WorldWideScience

Sample records for solar steam system

  1. Solar energy for steam generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, Jr, A V; Orlando, A DeF; Magnoli, D

    1979-05-01

    Steam generation is a solar energy application that has not been frequently studied in Brazil, even though for example, about 10% of the national primary energy demand is utilized for processing heat generation in the range of 100 to 125/sup 0/C. On the other hand, substitution of automotive gasoline by ethanol, for instance, has received much greater attention even though primary energy demand for process heat generation in the range of 100 to 125/sup 0/C is of the same order of magnitude than for total automotive gasoline production. Generation of low-temperature steam is analyzed in this article using distributed systems of solar collectors. Main results of daily performance simulation of single flat-plate collectors and concentrating collectors are presented for 20/sup 0/S latitude, equinox, in clear days. Flat plate collectors considered are of the aluminum roll-bond absorber type, selective surface single or double glazing. Considering feedwater at 20/sup 0/C, saturated steam at 120/sup 0/C and an annual solar utilization factor of 50%, a total collector area of about 3,000 m/sup 2/ is necessary for the 10 ton/day plant, without energy storage. A fuel-oil back-up system is employed to complement the solar steam production, when necessary. Preliminary economic evaluation indicates that, although the case-study shows today a long payback period relative to subsidized fuel oil in the domestic market (over 20 years in the city of Rio de Janeiro), solar steam systems may be feasible in the medium term due to projected increase of fuel oil price in Brazil.

  2. Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy

    International Nuclear Information System (INIS)

    Su, Bosheng; Han, Wei; Jin, Hongguang

    2017-01-01

    Highlights: •A novel CCHP system with biogas steam reforming using solar energy is raised. •Chemical and physical energy of biogas is efficiently used in a cascaded way. •The energy quality of concentrating solar heat is promoted in the system. •A parametric analysis is adopted to optimize the thermodynamic performance. •A typical-day study is conducted to explore the general operation features. -- Abstract: The conventional way to utilize biogas either is energy-intensive due to biogas upgrading or causes huge waste of energy grade and environmental pollution by direct burning. This paper proposes a biogas and solar energy-assisted combined cooling, heating and power (BSCCHP) system that upgrades the caloric value of biogas before combustion by introducing a thermochemical conversion process that is driven by solar heat. Adopting commercially established technologies including steam reforming and parabolic dish concentrators, the system exhibits an enhanced system exergy efficiency, and the technology considerably reduces the direct CO 2 footprint and saves depletable fossil fuel. With a solar thermal share of 22.2%, the proposed system not only has a high net solar-to-product thermal and exergy efficiency of 46.80% and 26.49%, respectively, but also results in a commensurate 18.27% reduction of the direct CO 2 footprint compared with the reference individual systems. The effect of critical parameters in the biogas steam reforming process on the system performance was studied. A proper selection of the steam/carbon ratio leads to the optimal direct CO 2 footprint and system exergy efficiency. Pursuing a very high conversion of biogas by improving the reforming temperature is not a wise choice from a system perspective. Finally, a typical-day dynamic simulation was conducted to preliminarily explore the general operation features. This study may provide a new way to efficiently use the renewable energy in the distributed energy system.

  3. Performance tests and efficiency analysis of Solar Invictus 53S - A parabolic dish solar collector for direct steam generation

    Science.gov (United States)

    Jamil, Umer; Ali, Wajahat

    2016-05-01

    This paper presents the results of performance tests conducted on Solar Invictus 53S `system'; an economically effective solar steam generation solution designed and developed by ZED Solar Ltd. The system consists of a dual axis tracking parabolic solar dish and bespoke cavity type receiver, which works as a Once Through Solar Steam Generator `OTSSG' mounted at the focal point of the dish. The overall performance and efficiency of the system depends primarily on the optical efficiency of the solar dish and thermal efficiency of the OTSSG. Optical testing performed include `on sun' tests using CCD camera images and `burn plate' testing to evaluate the sunspot for size and quality. The intercept factor was calculated using a colour look-back method to determine the percentage of solar rays focused into the receiver. Solar dish tracking stability tests were carried out at different times of day to account for varying dish elevation angles and positions, movement of the sunspot centroid was recorded and logged using a CCD camera. Finally the overall performance and net solar to steam efficiency of the system was calculated by experimentally measuring the output steam parameters at varying Direct Normal Insolation (DNI) levels at ZED Solar's test facility in Lahore, Pakistan. Thermal losses from OTSSG were calculated using the known optical efficiency and measured changes in output steam enthalpy.

  4. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  5. Solar-generated steam for oil recovery: Reservoir simulation, economic analysis, and life cycle assessment

    International Nuclear Information System (INIS)

    Sandler, Joel; Fowler, Garrett; Cheng, Kris; Kovscek, Anthony R.

    2014-01-01

    Highlights: • Integrated assessment of solar thermal enhanced oil recovery (TEOR). • Analyses of reservoir performance, economics, and life cycle factors. • High solar fraction scenarios show economic viability for TEOR. • Continuous variable-rate steam injection meets the benchmarks set by conventional steam flood. - Abstract: The viability of solar thermal steam generation for thermal enhanced oil recovery (TEOR) in heavy-oil sands was evaluated using San Joaquin Valley, CA data. The effectiveness of solar TEOR was quantified through reservoir simulation, economic analysis, and life-cycle assessment. Reservoir simulations with continuous but variable rate steam injection were compared with a base-case Tulare Sand steamflood project. For equivalent average injection rates, comparable breakthrough times and recovery factors of 65% of the original oil in place were predicted, in agreement with simulations in the literature. Daily cyclic fluctuations in steam injection rate do not greatly impact recovery. Oil production rates do, however, show seasonal variation. Economic viability was established using historical prices and injection/production volumes from the Kern River oil field. For comparison, this model assumes that present day steam generation technologies were implemented at TEOR startup in 1980. All natural gas cogeneration and 100% solar fraction scenarios had the largest and nearly equal net present values (NPV) of $12.54 B and $12.55 B, respectively. Solar fraction refers to the steam provided by solar steam generation. Given its large capital cost, the 100% solar case shows the greatest sensitivity to discount rate and no sensitivity to natural gas price. Because there are very little emissions associated with day-to-day operations from the solar thermal system, life-cycle emissions are significantly lower than conventional systems even when the embodied energy of the structure is considered. We estimate that less than 1 g of CO 2 /MJ of refined

  6. Testing of modular industrial solar retrofit industrial process steam systems

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Dudley, V.E.

    1984-06-13

    Under the Department of Energy's Modular Industrial Solar Retrofit project, five industrial process heat systems incorporating line-focus solar collectors were designed and hardware was installed and tested at Sandia National Laboratories and the Solar Energy Research Institute. System designers and collector manufacturers participating in the project included Acurex Solar Corporation, BDM, Inc., Custom Engineering, Inc., Foster Wheeler Solar Development Corporation, Solar Kinetics, Inc., and Suntec Systems, Inc. This paper describes the testing of the qualification test systems which has been under way since mid-1982. Each qualification test system includes an equipment skid sufficient to support a collector field of 2300 m/sup 2/ aperture and one delta-tempeature string of from 175 to 460 m/sup 2/ aperture. Each system is capable of producing saturated steam at 1.7 MPa and operates at maximum outlet temperatures of from 250 to 290/sup 0/C. The test series includes function and safety tests to determine that the systems operate as specified, an unattended operation test of at least two weeks duration, performance tests to allow prediction of annual system performance, and life cycle tests to evaluate component lifetime and maintenance requirements. Since the start of testing, some twenty five modifications have been made to the various systems for the purpose of improving system performance and/or reliability, and appropriate tests of these modifictions have been made or are underway. This paper presents a description of the approach to testing of the MISR systems and selected test results.

  7. Mushrooms as Efficient Solar Steam-Generation Devices.

    Science.gov (United States)

    Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia

    2017-07-01

    Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Steam generator design for solar towers using solar salt as heat transfer fluid

    Science.gov (United States)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  10. Methane-steam reforming by molten salt - membrane reactor using concentrated solar thermal energy

    International Nuclear Information System (INIS)

    Watanuki, K.; Nakajima, H.; Hasegawa, N.; Kaneko, H.; Tamaura, Y.

    2006-01-01

    By utilization of concentrated solar thermal energy for steam reforming of natural gas, which is an endothermic reaction, the chemical energy of natural gas can be up-graded. The chemical system for steam reforming of natural gas with concentrated solar thermal energy was studied to produce hydrogen by using the thermal storage with molten salt and the membrane reactor. The original steam reforming module with hydrogen permeable palladium membrane was developed and fabricated. Steam reforming of methane proceeded with the original module with palladium membrane below the decomposition temperature of molten salt (around 870 K). (authors)

  11. Hybrid solar-PLG system for industrial scale steam and hot water generation; Sistema hibrido solar-GLP para geracao de vapor e agua quente em escala industrial

    Energy Technology Data Exchange (ETDEWEB)

    Saidel, Marco A.; Monteiro, Marcio D.; Gimenes, Andre L.V.; Fujii, Ricardo J. [Universidade de Sao Paulo (GEPEA/EPUSP), SP (Brazil). Dept. Engenharia Energia e Automacao Eletricas. Grupo de Energia], e-mail: saidel@pea.usp.br, e-mail: marcio.monteiro@poli.usp.br, e-mail: gimenes@gmail.com, e-mail: fujii@gmail.com

    2008-07-01

    This paper presents an initiative conceived for attending to objectives of the PUREFA (Program for Rational Use of Energy and Alternative Sources) of the Sao Paulo university, Brazil. The indicative consists of the implantation of a solar collector system for pre-heating of the water used in the production of the steam consumed at the university restaurant, with a production of 5800 meals per day. This system (auxiliary to the original steam boiler) pre-heats the water of the boiler minimizing the energy expenses for the production of steam and hot water.

  12. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    Science.gov (United States)

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  13. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.

    Science.gov (United States)

    Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun

    2018-04-04

    Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

  14. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  15. Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation.

    Science.gov (United States)

    Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing

    2018-01-10

    The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.

  16. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination

    Science.gov (United States)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao

    2018-02-01

    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  17. Automatic control of plants of direct steam generation with cylinder-parabolic solar collectors; Control automatico de plantas de generacion directa de vapor con colectores solares cilindro-parabolicos

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela Gutierrez, L.

    2008-07-01

    The main objective of this dissertation has been the contributions to the operation in automatic mode of a new generation of direct steam generation solar plants with parabolic-trough collectors. The dissertation starts introducing the parabolic-trough collectors solar thermal technology for the generation of process steam or steam for a Rankine cycle in the case of power generation generation, which is currently the most developed and commercialized technology. Presently, the parabolic-trough collectors technology is based on the configuration known as heat-exchanger system, based in the use of a heat transfer fluid in the solar field which is heated during the recirculation through the absorber tubes of the solar collectors, transferring later on the that thermal energy to a heat-exchanger for steam generation. Direct steam generation in the absorber tubes has always been shown as an ideal pathway to reduce generation cost by 15% and increase conversion efficiency by 20% (DISS, 1999). (Author)

  18. Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.

    Science.gov (United States)

    Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun

    2017-05-03

    Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m -1 K -1 ), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m -2 , and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.

  19. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.

    Science.gov (United States)

    Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing

    2017-07-01

    Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evaluation of steam and soil solarization for Meloidogyne arenaria control in Florida floriculture crops

    Science.gov (United States)

    Steam and soil solarization were investigated for control of the root-knot nematode Meloidogyne arenaria in two years of field trials on a commercial flower farm in Florida. The objective was to determine if pre-plant steam treatments in combination with solarization, or solarization alone effective...

  1. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications.

    Science.gov (United States)

    Morciano, Matteo; Fasano, Matteo; Salomov, Uktam; Ventola, Luigi; Chiavazzo, Eliodoro; Asinari, Pietro

    2017-09-20

    Technologies for solar steam generation with high performance can help solving critical societal issues such as water desalination or sterilization, especially in developing countries. Very recently, we have witnessed a rapidly growing interest in the scientific community proposing sunlight absorbers for direct conversion of liquid water into steam. While those solutions can possibly be of interest from the perspective of the involved novel materials, in this study we intend to demonstrate that efficient steam generation by solar source is mainly due to a combination of efficient solar absorption, capillary water feeding and narrow gap evaporation process, which can also be achieved through common materials. To this end, we report both numerical and experimental evidence that advanced nano-structured materials are not strictly necessary for performing sunlight driven water-to-vapor conversion at high efficiency (i.e. ≥85%) and relatively low optical concentration (≈10 suns). Coherently with the principles of frugal innovation, those results unveil that solar steam generation for desalination or sterilization purposes may be efficiently obtained by a clever selection and assembly of widespread and inexpensive materials.

  2. Direct solar steam generation inside evacuated tube absorber

    Directory of Open Access Journals (Sweden)

    Khaled M. Bataineh

    2016-12-01

    Full Text Available Direct steam generation by solar radiation falling on absorber tube is studied in this paper. A system of single pipe covered by glass material in which the subcooled undergoes heating and evaporation process is analyzed. Mathematical equations are derived based on energy, momentum and mass balances for system components. A Matlab code is built to simulate the flow of water inside the absorber tube and determine properties of water along the pipe. Widely accepted empirical correlations and mathematical models of turbulent flow, pressure drop for single and multiphase flow, and heat transfer are used in the simulation. The influences of major parameters on the system performance are investigated. The pressure profiles obtained by present numerical solution for each operation condition (3 and 10 MPa matches very well experimental data from the DISS system of Plataforma Solar de Almería. Furthermore, results obtained by simulation model for pressure profiles are closer to the experimental data than those predicted by already existed other numerical model.

  3. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    Science.gov (United States)

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  4. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  5. Real-time dynamic analysis for complete loop of direct steam generation solar trough collector

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei

    2016-01-01

    Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and

  6. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  7. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  8. Shiraz solar power plant operation with steam engine

    International Nuclear Information System (INIS)

    Yaghoubi, M.; Azizian, K.

    2004-01-01

    The present industrial developments and daily growing need of energy, as well as economical and environmental problem caused by fossil fuels consumption, resulted certain constraint for the future demand of energy. During the past two decades great attention has been made to use renewable energy for different sectors. In this regard for the first time in Iran, design and construction of a 250 K W Solar power plant in Shiraz, Iran is being carried out and it will go to operation within next year. The important elements of this power plant is an oil cycle and a steam cycle, and several studies have been done about design and operation of this power plant, both for steady state and transient conditions. For the steam cycle, initially a steam turbine was chosen and due to certain limitation it has been replaced by a steam engine. The steam engine is able to produce electricity with hot or saturated vapor at different pressures and temperatures. In this article, the effects of installing a steam engine and changing its vapor inlet pressure and also the effects of sending hot or saturated vapor to generate electricity are studied. Various cycle performance and daily electricity production are determined. The effects of oil cycle temperature on the collector field efficiency, and daily, monthly and annual amount of electricity production is calculated. Results are compared with the steam cycle output when it contains a steam turbine. It is found that with a steam engine it is possible to produce more annual electricity for certain conditions

  9. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  10. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.

    Science.gov (United States)

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J

    2013-07-16

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.

  11. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

    Science.gov (United States)

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.

    2013-01-01

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator. PMID:23836642

  12. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Sun, Jie; Yan, Yuejun; Gao, Zhichao; Jin, Hongguang

    2016-01-01

    Highlights: • A new concentrating solar power system with a dual-solar field is proposed. • The superheated steam with more than 773 K is produced. • The performances of the proposed system are demonstrated. • The economic feasibility of the proposed system is validated. - Abstract: In this paper, a new parabolic trough solar power system that incorporates a dual-solar field with oil and molten salt as heat transfer fluids (HTFs) is proposed to effectively utilize the solar energy. The oil is chosen as a HTF in the low temperature solar field to heat the feeding water, and the high temperature solar field uses molten salt to superheat the steam that the temperature is higher than 773 K. The produced superheated steam enters a steam turbine to generate power. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under considerations of variations of solar irradiation, the on-design and off-design thermodynamic performances of the system and the characteristics are investigated. The annual average solar-to-electric efficiency and the nominal efficiency under the given condition for the proposed solar thermal power generation system reach to 15.86% and 22.80%, which are higher than the reference system with a single HTF. The exergy losses within the solar heat transfer process of the proposed system are reduced by 7.8% and 45.23% compared with the solar power thermal systems using oil and molten salt as HTFs, respectively. The integrated approach with oil and molten salt as HTFs can make full use of the different physical properties of the HTFs, and optimize the heat transfer process between the HTFs and the water/steam. The exergy loss in the water evaporation and superheated process are reduced, the system efficiency and the economic performance are improved. The research findings provide a new approach for the improvement of the performances of solar thermal power plants.

  13. Thermodynamic performance analysis of a fuel cell trigeneration system integrated with solar-assisted methanol reforming

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Wu, Jing; Xu, Zilong; Li, Meng

    2017-01-01

    Highlights: • Propose a fuel cell trigeneration system integrated with solar-assisted methanol reforming. • Optimize the reaction parameters of methanol steam reforming. • Present the energy and exergy analysis under design and off-design work conditions. • Analyze the contributions of solar energy to the trigeneration system. - Abstract: A solar-assisted trigeneration system for producing electricity, cooling, and heating simultaneously is an alternative scheme to improve energy efficiency and boost renewable energy. This paper proposes a phosphoric acid fuel cell trigeneration system integrated with methanol and steam reforming assisted by solar thermal energy. The trigeneration system consists of a solar heat collection subsystem, methanol steam reforming subsystem, fuel cell power generation subsystem, and recovered heat utilization subsystem. Their respective thermodynamic models are constructed to simulate the system input/output characteristics, and energy and exergy efficiencies are employed to evaluate the system thermodynamic performances. The contribution of solar energy to the system is analyzed using solar energy/exergy share. Through the simulation and analysis of methanol and steam reforming reactions, the optimal reaction pressure, temperature, and methanol to water ratio are obtained to improve the flow rate and content of produced hydrogen. The thermodynamic simulations of the trigeneration system show that the system energy efficiencies at the summer and winter design work conditions are 73.7% and 51.7%, while its exergy efficiencies are 18.8% and 26.1%, respectively. When the solar radiation intensity is different from the design work condition, the total energy and exergy efficiencies in winter decrease approximately by 4.7% and 2.2%, respectively, due to the decrease in solar heat collection efficiency. This proposed novel trigeneration system complemented by solar heat energy and methanol chemical energy is favorable for improving the

  14. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  15. Control scheme for direct steam generation in parabolic troughs under recirculation operation mode

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, L.; Zarza, E. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, P.O. Box 22, E-04200 Tabernas, Almeria (Spain); Berenguel, M. [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, E-04120 Almeria (Spain); Camacho, E.F. [Universidad de Sevilla, Dpto. de Ingenieria de Sistemas y Automatica, Camino de los Descubrimientos s/n, E-41092 Sevilla (Spain)

    2006-01-15

    Electricity production using solar thermal energy is one of the main research areas at present in the field of renewable energies, these systems being characterised by the need of reliable control systems aimed at maintaining desired operating conditions in the face of changes in solar radiation, which is the main source of energy. A new prototype of solar system with parabolic trough collectors was implemented at the Plataforma Solar de Almeria (PSA, South-East Spain) to investigate the direct steam generation process under real solar conditions in the parabolic solar collector field of a thermal power plant prototype. This paper presents details and some results of the application of a control scheme designed and tested for the recirculation operation mode, for which the main objective is to obtain steam at constant temperature and pressure at the outlet of the solar field, so that changes produced in the inlet water conditions and/or solar radiation will only affect the amount of steam produced by the solar field. The steam quality and consequently the nominal efficiency of the plant are thus maintained. (author)

  16. Control concepts for direct steam generation in parabolic troughs

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Loreto; Zarza, Eduardo [CIEMAT, Plataforma Solar de Almeria, Tabernas (Almeria) (Spain); Berenguel, Manuel [Universidad de Almeria, Dept. de Lenguajes y Computacion, Almeria (Spain); Camacho, Eduardo F. [Universidad de Sevilla, Dept. de Ingenieria de Sistemas y Automatica, Sevilla (Spain)

    2005-02-01

    A new prototype parabolic-trough collector system was erected at the Plataforma Solar de Almeria (PSA) (1996-1998) to investigate direct steam generation (DSG) in a solar thermal power plant under real solar conditions. The system has been under evaluation for efficiency, cost, control and other parameters since 1999. The main objective of the control system is to obtain steam at constant temperature and pressure at the solar field outlet, so that changes in inlet water conditions and/or in solar radiation affect the amount of steam, but not its quality or the nominal plant efficiency. This paper presents control schemes designed and tested for two operating modes, 'Recirculation', for which a proportional-integral-derivative (PI/PID) control functions scheme has been implemented, and 'Once-through', requiring more complex control strategies, for which the scheme is based on proportional-integral (PI), feedforward and cascade control. Experimental results of both operation modes are discussed. (Author)

  17. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids

    International Nuclear Information System (INIS)

    Fu, Yang; Mei, Tao; Wang, Gang; Guo, Ankang; Dai, Guangchao; Wang, Sheng; Wang, Jianying; Li, Jinhua; Wang, Xianbao

    2017-01-01

    Graphical abstract: Nanocomposites of graphene oxide (GO) and gold (Au) were explored to generate solar vapor under nature sunlight, and the water vaporization efficiency of GO-Au nanofluids at a temperature far below the boiling point could be up to 59.2%. - Highlights: • Graphene oxide/gold nanofluids were used to generate solar vapor under nature sunlight. • Water vaporization efficiency of GO-Au nanofluids could be up to 59.2%. • GO can be reduced to graphene by sunlight irradiation without reductants. - Abstract: Solar vapor generation enabled by nanoparticles is a green, efficient and direct approach to utilize solar energy. In this work, nanocomposites of graphene oxide (GO) and gold (Au) nanoparticles were prepared to generate solar steam under sunlight irradiation. The changes on steam pressure, mass loss and temperature of water were used to study the solar photothermal properties of GO-Au nanocomposites in water, which demonstrated that the synergistic interaction between GO nanosheets and Au nanoparticles played an active role in the photothermal effect of the nanocomposites. Trace of Au nanoparticles (15.6 wt‰) in the GO nanofluids could significantly improve the efficiency of solar vapor generation. More interestingly, the morphology and color of GO-Au nanofluids varied with irradiation times under sunlight, and our results suggested that GO sheets were reduced to graphene sheets. This process of photothermal deoxygenation of GO provides an available solution for preparing graphene sheets under ambient conditions without any reductions, and the solar steam generation method can enable potential applications like sterilization of waste, seawater desalination, and disinfection.

  18. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  19. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    Science.gov (United States)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  20. Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Shuai, Yong; Gong, Liang; Tan, Heping

    2014-01-01

    Highlights: • H 2 production by hybrid solar energy and methane steam reforming is analyzed. • MCRT and FVM coupling method is used for chemical reaction in solar porous reactor. • LTNE model is used to study the solid phase and fluid phase thermal performance. • Modified P1 approximation programmed by UDFs is used for irradiative heat transfer. - Abstract: The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production

  1. Highly Flexible and Washable Nonwoven Photothermal Cloth for Efficient and Practical Solar Steam Generation

    KAUST Repository

    Jin, Yong

    2018-03-29

    Solar-driven water evaporation is emerging as a promising solar-energy utilization process. In the present work, highly stable, flexible and washable nonwoven photothermal cloth is prepared by electrospinning for efficient and durable solar steam evaporation. The cloth is composed of polymeric nanofibers as matrix and inorganic carbon black nanoparticles encapsulated inside the matrix as light absorbing component. The photothermal cloth with an optimized carbon loading shows a desirable underwater black property, absorbing 94% of the solar spectrum and giving rise to a state-of-the-art solar energy utilization efficiency of 83% during pure water evaporation process. Owing to its compositions and special structural design, the cloth possesses anti-photothermal-component-loss property and is highly flexible and mechanically strong, chemically stable in various harsh environment such as strong acid, alkaline, organic solvent and salty water. It can be hand-washed for more than 100 times without degrading its performance and thus offers a potential mechanism for foulant cleaning during practical solar steam generation and distillation processes. The results of this work stimulate more research in durable photothermal materials aiming at real world applications.

  2. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  3. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  4. Solar membrane natural gas steam-reforming process: evaluation of reactor performance

    NARCIS (Netherlands)

    de Falco, M.; Basile, A.; Gallucci, F.

    2010-01-01

    In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular

  5. Solar membrane natural gas steam-reforming process : evaluation of reactor performance

    NARCIS (Netherlands)

    Falco, de M.; Basile, A.; Gallucci, F.

    2010-01-01

    In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular

  6. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  7. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  8. Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling

    2017-01-01

    Highlights: •A nonlinear dynamic model of recirculation DSG parabolic trough is developed. •Collector row, water separator and spray attemperator are modeled, respectively. •The dynamic behaviors of the collector field are simulated and analyzed. •Transfer functions of water level and outlet fluid temperature are derived. •Multi-model switching generalized predictive control strategy is developed. -- Abstract: This work describes and evaluates a new nonlinear dynamic model, and a new generalized predictive control scheme for a collector field of direct steam generation parabolic troughs in recirculation mode. Modeling the dynamic behaviors of collector fields is essential to design, testing and validation of automatic control systems for direct steam generation parabolic troughs. However, the behaviors of two-phase heat transfer fluids impose challenges to simulating and developing process control schemes. In this work, a new nonlinear dynamic model is proposed, based on the nonlinear distributed parameter and the nonlinear lumped parameter methods. The proposed model is used to simulate and analyze the dynamic behaviors of the entire collector field for recirculation mode direct steam generation parabolic troughs under different weather conditions, without excessive computational costs. Based on the proposed model, transfer functions for both the water level of the separator and outlet steam temperatures are derived, and a new multi-model switching generalized predictive control scheme is developed for simulated control of the plant behaviors for a wide region of operational conditions. The proposed control scheme achieves excellent control performance and robustness for systems with long delay, large inertia and time-varying parameters, and efficiently solves the model mismatching problem in direct steam generation parabolic troughs. The performances of the model and control scheme are validated with design data from the project of Integration of Direct

  9. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  10. Thermodynamic analysis of a novel integrated solar combined cycle

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Yang, Yongping

    2014-01-01

    Highlights: • A novel ISCC scheme with two-stage DSG fields has been proposed and analyzed. • HRSG and steam turbine working parameters have been optimized to match the solar integration. • New scheme exhibits higher solar shares in the power output and solar-to-electricity efficiency. • Thermodynamic performances between new and reference systems have been investigated and compared. - Abstract: Integrated solar combined cycle (ISCC) systems have become more and more popular due to their high fuel and solar energy utilization efficiencies. Conventional ISCC systems with direct steam generation (DSG) have only one-stage solar input. A novel ISCC with DSG system has been proposed and analyzed in this paper. The new system consists two-stage solar input, which would significantly increase solar share in the total power output. Moreover, how and where solar energy is input into ISCC system would have impact on the solar and system overall efficiencies, which have been analyzed in the paper. It has been found that using solar heat to supply latent heat for vaporization of feedwater would be superior to that to be used for sensible heating purposes (e.g. Superheating steam). The study shows that: (1) producing both the high- and low-pressure saturated steam in the DSG trough collector could be an efficient way to improve process and system performance; (2) for a given live steam pressure, the optimum secondary and reheat steam conditions could be matched to reach the highest system thermal efficiency and net solar-to-electricity efficiency; (3) the net solar-to-electricity efficiency could reach up to 30% in the novel two-stage ISCC system, higher than that in the one-stage ISCC power plant; (4) compared with the conventional combined cycle gas turbine (CCGT) power system, lower stack temperature could be achieved, owing to the elimination of the approach-temperature-difference constraint, resulting in better thermal match in the heat recovery steam generator

  11. Improving Steam System Performance: A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    2002-06-01

    The sourcebook is a reference for industrial steam system users, outlining opportunities to improve steam system performance. This Sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The Sourcebook is divided into the following three main sections: Section 1: Steam System Basics--For users unfamiliar with the basics of steam systems, or for users seeking a refresher, a brief discussion of the terms, relationships, and important system design considerations is provided. Users already familiar with industrial steam system operation may want to skip this section. This section describes steam systems using four basic parts: generation, distribution, end use, and recovery. Section 2: Performance Improvement Opportunities--This section discusses important factors that should be considered when industrial facilities seek to improve steam system performance and to lower operating costs. This section also provides an overview of the finance considerations related to steam system improvements. Additionally, this section discusses several resources and tools developed by the U. S. Department of Energy's (DOE) BestPractices Steam Program to identify and assess steam system improvement opportunities. Section 3: Programs, Contacts, and Resources--This section provides a directory of associations and other organizations involved in the steam system marketplace. This section also provides a description of the BestPractices Steam Program, a directory of contacts, and a listing of available resources and tools, such as publications, software, training courses, and videos.

  12. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  13. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... evaporation and condensation takes place over a temperature range, the efficiency of the heat exchange processes can be improved, possibly resulting also in improved overall performance of the system. This paper is aimed at evaluating the prospect of using the Kalina cycle for concentrated solar power plants...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0...

  14. Study on water desalination system by solar energy distillation; Taiyo energy wo riyoshita joryugata kaisui tansuika system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, M; Ameku, K; Yonamine, K [Univ. of the Ryukyus, Okinawa (Japan)

    1997-11-25

    Discussions have been given on developing a seawater desalination system by solar energy distillation. The system is composed of evaporators installed on the seawater level, condensers placed on high and cool locations, and steam transport pipes to connect these two pieces of equipment. Steam is generated from seawater heated by solar heat in evaporators, and the steam is transported driven by low power consuming fans to higher locations through the steam transport pipes, where it is condensed by cool air in the condensers, and recovered as plain water. The concept is such that electric power required to operate the fans is supplied from photovoltaic panels, and all other energy is obtained from the sun. First, an experiment was performed upon noticing on methods of transporting and condensing the steam. The experiment used plain water rather than seawater. The heat source and evaporators were installed on the first floor, and the steam transporting fans on the second floor of an atrium. The thermal load was set to 1.5 times greater than average outdoor insolation amount. Increase in the distilled water recovery rate and distillation efficiency was verified by using the fans. The evaporation efficiency was found to tend to increase when the steam flow rate is increased. 3 refs., 10 figs.

  15. Reconstruction of steam generators super emergency feadwater supply system (SHNC) and steam dump stations to the atmosphere system PSA

    International Nuclear Information System (INIS)

    Kuzma, J.

    2001-01-01

    Steam Generators Super Emergency Feadwater Supply System (SHNC) and Steam Dump Stations to the Atmosphere System (PSA) are two systems which cooperate to remove residual heat from reactor core after seismic event. SHNC assure feeding of the secondary site of steam generator (Feed) where after heat removal.from primary loops, is relieved to the atmosphere by PSA (Bleed) in form of steam. (author)

  16. A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation

    KAUST Repository

    Shi, Yusuf

    2018-04-18

    Summary The energy efficiency in solar steam generation by 2D photothermal materials has approached its limit. In this work, we fabricated 3D cylindrical cup-shaped structures of mixed metal oxide as solar evaporator, and the 3D structure led to a high energy efficiency close to 100% under one-sun illumination due to the capability of the cup wall to recover the diffuse reflectance and thermal radiation heat loss from the 2D cup bottom. Additional heat was gained from the ambient air when the 3D structure was exposed under one-sun illumination, leading to an extremely high steam generation rate of 2.04 kg m−2 h−1. The 3D structure has a high thermal stability and shows great promise in practical applications including domestic wastewater volume reduction and seawater desalination. The results of this work inspire further research efforts to use 3D photothermal structures to break through the energy efficiency limit of 2D photothermal materials.

  17. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    An overview of a study to retrofit the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant with Solar Central Receiver Technology is presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system will displace natural gas presently used in the fossil reformer combustion chamber.

  18. Genetic optimization of steam multi-turbines system

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2014-01-01

    Optimization analysis of partially loaded cogeneration, multiple-stages steam turbines system was numerically investigated by using own-developed code (C++). The system can be controlled by following variables: fresh steam temperature, pressure, and flow rates through all stages in steam turbines. Five various strategies, four thermodynamics and one economical, which quantify system operation, were defined and discussed as an optimization functions. Mathematical model of steam turbines calculates steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. Genetic algorithm GENOCOP was implemented as a solving engine for non–linear problem with handling constrains. Using formulated methodology, example solution for partially loaded system, composed of five steam turbines (30 input variables) with different characteristics, was obtained for five strategies. The genetic algorithm found multiple solutions (various input parameters sets) giving similar overall results. In real application it allows for appropriate scheduling of machine operation that would affect equable time load of every system compounds. Also based on these results three strategies where chosen as the most complex: the first thermodynamic law energy and exergy efficiency maximization and total equivalent energy minimization. These strategies can be successfully used in optimization of real cogeneration applications. - Highlights: • Genetic optimization model for a set of five various steam turbines was presented. • Four various thermodynamic optimization strategies were proposed and discussed. • Operational parameters (steam pressure, temperature, flow) influence was examined. • Genetic algorithm generated optimal solutions giving the best estimators values. • It has been found that similar energy effect can be obtained for various inputs

  19. Performance test of solar energy distillation system; Taiyonetsu riyo kaisui tansuika system no zosui seino shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, T; Toyoshima, Y [Keio University, Tokyo (Japan); Narasaki, Y; Kamiya, I [Ebara Corp., Tokyo (Japan); Sato, H [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-11-25

    In order to develop a seawater desalination equipment utilizing solar heat, a performance test was performed on a three-stage solar heat vacuum distiller. The equipment can evaporate and condense water at low temperatures by reducing the pressure in a distilling section. Solar heat is collected by a heat collecting plate, by which water as the working fluid is evaporated and moved to a heat conducting section in an evaporation pipe in a state of steam. The steam is condensed in a low-temperature heat conducting pipe, the heat is released outside the heat conducting pipe, and seawater is evaporated under low pressure condition. The working fluid is circulated for repetitive use. Solar cells are used as a motive power source for a vacuum pump, hence the system is self-sustainable even if installed in a desert area and the like places. The construction is simple, highly durable, and easy in maintenance. The system has high water producing performance, uses no harmful substances whatsoever such as fluorocarbons, and is a friendly system to the global environment. Because of evaporation at low temperatures, heat loss to the surroundings and sensible heat due to temperature rise are small, and the system response is quick. The solar heat can be utilized more effectively as multiple effects. When a heat collecting plate of 7.76 m {sup 2} was used, maximum yield of 105.45 kg/day was obtained. The system`s distillation efficiency is higher than other types of solar heat utilizing distillers. 7 refs., 5 figs.

  20. Steam Generator Inspection Planning Expert System

    International Nuclear Information System (INIS)

    Rzasa, P.

    1987-01-01

    Applying Artificial Intelligence technology to steam generator non-destructive examination (NDE) can help identify high risk locations in steam generators and can aid in preparing technical specification compliant eddy current test (ECT) programs. A steam Generator Inspection Planning Expert System has been developed which can assist NDE or utility personnel in planning ECT programs. This system represents and processes its information using an object oriented declarative knowledge base, heuristic rules, and symbolic information processing, three artificial intelligence based techniques incorporated in the design. The output of the system is an automated generation of ECT programs. Used in an outage inspection, this system significantly reduced planning time

  1. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  2. PROCESSES OF HEAT-MASS-TRANSFER IN APPARATUS OF SOLAR ABSORBING REFRIGERATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2014-12-01

    Full Text Available Ideology of development of the solar refrigeration systems and systems of air-conditioning, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution, is presented in the article. The processes of joint heat-mass-transfer are considered in the direct and indirect types of evaporated coolers taking into account the phenomenon of re-condensation of aquatic steams at the low temperature evaporated cooling of environments. The pre-liminary analysis of possibilities of the solar systems is executed as it applies in relation to the tasks of cooling of envi-ronments and air-conditioning systems.

  3. An expert system for steam generator maintenance

    International Nuclear Information System (INIS)

    Remond, A.

    1988-01-01

    The tube bundles in PWR steam generators are, by far, the major source of problems whether they are due to primary and secondary side corrosion mechanisms or to tube vibration-induced wear at tube support locations. Because of differences in SG operating, materials, and fabrication processes, the damage may differ from steam generator to steam generator. MPGV, an expert system for steam generator maintenance uses all steam generator data containing data on materials, fabrication processes, inservice inspection, and water chemistry. It has access to operational data for individual steam generators and contains models of possible degradation mechanisms. The objectives of the system are: · Diagnosing the most probable degradation mechanism or mechanisms by reviewing the entire steam generator history. · Identifying the tubes most exposed to future damage and evaluating the urgency of repair by simulating the probable development of the problem in time. · Establishing the appropriate preventive actions such as repair, inspection or other measures and establishing an action schedule. The system is intended for utilities either for individual plants before each inspection outage or any time an incident occurs or for a set of plants through a central MPGV center. (author)

  4. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    Details of the conceptual design, economic analysis, and development plan for a solar central receiver system for retrofitting the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant are presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system displaces natural gas presently used in the fossil reformer combustion chamber. The solar reformer retrofit system characteristics and its interface with the existing plant are simple, incorporating state of the art components with proven technology. A northfield composed of one thousand forty second generation heliostats provides solar energy to the receiver which is positioned on top of a 90 meter high steel tower. The overall economics of this system can provide over 20% discount cash flow rate of return with proper investment and market conditions.

  5. Containments for consolidated nuclear steam systems

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    A containment system for a consolidated nuclear steam system incorporating a nuclear core, steam generator and reactor coolant pumps within a single pressure vessel is described which is designed to provide radiation shielding and pressure suppression. Design details, including those for the dry well and wet well of the containment, are given. (UK)

  6. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  7. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  8. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    OpenAIRE

    Bogdan Sobczak; Robert Rink; Rafał Kuczyński; Robert Trębski

    2014-01-01

    Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power syst...

  9. Mathematical modeling of control system for the experimental steam generator

    Science.gov (United States)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  10. Solar central receiver hybrid power system. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-11-01

    A management plan is presented for implementation during the Solar Central Receiver Hybrid Power System - Phase I study project. The project plan and the management controls that will be used to assure technically adequate, timely and cost effective performance of the work required to prepare the designated end products are described. Bechtel in-house controls and those to be used in directing the subcontractors are described. Phase I of the project consists of tradeoff studies, parametric analyses, and engineering studies leading to conceptual definition and evaluation of a commercial hybrid power system that has the potential for supplying economically competitive electric power to a utility grid in the 1985-1990 time frame. The scope also includes the preparation of a development plan for the resolution of technical uncertainties and the preparation of plans and a proposal for Phase II of the program. The technical approach will be based on a central receiver solar energy collection scheme which supplies thermal energy to a combined cycle, generating system, consisting of a gas turbine cycle combined with a steam bottoming cycle by means of a heat recovery steam generator.

  11. HTGR power plant hot reheat steam pressure control system

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    A control system for a high temperature gas cooled reactor (HTGR) power plant is disclosed wherein such plant includes a plurality of steam generators. Dual turbine-generators are connected to the common steam headers, a high pressure element of each turbine receiving steam from the main steam header, and an intermediate-low pressure element of each turbine receiving steam from the hot reheat header. Associated with each high pressure element is a bypass line connected between the main steam header and a cold reheat header, which is commonly connected to the high pressure element exhausts. A control system governs the flow of steam through the first and second bypass lines to provide for a desired minimum steam flow through the steam generator reheater sections at times when the total steam flow through the turbines is less than such minimum, and to regulate the hot reheat header steam pressure to improve control of the auxiliary steam turbines and thereby improve control of the reactor coolant gas flow, particularly following a turbine trip. (U.S.)

  12. Diagnostic system of steam generator, especially molten metal heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1986-01-01

    A diagnostic system is described and graphically represented consisting of a leak detector, a medium analyzer and sensors placed on the piping connected to the indication sections of both tube plates. The advantage of the designed system consists in the possibility of detecting tube failure immediately on leak formation, especially in generators with duplex tubes. This shortens the period of steam generator shutdown for repair and reduces power losses. The design also allows to make periodical leak tests during planned steam generator shutdowns. (A.K.)

  13. Mathematical modeling of control system for the experimental steam generator

    Directory of Open Access Journals (Sweden)

    Podlasek Szymon

    2016-01-01

    Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  14. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  15. Moisture separator for steam generator level measurement system

    International Nuclear Information System (INIS)

    Cantineau, B.J.

    1987-01-01

    A steam generator level measurement system having a reference leg which is kept full of water by a condensation pot, has a liquid/steam separator in the connecting line between the condensation pot and the steam phase in the steam generator to remove excess liquid from the steam externally of the steam generator. This ensures that the connecting line does not become blocked. The separator pot has an expansion chamber which slows down the velocity of the steam/liquid mixture to aid in separation, and a baffle, to avoid liquid flow into the line connected to the condensate pot. Liquid separated is returned to the steam generator below the water level through a drain line. (author)

  16. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zou, Chun; Zheng, Chuguang

    2015-01-01

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO 2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO 2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO 2 capture technology for restraining CO 2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO 2 /O 2 recycled combustion (oxy-CO 2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO 2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  17. Industrial steam systems and the energy-water nexus.

    Science.gov (United States)

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  18. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.

    2014-01-01

    Highlights: • As the solar irradiation increases, the exergetic efficiency increases. • The R134a combined cycle has best exergetic performance, 26%. • The R600a combined cycle has the lowest exergetic efficiency, 20%. • The main source of exergy destruction is the solar collector. • There is an exergetic improvement potential of 75% in the systems considered. - Abstract: In this paper, detailed exergy analysis of selected thermal power systems driven by parabolic trough solar collectors (PTSCs) is presented. The power is produced using either a steam Rankine cycle (SRC) or a combined cycle, in which the SRC is the topping cycle and an organic Rankine cycle (ORC) is the bottoming cycle. Seven refrigerants for the ORC were examined: R134a, R152a, R290, R407c, R600, R600a, and ammonia. Key exergetic parameters were examined: exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential. For all the cases considered it was revealed that as the solar irradiation increases, the exergetic efficiency increases. Among the combined cycles examined, the R134a combined cycle demonstrates the best exergetic performance with a maximum exergetic efficiency of 26% followed by the R152a combined cycle with an exergetic efficiency of 25%. Alternatively, the R600a combined cycle has the lowest exergetic efficiency, 20–21%. This study reveals that the main source of exergy destruction is the solar collector where more than 50% of inlet exergy is destructed, or in other words more than 70% of the total destructed exergy. In addition, more than 13% of the inlet exergy is destructed in the evaporator which is equivalent to around 19% of the destructed exergy. Finally, this study reveals that there is an exergetic improvement potential of 75% in the systems considered

  19. Drying system for steam generators, particularly for steam generators of nuclear power stations

    International Nuclear Information System (INIS)

    Lavalerie, Claude; Borrel, Christian.

    1982-01-01

    A drying system is described which allows for modular construction and which provides a significant available exchange area in a reduced volume. All the drying elements are identical and are distributed according to a ternay circular symmetry and are placed radially and associated to steam guiding facilities which alternately provide around the axis of revolution an output volume of dry steam from one element and an input volume of wet steam in the following element [fr

  20. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  1. Upgraded Steam Generator Lancing System for Uljin NPP no.2

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Hong, Sung Yull

    2005-01-01

    KEPRI(Korea Electric Power Research Institute) has developed various types of steam generator lancing systems since 1998. In this paper, we introduce a new lancing system with new improvements from the previous steam generator lancing system for Uljin NPP #2(nuclear power plant) constructed by KEPRI. The previous lancing system is registered as KALANS R -II and was developed for System-80 type steam generators. The previous lancing system was applied to Uljin unit #3 and it lowered radiation exposure of operators in comparison to manually operated lancing systems. And it effectively removed sludge accumulated around kidney bean zone in the Uljin unit #3 steam generators. But the previous lancing system could only clean partially the steam generators of Uljin unit #4. This was because the rail of the previous lancing system interfered with a part of the steam generator. Therefore we developed a new lancing system that can solve the interference problem. This new lancing system was upgraded from the previous lancing system. Also, a new lancing system for System-80 S/G will be introduced in this paper

  2. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  3. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  4. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  5. Heat transfer efficient thermal energy storage for steam generation

    International Nuclear Information System (INIS)

    Adinberg, R.; Zvegilsky, D.; Epstein, M.

    2010-01-01

    A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours

  6. Solar Water Heater Installation Package

    Science.gov (United States)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  7. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...

  8. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  9. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  10. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-23

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  11. Impact of pressure losses in small-sized parabolic-trough collectors for direct steam generation

    International Nuclear Information System (INIS)

    Lobón, David H.; Valenzuela, Loreto

    2013-01-01

    Using PTC (parabolic-trough solar collectors) for industrial thermal processes in the temperature range up to 300 °C is not new, but in recent years there is a boosted interest in this type of concentrating solar technology. One of the problems that arise when designing PTC solar fields is how to deal with the pressure losses which are critical when producing saturated steam directly in the collectors. Depending on the characteristics of the collector, mainly on the receiver diameter, and on the nominal process conditions defined, a solar field configuration can be feasible or not. This paper presents a sensitivity analysis done using a software tool developed to study the thermo-hydraulic behaviour of PTC systems using water-steam as heat transfer fluid. In the case study presented, a small-sized PTC designed for industrial process heat applications is considered, which has a focal length of 0.2 m, an aperture area of 2 m 2 , and its receiver pipe has an inner diameter of 15 mm. Varied process conditions are inlet water pressure, temperature, and mass flow rate, solar irradiance and incidence angle of solar radiation. Results show that working pressure definition is particularly critical to make feasible or not the direct steam generation in solar collectors. - Highlights: • DSG (Direct steam generation) in small-sized parabolic-trough collectors. • Thermo-hydraulic sensitivity analysis. • Influence of working pressure and receiver geometry in DSG process

  12. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  13. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  14. Fail-safety of the EBR-II steam generator system

    International Nuclear Information System (INIS)

    Chopra, P.S.; Stone, C.C.; Hutter, E.; Barney, W.K.; Staker, R.G.

    1976-01-01

    Fail-safe analyses of the EBR-II steam-generator system show that a postulated non-instantaneous leak of water or steam into sodium, through a duplex tube or a tubesheet, at credible leak rates will not structurally damage the evaporators and superheaters. However, contamination of the system and possible shell wastage by sodium-water reaction products may render the system inoperable for a period exceeding six months. This period would be shortened to three months if the system were modified by adding a remotely operated water dump system, a steam vent system, a secondary sodium superheater relief line, and a tubesheet leak-detection system

  15. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  16. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jayne [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States)

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  17. Thermodynamics of the silica-steam system

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, Oscar H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In most nuclear cratering and cavity formation applications, the working fluid in the expanding cavity consists primarily of vaporized silica and steam. The chemical reaction products of silica and steam under these conditions are not known, although it is known that silica is very volatile in the presence of high-pressure steam under certain geologic conditions and in steam turbines. A review is made of work on the silica-steam system in an attempt to determine the vapor species that exist, and to establish the associated thermo-dynamic data. The review indicates that at 600-900 deg K and 1-100 atm steam pressure, Si(OH){sub 4} is the most likely silicon-containing gaseous species. At 600-900 deg. K and 100-1000 atm steam, Si{sub 2}O(OH){sub 6} is believed to predominate, whereas at 1350 deg K and 2000-9000 atm, a mixture of Si(OH){sub 4} and Si{sub 2}O(OH){sub 6} is consistent with the observed volatilities. In work at 1760 deg. K in which silica was reacted either with steam at 0.5 and 1 atm, or with gaseous mixtures of H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O at 1 atm total pressure, only part of the volatility could be accounted for by Si(OH){sub 4}. Hydrogen was found to greatly enhance the volatility of silica, and oxygen to suppress it. The species most likely to explain this behavior is believed to be SiO(OH). A number of other species may also be significant under these conditions. Thermodynamic data have been estimated for all species considered. The Si-OH bond dissociation energy is found to be {approx}117 kcal/mole in both Si(OH){sub 4} and Si{sub 2}O(OH){sub 6}. (author)

  18. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  19. Performance analysis of a co-generation system using solar energy and SOFC technology

    International Nuclear Information System (INIS)

    Akikur, R.K.; Saidur, R.; Ping, H.W.; Ullah, K.R.

    2014-01-01

    Highlights: • A new concept of a cogeneration system is proposed and investigated. • The system comprises solar collector, PV, SOFC and heat exchanger. • 83.6% Power and heat generation efficiency has been found at fuel cell mode. • 85.1% Efficiency of SOSE has been found at H2 production mode. • The heat to power ratio of SOFC mode has been found about 0.917. - Abstract: Due to the increasing future energy demands and global warming, the renewable alternative energy sources and the efficient power systems have been getting importance over the last few decades. Among the renewable energy technologies, the solar energy coupling with fuel cell technology will be the promising possibilities for the future green energy solutions. Fuel cell cogeneration is an auspicious technology that can potentially reduce the energy consumption and environmental impact associated with serving building electrical and thermal demands. In this study, performance assessment of a co-generation system is presented to deliver electrical and thermal energy using the solar energy and the reversible solid oxide fuel cell. A mathematical model of the co-generation system is developed. To illustrate the performance, the system is considered in three operation modes: a solar-solid oxide fuel cell (SOFC) mode, which is low solar radiation time when the solar photovoltaic (PV) and SOFC are used for electric and heat load supply; a solar-solid oxide steam electrolyzer (SOSE) mode, which is high solar radiation time when PV is used for power supply to the electrical load and to the steam electrolyzer to generate hydrogen (H 2 ); and a SOFC mode, which is the power and heat generation mode of reversible SOFC using the storage H 2 at night time. Also the effects of solar radiation on the system performances and the effects of temperature on RSOFC are analyzed. In this study, 100 kW electric loads are considered and analyzed for the power and heat generation in those three modes to evaluate

  20. Foster Wheeler Solar Development Corporation modular industrial solar retrofit qualification test results

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Dudley, V.E.; Lewandoski, A.A.

    1986-10-01

    Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

  1. Foster Wheeler Solar Development Corporation Modular Industrial Solar Retrofit qualification test results

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Dudley, V.E.; Lewandowski, A.A.

    1987-04-01

    Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

  2. Optimum fuel allocation in parallel steam generator systems

    International Nuclear Information System (INIS)

    Bollettini, U.; Cangioli, E.; Cerri, G.; Rome Univ. 'La Sapienza'; Trento Univ.

    1991-01-01

    An optimization procedure was developed to allocate fuels into parallel steam generators. The procedure takes into account the level of performance deterioration connected with the loading history (fossil fuel allocation and maintenance) of each steam generator. The optimization objective function is the system hourly cost, overall steam demand being satisfied. Costs are due to fuel and electric power supply and to plant depreciation and maintenance as well. In order to easily updata the state of each steam generator, particular care was put in the general formulation of the steam production function by adopting a special efficiency-load curve description based on a deterioration scaling parameter. The influence of the characteristic time interval length on the optimum operation result is investigated. A special implementation of the method based on minimum cost paths is suggested

  3. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  4. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  5. Steam generator auxiliary systems

    International Nuclear Information System (INIS)

    Heinz, A.

    1982-01-01

    The author deals with damage and defect types obtaining in auxiliary systems of power plants. These concern water/steam auxiliary systems (feed-water tank, injection-control valves, slide valves) and air/fluegas auxiliary systems (blowers, air preheaters, etc.). Operating errors and associated damage are not dealt with; by contrast, weak spots are pointed out which result from planning and design. Damage types and events are collected in statistics in order to facilitate damage evaluation for arriving at improved design solutions. (HAG) [de

  6. Solar Power Tower Design Basis Document, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  7. Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Ma, Lanxin; Leng, Yu

    2015-01-01

    Highlights: • Effects of key factors on chemical reaction for solar methane reforming are studied. • MCRT and FVM method coupled with UDFs is used to establish numerical model. • Heat and mass transfer model coupled with thermochemical reaction is established. • LTNE model coupled with P1 approximation is used for porous matrix solar reactor. • A formula between H 2 production and conductivity of porous matrix is put forward. - Abstract: With the aid of solar energy, methane reforming process can save up to 20% of the total methane consumption. Monte Carlo Ray Tracing (MCRT) method and Finite Volume Method (FVM) combined method are developed to establish the heat and mass transfer model coupled with thermochemical reaction kinetics for porous medium solar thermochemical reactor. In order to provide more temperature information, local thermal non-equilibrium (LTNE) model coupled with P1 approximation is established to investigate the thermal performance of porous medium solar thermochemical reaction. Effects of radiative heat loss and thermal conductivity of porous matrix on temperature distribution and thermochemical reaction for solar driven steam methane reforming process are numerically studied. Besides, the relationship between hydrogen production and thermal conductivity of porous matrix are analyzed. The results illustrate that hydrogen production shows a 3 order polynomial relation with thermal conductivity of porous matrix

  8. Thermodynamic comparison of two processes of hydrogen production: steam methane reforming-A solar thermochemical process

    International Nuclear Information System (INIS)

    Gomri, Rabah; Boumaza, Mourad

    2006-01-01

    Hydrogen is mainly employed like primary product, for the synthesis of ammonia. The ammonia is synthesized by chemically combining hydrogen and nitrogen under pressure, in the presence of a catalyst. This ammonia is used, for the production of the nitrate fertilizers. Nowadays hydrogen gains more attention mainly because, it is regarded as a future significant fuel by much of experts. The widespread use of hydrogen as source of energy could help to reduce the concern concerning the safety of energy, the total change of climate and the quality of air. Hydrogen is presented then as an excellent alternate initially and as substitute thereafter. It can play a role even more significant than conventional energies. Indeed, it has the advantage of being nonpolluting and it can use the same means of transport as conventional energies. For Algeria, it proves of importance capital. It not only makes it possible to increase and diversify its energy reserves and its exports but also to provide for its energy needs which become increasingly significant. Although hydrogen can be produced starting from a large variety of resources using a range of various technologies, the natural gas is generally preferred and will remain in the near future the principal primary product for the manufacture of hydrogen. Currently the most effective means of production of hydrogen is the Steam Reforming of Natural Gas (SMR). This process is seen as a one of principal technologies for the production of hydrogen. The disadvantages of this process it's that it consumes a great quantity of primary energy and that it releases in the atmosphere the gases that contribute to the warming of the plane. Among the alternatives processes of hydrogen production one can quote solar thermochemical processes. In this study, an exergetic analysis of the process of hydrogen production based on Zn/ZnO redox reactions is presented. In the first part of this study, an exergetic analysis is made for a temperature of the

  9. Reliability study: steam generation and distribution system, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Baker, F.E.; Davis, E.L.; Dent, J.T.; Walters, D.E.; West, R.M.

    1982-10-01

    A reliability study for determining the ability of the Steam Generation and Distribution System to provide reliable and adequate service through the year 2000 has been completed. This study includes an evaluation of the X-600 Steam Plant and the steam distribution system. The Steam Generation and Distribution System is in good overall condition, but to maintain this condition, the reliability study team made twelve recommendations. Eight of the recommendations are for repair or replacement of existing equipment and have a total estimated cost of $540,000. The other four recommendations are for additional testing, new procedure implementation, or continued investigations

  10. CASTOR - Advanced System for VVER Steam Generator Inspection

    International Nuclear Information System (INIS)

    Mateljak, Petar

    2014-01-01

    From the safety point of view, steam generator is a very important component of a nuclear power plant. Only a thin tube wall prevents leakage of radioactive material from the primary side into the environment. Therefore, it is very important to perform inspections in order to detect pipe damage and apply appropriate corrective actions during outage. Application of the nondestructive examination (NDE) technique, that can locate degradation and measure its size and orientation, is an integral part of nuclear power plant maintenance. The steam generator inspection system is consisted of remotely controlled manipulator, testing instrument and software for data acquisition and analysis. Recently, the inspection systems have evolved to a much higher level of automation, efficiency and reliability resulting in a lower cost and shorter outage time. Electronic components have become smaller and deal with more complex algorithms. These systems are very fast, precise, reliable and easy to handle. The whole inspection, from the planning, examination, data analysis and final report, is now a highly automated process, which makes inspection much easier and more reliable. This paper presents the new generation of INETEC's VVER steam generator inspection system as ultimate solution for steam generator inspection and repair. (author)

  11. Modeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectors

    International Nuclear Information System (INIS)

    Marc, Olivier; Praene, Jean-Philippe; Bastide, Alain; Lucas, Franck

    2011-01-01

    Solar cooling applied to buildings is without a doubt an interesting alternative for reducing energy consumption in traditional mechanical steam compression air conditioning systems. The study of these systems should have a closely purely fundamental approach including the development of numerical models in order to predict the overall installation performance. The final objective is to estimate cooling capacity, power consumption, and overall installation performance with relation to outside factors (solar irradiation, outside temperature...). The first stage in this work consists of estimating the primary energy produced by the solar collector field. The estimation of this primary energy is crucial to ensure the evaluation of the cooling capacity and therefore the cooling distribution and thermal comfort in the building. Indeed, the absorption chiller performance is directly related to its heat source. This study presents dynamic models for double glazing solar collectors and compares the results of the simulation with experimental results taken from our test bench (two collectors). In the second part, we present an extensive collector field model (36 collectors) from our solar cooling installation at The University Institute of Technology in St Pierre, Reunion Island as well as our stratified tank storage model. A comparison of the simulation results with real scale solar experimental data taken from our installation enables validation of the double glazing solar collector and stratified tank dynamic models.

  12. Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration

    Directory of Open Access Journals (Sweden)

    Antonio Rovira

    2018-04-01

    Full Text Available This paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs using different solar concentration technologies: parabolic trough collectors (PTC, linear Fresnel reflectors (LFR and central tower receiver (CT. Each solar technology (i.e. PTC, LFR and CT is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG, increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.

  13. Solution of multiple circuits of steam cycle HTR system

    International Nuclear Information System (INIS)

    Li, Fu; Wang, Dengying; Hao, Chen; Zheng, Yanhua

    2014-01-01

    In order to analyze the dynamic operation performance and safety characteristics of the steam cycle high temperature gas cooled reactor (HTR) systems, it is necessary to find the solution of the whole HTR systems with all coupled circuits, including the primary circuit, the secondary circuit, and the residual heat removal system (RHRS). Considering that those circuits have their own individual fluidity and characteristics, some existing code packages for independent circuits themselves have been developed, for example THEMRIX and TINTE code for the primary circuit of the pebble bed reactor, BLAST for once through steam generator. To solve the coupled steam cycle HTR systems, a feasible way is to develop coupling method to integrate these independent code packages. This paper presents several coupling methods, e.g. the equivalent component method between the primary circuit and steam generator which reflect the close coupling relationship, the overlapping domain decomposition method between the primary circuit and the passive RHRS which reflects the loose coupling relationship. Through this way, the whole steam cycle HTR system with multiple circuits can be easily and efficiently solved by integration of several existing code packages. Based on this methodology, a code package TINTE–BLAST–RHRS was developed. Using this code package, some operation performance of HTR–PM was analyzed, such as the start-up process of the plant, and the depressurized loss of forced cooling accident when different number of residual heat removal trains is operated

  14. The solar two power tower project

    International Nuclear Information System (INIS)

    Chavez, J.M.; Klimas, P.C.; Laquil, P. de III; Skowronski, M.

    1993-01-01

    A consortium of United States utility concerns led by Southern California Edison Company (SCE) has begun a cooperative project with the U.S. Department of Energy (DOE) and industry to convert the 10-MWe Solar One Tower Pilot Plant to molten nitrate salt technology. Successful operation of the convert plant to be called Solar Two, will reduce the economic risks in building the initial commercial power tower projects and accelerate the commercial acceptance of this promising renewable energy technology. In a molten salt power tower plant, sunlight is concentrated by a field of sun-tracking mirrors, called heliostats, onto a centrally located receiver, atop a tower. Molten salt is heated in the receiver and stored until it is needed to generate steam to power a conventional turbine generator. Joining the SCE and DOE in sponsoring in sponsoring this project are the following organizations: Los Alamos department of Water Power, Idaho Power Company, PacifiCorp, Pacific Gas and Electric Company, Sacramento Municipal Utility District, Arizona Public Service Company, Salt River Project, City of Pasadena, California Energy Commission, Electric Power Research Institute, South Coast Air Quality Commission, Electric Power research Institute, South Coast Air Quality Management District, and Bechtel Corporation. The Solar Two project will convert the Solar One heat transfer system from a water/steam type to molten nitrate salt by replacing the water/steam receiver and oil/rock thermal storage system with a nitrate salt receiver, salt thermal storage, and steam generator. The estimate cost of Solar Two, including 3-year test period, is 48.5 millions. The plant will be on line in early 1995. (authors)

  15. Modular sludge collection system for a nuclear steam generator

    International Nuclear Information System (INIS)

    Appleman, R.H.; Bein, J.D.; Powasaki, F.S.

    1986-01-01

    A sludge collection system is described for a vertically oriented nuclear steam generator wherein vapors produced in the steam generator pass through means for separating entrained liquid from the vapor prior to the vapor being discharged from the steam generator. The sludge collection system comprises: an upwardly open chamber for collecting the separated liquid and feedwater entering the steam generator; upwardly open sludge collecting containers positioned within the chamber, wherein each of the containers includes a top rim encompassing an opening leading to the interior of each container; generally flat, perforated covers, each of the covers being positioned over one of the openings such that a gap is formed between the cover and the adjacent top rim; sludge agitating means on at least one of the containers; and sludge removal means on at least one of the containers

  16. Pulsed high-pressure (PHP) drain-down of steam generating system

    International Nuclear Information System (INIS)

    Petrusek, R.A.

    1991-01-01

    This patent describes an improved method of draining down contained reactor-coolant water from the inverted vertical U-tubes of at least one vertical-type steam generator in which the upper inverted U-shaped ends of the tubes are closed and the lower ends thereof are open, the steam generator having a channel head at its lower end including a vertical dividing wall defining a primary water inlet side and a primary water outlet side of the generator, the steam generator having chemical volume control system means and residual heat removal system means, and the steam generator being part of a nuclear-powered steam generating system wherein the reactor-coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator, and the reactor being in communication with pressurizer means and comprising the steps of introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tubesheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator while permitting the water to flow out from the open ends of the U-tubes, the improvement in combination therewith for substantially increasing the effectiveness and efficiency of such water removal from the tubes. It includes determining the parameters effecting a first average volumetric rate of removal for a predetermined period of time, infra, of the reactor-coolant water from the inverted vertical U-tubes, the specific unit for the first average volumetric rate expressing properties identical with the properties expressed in a second average volumetric rate maintained in a later mentioned step

  17. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  18. System for steam-reactivity measurements on fusion-relevant materials

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Oates, M.A.; Smolik, G.R.; McCarthy, K.A.

    1996-01-01

    This paper describes an experimental system developed to investigate steam-metal reactions important to fusion technology. The system is configured specifically to measure hydrogen generation rates and tritium mobilization rates for irradiated beryllium specimens that are heated and exposed to steam. Results are presented for extensive performance and scoping tests of the system to validate the experimental technique, to determine hydrogen-generation rate detection sensitivity, and to establish appropriate calibration methods. These results include measurements of the hydrogen generation rates for steam interactions with austenitic steel, tungsten and beryllium metal specimens. The results of these scoping tests compare favorably with previous work, and they indicate a significant improvement in hydrogen detection sensitivity over previous approaches. 6 refs., 9 figs., 1 tab

  19. Technological investigations and efficiency analysis of a steam heat exchange condenser: Conceptual design of a hybrid steam condenser

    OpenAIRE

    Kapooria, R K; Kumar, S; Kasana, K S

    2008-01-01

    Most of the electricity being produced throughout the world today is from steam power plants. At the same time, many other competent means of generating electricity have been developed viz. electricity from natural gas, MHD generators, biogas, solar cells, etc. But steam power plants will continue to be competent because of the use of water as the main working fluid which is abundantly available and is also reusable. The condenser remains among one of the key components of a steam power plant...

  20. Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors

    International Nuclear Information System (INIS)

    Wang, Fu; Zhao, Jun; Li, Hailong; Deng, Shuai; Yan, Jinyue

    2017-01-01

    Highlights: • A solar assisted chemical absorption pilot system with two types of collectors (parabolic trough and linear Fresnel reflector) has been constructed. • Performance of two types of solar collectors has been investigated and compared at steady and transient states. • The operations of the pilot system with and without solar assisted have been tested. • The pilot system responds to the temperature of the heat transfer fluid regularly. - Abstract: The amine-based chemical absorption for CO_2 capture normally needs to extract steam from the steam turbine cycle for solvent regeneration. Integrating solar thermal energy enables the reduction of steam extraction and therefore, can reduce the energy penalty caused by CO_2 capture. In this paper, a pilot system of the solar thermal energy assisted chemical absorption was built to investigate the system performance. Two types of solar thermal energy collectors, parabolic trough and linear Fresnel reflector, were tested. It was found that the values of operation parameters can meet the requirements of designed setting parameters, and the solar collectors can provide the thermal energy required by the reboiler, while its contribution was mainly determined by solar irradiation. The solvent regeneration was investigated by varying the heat input. The results show that the response time of the reboiler heat duty is longer than those of the reboiler temperature and desorber pressure. This work provides a better understanding about the overall operation and control of the system.

  1. Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2015-11-01

    Full Text Available Parabolic trough solar power plants use a thermal fluid to transfer thermal energy from solar radiation to a water-steam Rankine cycle in order to drive a turbine that, coupled to an electrical generator, produces electricity. These plants have a heat transfer fluid (HTF system with the necessary elements to transform solar radiation into heat and to transfer that thermal energy to the water-steam exchangers. In order to get the best possible performance in the Rankine cycle and, hence, in the thermal plant, it is necessary that the thermal fluid reach its maximum temperature when leaving the solar field (SF. Also, it is mandatory that the thermal fluid does not exceed the maximum operating temperature of the HTF, above which it degrades. It must be noted that the optimal temperature of the thermal fluid is difficult to obtain, since solar radiation can change abruptly from one moment to another. The aim of this document is to provide a model of an HTF system that can be used to optimize the control of the temperature of the fluid without interfering with the normal operation of the plant. The results obtained with this model will be contrasted with those obtained in a real plant.

  2. Annual energy and environment analysis of solarized steam injection gas turbine (STIG) cycle for Indian regions

    International Nuclear Information System (INIS)

    Selwynraj, A. Immanuel; Iniyan, S.; Suganthi, L.; Livshits, Maya; Polonsky, Guy; Kribus, Abraham

    2016-01-01

    Highlights: • Study on the influence of local climatic conditions on solar STIG cycle is presented. • The annual solar to electricity efficiency ranges between 11.2 and 17.1% and the solar fraction ranges 9.3–41.7%. • The range of annual specific CO_2 emission is 312–408 kg/MWh and incremental CO_2 avoidance is 4.2–104 kg/MWh. • The levelized tariff (LT) is 0.2–0.23 $/kWh, and the solar levelized tariff (SLT) ranges from 0.11 to 0.27 $/kWh. - Abstract: The solarized steam injection gas turbine (STIG) cycle uses both the fuel and solar heat simultaneously for power generation. The annual thermodynamic performances of the cycle for sites in India with local climatic conditions such as ambient temperature, relative humidity and availability of direct normal irradiance (DNI) to the solar concentrators under two modes of constant and variable power are presented in this paper. The results reveal that the solar to electricity efficiency of solar hybrid STIG plant with a simple parabolic trough collector (PTC) is similar to existing solar thermal technologies, and also higher solar share is obtained. The study also reveals that the annual CO_2 emission is similar to combined cycle plants and lower than gas turbine technologies. The incremental CO_2 avoidance is also computed due to solar participation. The annual values of exergetic solar fraction and exergetic efficiency at Indore are higher than Jaipur. Results of an improved economic assessment show that the levelized tariff (LT) of solar hybrid STIG plant is 0.2–0.23 $/kWh and the levelized tariff (solar only) or solar levelized tariff (SLT) of solar STIG plant ranges from 0.11 to 0.27 $/kWh for both constant and variable power scenarios.

  3. The 10 MWe Solar Thermal Central Receiver Pilot Plant: Solar facilities design integration. Pilot-plant station manual (RADL Item 2-1). Volume 1: System description

    Science.gov (United States)

    1982-09-01

    The complete Barstow Solar Pilot Plant is described. The plant requirements and general description are presented, the mechanical, electric power, and control and instrumentation systems as well as civil engineering and structural aspects and the station buildings are described. Included in the mechanical systems are the heliostats, receiver, thermal storage system, beam characterization system, steam, water, nitrogen, and compressed air systems, chemical feed system, fire protection system, drains, sumps and the waste disposal systems, and heating, ventilating, and air conditioning systems.

  4. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  5. 46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steam, carbon dioxide, and halon fire extinguishing....45-1 Steam, carbon dioxide, and halon fire extinguishing systems. (a) General requirements. (1...-extinguishing system. On such vessels contracted for prior to January 1, 1962, a steam smothering system may be...

  6. Evaluation of steam for Meloidogyne Arenaria control in production of in-ground floriculture crops in Florida

    Science.gov (United States)

    Steam and soil solarization were investigated for control of the root-knot nematode Meloidogyne arenaria in two years of field trials on a commercial flower farm in Florida. The objective was to determine if pre-plant steam treatments in combination with solarization, or solarization alone effective...

  7. Steam Digest 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Steam Digest 2002 is a collection of articles published in the last year on steam system efficiency. DOE directly or indirectly facilitated the publication of the articles through it's BestPractices Steam effort. Steam Digest 2002 provides a variety of operational, design, marketing, and program and program assessment observations. Plant managers, engineers, and other plant operations personnel can refer to the information to improve industrial steam system management, efficiency, and performance.

  8. Molten salt steam generator subsystem research experiment. Volume I. Phase 1 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-10-01

    A study was conducted for Phase 1 of a two-phase project whose objectives were to develop a reliable, cost-effective molten salt steam generating subsystem for solar thermal plants, minimize uncertainty in capital, operating, and maintenance costs, and demonstrate the ability of molten salt to generate high-pressure, high-temperature steam. The Phase 1 study involved the conceptual design of molten salt steam generating subsystems for a nominal 100-MWe net stand-alone solar central receiver electric generating plant, and a nominal 100-MWe net hybrid fossil-fueled electric power generating plant that is 50% repowered by a solar central receiver system. As part of Phase 1, a proposal was prepared for Phase 2, which involves the design, construction, testing and evaluation of a Subsystem Research Experiment of sufficient size to ensure successful operation of the full-size subsystem designed in Phase 1. Evaluation of several concepts resulted in the selection of a four-component (preheater, evaporator, superheater, reheater), natural circulation, vertically oriented, shell and tube (straight) heat exchanger arrangement. Thermal hydraulic analysis of the system included full and part load performance, circulation requirements, stability, and critical heat flux analysis. Flow-induced tube vibration, tube buckling, fatigue evaluation of tubesheet junctions, steady-state tubesheet analysis, and a simplified transient analysis were included in the structural analysis of the system. Operating modes and system dynamic response to load changes were identified. Auxiliary equipment, fabrication, erection, and maintenance requirements were also defined. Installed capital costs and a project schedule were prepared for each design.

  9. Summary of the Solar Two Test and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    PACHECO,JAMES E.; REILLY,HUGH E.; KOLB,GREGORY J.; TYNER,CRAIG E.

    2000-02-08

    Solar Two was a collaborative, cost-shared project between eleven US industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, was comprised of 1926 heliostats, a receiver, a thermal storage system and a steam generation system. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10 MWe, conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This paper describes the significant results from the test and evaluation activities.

  10. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Pappx, L.

    1994-01-01

    After modification of Dukovany NPP steam generator feedwater system, the increased concentration of minerals was measured in the cold leg of modified steam generator. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators, has focused this attention on the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of flow distribution in the secondary side of SG was developed. (Author)

  11. Fiscal 1976 Sunshine Project result report. R and D on solar heat power generation system (R and D on tower solar collection system); 1976 nendo taiyonetsu hatsuden system no kenkyu kaihatsu seika hokokusho. Tower shuko hoshiki system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-27

    This report describes the fiscal 1976 research result on tower solar collection system for solar heat power generation systems, and summarizes main specifications of the subsystem, equipment and control of the 1,000kW pilot plant. Based on daily and monthly long-time simulation, various programs were prepared for power generation, heat storage and operation rate of equipment, and real arrangements for total simulation were made. The output fluctuation rate less than 1%/min was obtained by studying a control system flexible for drastic fluctuation of solar radiation using the newly prepared dynamic characteristic equation for a steam loop. 10kW solar collection test was carried out using a pancake type heat absorber. Practical basic analysis was made on a heliostat driving system. A cavity type heat absorber was adopted in consideration of cost, operability and heat discharge. Based on thermal characteristics of a heat storage type heat exchanger using molten salt as heat medium, basic experiment was made on a compact latent heat type heat exchanger. Basic studies were also made on reflector, selective absorption surface and heat storage material. (NEDO)

  12. Full STEAM Ahead: From Earth to Ploonoids

    Science.gov (United States)

    Runyon, C. R.; Hall, C.; Blackman, C. L.; Royle, M.; Williams, M. N.

    2015-12-01

    What the heck is a plunoid, you ask? The NASA Solar System Exploration Research Virtual Institute's Education/Public Engagement (EPE) program,from two SSERVI teams (SEEED at Brown/MIT and CLASS at University of Central Florida), is moving full STEAM ahead, engaging the public in the exciting discoveries being made around small bodies, including PLanetary mOONs and asterOIDS (i.e ploonoids). The team has incorporated the arts, from visual representations, storytelling, and music into every facet of the program, to stimulate an affective and personal connection to the content. This past year, the SSERVI STEAM team has participated in numerous public science events, including International Observe the Moon Night, two Astronomy Nights at a local baseball venue, Dark Skies at the US and Canadian National Parks, and Space Day at Camp Happy Days, a camp for children with cancer. Through these events, the team reached over 10000 members of the general public, showcasing current NASA SSERVI research, dispelling myths about our landing and exploring the moon, demonstrating the excitement of STEM through hands-on interactive displays, and providing an outlet for creativity by having multiple ways of representing and explaining scientific information through the arts. Join us on our "ed"venture through the solar system ploonoids.

  13. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  14. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  15. Pure intelligent monitoring system for steam economizer trips

    Directory of Open Access Journals (Sweden)

    Basim Ismail Firas

    2017-01-01

    Full Text Available Steam economizer represents one of the main equipment in the power plant. Some steam economizer's behavior lead to failure and shutdown in the entire power plant. This will lead to increase in operating and maintenance cost. By detecting the cause in the early stages maintain normal and safe operational conditions of power plant. However, these methodologies are hard to be achieved due to certain boundaries such as system learning ability and the weakness of the system beyond its domain of expertise. The best solution for these problems, an intelligent modeling system specialized in steam economizer trips have been proposed and coded within MATLAB environment to be as a potential solution to insure a fault detection and diagnosis system (FDD. An integrated plant data preparation framework for 10 trips was studied as framework variables. The most influential operational variables have been trained and validated by adopting Artificial Neural Network (ANN. The Extreme Learning Machine (ELM neural network methodology has been proposed as a major computational intelligent tool in the system. It is shown that ANN can be implemented for monitoring any process faults in thermal power plants. Better speed of learning algorithms by using the Extreme Learning Machine has been approved as well.

  16. Steam generators: critical components in nuclear steam supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  17. On synthesis and optimization of steam system networks. 3. Pressure drop consideration

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available Heat exchanger networks in steam systems are traditionally designed to operate in parallel. Coetzee and Majozi (Ind. Eng. Chem. Res. 2008, 47, 4405-4413) found that by reusing steam condensate within the network the steam flow rate could be reduced...

  18. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    Science.gov (United States)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  19. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  20. Integrated steam generation process and system for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Betzer-Zilevitch, M. [Ex-Tar Technologies Inc., Calgary, AB (Canada)

    2010-07-01

    A method of producing steam for the extraction of heavy bitumens was presented. The direct contact steam generation (DCSG) method is used for the direct heat transfer between combustion gas and contaminated liquid phase water to generate steam. This paper presented details of experimental and field studies conducted to demonstrate the DCSG. Results of the study demonstrated that pressure and temperature are positively correlated. As pressure increases, the flow rate of the discharged mass decreases and the steam ratio decreases. As pressure increases, the condensate and distillate flow rates increases while water vapor losses in the non-condensable gases decrease. The study indicated that for a 10 bar pressurized system producing 9.6 mt per hour of 10,000 kpa steam and 9.6 mt per hour of distillate BFW, 70 percent of the combustion energy should be recovered to generate 10,000 kpa pressure steam for EOR. Combustion energy requirements were found to decrease when pressure decreases. 11 refs., 5 tabs., 8 figs.

  1. Automatic system for redistributing feedwater in a steam generator of a nuclear power plant

    International Nuclear Information System (INIS)

    Fuoto, J.S.; Crotzer, M.E.; Lang, G.E.

    1980-01-01

    A system is described for automatically redistributing a steam generator secondary tube system after a burst in the secondary tubing. This applies to a given steam generator in a system having several steam generators partially sharing a common tube system, and employs a pressure control generating an electrical signal which is compared with given values [fr

  2. Comparison of the histology of (I) fresh, (II) solar dried and (III) solar dried/steam distilled ginger (Zingiber officinale Roscoe) rhizome tissue prior to the extraction of its pungent principles

    Energy Technology Data Exchange (ETDEWEB)

    Balladin, D.A.; Headley, O. [University of the West Indies, Bridgetown (Barbados). Centre for Resource Management and Environmental Studies; Chang-yen, I.; Duncan, E.J. [University of the West Indies, (Trinidad and Tobago). Faculty of Agriculture and Natural Sciences; McGaw, D.R. [University of the West Indies, (Trinidad and Tobago). Faculty of Engineering

    1999-06-01

    The histological analysis of the rhizome cells of West Indian ginger (Zingiber officinale Roscoe), has revealed some information about the cell`s design. Comparisons have shown that the oleoresin (pungent principles - gingerols and shogaols) were not observable in cell sections of the fresh ginger rhizomes. However, the number of the oleoresin organelles increased in the order of solar dried and solar dried/steam distilled ginger rhizomes, the latter having a high oleoresin extraction yield with acetone of 8.0 g per 100 g ginger rhizome (dry wt.). (author)

  3. Innovative configuration of a hybrid nuclear-solar tower power plant

    International Nuclear Information System (INIS)

    Popov, Dimityr; Borissova, Ana

    2017-01-01

    This paper proposes a combination of a nuclear and a CSP plant and performs a thermodynamic analysis of the potential benefit. Most of today's operating nuclear reactor systems are producing saturated steam at relatively low pressure. This, in turn, limits their thermodynamic efficiency. Superheating of nuclear steam with solar thermal energy has the potential to overcome this drawback. Accordingly, an innovative configuration of a hybrid nuclear-CSP plant is assembled and simulated. It brings together pressurized water reactor and solar tower. The solar heat is transferred to nuclear steam to raise its temperature. Continuous superheating is provided through thermal energy storage. The results from design point calculations show that solar superheating has the potential to increase nuclear plant electric efficiency significantly, pushing it to around 37.5%. Solar heat to electricity conversion efficiency reaches unprecedented rates of 56.2%, approaching the effectiveness of the modern combined cycle gas turbine plants. Off-design model was used to simulate 24-h operation for one year by simulating 8760 cases. Due to implementation of thermal energy storage non-stop operation is manageable. The increased efficiency leads to solar tower island installed cost reductions of up to 25% compared to the standalone CSP plant, particularly driven by the smaller solar field. - Highlights: • External superheating of nuclear steam with solar thermal energy is proposed. • Novel hybrid plant configuration is assembled, modeled and simulated. • Substantial increase of nuclear plant capacity and efficiency is reported. • Superior efficiency of solar heat to electricity conversion is achieved. • Substantial decrease of solar field investment cost is reported.

  4. thermal analysis of a small scale solid waste-fired steam boiler

    African Journals Online (AJOL)

    user

    Thermal analysis of a small scale solid waste-fired steam generator is presented in this paper. The analysis was based on the chosen design specifications which are operating steam ... include: wind, bio-energy, geothermal, solar thermal,.

  5. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L. [Inst. of Material Engineering, Ostrava (Switzerland)

    1995-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  6. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L [Inst. of Material Engineering, Ostrava (Switzerland)

    1996-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  7. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Papp, L.

    1995-01-01

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed

  8. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    Science.gov (United States)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  9. A steam inerting system for hydrogen disposal for the Vandenberg Shuttle

    Science.gov (United States)

    Belknap, Stuart B.

    1988-01-01

    A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.

  10. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  11. Development of data management system for steam generator inspection

    International Nuclear Information System (INIS)

    Jung, Yong Moo; Im, Chang Jae; Lee, Yoon Sang; Kang, Soon Joo; An, Jong Kwan

    1994-06-01

    The data communications environment for transferring Nuclear Power Plant Steam Generator Eddy Current testing data was investigated and after connecting LAN to Hinet-F network, the remote data transfer with the speed of 56 kbps was tested successfully. Data management system for Steam Generator Eddy current testing was also developed by using HP-UX, RMB (Rock Mountain Basic) 21 figs, 13 tabs, 5 refs. (Author)

  12. Development of data management system for steam generator inspection

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Moo; Im, Chang Jae; Lee, Yoon Sang; Kang, Soon Joo; An, Jong Kwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    The data communications environment for transferring Nuclear Power Plant Steam Generator Eddy Current testing data was investigated and after connecting LAN to Hinet-F network, the remote data transfer with the speed of 56 kbps was tested successfully. Data management system for Steam Generator Eddy current testing was also developed by using HP-UX, RMB (Rock Mountain Basic) 21 figs, 13 tabs, 5 refs. (Author).

  13. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  14. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    Science.gov (United States)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  15. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  16. Synthesis and optimization of steam system networks. 2. Multiple steam levels

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available The use of steam in heat exchanger networks (HENs) can be reduced by the application of heat integration with the intention of debottlenecking the steam boiler and indirectly reducing the water requirement [Coetzee and Majozi. Ind. Eng. Chem. Res...

  17. Numerical simulation of the integrated solar/North Benghazi combined power plant

    International Nuclear Information System (INIS)

    Aldali, Y.; Morad, K.

    2016-01-01

    Highlights: • The thermodynamic and economic evaluation of power plant have been studied. • Saving and boosting modes are considered as the same solar field area. • Two modes of operation have been used and simulated on Libyan climate conditions. • The benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode. • Fuel saving mode is more economical than power boosting mode. - Abstract: The aim of this paper is to study the thermodynamic performance of a proposed integrated solar/North Benghazi combined power plant under Libyan climatic conditions. The parabolic trough collector field with direct steam generation was considered as solar system. Two modes of operations with the same solar field area are considered: fuel saving mode in which the generated solar steam was used to preheat the combustion air in the gas turbine unit and power boosting mode in which the generated solar steam was added into the steam turbine for boosting the electrical power generated from steam turbine unit. Moreover, the economic impact of solar energy is assessed in the form of benefit/cost ratio to justify the substitution potential of such clean energy. This study shows that, for fuel saving mode: the annual saving of natural gas consumption and CO_2 emission are approximately 3001.56 and 7972.25 tons, respectively, in comparison with the conventional North Benghazi combined cycle power plant. For power boosting mode: the annual solar share of electrical energy is approximately 93.33 GW h. The economic analysis of solar supported plant has indicated that the benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode, therefore, then fuel saving mode is more economical than power boosting mode for the same solar field area, moreover, it reduces the greenhouse CO_2 emission in order to avoid a collapse of the word climate.

  18. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  19. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    Science.gov (United States)

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  20. A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation

    Institute of Scientific and Technical Information of China (English)

    Wenjia Li; Hongsheng Wang; Yong Hao

    2017-01-01

    A new photovoltaic-thermochemical (PVTC) conceptual system integrating photon-enhanced thermionic emission (PETE) and methane steam reforming is proposed.Major novelty of the system lies in its potential adaptivity to primary fuels (e.g.methane) and high efficiencies of photovoltaic and thermochemical power generation,both of which result from its operation at much elevated temperatures (700-1000 ℃)compared with conventional photovoltaic-thermal (PVT) systems.Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 ℃,after considering major losses during solar energy capture and conversion processes.The system is also featured by high solar share (37%) in the total power output,as well as high energy storage capability and very low CO2 emissions,both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.

  1. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  2. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  3. Operating experience of the EBR-II steam generating system

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Quilici, M.D.; Radtke, W.H.

    1981-01-01

    The Experimental Breeder Reactor II (EBR-II) is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C (820 F) and 8.62 MPa (1250 psi). The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. Safety and reliability are maximized by using duplex tubes and tubesheets. The performance of the system has been excellent and essentially trouble free. The operating experience of EBR-II provides confidence that the technology can be applied to commercial LMFBR's for an abundant supply of energy for the future. 5 refs

  4. Design of fault tolerant control system for steam generator using

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Ki; Seo, Mi Ro [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A controller and sensor fault tolerant system for a steam generator is designed with fuzzy logic. A structure of the proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controller and a sensor induced performances to identify which part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a change in error of the system output are chosen as fuzzy variables. The fuzzy logic for a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency. Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the proposed fault tolerant control scheme for a steam generator regulates well water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even more. 2 refs., 9 figs., 1 tab. (Author)

  5. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    Science.gov (United States)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  6. An assessment of underground and aboveground steam system failures in the SRS waste tank farms

    International Nuclear Information System (INIS)

    Hsu, T.C.; Shurrab, M.S.; Wiersma, B.J.

    1997-01-01

    Underground steam system failures in waste tank farms at the Savannah River Site (SRS) increased significantly in the 3--4 year period prior to 1995. The primary safety issues created by the failures were the formation of sub-surface voids in soil and the loss of steam jet transfer and waste evaporation capability, and the loss of heating and ventilation to the tanks. The average annual cost for excavation and repair of the underground steam system was estimated to be several million dollars. These factors prompted engineering personnel to re-consider long-term solutions to the problem. The primary cause of these failures was the inadequate thermal insulation utilized for steam lines associated with older tanks. The failure mechanisms were either pitting or localized general corrosion on the exterior of the pipe beneath the thermal insulation. The most realistic and practical solution is to replace the underground lines by installing aboveground steam systems, although this option will incur significant initial capital costs. Steam system components, installed aboveground in other areas of the tank farms have experienced few failures, while in continuous use. As a result, piecewise installation of temporary aboveground steam systems have been implemented in F-area whenever opportunities, i.e., failures, present themselves

  7. 400-MWe consolidated nuclear steam system (CNSS): 1200-MWt/conceptual design

    International Nuclear Information System (INIS)

    1977-06-01

    A 1200-MWt consolidated nuclear steam system (CNSS) conceptual design is described. The concept, derived from nuclear merchant ship propulsion steam systems but distinctly different from those systems in detail, incorporates the steam generators within the reactor pressure vessel. This configuration eliminates primary coolant circulating piping external to the reactor pressure vessel since the primary coolant circulating pumps are mounted in the pressure vessel head. So arranged, the maximum piping break that must be assumed is that of the pressurizer surge line, which is substantially smaller than a primary coolant circulating line. A fracture of the pressurizer surge line would result in substantially lower mass and energy release rates of the primary coolant during the assumed loss-of-coolant accident. This in turn makes practical a pressure-suppression containment rather than the ''dry'' containment commonly used for pressurized water reactors

  8. Process intensification and integration of solar heat generation in the Chinese condiment sector – A case study of a medium sized Beijing based factory

    International Nuclear Information System (INIS)

    Sturm, Barbara; Meyers, Steven; Zhang, Yongjie; Law, Richard; Siqueiros Valencia, Eric J.; Bao, Huashan; Wang, Yaodong; Chen, Haisheng

    2015-01-01

    Highlights: • Solar energy was investigated as a renewable source of process heat. • Photovoltaic and/or solar thermal were considered for process heat generation. • Flat plate collectors were the most economical solution for hot water generation. • Steam generation was most economical with a cascade of photovoltaic and flat plate collectors. • Implementing both technologies leads to a reduction in utility import of 14%. - Abstract: Over the last decade, energy prices in China have risen dramatically. At the same time, extensive use of coal fired energy provision systems in industry has led to serious environmental and economic problems translating to an economic damage of an estimated 10% of the Gross Domestic Product. This has led to increasing awareness in the process industries of the need to save energy whilst replacing conventional energy sources with renewable ones. An energy audit was conducted for a soy sauce production facility in Beijing, which aimed to reduce its thermal energy demand through process intensification and to integrate renewable energy. Their current supply of thermal energy came directly from a district steam network, which was both directly consumed and downgraded via heat exchangers. It was determined that the best two solar integration locations would be in the pre-heating/mixing of raw ingredients to 60 °C and the subsequent direct steaming of the mixture to 120 °C. Three different systems for supplementing steam were investigated: (1) a traditional solar thermal heating system; (2) a system consisting of mono crystalline photovoltaic panels coupled with either a resistance heater or electric steam generator; and (3) a cascading system consisting of two types of solar thermal collectors, photovoltaic panels, and an electric steam generator. Comparisons of systems 1 and 2 were made for the heating of mixing water, and systems 1, 2, and 3 for saturated steam generation. Results showed that for the heating of process water

  9. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  10. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  11. Water treatment in the EBR-II steam system

    International Nuclear Information System (INIS)

    Klein, M.A.; Hurst, H.

    1975-01-01

    Boiler-water treatment in the EBR-II steam system consists of demineralizing makeup water and using hydrazine to remove traces of oxygen and morpholine to adjust pH to 8.8-9.2. This treatment is called a ''zero-solids'' method, because the chemical agents and reaction products are either volatile or form water and do not contribute solids to the boiler water. A continuous blowdown is cooled, filtered, and deionized to remove impurities and maintain high purity of the water. If a cooling-water leak occurs, phosphate is added to control scaling, and the ''zero-solids'' eatment is suspended until the leak is repaired. Water streams are sampled at six points to control water purity. Examination of the steam drum and an evaporator show the metal surfaces to be in excellent condition with minimal corrosion. The EBR-II steam-generating plant has accumulated over 85,000 hours of in-service operation and has operated successfully for over ten years with the ''zero-solids'' treatment. (auth)

  12. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    Science.gov (United States)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  13. RELAP/MOD1.5 analysis of steam line break transients for a 3-loop and a 4-loop Westinghouse nuclear steam supply system

    International Nuclear Information System (INIS)

    Peeler, G.B.; McDonald, T.A.; Kennedy, M.F.

    1984-01-01

    RELAP/MOD1.5 (Cycle 31 and 34) calculations were made to assess the assumptions used by Westinghouse (W) to analyze mainsteam line break transients. Models of a W 3-loop and 4-loop nuclear steam supply system were used. Sensitivity studies were performed to determine the effect of the availability of offsite power, break size and initial core power. Comparison with W results indicated that if the assumptions used by W are replicated within the RELAP5 framework, then the W methodology for prediction of the Nuclear Steam Supply System (NSSS) response is conservative for steam line break transients

  14. Impact of steam generator start-up limitations on the performance of a parabolic trough solar power plant

    DEFF Research Database (Denmark)

    Ferruzza, Davide; Topel, Monika; Laumert, Björn

    2018-01-01

    typically start-up and shut down every day, so in order to maximize their profitability, it is necessary to increase their flexibility in transient operation and to initiate power generation as rapidly as possible. Two of the key components are the steam generator and steam turbine and the rates at which...... they can reach operational speed are limited by thermo-mechanical constraints. This paper presents an analysis of the effects of the thermal stress limitations of the steam generator and steam turbine on the power plant start-up, and quantifies their impact on the economy of the system. A dynamic model......-driven and peak-load. The results indicate that for steam generator hot start-ups, a 1.5% increase in peak-load electricity production would be achieved by doubling the maximum allowable heating rate of the evaporator. No useful increase would be achieved by increasing the rates beyond a limit of 7–8 K...

  15. Effects of the steam chest on steamhammer analysis for nuclear piping systems

    International Nuclear Information System (INIS)

    Luk, C.

    1975-01-01

    When applying the method of characteristics for the steamhammer analysis of a nuclear piping system, if the dynamic fluid behavior in the steam chest is not considered, the boundary condition thus formulated to describe the time-dependent fluid behavior of the steam chest would lead to numerical unstable solution. To overcome this difficulty, the dynamic fluid behavior in the steam chest can be described by a single degree mechanical system. The corresponding flow conditions there are then determined by the time-step amplification method. This dynamic boundary condition reduces the calculated steamhammer loads and helps avoid numerical instability problems in the computing procedure. 4 refs

  16. Nuclear steam supply system and method of installation

    International Nuclear Information System (INIS)

    Tower, S.N.; Christenson, J.A.; Braun, H.E.

    1989-01-01

    This patent describes a method of providing a nuclear reactor power plant at a predetermined use site accessible by predetermined navigable waterways. The method is practiced with apparatus including a nuclear reactor system. The system has a nuclear steam-supply section. The method consists of: constructing a nuclear reactor system at a manufacturing site remote from the predetermined use site but accessible to the predetermined waterways for transportation from the manufacturing site to the predetermined use site, the nuclear reactor system including a barge with the nuclear steam supply section constructed integrally with the barge. Simultaneously with the construction of the nuclear reactor system, constructing facilities at the use site to be integrated with the nuclear reactor system to form the nuclear-reactor power plant; transporting the nuclear reactor system along the waterways to the predetermined use site; at the use site joining the removal parts of the altered nuclear reactor system to the remainder of the altered nuclear reactor system to complete the nuclear reactor system; and installing the nuclear reactor system at the predetermined use site and integrating the nuclear reactor system to interact with the facilities constructed at the predetermined use site to form the nuclear-reactor power plant

  17. Makeup water system performance and impact on PWR steam generator corrosion

    International Nuclear Information System (INIS)

    Bell, M.J.; Sawocha, S.G.; Smith, L.A.

    1984-01-01

    The object of this EPRI-funded project was to assess the possible relation of pressurized water reactor (PWR) steam generator corrosion at fresh water sites to makeup water impurity ingress. Makeup water system design, operation and performance reviews were based on site visits, plant design documents, performance records and grab sample analyses. Design features were assessed in terms of their effect on makeup system performance. Attempts were made to correlate the makeup plant source water, system design characteristics, and typical makeup water qualities to steam generator corrosion observations, particularly intergranular attack (IGA). Direct correlations were not made since many variables are involved in the corrosion process and in the case of IGA, the variables have not been clearly established. However, the study did demonstrate that makeup systems can be a significant source of contaminants that are suspected to lead to both IGA and denting. Additionally, it was noted that typical makeup system performance with respect to organic removal was not good. The role of organics in steam generator damage has not been quantified and may deserve further study

  18. Solar engine system

    International Nuclear Information System (INIS)

    Tan, K.K.; Bahrom Sanugi; Chen, L.C.; Chong, K.K.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Noriah Bidin; Omar Aliman; Sahar Salehan; Sheikh Ab Rezan Sheikh A H; Tam, C.M.; Chen, Y.T.

    2001-01-01

    This paper reports the revolutionary solar engine system in Universiti Teknologi Malaysia (UTM). The solar engine is a single cylinder stirling engine driven by solar thermal energy. A first prototype solar engine has been built and demonstrated. A new-concept non-imaging focusing heliostat and a recently invented optical receiver are used in the demonstration. Second generation of prototype solar engine is described briefly. In this paper, the solar engine system development is reported. Measurement for the first prototype engine speed, temperature and specifications are presented. The benefits and potential applications for the future solar engine system, especially for the electricity generating aspect are discussed. (Author)

  19. Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ney, E.J.

    1979-07-01

    A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

  20. Design of a steam reforming system to be connected to the HTTR

    International Nuclear Information System (INIS)

    Hada, K.; Nishihara, T.; Shibata, T.; Shiozawa, S.

    1996-01-01

    Top priority objective for developing the first heat utilization system to be connected to the HTTR is to demonstrate technical feasibility of a nuclear process heat utilization system for production of hydrogen for the first time in the world. Major issues to be resolved for coupling the heat utilization system to the HTTR are 1)to develop safety philosophy for reasonably and reliably ensuring safety of the nuclear reactor, 2)to develop control design concept for the total system of the nuclear reactor and heat utilization system because thermal dynamics of endothermic chemical reactor to be heated by nuclear heat is much different from the nuclear reactor, 3)to develop helium-heated components and 4)to develop enhanced hydrogen production technologies for achieving competitiveness to a fossil-fired plant. A steam reforming hydrogen production system was studied as one of the first priority candidates for an HTTR-heat utilization system due to matured technology in fossil-fired plants and since technical solutions demonstrated by the coupling of the steam reforming system to the HTTR will contribute to all other hydrogen production systems. Basic design philosophy for the HTTR-steam reforming system is that the steam reforming plant downstream of an intermediate secondary helium loop is designed at the same safety level as fossil-fired plants and therefore the secondary helium loop was selected as a safety barrier to the HTTR nuclear reactor. (J.P.N.)

  1. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  2. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP....... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  3. High-temperature process-steam application at the Southern Union Refining Company, Hobbs, New Mexico (solar energy in the oil patch). Phase I design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-31

    Southern Union Refining Company's Famariss Energy Refinery has worked diligently with Monument Solar Corporation in the conceptual and detail design for this unique application of solar generated steam. An area closely adjacent to the refinery and fronting New Mexico State Highway No. 18 has been designated for the solar collector array. Space planned for the demonstration parabolic trough array is sufficiently large to handle an array of 25,200 square feet in size - an array more than twice the size of the 10,080 square feet proposed originally. The conceptual design, performance, safety, environmental impact, and economic analysis are described. Engineering drawings are included. (WHK)

  4. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  5. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  6. Solar water heating and its prospect for timber drying application

    Energy Technology Data Exchange (ETDEWEB)

    Yin, B T

    1982-01-01

    The technical requirements for timber drying are discussed, and the possibility of using a solar water heating system to substitute for conventional fuel in a modern kiln is looked into from heat transfer considerations. At the moment, conventional fuel is used to generate steam for the heating of air in a kiln. If hot water is to be substitued for steam as the heating medium, the heating coil size required is larger. This size is determined relative to that of a steam coil for similar kiln operating temperatures. 5 references.

  7. Steam-Generator Integrity Program/Steam-Generator Group Project

    International Nuclear Information System (INIS)

    1982-10-01

    The Steam Generator Integrity Program (SGIP) is a comprehensive effort addressing issues of nondestructive test (NDT) reliability, inservice inspection (ISI) requirements, and tube plugging criteria for PWR steam generators. In addition, the program has interactive research tasks relating primary side decontamination, secondary side cleaning, and proposed repair techniques to nondestructive inspectability and primary system integrity. The program has acquired a service degraded PWR steam generator for research purposes. This past year a research facility, the Steam Generator Examination Facility (SGEF), specifically designed for nondestructive and destructive examination tasks of the SGIP was completed. The Surry generator previously transported to the Hanford Reservation was then inserted into the SGEF. Nondestructive characterization of the generator from both primary and secondary sides has been initiated. Decontamination of the channelhead cold leg side was conducted. Radioactive field maps were established in the steam generator, at the generator surface and in the SGEF

  8. Steam generator

    International Nuclear Information System (INIS)

    Fenet, J.-C.

    1980-01-01

    Steam generator particularly intended for use in the coolant system of a pressurized water reactor for vaporizing a secondary liquid, generally water, by the primary cooling liquid of the reactor and comprising special arrangements for drying the steam before it leaves the generator [fr

  9. An expert system for diagnostics and estimation of steam turbine components condition

    Science.gov (United States)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis

  10. Development of a nuclear steam generator system for gas-cooled reactors for application in oil sands extraction

    International Nuclear Information System (INIS)

    Smith, J.; Hart, R.; Lazic, L.

    2009-01-01

    Canada has vast energy reserves in the Oil Sands regions of Alberta and Saskatchewan. Present extraction technologies, such as strip mining, where oil deposits are close to the surface, and Steam Assisted Gravity Drainage (SAGD) technologies for deeper deposits consume significant amounts of energy to produce the bitumen and upgraded synthetic crude oil. Studies have been performed to assess the feasibility of using nuclear reactors as primary energy sources to produce, in particular the steam required for the SAGD deeper deposit extraction process. Presently available reactors fall short of meeting the requirements, in two areas: the steam produced in a 'standard' reactor is too low in pressure and temperature for the SAGD process. Requirements can be for steam as high as 12MPa pressure with superheat; and, 'standard' reactors are too large in total output. Ideally, reactors of output in the range of 400 to 500 MWth, in modules are better suited to Oil Sands applications. The above two requirements can be met using gas-cooled reactors. Generally, newer generation gas-cooled reactors have been designed for power generation, using Brayton Cycle gas turbines run directly from the heated reactor coolant (helium). Where secondary steam is required, heat recovery steam generators have been used. In this paper, a steam generating system is described which uses the high temperature helium from the reactor directly for steam generation purposes, with sufficient quantities of steam produced to allow for SAGD steam injection, power generation using a steam turbine-generator, and with potential secondary energy supply for other purposes such as hydrogen production for upgrading, and environmental remediation processes. It is assumed that the reactors will be in one central location, run by a utility type organization, providing process steam and electricity to surrounding Oil Sands projects, so steam produced is at very high pressure (12 MPa), with superheat, in order to

  11. Response of the steam generator VVER 1000 to a steam line break

    International Nuclear Information System (INIS)

    Novotny, J.; Novotny, J. Jr.

    2003-01-01

    Dynamic effects of a steam line break in the weld of the steam pipe and the steam collector on the steam generator system are analyzed. Modelling of a steam line break may concern two cases. The steam line without a restraint and the steam line protected by a whip restraint with viscous elements applied at the postulated break cross-section. The second case is considered. Programme SYSTUS offers a special element the stiffness and viscous damping coefficients of which may be defined as dependent on the relative displacement and velocity of its nodes respectively. A circumferential crack is simulated by a sudden decrease of longitudinal and lateral stiffness coefficients of these special SYSTUS elements to zero. The computation has shown that one can simulate the pipe to behave like completely broken during a time interval of 0,0001 s or less. These elements are used to model the whip restraint with viscous elements and viscous dampers of the GERB type as well. In the case of a whip restraint model the stiffness coefficient-displacement relation and damping coefficient - velocity relation are chosen to fit the given characteristics of the restraint. The special SYSTUS elements are used to constitute Maxwell elements modelling the elasto-plastic and viscous properties of the GERB dampers applied to the steam generator. It has been ascertained that a steam line break at the postulated weld crack between the steam pipe and the steam generator collector cannot endanger the integrity of the system even in a case of the absence of a whip restraint effect. (author)

  12. Parametric sensitivity analysis of a SOLRGT system with the indirect upgrading of low/mid-temperature solar heat

    International Nuclear Information System (INIS)

    Li, Yuan Yuan; Zhang, Na; Cai, Rui Xian

    2012-01-01

    Highlights: ► A solar-assisted methane chemically recuperated gas turbine cycle has been proposed. ► The parametric sensitivity analysis of a SOLRGT system has been carried out. ► The concept of indirect upgrading of solar heat proves to be feasible. -- Abstract: Development of novel solar–fossil fuel hybrid system is important for the efficient utilization of low temperature solar heat. A solar-assisted methane chemically recuperated gas turbine (SOLRGT) system was proposed by Zhang and co-worker, which integrated solar heat into a high efficiency power system. The low temperature solar heat is first converted into vapor latent heat provided for a reformer, and then indirectly upgraded to high-grade generated syngas chemical energy by the reformation reaction. In this paper, based on the above mentioned cycle, a parametric analysis is performed using ASPEN PLUS code to further evaluate the effect of key thermodynamics parameters on the SOLRGT performance. It can be shown that solar collector temperature, steam/air mass ratio, turbine inlet pressure, and turbine inlet temperature have significant effects on system efficiency, solar-to-electricity efficiency, fossil fuel saving ratio, specific CO 2 emission and so on. The solar collector temperature is varied between 140 and 240 °C and the maximum net solar-to-electricity efficiency and system efficiency for a given turbine inlet condition (turbine inlet temperature of 1308 °C and pressure ratio of 15) is 30.2% and 52.9%, respectively. The fossil fuel saving ratio can reach up to 21.8% and the reduction of specific CO 2 emission is also 21.8% compared to the reference system. The system performance is promising for an optimum pressure ratio at a given turbine inlet temperature.

  13. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.

    1982-01-01

    Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure

  14. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  15. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Beardwood, E.S.

    1999-07-01

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  16. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Wang, Zhaoguo; Hong, Hui; Xu, Da; Jin, Hongguang

    2014-01-01

    Highlights: • Exergy analysis of solar-hybrid coal-fired power plant has been processed. • EUD method is utilized to obtain detailed information on the exergy destruction in each process. • Off-design thermodynamic performances are discussed to identify the advantages. • Exergy destruction of several parts under varying solar radiation is examined. - Abstract: This study discusses the thermodynamic performance of a solar-hybrid coal-fired power plant that uses solar heat with temperature lower than 300 °C to replace the extracted steam from a steam turbine to heat the feed water. Through this process, the steam that was to be extracted can efficiently expand in the steam turbine to generate electricity. The flow rate of steam returning to the turbine retains only a small part of the main stream, allowing the steam turbine to run close to design conditions for all DNI. A solar-only thermal power plant without storage is also discussed to illustrate the advantages of a solar-hybrid coal-fired power plant. The off-design performances of both plants are compared based on the energy-utilization diagram method. The exergy destruction of the solar-hybrid coal-fired power plant is found to be lower than that of the solar-only thermal power plant. The comparison of two plants, which may provide detailed information on internal phenomena, highlights several advantages of the solar-hybrid coal-fired power plant in terms of off-design operation: lower exergy destruction in the solar feed water heater and steam turbine and higher exergy and solar-to-electricity efficiency. Preliminary technological economic performances of both plants are compared. The results obtained in this study indicate that a solar-hybrid coal-fired power plant could achieve better off-design performance and economic performance than a solar-only thermal power plant

  17. ASTRID power conversion system: Assessment on steam and gas options

    International Nuclear Information System (INIS)

    Laffont, Guy; Cachon, Lionel; Jourdain, Vincent; Fauque, Jean Marie

    2013-01-01

    Conclusion: ◆ Two power conversion systems have been investigated for the ASTRID prototype. ◆ Steam PCS: • Most mature system based on a well-developed turbomachinery technology. • High plant efficiency. • Studies on steam generators designs and leak detection systems in progress with the aim of reducing the risk of large SWRs and of limiting its consequences. • Design and licensing safety assessment of a SFR must deal with the Sodium Water Air reaction (SWAR). ◆ Gas PCS: • Strong advantage as it inherently eliminates the SWR and SWAR risks. • Very innovative option: major breakthroughs but feasibility and viability not yet demonstrated. • Remaining technological challenges but no showstopper indentified. • General architecture: investigations in progress to improve performances, operability and maintainability

  18. Integration of steam injection and inlet air cooling for a gas turbine generation system

    International Nuclear Information System (INIS)

    Wang, F.J.; Chiou, J.S.

    2004-01-01

    The temperature of exhaust gases from simple cycle gas turbine generation sets (GENSETs) is usually very high (around 500 deg. C), and a heat recovery steam generator (HRSG) is often used to recover the energy from the exhaust gases and generate steam. The generated steams can be either used for many useful processes (heating, drying, separation etc.) or used back in the power generation system for enhancing power generation capacity and efficiency. Two well-proven techniques, namely steam injection gas turbine (STIG) and inlet air cooling (IAC) are very effective features that can use the generated steam to improve the power generation capacity and efficiency. Since the energy level of the generated steam needed for steam injection is different from that needed by an absorption chiller to cool the inlet air, a proper arrangement is required to implement both the STIG and the IAC features into the simple cycle GENSET. In this study, a computer code was developed to simulate a Tai power's Frame 7B simple cycle GENSET. Under the condition of local summer weather, the benefits obtained from the system implementing both STIG and IAC features are more than a 70% boost in power and 20.4% improvement in heat rate

  19. The EBR-II steam generating system - operation, maintenance, and inspection

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Longua, K.J.

    2002-01-01

    The Experimental Breeder Reactor II (EBR-II) has operated for 20 years at the Idaho National Engineering Laboratory near Idaho Falls. EBR-II is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. EBR-II has operated at a capacity factor over 70% in the past few years. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C and 8.62 MPa. The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. During the 20 years of operation, components of the steam generator have been subjected to a variety of inspections including visual, dimensional, and ultrasonic. One superheater was removed from service because of anomalous performance and was replaced with an evaporator which was removed, examined, and converted into a superheater. Overall operating experience of the system has been excellent and essentially trouble free. Inspections have not revealed any conditions that are performance or life limiting. (author)

  20. Condensate induced water hammer in a steam distribution system results in fatality

    International Nuclear Information System (INIS)

    Debban, H.L.; Eyre, L.E.

    1996-02-01

    Water hammer event s in steam distribution piping interrupt service and have the potential to cause serious injury and property damage. Conditions of condensation induced water hammer are discussed and recommendations aimed to improve safety of steam systems are presented. Condensate induced water hammer events at Hanford, a DOE facility, are examined

  1. Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy

    Directory of Open Access Journals (Sweden)

    Barbara Mendecka

    2018-03-01

    Full Text Available Hybridization of Waste to Energy (WtE plants with solar facilities can take competing energy technologies and make them complementary. However, realizing the benefits of the solar integration requires careful consideration of its efficiency. To analyse such systems from the point of view of resource efficiency, the pure energy analysis is not sufficient since the quality of particular energy carriers is not evaluated. This work applies the exergo-ecological analysis using the concepts of thermoecological cost (TEC and exergy cost for the performance evaluation of an integrated Solar-Waste to Energy plant scheme, where solar energy is used for steam superheating. Different plant layouts, considering several design steam parameters as well as different solar system configurations, in terms of area of heliostats and size of the thermal storage tank, were studied. The results for the solar integrated plant scheme were compared with the scenarios where superheating is performed fully by a non-renewable energy source. The presented results of exergy cost analysis indicate that the most favorable system is the one supported by non-renewable energy. Such an analysis does not consider the advantage of the use of renewable energy sources. By extending the system boundary to the level of natural resource and applying the thermoecological cost analysis, an opposite result was obtained.

  2. Dynamic modeling and simulation of EBR-II steam generator system

    International Nuclear Information System (INIS)

    Berkan, R.C.; Upadhyaya, B.R.

    1989-01-01

    This paper presents a low order dynamic model of the Experimental breeder Reactor-II (EBR-II) steam generator system. The model development includes the application of energy, mass and momentum balance equations in state-space form. The model also includes a three-element controller for the drum water level control problem. The simulation results for low-level perturbations exhibit the inherently stable characteristics of the steam generator. The predictions of test transients also verify the consistency of this low order model

  3. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  4. Experience in adjusting of the level regulation system of steam generators of the Rovno NPP

    International Nuclear Information System (INIS)

    Patselyuk, S.N.; Sokolov, A.G.; Kazakov, V.I.; Dorosh, Yu.A.

    1984-01-01

    A system of feed water level control in steam generators at the Rovno NPP with WWER-440 reactors which comprises start-up as well as main regulators is described. The start-up regulator (single-pulsed with a signal by the level) keeps the level in the steam generator at loadings up to 30% of the nominal reactor power Nsub(nom.) The main regulator is connected in the three-pulsed circuit and it receives signals by steam and water flow rate and by the level in the steam generator. The main regulator has been started only at loadings above 40% Nsub(nom.). After reconstruction it was used in the 15-100% Nsub(nom.) range. Characteristics of the level control system in the steam generator at perturbations intoduced by the main circulating pump (MCP) and turbine disconnection as well as change in feed water flow rate have been studied. The studies have revealed that the system ensures necessary quality of control in stationary modes. The system operates stably at perturbations of feed water flow rate up to 50% Nsub(nom.). Perturbations by MCP connections and disconnections is most difficult for control system

  5. A system for regulating the pressure of resuperheated steam in high temperature gas-cooled reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegines, K.O.

    1975-01-01

    The invention relates to a system for regulating steam-pressure in the re-superheating portion of a steam-boiler receiving heat from a gas-cooled high temperature nuclear reactor, provided with gas distributing pumps driven by steam-turbines. The system comprises means for generating a pressure signal of desired magnitude for the re-superheating portion, and means for providing a real pressure in the re-superheating portion, means (including a by-passing device) for generating steam-flow rate signal of desired magnitude, a turbine by-pass device comprising a by-pass tapping means for regulating the steam-flow-rate in said turbine according to the desired steam-flow rate signal and means for controlling said by-pass tapping means according to said desired steam-flow-rate signal [fr

  6. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  7. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  8. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs

  9. Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary

    Science.gov (United States)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.

    1980-11-01

    Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.

  10. Type GQS-1 high pressure steam manifold water level monitoring system

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    The GQS-1 high pressure steam manifold water level monitoring system is an advanced nuclear gauge that is suitable for on-line detecting and monitor in high pressure steam manifold water level. The physical variable of water level is transformed into electrical pulses by the nuclear sensor. A computer is equipped for data acquisition, analysis and processing and the results are displayed on a 14 inch color monitor. In addition, a 4 ∼ 20 mA output current is used for the recording and regulation of water level. The main application of this gauge is for on-line measurement of high pressure steam manifold water level in fossil-fired power plant and other industries

  11. Analysis of a feasible trigeneration system taking solar energy and biomass as co-feeds

    International Nuclear Information System (INIS)

    Zhang, Xiaofeng; Li, Hongqiang; Liu, Lifang; Zeng, Rong; Zhang, Guoqiang

    2016-01-01

    Highlights: • A feasible trigeneration system is proposed to generate power, heating and cooling. • The steam for biomass gasification process is provided by solar energy. • The thermodynamic properties of the proposed system are investigated. • Effects of ER and SBR on gasification process is presented. • The sensitivity of the economic performance of trigeneration system is evaluated. - Abstract: The trigeneration systems are widely used owing to high efficiency, low greenhouse gas emission and high reliability. Especially, those trigeneration systems taking renewable energy as primary input are paid more and more attention. This paper presents a feasible trigeneration system, which realizes biomass and solar energy integrating effective utilization according to energy cascade utilization and energy level upgrading of chemical reaction principle. In the proposed system, the solar energy with mid-and-low temperature converted to the chemical energy of bio-gas through gasification process, then the bio-gas will be taken as the fuel for internal combustion engine (ICE) to generate electricity. The jacket water as a byproduct generated from ICE is utilized in a liquid desiccant unit for providing desiccant capacity. The flue gas is transported into an absorption chiller and heat exchanger consequently, supplying chilled water and domestic hot water. The thermodynamic performance of the trigeneration system was investigated by the help of Aspen plus. The results indicate that the overall energy efficiency and the electrical efficiency of the proposed system in case study are 77.4% and 17.8%, respectively. The introduction of solar energy decreases the consumption of biomass, and the solar thermal energy input fraction is 8.6%. In addition, the primary energy saving ratio and annual total cost saving ratio compared with the separated generation system are 16.7% and 25.9%, respectively.

  12. Dynamic response of the EBR-II secondary sodium system to postulated leaks of steam and water into sodium

    International Nuclear Information System (INIS)

    Srinivas, S.; Chopra, P.S.; Stone, C.C.

    1976-01-01

    The paper presents evaluations of the dynamic response of a steam generator system to postulated leaks of steam and water into sodium. This work is part of a comprehensive fail-safe analysis of the EBR-II steam generator system

  13. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. This phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The ensuing structural damage, inspection and repairs are described. Finally, a list of design, maintenance and operational cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  14. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. THis phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The insuing structural damage, inspection and repairs are described. Finally, a list of design cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  15. Solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2007-01-01

    The focus in the present Ph.D. thesis is on the active use of solar energy for domestic hot water and space heating in so-called solar combi systems. Most efforts have been put into detailed investigations on the design of solar combi systems and on devices used for building up thermal...... the thermal behaviour of different components, and the theoretical investigations are used to study the influence of the thermal behaviour on the yearly thermal performance of solar combi systems. The experimental investigations imply detailed temperature measurements and flow visualization with the Particle...... Image Velocimetry measurement method. The theoretical investigations are based on the transient simulation program TrnSys and Computational Fluid Dynamics. The Ph.D. thesis demonstrates the influence on the thermal performance of solar combi systems of a number of different parameters...

  16. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  17. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  18. Units 3 and 4 steam generators new water level control system

    International Nuclear Information System (INIS)

    Dragoev, D.; Genov, St.

    2001-01-01

    The Steam Generator Water Level Control System is one of the most important for the normal operation systems, related to the safety and reliability of the units. The main upgrading objective for the SG level and SGWLC System modernization is to assure an automatic maintaining of the SG level within acceptable limits (below protections and interlocks) from 0% to 100% of the power in normal operation conditions and in case of transients followed by disturbances in the SG controlled parameters - level, steam flow, feedwater flow and/or pressure/temperature. To achieve this objective, the computerized controllers of new SG water level control system follows current computer control technology and is implemented together with replacement of the feedwater control valves and the needed I and C equipment. (author)

  19. Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Lior, Noam

    2015-01-01

    Highlights: • Two novel solar hybrid combined cycle systems have been proposed and analyzed. • The power systems integrate solar-driven thermo-chemical conversion and CO 2 capture. • Exergy efficiency of about 55% and specific CO 2 emissions of 34 g/kW h are predicted. • Systems CO 2 emissions are 36.8% lower compared to a combined cycle with CO 2 capture. • The fossil fuel demand is ∼30% lower with a solar share of ∼20%. - Abstract: Two novel hybrid combined cycle power systems that use solar heat and methanol, and integrate CO 2 capture, are proposed and analyzed, one based on solar-driven methanol decomposition and the other on solar-driven methanol reforming. The high methanol conversion rates at relatively low temperatures offer the advantage of using the solar heat at only 200–300 °C to drive the syngas production by endothermic methanol conversions and its conversion to chemical energy. Pre-combustion decarbonization is employed to produce CO 2 -free fuel from the fully converted syngas, which is then burned to produce heat at the high temperature for power generation in the proposed advanced combined cycle systems. To improve efficiency, the systems’ configurations were based on the principle of cascade use of multiple heat sources of different temperatures. The thermodynamic performance of the hybrid power systems at its design point is simulated and evaluated. The results show that the hybrid systems can attain an exergy efficiency of about 55%, and specific CO 2 emissions as low as 34 g/kW h. Compared to a gas/steam combined cycle with flue gas CO 2 capture, the proposed solar-assisted system CO 2 emissions are 36.8% lower, and a fossil fuel saving ratio of ∼30% is achievable with a solar thermal share of ∼20%. The system integration predicts high efficiency conversion of solar heat and low-energy-penalty CO 2 capture, with the additional advantage that solar heat is at relatively low temperature where its collection is cheaper and

  20. Steam drum level dynamics in a multiple loop natural circulation system of a pressure-tube type boiling water reactor

    International Nuclear Information System (INIS)

    Jain, Vikas; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2011-01-01

    Highlights: → We have highlighted the problem of drum level dynamics in a multiple loop type NC system using RELAP5 code. → The need of interconnections in steam and liquid spaces close to drum is established. → The steam space interconnections equalize pressure and liquid space interconnections equalize level. → With this scheme, the system can withstand anomalous conditions. → However, the controller is found to be inevitable for inventory balance. - Abstract: Advanced Heavy Water Reactor (AHWR) is a pressure tube type boiling water reactor employing natural circulation as the mode of heat removal under all the operating conditions. Main heat transport system (MHTS) of AHWR is essentially a multi-loop natural circulation system with all the loops connected to each other. Each loop of MHTS has a steam drum that provides for gravity based steam-water separation. Steam drum level is a very critical parameter especially in multi-loop natural circulation systems as large departures from the set point may lead to ineffective separation of steam-water or may affect the driving head. However, such a system is susceptible to steam drum level anomalies under postulated asymmetrical operating conditions among the different quadrants of the core like feedwater flow distribution anomaly among the steam drums or power anomaly among the core quadrants. Analyses were carried out to probe such scenarios and unravel the underlying dynamics of steam drum level using system code RELAP5/Mod3.2. In addition, a scheme to obviate such problem in a passive manner without dependence on level controller was examined. It was concluded that steam drums need to be connected in the liquid as well as steam space to make the system tolerant to asymmetrical operating conditions.

  1. System for measuring of air concentration in air-steam mixture during the transients

    International Nuclear Information System (INIS)

    Gorbenko, Gennady A.; Gakal, Pavlo G.; Epifanov, Konstantin S.; Osokin, Gennady V.; Smirnov, Sergey V.

    2006-01-01

    Description of system for air concentration measuring in air-steam mixture during the transients is represented. Air concentration measuring is based on discrete sampling method. The measuring system consists of sampler, transport pipeline, distributor and six measuring vessels. From the sampler air-steam mixture comes to distributor through transport pipeline and fills consecutively the measuring vessels. The true air concentration in place of measurement was defined based on measured air concentration in samples taken from measuring vessels. For this purpose, the mathematical model of transients in measuring system was developed. Air concentration transient in air-steam mixture in place of measurement was described in mathematical model by air concentration time-dependent function. The function parameters were defined based on air concentration measured in samples taken from measuring vessels. Estimated error of air concentration identification was about 10%. Measuring system was used in experiments on EREC BKV-213 test facility intended for testing of VVER-440/V-213 reactor barbotage-vacuum system

  2. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics: A Text for the Science of Planetary Systems covers the field of solar system astrophysics beginning with basic tools of spherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. After a basic treatment of the two- and restricted three-body system motions in Background Science and the Inner Solar System, perturbations are discussed, followed by the Earth's gravitational potential field and its effect on satellite orbits. This is followed by analysis of the Earth-Moon system and the interior planets. In Planetary Atmospheres and the Outer Solar System, the atmospheres chapters include detailed discussions of circulation, applicable also to the subsequent discussion of the gas giants. The giant planets are discussed together, and the thermal excesses of three of them are highlighted. This is followed by chapters on moons and rings, mainly in the context of dynamical stability, comets and meteors, m...

  3. Ecotaxes and their impact in the cost of steam and electric energy generated by a steam turbine system

    International Nuclear Information System (INIS)

    Montero, Gisela

    2006-01-01

    Ecotaxes allow the internalization of costs that are considered externalities associated with polluting industrial process emissions to the atmosphere. In this paper, ecotaxes internalize polluting emissions negative impacts that are added to electricity and steam generated costs of a steam turbine and heat recovery systems from a utilities refinery plant. Steam costs were calculated by means of an exergy analysis tool and Aspen Plus simulation models. Ecotaxes were calculated for specific substances emitted in the refinery flue gases, based on a toxicity and pollution scale. Ecotaxes were generated from a model that includes damages produced to biotic and abiotic resources and considers the relative position of those substances in a toxicity and pollution scale. These ecotaxes were internalized by an exergoeconomic analysis resulting in an increase in the cost per kWh produced. This kind of ecotax is not applied in Mexico. The values of ecotaxes used in the cost determination are referred to the values currently applied by some European countries to nitrogen oxides emissions. (author)

  4. Functional performance of the helical coil steam generator, Consolidated Nuclear Steam Generator (CNSG) IV system. Executive summary report

    International Nuclear Information System (INIS)

    Watson, G.B.

    1975-10-01

    The objective of this project was to study the functional performance of the CNSG - IV helical steam generator to demonstrate that the generator meets steady-state and transient thermal-hydraulic performance specifications and that secondary flow instability will not be a problem. Economic success of the CNSG concepts depends to a great extent on minimizing the size of the steam generator and the reactor vessel for ship installation. Also, for marine application the system must meet stringent specifications for operating stability, transient response, and control. The full-size two-tube experimental unit differed from the CNSG only in the number of tubes and the mode of primary flow. In general, the functional performance test demonstrated that the helical steam generator concept will exceed the specified superheat of 35F at 100% load. The experimental measured superheat at comparable operating conditions was 95F. Testing also revealed that available computer codes accurately predict trends and overall performance characteristics

  5. Innovation of blow-down system in steam generators of a VVER 440 unit

    International Nuclear Information System (INIS)

    Matal, O.; Simo, T.; Mancev, M.D.

    1997-01-01

    The impurities getting into the steam generator with the feedwater are continually removed by the blowdown and unit sludge system. The mostly non-symmetrical type of pipe branches under steam generators at WWER-440 units causes nonuniform blowdown flow rates at the halves of the steam generator; this often leads to a blocking of the pipe with the lower flow rate. The most simple way of hydraulically equalizing the blowdown pipes is to implement symmetric blowdown pipes and to install efficient throttling elements in the pipe. The proposed innovation will make it possible to re-distribute the blowdown flow rates and to reduce more effectively the concentrations of impurities in steam generators. (M.D.)

  6. Development of an acoustic steam generator leak detection system using delay-and-sum beamformer

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka

    2009-01-01

    A new acoustic steam generator leak detection system using delay-and-sum beamformer is proposed. The major advantage of the delay-and-sum beamformer is it could provide information of acoustic source direction. An acoustic source of a sodium-water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the delay-and-sum beamformer could distinguish the acoustic source of the sodium-water reaction from steam generator background noise. In this paper, results from numerical analyses are provided to show fundamental feasibility of the new method. (author)

  7. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth’s gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, are pedagogically well written, providing cl...

  8. On line instrument systems for monitoring steam turbogenerators

    Science.gov (United States)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  9. Simulation of main steam and feedwater system of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhao Xiaoyu

    1996-01-01

    The simulation of main steam and feedwater system is the most important and maximal part in secondary circuit model, including all of main steam and feedwater's thermal-hydraulic properties, except heat-exchange of secondary side of steam generator. It simulates main steam header, steam power in each stage of turbine, moisture separator-reheater, deaerator, condenser, high pressure and low pressure heater, auxiliary feedwater and main steam bypass in full scope

  10. Steam separator-superheater with drawing of a fraction of the dried steam

    International Nuclear Information System (INIS)

    Bessouat, Roger; Marjollet, Jacques.

    1976-01-01

    This invention concerns a vertical separator-superheater of the steam from a high pressure expansion turbine before it is admitted to an expansion turbine at a lower pressure, by heat exchange with steam under a greater pressure, and drawing of a fraction of the dried steam before it is superheated. Such drawing off is necessary in the heat exchange systems of light water nuclear reactors. Its purpose is to provide a separator-superheater that provides an even flow of non superheated steam and a regular distribution of the steam to be superheated to the various superheating bundles, with a significantly uniform temperature of the casing, thereby preventing thermal stresses and ensuring a minimal pressure drop. The vertical separator-superheater of the invention is divided into several vertical sections comprising as from the central area, a separation area of the steam entrained water and a superheater area and at least one other vertical section with only a separation area of the steam entrained water [fr

  11. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  12. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  13. Economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry

    Directory of Open Access Journals (Sweden)

    Flavia Melo Menezes

    2017-12-01

    Full Text Available The burning of fossil fuels majorly contributes to the increase in global warming, and it represents 93% of greenhouse gases emissions in the chemical industry. Most of the energy demand in this sector is associated with steam systems, where 1/3 of the energy efficiency opportunities are located in its distribution system. However, most of the literature focuses on the design of new systems. Those that deal with existing systems, not always use simple and available methods. Furthermore, they address energy losses of steam systems only due to thermal insulation, ignoring those due to leakages of traps. Given this context, the purpose of this paper is to determine the economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry, located in the metropolitan region of Salvador, Brazil. First, the energy lost in the steam distribution system through heat insulation and steam traps was estimated by applying thermodynamic principles, and technic consulting, respectively. Then, investments were estimated using commercial prices for new thermal insulation and steam traps. Finally, an economic evaluation of the improvement project was made, through the construction of a cash flow, and calculation of economic indicators: payback time, net present value (NPV, and internal rate of return (IRR. Economic indicators showed that the project is economically viable. The NPV and IRR reached approximately 5 million reais, and 66% per year, respectively. Additionally, this project also had social and environmental benefits, such as a reduction in greenhouse gases emissions, and increased local water availability.

  14. Building a parabolic solar concentrator prototype

    International Nuclear Information System (INIS)

    Escobar-Romero, J F M; Montiel, S Vazquez y; Granados-AgustIn, F; Rodriguez-Rivera, E; Martinez-Yanez, L; Cruz-Martinez, V M

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  15. Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-04-01

    This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

  16. The development of a control system for a small high speed steam microturbine generator system

    Science.gov (United States)

    Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.

    2015-08-01

    Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.

  17. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  18. Design of the steam generator in an energy conversion system based on the aluminum combustion with water

    International Nuclear Information System (INIS)

    Mercati, Stefano; Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio

    2012-01-01

    Highlights: ► Development of a numerical approach for the analysis of a co-generation system based on the aluminum water reaction. ► Construction of system operating maps for estimating the system behavior. ► Comparison of two different designs of the steam generator for the system. ► Definition of the operating range where each configuration provides the best performance. -- Abstract: The paper shows the preliminary design of the superheated steam generator to be used in a novel hydrogen production and energy conversion system based on the combustion of aluminum particles with water. The system is aimed at producing hydrogen and pressurized superheated steam, using the heat released by the Al–H 2 O reaction. The interest on this type of technology arises because of the possibility of obtaining hydrogen with very low pollutant and greenhouse gas emissions, compared to the traditional hydrogen production systems, such as the steam reforming from methane. The analysis of the combustion chamber and the heat recovery system is carried out by means of a lumped and distributed parameter numerical approach. The multi phase and gas mixture theoretical principles are used both to characterize the mass flow rate and the heat release in the combustion chamber and within the heat exchangers in order to relate the steam generator performance to the system operating parameters. Finally, the influence of the steam generator performance on the whole energy conversion system behavior is addressed, with particular care to the evaluation of the total power and efficiency variation with the combustion parameters.

  19. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    International Nuclear Information System (INIS)

    Tippets, F.E.

    1975-01-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  20. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Tippets, F E

    1975-07-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  1. Analysis of the economics of typical business applications of solar energy

    Science.gov (United States)

    1981-11-01

    An economic analysis is provided of flat plate collector systems in industrial, commercial, and agricultural business applications in a variety of locations. A key element of the analysis is the federal solar investment tax credit. The SOLCOST Solar Energy Design Program is used for the study. The differences between industrial agricultural and commercial applications are considered, as are finance and tax data and fuel data. The rate of return and payback are the criteria used to compare the economic viability of systems. Market penetration estimates for process steam were derived for seven southwestern states where direct solar radiation is highest.

  2. The effect of steam separataor efficiency on transient following a steam line break

    International Nuclear Information System (INIS)

    Choi, J.H.; Ohn, M.Y.; Lee, N.H.; Hwang, S.T.; Lee, S.K.

    1996-01-01

    Detailed thermalhydraulic simulations for CANDU 6 steam line break inside containment are performed to predict the response of the primary and secondary circuits. The analysis is performed using the thermalhydraulic computer code, CATHENA, with a coupled primary and secondary circuit model. A two-loop representation of the primary and secondary circuits is modelled. The secondary circuit model includes the feedwater line from the deaerator storage tank, multi-node steam generators and the steam line up to the turbine. Two cases were carried out using different assumptions for the efficiency of the steam separators. Case 1 assumes the efficiency of the steam separators becomes zero when the water level in the steam drum increases to the elevation of primary cyclones, or the outlet flow from the steam generator becomes higher than 150 % of normal flow. Case 2 assumes the efficiency becomes zero only when the water level in the steam drum reaches the elevation of primary cyclones. The simulation results show that system responses are sensitive to the assumption for the efficiency of the steam separators and case 1 gives higher discharge energy. Fuel cooling is assured, since primary circuit is cooled down sufficiently by the steam generators for both cases. (author)

  3. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  4. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  5. Risk-based and maintenance systems for steam turbines

    International Nuclear Information System (INIS)

    Fujiyama, K.; Nagai, S.; Akikuni, Y.; Fujiwara, T.; Furuya, K.; Matsumoto, S.; Takagi, K.; Kawabata, T.

    2003-01-01

    The risk-based maintenance (RBM) system has been developed for steam turbine plants coupled with the quick inspection systems. The RBM system utilizes the field failure and inspection database accumulated over 30 years. The failure modes are determined for each component of steam turbines and the failure scenarios are described as event trees. The probability of failure is expressed in the form of unreliability functions of operation hours or start-up cycles through the cumulative hazard function method. The posterior unreliability is derived from the field data analysis according to the inspection information. Quick inspection can be conducted using air-cooled borescope and heat resistant ultrasonic sensors even if the turbine is not cooled down sufficiently. Another inspection information comes from degradation and damage measurement. The probabilistic life assessment using structural analysis and statistical material properties, the latter is estimated from hardness measurement, replica observation and embrittlement measurement. The risk function is calculated as the sum product of unreliability functions and expected monetary loss as the consequence of failure along event trees. The optimum maintenance plan is determined among simulated scenarios described through component breakdown trees, life cycle event trees and risk functions. Those methods are effective for total condition assessment and economical maintenance for operating plants. (orig.)

  6. Baby Solar System

    Science.gov (United States)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  7. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  8. Validation of the efficacy of a solar-thermal powered autoclave system for off-grid medical instrument wet sterilization.

    Science.gov (United States)

    Kaseman, Tremayne; Boubour, Jean; Schuler, Douglas A

    2012-10-01

    This work describes the efficacy of a solar-thermal powered autoclave used for the wet sterilization of medical instruments in off-grid settings where electrical power is not readily available. Twenty-seven trials of the solar-thermal powered system were run using an unmodified non-electric autoclave loaded with a simulated bundle of medical instruments and biological test agents. Results showed that in 100% of the trials the autoclave achieved temperatures in excess of 121°C for 30 minutes, indicator tape displayed visible reactions to steam sterilization, and biological tests showed that microbial agents had been eliminated, in compliance with the Centers for Disease Control and Prevention requirements for efficacious wet sterilization.

  9. Design of a H∞ Robust Controller with μ-Analysis for Steam Turbine Power Generation Applications

    Directory of Open Access Journals (Sweden)

    Vincenzo Iannino

    2017-07-01

    Full Text Available Concentrated Solar Power plants are complex systems subjected to quite sensitive variations of the steam production profile and external disturbances, thus advanced control techniques that ensure system stability and suitable performance criteria are required. In this work, a multi-objective H∞ robust controller is designed and applied to the power control of a Concentered Solar Power plant composed by two turbines, a gear and a generator. In order to provide robust performance and stability in presence of disturbances, not modeled plant dynamics and plant-parameter variations, the advanced features of the μ-analysis are exploited. A high order controller is obtained from the process of synthesis that makes the implementation of the controller difficult and computational more demanding for a Programmable Logic Controller. Therefore, the controller order is reduced through the Balanced Truncation method and then discretized. The obtained robust control is compared to the current Proportional Integral Derivative-based governing system in order to evaluate its performance, considering unperturbed as well as perturbed scenarios, taking into account variations of steam conditions, sensor measurement delays and power losses. The simulations results show that the proposed controller achieves better robustness and performance compared to the existing Proportional Integral Derivative controller.

  10. Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant

    International Nuclear Information System (INIS)

    Burin, Eduardo Konrad; Vogel, Tobias; Multhaupt, Sven; Thelen, Andre; Oeljeklaus, Gerd; Görner, Klaus; Bazzo, Edson

    2016-01-01

    This work evaluated the integration of Concentrated Solar Power (CSP) with a sugarcane bagasse cogeneration plant located in Campo Grande (Brazil). The plant is equipped with two 170 t/h capacity steam generators that provide steam at 67 bar/525 °C. Superheated steam is expanded in a backpressure and in a condensing-extraction turbine. The evaluated hybridization layouts were: (layout 1) solar feedwater pre-heating; (layout 2) saturated steam generation with solar energy and post superheating in biomass steam generators and (layout 3) superheated steam generation in parallel with biomass boilers. Linear Fresnel and parabolic trough were implemented in layouts 1 and 2, while solar tower in layout 3. The exportation of electricity to the grid was increased between 1.3% (layout 1/linear Fresnel) and 19.8% (layout 3) in comparison with base case. The levelized cost of additional electricity was accounted between 220 US$/MWh (layout 3) and 628 US$/MWh (layout 1/linear Fresnel). The key factor related to layout 3 was the improvement of solar field capacity factor due to the solar-only operation of this approach. These aspects demonstrate that the combination of solar and bagasse resources might be the key to turn CSP economically feasible in Brazil. - Highlights: • The integration of CSP and a sugarcane bagasse cogeneration plant was here evaluated. • Additional hours of operation during off-season were achieved due to hybridization. • The part load performance of plant was predicted as solar thermal load was increased. • The electricity exportation to the grid could be increased between 1.3 and 19.8%. • The LCOE of additional electricity produced was ranged between 220 and 628 US$/MWh.

  11. PV solar system feasibility study

    International Nuclear Information System (INIS)

    Ashhab, Moh’d Sami S.; Kaylani, Hazem; Abdallah, Abdallah

    2013-01-01

    Highlights: ► This research studies the feasibility of PV solar systems. ► The aim is to develop the theory and application of a hybrid system. ► Relevant research topics are reviewed and some of them are discussed in details. ► A prototype of the PV solar system is designed and built. - Abstract: This research studies the feasibility of PV solar systems and aims at developing the theory and application of a hybrid system that utilizes PV solar system and another supporting source of energy to provide affordable heating and air conditioning. Relevant research topics are reviewed and some of them are discussed in details. Solar heating and air conditioning research and technology exist in many developed countries. To date, the used solar energy has been proved to be inefficient. Solar energy is an abundant source of energy in Jordan and the Middle East; with increasing prices of oil this source is becoming more attractive alternative. A good candidate for the other system is absorption. The overall system is designed such that it utilizes solar energy as a main source. When the solar energy becomes insufficient, electricity or diesel source kicks in. A prototype of the PV solar system that operates an air conditioning unit is built and proper measurements are collected through a data logging system. The measured data are plotted and discussed, and conclusions regarding the system performance are extracted.

  12. Steam generation from solar energy

    International Nuclear Information System (INIS)

    Gozzi, M.

    2001-01-01

    The vapor for thermoelectric use is one of the most promoted methods for electric power generation from solar energy. The new plants are becoming more and more safe, and anyway in some cases the natural gas makes easy the production of electricity [it

  13. Homemade Solar Systems

    Science.gov (United States)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  14. Preliminary design of steam reformer in out-pile demonstration test facility for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Katsuhiro; Hino, Ryutaro; Inagaki, Yosiyuki; Hata, Kazuhiko; Aita, Hideki; Sekita, Kenji; Nishihara, Tetsuo; Sudo, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Yamada, Seiya

    1996-11-01

    One of the key objectives of HTTR is to demonstrate effectiveness of high-temperature nuclear heat utilization system. Prior to connecting a heat utilization system to HTTR, an out-pile demonstration test is indispensable for the development of experimental apparatuses, operational control and safety technology, and verification of the analysis code of safety assessment. For the first heat utilization system of HTTR, design of the hydrogen production system by steam reforming is going on. We have proposed the out-pile demonstration test plan of the heat utilization system and conducted preliminary design of the test facility. In this report, design of the steam reformer, which is the principal component of the test facility, is described. In the course of the design, two types of reformers are considered. The one reformer contains three reactor tubes and the other contains one reactor tube to reduce the construction cost of the test facility. We have selected the steam reformer operational conditions and structural specifications by analyzing the steam reforming characteristics and component structural strength for each type of reformer. (author)

  15. Evaluation of steam generator U-tube integrity during PWR station blackout with secondary system depressurization

    International Nuclear Information System (INIS)

    Hidaka, Akihide; Asaka, Hideaki; Sugimoto, Jun; Ueno, Shingo; Yoshino, Takehito

    1999-12-01

    In PWR severe accidents such as station blackout, the integrity of steam generator U-tube would be threatened early at the transient among the pipes of primary system. This is due to the hot leg countercurrent natural circulation (CCNC) flow which delivers the decay heat of the core to the structures of primary system if the core temperature increases after the secondary system depressurization. From a view point of accident mitigation, this steam generator tube rupture (SGTR) is not preferable because it results in the direct release of primary coolant including fission products (FP) to the environment. Recent SCDAP/RELAP5 analyses by USNRC showed that the creep failure of pressurizer surge line which results in release of the coolant into containment would occur earlier than SGTR during the secondary system depressurization. However, the analyses did not consider the decay heat from deposited FP on the steam generator U-tube surface. In order to investigate the effect of decay heat on the steam generator U-tube integrity, the hot leg CCNC flow model used in the USNRC's calculation was, at first, validated through the analysis for JAERI's LSTF experiment. The CCNC model reproduced well the thermohydraulics observed in the LSTF experiment and thus the model is mostly reliable. An analytical study was then performed with SCDAP/RELAP5 for TMLB' sequence of Surry plant with and without secondary system depressurization. The decay heat from deposited FP was calculated by JAERI's FP aerosol behavior analysis code, ART. The ART analysis showed that relatively large amount of FPs may deposit on steam generator U-tube inlet mainly by thermophoresis. The SCDAP/RELAP5 analyses considering the FP decay heat predicted small safety margin for steam generator U-tube integrity during secondary system depressurization. Considering associated uncertainties in the analyses, the potential for SGTR cannot be ignored. Accordingly, this should be considered in the evaluation of merits

  16. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  17. Application of nuclear steam supply system of NIKA series for seawater desalination

    International Nuclear Information System (INIS)

    Adamovich, L.A.; Achkasov, A.N.; Grechko, G.I.; Pavlov, V.L.; Shishkin, V.A.

    1998-01-01

    The nuclear steam supply system (NSSS) NIKA has been developed on the basis of experience available in Russia in designing, construction and operation of similar systems for ship propulsion reactors. Major systems and equipment of the NSSS are designed to take advantage of the proven engineering features and to meet Russian regulations, standards, practices and up-to-date safety philosophy. NSSS NIKA-75 has been designed for arrangement on barge. This permits to manufacture all NSSS equipment at the factory and to deliver it to the exploitation area ready for operation. NSSS NIKA-300 is designed for erection on land. It seems very interesting to use those NSSS types for seawater desalination. The main technical solutions, concept statements, technical and economical evaluations of NIKA series nuclear steam supply systems for seawater desalination are described. (author)

  18. Design of a partial inter-tube lancing system actuated by hydraulic power for type F model steam generator in nuclear power plant

    International Nuclear Information System (INIS)

    Kim, S. T.; Jeong, W. T.

    2008-01-01

    The sludge grown up in steam generators of nuclear power plants shortens the life-cycle of steam generators and reduces the output of power plants. So KHNP(Korea Hydro and Nuclear Power), the only nuclear power utility in Korea, removes it periodically using a steam generator lancing system during the outage of plants for an overhaul. KEPRI(Korea Electric Power Research Institute) has developed lancing systems with high pressured water nozzle for steam generators of nuclear power plants since 2001. In this paper, the design of a partial inter-tube lancing system for model F type steam generators will be described. The system is actuated without a DC motor inner steam generators because the motors in a steam generator make a trouble from high intensity of radioactivity as a break down

  19. Steam plant for pressurized water reactors

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This book discusses the research and development organisations and users to highlight those aspects of the steam turbine and associated plant which are particularly related to the PWR system. The contents include: Characteristics of the steam system (including feed train, dump system and safety aspects); overall design aspects of high and half speed turbines; design aspects of the steam generator and seismic considerations; moisture separators and reheaters; feed pumps and their drives; water treatment; safety related valves; operational experience; availability and performance

  20. EPRI steam generator programs

    International Nuclear Information System (INIS)

    Martel, L.J.; Passell, T.O.; Bryant, P.E.C.; Rentler, R.M.

    1977-01-01

    The paper describes the current overall EPRI steam generator program plan and some of the ongoing projects. Because of the recent occurrence of a corrosion phenomenon called ''denting,'' which has affected a number of operating utilities, an expanded program plan is being developed which addresses the broad and urgent needs required to achieve improved steam generator reliability. The goal of improved steam generator reliability will require advances in various technologies and also a management philosophy that encourages conscientious efforts to apply the improved technologies to the design, procurement, and operation of plant systems and components that affect the full life reliability of steam generators

  1. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  2. Computerized operating cost model for industrial steam generation

    Energy Technology Data Exchange (ETDEWEB)

    Powers, T.D.

    1983-02-01

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  3. An integrated leak detection system for the ALMR steam generator

    International Nuclear Information System (INIS)

    Dayal, Y.; Gaubatz, D.C.; Wong, K.K.; Greene, D.A.

    1995-01-01

    The steam generator (SG) of the Advanced Liquid Metal Reactor (ALMR) system serves as a heat exchanger between the shell side secondary loop hot liquid sodium and the tube side water/steam mixture. A leak in the tube will result in the injection of the higher pressure water/steam into the sodium and cause an exothermic sodium-water reaction. An initial small leak (less than 1 gm/sec) can escalate into an intermediate size leak in a relatively short time by self enlargement of the original flaw and by initiating leaks in neighboring tubes. If not stopped, complete rupture of one or more tubes can cause injection rates of thousands of gm/sec and result in the over pressurization of the secondary loop rupture disk and dumping of the sodium to relieve pressure. The down time associated with severe sodium-water reaction damage has great adverse economic consequence. An integrated leak detection system (ILDS) has been developed which utilizes both chemical and acoustic sensors for improved leak detection. The system provides SG leak status to the reactor operator and is reliable enough to trigger automatic control action to protect the SG. The ILDS chemical subsystem uses conventional in-sodium and cover gas hydrogen detectors and incorporates knowledge based effects due to process parameters for improved reliability. The ILDS acoustic subsystem uses an array of acoustic sensors and incorporates acoustic beamforming technology for highly reliable and accurate leak identification and location. The new ILDS combines the small leak detection capability of the chemical system with the reliability and rapid detection/location capability of the acoustic system to provide a significantly improved level of protection for the SG over a wide range of operation conditions. (author)

  4. Solar heating systems for houses. A design handbook for solar combisystems

    International Nuclear Information System (INIS)

    Weiss, W.

    2003-11-01

    A handbook giving guidance on systems for providing combined solar space heating and solar water heating for houses has been produced by an international team. The guidance focuses on selection of the optimum combi-system for groups of single-family houses and multi-family houses. Standard classification and evaluation procedures are described. The book should be a valuable tool for building engineers, architects, solar manufacturers and installers of solar solar energy systems, and anyone interested in optimizing combined water and space heating solar systems

  5. Numerical investigation of passive heat removal system via steam generator in VVER 1200

    International Nuclear Information System (INIS)

    Dinh Anh Tuan; Duong Thanh Tung; Tran Chi Thanh; Nguyen Van Thai

    2015-01-01

    Passive heat removal system (PHRS) via Steam Generator is an important part in VVER design. In case of Design Basic Accidents such as blackout, failure of feed water supply to steam generator or coolant leakage with failure of emergency core cooling at high pressure. PHRS is designed to remove the residual heat from reactor core through steam generator to heat exchanger which is placed outside reactor vessel. In order to evaluate the passive system, a numerical investigation using a CFD code is performed. However, PHRS has complex geometry for using CFD simulation. Thus, RELAP5 is applied to provide the wall heat flux of tube in the heat exchanger tank. The natural convection in the heat exchanger tank is investigated in this report. Numerical results show temperature and velocity distribution in the heat exchanger tank are calculated with different wall heat flux corresponding to various transient conditions. The calculated results contribute to the capacity analysis of passive heat removal system and giving valuable information for safe operation of VVER 1200. (author)

  6. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  7. Impact of the operation of non-displaced feedwater heaters on the performance of Solar Aided Power Generation plants

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2017-01-01

    Highlights: • Impact of non-displaced feedwater heater on plant’s performance has been evaluated. • Two operation strategies for non-displaced feedwater heater has been proposed. • Constant temperature strategy is generally better. • Constant mass flow rate strategy is suit for rich solar thermal input. - Abstract: Solar Aided Power Generation is a technology in which low grade solar thermal energy is used to displace the high grade heat of the extraction steam in a regenerative Rankine cycle power plant for feedwater preheating purpose. The displaced extraction steam can then expand further in the steam turbine to generate power. In such a power plant, using the (concentrated) solar thermal energy to displace the extraction steam to high pressure/temperature feedwater heaters (i.e. displaced feedwater heaters) is the most popular arrangement. Namely the extraction steam to low pressure/temperature feedwater heaters (i.e. non-displaced feedwater heaters) is not displaced by the solar thermal energy. In a Solar Aided Power Generation plants, when solar radiation/input changes, the extraction steam to the displaced feedwater heaters requires to be adjusted according to the solar radiation. However, for the extraction steams to the non-displaced feedwater heaters, it can be either adjusted accordingly following so-called constant temperature strategy or unadjusted i.e. following so-called constant mass flow rate strategy, when solar radiation/input changes. The previous studies overlooked the operation of non-displaced feedwater heaters, which has also impact on the whole plant’s performance. This paper aims to understand/reveal the impact of the two different operation strategies for non-displaced feedwater heaters on the plant’s performance. In this paper, a 300 MW Rankine cycle power plant, in which the extraction steam to high pressure/temperature feedwater heaters is displaced by the solar thermal energy, is used as study case for this purpose. It

  8. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.; Passell, T.

    1982-01-01

    Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion

  9. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  10. Investigation of a combined gas-steam system with flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Chmielniak Tadeusz

    2016-06-01

    Full Text Available This article presents changes in the operating parameters of a combined gas-steam cycle with a CO2 capture installation and flue gas recirculation. Parametric equations are solved in a purpose-built mathematical model of the system using the Ebsilon Professional code. Recirculated flue gases from the heat recovery boiler outlet, after being cooled and dried, are fed together with primary air into the mixer and then into the gas turbine compressor. This leads to an increase in carbon dioxide concentration in the flue gases fed into the CO2 capture installation from 7.12 to 15.7%. As a consequence, there is a reduction in the demand for heat in the form of steam extracted from the turbine for the amine solution regeneration in the CO2 capture reactor. In addition, the flue gas recirculation involves a rise in the flue gas temperature (by 18 K at the heat recovery boiler inlet and makes it possible to produce more steam. These changes contribute to an increase in net electricity generation efficiency by 1%. The proposed model and the obtained results of numerical simulations are useful in the analysis of combined gas-steam cycles integrated with carbon dioxide separation from flue gases.

  11. Fabrication of remote steam atomized scrubbers for DWPF off-gas system

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Lafferty, J.D.

    1988-01-01

    The defense waste processing facility (DWPF) is being constructed for the purpose of processing high-level waste from sludge to a vitrified borosilicate glass. In the operation of continuous slurry-fed melters, off-gas aerosols are created by entrainment of feed slurries and the vaporization of volatile species from the molten glass mixture. It is necessary to decontaminate these aerosols in order to minimize discharge of airborne radionuclide particulates. A steam atomized scrubber (SAS) has been developed for DWPF which utilizes a patented hydro- sonic system gas scrubbing method. The Hydro-Sonic System utilizes a steam aspirating-type venturi scrubber that requires very precise fabrication tolerances in order to obtain acceptable decontamination factors. In addition to the process-related tolerances, precision mounting and nozzle tolerances are required for remote service at DWPF

  12. Water and steam sampling systems; Provtagningssystem foer vatten och aanga

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Mats

    2009-10-15

    The supervision of cycle chemistry can be divided into two parts, the sampling system and the chemical analysis. In modern steam generating plants most of the chemical analyses are carried out on-line. The detection limits of these analyzers are pushed downward to the ppt-range (parts per trillion), however the analyses are not more correct than the accuracy of the sampling system. A lot of attention has been put to the analyzers and the statistics to interpret the results but the sampling procedures has gained much less attention. This report aims to give guidance of the considerations to be made regarding sampling systems. Sampling is necessary since most analysis of interesting parameters cannot be carried out in- situ on-line in the steam cycle. Today's on-line instruments for pH, conductivity, silica etc. are designed to meet a water sample at a temperature of 10-30 deg C. This means that the sampling system has to extract a representative sample from the process, transport and cool it down to room temperature without changing the characteristics of the fluid. In the literature research work, standards and other reports can be found. Although giving similar recommendations in most aspects there are some discrepancies that may be confusing. This report covers all parts in the sampling system: Sample points and nozzles; Sample lines; Valves, regulating and on-off; Sample coolers; Temperature, pressure and flow rate control; Cooling water; and Water recovery. On-line analyzers connecting to the sampling system are not covered. This report aims to clarify what guidelines are most appropriate amongst the existing ones. The report should also give guidance to the design of the sampling system in order to achieve representative samples. In addition to this the report gives an overview of the fluid mechanics involved in sampling. The target group of this report is owners and operators of steam generators, vendors of power plant equipment, consultants working in

  13. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  14. Multifrequency eddy-current system for inspection of steam generator turbine

    International Nuclear Information System (INIS)

    Davis, T.J.

    1980-11-01

    The objectives of this program were to: determine the maximum advantage of the multifrequency eddy current method for nuclear steam generator tubing inspection; simplify system operating procedures and enhance presentation of mutifrequency data; and evaluate multifrequency methods for inspecting recently encountered types of anomalies such as circumferential cracks, inside diameter flaws, and flaws in dented regions. New test methods developed under the program have resulted in a dramatic improvement over earlier multifrequency work. The methods rely on judicious selection of test frequencies and the simultaneous use of differential and absolute multiparameter inspection. Flaws may be sized and profiled with increased accuracy over that of the single-frequency method, and improved rejection of indications from unwanted parameters such as support plates and probe wobble has been obtained. The ability to detect and size support cracks in both corroded and non-corroded supports has been demonstrated on a laboratory basis. A field-usable test system employing four test frequencies was developed under the program and has been evaluated in the EPRI steam generator mockup. Some of the new technology used in this system has been commercialized into the new Zetec MIZ-12 multifrequency system

  15. New views of the solar system

    CERN Document Server

    2009-01-01

    Is your library up to date on the Solar System? When the International Astronomical Union redefined the term "planet," Pluto was stripped of its designation as the solar system''s ninth planet. New Views of the Solar System looks at scientists'' changing perspectives on the solar system, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid and detailed images of the solar system.

  16. Exploring the solar system

    CERN Document Server

    Bond, Peter

    2012-01-01

    The exploration of our solar system is one of humanity's greatest scientific achievements. The last fifty years in particular have seen huge steps forward in our understanding of the planets, the sun, and other objects in the solar system. Whilst planetary science is now a mature discipline - involving geoscientists, astronomers, physicists, and others - many profound mysteries remain, and there is indeed still the tantalizing possibility that we may find evidence of life on another planet in our system.Drawing upon the latest results from the second golden age of Solar System exploration, aut

  17. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  18. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  19. Numerical Analysis on Transient of Steam-gas Pressurizer

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  20. Simulation of a Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos.

    1980-01-01

    The following work intends to perform the digital simulation, of the Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant for control systems design and analysis purposes. There are mathematical models for the reactor, the steam generator, the pressurizer and for transport lags of the coolant in the primary circuit. Nevertheless no one control system has been considered to permit any user the inclusion in the more convenient way of the desired control systems' models. The characteristics of the system in consideration are fundamentally equal to the ones of Almirante Alvaro Alberto Nuclear Power Plant, Unit I (Angra I) obtained in the Final Safety Analysis Report at Comissao Nacional de Energia Nuclear. (author)

  1. The development of control systems for high power steam turbines

    International Nuclear Information System (INIS)

    Mathey, M.

    1983-01-01

    The functional and technological aspects of developments in the field of control systems for steam turbines over the last twenty years are analyzed. These developments have now culminated in very sophisticated systems which closely link electronics to high pressure hydraulic technology. A detailed description of these systeme high-lighting the high technical level of the control methods and the flexibility and reliability in service of turbines controlled in this way is given [fr

  2. Investigations of solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2005-01-01

    ). However, it is still too early to draw conclusions on the design of solar combi systems. Among others, the following questions needs to be answered: Is an external domestic hot water preparation more desirable than an internal domestic hot water preparation? Is a stratification manifold always more......A large variety of solar combi systems are on the marked to day. The best performing systems are highly advanced energy systems with thermal stratification manifolds, an efficient boiler and only one control system, which controls both the boiler and the solar collector loop (Weiss et al., 2003...... desirable than a fixed inlet position? This paper presents experimental investigations of an advanced solar combi system with thermal stratification manifold inlets both in the solar collector loop and in the space heating system and with an external domestic hot water preparation. Theoretical...

  3. Solar System Dynamics

    Science.gov (United States)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  4. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler...

  5. Exergetic analysis and optimization of a solar-powered reformed methanol fuel cell micro-powerplant

    Science.gov (United States)

    Hotz, Nico; Zimmerman, Raúl; Weinmueller, Christian; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Rosengarten, Gary; Poulikakos, Dimos

    The present study proposes a combination of solar-powered components (two heaters, an evaporator, and a steam reformer) with a proton exchange membrane fuel cell to form a powerplant that converts methanol to electricity. The solar radiation heats up the mass flows of methanol-water mixture and air and sustains the endothermic methanol steam reformer at a sufficient reaction temperature (typically between 220 and 300 °C). In order to compare the different types of energy (thermal, chemical, and electrical), an exergetic analysis is applied to the entire system, considering only the useful part of energy that can be converted to work. The effect of the solar radiation intensity and of different operational and geometrical parameters like the total inlet flow rate of methanol-water mixture, the size of the fuel cell, and the cell voltage on the performance of the entire system is investigated. The total exergetic efficiency comparing the electrical power output with the exergy input in form of chemical and solar exergy reaches values of up to 35%, while the exergetic efficiency only accounting for the conversion of chemical fuel to electricity (and neglecting the 'cost-free' solar input) is increased up to 59%. At the same time, an electrical power density per irradiated area of more than 920 W m -2 is obtained for a solar heat flux of 1000 W m -2.

  6. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  7. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  8. Risk-based inspection and maintenance systems for steam turbines

    International Nuclear Information System (INIS)

    Fujiyama, Kazunari; Nagai, Satoshi; Akikuni, Yasunari; Fujiwara, Toshihiro; Furuya, Kenichiro; Matsumoto, Shigeru; Takagi, Kentaro; Kawabata, Taro

    2004-01-01

    The risk-based maintenance (RBM) system has been developed for steam turbine plants coupled with the quick inspection systems. The RBM system utilizes the field failure and inspection database accumulated over 30 years. The failure modes are determined for each component of steam turbines and the failure scenarios are described as event trees. The probability of failure is expressed in the form of unreliability functions of operation hours or start-up cycles through the cumulative hazard function method. The posterior unreliability is derived from the field data analysis according to the inspection information. Quick inspection can be conducted using air-cooled borescope and heat resistant ultrasonic sensors even if the turbine is not cooled down sufficiently. Another inspection information comes from degradation and damage measurement. The probabilistic life assessment using structural analysis and statistical material properties, the latter is estimated from hardness measurement, replica observation and embrittlement measurement. The risk function is calculated as the sum product of unreliability functions and expected monetary loss as the consequence of failure along event trees. The optimum maintenance plan is determined among simulated scenarios described through component breakdown trees, life cycle event trees and risk functions. Those methods are effective for total condition assessment and economical maintenance for operating plants

  9. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    Energy Technology Data Exchange (ETDEWEB)

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  10. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  11. Leak detection of steam or water into sodium in steam generators of liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hans, R.; Dumm, K.

    1977-01-01

    The leakage of water or steam into sodium in LMFBR steam generators, including a study of how leaks are detected and located as well as the potential damage that could be caused by such leaks, is surveyed. The most interesting steam generator designs evolving in those countries that develop and construct LMFBRs are presented. The relevant protection measures are described. Fault conditions are defined and descriptions given of possible sequences of events leading to abnormal conditions in a steam generator. Taking into account theory, the potential of the hydrogen and oxygen detection systems is discussed. Different hydrogen and oxygen detection systems are fully described. In so far as interesting technical solutions are concerned, previously developed devices have also been taken into account. The way oxygen detection supplements hydrogen detection is described by listing the available oxygen measuring devices and the relevant theory. Only a few sonic and accelerometer measurements have been made on complete steam generator units so there is little system data available. Descriptions, however, have been included to give the state of the art achieved for the sensors and the achieved sensitivities or band widths. The potential of this monitoring method is made evident by adding the technical data of the sensors. Furthermore, the available systems for monitoring medium and large leakages are described. Finally, recommendations are made concerning steam generator development and the application of hydrogen and oxygen detection systems, as well as acoustic measuring methods for small-leakage detection

  12. Steam Distillation with Induction Heating System: Analysis of Kaffir Lime Oil Compound and Production Yield at Various Temperatures

    International Nuclear Information System (INIS)

    Zuraida Muhammad; Zakiah Mohd Yusoff; Mohd Noor Nasriq Nordin

    2013-01-01

    The steam temperature during the extraction process has a great influence on the essential oil quality. .This study was conducted to analyze the compound of kaffir-lime oil during extracting at different steam temperature using GC-MS analysis. The extraction was carried out by using steam distillation based on induction heating system at different extraction temperature such as 90, 95 and 100 degree Celsius, the power of the induction heating system is fixed at 1.6 kW. Increment of the steam temperature will increase the oil yield. In terms of oil composition, extraction at lower temperature resulted high concentration for four marker compounds of kaffir-lime oil which are α-pinene, sabinene, limonene, β-pinene. (author)

  13. Steam relief valve control system for a nuclear reactor

    International Nuclear Information System (INIS)

    Torres, J.M.

    1976-01-01

    Described is a turbine follow system and method for Pressurized Water Reactors utilizing load bypass and/or atmospheric dump valves to provide a substitute load upon load rejection by bypassing excess steam to a condenser and/or to the atmosphere. The system generates a variable pressure setpoint as a function of load and applies an error signal to modulate the load bypass valves. The same signal which operates the bypass valves actuates a control rod automatic withdrawal prevent to insure against reactor overpower

  14. Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

  15. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  16. Simulation and analysis of main steam control system based on heat transfer calculation

    Science.gov (United States)

    Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai

    2018-05-01

    In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.

  17. Discovering the Solar System

    Science.gov (United States)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  18. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  19. The solar system

    International Nuclear Information System (INIS)

    Ryan, P.

    1981-01-01

    A comprehensive review is given of the most recent findings on the solar system. The physical processes in the sun are presented, their interactions in the interplanetary space, and the planets and moons of the solar system. The sun and its moon are discussed in great detail. The text is supplemented by excellent satellite pictures, including the latest pictures of Jupiter, Saturn, and their moons. (HM) [de

  20. The New Solar System

    Science.gov (United States)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to

  1. System for combustion of sunflower shells in industrial steam generators

    International Nuclear Information System (INIS)

    Todoriev, Kh.

    2000-01-01

    The paper presents an economically efficient solution for reconstruction of steam generators with steam production over 5 t/h using foregoing cyclone chamber for sunflower shells combustion. For average fuel caloricity 9 445 ccal/kg and sunflower shells caloricity between 3 485 and 3 750 ccal/kg, the petroleum saving is 68.78% for an average boiler efficiency 4.6 t/h steam

  2. CAREM-25 Steam Generator Stability Analysis

    International Nuclear Information System (INIS)

    Rabiti, A.; Delmastro, D.

    2003-01-01

    In this work the stability of a once-through CAREM-25 steam generator is analyzed.A fix nodes numerical model, that allows the modelling of the liquid, two-phase and superheated steam zones, is implemented.This model was checked against a mobile finite elements model under saturated steam conditions at the channel exit and a good agreement was obtained.Finally the stability of a CAREM steam generator is studied and the range of in let restrictions that a assure the system stability is analyzed

  3. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  4. Solar-gas systems impact analysis study

    Science.gov (United States)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  5. Dynamic modelling of nuclear steam generators

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.

    1980-01-01

    Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)

  6. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    Science.gov (United States)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  7. A CONCEPT OF SOLAR TRACKER SYSTEM DESIGN

    OpenAIRE

    Meita Rumbayan *, Muhamad Dwisnanto Putro

    2017-01-01

    Improvement of solar panel efficiency is an ongoing research work recently. Maximizing the output power by integrating with the solar tracker system becomes a interest point of the research. This paper presents the concept in designing a solar tracker system applied to solar panel. The development of solar panel tracker system design that consist of system display prototype design, hardware design, and algorithm design. This concept is useful as the control system for solar tracker to improve...

  8. Manpower development for safe operation of nuclear power plant. China. Main steam bypass system operation and maintenance. Task: 6.1.6. Technical report

    International Nuclear Information System (INIS)

    Stubley, P.H.

    1994-01-01

    This mission concentrated on the Steam Bypass system of Qinshan Nuclear Power Plant. The system had experienced spurious opening of the bypass valves, disrupting the steam pressure control and the steam generator level control system. A series of commissioning type tests were defined which should allow the operators to revise the setpoints used in the control of the bypass system, and thus prevent spurious opening while maintaining the desired steam pressure control during power maneuvering. Training also included giving experience from other operating plants on aspects of steam and feedwater systems and components, especially as this experience affected maintenance or gave rise to problems. Steam generated maintenance experience is especially applicable, and a future mission is planned for an expert in this field. In addition other aspects of the Chinese nuclear program was assessed to guide future missions. This included assessment of operating procedures from an availability point of view

  9. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  10. Design and performance of BWC replacement steam generators for PWR systems

    International Nuclear Information System (INIS)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W.

    1998-01-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100% tube integrity following

  11. Solar system exploration

    International Nuclear Information System (INIS)

    Briggs, G.A.; Quaide, W.L.

    1986-01-01

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described

  12. Technical study of real-time simulation system for digital I and C system of steam generator in nuclear power plant

    International Nuclear Information System (INIS)

    Shi Ji; Jiang Mingyu; Ma Yunqin

    2004-01-01

    The real-time simulation system, which forms a interactive closed circle together with the steam generator control system, has been developed using a dynamic mathematical model of steam generator in this paper. It can provide a simulation target for upgrades of digital Instrument and Control system in Nuclear Power Plant (NPP) and is applicable for further research of control schemes. With this program, the authors have studied and analyzed the response of transient parameters to some different disturbance, the calculated results are in good agreement with those calculated by NPP simulator program. This will give a theoretical analysis for upgrades of digital I and C system in nuclear power plant

  13. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  14. Contribution to the modeling and simulation of solar power tower plants using energy analysis

    International Nuclear Information System (INIS)

    Benammar, S.; Khellaf, A.; Mohammedi, K.

    2014-01-01

    Highlights: • The solar tower power plant system (STPP) is divided into four main subsystems. • The energy balance of each subsystem has been developed. • A general nonlinear mathematical model of the studied system (STPP) has been presented. • Using numerical optimization methods, the nonlinear mathematical model has been solved. • The obtained results are presented and analyzed. - Abstract: In this paper, a mathematical model based on energy analysis, has been developed for modeling and simulation of solar tower power plants (STPP) performances without energy storage. The STPP system has been divided into four main subsystems: the heliostat field subsystem, the cavity receiver subsystem (tower), the steam generation subsystem and the power cycle subsystem (Rankine cycle). Thermal and thermodynamic models of main subsystems have been developed. A general nonlinear mathematical model of the studied system (STPP) has been presented and solved using numerical optimization methods. The obtained results are presented and analyzed. The effects of the receiver surface temperature and the receiver surface area on the cavity receiver efficiency and the steam mass flow have been investigated. The effects of other parameters, such as the incident heat flux, the absorbed energy and the heat losses from the receiver are also studied. The analysis of these results shows the existence of an optimal receiver efficiency value for each steam mass flow, receiver surface temperature and receiver surface area

  15. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  16. Steam distribution and energy delivery optimization using wireless sensors

    Science.gov (United States)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  17. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  18. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  19. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  20. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  1. Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater

    International Nuclear Information System (INIS)

    Luongo, M.C.

    1975-01-01

    An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

  2. Emergency systems and protection equipment of modular steam generators for fast reactors

    International Nuclear Information System (INIS)

    Matal, O.

    The requirements are discussed for accident protection of modular steam generators for fast reactors. Accident protection is assessed for a modular through-flow steam generator and for a natural circulation modular steam generator. Benefits and constraints are shown and possible improvements are outlined for accident protection of liquid sodium fired modular steam generators. (Kr)

  3. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  4. Development of main steam safety valve set pressure evaluating system

    International Nuclear Information System (INIS)

    Oketani, Koichiro; Manabe, Yoshihisa.

    1991-01-01

    A main steam safety valve set pressure test is conducted for all valves during every refueling outage in Japan's PWRs. Almost all operations of the test are manually conducted by a skilled worker. In order to obtain further reliability and reduce the test time, an automatic test system using a personnel computer has been developed in accordance with system concept. Quality assurance was investigated to fix system specifications. The prototype of the system was manufactured to confirm the system reliability. The results revealed that this system had high accuracy measurement and no adverse influence on the safety valve. This system was concluded to be applicable for actual use. (author)

  5. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  6. Development of the double-wall-tube steam generator. Evaluation of inner tube leak detection system

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kisohara, Naoyuki

    1995-01-01

    A double-wall-tube steam generator (DWT-SG) is considered to have possibility of eliminating a secondary heat transport system to realize a reliable and simplified FBR plant. Thus, basic tests for inner/outer tube leak detection and prototypical leak tests by use of the 1MWt DWT-SG model have been performed to evaluate the feasibility of DWT-SG. Their results demonstrated that the inner leak detection system can definitely detect a steam leak from an inner tube flaw. Analyses of the inner tube leak and detection behavior obtained in the 1MWt DWT-SG test enabled to estimate the performance of the inner tube detection system of the commercial DWT-SG system. (author)

  7. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  8. Solar Irradiance & On Grid Solar Power Systems with Net Metering in Pakistan

    Directory of Open Access Journals (Sweden)

    Haleema Qamar

    2016-06-01

    Full Text Available This paper presents a case study of solar irradiance and scope of on-grid solar power systems with net-metering in Pakistan. Detailed analysis of solar irradiance in Pakistan is being carried out by developing the dedicated solar excel sheets. The need of on grid solar power systems for the present energy crisis in developing countries like Pakistan is also discussed. It also presents the inclination of many countries especially USA and Europe towards it. Identification of barriers for implementing on grid net metered solar power systems in Pakistan along with solutions of these barriers is carried out.

  9. Better lumber drying process with a non-greenhouse type solar kiln

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K C

    1979-01-01

    The preliminary study of using solar energy for lumber drying in NW Ontario is proven applicable and practical by the evidence of data collected. It was found that lumber seasoning using solar energy in the region is more favorable in the summer than in the winter. The most significant advantages of lumber drying with a solar kiln are: (1) low percentage of drying defect lumber produced; (2) higher strength properties of lumber produced; (3) unlimited sources of heat energy from the sun are available. The longer drying periods with a solar kiln as compared to a conventional steam kiln can be overcome by utilizing a supplemental heat system, e.g., wood residue burner to shorten the drying period. However, some improvements and modification of the existing kiln should be done in order to increase the efficiency of the lumber drying system.

  10. Increase of Steam Moisture in the BWR-Facility KKP 1

    International Nuclear Information System (INIS)

    Noack, Volker

    2002-01-01

    Main steam moisture in a BWR facility is determined by steam quality at core outlet and efficiency of steam separators and steam dryers. Transport of water with steam is accompanied by transport of radionuclides out of RPV resulting in enhanced radiation level in the main steam system. A remarkable increase of main steam moisture started at KKP 1 in 1997. In the following years increase of steam outlet moisture started at lower and lower core mass flow rates. Dose rate in main steam system increased simultaneously. Core mass flow rate and thus thermal power had to be reduced during stretch out operation to keep the main steam moisture below the specified boundary of 0.2 %. This boundary also guarantees, that radiological exposure remains far below approved values. The increase of main steam moisture corresponds with the application of low leakage core loading. Low leakage core loading results in enhanced steam generation in the center and in reduced steam generation in the outer zones of the core. It can be shown, that the uneven steam generation in the core became stronger over the years. Therefore, steam quality at inlet of the outer steam separators was getting lower. This resulted in higher carry over of water in this steam separators and steam dryers, thus explaining the increasing main steam moisture. KKP 1 started in 2000 with spectral shift operation. As one should expect, this resulted in reduced steam moisture. It remains the question of steam moisture in case of stretch out operation. Countermeasures are briefly discussed. (authors)

  11. Thermal hydraulic studies in steam generator test facility

    International Nuclear Information System (INIS)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.

    2005-01-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m 3 /hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  12. Solar desalination system of combined solar still and humidification-dehumidification unit

    Science.gov (United States)

    Ghazy, Ahmed; Fath, Hassan E. S.

    2016-11-01

    Solar stills, as a simple technology, have many advantages such as simple design; unsophisticated fabrication; low capital and operation costs and easily maintained. However, their low daily production has put constraints on their usage. A radical improvement in the performance of solar stills can be achieved by the partial recovery of the energy losses from the glass cover of the still. This paper simulates a direct solar distillation system of combined solar still with an air heating humidification-dehumidification (HDH) sub-system. The main objective of the Still-HDH system is to improve the productivity and thermal efficiency of the conventional solar still by partially recovering the still energy losses to the ambient for additional water production. Various procedures have been employed to improve the thermal performance of the integrated system by recovering heat losses from one component in another component of the system. Simulations have been carried out for the performance of the Still-HDH system under different weather conditions. A comparison has been held between the Still-HDH system and a conventional solar still of the same size and under the same operating conditions.

  13. Wind and solar energy incentives in Iran

    International Nuclear Information System (INIS)

    Taleghani, G.; Kazemi Karegar, H.

    2006-01-01

    Incentive have yet been viewed as a means of supporting technological developments until a new technology becomes cost competitive wind based electricity is not jet generally competitive with alternate sources of electricity such as fossil fuels. This paper presents the potential for wind and solar in Iran and shows how much electric energy is now produced by renewable power plants compared to steam and gas. The importance of renewable energy effects on Iran environment and economy is also discussed and the issue of the contribution of renewable energy for producing electricity in the future will be shown. Also this paper highlights the ability of Iran to manufacture the components of the wind turbine and solar system locally, and its effect on the price of wind turbine and solar energy

  14. Digital simulation for nuclear once-through steam generators

    International Nuclear Information System (INIS)

    Chen, A.T.

    1976-01-01

    Mathematical models for calculating the dynamic response of the Oconee type once through steam generator (OTSG) and the integral economizer once through steam generator (IEOTSG) was developed and presented in this dissertation. Linear and nonlinear models of both steam generator types were formulated using the state variable, lumped parameter approach. Transient and frequency responses of system parameters were calculated for various perturbations from both the primary coolant side and the secondary side. Transients of key parameters, including primary outlet temperature, superheated steam outlet temperature, boiling length/subcooled length and steam pressure, were generated, compared and discussed for both steam generator types. Frequency responses of delta P/sub s//deltaT/sub pin/ of the linear OTSG model were validated by using the dynamic testing results obtained at the Oconee I nuclear power station. A sensitivity analysis in both the time and the frequency domains was performed. It was concluded that the mathematical and computer models developed in this dissertation for both the OTSG and the IEOTSG are suitable for overall plant performance evaluation and steam generator related component/system design analysis for nuclear plants using either type of steam generator

  15. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2007-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Unit 2 that will extend the in-service tile of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from he bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  16. Origins of Inner Solar Systems

    Science.gov (United States)

    Dawson, Rebekah Ilene

    2017-06-01

    Over the past couple decades, thousands of extra-solar planetshave been discovered orbiting other stars. The exoplanets discovered to date exhibit a wide variety of orbital and compositional properties; most are dramatically different from the planets in our own Solar System. Our classical theories for the origins of planetary systems were crafted to account for the Solar System and fail to account for the diversity of planets now known. We are working to establish a new blueprint for the origin of planetary systems and identify the key parameters of planet formation and evolution that establish the distribution of planetary properties observed today. The new blueprint must account for the properties of planets in inner solar systems, regions of planetary systems closer to their star than Earth’s separation from the Sun and home to most exoplanets detected to data. I present work combining simulations and theory with data analysis and statistics of observed planets to test theories of the origins of inner solars, including hot Jupiters, warm Jupiters, and tightly-packed systems of super-Earths. Ultimately a comprehensive blueprint for planetary systems will allow us to better situate discovered planets in the context of their system’s formation and evolution, important factors in whether the planets may harbor life.

  17. Adaptive, full-spectrum solar energy system

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  18. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  19. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  20. Determination of moisture content in steams and variation in moisture content with operating boiler level by analyzing sodium content in steam generator water and steam condensate of a nuclear power plant using ion chromatographic technique

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    Dry steam with moisture content less than <1% is the stringent requirements in a steam generator for good health of the turbine. In order to confirm the same, determination of sodium is done in steam generator water and steam condensate using Flame photometer in ppm level and ion chromatograph in ppb level. Depending on the carry over of sodium in steam along with the water droplet (moisture), the moisture content in steam was calculated and was found to be < 1% which is requirements of the system. The paper described the salient features of a PHWR, principle of Ion Chromatography, chemistry parameters of Steam Generators and calculation of moisture content in steam on the basis of sodium analysis. (author)

  1. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  2. Solar home systems in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Henryson, Jessica; Haakansson, Teresa

    1999-04-01

    Photovoltaic (PV) technology is a clean and environmentally friendly technology that does not require any fuels. The high reliability of operation and little need for maintenance makes it ideally suited for rural areas. Today PV systems are used in Nepal to power telecommunications centres, navigational aids, in pumping systems for irrigation and drinking water, and for household electrification. A solar home system consists of a PV module, a battery, a charge controller and 3-4 fluorescent light bulbs with fixture. The system provides power for lighting and operation of household appliances for several hours. The success of donor supported programs have shown that solar home systems can be a practical solution for many rural households. In 1996 the Government of Nepal launched a subsidy program for solar home systems, which dramatically has increased the demand for solar home systems among rural customers. This report includes a survey of 52 households with solar home systems in two villages. The field-study shows that the villagers are very happy with their systems and the technical performance of the systems in both villages is satisfactory. The study also shows the positive impact electricity has on education, health, income generation and quality of life. The beneficiaries of introducing electricity in remote areas are the children and the women 39 refs, 18 tabs. Examination paper

  3. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (6) Operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Yujiro; Abe, Yutaka; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2004-01-01

    One of the most interesting devices for next generation reactor systems aiming at simplified system and improvement of safety and credibility is the steam injector which is a passive pump without large motor or turbo-machinery. One of the applications of the steam injector is the passive water injection system to inject the coolant water into the core. The system can be started up merely by injecting the steam without any outer power supply. Since the steam injector is a simple, compact and passive device for water injection, if the steam injector is applied to the actual reactor, it is expected to make the system simple and to reduce the construction cost. Although non-condensable gases are well known for reducing heat transfer between water and steam, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper reports about the experimental apparatus, measurement instrument and experimental results of observing the phenomenon inside the test section supplying water and steam to the test by using both the high-speed camera and the video camera and measuring the temperature and the pressure distribution n the test section. (author)

  4. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  5. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  6. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2006-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Units 2 that will extend the in-service life of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from the bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  7. An Improved Steam Injection Model with the Consideration of Steam Override

    OpenAIRE

    He , Congge; Mu , Longxin; Fan , Zifei; Xu , Anzhu; Zeng , Baoquan; Ji , Zhongyuan; Han , Haishui

    2017-01-01

    International audience; The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, th...

  8. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  9. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.

    Science.gov (United States)

    Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng

    2018-01-23

    Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h -1 m -2 g -1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (solar thermal water purification system for a variety of environmental conditions.

  10. Origin of the solar system

    International Nuclear Information System (INIS)

    Hayashi, Chushiro; Nakazawa, Kiyoshi; Miyama, S.M.

    1989-01-01

    The study on the origin of the solar system entered a stage of synthetic and positivistic science around 1960, as the observation and the theory of protostars began to develop, the solar chemical composition became almost definite, and the amounts of chemical and mineralogical data greatly increased. In accordance with this scientific situation, the first research meeting in Japan on the origin of the solar system was held in 1965 at the Research Institute for Fundamental Physics, Kyoto University. It was discussed how a variety of the data on the solar system can be explained in a unified way. Since 1977, the workshop on the origin has been held annually. Through a series of the workshops, so-called Kyoto model has been talked and discussed frequently. For three years from 1985, the workshop in Kyoto was supported by the Ministry of Education, Science and Culture, and one of the main items of this grant was to publish the results of the workshop as the Supplement of the Progress of Theoretical Physics. The chronology of the solar system, the formation processes of protostars, the stability of solar nebulae, the physical processes in solar nebulae, the physical processes related to planetary growth, the growth of planets, and the formation of asteroids and meteorites are described in this book. (K.I.)

  11. Modeling and optimization of a utility system containing multiple extractions steam turbines

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2011-01-01

    Complex turbines with multiple controlled and/or uncontrolled extractions are popularly used in the processing industry and cogeneration plants to provide steam of different levels, electric power, and driving power. To characterize thermodynamic behavior under varying conditions, nonlinear mathematical models are developed based on energy balance, thermodynamic principles, and semi-empirical equations. First, the complex turbine is decomposed into several simple turbines from the controlled extraction stages and modeled in series. THM (The turbine hardware model) developing concept is applied to predict the isentropic efficiency of the decomposed simple turbines. Stodola's formulation is also used to simulate the uncontrolled extraction steam parameters. The thermodynamic properties of steam and water are regressed through linearization or piece-wise linearization. Second, comparison between the simulated results using the proposed model and the data in the working condition diagram provided by the manufacturer is conducted over a wide range of operations. The simulation results yield small deviation from the data in the working condition diagram where the maximum modeling error is 0.87% among the compared seven operation conditions. Last, the optimization model of a utility system containing multiple extraction turbines is established and a detailed case is analyzed. Compared with the conventional operation strategy, a maximum of 5.47% of the total operation cost is saved using the proposed optimization model. -- Highlights: → We develop a complete simulation model for steam turbine with multiple extractions. → We test the simulation model using the performance data of commercial turbines. → The simulation error of electric power generation is no more than 0.87%. → We establish a utility system operational optimization model. → The optimal industrial operation scheme featured with 5.47% of cost saving.

  12. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

  13. Steam turbine installations

    International Nuclear Information System (INIS)

    Bainbridge, A.

    1976-01-01

    The object of the arrangement described is to enable raising steam for driving steam turbines in a way suited to operating with liquid metals, such as Na, as heat transfer medium. A preheated water feed, in heat transfer relationship with the liquid metals, is passed through evaporator and superheater stages, and the superheated steam is supplied to the highest pressure stage of the steam turbine arrangement. Steam extracted intermediate the evaporator and superheater stages is employed to provide reheat for the lower pressure stage of the steam turbine. Only a major portion of the preheated water feed may be evaporated and this portion separated and supplied to the superheater stage. The feature of 'steam to steam' reheat avoids a second liquid metal heat transfer and hence represents a simplification. It also reduces the hazard associated with possible steam-liquid metal contact. (U.K.)

  14. PROFIL-360 high resolution steam generator tube profilometry system

    International Nuclear Information System (INIS)

    Glass, S.W.

    1985-01-01

    A high-resolution profilometry system, PROFIL 360, has been developed to assess the condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field, saving tubes that would have been plugged with the go-gauge criterion and indicating plugging other high-risk candidates that might otherwise not have been removed from service

  15. Profil-360 high resolution steam generator tube profilometry system

    International Nuclear Information System (INIS)

    Glass, S.W.

    1985-01-01

    A high-resolution profilometry system, PROFIL 360, has been developed to assess the condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field, saving tubes that would have been plugged with the go-gauge criterion and indicating plugging other high-risk candidates that might otherwise not have been removed from service

  16. Solar-energy drying systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Atul; Chen, C.R.; Vu Lan, Nguyen [Department of Mechanical Engineering, Kun Shan University, 949, Da-Wan Road, Yung-Kang City, Tainan Hsien 71003 (China)

    2009-08-15

    In many countries of the world, the use of solar thermal systems in the agricultural area to conserve vegetables, fruits, coffee and other crops has shown to be practical, economical and the responsible approach environmentally. Solar heating systems to dry food and other crops can improve the quality of the product, while reducing wasted produce and traditional fuels - thus improving the quality of life, however the availability of good information is lacking in many of the countries where solar food processing systems are most needed. Solar food dryers are available in a range of size and design and are used for drying various food products. It is found that various types of driers are available to suit the needs of farmers. Therefore, selection of dryers for a particular application is largely a decision based on what is available and the types of dryers currently used widely. A comprehensive review of the various designs, details of construction and operational principles of the wide variety of practically realized designs of solar-energy drying systems reported previously is presented. A systematic approach for the classification of solar-energy dryers has been evolved. Two generic groups of solar-energy dryers can be identified, viz. passive or natural-circulation solar-energy dryers and active or forced-convection solar-energy dryers. Some very recent developments in solar drying technology are highlighted. (author)

  17. Maintenance and repair of LMFBR steam generators

    International Nuclear Information System (INIS)

    Verriere, P.; Alanche, J.; Minguet, J.L.

    1984-06-01

    After some general remarks on the French fast neutron system, this paper presents the state of the program for the construction of fast reactor in France. Then, the general design of Super Phenix 1 steam generator components is outlined and, the in-service monitoring systems and protective devices with which they are equiped are briefly described. The methods used, in the event of leakage, for leak location, steam generator inspection, steam generator repair and putting the affected loop back into service, are discussed. There are two main lines of research, relating respectively to the means of water leak detection in sodium and the inspection arrangements that will be used either periodically, or following a sodium-water reaction. Finally, after a brief description of the steam generator, this paper describes the four incidents (leaks) that occurred on the Phenix steam generator in the course of 1982 and 1983, and the subsequent repair operations

  18. Design and performance of BWC replacement steam generators for PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100

  19. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  20. Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2012-10-01

    Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly the Industrial Technologies Program. AMO undertook this project as a series of sourcebook publications. Other topics in this series include: compressed air systems, pumping systems, fan systems, process heating and motor and drive systems. For more information about program resources, see AMO in the Where to Find Help section of this publication.

  1. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  2. Grid-connected distributed solar power systems

    Science.gov (United States)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  3. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 3rd International Conference on solar air-conditioning in Palermo (Italy) at 30th September to 2nd October, 2009 the following lectures were held: (1) Removal of non-technological barriers to solar cooling technology across Southern European islands (Stefano Rugginenti); (2) The added economic and environmental value of solar thermal systems in microgrids with combined heat and power (Chris Marney); (3) Australian solar cooling interest group (Paul Kohlenbach); (4) Designing of a technology roadmap for solar assisted air conditioning in Austria (Hilbert Focke); (5) Solar cooling in the new context of renewable policies at European level (Raffaele Piria); (6) Prototype of a solar driven steam jet ejector chiller (Clemens Pollerberg); (7) New integrated solar air conditioning system (Joan Carlos Bruno); (8) Primary energy optimised operation of solar driven desiccant evaporative cooling systems through innovative control strategies; (9) Green chiller association (Uli Jakob); (10) Climate Well {sup registered} (Olof Hallstrom); (11) Low capacity absorption chillers for solar cooling applications (Gregor Weidner); (12) Solar cooling in residential, small scale commercial and industrial applications with adsorption technology (Walter Mittelbach); (13) French solar heating and cooling development programme based on energy performance (Daniel Mugnier); (14) Mirrox fresnel process heat collectors for industrial applications and solar cooling (Christian Zahler); (15) Modelling and analyzing solar cooling systems in polysun (Seyen Hossein Rezaei); (16) Solar cooling application in Valle Susa Italy (Sufia Jung); (17) Virtual case study on small solar cooling systems within the SolarCombi+Project (Bjoern Nienborg); (18) Design of solar cooling plants under uncertainty (Fernando Dominguez-Munoz); (19) Fast pre-design of systems using solar thermally driven chillers (Hans-Martin Henning); (20) Design of a high fraction solar heating and cooling plant in southern

  4. Isotopic ratios in the solar system

    International Nuclear Information System (INIS)

    1985-01-01

    This colloquium is aimed at presentation of isotope ratio measurements in different objects of solar system and surrounding interstellar space and evaluation of what information on composition and structure of primitive solar nebula and on chemical evolution of interstellar space in this part of the galaxy can be deduced from it. Isotope ratio in solar system got from laboratory study of extraterrestrial materials is a subject of this colloquium. Then isotope ratio measured in solar wind, planets and comets. Measurements either are made in-situ by mass spectrometry of ions in solar wind or planetery atmosphere gases either are remote measurements of spectra emitted by giant planets and comets. At last, planetology and astrophysics implications are presented and reviewed. Consraints for solar system formation model can be deduced from isotope ratio measurement. Particularly, isotope anomalies are marks of the processes, which have influenced the primitive solar nebula contraction [fr

  5. Dynamics of the solar system

    International Nuclear Information System (INIS)

    Sidlichovsky, M.

    1987-01-01

    The conference proceedings contains a total of 31 papers of which 7 have not been incorporated in INIS. The papers mainly discuss the mathematical methods of calculating the movement of planets, their satellites and asteroids in the solar system and the mathematical modelling of the past development of the solar system. Great attention is also devoted to resonance in the solar system and to the study of many celestial bodies. Four papers are devoted to planetary rings and three to modern astrometry. (M.D.). 63 figs., 10 tabs., 520 refs

  6. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive leading...

  7. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  8. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  9. Availability of steam generator against thermal disturbance of hydrogen production system coupled to HTGR

    International Nuclear Information System (INIS)

    Shibata, Taiju; Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Shusaku

    1996-01-01

    One of the safety issues to couple a hydrogen production system to an HTGR is how the reactor coolability can be maintained against anticipated abnormal reduction of heat removal (thermal disturbance) of the hydrogen production system. Since such a thermal disturbance is thought to frequently occur, it is desired against the thermal disturbance to keep reactor coolability by means other than reactor scram. Also, it is thought that the development of a passive cooling system for such a thermal disturbance will be necessary from a public acceptance point of view in a future HTGR-hydrogen production system. We propose a SG as the passive cooling system which can keep the reactor coolability during a thermal disturbance of a hydrogen production system. This paper describes the proposed steam generator (SG) for the HTGR-hydrogen production system and a result of transient thermal-hydraulic analysis of the total system, showing availability of the SG against a thermal disturbance of the hydrogen production system in case of the HTTR-steam reforming hydrogen production system. (author)

  10. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  11. Optimal sampling period of the digital control system for the nuclear power plant steam generator water level control

    International Nuclear Information System (INIS)

    Hur, Woo Sung; Seong, Poong Hyun

    1995-01-01

    A great effort has been made to improve the nuclear plant control system by use of digital technologies and a long term schedule for the control system upgrade has been prepared with an aim to implementation in the next generation nuclear plants. In case of digital control system, it is important to decide the sampling period for analysis and design of the system, because the performance and the stability of a digital control system depend on the value of the sampling period of the digital control system. There is, however, currently no systematic method used universally for determining the sampling period of the digital control system. Generally, a traditional way to select the sampling frequency is to use 20 to 30 times the bandwidth of the analog control system which has the same system configuration and parameters as the digital one. In this paper, a new method to select the sampling period is suggested which takes into account of the performance as well as the stability of the digital control system. By use of the Irving's model steam generator, the optimal sampling period of an assumptive digital control system for steam generator level control is estimated and is actually verified in the digital control simulation system for Kori-2 nuclear power plant steam generator level control. Consequently, we conclude the optimal sampling period of the digital control system for Kori-2 nuclear power plant steam generator level control is 1 second for all power ranges. 7 figs., 3 tabs., 8 refs. (Author)

  12. Digital control system of a steam generator water level by LQG optimal method

    International Nuclear Information System (INIS)

    Lee, Yoon Joon

    1993-01-01

    A digital control system for the steam generator water level control is developed using LQG optimal design method. To describe the more realistic situaton, a feedwater valve actuator is assumed to be of the first order lagger and is included in the overall control system. By composing the digital control circuit in such a way that the overall control system consists of two sub-systems of feedwater station and feedback loop digital controller, the design procedure is divided into two independent steps. The feedwater station system is described in the error dynamics of an ordinary regulator system. The optimal gains are obtained by LQ method which imposes the constraints of the feedwater valve motion as well as on the output deviations. Developed also is a Kalman observer on account of the flow measurement uncertainty at low power. Then a digital controller on the feedback loop is designed so that the system maintains the same stability margins for all power ranges. The simulation results show thst the optimal digital system has a good control characteristics despite the adverse dynamics of a steam generator at low power. (Author)

  13. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  14. Future aspects for liquid metal heated steam generators

    International Nuclear Information System (INIS)

    Jansing, W.; Ratzel, W.; Vinzens, K.

    1975-01-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  15. Future aspects for liquid metal heated steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Jansing, W; Ratzel, W; Vinzens, K

    1975-07-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  16. The solar system in close-up

    CERN Document Server

    Wilkinson, John

    2016-01-01

    In response to the new information gained about the Solar System from recent space probes and space telescopes, the experienced science author Dr. John Wilkinson presents the state-of-the art knowledge on the Sun, solar system planets and small solar system objects like comets and asteroids. He also describes space missions like the New Horizon’s space probe that provided never seen before pictures of the Pluto system; the Dawn space probe, having just visited the asteroid Vesta, and the dwarf planet Ceres; and the Rosetta probe inorbit around comet 67P/Churyumov–Gerasimenko that has sent extraordinary and most exciting pictures. Those and a number of other probes are also changing our understanding of the solar system and providing a wealth of new up close photos. This book will cover all these missions and discuss observed surface features of planets and moons like their compositions, geisers, aurorae, lightning phenomena etc. Presenting the fascinating aspects of solar system astronomy this book is a c...

  17. Acoustic detection for water/steam leak from a tube of LMFBR steam generator

    International Nuclear Information System (INIS)

    Sonoda, Masataka; Shindo, Yoshihisa

    1989-01-01

    Acoustic leak detector is useful for detecting more quickly intermediate leak than the existing hydrogen detector and is available for identification of leak location on the accident of water/steam leak from a tube of LMFBR steam generator. This paper presents the overview of HALD (High frequency Acoustics Leak Detection) system, which is more sensitive for leak detection and lower cost of equipment for identification of leak location than a low frequency type detector. (author)

  18. Reuniting the Solar System: Integrated Education and Public Outreach Projects for Solar System Exploration Missions and Programs

    Science.gov (United States)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Klug, Sheri

    2003-01-01

    The Solar System Exploration Education Forum has worked for five years to foster Education and Public Outreach (E/PO) cooperation among missions and programs in order to leverage resources and better meet the needs of educators and the public. These efforts are coming together in a number of programs and products and in '2004 - The Year of the Solar System.' NASA's practice of having independent E/PO programs for each mission and its public affairs emphasis on uniqueness has led to a public perception of a fragmented solar system exploration program. By working to integrate solar system E/PO, the breadth and depth of the solar system exploration program is revealed. When emphasis is put on what missions have in common, as well as their differences, each mission is seen in the context of the whole program.

  19. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  20. Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO_2 Brayton cycles and MEE-TVC desalination system

    International Nuclear Information System (INIS)

    Kouta, Amine; Al-Sulaiman, Fahad; Atif, Maimoon; Marshad, Saud Bin

    2016-01-01

    Highlights: • The entropy, exergy, and cost analyses for two solar cogeneration configurations are conducted. • The recompression cogeneration cycle achieves lower LCOE as compared to the regeneration cogeneration cycle. • The solar tower is the largest contributor to entropy generation in both configurations reaching almost 80%. • The specific entropy generation in the MEE-TVC decreases with decreasing the fraction. - Abstract: In this study, performance and cost analyses are conducted for a solar power tower integrated with supercritical CO_2 (sCO_2) Brayton cycles for power production and a multiple effect evaporation with a thermal vapor compression (MEE-TVC) desalination system for water production. The study is performed for two configurations based on two different supercritical cycles: the regeneration and recompression sCO_2 Brayton cycles. A two-tank molten salt storage is utilized to ensure a uniform operation throughout the day. From the entropy analysis, it was shown that the solar tower is the largest contributor to entropy generation in both configurations, reaching almost 80% from the total entropy generation, followed by the MEE-TVC desalination system, and the sCO_2 power cycle. The entropy generation in the two-tank thermal storage is negligible, around 0.3% from the total generation. In the MEE-TVC system the highest contributing component is the steam jet ejector, which is varying between 50% and 60% for different number of effects. The specific entropy generation in the MEE-TVC decreases as the fraction of the input heat to the desalination system decreases; while the specific entropy generation of the sCO_2 cycle remains constant. The cost analysis performed for different regions in Saudi Arabia and the findings reveal that the regions characterized by the highest average solar irradiation throughout the year have the lowest LCOE and LCOW values. The region achieving the lowest cost is Yanbu, followed by Khabt Al-Ghusn in the second

  1. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  2. Future development of large steam turbines

    International Nuclear Information System (INIS)

    Chevance, A.

    1975-01-01

    An attempt is made to forecast the future of the large steam turbines till 1985. Three parameters affect the development of large turbines: 1) unit output; and a 2000 to 2500MW output may be scheduled; 2) steam quality: and two steam qualities may be considered: medium pressure saturated or slightly overheated steam (light water, heavy water); light enthalpie drop, high pressure steam, high temperature; high enthalpic drop; and 3) the quality of cooling supply. The largest range to be considered might be: open system cooling for sea-sites; humid tower cooling and dry tower cooling. Bi-fluid cooling cycles should be also mentioned. From the study of these influencing factors, it appears that the constructor, for an output of about 2500MW should have at his disposal the followings: two construction technologies for inlet parts and for high and intermediate pressure parts corresponding to both steam qualities; exhaust sections suitable for the different qualities of cooling supply. The two construction technologies with the two steam qualities already exist and involve no major developments. But, the exhaust section sets the question of rotational speed [fr

  3. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  4. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  5. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Drury, E.; Margolis, R.

    2009-09-01

    The Solar Deployment System (SolarDS) model is a bottom-up, market penetration model that simulates the potential adoption of photovoltaics (PV) on residential and commercial rooftops in the continental United States through 2030. NREL developed SolarDS to examine the market competitiveness of PV based on regional solar resources, capital costs, electricity prices, utility rate structures, and federal and local incentives. The model uses the projected financial performance of PV systems to simulate PV adoption for building types and regions then aggregates adoption to state and national levels. The main components of SolarDS include a PV performance simulator, a PV annual revenue calculator, a PV financial performance calculator, a PV market share calculator, and a regional aggregator. The model simulates a variety of installed PV capacity for a range of user-specified input parameters. PV market penetration levels from 15 to 193 GW by 2030 were simulated in preliminary model runs. SolarDS results are primarily driven by three model assumptions: (1) future PV cost reductions, (2) the maximum PV market share assumed for systems with given financial performance, and (3) PV financing parameters and policy-driven assumptions, such as the possible future cost of carbon emissions.

  6. Infrared technique for measuring steam density

    International Nuclear Information System (INIS)

    Snyder, S.C.; Baker, A.G.

    1982-01-01

    A prototype infrared steam densitometer using a two-wavelength, dual-beam technique was developed. Tests were performed on dry steam flows with this technique, which uses two narrow bandwidths of infrared light in the region of 0.9 to 3.0 μm. One wavelength is absorbed by steam, while the other is not. The latter wavelength is used to account for nonabsorptive light losses. In addition to the beam that traverses the steam flow, a reference beam that does not traverse the flow allows the light source to be monitored. The theory of the device is presented, along with a description of the components and of the system's operation. Test results are also presented

  7. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  8. Solar-hydrogen energy systems: an authoritative review of water-splitting systems by solar beam and solar heat : hydrogen production, storage, and utilisation

    National Research Council Canada - National Science Library

    Ōta, Tokio

    1979-01-01

    ... An Authoritative Review of Watersplitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilisation edited by TOKIO OHTA Professor of Materials Science and Energy System Yoko...

  9. Avoiding steam-bubble-collapse-induced water hammers in piping systems

    International Nuclear Information System (INIS)

    Chou, Y.; Griffith, P.

    1989-10-01

    In terms of the frequency of occurrence, steam bubble collapse in subcooled water is the dominant initiating mechanism for water hammer events in nuclear power plants. Water hammer due to steam bubble collapse occurs when water slug forms in stratified horizontal flow, or when steam bubble is trapped at the end of the pipe. These types of water hammer events have been studied experimentally and analytically in order to develop stability maps showing those combinations of filling velocities and liquid subcooling that cause water hammer and those which don't. In developing the stability maps, experiments with different piping orientations were performed in a low pressure laboratory apparatus. Details of these experiments are described, including piping arrangement, test procedures, and test results. Visual tests using a transparent Lexan pipe are also performed to study the flow regimes accompanying the water hammer events. All analytical models were tested by comparison with the corresponding experimental results. Based on these models, and step-by-step approach for each flow geometry is presented for plant designers and engineers to follow in avoiding water hammer induced by steam bubble collapse when admitting cold water into pipes filled with steam. 37 refs., 54 figs., 2 tabs

  10. Application of solar concentrators for combined production of hydrogen and electrical energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    New specific concept is application of solar dish concentrators in a process which allows solar energy to be used for splitting water in hydrogen and oxygen, with electrical energy as a byproduct. This is performed in two stages: The first stage uses highly concentrated solar energy to split CO 2 Into CO and O 2 . The second stage uses water-gas shifts reaction to cause the CO to react with water and produced hydrogen and CO 2 , Carbon dioxide is then recycled back into the system, and the waste heat is used to produce electricity in a steam turbine, Efficiency of the process is 45% , totaling 20% in chemical energy (H 2 ), and 25% electricity. This solar system is 80% more efficient than other solar technologies which make energy much cheaper. The environmentally friendly and low cost hydrogen can become a prime mover of fuel cell development especially in automotive application. (Author)

  11. Solar cooling systems. Classification and energetic evaluation; Solare Kuehlsysteme. Klassifizierung und energetische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Jakob [Technische Univ. Bergakademie Freiberg (Germany); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway); Eikevik, Trygve M. [NTNU, Trondheim (Norway)

    2012-07-01

    The investigation of alternative, sustainable concepts for cold production is worthwhile in times of increasing energy demand for cooling and air conditioning applications. Energy sources such as solar radiation can help to reduce the burden on the environment and energy networks. Solar electricity from photovoltaic cells or solar power from solar collectors can be used in refrigerating equipment (such as cold vapor compression chiller, absorption chiller, adsorption chillers, open systems, thermo-mechanical systems or ejector-based systems) are fed in order to produce the desired coldness. In many cases, the temporal coincidence of radiation supply and cooling requirements makes the solar cooling to a promising concept, especially at sites with a high solar radiation, large cooling demand, high energy prices, or insufficient access to public power grids. A model-based investigation of different solar cooling systems with an equivalent cooling capacity was carried out. The results show that the performance potential strongly depends on the selected technology and the site of the system. A balanced daily energy balance can be achieved with an appropriately dimensioned solar power plant with cooling concept. Depending on the system and interpretation, primary energy savings or a primary energy overhead can be achieved within a year in comparison to a conventional system.

  12. Simulation of a main steam line break with steam generator tube rupture using trace

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia (Spain)

    2012-07-01

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation of the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)

  13. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  14. ATU/Fort Hood Solar Total Energy Military Large-Scale Experiment (LSE-1): system design and support activities. Final report, November 23, 1976-November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ATU/Fort Hood Solar Total Energy System will include a concentrating solar collector field of several acres. During periods of direct insolation, a heat-transfer fluid will be circulated through the collector field and thus heated to 500 to 600/sup 0/F. Some of the fluid will be circulated through a steam generator to drive a turbine-generator set; additional fluid will be stored in insulated tanks for use when solar energy is not available. The electrical output will satisfy a portion of the electrical load at Fort Hood's 87,000 Troop Housing Complex. Heat extracted from the turbine exhaust in the form of hot water will be used for space heating, absorption air conditioning, and domestic water heating at the 87,000 Complex. Storage tanks for the hot water are also included. The systems analysis and program support activities include studies of solar availability and energy requirements at Fort Hood, investigation of interfacing LSE-1 with existing energy systems at the 87,000 Complex, and preliminary studies of environmental, health, and safety considerations. An extensive survey of available concentrating solar collectors and modifications to a computerized system simulation model for LSE-1 use are also reported. Important program support activities are military liaison and information dissemination. The engineering test program reported involved completion of the Solar Engineering Test Module (SETM) and extensive performance testing of a single module of the linear-focusing collector.

  15. Chaos in the Solar System

    Science.gov (United States)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  16. Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Jaegtnes, K.O.; Braytenbah, A.S.

    1979-01-01

    In accordance with the present invention, a power plant includes a steam source to generate superheat and reheat steam which flows through a turbine-generator and an associated bypass system. A high-pressure and an intermediate-pressure turbine portion drive a first electrical generating means, and a low-pressure turbine portion drives a second electrical generating means. A first flow of superheat steam flows through the high-pressure portion, while a second flow of reheat steam flows through the intermediate and low-pressure portions in succession. Provision is made for bypassing steam around the turbine portions; in particular, one bypass means permits a flow of superheat steam from the steam source to the exhaust of the high-pressure portion, and another bypass means allows reheated steam to pass from the source to the exhaust of the low-pressure portion. The first and second steam flows are governed independently. While one of such flows is varied for purposes of controlling the rotational speed of the first generating means according to a desired speed, the other flow is varied to regulate a power plant variable at its desired level. (author)

  17. Views of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  18. In-service diagnostic systems of steam generators, pressurizers and other components of WWER type nuclear power plants

    International Nuclear Information System (INIS)

    Matal, O.

    1988-01-01

    A detailed description is presented of the systems of vibration inspections and systems of determining residual service life, implemented as in-service diagnostic systems for steam generators and pressurizers at the Dukovany nuclear power plant. Low temperature accelerometers of the KD or KS type and high temperature accelerometers CA 91 are used as vibration sensors. In the system of vibration inspection a total of 64 vibration measuring chains of Czechoslovak make and design are installed in the power plant. Systems are being built for determining residual service life which consist of 75 special chains for heat monitoring with thermocouples installed on selected assemblies of the steam generators and the pressurizers serving to monitor and evaluate heat stress. Also included in the system for determining residual service life are 16 routes for water withdrawal from steam generators. Their purpose is to make in-service determinations of places of biggest concentrations of impurities in secondary water, to determine the biggest local chemical exposure of primary collector and heat exchange tube materials and to optimize the size and place of leachate withdrawal. (Z.M.). 2 figs., 2 tabs., 15 refs

  19. Multipurpose expert-robot system model for control, diagnosis, maintenance, and repairs at the steam generators of the NPP

    International Nuclear Information System (INIS)

    Popa, I.

    1994-01-01

    The paper presents the model concept for a multipurpose expert-robot system for control, diagnosis, forecast, maintenance, and repairs at the steam generators of CANDU type nuclear power plants. The system has two separate parts: the expert system and the robot (manipulator) system. These parts compose a hierarchic structure with the expert system on the upper level. The expert system has a blackboard architecture, to which tree interfaces with the robot system, with the control system of the NPP and with the methods and techniques of control, maintenance and repairs system of the steam generator are added. Due to complex nature of its activities the expert-robot system model combines the deterministic type reasons with probabilistic, fuzzy, and neural-networks type ones. The information that enter the expert system comes from the robot system, from process, from user, and human expert. The information that enter robot system comes from the expert system, from the human operator (when connected) and from process. Control maintenance and repair operations take place by means of the robot system that can be monitored either directly by the expert system or by the human operator who follows its activity. All these activities are performed in parallel with the adequate information of the expert system directly, by the human operator, about the status parameters and, possibly, operating parameters of the steam generator components. The expert-robot system can work independently, but it can be connected and integrated in the control system of NPP, to take over and develop some of its functions. The activities concerning diagnosis and characterization of the state of steam generator components subsequent to control, as well as the forecast of their future behavior, are performed by means of the expert system. Due to these characteristics the expert-robot system can be used successfully in personnel training activities. (Author)

  20. Dynamic simulation of steam generator failures

    Energy Technology Data Exchange (ETDEWEB)

    Meister, G [Institut fuer Nukleare Sicherheitsforschung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)

    1988-07-01

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  1. Dynamic simulation of steam generator failures

    International Nuclear Information System (INIS)

    Meister, G.

    1988-01-01

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  2. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  3. Steam line break analysis in CAREM-25 reactor

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo O.; Vertullo, Alicia; Schlamp, Miguel A.; Garcia, Alicia E.

    2000-01-01

    The main objective of this report is to analyze the reactor response during a steam line break postulated accident with RELAP5, a plant code using a separated flow model. The steam line break caused a rapid blowdown of the secondary coolant increasing the heat removal in the steam generator. As a consequence and due to reactor features the core power is also increased. As maximum removed power in the secondary side is highly dependant on the total water volume evaporated during the accident a detailed model of feed water and outlet steam pipes is provided. Different cases are analyzed with and without feedwater system and considering the fail or success of the First Shutdown System. In all the sequences the DNBR and CPR remain above the minimum safety values established by design. Further calculations concerning depressurization ramps and steam generator feed water pumps response during depressurization are advised. (author)

  4. Steam Line Break Analysis in CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Vertullo, Alicia; Garcia, A; Schlamp, Miguel

    2000-01-01

    The main objective of this report is to analyze the reactor response during a steam line break postulated accident with RELAP5, a plant code using a separated flow model.The steam line break caused a rapid blowdown of the secondary coolant increasing the heat removal in the steam generator.As a consequence and due to reactor features the core power is also increased.As maximum removed power in the secondary side is highly dependant on the total water volume evaporated during the accident a detailed model of feed water and outlet steam pipes is provided.Different cases are analyzed with and without feedwater system and considering the fail or success of the First Shutdown System.In all the sequences the DNBR and CPR remain above the minimum safety values established by design.Further calculations concerning depressurization ramps and steam generator feed water pumps response during depressurization are advised

  5. Leak detection in Phenix and Super Phenix steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E [Centre d' Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1978-10-01

    Water leak detection Phenix and Super Phenix steam generators is based on measurement of the hydrogen produced by the reaction of sodium with water. The hydrogen evolves in the sodium in which the steam generator tubes are completely immersed. Depending on service conditions, however (sodium temperature and flow velocity), the hydrogen may appear in the argon existing above the free levels. This is why, although the Phenix steam generators do not feature free levels, measurement systems were added to measure the hydrogen concentration in the argon in the expansion tanks. Super Phenix steam generators are fitted at their outlet with systems for measuring hydrogen in the sodium, and above their free level with a system for measuring hydrogen in the argon. The measurement systems have nickel tube probes connected to circuits kept under vacuum by an ion pump. The hydrogen partial pressure is measured by a mass spectrometer. Super Phenix measurement systems differ from Phenix systems essentially in the temperature regulation of the sodium reaching the nickel tube probes, and in the centralization of the supply and measurement systems of the ion pumps and mass spectrometers. This paper deals with description, calibration and operating conditions of the hydrogen detection systems in sodium and argon in Phenix and Super Phenix steam generators. (author)

  6. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  7. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  8. Review of steam jet condensation in a water pool

    International Nuclear Information System (INIS)

    Kim, Y. S.; Song, C. H.; Park, C. K.; Kang, H. S.; Jeon, H. G.; Yoon, Y. J.

    2002-01-01

    In the advanced nuclear power plants including APR1400, the SDVS is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW, the POSRV located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow

  9. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  10. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  11. Study of ex-vessel steam explosion risk of Reactor Pit Flooding System and structural response of containment for CPR1000"+ Unit

    International Nuclear Information System (INIS)

    Zhang Juanhua; Chen Peng

    2015-01-01

    Reactor Pit Flooding System is one of the special mitigation measures for severe accident for CPR1000"+ Unit. If the In-Vessel Relocation function of Reactor Pit Flooding System is failed, there is the steam explosion risk in reactor cavity. This paper firstly adopts MC3D code to build steam explosion model in order to calculate the pressure load and impulses of steam explosion that are as the input data of containment structural response analysis. The next step is to model the containment structure and analyze the structural response by ABAQUS code. The analysis results show that the integral damage induced by steam explosion to the external containment wall is shallow, and the containment structural integrity can be maintained. The risk and damage to the containment integrity reduced by steam explosion of RPF is small, and it does not influence the design and implementation of RPF. (author)

  12. Performance evaluation of a flow-down collecting solar system; Ryuka shunetsushiki solar system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Li, X; Baba, H; Endo, N [Kitami Institute of Technology, (Japan)

    1997-11-25

    The paper evaluated performance of a flow-down collecting solar system. The solar heat pump PV system is composed of a solar system, heat pump and PV, of which the heat collecting portion is a water-use horizontal evacuated double glass tube solar collector. As a result of the performance measurement, the necessity of fundamental improvement arose. Under an idea of disproving common sense of the original forced circulation solar system, a system was designed in which heat is collected by making the heat media reversely circulate and flow down in accordance with gravity. When the flow rate was 2m{sup 3}/h, the collecting rate reached a maximum, approximately 54% (36.9% before improvement). When the flow rate was 1.3-1.5m{sup 3}/h, the system can realize the maximum merit, and the collecting efficiency became approximately 50%. Helped by reduction in consumed power, the average system performance coefficient reached more than 85% (28.9% before improvement). The obtainable energy rate rapidly increased to 2.9 times more than before improvement. Further, the consumed power of pump was decreased 65% from before improvement when the flow rate was 2.4m{sup 3}/h. 2 refs., 5 figs.

  13. Feasibility and application on steam injector for next-generation reactor

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Ishiyama, Takenori; Miyano, Hiroshi; Nei, Hiromichi; Shioiri, Akio

    1991-01-01

    A feasibility study has been conducted on steam injector for a next generation reactor. The steam injector is a simple, compact passive device for water injection, such as Passive Core Injection System (PCIS) of Passive Containment Cooling System (PCCS), because of easy start-up without an AC power. An analysis model for a steam injector characteristics has been developed, and investigated with a visualized fundamental test for a two-stage Steam Injector System (SIS) for PCIS and a one-stage low pressure SIS for PCCS. The test results showed good agreement with the analysis results. The analysis and the test results showed the SIS could work over a very wide range of the steam pressure, and is applicable for PCIS or PCCS in the next generation reactors. (author)

  14. LMR steam generator blowdown with RETRAN

    International Nuclear Information System (INIS)

    Wei, T.Y.C.

    1985-01-01

    One of the transients being considered in the FSAR Chapter 15 analyses of anticipated LMR transients is the fast blowdown of a steam generator upon inadvertent actuation of the liquid metal/water reaction mitigation system. For the blowdown analysis, a stand-alone steam generator model for the IFR plant was constructed using RETRAN

  15. Origin of the solar system

    International Nuclear Information System (INIS)

    Nakazawa, Kiyoshi; Nakagawa, Yoshitsugu

    1982-01-01

    Many studies on the origin of the solar system have so far been made until now. These are divided into three categories; Cameron's model, Safronov's model and Kyoto model. In Cameron's model, as an initial stage of the formation of the solar system, a massive solar nebula is assumed whose mass is as large as one solar mass. This solar nebula is unstable against gravitational fragmentation, which leads to massive gaseous protoplanets. On the other hand, in both models of Safronov and us, the mass of the nebula is of the order of a few percent of the solar mass or less. However, a significant difference between Safronov's and ours lies in the continuing accumulation process of planetesimals; in the former, the accumulation is assumed to proceed in a gas-free space, but in the latter, the gas drag effect of the solar nebula is fully taken into account on the planetary growth. In this paper, the scenario of Kyoto model is reviewed, which has been developed by Hayashi and his co-workers in Kyoto group for these ten years. We will see that the gas of the solar nebula has played extensively important roles on the various stages of the planetary formation. (author)

  16. Steam drums

    International Nuclear Information System (INIS)

    Crowder, R.

    1978-01-01

    Steam drums are described that are suitable for use in steam generating heavy water reactor power stations. They receive a steam/water mixture via riser headers from the reactor core and provide by means of separators and driers steam with typically 0.5% moisture content for driving turbines. The drums are constructed as prestressed concrete pressure vessels in which the failure of one or a few of the prestressing elements does not significantly affect the overall strength of the structure. The concrete also acts as a radiation shield. (U.K.)

  17. Regulation of ageing steam generators

    International Nuclear Information System (INIS)

    Jarman, B.L.; Grant, I.M.; Garg, R.

    1998-01-01

    Recent years have seen leaks and shutdowns of Canadian CANDU plants due to steam generator tube degradation by mechanisms including stress corrosion cracking, fretting and pitting. Failure of a single steam generator tube, or even a few tubes, would not be a serious safety related event in a CANDU reactor. The leakage from a ruptured tube is within the makeup capacity of the primary heat transport system, so that as long as the operator takes the correct actions, the off-site consequences will be negligible. However, assurance that no tubes deteriorate to the point where their integrity could be seriously breached as result of potential accidents, and that any leakage caused by such an accident will be small enough to be inconsequential, can only be obtained through detailed monitoring and management of steam generator condition. This paper presents the AECB's current approach and future regulatory directions regarding ageing steam generators. (author)

  18. CRBRP steam-generator design evolution

    International Nuclear Information System (INIS)

    Geiger, W.R.; Gillett, J.E.; Lagally, H.O.

    1983-01-01

    The overall design of the CRBRP Steam Generator is briefly discussed. Two areas of particular concern are highlighted and considerations leading to the final design are detailed. Differential thermal expansion between the shell and the steam tubes is accommodated by the tubes flexing in the curved section of the shell. Support of the tubes by the internals structure is essential to permit free movement and minimize tube wear. Special spacer plate attachment and tube hole geometry promote unimpeded axial movement of the tubes by allowing individual tubes to rotate laterally and by providing lateral movement of the spacer plates relative to the adjacent support structure. The water/steam heads of the CRBRP Steam Generator are spherical heads welded to the lower and upper tubesheets. They were chosen principally because they provide a positively sealed system and result in more favorable stresses in the tubesheets when compared to mechanically attached steamheads

  19. Water box for steam generator

    International Nuclear Information System (INIS)

    Lecomte, Robert; Viaud, Michel.

    1975-01-01

    This invention relates to a water box for connecting an assembly composed of a vertical steam generator and a vertical pump to the vessel of the nuclear reactor, the assembly forming the primary cooling system of a pressurised water reactor. This invention makes it easy to dismantle the pump on the water box without significant loss of water in the primary cooling system of the reactor and particularly without it being necessary to drain the water contained in the steam generator beforehand. It makes it possible to shorten the time required for dismantling the primary pump in order to service or repair it and makes dismantling safer in that the dismantling does not involve draining the steam generator and therefore the critical storage of a large amount of cooling water that has been in contact with the fuel assemblies of the nuclear reactor core [fr

  20. Chemical control and design considerations for CANDU-PHW steam generators

    International Nuclear Information System (INIS)

    Frost, C.R.; Churchill, B.R.

    1978-01-01

    Ontario Hydro presently operates eight nuclear power units with a total capacitiy of about 4000 MW(e) net. Operating experience has been with Monel-400 and with Inconel-600 tubed steam generators using sodium phosphate or all volatile control of the boiler steam and water system. With a heavy water Heat Transport System, steam generator tube integrity is an essential ingredient of economical power production. Only three steam generator tube failures have occurred so far in about 40 unit-years operation. None was attributable to corrosion. Factors in the good reliability are, careful engineering design, good quality control at all stages of tubing and steam generator manufacture and close chemical control. The continuing evolution of our steam generator design means that future requirements will be more stringent. (author)

  1. Organic-inorganic hybrid nanostructured materials for photovoltaics and solar fuels

    NARCIS (Netherlands)

    Lai, Lai-Hung

    2016-01-01

    The hydrogen economy aiming to use hydrogen as a new potential fuel for motive power has been proposed as a promising model for this century. However, until now most of the H2 in use still comes from steam reforming which produces H2 via steam reaction at high temperature with fossil fuel. Solar

  2. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH 4 +H 2 O = 3H 2 +CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm 3 /h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  3. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path.

    Science.gov (United States)

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-12-06

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.

  4. Cleaning device for steam units in a nuclear power plant

    International Nuclear Information System (INIS)

    Sasamuro, Takemi.

    1978-01-01

    Purpose: To prevent radioactive contamination upon dismantling and inspection of steam units such as a turbine to a building containing such units and the peripheral area. Constitution: A steam generator indirectly heated by steam supplied from steam generating source in a separate system containing no radioactivity is provided to produce cleaning steam. A cleaning steam pipe is connected by way of a stop valve between separation valve of a nuclear power plant steam pipe and a high pressure turbine. Upon cleaning, the separation valve is closed, and steam supplied from the cleaning steam pipe is flown into a condenser. The water thus condensated is returned by way of a feed water heater and a condenser to a water storage tank. (Nakamura, S.)

  5. Digitization and simulation realization of full range control system for steam generator water level

    International Nuclear Information System (INIS)

    Qian Hong; Ye Jianhua; Qian Fei; Li Chao

    2010-01-01

    In this paper, a full range digital control system for the steam generator water level is designed by a control scheme of single element control and three-element cascade feed-forward control, and the method to use the software module configuration is proposed to realize the water level control strategy. This control strategy is then applied in the operation of the nuclear power simulation machine. The simulation result curves indicate that the steam generator water level maintains constant at the stable operation condition, and when the load changes, the water level changes but finally maintains the constant. (authors)

  6. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  7. 24 CFR 203.18a - Solar energy system.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  8. Exergy Steam Drying and Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prem; Muenter, Claes (Exergy Engineering and Consulting, SE-417 55 Goeteborg (Sweden)). e-mail: verma@exergyse.com

    2008-10-15

    Exergy Steam Drying technology has existed for past 28 years and many new applications have been developed during this period. But during past few years the real benefits have been exploited in connection with bio-fuel production and energy integration. The steam dryer consists of a closed loop system, where the product is conveyed by superheated and pressurised carrier steam. The carrier steam is generated by the water vapours from the product being dried, and is indirectly superheated by another higher temperature energy source such as steam, flue gas, thermal oil etc. Besides the superior heat transfer advantages of using pressurised steam as a drying medium, the energy recovery is efficient and simple as the recovered energy (80-90%) is available in the form of steam. In some applications the product quality is significantly improved. Examples presented in this paper: Bio-Combine for pellets production: Through integration of the Exergy Steam Dryer for wood with a combined heat and power (CHP) plant, together with HP steam turbine, the excess carrier steam can be utilised for district heating and/or electrical power production in a condensing turbine. Bio-ethanol production: Both for first and second generation of ethanol can the Exergy process be integrated for treatment of raw material and by-products. Exergy Steam Dryer can dry the distillers dark grains and solubles (DDGS), wood, bagasse and lignin. Bio-diesel production: Oil containing seeds and fruits can be treated in order to improve both the quality of oil and animal feed protein, thus minimizing further oil processing costs and increasing the sales revenues. Sewage sludge as bio-mass: Municipal sewage sludge can be considered as a renewable bio-fuel. By drying and incineration, the combustion heat value of the sludge is sufficient for the drying process, generation of electrical energy and production of district heat. Keywords; Exergy, bio-fuel, bio-mass, pellets, bio-ethanol, biodiesel, bio

  9. Large-leak sodium-water reaction analysis for steam generators

    International Nuclear Information System (INIS)

    Sakano, K.; Shindo, Y.; Hori, M.

    1975-01-01

    The guillotine rupture of 4 tubes is assumed as a design basis regarding the large-leak sodium-water reaction in the system of the MONJU steam generator. Three kinds of analyses were performed with the view to showing the integrity of the steam generator system on the reaction. The first one is the analysis of the initial pressure spike, assuming the initial guillotine rupture of 1 tube. The analysis was performed by utilizing one-dimensional sphere-cylinder model code SWAC-7 and two-dimensional axisymmetric code PISCES 2DL. The second one is the analysis of the secondary peak pressure and its propagation in the system, assuming the instantaneous guillotine rupture of 4 tubes. The third one is the analysis of the dynamic deformation of the steam generator shell. The integrity of the steam generator system was shown by the analyses. (author)

  10. Large-leak sodium-water reaction analysis for steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, K; Shindo, Y; Hori, M

    1975-07-01

    The guillotine rupture of 4 tubes is assumed as a design basis regarding the large-leak sodium-water reaction in the system of the MONJU steam generator. Three kinds of analyses were performed with the view to showing the integrity of the steam generator system on the reaction. The first one is the analysis of the initial pressure spike, assuming the initial guillotine rupture of 1 tube. The analysis was performed by utilizing one-dimensional sphere-cylinder model code SWAC-7 and two-dimensional axisymmetric code PISCES 2DL. The second one is the analysis of the secondary peak pressure and its propagation in the system, assuming the instantaneous guillotine rupture of 4 tubes. The third one is the analysis of the dynamic deformation of the steam generator shell. The integrity of the steam generator system was shown by the analyses. (author)

  11. Off-design thermodynamic performances on typical days of a 330 MW solar aided coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Wang, Yanjuan; Wang, Zhaoguo; Jin, Hongguang

    2014-01-01

    Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant

  12. An Improved Steam Injection Model with the Consideration of Steam Override

    Directory of Open Access Journals (Sweden)

    He Congge

    2017-01-01

    Full Text Available The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, the equation for the reservoir heat efficiency with the consideration of steam override was developed. Next, predicted results of the new model were compared with these of another analytical model and CMG STARS (a mature commercial reservoir numerical simulator to verify the accuracy of the new mathematical model. Finally, based on the validated model, we analyzed the effects of injection rate, steam quality and reservoir thickness on the reservoir heat efficiency. The results show that the new model can be simplified to the classic model (Marx-Langenheim model under the condition of the steam override being not taken into account, which means the Marx-Langenheim model is corresponding to a special case of this new model. The new model is much closer to the actual situation compared to the Marx-Langenheim model because of considering steam override. Moreover, with the help of the new model, it is found that the reservoir heat efficiency is not much affected by injection rate and steam quality but significantly influenced by reservoir thickness, and to ensure that the reservoir can be heated effectively, the reservoir thickness should not be too small.

  13. Steam injection : analysis of a typical application.

    NARCIS (Netherlands)

    Penning, F.M.; Lange, de H.C.

    1996-01-01

    A cardboard factory requires steam and electricity, which are produced in its own powerplant. Conventional cogeneration systems cannot cope with the large fluctuations in steam demand, inherent to the cardboard production process, while power demand remains almost constant. For this reason, two

  14. High pressure liquid chromatographic analysis of the main pungent principles of solar dried West Indian ginger (Zingiber officinale Roscoe)

    Energy Technology Data Exchange (ETDEWEB)

    Balladin, D.A.; Headley, O. [University of the West Indies, Cave Hill Campus, St. Michael, Barbados (West Indies). Centre for Resource Management and Environmental Studies; Chang-Yen, I. [University of the West Indies, St. Augustine Campus, Trinidad (West Indies). Faculty of Agriculture and Natural Sciences; McGaw, D.R. [University of the West Indies, St. Augustine Campus, Trinidad (West Indies). Dept. of Chemical Engineering

    1998-12-31

    The main pungent principles of West Indian ginger (Zingiber officinale Roscoe) were quantified and qualified using High Pressure Liquid Chromatography. This procedure was used to evaluate the pungency profile of fresh, solar dried and solar dried/steam distilled ginger rhizomes. In this investigation, the total oleoresin extracted was in the ratio [20: 1: 2] for [fresh ginger: solar dried: solar dried/steam distilled ginger rhizomes] with respect to the [6]-gingerol content. This simple isocratic HPLC method can be used to investigate the pungency profile of the extracted oleoresin from the ginger rhizomes. (author)

  15. Investigations of medium sized solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    A large variety of solar combi systems are on the market, but it is still too early to draw conclusions on optimum design of solar combi systems. Among others, the following questions need to be answered: Is an external domestic hot water preparation more desirable than an internal? What...... is the advantage by using inlet stratifiers? To answer the questions, theoretical investigations are carried out for differently designed solar combi systems. The work is carried out within the Solar Heating and Cooling Programme of the International Energy Agency (IEA SHC), Task 32 Advanced storage concepts...... for solar houses and low energy buildings....

  16. Accurate calibration of steam turbine speed control system and its influence on primary regulation at electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Irrazabal Bohorquez, Washington Orlando; Barbosa, Joao Roberto [Technological Institute of Aeronautics (ITA/CTA), Sao Jose dos Campos, SP (Brazil). Center for Reference on Gas Turbine and Energy], E-mail: barbosa@ita.br

    2010-07-01

    In an interconnected electric system there are two very important parameters: the field voltage and the frequency system. The frequency system is very important for the primary regulation of the electric grid. Each turbomachine actuating as generator interconnected to the grid has an automatic speed regulator to keep the rotational speed and mechanical power of the prime machine operating at the set conditions and stable frequency. The electric grid is a dynamical system and in every moment the power units are exposed to several types of disturbances, which cause unbalance of the mechanical power developed by prime machine and the consumed electric power at the grid. The steam turbine speed control system controls the turbine speed to support the electric grid primary frequency at the same time it controls the frequency of the prime machine. Using a mathematical model for the speed control system, the transfer functions were calculated, as well as the proportionality constants of each element of the steam turbine automatic speed regulator. Among other parameters, the droop characteristic of steam turbine and the dynamic characteristics of the automatic speed regulator elements were calculated. Another important result was the determination of the behavior of the speed control when disturbances occur with the improvement of the calibration precision of the control system. (author)

  17. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  18. Corrosion aspects in steam generators of nuclear power plants

    International Nuclear Information System (INIS)

    Visoni, E.; Santos Pinto, M. dos

    1988-01-01

    Steam generators of pressurized water reactors (PWR), transfer heat from a primary coolant system to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfer heat to the secondary coolant water. However, the steam generator is dead for ionic impurities, corrosion products and fabrication/maintenence residues. These impurities concentrate between crevice and cracks. Many types of degradation mechanisms affect the tubes. The tubes are dented, craked, ovalized, wasted, etc. This paper describes the main corrosion problems in steam generators and includes the corrective actions to considered to reduce or eliminate these corrosion problems. (author) [pt

  19. Development of knowledge-based operator support system for steam generator water leak events in FBR plants

    International Nuclear Information System (INIS)

    Arikawa, Hiroshi; Ida, Toshio; Matsumoto, Hiroyuki; Kishida, Masako

    1991-01-01

    A knowledge engineering approach to operation support system would be useful in maintaining safe and steady operation in nuclear plants. This paper describes a knowledge-based operation support system which assists the operators during steam generator water leak events in FBR plants. We have developed a real-time expert system. The expert system adopts hierarchical knowledge representation corresponding to the 'plant abnormality model'. A technique of signal validation which uses knowledge of symptom propagation are applied to diagnosis. In order to verify the knowledge base concerning steam generator water leak events in FBR plants, a simulator is linked to the expert system. It is revealed that diagnosis based on 'plant abnormality model' and signal validation using knowledge of symptom propagation could work successfully. Also, it is suggested that the expert system could be useful in supporting FBR plants operations. (author)

  20. The SNR-300 steam generator small leak detection system

    International Nuclear Information System (INIS)

    Dumm, K.

    1984-01-01

    Small leak detection in the SNR-300 steam generator moduls is achieved by hydrogen meters. Development and design of the Nickel membrane - ion getter pump combination are described and sensitivity requests derived. Results of calibration tests by water/steam injections in a sodium loop are presented. The arrangement and interconnection of signals in SNR-300 are given and possibilities for inservice calibrations are discussed, supported by long time operation tests in the KNK-reactor plant. (author)

  1. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  2. Design of SMART waste heat removal dry cooling tower using solar energy

    International Nuclear Information System (INIS)

    Choi, Yong Jae; Jeong, Yong Hoon

    2014-01-01

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed

  3. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  4. Protecting solar collector systems from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.

  5. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  6. Solar system for soil drainage

    International Nuclear Information System (INIS)

    Kocic, Z.R.; Stojanovic, J.B.; Antic, M.A.; Pavlovic, T.M.

    1999-01-01

    The paper reviews solar system for drainage of the cultivable agricultural surfaces which can be situated near the rivers in plains. These are usually very fertile surfaces which cannot be cultivated die to constant presence of the water. Using such solar systems should increase the percentage of cultivable surfaces. These systems can also be installed on the cultivable agricultural surfaces, where the water surfaces or so called still waters appear, which make impossible the application of agritechnical measures on these surfaces, significantly decreasing crops and creating conditions for the growth of pond plants and animals. Increasing the percentage of cultivable agricultural surfaces would increase national agricultural income. At the same time, increasing the percentage of cultivable agricultural surfaces decreases the surfaces of unhealthy bog, swamp and marshland soils, where many insect breed. They are the cause for soil spraying from the air, which causes the pollution of environment. Solar systems do not pollute the environment because they use solar energy as the purest source of energy. Their usage has special significance in the places where there is no electricity distribution network

  7. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  8. An innovative deployable solar panel system for Cubesats

    Science.gov (United States)

    Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-02-01

    One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.

  9. Modeling and Simulation of U-tube Steam Generator

    Science.gov (United States)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  10. The space-age solar system

    International Nuclear Information System (INIS)

    Baugher, J.F.

    1988-01-01

    This book is a description of the sun, planets, moons, asteroids, and comets in the solar system. Discussion is based heavily on results obtained from recent space probes to Mercury, Venus, Mars Jupiter, Saturn, and Uranus. Offers detailed descriptions of the moons of Jupiter and Saturn, and the results of the recent probes of Halley's comet. A discussion of meteorites leads to a description of the current models of the solar system. Introductory chapters present theories of the solar system from the ancient Greeks to the present day. Other topics covered include the sun, its structure, and how it generates energy; the surfaces, internal structures, and histories of the planets, from innermost Mercury to farthest Pluto, and their moons

  11. Steam sterilization does not require saturated steam

    NARCIS (Netherlands)

    van Doornmalen Gomez Hoyos, J. P.C.M.; Paunovic, A.; Kopinga, K.

    2017-01-01

    The most commonly applied method to sterilize re-usable medical devices in hospitals is steam sterilization. The essential conditions for steam sterilization are derived from sterilization in water. Microbiological experiments in aqueous solutions have been used to calculate various time–temperature

  12. Force convective solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ibarahim, Z.

    2006-01-01

    This paper presents design and performance of V-groove back-pass solar collector for solar drying system. In this study three V-groove back-pass solar collector each with dimension of 4.6 m x 1.0 m x 0.15 m have been fabricated for solar drying system. An outdoor test at mean solar intensity for 600-800 Wm -2 by using 0.15m 3 s -1 of air flow rate which also been suggested by (Zeroul et al. 1994) was carried out at Solar Research Energy Park. Universiti Kebangsaan Malaysia. Analysis on the collector performance based on daily data was reported that the value of FR ) e and FRUL was 0.709 ± 0.001 and 5.89 ± 0.31 Wm -2o C -1 respectively with 60-70 o C of output temperature (Ruslan et al. 2001). The three V-groove collectors each with dimension 4.6 m x 0.15 m were connected in series array mounted on the roof of a solar assisted drying system. By using two electric fans of 85W and 2700 rpm each, the speed of air was regulated at 0.11 kgs -1 to 0.31 kgs -1 using a voltage regulator. Performance of the collector based on the thermal analysis showed that at mean daily solar radiation 700 Wm -2 , the output temperature of 52 o C to 73 o C could be achieved using 0.11-0.31 kgs -1 of flow rate. Thermal analysis also showed that the efficiencies of 45% to 61% could be obtains using the same flow rate and solar radiation. Analysis of daily data showed that for radiation from 300 Wm -2 to 1000 Wm -2 the power generated from the collector was within 1.5 kW to 8.9 kW. The study concluded that the levels of the levels of the solar radiation and flow rate used influenced the performance of the collector

  13. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (11) Visualization Study on the Start-Up of the Steam Injector

    International Nuclear Information System (INIS)

    Koji Okamoto; Tadashi Narabayashi; Chikako Iwaki; Shuichi Ohmori; Michitsugu Mori

    2006-01-01

    The Steam Injector is the superior system to pump the fluid without rotating machine. Because the water column is surrounded by the saturated steam, very high heat transfer is also expected with direct condensation. The inside of the Steam Injector is very complicated. To improve the efficiency of the Steam Injector, the water column behavior inside the Injector is visualized using the Dynamic PIV system. Dynamic PIV system consists of the high-speed camera and lasers. In this study, 384 x 180 pixel resolution with 30,000 fps camera is used to visualize the flow. For the illumination CW green laser with 300 mW is applied. To view inside the Injector, relay lens system is set at the Injector wall. Very high speed water column during the starting up of Steam Injector had been clearly visualized with 30,000 fps. The wave velocity on the water column had been analyzed using PIV technique. The instability of the water column is also detected. (authors)

  14. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  15. A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC system

    DEFF Research Database (Denmark)

    Rudra, Souman; Lee, Jinwook; Rosendahl, Lasse

    2010-01-01

    efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges...... of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper...... describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam...

  16. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  17. K2 & Solar System Science

    Science.gov (United States)

    Lissauer, Jack

    2015-01-01

    All of the fields that K2 observes are near the ecliptic plane in order to minimize the spin-up of the spacecraft in response to the effects of solar irradiation. The fields observed by K2 are thus rich in Solar System objects including planets, asteroids and trans-Neptunian objects (TNOs). K2 has already performed observations of Neptune and its large moon Triton, 68 Trojan and Hilda asteroids, 5 TNOs (including Pluto) and Comet C/2013 A1 (Siding Springs). About 10,000 main-belt asteroids that fell into the pixel masks of stars have been serendipitously observed. Observations of small bodies are especially useful for determining rotation periods. Uranus will be observed in a future campaign (C8), as will many more small Solar System bodies. The status of various K2 Solar System studies will be reviewed and placed within the context of our current knowledge of the objects being observed.

  18. High level waste (HLW) steam reducing station evaluation

    International Nuclear Information System (INIS)

    Gannon, R.E.

    1993-01-01

    Existing pressure equipment in High Level Waste does not have a documented technical baseline. Based on preliminary reviews, the existing equipment seems to be based on system required capacity instead of system capability. A planned approach to establish a technical baseline began September 1992 and used the Works Management System preventive maintenance schedule. Several issues with relief valves being undersized on steam reducing stations created a need to determine the risk of maintaining the steam in service. An Action Plan was developed to evaluate relief valves that did not have technical baselines and provided a path forward for continued operation. Based on Action Plan WER-HLE-931042, the steam systems will remain in service while the designs are being developed and implemented

  19. Reduction in infection risk through treatment of microbially contaminated surfaces with a novel, portable, saturated steam vapor disinfection system.

    Science.gov (United States)

    Tanner, Benjamin D

    2009-02-01

    Surface-mediated infectious disease transmission is a major concern in various settings, including schools, hospitals, and food-processing facilities. Chemical disinfectants are frequently used to reduce contamination, but many pose significant risks to humans, surfaces, and the environment, and all must be properly applied in strict accordance with label instructions to be effective. This study set out to determine the capability of a novel chemical-free, saturated steam vapor disinfection system to kill microorganisms, reduce surface-mediated infection risks, and serve as an alternative to chemical disinfectants. High concentrations of Escherichia coli, Shigella flexneri, vancomycin-resistant Enterococcus faecalis (VRE), methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enterica, methicillin-sensitive Staphylococcus aureus, MS2 coliphage (used as a surrogate for nonenveloped viruses including norovirus), Candida albicans, Aspergillus niger, and the endospores of Clostridium difficile were dried individually onto porous clay test surfaces. Surfaces were treated with the saturated steam vapor disinfection system for brief periods and then numbers of surviving microorganisms were determined. Infection risks were calculated from the kill-time data using microbial dose-response relationships published in the scientific literature, accounting for surface-to-hand and hand-to-mouth transfer efficiencies. A diverse assortment of pathogenic microorganisms was rapidly killed by the steam disinfection system; all of the pathogens tested were completely inactivated within 5 seconds. Risks of infection from the contaminated surfaces decreased rapidly with increasing periods of treatment by the saturated steam vapor disinfection system. The saturated steam vapor disinfection system tested for this study is chemical-free, broadly active, rapidly efficacious, and therefore represents a novel alternative to liquid chemical disinfectants.

  20. Design of teleoperated robot system for nozzle dam maintenance in steam generator

    International Nuclear Information System (INIS)

    Kim, Chang-Hoi; Hwang, Suk-Young; Lee, Young-Gwang; Kim, Byung-Soo; Kim, Seung-Ho; Lee, Jong-Min

    1994-01-01

    The recent development of teleoperated manipulator system in KAERI is presented. The manipulator system is composed of master-slave arm and control system with VME based hierarchical structure. Supervisory control part with graphic workstation provides affluent visual information to human operator. This robot can be operated either in the teleoperation mode with master-slave or in the program mode running by computer system itself to enable installation or removal of nozzle dam appropriately within a water chamber of steam generator. Evaluation and analysis have been carried out to get optimal parameters of the robot. (author)

  1. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  2. Our Solar System. Our Solar System Topic Set

    Science.gov (United States)

    Phelan, Glen

    2006-01-01

    This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.

  3. Environmental benefits of domestic solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, Soteris A.

    2004-01-01

    All nations of the world depend on fossil fuels for their energy needs. However the obligation to reduce CO 2 and other gaseous emissions in order to be in conformity with the Kyoto agreement is the reason behind which countries turn to non-polluting renewable energy sources. In this paper the pollution caused by the burning of fossil fuels is initially presented followed by a study on the environmental protection offered by the two most widely used renewable energy systems, i.e. solar water heating and solar space heating. The results presented in this paper show that by using solar energy, considerable amounts of greenhouse polluting gasses are avoided. For the case of a domestic water heating system, the saving, compared to a conventional system, is about 80% with electricity or Diesel backup and is about 75% with both electricity and Diesel backup. In the case of space heating and hot water system the saving is about 40%. It should be noted, however, that in the latter, much greater quantities of pollutant gasses are avoided. Additionally, all systems investigated give positive and very promising financial characteristics. With respect to life cycle assessment of the systems, the energy spent for manufacture and installation of the solar systems is recouped in about 1.2 years, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 9.5 years according to the fuel and the particular pollutant considered. Moreover, due to the higher solar contribution, solar water heating systems have much shorter payback times than solar space heating systems. It can, therefore, be concluded that solar energy systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future

  4. Flow Instabilities and Main Steam Line Vibrations in a Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Henriksson, Mats; Westin, Johan; Granhall, Tord; Andersson, Lars; Bjerke, Lars-Erik

    2002-01-01

    Severe vibrational problems occurred in the main steam system of a PWR nuclear power plant, about 18 months after a steam generator replacement had been carried out. The magnitude of the vibrations reached levels at which the operators had to reduce power in order to stay within the operating limits imposed by the nuclear inspectorate. To solve the problem the following analyses methods were employed: - Testing the influence on vibration level from different modes of plant operation; - Analyses of plant measurement data; - Calculations of: hydraulic behaviour of the system, structural dynamic behaviour of the system, flow at the steam generator outlet. Scale model testing of the steam generator outlet region. Hydraulic flow disturbances in the main steam system were measured using pressure and strain gauges, which made it possible to track individual pressure pulses propagating through the main steam system. Analyses showed that the pressure pulses causing the vibration originated from the vicinity of the steam generator outlet. By using computer codes for network fluid flow analyses the pressure pulses found in the measurement traces could be generated in calculations. Careful studies of the flow at the steam generator outlet region, using model testing in a 1:3 scale model as well as transient 3D CFD calculations, gave clear indications that flow separation occurred at the steam generator outlet nozzle and at the first bend. Finally, by substituting the outlet nozzle for a different design with a multi-port nozzle, the steam line vibration problem has been solved. (authors)

  5. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH{sub 4}+H{sub 2}O = 3H{sub 2}+CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm{sup 3}/h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  6. Steam temperature variation behind a turbine steam separator-superheater during NPP start-up

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.; Melamed, A.D.

    1979-01-01

    To determine necessary parameters of the steam temperature automatic regulator behind the steam separator-rheater supe (SSS) of an NPP turbine the static and dynamic characteristics of the temperature change behind the SSS were studied experimentally. The measurements were carried out at the K-220-44 turbine of the Kolskaja NPP in the case of both varying turbine loads and the flow rate of the heating vapor. Disturbances caused by the opening of the regulating valve at the inlet of the heating vapor are investigated as well. It is found that due to a relatively high inertiality of the SSS a rather simple structure of the start-up steam temperature regulators behind the SSS in composition with automatated driving systems of the turbine start-up without regard for the change of the dynamic characteristics can be used

  7. Numerical simulation in steam injection process by a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    De Souza, J.C.Jr.; Campos, W.; Lopes, D.; Moura, L.S.S. [Petrobras, Rio de Janeiro (Brazil)

    2008-10-15

    Steam injection is a common thermal recovery method used in very viscous oil reservoirs. The method involves the injection of heat to reduce viscosity and mobilize oil. A steam generation and injection system consists primarily of a steam source, distribution lines, injection wells and a discarding tank. In order to optimize injection and improve the oil recovery factor, one must determine the parameters of steam flow such as pressure, temperature and steam quality. This study focused on developing a unified mathematical model by means of a mechanistic approach for two-phase steam flow in pipelines and wells. The hydrodynamic and heat transfer mechanistic model was implemented in a computer simulator to model the parameters of steam injection while trying to avoid the use of empirical correlations. A marching algorithm was used to determine the distribution of pressure and temperature along the pipelines and wellbores. The mathematical model for steam flow in injection systems, developed by a mechanistic approach (VapMec) performed well when the simulated values of pressures and temperatures were compared with the values measured during field tests. The newly developed VapMec model was incorporated in the LinVap-3 simulator that constitutes an engineering supporting tool for steam injection wells operated by Petrobras. 23 refs., 7 tabs., 6 figs.

  8. Modelling of a Coil Steam Generator for CSP applications

    DEFF Research Database (Denmark)

    Pelagotti, Leonardo; Sørensen, Kim; Condra, Thomas Joseph

    2014-01-01

    The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator (CSG). This system allows faster start-ups and therefore higher daily energy production from the Sun. An analytical thermodynamic simulation model of the evaporator and a mechanical analysis...

  9. Nuclear power plant steam pipes repairing with TIRANT 3 robot system

    International Nuclear Information System (INIS)

    Soto Tomas, Marcelo; Curiel Nieva, Marceliano; Monzo Blasco, Enrique; Rodriguez, Salvador Pineda; Vaquer Perez, Juan I.

    2011-01-01

    A typical application functions covering the steam pipes inner surface in coal-fired power station and nuclear power plants. The results of this process are spectacular in terms of protection against corrosion and abrasion, but its application has conditioning factors, such as: Severe application conditions for workers. Due to the postural position (usually kneeling) in small diameter pipes and working with fireproof clothing and masks with outdoor air supplying, due to fumes, sparks and molten metal particles, radiological contamination, confined space, poor lighting... Coating uniformity. As metallization is a manual process, the carried out measurements show small variations in the thickness of the coating, always within the tolerance limits established by the applicable regulations and quality assurance. For all these reasons, Grupo Dominguis has developed the TIRANT 3 robot, a worldwide innovative system, for metallization of steam pipes inner surface. TIRANT 3 robot is teleoperated from outside of the pipe, so that human intervention is reduced to the operations of robot positioning and change of metallization wire. As it is an independent system of the human factor, metallization process performance is significantly increased by reducing rest periods due only to the robot maintenance. Likewise, TIRANT 3 system permits to increase resulting coating uniformity, and thus its resistance, keeping selected parameters constant depending on required type and thickness of wire. TIRANT 3 system has successfully worked in 2010 during the stops refueling of the Units I and II of Laguna Verde nuclear power plant in Mexico. (author)

  10. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model...... gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this paper....

  11. Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of key technology (energy conversion on technology using chemical reactions); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Yoso gijutsu no kenkyu (kagaku energy henkan gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for energy conversion technology using chemical reactions by the aid of solar energy. The demonstration runs were conducted by a bench-scale unit, which was operated stably for 100h, to produce promising results. The catalyst exhibits stable performance, without showing a sign of deactivation. It is found that the heat pump system works well, without being interfered with accumulated by-products. A heat of approximately 2,100kcal/h is recovered. It is confirmed that steam of 150{degree}C and 200{degree}C is generated from hot water of 80{degree}C and 95{degree}C, respectively. The bench-scale runs show a thermal efficiency of around 10%, which is lower than the target level. However, the runs with hydrogen-occluding alloy attain a process thermal efficiency of 30%. The system in which solar collector and chemical heat pump units are combined is evaluated with respect to its economic efficiency and operability for its eventual commercialization. 6 figs., 2 tabs.

  12. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang

    2010-01-01

    In the present study a small steam-methanol reformer with a colloid nanocatalyst is utilized to produce hydrogen. Radiation from a focused continuous green light laser (514 nm wavelength) is used to provide the energy for steam-methanol reforming. Nanocatalyst particles, fabricated by using pulsed laser ablation technology, result in a highly active catalyst with high surface to volume ratio. A small novel reformer fabricated with a borosilicate capillary is employed to increase the local temperature of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show that hydrogen production by solar steam-methanol colloid nanocatalyst reforming is both feasible and promising. © 2009 Professor T. Nejat Veziroglu.

  13. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear between steam locomotive and tender. 230... Steam Locomotives and Tenders Draw Gear and Draft Systems § 230.90 Draw gear between steam locomotive and tender. (a) Maintenance and testing. The draw gear between the steam locomotive and tender...

  14. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  15. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  16. Solar thermophotovoltaic system using nanostructures.

    Science.gov (United States)

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  17. Performance analysis of a small regenerative gas turbine system adopting steam injection and side-wall in finned tube evaporator

    International Nuclear Information System (INIS)

    Kang, Soo Young; Lee, Jong Jun; Kim, Tong Seop

    2009-01-01

    Small gas turbines in power range of several MWs are quite suitable for application in distributed generation as well as Community Energy Systems (CES). Humidification is an effective way to improve gas turbine performance, and steam injection is the most general and practically feasible method. This study intended to examine the effect of steam injection on the performance of several MW class gas turbines. A primary concern is given to the regenerative cycle gas turbine. The steam injection effect on the performance of a system without the regenerator (i.e. a simple cycle) is also examined. In addition, the influence of bypass of some of the exhaust gas on the performance of the gas turbine, especially the regenerative cycle gas turbine, is evaluated.

  18. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    Xiaodi, Xue; Hongfei, Zheng; Kaiyan, He; Zhili, Chen; Tao, Tao; Guo, Xie

    2010-01-01

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m 2 , the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  19. 49 CFR 230.106 - Steam locomotive frame.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section 230.106... Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance and inspection. Frames, decks, plates, tailpieces, pedestals, and braces shall be maintained in a safe and...

  20. Pumps for medium sized solar systems

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated.......The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated....

  1. Troubleshooting vacuum systems steam turbine surface condensers and refinery vacuum towers

    CERN Document Server

    Lieberman, Norman P

    2012-01-01

    Vacuum systems are in wide spread use in the petrochemical plants, petroleum refineries and power generation plants. The existing texts on this subject are theoretical in nature and only deal with how the equipment functions when in good mechanical conditions, from the viewpoint of the equipment vendor.  In this much-anticipated volume, one of the most well-respected and prolific process engineers in the world takes on troubleshooting vacuum systems, and especially steam ejectors, an extremely complex and difficult subject that greatly effects the profitability of the majority of the world'

  2. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system.

    Science.gov (United States)

    Sexton, Jonathan D; Tanner, Benjamin D; Maxwell, Sheri L; Gerba, Charles P

    2011-10-01

    Recent scientific literature suggests that portable steam vapor systems are capable of rapid, chemical-free surface disinfection in controlled laboratory studies. This study evaluated the efficacy of a portable steam vapor system in a hospital setting. The study was carried out in 8 occupied rooms of a long-term care wing of a hospital. Six surfaces per room were swabbed before and after steam treatment and analyzed for heterotrophic plate count (HPC), total coliforms, methicillin-intermediate and -resistant Staphylococcus aureus (MISA and MRSA), and Clostridium difficile. The steam vapor device consistently reduced total microbial and pathogen loads on hospital surfaces, to below detection in most instances. Treatment reduced the presence of total coliforms on surfaces from 83% (40/48) to 13% (6/48). Treatment reduced presumptive MISA (12/48) and MRSA (3/48) to below detection after cleaning, except for 1 posttreatment isolation of MISA (1/48). A single C difficile colony was isolated from a door push panel before treatment, but no C difficile was detected after treatment. The steam vapor system reduced bacterial levels by >90% and reduced pathogen levels on most surfaces to below the detection limit. The steam vapor system provides a means to reduce levels of microorganisms on hospital surfaces without the drawbacks associated with chemicals, and may decrease the risk of cross-contamination. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  3. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  4. Effect on non-condensable gas on steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2004-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. Although non-condensable gases are well known for reducing heat transfer, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper presents an experimental study of condensation of supersonic steam around turbulent water jet with model steam injector made by transparent plastic. The experimental apparatus is described. The visual observation was carried out by using high-speed camera. The non-condensable gas effect on the pump performance and flow characteristics are clarified by the image processing technique for the jet shape and gas-liquid interface behavior. (authors)

  5. Main steam system piping response under safety/relief valve opening events

    International Nuclear Information System (INIS)

    Swain, E.O.; Esswein, G.A.; Hwang, H.L.; Nieh, C.T.

    1980-01-01

    The stresses in the main steam branch pipe of a Boiling Water Reactor due to safety/relief valve blowdown has been measured from an in situ piping system test. The test results were compared with analytical results. The predicted stresses using the current state of art analytical methods used for BWR SRV discharge transient piping response loads were found to be conservative when compared to the measured stress values. 3 refs

  6. How Normal is Our Solar System?

    Science.gov (United States)

    Kohler, Susanna

    2015-10-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because

  7. Thermo-economic analysis of a micro-cogeneration system based on a rotary steam engine (RSE)

    International Nuclear Information System (INIS)

    Alanne, Kari; Saari, Kari; Kuosa, Maunu; Jokisalo, Juha; Martin, Andrew R.

    2012-01-01

    A rotary steam engine (RSE) is a simple, small, quiet and lubricant-free option for micro-cogeneration. It is capable of exploiting versatile thermal sources and steam temperatures of 150–180 °C, which allow operational pressures less than 10 bar for electrical power ranges of 1–20 kW e . An RSE can be easily integrated in commercially available biomass-fired household boilers. In this paper, we characterize the boiler-integrated RSE micro-cogeneration system and specify a two-control-volume thermodynamic model to conduct performance analyses in residential applications. Our computational analysis suggests that an RSE integrated with a 17 kW th pellet-fueled boiler can obtain an electrical output of 1.925 kW e, in the design temperature of 150 °C, the electrical efficiency being 9% (based on the lower heating value of the fuel, LHV) and the thermal efficiency 77% (LHV). In a single-family house in Finland, the above system would operate up to 1274 h/y, meeting 31% of the house's electrical demand. The amount of electricity delivered into the grid is 989 kW h/y. An economic analysis suggests that incremental costs not exceeding € 1500 are justifiable at payback periods less than five years, when compared to standard boilers. - Highlights: ► We characterize and model a micro-cogeneration system based on a rotary steam engine. ► We assess the performance of the above system in a residential building in Finland. ► The above system is capable of meeting 31% of the building's annual electrical demand. ► The above system may cost at most € 1500 more than a standard boiler system.

  8. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  9. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  10. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions...

  11. Evolution of the solar system in the presence of a solar companion star

    International Nuclear Information System (INIS)

    Hut, P.

    1986-01-01

    A review is presented of the dynamical implications of a companion star in a wide orbit around the sun, with a semimajor axis of about half a parsec. The motivation behind the hypothesis of a solar companion star is reviewed briefly along with alternative hypotheses, and the general problem of solar system dynamics with a solar companion star is discussed. Four principal questions are posed and answered concerning the consistency of the solar companion theory in providing the required modulation in comet arrival times: (1) What is the expected lifetime of a solar companion? (2) How stable is the orbital period? (3) Does a single perihelion passage of a solar companion perturb enough comets? (4) Do repeated perihelion passages of a solar companion perturb too many comets? Some applications outside the solar system involving wide binaries, interstellar clouds, and dark matter in the Galactic disk are discussed, and the viability of the solar companion theory is critically assessed

  12. HTGR steam generator development

    International Nuclear Information System (INIS)

    Schuetzenduebel, W.G.; Hunt, P.S.; Weber, M.

    1976-01-01

    More than 40 gas-cooled reactor plants have produced in excess of 400 reactor years of operating experience which have proved a reasonably high rate of gas-cooled reactor steam generator availability. The steam generators used in these reactors include single U-tube and straight-tube steam generators as well as meander type and helically wound or involute tube steam generators. It appears that modern reactors are being equipped with helically wound steam generators of the once-through type as the end product of steam generator evolution in gas-cooled reactor plants. This paper provides a general overview of gas-cooled reactor steam generator evolution and operating experience and shows how design criteria and constraints, research and development, and experience data are factored into the design/development of modern helically wound tube steam generators for the present generation of gas-cooled reactors

  13. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  14. Method of determining the enthalpy and moisture content of wet steam

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1991-01-01

    This patent describes a nuclear powered multi-stage steam turbine system wherein steam at higher than atmospheric pressure is introduced into the turbine system at a high pressure turbine element and thereafter flows through a series of turbine elements at successively decreasing pressures, wherein portions of the steam are extracted from the turbine elements at a plurality of lower pressure points and the steam is finally exhausted at a lowest pressure point, the method of determining moisture content and enthalpy of steam at a selected pressure point. It comprises sampling a small quantity of steam at the selected pressure point; super heating the steam sample to a single-phase state by reducing its pressure and bottling it in a closed measuring chamber whereby the flow energy of the sample is converted into internal energy; measuring the pressure of the steam sample within the chamber; determining the sonic velocity of the steam sample by passing a sound wave through the sample from a transmitter to a receiver located at a known distance from the transmitter and measuring the time required for the sound wave to travel from transmitter to receiver; and utilizing the measured pressure and sonic velocity of the steam sample to calculate the moisture content and enthalpy of the steam at the selected pressure point

  15. Comparative features of volcanoes on Solar system bodies

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    The bark of many cosmic bodies is in motion because of the displacement of tectonic plates on magma. Pouring molten magma through cracks in the cortex is called a volcanic eruption. There are two main types of volcanoes: basaltic, appearing where a new material of tectonic plates is formed, and andesitic, which located in the places of destruction of these plates.The third type of volcanoes is cryovolcanoes, or ice volcanoes. This type of volcano ejects matter in the form of ice volcanic melts or steam from water, ammonia, methane. After the eruption, the cryomagma at a low temperature condenses to a solid phase. Cryovolcanoes can be formed on such objects as Pluto, Ceres, Titan, Enceladus, Europe, Triton, etc. Potential sources of energy for melting ice in the production of cryovolcanoes are tidal friction and/or radioactive decay. Semi-transparent deposits of frozen materials that can create a subsurface greenhouse effect, with the possibility of accumulating the required heat with subsequent explosive eruption, are another way to start the cryovolcano action. This type of eruption is observed on Mars and Triton. The first and second types of eruptions (basaltic and andesitic) are characteristic of terrestrial planets (Mercury, Venus, Mars) and for some satellites of the planets of the Solar system.

  16. Performance Modelling of Steam Turbine Performance using Fuzzy ...

    African Journals Online (AJOL)

    Performance Modelling of Steam Turbine Performance using Fuzzy Logic ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES. Journal of Applied Sciences and Environmental Management ... A Fuzzy Inference System for predicting the performance of steam turbine

  17. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  18. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  19. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  20. Developing solar: PV solar system markets in Africa

    International Nuclear Information System (INIS)

    Asali, Karim

    2002-01-01

    Governments, NGO's and UN organisations are increasingly convinced that renewable energies not only help to solve energy problems in Africa but are indispensable in alleviating regional disparities, social problems and bridging the digital gap. Still, many years after introducing high efficiency solar PV systems the necessary breakthrough of implementing them on a mass scale is still not a reality. The author provides perspectives on developing solar PV in Africa. (Author)