0.01 and -0.7%; p = 0.01 respectively) and 2000-2015 (-1.1%; p = 0.03 and -1.2%; p = 0.003 respectively). The data suggest that the erythema effective UV dose available for impacting public health has been decreasing in recent years.

  15. Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production

    Science.gov (United States)

    Jin, Tong

    Solar fuel generation via carbon dioxide (CO2) reduction is a promising approach to meet the increasing global demand for energy and to minimize the impact of energy consumption on climate change. However, CO2 is thermodynamically stable; its activation often requires the use of appropriate catalysts. In particular, molecular catalysts with well-defined structures and tunability have shown excellent activity in photochemical CO2 reduction. These homogenous catalysts, however, suffer from poor stability under photochemical conditions and difficulty in recycling from the reaction media. Heterogenized molecular catalysts, particularly those prepared by coupling molecular catalysts with solid-state surfaces, have attracted more attention in recent years as potential solutions to address the issues associated with molecular catalysts. In this work, solar CO2 reduction is investigated using systems coupling molecular catalysts with robust nanostructured surfaces. In Chapter 2, heterogenization of macrocyclic cobalt(III) and nickel (II) complexes on mesoporous silica surface was achieved by different methods. Direct ligand derivatization significantly lowered the catalytic activity of Co(III) complex, while grafting the Co(III) complex onto silica surface through Si-O-Co linkage resulted in hybrid catalysts with excellent activity in CO2 reduction in the presence of p-terphenyl as a molecular photosensitizer. An interesting loading effect was observed, in which the optimal activity was achieved at a medium Co(III) surface density. Heterogenization of the Ni(II) complex on silica surface has also been implemented, the poor photocatalytic activity of the hybrid catalyst can be attributed to the intrinsic nature of the homogeneous analogue. This study highlighted the importance of appropriate linking strategies in preparing functional heterogenized molecular catalysts. Coupling molecular complexes with light-harvesting surfaces could avoid the use of expensive molecular

  16. Spectralon solar diffuser BRDF variation for NPP, JPSS J1 and J2

    Science.gov (United States)

    Murgai, Vijay; Johnson, Lindsay; Klein, Staci

    2017-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on the Suomi National Polar-orbiting Partnership (NPP) satellite as well as the upcoming Joint Polar Satellite System (JPSS). VIIRS collects Earth radiometric and imagery data in 22 spectral bands from 0.4 to 12.5 μm. Radiometric calibration of the reflective bands in the 0.4 to 2.5 μm wavelength range is performed by measuring the sunlight reflectance from Spectralon®. Reflected sun light is directly proportional to the Bidirectional Reflectance Distribution Function (BRDF) of the Spectralon. This paper presents the BRDF measurements of the Spectralon for JPSS J2 in the 0.4 - 1.63 μm wavelength using PASCAL (Polarization And Scatter Characterization Analysis of Lambertian materials) with an uncertainty better than 1.2%. PASCAL makes absolute measurements of the BRDF in an analogous fashion to the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reflectance Reflectometer (STARR) facility. Unique additional features of this instrument include the ability to vary the sample elevation and roll / clock the sample about its normal, allowing measurement of BRDF in the as used geometry. Comparison of BRDF in the as used configuration for NPP, J1, and J2 shows variation of up to 3%. The sign of the change from panel to panel depends on the angle of incidence and view angle. The results demonstrate lot to lot variability in Spectralon and emphasize the necessity of characterizing each panel. A pattern in the BRDF variation is also presented.

  17. Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells

    Science.gov (United States)

    Werthen, J. G.; Fahrenbruch, A. L.; Bube, R. H.; Zesch, J. C.

    1983-05-01

    The effects of CdTe surface preparation and subsequent junction formation have been investigated through characterization of ITO/CdTe and CdS/CdTe heterojunction solar cells formed by electron beam evaporation of indium-tin-oxide (ITO) and CdS onto single crystal p-type CdTe. Surfaces investigated include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and teh latter surfaces subjected to a hydrogen heat treatment. Both air-cleaved and hydrogen heat treated surfaces have a stoichiometric Cd to Te ratio. The ITO/CdTe junction formation process involves an air heat treatment, which ahs serious effects on the behavior of junctions formed on these surfaces. Etched surfaces which have a large excesss of Te, are less affected by the junction formation process and result in ITO/CdTe heterojunctions with solar efficiencies of 9% (Vsc =20 mA/cm2). Use of low-doped CdTe results in junctions characterized by considerably larger open-circuit votages (Voc =0.81 V) which are attributable to increasing diode factors caused by a shift from interfacial recombination to recombination in the depletion region. Resulting solar efficiencies reach 10.5% which is the highest value reported to date for a genuine CdTe heterojunction, CdS/CdTe heterojunctions show a strong dependence on CdTe surface condition, but less influence on the junction formation process. Solar efficiencies of 7.5% on an etched and heat treated surface are observed. All of these ITO/CdTe and CdS/CdTe heterojunctions have been stable for at least 10 months.

  18. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    Science.gov (United States)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-01-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  19. Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface modifications

    Directory of Open Access Journals (Sweden)

    Trilok Singh

    2017-01-01

    Full Text Available The nature of metal oxide scaffold played a pivotal role for the growth of high quality perovskites and subsequently facilitates efficient photovoltaics devices. We demonstrate an effective way to fabricate a low-temperature TiO2 brookite scaffold layer with a uniform and pinhole-free layer for enhancing photovoltaic properties of perovskite solar cells. Various concentrations of TiCl4 were used to modify brookite TiO2 for efficient charge generation and fast charge extraction. We observed that the brookite layer with an appropriate TiCl4 treatment possesses a smooth surface with full coverage of the substrates, whereas TiCl4 treatment further improves the contact of the TiO2/perovskite interface which facilitates charge extraction and drastically influenced charge recombination. The surface treated brookite scaffolds perovskite devices showed an improved performance with an average power conversion efficiency more than 17%. The time resolved photoluminescence showed that the treated samples have obvious effect on the charge carrier dynamics. The striking observation of this study was very low appearance of hysteresis and high reproducibility in the treated samples, which opens up the possibilities for the fabrication of high efficient devices at relatively low temperatures with negligible hysteresis via facile surface modifications.

  20. Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell

    International Nuclear Information System (INIS)

    Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin; Xu, Yang

    2013-01-01

    Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO 2 . Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO 2 as an electron acceptor exhibits photoconversion efficiency ∼46% more than BHJ employed unpassivated TiO 2 . Dominant interfacial recombination pathways such as electron capture by TiO 2 surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO 2 , allowing electronic transport at TiO 2 /h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO 2 /CdSe interface

  1. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    Science.gov (United States)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  2. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  3. Copper variation in Cu(In,Ga)Se{sub 2} solar cells with indium sulphide buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Spiering, S., E-mail: stefanie.spiering@zsw-bw.de [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Paetel, S.; Kessler, F. [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Igalson, M.; Abdel Maksoud, H. [Warsaw University of Technology (WUT), Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland)

    2015-05-01

    In the manufacturing of Cu(In,Ga)Se{sub 2} (CIGS) thin film solar cells the application of a buffer layer on top of the absorber is essential to obtain high efficiency devices. Regarding the roll-to-roll production of CIGS cells and modules a vacuum deposition process for the buffer is preferable to the conventional cadmium sulphide buffer deposited in a chemical bath. Promising results have already been achieved for the deposition of indium sulphide buffer by different vacuum techniques. The solar device performance is very sensitive to the conditions at the absorber-buffer heterojunction. In view of optimization we investigated the influence of the Cu content in the absorber on the current-voltage characteristics. In this work the integral copper content was varied between 19 and 23 at.% in CIGS on glass substrates. An improvement of the cell performance by enhanced open circuit voltage was observed for a reduction to ~ 21 at.% when thermally evaporated indium sulphide was applied as the buffer layer. The influence of stoichiometry deviations on the transport mechanism and secondary barriers in the device was studied using detailed dark and light current-voltage analysis and admittance spectroscopy and compared to the reference CdS-buffered cells. We conclude that the composition of the absorber in the interface region affects current transport in In{sub x}S{sub y}-buffered and CdS-buffered cells in different ways hence optimal Cu content in those two types of devices is different. - Highlights: • Influence of Cu-variation in CIGS cells with In{sub x}S{sub y} buffer layer on cell performance • Enhanced efficiency by slight reduction of Cu-content to 21 at.% • Contribution of tunnelling-enhanced interface recombination for higher Cu-content.

  4. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  5. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo; Kim, Ook Joong

    2007-01-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer

  6. Regional variations of cell surface carbohydrates in human oral stratified epithelium

    DEFF Research Database (Denmark)

    Vedtofte, P; Dabelsteen, Erik; Hakomori, S

    1984-01-01

    The distribution of blood group carbohydrate chains with antigen A, B, H type 2 chain (A and B precursor), and N-acetyllactosamine (H type 2 precursor) specificity was studied in human oral epithelium from different anatomical regions. These represented various epithelial differentiation patterns...... epithelium from nine blood group A, two blood group B, and nine blood group O individuals. The blood group carbohydrate chains were examined in tissue sections by immunofluorescence microscopy. The A and B blood group antigens were detected by human blood group sera, and antigen H type 2 chains and N...... antigen H type 2 chains in metaplastically keratinized buccal epithelium was found to differ significantly from that seen in normal non-keratinized buccal epithelium. The regional variations demonstrated in cell surface carbohydrates are suggested to reflect differences in tissue differentiation....

  7. Variational analysis for simulating free-surface flows in a porous medium

    Directory of Open Access Journals (Sweden)

    Shabbir Ahmed

    2003-01-01

    is used to obtain a discrete form of equations for a two-dimensional domain. The matrix characteristics and the stability criteria have been investigated to develop a stable numerical algorithm for solving the governing equation. A computer programme has been written to solve a symmetric positive definite system obtained from the variational finite element analysis. The system of equations is solved using the conjugate gradient method. The solution generates time-varying hydraulic heads in the subsurface. The interfacing free surface between the unsaturated and saturated zones in the variably saturated domain is located, based on the computed hydraulic heads. Example problems are investigated. The finite element solutions are compared with the exact solutions for the example problems. The numerical characteristics of the finite element solution method are also investigated using the example problems.

  8. Seasonal variation in aragonite saturation in surface waters of Puget Sound – a pilot study

    Directory of Open Access Journals (Sweden)

    Gregory Pelletier

    2018-01-01

    Full Text Available A pilot study of sampling, using monthly marine flights over spatially distributed stations, was conducted with the aim to characterize the carbonate system in Puget Sound over a full year-long period. Surface waters of Puget Sound were found to be under-saturated with respect to aragonite during October–March, and super-saturated during April–September. Highest pCO2 and lowest pH occurred during the corrosive October–March period. Lowest pCO2 and highest pH occurred during the super-saturated April–September period. The monthly variations in pCO2 , pH, and aragonite saturation state closely followed the variations in monthly average chlorophyll a. Super-saturated conditions during April–September are likely strongly influenced by photosynthetic uptake of CO2 during the phytoplankton growing season. The relationship between phytoplankton production, the carbonate system, and aragonite saturation state suggests that long-term trends in eutrophication processes may contribute to trends in ocean acidification in Puget Sound

  9. Distribution and temporal variation of trace metal enrichment in surface sediments of San Jorge Bay, Chile.

    Science.gov (United States)

    Valdés, Jorge; Román, Domingo; Guiñez, Marcos; Rivera, Lidia; Morales, Tatiana; Morales, Tomás; Avila, Juan; Cortés, Pedro

    2010-08-01

    Cu, Pb, and Hg concentrations were determined in surface sediment samples collected at three sites in San Jorge Bay, northern Chile. This study aims to evaluate differences in their spatial distribution and temporal variability. The highest metal concentrations were found at the site "Puerto", where minerals (Cu and Pb) have been loaded for more than 60 years. On the other hand, Hg does not pose a contamination problem in this bay. Cu and Pb concentrations showed significant variations from 1 year to another. These variations seem to be a consequence of the combination of several factors, including changes in the loading and/or storage of minerals in San Jorge Bay, the dredging of bottom sediments (especially at Puerto), and seasonal changes in physical-chemical properties of the water column that modify the exchange of metals at the sediment-water interface. Differences in the contamination factor and geoaccumulation index suggest that pre-industrial concentrations measured in marine sediments of this geographical zone, were better than geological values (average shale, continental crust average) for evaluating the degree of contamination in this coastal system. Based on these last two indexes, San Jorge Bay has a serious problem of Cu and Pb pollution at the three sampling locations. However, only Cu exceeds the national maximum values used to evaluate ecological risk and the health of marine environments. It is suggested that Chilean environmental legislation for marine sediment quality--presently under technical discussion--is not an efficient tool for protecting the marine ecosystem.

  10. Sb2S3 surface modification induced remarkable enhancement of TiO2 core/shell nanowries solar cells

    International Nuclear Information System (INIS)

    Meng, Xiuqing; Wang, Xiaozhou; Zhong, Mianzeng; Wu, Fengmin; Fang, Yunzhang

    2013-01-01

    This study presents the fabrication of a novel dye-sensitized solar cell with Sb 2 S 3 -modified TiO 2 nanowire (NW) arrays/TiO 2 nanoparticles (NP) (TiO 2(NWs) /TiO 2(NPs) /Sb 2 S 3 ) as the anodes and N719 dye as the sensitizer. A solar conversion efficiency of 4.91% at 1 sun illumination was achieved for the composite cell, which is markedly higher than the efficiency rates obtained using TiO 2 and TiO 2(NWs) /Sb 2 S 3 /TiO 2(NPs) NW cells, calculated at 2.36% and 3.11%, respectively. The improved efficiency results from the large surface area of the NPs, as well as the expansion of the light absorption region and high absorption coefficient by Sb 2 S 3 surface modification. - Graphical abstract: A novel TiO 2(NWs) /TiO 2(NPs) /Sb 2 S 3 dye sensitized solar cells (DSSCs) is fabricated, a solar conversion efficiency of 4.91 % at 1 sun illumination is achieved. Highlights: ► We fabricate sandwich structured TiO 2 dye-sensitized solar cells. ► The anode of the solar cells consist of Sb 2 S 3 modified TiO 2 nanowire arrays/TiO 2 nanopartices. ► A solar conversion efficiency of 4.91% at 1 sun illumination is achieved. ► The high efficiency results from large surface area and expanded light adsorption of the anode

  11. Evolution of the solar 'constant'

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M J

    1980-06-01

    Variations in solar luminosity over geological time are discussed in light of the effect of the solar constant on the evolution of life on earth. Consideration is given to long-term (5 - 7% in a billion years) increases in luminosity due to the conversion of hydrogen into helium in the solar interior, temporary enhancements to solar luminosity due to the accretion of matter from the interstellar medium at intervals on the order of 100 million years, and small-amplitude rapid fluctuations of luminosity due to the stochastic nature of convection on the solar surface. It is noted that encounters with dense interstellar clouds could have had serious consequences for life on earth due to the peaking of the accretion-induced luminosity variation at short wavelengths.

  12. Method for manufacturing a solar cell with a surface-passivating dielectric double layer, and corresponding solar cell

    NARCIS (Netherlands)

    2014-01-01

    We will describe a solar cell with a Dielektrikumdoppelschicht and a method for their preparation. It comprises a first dielectric layer (3) containing aluminum oxide or consisting of alumina, and a second, hydrogen-containing dielectric layer (5) is produced by sequential vapor deposition, whereby

  13. Theoretical investigation on heterojunction solar cell

    International Nuclear Information System (INIS)

    Prema, K.; Geetha, K.

    1986-11-01

    The study of thin film solar cells has proved that the surface is rough. A two-dimensional method based on the integral equation technique to analyse thin film solar cells has been developed by DeMey et al. In this paper we present our analysis of a thin film solar cell using the above techniques. Variation of the minority carrier concentration, the saturation current and the junction current of the solar cell with surface roughness is presented. (author). 8 refs, 4 figs

  14. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Science.gov (United States)

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  15. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    Science.gov (United States)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  16. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  17. Temporal aspects of surface water quality variation using robust statistical tools.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Ramli, Mohammad Firuz; Juahir, Hafizan

    2012-01-01

    Robust statistical tools were applied on the water quality datasets with the aim of determining the most significance parameters and their contribution towards temporal water quality variation. Surface water samples were collected from four different sampling points during dry and wet seasons and analyzed for their physicochemical constituents. Discriminant analysis (DA) provided better results with great discriminatory ability by using five parameters with (P < 0.05) for dry season affording more than 96% correct assignation and used five and six parameters for forward and backward stepwise in wet season data with P-value (P < 0.05) affording 68.20% and 82%, respectively. Partial correlation results revealed that there are strong (r(p) = 0.829) and moderate (r(p) = 0.614) relationships between five-day biochemical oxygen demand (BOD(5)) and chemical oxygen demand (COD), total solids (TS) and dissolved solids (DS) controlling for the linear effect of nitrogen in the form of ammonia (NH(3)) and conductivity for dry and wet seasons, respectively. Multiple linear regression identified the contribution of each variable with significant values r = 0.988, R(2) = 0.976 and r = 0.970, R(2) = 0.942 (P < 0.05) for dry and wet seasons, respectively. Repeated measure t-test confirmed that the surface water quality varies significantly between the seasons with significant value P < 0.05.

  18. Charging effects and surface potential variations of Cu-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.gomes@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Calmeiro, T.R.; Nandy, S.; Pinto, J.V.; Pimentel, A.; Barquinha, P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Carvalho, P.A. [SINTEF Materials and Chemistry, PB 124 Blindern, NO-0314, Oslo (Norway); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa (Portugal); Walmsley, J.C. [SINTEF Materials and Chemistry, Materials and Nanotechnology, Høgskoleringen 5, 7034 Trondheim (Norway); Fortunato, E., E-mail: emf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-02-29

    The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO{sub 2} dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu{sub 2}O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WF{sub CuO} > WF{sub Cu} > WF{sub Cu{sub 2O}}. - Highlights: • Charge distribution study in Cu, Cu{sub 2}O and CuO nanowires through electrostatic force microscopy • Structural/surface defect role on the charge distribution along the Cu nanowires • Determination of the nanowire work functions by Kelvin probe force microscopy • Three types of nanowires give a broad idea of charge behavior on Cu based-nanowires.

  19. The effects of solar variability on climate

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1990-01-01

    It has been hypothesized for at least a century that some of the observed variance in global temperature records arises from variations in solar output. Theories of solar-variability effects on climate could not be tested directly prior to satellite measurements because uncertainties in ground-based measurements of solar irradiance were larger than the solar variations themselves. Measurements by the Active Cavity Radiometer (ACRIM) onboard the Solar Max satellite and by the Earth Radiation Budget (ERB) instrument onboard Nimbus 6 are now available which indicate solar-constant variations are positively correlated with solar activity over an 11-yr solar cycle, and are of order ± 1.0 W m -2 relative to a mean solar constant of S 0 = 1,367 W m -2 , ΔS/S 0 ∼ ± 0.07%. For a typical climate sensitivity parameter of β = S 0 ∂T/∂S ∼ 100 C, the corresponding variations in radiative equilibrium temperature at the Earth's surface are ΔT e ∼ ± 0.07 C. The realized temperature variations from solar forcing, ΔT, can be significantly smaller because of thermal damping by the ocean. The author considers effects of solar variability on the observed and projected history of the global temperature record in light of this data using an upwelling-diffusion ocean model to assess the effect of ocean thermal inertia on the thermal response. The response to harmonic variations of the 11-yr sunspot cycle is of order ΔT ∼ ± 0.02 C, though the coupling between response and forcing is stronger for long-term variations in the envelope of the solar cycle which more nearly match the thermal response time of the deep ocean

  20. Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1993-01-01

    Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.

  1. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    Science.gov (United States)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  2. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport

    Science.gov (United States)

    Xiao, Ke; Cui, Can; Wang, Peng; Lin, Ping; Qiang, Yaping; Xu, Lingbo; Xie, Jiangsheng; Yang, Zhengrui; Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2018-02-01

    In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.

  3. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index; Influencia das caracteristicas da superficie no indice de refletancia solar de telhas ceramicas esmaltadas

    Energy Technology Data Exchange (ETDEWEB)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M., E-mail: luciana.maccarini@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil)

    2016-07-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  4. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  5. Influences of bulk and surface recombinations on the power conversion efficiency of perovskite solar cells

    International Nuclear Information System (INIS)

    Xie, Ziang; Sun, Shuren; Yan, Yu; Wang, Wei; Qin, Laixiang; Qin, G G

    2016-01-01

    For a novel kind of solar cell (SC) material, it is critical to estimate how far the power conversion efficiencies (PCEs) of the SCs made of it can go. In 2010 Han and Chen proposed the equation for the ultimate efficiency of SCs without considering the carrier recombination η un . η un is capable of estimating the theoretical upper limits of the SC efficiencies and has attracted much attention. However, carrier recombination, which is one of the key factors influencing the PCEs of the SCs, is ignored in the equation for η un . In this paper, we develop a novel equation to calculate the ultimate efficiency for the SCs, η ur , which considers both the bulk and the surface carrier recombinations. The novel equation for η ur can estimate how much the bulk and the surface carrier recombinations influence the PCEs of the SCs. Moreover, with η ur we can estimate how much PCE improvement space can be gained only by reducing the influence of the carrier recombination to the least. The perovskite organometal trihalide SCs have attracted tremendous attention lately. For the planar CH 3 NH 3 PbI 3 SCs, in the material depth range from 31.25–2000 nm, we apply the equation of η ur to investigate how the bulk and the surface carrier recombinations affect PCE. From a typically reported PCE of 15% for the planar CH 3 NH 3 PbI 3 SC, using the equation of η ur , it is concluded that by reducing the influence of carrier recombination to the least the improvement of PCE is in the range of 17–30%. (paper)

  6. Large Scale Automatic Analysis and Classification of Roof Surfaces for the Installation of Solar Panels Using a Multi-Sensor Aerial Platform

    Directory of Open Access Journals (Sweden)

    Luis López-Fern