WorldWideScience

Sample records for solar spectral measurements

  1. Spectral and electronic measurements of solar radiation

    International Nuclear Information System (INIS)

    Suzuki, Mamoru; Hanyu, Mitsuhiro

    1977-01-01

    The spectral data of solar radiation are necessary if detailed discussion is intended in relation to the utilization of solar energy. Since those data have not been fully prepared so far, a measuring equipment developed in Electro-technical Laboratory to obtain those data is described. The laboratory is now continuing the measurement at the wavelength of 0.3 μm to 1.1 μm. The equipment employs the system to always calibrate with the standard light source, it can measure both the direct light of the sun only and the sun light including sky light, and it enables to obtain the value based on the secondary standard of spectral illumination intensity established by the laboratory. The solar spectral irradiance is determined with the current readings of photomultiplier in the standard light source and the sun-light measurements at a wavelength and with the spectral illumination intensity from the standard light source. In order to practice such measurement many times at various wavelengths, control of the equipment, data collection, computation, drawing and listing are performed by a microcomputer. As an example, the data on Sept. 10, 1976, are shown comparing the graphs at three different hours. It can be well observed that the transmissivity attenuates with shorter wavelength, and the transmissivity in near infra-red region changes greatly due to the absorption of radiation by water vapour. (Wakatsuki, Y.)

  2. Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators

    Science.gov (United States)

    Curtis, H. B.

    1976-01-01

    Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.

  3. Artifact Interpretation of Spectral Response Measurements on Two-Terminal Multijunction Solar Cells

    NARCIS (Netherlands)

    Si, F.T.; Isabella, O.; Zeman, M.

    2016-01-01

    Multijunction solar cells promise higher power-conversion efficiency than the single-junction. With respect to two-terminal devices, an accurate measurement of the spectral response requires a delicate adjustment of the light- and voltage-biasing; otherwise it can result in artifacts in the data and

  4. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  5. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  6. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  7. Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules

    International Nuclear Information System (INIS)

    Rodríguez, J.A.; Fortes, M.; Alberte, C.; Vetter, M.; Andreu, J.

    2013-01-01

    Highlights: ► Spectral response equipment for measuring a-Si:H solar cells in a few seconds. ► Equipment based on 16 LEDs with simultaneous illumination of the solar cell. ► The current generated by each LED is analyzed by a Fast Fourier Transform. ► Cheap equipment without lock-in technology for the current measurement. ► Measurement error vs. conventional measurement less than 1% in J sc . - Abstract: An important requirement for a very fast spectral response measurement system is the simultaneous illumination of the solar cell at multiple well defined wavelengths. Nowadays this can be done by means of light emitting diodes (LEDs) available for a multitude of wavelengths. For the purpose to measure the spectral response (SR) of amorphous silicon solar cells a detailed characterization of LEDs emitting in the wavelength range from 300 nm to 800 nm was performed. In the here developed equipment the LED illumination is modulated in the frequency range from 100 Hz to 200 Hz and the current generated by each LED is analyzed by a Fast Fourier Transform (FFT) to determine the current component corresponding to each wavelength. The equipment provides a signal to noise ratio of 2–4 orders of magnitude for individual wavelengths resulting in a precise measurement of the SR over the whole wavelength range. The difference of the short circuit current determined from the SR is less than 1% in comparison to a conventional system with monochromator.

  8. Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A., E-mail: jose.rodriguez@tsolar.eu [Dept. Technology, Development and Innovation, T-Solar Global S.A., Parque Tecnologico de Galicia, Avda. de Vigo 5, E-32900 San Cibrao das Vinas (Ourense) (Spain); Fortes, M. [Departamento de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Alberte, C.; Vetter, M.; Andreu, J. [Dept. Technology, Development and Innovation, T-Solar Global S.A., Parque Tecnologico de Galicia, Avda. de Vigo 5, E-32900 San Cibrao das Vinas (Ourense) (Spain)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Spectral response equipment for measuring a-Si:H solar cells in a few seconds. Black-Right-Pointing-Pointer Equipment based on 16 LEDs with simultaneous illumination of the solar cell. Black-Right-Pointing-Pointer The current generated by each LED is analyzed by a Fast Fourier Transform. Black-Right-Pointing-Pointer Cheap equipment without lock-in technology for the current measurement. Black-Right-Pointing-Pointer Measurement error vs. conventional measurement less than 1% in J{sub sc}. - Abstract: An important requirement for a very fast spectral response measurement system is the simultaneous illumination of the solar cell at multiple well defined wavelengths. Nowadays this can be done by means of light emitting diodes (LEDs) available for a multitude of wavelengths. For the purpose to measure the spectral response (SR) of amorphous silicon solar cells a detailed characterization of LEDs emitting in the wavelength range from 300 nm to 800 nm was performed. In the here developed equipment the LED illumination is modulated in the frequency range from 100 Hz to 200 Hz and the current generated by each LED is analyzed by a Fast Fourier Transform (FFT) to determine the current component corresponding to each wavelength. The equipment provides a signal to noise ratio of 2-4 orders of magnitude for individual wavelengths resulting in a precise measurement of the SR over the whole wavelength range. The difference of the short circuit current determined from the SR is less than 1% in comparison to a conventional system with monochromator.

  9. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  10. Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range

    Science.gov (United States)

    Zuber, Ralf; Sperfeld, Peter; Riechelmann, Stefan; Nevas, Saulius; Sildoja, Meelis; Seckmeyer, Gunther

    2018-04-01

    A compact array spectroradiometer that enables precise and robust measurements of solar UV spectral direct irradiance is presented. We show that this instrument can retrieve total ozone column (TOC) accurately. The internal stray light, which is often the limiting factor for measurements in the UV spectral range and increases the uncertainty for TOC analysis, is physically reduced so that no other stray-light reduction methods, such as mathematical corrections, are necessary. The instrument has been extensively characterised at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. During an international total ozone measurement intercomparison at the Izaña Atmospheric Observatory in Tenerife, the high-quality applicability of the instrument was verified with measurements of the direct solar irradiance and subsequent TOC evaluations based on the spectral data measured between 12 and 30 September 2016. The results showed deviations of the TOC of less than 1.5 % from most other instruments in most situations and not exceeding 3 % from established TOC measurement systems such as Dobson or Brewer.

  11. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  12. Studying the effect of spectral variations intensity of the incident solar radiation on the Si solar cells performance

    Directory of Open Access Journals (Sweden)

    Ahmed Elsayed Ghitas

    2012-12-01

    Full Text Available Solar spectral variation is important in characterization of photovoltaic devices. We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of multicrystalline silicon photovoltaic module. The investigation concentrate on the analysis of outdoor solar spectral measurements carried out at 1 min intervals on clear sky days. Short circuit current and open circuit voltage have been measured to describe the module electrical performance. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of the module. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effect of the spectral variation on the performance of the photovoltaic module is reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the radiation spectra account for the decreased current collection and hence power of the module.

  13. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  14. Spectral mismatch and solar simulator quality factor in advanced LED solar simulators

    Science.gov (United States)

    Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten

    2017-08-01

    Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.

  15. Deployment and early results from the CanSIM (Canadian Solar Spectral Irradiance Meter) network

    Science.gov (United States)

    Tatsiankou, Viktar; Hinzer, Karin; Schriemer, Henry; McVey-White, Patrick; Beal, Richard

    2017-09-01

    Three of seven stations have been deployed as part of the Canadian Solar Spectral Irradiance (CanSIM) network situated in Ottawa, Varennes and Egbert to measure long term spectral variation of the direct normal (DNI) and global horizontal irradiances (GHI) across the country. Every station is equipped with a solar tracker, SolarSIM-D2+, SolarSIM-G+, and SR20 pyranometer, reporting the spectral DNI, GHI, diffuse horizontal irradiance (DHI) and aerosol optical depth in the 280-4000 nm range, broadband DNI, GHI, and DHI, atmospheric total column ozone and water vapour amounts. The spectral GHI as measured by the SolarSIM-G+ was within 5% as compared to EKO MS-700 spectroradiometer in 350-1050 nm range on 17 March 2017. The difference in the GHI as reported by SolarSIM-G+ and SR20 pyranometer from all stations was within 2% on 14 April 2017. Furthermore, on this day, the daily GHI sum for the Ottawa, Varennes, and Egbert stations was 7.01, 6.95, and 7.11 kWh/m2, respectively, while the daily DNI sum was 10.65, 10.86, 10.04 kWh/m2, respectively.

  16. Improving Soft X-Ray Spectral Irradiance Models for Use Throughout the Solar System

    Science.gov (United States)

    Eparvier, F. G.; Thiemann, E.; Woods, T. N.

    2017-12-01

    Understanding the effects of solar variability on planetary atmospheres has been hindered by the lack of accurate models and measurements of the soft x-ray (SXR) spectral irradiance (0-6 nm). Most measurements of the SXR have been broadband and are difficult to interpret due to changing spectral distribution under the pass band of the instruments. Models that use reference spectra for quiet sun, active region, and flaring contributions to irradiance have been made, but with limited success. The recent Miniature X-ray Solar Spectrometer (MinXSS) CubeSat made spectral measurements in the 0.04 - 3 nm range from June 2016 to May 2017, observing the Sun at many different levels of activity. In addition, the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) has observed the Sun since May 2010, in both broad bands (including a band at 0-7 nm) and spectrally resolved (6-105 nm at 0.1 nm resolution). We will present an improved model of the SXR based on new reference spectra from MinXSS and SDO-EVE. The non-flaring portion of the model is driven by broadband SXR measurements for determining activity level and relative contributions of quiet and active sun. Flares are modeled using flare temperatures from the GOES X-Ray Sensors. The improved SXR model can be driven by any sensors that provide a measure of activity level and flare temperature from any vantage point in the solar system. As an example, a version of the model is using the broadband solar irradiance measurements from the MAVEN EUV Monitor at Mars will be presented.

  17. The high-resolution extraterrestrial solar spectrum (QASUMEFTS determined from ground-based solar irradiance measurements

    Directory of Open Access Journals (Sweden)

    J. Gröbner

    2017-09-01

    Full Text Available A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS was combined from medium-resolution (bandpass of 0.86 nm measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm from a Fourier transform spectroradiometer (FTS over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  18. Accurate measurements of solar spectral irradiance between 4000-10000 cm-1

    Science.gov (United States)

    Elsey, J.; Coleman, M. D.; Gardiner, T.; Shine, K. P.

    2017-12-01

    The near-infrared solar spectral irradiance (SSI) is an important input into simulations of weather and climate; the distribution of energy throughout this region of the spectrum influences atmospheric heating rates and the global hydrological cycle through absorption and scattering by water vapour. Current measurements by a mixture of ground-based and space-based instruments show differences of around 10% in the 4000-7000 cm-1 region, with no resolution to this controversy in sight. This work presents observations of SSI taken using a ground-based Fourier Transform spectrometer between 4000-10000 cm-1 at a field site in Camborne, UK, with particular focus on a rigorously defined uncertainty budget. While there is good agreement between this work and the commonly-used ATLAS3 spectrum between 7000-10000 cm-1, the SSI is systematically lower by 10% than ATLAS3 between 4000-7000 cm-1, with no overlap within the k = 2 measurement uncertainties.

  19. Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas

    International Nuclear Information System (INIS)

    Dong, Yue

    2014-01-01

    This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling

  20. Spectral and angle dependent emission of solar fluorescence collectors

    Energy Technology Data Exchange (ETDEWEB)

    Straeter, Hendrik; Knabe, Sebastian; Bauer, Gottfried H. [Institute of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg (Germany)

    2011-07-01

    Fluorescence collectors (FCs) provide the option for concentration and simultaneous spectral selection of solar photons of direct or diffuse light. The energetic and commercial benefit of these systems depend on the yield of the conversion of solar photons into luminescence photons and on the efficiency of their respective conductance to the edges of the FC where they are coupled into appropriate solar cells. For the characterization of the performance of FCs and the identification of losses, we have performed angle and spectrally resolved measurements of fluorescence photons from FC with two different types of optical designs, a PMMA substrate with homogeneous depth dependent dye concentration and a novel type of FC, which consist of a transparent substrate with a thin overlayer containing the absorbing and emitting dye. We have recorded the edge fluorescence when illuminating the entire FC surface laterally homogeneously, as well as for slit-like excitation on the front surface with variation of the distance of the illuminated slit from the edge. We compare the experimental fluorescence results with a 2-dimensional ray-tracing approach and verify the spectral and angle dependent edge emission. Moreover we illuminate the FC with long wavelength photons which are not absorbed and conclude, again from angle dependent and spectrally resolved edge emission, on scattering losses at surfaces and in the bulk.

  1. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  2. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement.

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  3. Influence of spectral solar radiation to the generating power of photovoltaic module; Taiyo denchi shutsuryoku eno taiyoko supekutoru eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Minaki, S.; Ishihara, Y.; Todaka, T.; Harada, K. [Doshisha University, Kyoto (Japan); Oshiro, T.; Nakamura, H. [Japan quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    As to the influence of spectral solar radiation to generating power of solar cells, a study was conducted from the aspects of season, time zone, intensity of solar radiation, etc. In the study, spectral responsive variation correction coefficients were introduced as evaluation values expressing the influence of spectral solar radiation. For the spectral distribution, an all sky spectral pyranometer by wavelength was used, and data were used which were obtained in the measurement in experimental facilities of the solar techno center. Concerning solar cell relative spectral sensitivity values, used were relative spectral sensitivity values of monocrystal and amorphous standard solar cells to the short-circuit current. Spectral response variation correction coefficients are coefficients correcting variations in conversion efficiency of solar cells due to changes in the spectral distribution. The changes of spectral responsive variation correction coefficients were studied using data obtained during April 1994 and March 1996. As a result, it was found that the coefficients showed large changes in summer and small ones in winter and that amorphous solar cells indicate this trend conspicuously. 3 refs., 6 figs., 3 tabs.

  4. Extreme ultraviolet spectral irradiance measurements since 1946

    Science.gov (United States)

    Schmidtke, G.

    2015-03-01

    In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial

  5. SORCE SIM Level 3 Solar Spectral Irradiance Daily Means V020

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SIM Solar Spectral Irradiance (SSI) data product SOR3SIMD is constructed using measurements from the SIM instruments, which are combined into merged daily...

  6. SORCE SIM Level 3 Solar Spectral Irradiance Daily Means V022

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SIM Solar Spectral Irradiance (SSI) data product SOR3SIMD is constructed using measurements from the SIM instruments, which are combined into merged daily...

  7. Calculating spectral direct solar irradiance, diffuse and global in Heredia, Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    A spectral model under conditions of clear skies has described the flow of solar irradiation and is verified experimentally in Heredia, Costa Rica. A description of the model is presented by comparing its results with experimental measurements. The model has calculated the spectral flows of the global solar irradiation, direct and diffuse incident on a horizontal surface. Necessary input data include latitude, altitude, surface albedo as characteristics of a locality, and atmospheric characteristics: turbidity, precipitable water vapor, total ozone content and the optical thickness of a particular subject. The results show satisfactory values. (author) [es

  8. Design principles and field performance of a solar spectral irradiance meter

    Energy Technology Data Exchange (ETDEWEB)

    Tatsiankou, V.; Hinzer, K.; Haysom, J.; Schriemer, H.; Emery, K.; Beal, R.

    2016-08-01

    A solar spectral irradiance meter (SSIM), designed for measuring the direct normal irradiance (DNI) in six wavelength bands, has been combined with models to determine key atmospheric transmittances and the resulting spectral irradiance distribution of DNI under all sky conditions. The design principles of the SSIM, implementation of a parameterized transmittance model, and field performance comparisons of modeled solar spectra with reference radiometer measurements are presented. Two SSIMs were tested and calibrated at the National Renewable Energy Laboratory (NREL) against four spectroradiometers and an absolute cavity radiometer. The SSIMs' DNI was on average within 1% of the DNI values reported by one of NREL's primary absolute cavity radiometers. An additional SSIM was installed at the SUNLAB Outdoor Test Facility in September 2014, with ongoing collection of environmental and spectral data. The SSIM's performance in Ottawa was compared against a commercial pyrheliometer and a spectroradiometer over an eight month study. The difference in integrated daily spectral irradiance between the SSIM and the ASD spectroradiometer was found to be less than 1%. The cumulative energy density collected by the SSIM over this duration agreed with that measured by an Eppley model NIP pyrheliometer to within 0.5%. No degradation was observed.

  9. Measuring solar reflectance - Part II: Review of practical methods

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23 ], and to within 0.02 for surface slopes up to 12:12 [45 ]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R{sub g,0}{sup *}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R{sub g,0}{sup *} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R{sub g,0}{sup *} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R{sub g,0}{sup *} to within about 0.01. (author)

  10. Correction for spectral mismatch effects on the calibration of a solar cell when using a solar simulator

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, C.H.

    1981-01-15

    A general expression has been derived to enable calculation of the calibration error resulting from simulator-solar AMX spectral mismatch and from reference cell-test cell spectral mismatch. The information required includes the relative spectral response of the reference cell, the relative spectral response of the cell under test, and the relative spectral irradiance of the simulator (over the spectral range defined by cell response). The spectral irradiance of the solar AMX is assumed to be known.

  11. Total and Spectral Solar Irradiance Sensor (TSIS) Project Status

    Science.gov (United States)

    Carlisle, Candace

    2018-01-01

    TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).

  12. Spectral solar irradiance and some optical properties for various polluted atmospheres

    International Nuclear Information System (INIS)

    Jacovides, Constantinos P.; Asimakopoulos, Demosthenis N.; Steven, Michael D.

    2000-01-01

    Using ground-based spectroradiometric measurements taken over the Athens atmosphere during May 1995, the influence of gaseous pollutants and aerosol on the spectral radiant energy distribution was investigated. It was found that spectral measurements exhibited variations based on various polluted urban atmospheric conditions as determined via gaseous pollutants record analysis. The relative attenuations cause by gaseous pollutants and aerosol can exceed 27%, 17% and 16% in the global ultraviolet, visible and near-infrared portions of the solar spectrum respectively, as compared to 'background' values. In contrast, an enhancement of the near-infrared diffuse component by 66%, was observed, while in visible and ultraviolet bands the relative increases reached 54% and 21% respectively. Experimental total Rayleigh-corrected and spectral aerosol optical depths were retrieved, representing differences in polluted air over the Athens atmosphere. The diffuse component accounts for more than 80% of the total radiation field under high polluted atmosphere. The observed differences of solar radiation between the Athens center and at a nearby suburban site are a manifestation of contrasting air properties provided mainly by automotive traffic. (Author)

  13. Quality assessment of solar UV irradiance measured with array spectroradiometers

    Science.gov (United States)

    Egli, Luca; Gröbner, Julian; Hülsen, Gregor; Bachmann, Luciano; Blumthaler, Mario; Dubard, Jimmy; Khazova, Marina; Kift, Richard; Hoogendijk, Kees; Serrano, Antonio; Smedley, Andrew; Vilaplana, José-Manuel

    2016-04-01

    The reliable quantification of ultraviolet (UV) radiation at the earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers (ASRMs) are small, light, robust and cost-effective instruments, and are increasingly used for spectral irradiance measurements. Within the European EMRP ENV03 project "Solar UV", new devices, guidelines and characterization methods have been developed to improve solar UV measurements with ASRMs, and support to the end user community has been provided. In order to assess the quality of 14 end user ASRMs, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the blind intercomparison revealed that ASRMs, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema-weighted UV index - in particular at large solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available ASRMs within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range of solar zenith angles. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 and 400 nm under all atmospheric conditions.

  14. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  15. SORCE SOLSTICE FUV Level 3 Solar Spectral Irradiance Daily Means V012

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Far-UV Solar Spectral Irradiance (SSI) data product SOR3SOLFUVD is constructed using measurements from the SOLSTICE FUV instrument, which are...

  16. Procedure for measuring the solar reflectance of flat or curved roofing assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen [Heat Island Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stern, Stephanie [Cool Roof Rating Council, Oakland, CA 94612 (United States)

    2008-07-15

    The widely used methods to measure the solar reflectance of roofing materials include ASTM standards E903 (spectrometer), C1549 (reflectometer), and E1918 (pyranometer). Standard E903 uses a spectrometer with an integrating sphere to measure the solar spectral reflectance of an area approximately 0.1 cm{sup 2}. The solar spectral reflectance is then weighted with a solar spectral irradiance to calculate the solar reflectance. Standard C1549 uses a reflectometer to measure the solar reflectance of an area approximately 5 cm{sup 2}. Both E903 and C1549 are best suited to measurement of the solar reflectance of flat, homogeneous surfaces. Standard E1918 uses a pyranometer to measure the solar reflectance of an area approximately 10 m{sup 2}, and is best applied to large surfaces that may also be rough and/or non-uniform. We describe a technique that uses a pyranometer to measure the solar reflectance of a uniform or variegated sample with diffusely reflective surface of an area of approximately 1 m{sup 2}, and use this technique (referred to as E1918A) to measure the solar reflectances of low- and high-profile tile assemblies. For 10 large (10 m{sup 2}) tile assemblies whose E1918 solar reflectances ranged from 0.10 to 0.50, the magnitude of the difference between the E1918A and E1918 measurements did not exceed 0.02 for unicolor assemblies, and did not exceed 0.03 for multicolor assemblies. (author)

  17. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  18. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  19. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    Science.gov (United States)

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  20. Spectral response of a polycrystalline silicon solar cell

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1994-10-01

    A theoretical study of the spectral response of a polycrystalline silicon n-p junction solar cell is presented. The case of a fibrously oriented grain structure, involving grain boundary recombination velocity and grain size effects is discussed. The contribution of the base region on the internal quantum efficiency Q int is computed for different grain sizes and grain boundary recombination velocities in order to examine their influence. Suggestions are also made for the determination of base diffusion length in polycrystalline silicon solar cells using the spectral response method. (author). 15 refs, 4 figs

  1. "Calibration" system for spectral measurements and its experimental results

    Science.gov (United States)

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  2. Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system

    International Nuclear Information System (INIS)

    Busarev, Vladimir V; Prokof'eva-Mikhailovskaya, Valentina V; Bochkov, Valerii V

    2007-01-01

    A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets. (instruments and methods of investigation)

  3. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.

  4. Experimental investigation of simple solar radiation spectral model performances under a Mediterranean Algerian's climate

    International Nuclear Information System (INIS)

    Koussa, Mustapha; Saheb-Koussa, Djohra; Hadji, Seddik

    2017-01-01

    In this work, models are presented that, under cloudless atmosphere conditions, calculate solar spectral normal direct and horizontal diffuse irradiance. Based on different monochromatic transmission factors related to the main constituents of the atmosphere, the models evaluate the spectral irradiance between 0.29 and 4.0 μm. Absorption by water vapor, uniformly mixed gas, and ozone are considered as well as scattering by the atmospheric aerosols. Based on the equations relative to each one of the two retained models, a MATLAB program is developed to evaluate the spectral distribution of each solar irradiance component. Hence, the geographical coordinates of the site, and the monochromatic distribution of the extraterrestrial irradiance are used as input data. From three-year data measurement records made in Bouzareah site (temperate climate), thirty eight days characterized by a clear sky state have been selected from over different months of the year and the corresponding main meteorological parameters used as input parameters. So, because only the five-minute broadband data measurements are available, the modified numerical trapeze method is used to integrate the monochromatic curve values related to each solar irradiance component. Consequently, the precipitable water vapor amount, the Angstrom and Linke turbidity factors are evaluated and a multi-linear correlation relating the Linke turbidity factor to the precipitable water vapor and the Angstrom turbidity coefficient is established. Hence, according to the mean values of Linke and Angstrom turbidity factors and those of the precipitable water vapor, the site of Bouzareah is classified as a rural site. So, the effect of the main constituents of the atmosphere on the spectral distribution of solar irradiance is discussed and, it is also observed that the aerosol amount contained in the atmosphere affects most both of the diffuse and direct solar irradiance amount than that of the horizontal and inclined

  5. A differential spectral responsivity measurement system constructed for determining of the spectral responsivity of a single- and triple-junction photovoltaic cells

    Science.gov (United States)

    Sametoglu, Ferhat; Celikel, Oguz; Witt, Florian

    2017-10-01

    A differential spectral responsivity (DSR) measurement system has been designed and constructed at National Metrology Institute of Turkey (TUBITAK UME) to determine the spectral responsivity (SR) of a single- or a multi-junction photovoltaic device (solar cell). The DSR setup contains a broad band light bias source composed of a constructed Solar Simulator based on a 1000 W Xe-arc lamp owning a AM-1.5 filter and 250 W quartz-tungsten-halogen lamp, a designed and constructed LED-based Bias Light Sources, a DC voltage bias circuit, and a probe beam optical power tracking and correction circuit controlled with an ADuC847 microcontroller card together with an embedded C based software, designed and constructed in TUBITAK UME under this project. By using the constructed DSR measurement system, the SR calibration of solar cells, the monolitic triple-junction solar cell GaInP/GaInAs/Ge and its corresponding component cells have been performed within the EURAMET Joint Research Project SolCell.

  6. Information Retrieval from SAGE II and MFRSR Multi-Spectral Extinction Measurements

    Science.gov (United States)

    Lacis, Andrew A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Direct beam spectral extinction measurements of solar radiation contain important information on atmospheric composition in a form that is essentially free from multiple scattering contributions that otherwise tend to complicate the data analysis and information retrieval. Such direct beam extinction measurements are available from the solar occultation satellite-based measurements made by the Stratospheric and Aerosol Gas Experiment (SAGE II) instrument and by ground-based Multi-Filter Shadowband Radiometers (MFRSRs). The SAGE II data provide cross-sectional slices of the atmosphere twice per orbit at seven wavelengths between 385 and 1020 nm with approximately 1 km vertical resolution, while the MFRSR data provide atmospheric column measurements at six wavelengths between 415 and 940 nm but at one minute time intervals. We apply the same retrieval technique of simultaneous least-squares fit to the observed spectral extinctions to retrieve aerosol optical depth, effective radius and variance, and ozone, nitrogen dioxide, and water vapor amounts from the SAGE II and MFRSR measurements. The retrieval technique utilizes a physical model approach based on laboratory measurements of ozone and nitrogen dioxide extinction, line-by-line and numerical k-distribution calculations for water vapor absorption, and Mie scattering constraints on aerosol spectral extinction properties. The SAGE II measurements have the advantage of being self-calibrating in that deep space provides an effective zero point for the relative spectral extinctions. The MFRSR measurements require periodic clear-day Langley regression calibration events to maintain accurate knowledge of instrument calibration.

  7. Ground-based spectral measurements of solar radiation, (2)

    International Nuclear Information System (INIS)

    Murai, Keizo; Kobayashi, Masaharu; Goto, Ryozo; Yamauchi, Toyotaro

    1979-01-01

    A newly designed spectro-pyranometer was used for the measurement of the global (direct + diffuse) and the diffuse sky radiation reaching the ground. By the subtraction of the diffuse component from the global radiation, we got the direct radiation component which leads to the spectral distribution of the optical thickness (extinction coefficient) of the turbid atmosphere. The measurement of the diffuse sky radiation reveals the scattering effect of aerosols and that of the global radiation allows the estimation of total attenuation caused by scattering and absorption of aerosols. The effects of the aerosols are represented by the deviation of the real atmosphere measured from the Rayleigh atmosphere. By the combination of the measured values with those obtained by theoretical calculation for the model atmosphere, we estimated the amount of absorption by the aerosols. Very strong absorption in the ultraviolet region was recognized. (author)

  8. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    Science.gov (United States)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  9. Making of a solar spectral irradiance dataset I: observations, uncertainties, and methods

    Directory of Open Access Journals (Sweden)

    Schöll Micha

    2016-01-01

    Full Text Available Context. Changes in the spectral solar irradiance (SSI are a key driver of the variability of the Earth’s environment, strongly affecting the upper atmosphere, but also impacting climate. However, its measurements have been sparse and of different quality. The “First European Comprehensive Solar Irradiance Data Exploitation project” (SOLID aims at merging the complete set of European irradiance data, complemented by archive data that include data from non-European missions. Aims. As part of SOLID, we present all available space-based SSI measurements, reference spectra, and relevant proxies in a unified format with regular temporal re-gridding, interpolation, gap-filling as well as associated uncertainty estimations. Methods. We apply a coherent methodology to all available SSI datasets. Our pipeline approach consists of the pre-processing of the data, the interpolation of missing data by utilizing the spectral coherency of SSI, the temporal re-gridding of the data, an instrumental outlier detection routine, and a proxy-based interpolation for missing and flagged values. In particular, to detect instrumental outliers, we combine an autoregressive model with proxy data. We independently estimate the precision and stability of each individual dataset and flag all changes due to processing in an accompanying quality mask. Results. We present a unified database of solar activity records with accompanying meta-data and uncertainties. Conclusions. This dataset can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous SSI record.

  10. Spectral conversion for thin film solar cells and luminescent solar concentrators

    NARCIS (Netherlands)

    Sark, van W.G.J.H.M.; Wild, de J.; Krumer, Z.; Mello Donegá, de C.; Schropp, R.E.I.; Nozik, A.J.; Beard, M.C.; Conibeer, G.

    2014-01-01

    Full spectrum absorption combined with effective generation and collection of charge carriers is a prerequisite for attaining high efficiency solar cells. Two examples of spectral conversion are treated in this chapter, i.e., up-conversion and down-shifting. Up-conversion is applied to thin film

  11. Titanium-based spectrally selective surfaces for solar thermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A D; Holmes, J P

    1983-10-01

    A study of spectrally selective surfaces based on anodic oxide films on titanium is presented. These surfaces have low values of solar absorptance, 0.77, due to the nonideal optical properties of the anodic TiO2 for antireflection of titanium. A simple chemical etching process is described which gives a textured surface with dimensions similar to the wavelengths of solar radiation, leading to spectral selectivity. The performance of this dark-etched surface can be further improved by anodising, and optimum absorbers have been produced with alpha(s) 0.935 and hemispherical emittances (400 K) 0.23. The surface texturing effects a significant improvement in alpha(s) at oblique incidence.

  12. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    Science.gov (United States)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  13. Measurements and modeling of total solar irradiance in X-class solar flares

    International Nuclear Information System (INIS)

    Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  14. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  15. Solar Spectral Lines with Special Polarization Properties for the Calibration of Instrument Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Casini, R.; Alemán, T. del Pino; Judge, P. G. [High Altitude Observatory, National Center for Atmospheric Research 1, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-10-20

    We investigate atomic transitions that have previously been identified as having zero polarization from the Zeeman effect. Our goal is to identify spectral lines that can be used for the calibration of instrumental polarization of large astronomical and solar telescopes, such as the Daniel K. Inouye Solar Telescope, which is currently under construction on Haleakala. We use a numerical model that takes into account the generation of scattering polarization and its modification by the presence of a magnetic field of arbitrary strength. We adopt values for the Landé factors from spectroscopic measurements or semi-empirical results, thus relaxing the common assumption of LS-coupling previously used in the literature. The mechanisms dominating the polarization of particular transitions are identified, and we summarize groups of various spectral lines useful for the calibration of spectropolarimetric instruments, classified according to their polarization properties.

  16. Solar Spectral Irradiance Reconstruction over 9 Millennia from a Composite 14C and 10Be Series

    Science.gov (United States)

    Wu, C. J.; Usoskin, I. G.; Krivova, N.; Kovaltsov, G.; Solanki, S. K.

    2017-12-01

    The Sun is the main external energy source to the Earth and thus the knowledge of solar variability on different time scales is important for understanding the solar influence on the terrestrial atmosphere and climate. The overall energy input and its spectral distribution are described by the total (TSI) and spectral (SSI) solar irradiance, respectively. Direct measurements of the solar irradiance provide information on solar variability on the decadal and shorter time scales, while the sunspot number record covers four centuries. On yet longer time scales only indirect proxies can be used, such as the concentrations of the cosmogenic isotopes 10Be and 14C in terrestrial archives. These isotopes are produced in the terrestrial atmosphere by impinging cosmic rays, whose flux is modulated by solar activity. Therefore the isotope data retrieved from various natural archives around the globe show a very high degree of similarity reflecting changes in the solar activity. Nevertheless, significant short-term deviations can be observed due to the different geochemical production processes and local climatic conditions. We will present the newest TSI/SSI reconstruction over the last 9000 years based on a new consistent composite multi-isotope proxy series. The solar irradiance reconstruction reveals the global and robust pattern of solar variability in the past.

  17. Study on photoelectric parameter measurement method of high capacitance solar cell

    Science.gov (United States)

    Zhang, Junchao; Xiong, Limin; Meng, Haifeng; He, Yingwei; Cai, Chuan; Zhang, Bifeng; Li, Xiaohui; Wang, Changshi

    2018-01-01

    The high efficiency solar cells usually have high capacitance characteristic, so the measurement of their photoelectric performance usually requires long pulse width and long sweep time. The effects of irradiance non-uniformity, probe shielding and spectral mismatch on the IV curve measurement are analyzed experimentally. A compensation method for irradiance loss caused by probe shielding is proposed, and the accurate measurement of the irradiance intensity in the IV curve measurement process of solar cell is realized. Based on the characteristics that the open circuit voltage of solar cell is sensitive to the junction temperature, an accurate measurement method of the temperature of solar cell under continuous irradiation condition is proposed. Finally, a measurement method with the characteristic of high accuracy and wide application range for high capacitance solar cell is presented.

  18. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements

    International Nuclear Information System (INIS)

    Abukassem, I.; Bero, M.A.

    2015-01-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC R film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A 633 ) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11 % for spectral absorbance measurements and 15 % for OD measurements. (authors)

  19. Airborne spectral measurements of surface anisotropy during SCAR-B

    Science.gov (United States)

    Tsay, Si-Chee; King, Michael D.; Arnold, G. Thomas; Li, Jason Y.

    1998-12-01

    During the Smoke, Clouds, and Radiation-Brazil (SCAR-B) deployment, angular distributions of spectral reflectance for vegetated surfaces and smoke layers were measured using the scanning cloud absorption radiometer (CAR) mounted on the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.3 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track ˜3 km in diameter within about 2 min. Although the CAR measurements are contaminated by minor atmospheric effects, results show distinct spectral characteristics for various types of surfaces. Spectral bidirectional reflectances of three simple and well-defined surfaces are presented: cerrado (August 18, 1995) and dense forest (August 25, 1995), both measured in Brazil under nearly clear-sky conditions, and thick smoke layers over dense forest (September 6 and 11, 1995). The bidirectional reflectances of cerrado and dense forest revealed fairly symmetric patterns along the principal plane, with varying maximal strengths and widths spectrally in the backscattering direction. In the shortwave-infrared region the aerosol effect is very small due to low spectral optical depth. Also, these backscattering maxima can be seen on the bidirectional reflectance of smoke layer over dense forest. These detailed measurements of the angular distribution of spectral reflectance can be parameterized by a few independent variables and utilized to retrieve either surface characteristics or aerosol microphysical and optical properties (e.g., size distribution and single-scattering parameters), if proper physical and radiation models are used. The spectral-hemispherical albedo of these surfaces is obtained directly by integrating all angular measurements and is compared with the measured nadir reflectance

  20. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Thomas N.; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S.; Palo, Scott; Rouleau, Colden [University of Colorado, Boulder, CO (United States); Caspi, Amir [Southwest Research Institute, Boulder, CO (United States); Chamberlin, Phillip C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Solomon, Stanley C. [National Center for Atmospheric Research, Boulder, CO (United States); Machol, Janet; Viereck, Rodney [NOAA Space Weather Prediction Center, Boulder, CO (United States)

    2017-02-01

    The goal of the Miniature X-ray Solar Spectrometer ( MinXSS ) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1–10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5–30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS -1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS -1 observations are compared to the Geostationary Operational Environmental Satellite ( GOES ) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.

  1. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N; Koromohara, K; Takayama, H [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  2. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths

    International Nuclear Information System (INIS)

    Anav, A.; Rafanelli, C.; Di Menno, I.; Di Menno, M.

    2004-01-01

    The paper shows a semi-analytical method for environmental and dosimetric applications to evaluate, in clear sky conditions, the solar irradiance and the effective dose rates for some action spectra using only four spectral irradiance values at selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm). The method, named WL4UV, is based on the reconstruction of an approximated spectral irradiance that can be integrated, to obtain the solar irradiance, or convoluted with an action spectrum to obtain an effective dose rate. The parameters required in the algorithm are deduced from archived solar spectral irradiance data. This database contains measurements carried out by some Brewer spectrophotometers located in various geographical positions, at similar altitudes, with very different environmental characteristics: Rome (Italy), Ny Aalesund (Svalbard Islands (Norway)) and Ushuaia (Tierra del Fuego (Argentina)). To evaluate the precision of the method, a double test was performed with data not used in developing the model. Archived Brewer measurement data, in clear sky conditions, from Rome and from the National Science Foundation UV data set in San Diego (CA, USA) and Ushuaia, where SUV 100 spectro-radiometers operate, were drawn randomly. The comparison of measured and computed irradiance has a relative deviation of about ±2%. The effective dose rates for action spectra of Erythema, DNA and non-Melanoma skin cancer have a relative deviation of less than ∼20% for solar zenith angles <50 deg.. (authors)

  3. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices.

    Science.gov (United States)

    McKenna, Barry; Evans, Rachel C

    2017-07-01

    Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  5. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  6. Comprehensive method for analyzing the power conversion efficiency of organic solar cells under different spectral irradiances considering both photonic and electrical characteristics

    International Nuclear Information System (INIS)

    Chong, Kok-Keong; Khlyabich, Petr P.; Hong, Kai-Jeat; Reyes-Martinez, Marcos; Rand, Barry P.; Loo, Yueh-Lin

    2016-01-01

    Highlights: • Method to analyze power-conversion efficiency under various solar irradiance. • Power-conversion efficiency at local irradiance is 5.4% higher than AM1.5G. • Diffuse local irradiance has gain of 23.7–27.9% relative to AM1.5G conditions. • Annual average energy density yield is estimated as 31.89 kW h/m 2 in Malaysia. - Abstract: The solar spectral irradiance varies significantly for different locations and time due to latitude, humidity, cosine effect of incident sunlight, etc. For convenience, the power-conversion efficiency of a solar cell is referenced to the international standard of AM1.5G spectral irradiance, which inevitably leads to varying performance of deployed solar cells under the specific local climate and insolation conditions. To predict the actual performance of solar cells under local climate conditions, we propose a methodology to compute the power-conversion efficiency of organic photovoltaic cells based upon indoor measurement with a solar simulator, the measured local solar spectrum, and making use of both optical and electrical factors. From our study, the annual average energy density yield of poly(3-hexylthiophene):phenyl-C 61 -butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction organic solar cells under the local spectral irradiance of Malaysia is estimated to be 31.89 kW h/m 2 and the power-conversion efficiency is increased by 5.4% compared to that measured under AM1.5G conditions. In addition, diffuse solar irradiance (cloudy condition) was found to be in favor of P3HT:PCBM solar cells, with gain of 23.7–27.9% relative to AM1.5G conditions.

  7. Lanthanide ions as spectral converters for solar cells

    NARCIS (Netherlands)

    van der Ende, B.M.; Aarts, L.; Meijerink, A.

    2009-01-01

    The use of lanthanide ions to convert photons to different, more useful, wavelengths is well-known from a wide range of applications (e.g. fluorescent tubes, lasers, white light LEDs). Recently, a new potential application has emerged: the use of lanthanide ions for spectral conversion in solar

  8. Continuing the Total and Spectral Solar Irradiance Climate Data Record

    Science.gov (United States)

    Coddington, O.; Pilewskie, P.; Kopp, G.; Richard, E. C.; Sparn, T.; Woods, T. N.

    2017-12-01

    Radiative energy from the Sun establishes the basic climate of the Earth's surface and atmosphere and defines the terrestrial environment that supports all life on the planet. External solar variability on a wide range of scales ubiquitously affects the Earth system, and combines with internal forcings, including anthropogenic changes in greenhouse gases and aerosols, and natural modes such as ENSO, and volcanic forcing, to define past, present, and future climates. Understanding these effects requires continuous measurements of total and spectrally resolved solar irradiance that meet the stringent requirements of climate-quality accuracy and stability over time. The current uninterrupted 39-year total solar irradiance (TSI) climate data record is the result of several overlapping instruments flown on different missions. Measurement continuity, required to link successive instruments to the existing data record to discern long-term trends makes this important climate data record susceptible to loss in the event of a gap in measurements. While improvements in future instrument accuracy will reduce the risk of a gap, the 2017 launch of TSIS-1 ensures continuity of the solar irradiance record into the next decade. There are scientific and programmatic motivations for addressing the challenges of maintaining the solar irradiance data record beyond TSIS-1. The science rests on well-founded requirements of establishing a trusted climate observing network that can monitor trends in fundamental climate variables. Programmatically, the long-term monitoring of solar irradiance must be balanced within the broader goals of NASA Earth Science. New concepts for a low-risk, cost efficient observing strategy is a priority. New highly capable small spacecraft, low-cost launch vehicles and a multi-decadal plan to provide overlapping TSI and SSI data records are components of a low risk/high reliability plan with lower annual cost than past implementations. This paper provides the

  9. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  10. Solar spectral irradiance variability of some chromospheric emission lines through the solar activity cycles 21-23

    Directory of Open Access Journals (Sweden)

    Göker Ü.D.

    2017-01-01

    Full Text Available A study of variations of solar spectral irradiance (SSI in the wave-length ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV spectral lines and international sunspot number (ISSN from interactive data centers such as SME (NSSDC, UARS (GDAAC, SORCE (LISIRD and SIDC, respectively. We reduced these data by using the MATLsoftware package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs, contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  11. SORCE XPS Level 3 Solar Spectral Irradiance 6-Hour Means V010

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) 6-Hour Data Product SOR3XPS6 contains solar XUV irradiances in the 0.1 to 27 nm range, as well...

  12. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters.

    Science.gov (United States)

    Huang, Xiaoyong; Han, Sanyang; Huang, Wei; Liu, Xiaogang

    2013-01-07

    Photovoltaic (PV) technologies for solar energy conversion represent promising routes to green and renewable energy generation. Despite relevant PV technologies being available for more than half a century, the production of solar energy remains costly, largely owing to low power conversion efficiencies of solar cells. The main difficulty in improving the efficiency of PV energy conversion lies in the spectral mismatch between the energy distribution of photons in the incident solar spectrum and the bandgap of a semiconductor material. In recent years, luminescent materials, which are capable of converting a broad spectrum of light into photons of a particular wavelength, have been synthesized and used to minimize the losses in the solar-cell-based energy conversion process. In this review, we will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications. In addition, we will also present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.

  13. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  14. PROBING THE SOLAR ATMOSPHERE USING OSCILLATIONS OF INFRARED CO SPECTRAL LINES

    International Nuclear Information System (INIS)

    Penn, M. J.; Schad, T.; Cox, E.

    2011-01-01

    Oscillations were observed across the whole solar disk using the Doppler shift and line center intensity of spectral lines from the CO molecule near 4666 nm with the National Solar Observatory's McMath/Pierce solar telescope. Power, coherence, and phase spectra were examined, and diagnostic diagrams reveal power ridges at the solar global mode frequencies to show that these oscillations are solar p-modes. The phase was used to determine the height of formation of the CO lines by comparison with the IR continuum intensity phase shifts as measured in Kopp et al.; we find that the CO line formation height varies from 425 km μ > 0.5. The velocity power spectra show that while the sum of the background and p-mode power increases with height in the solar atmosphere as seen in previous work, the power in the p-modes only (background subtracted) decreases with height. The CO line center intensity weakens in regions of stronger magnetic fields, as does the p-mode oscillation power. Across most of the solar surface the phase shift is larger than the expected value of 90 0 for an adiabatic atmosphere. We fit the phase spectra at different disk positions with a simple atmospheric model to determine that the acoustic cutoff frequency is about 4.5 mHz with only small variations, but that the thermal relaxation frequency drops significantly from 2.7 to 0 mHz at these heights in the solar atmosphere.

  15. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements.

    Science.gov (United States)

    Abukassem, I; Bero, M A

    2015-04-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC(®) film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A633) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11% for spectral absorbance measurements and 15% for OD measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  17. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  18. Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis.

    Science.gov (United States)

    Wondraczek, Lothar; Tyystjärvi, Esa; Méndez-Ramos, Jorge; Müller, Frank A; Zhang, Qinyuan

    2015-12-01

    Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis. Clearly contrary to application in photovoltaic energy conversion, implementation of solar spectral conversion for extrinsic sensitization of a photosynthetic machinery is very straightforward, and-when compared to intrinsic sensitization-less-strict limitations with regard to quantum coherence are seen. We now argue the ways in which extrinsic sensitization through photoluminescent spectral converters will-and will not-play its role in the area of ultra-efficient photosynthesis, and also illustrate how such extrinsic sensitization requires dedicated selection of specific conversion schemes and design strategies on system scale.

  19. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    Science.gov (United States)

    Czirjak, Daniel

    2017-04-01

    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  20. Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

  1. Evaluation of Sources of Uncertainties in Solar Resource Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of sources of uncertainties in solar resource measurement, demonstrating the impact of various sources of uncertainties -- such as cosine response, thermal offset, spectral response, and others -- on the accuracy of data from several radiometers. The study provides insight on how to reduce the impact of some of the sources of uncertainties.

  2. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  3. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  4. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    OpenAIRE

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-01-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airb...

  5. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    invariance: Iq(f) ~ f-?(q) , ?(q) is the scaling exponent. This allows to characterize the scaling behavior of a process: fractal or multifractal with intermittent properties. For q = 2, the Hilbert spectrum is defined. In this work, The data are collected at the University site of Guadeloupe, an island in the West Indies, located at 16°15 N latitude 60°30 W longitude. Our measurements sampled at 1 Hz were performed during one year period. The analyzed data present a power spectral density E(f) displaying a power law of the form E(f) ~ f-β with 1.6 ˜ β ˜ 2.2 for frequencies f ˜ 0.1 Hz, corresponding to time scales T × 10 s. Furthermore, global solar radiation data possesses multifractal properties. For comparison, other multifractal analysis techniques such as structure functions, MDFA, wavelet leaders are also used. This preliminary work set the basis for further investigation dedicated to simulate and forecast a sequence of solar energy fluctuation under different meteorological conditions, in the multifractal framework.

  6. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  7. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    OpenAIRE

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing Sph...

  8. Spectral Monte Carlo simulation of collimated solar irradiation transfer in a water-filled prismatic louver.

    Science.gov (United States)

    Cai, Yaomin; Guo, Zhixiong

    2018-04-20

    The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.

  9. Analysis of bias voltage dependent spectral response in Ga0.51In0.49P/Ga0.99In0.01As/Ge triple junction solar cell

    International Nuclear Information System (INIS)

    Sogabe, Tomah; Ogura, Akio; Okada, Yoshitaka

    2014-01-01

    Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR −V bias ) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR −V bias for Ga 0.51 In 0.49 P/Ga 0.99 In 0.01 As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR −V bias measurements. The profile of SR−V bias curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell

  10. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    Science.gov (United States)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  11. The Next Spaceflight Solar Irradiance Sensor: TSIS

    Science.gov (United States)

    Kopp, Greg; Pilewskie, Peter; Richard, Erik

    2016-05-01

    The Total and Spectral Solar Irradiance Sensor (TSIS) will continue measurements of the solar irradiance with improved accuracies and stabilities over extant spaceflight instruments. The two TSIS solar-observing instruments include the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) for measuring total- and spectral- solar-irradiance, respectively. The former provides the net energy powering the Earth’s climate system while the latter helps attribute where that energy is absorbed by the Earth’s atmosphere and surface. Both spaceflight instruments are assembled and being prepared for integration on the International Space Station. With operations commencing in late 2017, the TSIS is intended to overlap with NASA’s ongoing SOlar Radiation and Climate Experiment (SORCE) mission, which launched in 2003 and contains the first versions of both the TIM and SIM instruments, as well as with the TSI Calibration Transfer Experiment (TCTE), which began total solar irradiance measurements in 2013. We summarize the TSIS’s instrument improvements and intended solar-irradiance measurements.

  12. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  13. High spectral resolution measurements of a solar flare hard X-ray burst

    International Nuclear Information System (INIS)

    Lin, R.P.; Schwartz, R.A.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1987-01-01

    Observations are reported of an intense solar flare hard X-ray burst on June 27, 1980, made with a balloon-borne array of liquid nitrogen-cooled Ge detector which provided unprecedented spectral resolution (no more than 1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 0.1-1 billion K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting about 3-15 sec, which have a hard spectrum and a break energy of 30-65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 kev to at least 100 keV through the event. The double power-law shape indicates that DC electric field acceleration, similar to that occurring in the earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. 39 references

  14. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  15. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N Y [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N A [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I V; Bushnev, S V; Kondranin, T V [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V U [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1996-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  16. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  17. Voyager microwave scintillation measurements of solar wind plasma parameters

    International Nuclear Information System (INIS)

    Martin, J.M.

    1985-01-01

    During the solar conjunctions of Voyager 1 and 2 spacecraft in August 1979, September 1980, and November 1982, temporal variations of intensity and frequency of the dual-wavelength (3.6 and 13 cm) radio transmissions from the spacecraft were observed and subsequently analyzed to infer characteristics of the solar wind plasma flow. Measurements of the temporal wave structure function were used to estimate the spectral index of the power law spatial spectrum of irregularities. Theoretical-intensity scintillation spectra were compared with measured intensity spectra to obtain least-squares estimates of (1) mean velocity, (2) random velocity, (3) axial ratio, and (4) electron density standard deviation. Uncertainties in parameter estimates were calculated by standard propagation of errors techniques. Mean velocity and electron density standard deviations in 1979-1980 show little dependence on solar latitude. Density standard deviation estimates were 3-10% of the background mean density and mean velocity estimates ranged from approx.200 km/s inside 17 solar radii to approx.300 km/s at 25 solar radii. 1982 density standard deviation estimates increased rapidly with latitude near 45 0 N, then sharply decreased north of that latitude, indicating the existence of a polar region of reduced fluctuations surrounded by a thin cone of strong density irregularities

  18. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    Science.gov (United States)

    Didkovsky, Leonid; Wieman, Seth; Woods, Thomas

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  19. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.

    Science.gov (United States)

    Sekone, Abdoul Karim; Chen, Yu-Bin; Lu, Ming-Chang; Chen, Wen-Kai; Liu, Chia-An; Lee, Ming-Tsang

    2016-12-01

    Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

  20. Heat-Mirror Spectral Profile Optimization for TSC Hybrid Solar Conversion

    Science.gov (United States)

    Soule, D. E.; Wood, S. E.

    1986-09-01

    The efficiencies for total solar cogeneration (TSC) can be optimized by tailoring the transparent heat-mirror (HM) beam splitter spectral profile shape. The entire output is cogenerated by photovoltaic/photothermal conversions into three energy forms: electricity (PV) 18V d.c./module, high-temperature heat (HT) 400°C, and low-temperature heat (LT) 70°C. The emphasis is to maximize the high-quality energy sum PV + HT, while maintaining PV at a high level. A generalized 5-parameter double Fermi model for the HM spectral profile is investigated allowing for a wide parametric range and profile asymmetry. The projected optimized TSC conversion efficiencies are: PV = 14.3%, HT = 43.5%, and LT = 42.2% with a high-quality energy sum of PV + HT = 57.8%. The approach to this optimum HM spectral profile by experimental HM films such as ITO are discussed.

  1. Results of the round robin exercise on IV-measurements of classic Si-solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Van der Borg, N.J.C.M. [ECN Solar Energy, Petten (Netherlands)

    2012-12-15

    A round robin exercise was performed on IV measurements and spectral response measurements of solar cells. Seven partners participated in the exercise. The aim of the round robin was to enable the verification of their measurement facilities and procedures for IV-measurements on 'classic' Si-solar cells by comparing their measurement data with the other participants. In this way possible flaws in the equipment or procedures can be found and corrected for or the measurement uncertainties can be reassessed. The differences between the measurement results of the various partners were more or less within the expected measurement uncertainty although one or more partners may decide to use the results to reexamine their facilities or procedures.

  2. NOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) contains solar spectral irradiance (SSI) as a function of time and wavelength created with the Naval Research Laboratory model for...

  3. Spectral irradiance curve calculations for any type of solar eclipse

    International Nuclear Information System (INIS)

    Deepak, A.; Merrill, J.E.

    1974-01-01

    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = /sub c/(1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail. (U.S.)

  4. Cross-Calibrating Sunspot Magnetic Field Strength Measurements from the McMath-Pierce Solar Telescope and the Dunn Solar Telescope

    Science.gov (United States)

    Watson, Fraser T.; Beck, Christian; Penn, Matthew J.; Tritschler, Alexandra; Pillet, Valentín Martinez; Livingston, William C.

    2015-11-01

    In this article we describe a recent effort to cross-calibrate data from an infrared detector at the McMath-Pierce Solar Telescope and the Facility InfraRed Spectropolarimeter (FIRS) at the Dunn Solar Telescope. A synoptic observation program at the McMath-Pierce has measured umbral magnetic field strengths since 1998, and this data set has recently been compared with umbral magnetic field observations from SOHO/MDI and SDO/HMI. To further improve on the data from McMath-Pierce, we compared the data with measurements taken at the Dunn Solar Telescope with far greater spectral resolution than has been possible with space instrumentation. To minimise potential disruption to the study, concurrent umbral measurements were made so that the relationship between the two datasets can be most accurately characterised. We find that there is a strong agreement between the umbral magnetic field strengths recorded by each instrument, and we reduced the FIRS data in two different ways to successfully test this correlation further.

  5. Solar UV Variations During the Decline of Cycle 23

    Science.gov (United States)

    DeLand, Matthew, T.; Cebula, Richard P.

    2011-01-01

    Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements

  6. Designing a dual-mode broadband solar spectral converter: The example of Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+}-tridoped perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li-Tian; Wu, Xuan-Ming; Wang, Ting; Chen, Dong-Ju; Deng, Chao; Meng, Jian-Xin, E-mail: tmjx@jnu.edu.cn; Cao, Li-Wei

    2016-07-15

    A promising dual-mode broadband solar spectral converter CaTiO{sub 3}: Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+} was successfully developed by solid-stated reaction. The structure, photoluminescence (PL), photoluminescence excitation (PLE) and diffuse reflectance (DR) spectra in the UV–vis–NIR region have been systematically investigated. The results show that the as-prepared samples simultaneously exhibit two distinct spectral converting patterns, nonlinear quantum-cutting (QC) involving Bi{sup 3+}–Ti{sup 4+} metal-to-metal charge transfer state (BT-MMCTs) → Yb{sup 3+}: {sup 2}F{sub 5/2} + Yb{sup 3+}: {sup 2}F{sub 5/2} and linear downshift (DS) involving Cr{sup 3+}: {sup 4}T{sub 2} → Yb{sup 3+}: {sup 2}F{sub 5/2}. It deduces that the nonlinear QC is based on a cooperative energy transfer (CET) process while the linear DS belongs to a dipole–dipole mechanism. With the present converter, broadband UV–vis (300–700 nm) photons, which are not fully utilized by the existing c-Si solar cells, can be efficiently harvested and converted into ∼1000 nm NIR photons via the dual-mode mechanism. Moreover, not only the PLE spectrum of CaTiO{sub 3}: Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+} matched well with that of the solar radiation, but also its NIR emission peak position fell well over the spectral response of the commercial crystalline Si (c-Si) solar cells. This as-prepared dual-mode solar spectral converter with multiple advantages can simultaneously realize high quantum yield and broadband conversion, which offers a new and effective way to boost the conversion efficiency of c-Si solar cells. We believe this novel design of dual-mode solar spectral converters can inspire a direction for the synthesis of more advanced UV–vis–NIR phosphors that can be used in Si solar cells. - Highlights: • A dual-mode broadband solar spectral converter is designed and developed. • The energy transfer mechanism relies on quantum-cutting as well as downshift. • The PLE

  7. Extraction of optical parameters of thin films from spectral measurements for design and optical performance of multilayer structures

    International Nuclear Information System (INIS)

    Muellerova, J.; Jurecka, S.; Kucerova, A.

    2003-01-01

    Optical parameters of a-Si:H and indium tin oxide (ITO) thin films deposited on glass substrates are determined from spectral measurements of reflectance and/or transmittance. It is shown how important the exact knowledge of optical parameters as well as thicknesses of the layers for the design and the optical performance of multilayer structures is. The model of the p-i-n based a:Si-H solar cell with ITO as transparent conductive oxide layer is used for illustrating. The modeling of the solar cell integral reflectance in the spectral region of (650-830) nm is used as a criterion to reverse engineering of a multilayer structure with suppressed reflectance losses. The reflectance of a solar cell is modelled and the simulation of the varying optical parameters of individual layers including their thicknesses is discussed. Besides this,the advantage of using an antireflective layer under ITO is discussed (Authors)

  8. Analysis of bias voltage dependent spectral response in Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Sogabe, Tomah, E-mail: Sogabe@mbe.rcast.u-tokyo.ac.jp; Ogura, Akio; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8504 (Japan)

    2014-02-21

    Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR −V{sub bias}) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR −V{sub bias} for Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR −V{sub bias} measurements. The profile of SR−V{sub bias} curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell.

  9. Low-Cost Spectral Sensor Development Description.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  10. From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development.

    Science.gov (United States)

    Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen

    2017-01-01

    Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.

  11. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    Science.gov (United States)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  12. Measuring and prediction of global solar ultraviolet radiation (0295-0385 μ m) under clear and cloudless skies

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Values of global solar ultraviolet radiation were measured with an ultraviolet radiometer and also predicted with a atmospheric spectral model. The values obtained with the atmospheric spectral model, based physically, were analyzed and compared with experimental values measured in situ. Measurements were performed for different zenith angles in conditions of clear skies in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparison between measured and predicted values have been successful. (author) [es

  13. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  14. An automatic measuring system for mapping of spectral and angular dependence of direct and diffuse solar radiation; Et automatisk maalesystem for kartlegging av vinkel- og spektralfordeling av direkte og diffus solstraaling

    Energy Technology Data Exchange (ETDEWEB)

    Grandum, Oddbjoern

    1997-12-31

    In optimizing solar systems, it is necessary to know the spectral and angular dependence of the radiation. The general nonlinear character of most solar energy systems accentuates this. This thesis describes a spectroradiometer that will measure both the direct component of the solar radiation and the angular dependence of the diffuse component. Radiation from a selected part of the sky is transported through a movable set of tube sections on to a stationary set of three monochromators with detectors. The beam transport system may effectively be looked upon as a single long tube aimed at a particular spot in the sky. The half value of the effective opening angle is 1.3{sup o} for diffuse radiation and 2.8{sup o} for direct radiation. The whole measurement process is controlled and operated by a PC and normally runs without manual attention. The instrument is built into a caravan. The thesis describes in detail the experimental apparatus, calibration and measurement accuracies. To map the diffuse radiation, one divides the sky into 26 sectors of equal solid angle. A complete measurement cycle is then made at a random point within each sector. These measurements are modelled by fitting to spherical harmonics, enforcing symmetry around the solar direction and the horizontal plane. The direct radiation is measured separately. Also the circumsolar sector is given special treatment. The measurements are routinely checked against global radiation measured in parallel by a standard pyranometer, and direct solar radiation by a pyrheliometer. An extensive improvement programme is being planned for the instrument, including the use of a photomultiplier tube to measure the UV part of the spectrum, a diode array for the 400-1100 nm range, and use of a Ge diode for the 1000-1900 nm range. 78 refs., 90 figs., 31 tabs.

  15. Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays

    Science.gov (United States)

    Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2017-05-01

    Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.

  16. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  17. FIVE YEARS OF SYNTHESIS OF SOLAR SPECTRAL IRRADIANCE FROM SDID/SISA AND SDO /AIA IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Fontenla, J. M. [NorthWest Research Associates, Boulder, CO 80301 (United States); Codrescu, M. [Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO 80305 (United States); Fedrizzi, M.; Fuller-Rowell, T. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Hill, F. [National Solar Observatory, Boulder, CO 80303 (United States); Landi, E. [Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Woods, T., E-mail: johnf@digidyna.com [Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303 (United States)

    2017-01-01

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm is used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010–2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010–2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere–ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.

  18. Spectral interferometric length measurement and tomography

    International Nuclear Information System (INIS)

    Pinkl, W.

    1998-01-01

    This work presents a new method for optical length measurement using the principles of spectral interferometry. Results of thickness measurements on glass plates, the human cornea in vivo and human finger and toe nails in vivo and in vitro are discussed. It could be demonstrated that the absorption coefficient of red and green ink can be measured depth sensitive. Another chapter describes a new technique to measure a thickness profile of a sample within the illuminating beam. It could be demonstrated that a thickness profile over a distance of a few millimeters can be measured with one single measurement. At the Institute of Medical Physics of the University of Vienna a method to measure intraocular distances by the means of interferometry has been developed during the last ten years. Basing on this method (dual beam interferometry) an optical in vivo tomography experiment could be established. A thickness map of the retina of a human eye in vivo can be easily measured. The dual beam technique uses a Michelson interferometer with a moving mirror to adjust the length of the interferometer arms. The mirror is moved by a stepper motor. This movement induces vibrations, misalignment and other disadvantages. So mechanically moved parts as reasons for possible errors should be eliminated. This work shows one possible solution - using the principle of spectral interferometry. A spectral interferometry experiment is a static experiment, no moving parts are used. A spectral interferometry experiment has been used to measure the thickness of glass plates and stacks of glass plates. Using two light sources of different wavelengths spectral absorption properties of a sample can be measured depth sensitive. This could be demonstrated with stacks of glass plates and the use of red and green ink between two plates. The obtained results are compared to the results of a computer simulation. To demonstrate the ability of spectral interferometry to measure the thickness of biologic

  19. Solar surface magnetism and irradiance on time scales

    NARCIS (Netherlands)

    Domingo, V.; Ermolli, I.; Fox, P.; Fröhlich, C.; Haberreiter, M.; Krivova, N.; Kopp, G.; Schmutz, W.; Solanki, S.K.; Spruit, H.C.; Unruh, Y.C.; Vögler, A.

    2009-01-01

    The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance

  20. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    Science.gov (United States)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  1. Simulation for spectral response of solar-blind AlGaN based p-i-n photodiodes

    Science.gov (United States)

    Xue, Shiwei; Xu, Jintong; Li, Xiangyang

    2015-04-01

    In this article, we introduced how to build a physical model of refer to the device structure and parameters. Simulations for solar-blind AlGaN based p-i-n photodiodes spectral characteristics were conducted in use of Silvaco TCAD, where device structure and parameters are comprehensively considered. In simulation, the effects of polarization, Urbach tail, mobility, saturated velocities and lifetime in AlGaN device was considered. Especially, we focused on how the concentration-dependent Shockley-Read-Hall (SRH) recombination model affects simulation results. By simulating, we analyzed the effects in spectral response caused by TAUN0 and TAUP0, and got the values of TAUN0 and TAUP0 which can bring a result coincides with test results. After that, we changed their values and made the simulation results especially the part under 255 nm performed better. In conclusion, the spectral response between 200 nm and 320 nm of solar-blind AlGaN based p-i-n photodiodes were simulated and compared with test results. We also found that TAUN0 and TAUP0 have a large impact on spectral response of AlGaN material.

  2. Spectral broadening of planetary radar signals by the solar wind

    International Nuclear Information System (INIS)

    Harmon, J.K.; Coles, W.A.

    1983-01-01

    The microturbulence spectrum of the solar wind is estimated using the spectral broadening of planetary radar signals. Observations were made with the two radars (12.6 cm and 70 cm) at Arecibo Observatory during the 1979 and 1981 superior conjunctions of Venus. These observations, which span the solar distance range of 5.4 to 25.5 R/sub sun/, are the first of their type to be reported. The data are consistent with earlier observations where comparisons can be made. The flattening of the high-frequency portion of the spectrum near the Sun reported by Woo and Armstrong is confirmed. In one case clear evidence for an inner scale in the vicinity of 2 km is found. Two transients, 1979 August 15 and 1981 April 24-25, with rather different characteristics were observed

  3. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  4. Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind

    International Nuclear Information System (INIS)

    Borovsky, Joseph E.

    2010-01-01

    Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  5. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    Directory of Open Access Journals (Sweden)

    Wen Guoyong

    2017-01-01

    Full Text Available We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor based, the other the SATIRE (Spectral And Total Irradiance REconstruction modeled, as inputs to the GISS (Goddard Institute for Space Studies GCMAM (Global Climate Middle Atmosphere Model to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm and total solar irradiance (TSI. From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of ~0.1 °C to SATIRE solar forcing compared to ~0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  6. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    Science.gov (United States)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  7. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  8. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Habte, Aron; Sengupta, Manajit; Kutchenreiter, Mark

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.

  9. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    Science.gov (United States)

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  10. COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité (France)

    2016-06-10

    In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.

  11. COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud

    2016-01-01

    In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.

  12. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  13. Magnetic fields in proton solar flare of X17.2/4B class according to data of simultaneous measurements in a few spectral lines

    Science.gov (United States)

    Lozitsky, V.; Lozitska, N.

    2017-06-01

    Spectral-polarized magnetic field measurements in solar flare of 28 October 2003 of X17.2/4B class are compared in six FeI lines and in Hα line. Observations were carried out on Echelle spectrograph of horizontal solar telescope of Astronomical Observatory of Taras Shevchenko National University of Kyiv. Presented data relate to peak phase of flare and a place of photosphere outside sunspots where effective (average) magnetic field in FeI 6302.5 line was about 100 G and had S polarity. Measured splitting of emissive peaks in cores of strong FeI lines of 15th multiplet correspond to stronger fields, in range 550-700 G and S polarity too. Noticeablre splitting of emissive peaks (11-20 mÅ) were found also in Fe I 5434.527 line with effective Lande factor geff = -0.014. Value of this splitting and its sign indicate the existence of extremely strong fields of 25-50 kG of opposite (N) polarity which had negative Doppler velocities (lifting of plasma) on level of 1.7-2.2 km/sec. Magnetic field according to Hα line was 300 G and N polarity. Presented results indicate the essential inhomogeneity of magnetic field in flare volume which include the opposite polarities along the line of sight and wide range of effective magnetic fields.

  14. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    Science.gov (United States)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  15. Measuring the iron spectral opacity in solar conditions using a double ablation front scheme

    Energy Technology Data Exchange (ETDEWEB)

    Colaitis, A. [Centre Lasers Intenses et Applications, Talence (France); CEA/DRF/IRFU/DAp, CEA Saclay (France); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Ducret, J. E. [Centre Lasers Intenses et Applications, Talence (France); CEA/DRF/IRFU/DAp, CEA Saclay (France); Turck-Chieze, S [CEA/DRF/IRFU/DAp, CEA Saclay (France); Pennec, M L [CEA/DRF/IRFU/DAp, CEA Saclay (France); CEA/DIF, Arpajon (France); Blancard, C [CEA/DIF, Arpajon (France)

    2018-01-22

    We propose a new method to achieve hydrodynamic conditions relevant for the investigation of the radiation transport properties of the plasma at the base of the solar convection zone. The method is designed in the framework of opacity measurements with high-power lasers and exploits the temporal and spatial stability of hydrodynamic parameters in counter-propagating Double Ablation Front (DAF) structures.

  16. Selective paint coatings for coloured solar absorbers: Polyurethane thickness insensitive spectrally selective (TISS) paints (Part II)

    Energy Technology Data Exchange (ETDEWEB)

    Orel, B.; Spreizer, H.; Surca Vuk, A.; Fir, M. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Merlini, D.; Vodlan, M. [Color d.d., Cesta komandanta Staneta 4, SI-1230 Medvode (Slovenia); Koehl, M. [Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2007-01-23

    Red, green and blue paints were prepared for use as thickness insensitive spectrally selective (TISS) paint coatings for solar facade absorbers. The paints were composed of a polyurethane resin binder in which various pigments were incorporated in such a way that they formed stable paint dispersions, satisfying stability criteria for facade coatings. A low emittance of the paints was achieved by using low-emittance aluminium flake pigments combined with iron oxide (red coloured paints). Black pigment was added to adjust solar absorptance. Blue and green paints were made by the addition of coloured aluminium flake pigment and the solar absorptance was also adjusted by the addition of black pigment. Efficiency for photo-thermal conversion of solar radiation was assessed by evaluation of the corresponding performance criteria, which enabled the selection of paints whose performance criteria values were higher than 0 (spectrally non-selective black coating). The results confirmed that blue and green paints and to minor extent red ones, combined selectivity with colour. The morphology of the paints was assessed, revealing that the colours originated from the deposition of finely dispersed colour and/or black pigment on the surface of the aluminium flakes during paint preparation. (author)

  17. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  18. ESTABLISHING A CONNECTION BETWEEN ACTIVE REGION OUTFLOWS AND THE SOLAR WIND: ABUNDANCE MEASUREMENTS WITH EIS/HINODE

    International Nuclear Information System (INIS)

    Brooks, David H.; Warren, Harry P.

    2011-01-01

    One of the most interesting discoveries from Hinode is the presence of persistent high-temperature high-speed outflows from the edges of active regions (ARs). EUV imaging spectrometer (EIS) measurements indicate that the outflows reach velocities of 50 km s -1 with spectral line asymmetries approaching 200 km s -1 . It has been suggested that these outflows may lie on open field lines that connect to the heliosphere, and that they could potentially be a significant source of the slow speed solar wind. A direct link has been difficult to establish, however. We use EIS measurements of spectral line intensities that are sensitive to changes in the relative abundance of Si and S as a result of the first ionization potential (FIP) effect, to measure the chemical composition in the outflow regions of AR 10978 over a 5 day period in 2007 December. We find that Si is always enhanced over S by a factor of 3-4. This is generally consistent with the enhancement factor of low FIP elements measured in situ in the slow solar wind by non-spectroscopic methods. Plasma with a slow wind-like composition was therefore flowing from the edge of the AR for at least 5 days. Furthermore, on December 10 and 11, when the outflow from the western side was favorably oriented in the Earth direction, the Si/S ratio was found to match the value measured a few days later by the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer. These results provide strong observational evidence for a direct connection between the solar wind, and the coronal plasma in the outflow regions.

  19. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    Science.gov (United States)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  20. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Science.gov (United States)

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Application of LBIC measurements for characterisation of triple junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kwarikunda, N., E-mail: Nicholas.kwarikunda@live.nmmu.ac.za [Nelson Mandela Metropolitan University, P.O. BOX 77000, Port Elizabeth, 6031 (South Africa); Makerere University, P.O. BOX 7062, Kampala (Uganda); Dyk, E.E. van; Vorster, F.J. [Nelson Mandela Metropolitan University, P.O. BOX 77000, Port Elizabeth, 6031 (South Africa); Okullo, W. [Makerere University, P.O. BOX 7062, Kampala (Uganda); Munji, M.K. [Kenyatta University, P.O. BOX 43844-00100, Nairobi (Kenya)

    2014-04-15

    In this study the Light Beam Induced Current (LBIC) imaging technique was used to characterise InGaP/InGaAs/Ge triple junction solar cells. The study focused on the use of monochromatic and solar light as beam probes to obtain photocurrent response maps from which the presence of any current reducing features on the solar cell were identified. Point illuminated current voltage (I–V) curves were obtained simultaneously while LBIC scanning measurements were being made. Curve fitting using an interval division algorithm based on the single diode model was performed to extract basic point device and performance parameters to give a rough indication of the functioning of the triple junction device. Using red and blue lasers as beam probes, reverse voltage breakdown was observed on the I–V curves which could be attributed to the Ge bottom subcell not being fully activated. The extracted parameters obtained when using monochromatic and solar light beam probes showed a large variation, indicating the dependence of I–V parameters on the spectral content of the beam probe.

  2. Application of LBIC measurements for characterisation of triple junction solar cells

    International Nuclear Information System (INIS)

    Kwarikunda, N.; Dyk, E.E. van; Vorster, F.J.; Okullo, W.; Munji, M.K.

    2014-01-01

    In this study the Light Beam Induced Current (LBIC) imaging technique was used to characterise InGaP/InGaAs/Ge triple junction solar cells. The study focused on the use of monochromatic and solar light as beam probes to obtain photocurrent response maps from which the presence of any current reducing features on the solar cell were identified. Point illuminated current voltage (I–V) curves were obtained simultaneously while LBIC scanning measurements were being made. Curve fitting using an interval division algorithm based on the single diode model was performed to extract basic point device and performance parameters to give a rough indication of the functioning of the triple junction device. Using red and blue lasers as beam probes, reverse voltage breakdown was observed on the I–V curves which could be attributed to the Ge bottom subcell not being fully activated. The extracted parameters obtained when using monochromatic and solar light beam probes showed a large variation, indicating the dependence of I–V parameters on the spectral content of the beam probe.

  3. Aerosol Characterization at PSA from Spectral and Broadband Measurements of Solar Radiation; Caracterizacion de los Aerosoles en la PSA a partir de Medidas Espectrales y de Banda Ancha de Radiacion Solar

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, P.; Polo, J.; Campos, A.; Espinar, B.

    2006-07-01

    When passing through the atmosphere, the solar radiation suffers extinction processes with and intensity that depends on the atmosphere state. Some of the attenuation mechanisms, in particular those oflicht scattering, are spectrally selective, and thus, the solar spectrum at the earth's surface can change drastically from one place to another. This fact can be used on the determination of some of the Earth atmosphere components. The case of aerosol turbidity has a particular interest due to its high variability. In mis work different methodologies for aerosol characterization are presented, Aerosol optical depth, turbidity and Angstrom exponent are determined by them. Moreover, a comparison among the different methods is established and two heat haze events occurring during summer in PSA (Tabernas) are analyzed. (Author) 18 refs.

  4. A Method to Reconstruct the Solar-Induced Canopy Fluorescence Spectrum from Hyperspectral Measurements

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-10-01

    Full Text Available A method for canopy Fluorescence Spectrum Reconstruction (FSR is proposed in this study, which can be used to retrieve the solar-induced canopy fluorescence spectrum over the whole chlorophyll fluorescence emission region from 640–850 nm. Firstly, the radiance of the solar-induced chlorophyll fluorescence (Fs at five absorption lines of the solar spectrum was retrieved by a Spectral Fitting Method (SFM. The Singular Vector Decomposition (SVD technique was then used to extract three basis spectra from a training dataset simulated by the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes. Finally, these basis spectra were linearly combined to reconstruct the Fs spectrum, and the coefficients of them were determined by Weighted Linear Least Squares (WLLS fitting with the five retrieved Fs values. Results for simulated datasets indicate that the FSR method could accurately reconstruct the Fs spectra from hyperspectral measurements acquired by instruments of high Spectral Resolution (SR and Signal to Noise Ratio (SNR. The FSR method was also applied to an experimental dataset acquired in a diurnal experiment. The diurnal change of the reconstructed Fs spectra shows that the Fs radiance around noon was higher than that in the morning and afternoon, which is consistent with former studies. Finally, the potential and limitations of this method are discussed.

  5. Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence

    Science.gov (United States)

    Vech, Daniel; Mallet, Alfred; Klein, Kristopher G.; Kasper, Justin C.

    2018-03-01

    The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well-defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a “disruption scale” {λ }{{D}}, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius ρ i , ion inertial length d i , ion sound radius ρ s , proton–cyclotron resonance scale ρ c , and disruption scale {λ }{{D}} as a function of {β }\\perp i. We find that the steepest spectral indices of the dissipation range occur when β e is in the range of 0.1–1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 au), in qualitative agreement with the reconnection model. In this range, the break scale shows a remarkably good correlation with {λ }{{D}}. Our findings suggest that, at least at low β e , reconnection may play an important role in the development of the dissipation range turbulent cascade and cause unusually steep (steeper than ‑3) spectral indices.

  6. Determination of space charge region width and diffusion length in Cu(In,Ga)(S,Se)2 absorber from solar cell spectral characteristic

    International Nuclear Information System (INIS)

    Tivanov, M.; Mazanik, A.; Drozdov, N.; Zaretskaya, E.

    2010-01-01

    Full text : The space-charge region width and diffusion length of minority charge carriers in the base region (Cu(In,Ga)(S,Se) 2 absorber) are the most important parameters of the solar cell. These parameters determine the efficiency of a solar cell therefore the problem of their control is essential. In this work it is present simple non-destructive method of extracting the parameters of Cu(In,Ga)(S,Se) 2 -based solar cell (space-charge region width and diffusion length of minority charge carriers in Cu(In,Ga)(S,Se) 2 absorber) from the analysis of solar cell spectral photoresponse. The method is based on one-dimensional model of a solar cell and on the change of in-depth distribution of the photogenerated carriers in the solar cell and, hence, on the change of its photoresponse with the wave-length variation. The following assumptions are accepted: the reflection of charge carriers from a back contact and the ''drawing'' field in the quasi-neutral area of the absorber layers are absent, window and buffer layers are transparent in the analyzed part of photoresponse spectrum, the injection level of minority charge carriers is low, the recombination losses at the metallurgical p-n-junction interface of the studied photosensitive structure linearly depend on the photocurrent density. For the calculation it is necessary to obtain the following set of the experimental data: the spectral density of incident radiation, the spectral dependence of photocurrent or photovoltage of the studied photosensitive structure, the spectral dependences of optical absorption coefficient and reflectance.

  7. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff

  8. A home-made system for IPCE measurement of standard and dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio [Organic OptoElectronics Laboratory, Sincrotrone Trieste SCpA—SS 14.5, km 163.5, 34149 Basovizza (TS) (Italy); Fraleoni-Morgera, Alessandro, E-mail: alessandro.fraleoni@elettra.trieste.it, E-mail: afraleoni@units.it [Organic OptoElectronics Laboratory, Sincrotrone Trieste SCpA—SS 14.5, km 163.5, 34149 Basovizza (TS) (Italy); Flextronics Laboratory, Department of Engineering and Architecture, University of Trieste. V. Valerio 10, 34100 Trieste (TS) (Italy)

    2015-01-15

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.

  9. A home-made system for IPCE measurement of standard and dye-sensitized solar cells.

    Science.gov (United States)

    Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio; Fraleoni-Morgera, Alessandro

    2015-01-01

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.

  10. FSD: Frequency Space Differential measurement of CMB spectral distortions

    Science.gov (United States)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-04-01

    Although the Cosmic Microwave Background agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method, Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum, in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody which can be modeled for known sources of spectral distortions like y & μ. Our technique uses FSD information for the CMB blackbody, y, μ or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  11. Round robins of solar cells to evaluate measurement systems of different european research institutes

    Energy Technology Data Exchange (ETDEWEB)

    Manshanden, P.; Van der Brog, N.J.C.M. [ECN Solar, Westerduinweg 3, 1755 LE Petten (Netherlands); Bliss, M.; Mihaylov, B.; Gottschlag, R. [CREST, Holywell Park MBG GJ/Gx, Loughborough Univeristy, Leicestershire, LE11 3TU (United Kingdom); Izzi, M.; Tucci, M. [ENEA CASACCIA, Via Anguillarese 301, 00123 Roma (Italy); Roca, F.; Pellegrino, M.; Romano, A.; Graditi, G. [ENEA PORTICI, P. le E. Fermi Localita Granatello, 80055 Portici Napoli (Italy); Hohl-Ebinger, J.; Warta, W. [Fraunhofer ISE, Berliner Allee 30, 79110 Freiburg (Germany); Debucquoy, M.; El Daif, O.; Gordon, I. [IMEC, Kapeldreef 75, B-3001 Heverlee (Belgium); Champliaud, J.; Jouini, A. [INES, 50 avenue du lac Leman, BP 332, 73377, Le Bourget-du-Lac (France); Glatz-Reichenbach, J. [ISC, Rudolf Diesel Str. 15, D-78467 Konstanz (Germany); Bothe, K. [ISFH, Am Ohrberg 1, 31860 Emmerthal (Germany); Herguth, A. [University of Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany)

    2013-10-15

    Determination of the solar cell efficiency and internal quantum efficiency are standard characterization methods used by the majority of research institutes. Random errors can be assessed by institutes themselves by repeated measurements, but systematic deviations cannot be assessed without comparisons with other institutes. The comparisons were performed for illuminated IV, spectral response and reflection measurements. The results were split into systematic differences between the partners and random differences within an institute for a single measurement session. The total differences are: J{sub sc}: 0.27 A, V{sub oc}: 8.5 mV, FF: 2.4 %, {eta}: 0.6%, spectral response: 0.14 A/W and reflection: 0.08. For all measurement methods, the systematic differences exceeded the random differences. The major component for the systematic differences is likely the reference device, but also temperature control, contacting scheme and setup differences play a part.

  12. Airborne spectral measurements of surface-atmosphere anisotropy during the SCAR-A, Kuwait oil fire, and TARFOX experiments

    Science.gov (United States)

    Soulen, Peter F.; King, Michael D.; Tsay, Si-Chee; Arnold, G. Thomas; Li, Jason Y.

    2000-04-01

    During the SCAR-A, Kuwait Oil Fire Smoke Experiment, and TARFOX deployments, angular distributions of spectral reflectance for various surfaces were measured using the scanning Cloud Absorption Radiometer (CAR) mounted on the nose of the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.47 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track approximately 3 km in diameter within about 2 min. Spectral bidirectional reflectances of four surfaces are presented: the Great Dismal Swamp in Virginia with overlying haze layer, the Saudi Arabian Desert and the Persian Gulf in the Middle East, and the Atlantic Ocean measured east of Richmond, Virginia. Although the CAR measurements are contaminated by atmospheric effects, results show distinct spectral characteristics for various types of surface-atmosphere systems, including hot spots, limb brightening and darkening, and Sun glint. In addition, the hemispherical albedo of each surface-atmosphere system is calculated directly by integrating over all high angular-resolution CAR measurements for each spectral channel. Comparing the nadir reflectance with the overall hemispherical albedo of each surface, we find that using nadir reflectances as a surrogate for hemispherical albedo can cause albedos to be underestimated by as much as 95% and overestimated by up to 160%, depending on the type of surface and solar zenith angle.

  13. Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Johan Nijs

    2007-01-01

    Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.

  14. High resolution measurements of solar induced chlorophyll fluorescence in the Fraunhofer oxigen bands

    Science.gov (United States)

    Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.

    2017-11-01

    Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.

  15. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  16. Solar-Iss a New Solar Reference Spectrum Covering the Far UV to the Infrared (165 to 3088 Nm) Based on Reanalyzed Solar/solspec Cycle 24 Observations

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.

    2017-12-01

    Since April 5, 2008 and until February 15, 2017, the SOLSPEC (SOLar SPECtrometer) spectro-radiometer of the SOLAR facility on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements, unique by their large spectral coverage and long time range, are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry), noticeably through the "top-down" mechanism amplifying ultraviolet (UV) solar forcing effects on the climate (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and troposphere regions). SOLAR/SOLSPEC, with almost 9 years of observations covering the essential of the unusual solar cycle 24 from minimum in 2008 to maximum, allowed to establish new reference solar spectra from UV to IR (165 to 3088 nm) at minimum (beginning of mission) and maximum of activity. The complete reanalysis was possible thanks to revised engineering corrections, improved calibrations and advanced procedures to account for thermal, aging and pointing corrections. The high quality and sensitivity of SOLSPEC data allow to follow temporal variability in UV but also in visible along the cycle. Uncertainties on these measurements are evaluated and results, absolute reference spectra and variability, are compared with other measurements (WHI, ATLAS-3, SCIAMACHY, SORCE/SOLSTICE, SORCE/SIM) and models (SATIRE-S, NRLSSI, NESSY)

  17. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  18. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells

    KAUST Repository

    Del Gobbo, Silvano; Castrucci, P.; Fedele, S.; Riele, L.; Convertino, A.; Morbidoni, M.; De Nicola, F.; Scarselli, M.; Camilli, L.; De Crescenzi, M.

    2013-01-01

    Photovoltaic devices based on single wall carbon nanotubes (SWCNTs) and n-silicon multiple heterojunctions have been fabricated by a SWCNT film transferring process. We report on the ability of the carbon nanotubes to extend the Si spectral range towards the near ultraviolet (UV) and the near infrared regions. Semiconducting and about metallic SWCNT networks have been studied as a function of the film sheet resistance, Rsh. Optical absorbance and Raman spectroscopy have been used to assign nanotube chirality and electronic character. This gave us hints of evidence of the participation of the metal nanotubes in the photocurrent generation. Moreover, we provide evidence that the external quantum efficiency spectral range can be modulated as a function of the SWCNT network sheet resistance in a hybrid SWCNT/Si solar cell. This result will be very useful to further design/optimize devices with improved performance in spectral regions generally not covered by conventional Si p-n devices. © 2013 The Royal Society of Chemistry.

  19. Calculating the diffuse solar radiation in regions without solar radiation measurements

    International Nuclear Information System (INIS)

    Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin

    2012-01-01

    Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.

  20. Estimation and analysis of spectral solar radiation over Cairo

    International Nuclear Information System (INIS)

    Abdel Wahab, M.M.; Omran, M.

    1994-05-01

    This work presents a methodology to estimate spectral diffuse and global radiation on horizontal surface. This method is validated by comparing with measured direct and global spectral radiation in four bands. The results show a good performance in cloudless conditions. The analysis of the ratio of surface values to extraterrestrial ones revealed an over-all depletion in the summer months. Also there was no evidence for any tendency for conversion of radiational components through different bands. The model presents excellent agreement with the measured values for (UV/G) ratio. (author). 7 refs, 4 figs, 3 tabs

  1. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  2. Solar energy R + D programme, 1979-1983. Project F: solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Individual presentations report work in the following areas: production of test reference years for model simulation of solar systems and components; global radiation atlas for horizontal surfaces; radiation data on inclined surfaces; intensity thresholds and cumulative frequency curves; useful energy output from solar collectors; network comparison of pyranometers; measurements of turbidity, spectral radiation, etc.; satellite data. (LEW)

  3. Glue Film Thickness Measurements by Spectral Reflectance

    International Nuclear Information System (INIS)

    Marshall, B.R.

    2010-01-01

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 (micro)m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  4. Glue Film Thickness Measurements by Spectral Reflectance

    Energy Technology Data Exchange (ETDEWEB)

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  5. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  6. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters

    DEFF Research Database (Denmark)

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim

    2017-01-01

    radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. Methods: We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high......-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale...... with our specialist knowledge as occupational physicians. Conclusions: Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support...

  7. SORCE and Future Satellite Observations of Solar Irradiance

    Science.gov (United States)

    Cahalan, Robert F.; Rottman, G.; Woods, T.; Lawrence, G.; Kopp, G.; Harder, J.; McClintock, W.

    2003-01-01

    With solar activity just passing the maximum of cycle 23, SORCE is beginning a 5 year mission to measure total solar irradiance (TSI) with unprecedented accuracy using phase-sensitive detection, and to measure spectral solar irradiance (SSI) with unprecedented spectral coverage, from 1 to 2000 nm. The new Total Irradiance Monitor (TIM) has 4 active cavity radiometers, any one of which can be used as a fixed-temperature reference against any other that is exposed to the Sun via a shutter that cycles at a rate designed to minimize noise at the shutter frequency. The new Spectral Irradiance Monitor (SIM) is a dual Fery prism spectrometer that can employ either prism as a monochromatic source on the other prism, thus monitoring its transmission during the mission lifetime. Either prism can measure SSI from 200 to 2000 nm, employing the same phase-sensitive electrical substitution strategy as TIM. SORCE also carries dual SOLSTICE instruments to cover the spectral range 100-320 nm, similar to the instruments onboard UARS, and also an XUV Photometer System (XPS) similar to that on TIMED. SSI has now been added to TSI as a requirement of EOS and NPOESS, because different spectral components drive different components of the climate system - UV into upper atmosphere and stratospheric ozone, IR into tropospheric water vapor and clouds, and Visible into the oceans and biosphere. Succeeding satellite missions being planned for 2006 and 2011 will continue to monitor these critical solar variables.

  8. Proposed geological solar neutrino measurement

    International Nuclear Information System (INIS)

    Cowan, G.A.; Haxton, W.C.

    1982-01-01

    It may be possible to measure the boron-8 solar neutrino flux, averaged over the past several million years, from the concentration of technetium-98 in molybdenum-rich ore. This geochemical experiment could provide the first test of nonstandard solar models that suggest a relation between the chlorine-37 solar neutrino puzzle and the most recent glacial epoch. The necessary conditions for achieving a meaningful measurement are identified and discussed

  9. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  10. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  11. Long-term uvb forecasting on the basis of spectral and broad-band measurements

    Science.gov (United States)

    Bérces, A.; Gáspár, S.; Kovács, G.; Rontó, G.

    2003-04-01

    The stratospheric ozone concentration has been investigated by several methods, e.g. determinations of the ozone layer using a network of ground based spectrophotometers, of the Dobson and the Brewer types. These data indicate significant decrease of the ozone layer superimposed by much larger seasonal changes at specific geographical locations. The stratospheric ozone plays an important role in the attenuation of the short-wavelength components of the solar spectrum, thus the consequence of the decreased ozone layer is an increased UVB level. Various pyranometers measuring the biological effect of environmental UV radiation have been constructed with spectral sensitivities close to the erythema action spectrum defined by the CIE. Using these erythemally weighted broad-band instruments to detect the tendency of UVB radiation controversial data have been found. To quantify the biological risk due to environmental UV radiation it is reasonable to weight the solar spectrum by the spectral sensitivity of the DNA damage taking into account the high DNA-sensitivity at the short wavelength range of the solar spectrum. Various biological dosimeters have been developed e.g. polycrystalline uracil thin layer. These are usually simple biological systems or components of them. Their UV sensitivity is a consequence of the DNA-damage. Biological dosimeters applied for long-term monitoring are promising tools for the assessment of the biological hazard. Simultaneous application of uracil dosimeters and Robertson-Berger meters can be useful to predict the increasing tendency of the biological UV exposure more precisely. The ratio of the biologically effective dose obtained by the uracil dosimeter (a predominately UVB effect) and by the Robertson-Berger meter (insensitive to changes below 300 nm) is a sensitive method for establishing changes in UVB irradiance due to changes in ozone layer.

  12. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2017-09-01

    Full Text Available The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow. Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C.In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S, λ2 = 1650 nm (sensitive to τ, and λ3 = 2100 nm (sensitive to reff, C are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012 were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice

  13. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES

    International Nuclear Information System (INIS)

    Song Qiwu; Huang Guangli; Nakajima, Hiroshi

    2011-01-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  14. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    International Nuclear Information System (INIS)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 10 47 cm –3 and 1.1 × 10 48 cm –3 . Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  15. SphinX Measurements of the 2009 Solar Minimum X-Ray Emission

    Science.gov (United States)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 1047 cm-3 and 1.1 × 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  16. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Kuzin, S. [P. N. Lebedev Physical Institute (FIAN), Russian Academy of Sciences, Leninsky Prospect 53, Moscow 119991 (Russian Federation); Farnik, F. [Astronomical Institute, Ondrejov Observatory (Czech Republic); Reale, F. [Dipartimento di Fisica, Universita di Palermo, Palermo, Italy, and INAF, Osservatorio Astronomico di Palermo, Palermo (Italy); Phillips, K. J. H., E-mail: js@cbk.pan.wroc.pl [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 Multiplication-Sign 10{sup 47} cm{sup -3} and 1.1 Multiplication-Sign 10{sup 48} cm{sup -3}. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  17. Solar Energy Measurement Using Arduino

    OpenAIRE

    Jumaat Siti Amely; Othman Mohamad Hilmi

    2018-01-01

    This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR) sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was...

  18. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  19. Solar Measurement and Modeling | Grid Modernization | NREL

    Science.gov (United States)

    Measurement and Modeling Solar Measurement and Modeling NREL supports grid integration studies , industry, government, and academia by disseminating solar resource measurements, models, and best practices have continuously gathered basic solar radiation information, and they now gather high-resolution data

  20. Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1100 nm range

    Energy Technology Data Exchange (ETDEWEB)

    Canada, J.; Maj, A. [Departamento de Termodinamica Aplicada, Universidad Politecnica de Valencia, Camino de Vera, s/n. 46022 Valencia (Spain); Utrillas, M.P.; Martinez-Lozano, J.A.; Pedros, R.; Gomez-Amo, J.L. [Departamento de Fisica de la Tierra y Termodinamica, Facultat de Fisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain)

    2007-10-15

    An automatic global and direct solar spectral irradiance system has been designed based on two LICOR spectro radiometers equipped with fibre optics and remote cosine sensors. To measure direct irradiance a sun tracker based on step motors has been developed. The whole system is autonomous and works continuously. From the measurements provided by this system a spectral irradiance database in the 330-1100 nm range has been created. This database contains normal direct and global horizontal irradiances as well as diffuse irradiance on a horizontal plane, together with total atmospheric optical thickness and aerosol optical depth. (author)

  1. Spectral evolution of energetic neutral atom emissions at the heliospheric poles as measured by IBEX during its first three years

    Energy Technology Data Exchange (ETDEWEB)

    Dayeh, M. A.; Allegrini, F.; Desai, M. I.; Ebert, R. W.; Fuselier, S. A.; Livadiotis, G.; McComas, D. J.; Schwadron, N. A. [Southwest Research Institute, San Antonio, TX 78228 (United States); DeMajistre, R. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Janzen, P.; Reisenfeld, D. [University of Montana, Missoula, MT 59812 (United States); Siewert, M., E-mail: maldayeh@swri.edu [Institut für Astronomie der Universität Bonn, Abteilung f. Astrophysik und Extraterrestrische Forschung, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-12-10

    The Interstellar Boundary Explorer (IBEX) mission continues to measure energetic neutral atom (ENA) emissions produced by charge exchange between solar wind (SW) protons and interstellar neutrals at the edge of our heliosphere. Using the first 3 yr of IBEX-Hi ENA measurements (2009-2011), we examined the spectral evolution of ∼0.5-6 keV ENAs at the polar regions (above 60°). We found the following: (1) pixels with a characteristic 'ankle' spectra (lower spectral index at higher energies) increase by ∼5% in 2010 and ∼10% in 2011 compared to 2009. (2) The averaged spectral index in 2011 is smaller than that of 2009. (3) The slope of the ENA spectrum above ∼1.7 keV is more variable than the slope below ∼1.7 keV. The lower spectral index at higher energies of the spectrum does not appear to be caused by an increase of the ENA production at these energies, but rather from a consistent decrease at lower energies. (4) The decrease in polar ENA fluxes does not correlate significantly with the averaged SW dynamic pressure, back-traced in time to 1 AU along the flow streamlines (originating between 10° and 30° for slow SW, and 60° and 80° for fast SW), assuming these are the respective conditions of ENA progenitors back in time. These results provide insights into the complexity of relating the slow and fast SW contributions to polar ENAs and shed light on how the solar output and the resulting change in the global heliospheric structure possibly affect the heliosheath (HS) populations.

  2. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, Beijing, 100871, China, E-mail: jshept@gmail.com (China); Zhang, Lei [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Vocks, Christian [Leibniz-Institut für Astrophysik Potsdam, 14482, Potsdam (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, 24118 Kiel (Germany); Peter, Hardi [Max Plank Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)

    2016-03-25

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.

  3. Influence of the spectral distribution of a solar simulator and of the outer diffuse radiation in the estimation of the optical yield of a thermal solar receiver; Influencia de la distribucion espectral de un simulador solar y de la radiacion difusa exterior en la estimacion del rendimiento optico de un captador solar termico

    Energy Technology Data Exchange (ETDEWEB)

    Sallaberry, F.; Garcia de Jalon, A.; Ramirez, L.; Olano, X.; Bernad, I.; Erice, R.

    2008-07-01

    In this paper we will show the results of the analysis of factors that influence the estimation of optical efficiency of solar thermal collectors testes according to the European standard UNE-EN 12975-2. Indoor tests with solar simulator involve control of the spectrum of its lamps to ensure that the difference with the Sun one does not change the optical efficiency {eta}{sub 0} of the collector. For outdoor tests, the diffuse radiation should be control as well. In the laboratory (LCS) of CENER, solar collectors tests are done according to part 6.1 of the standard UNE{sub E}N 12975-2 in continuous solar simulator. This study estimated the spectral correction applied to the estimation of optical efficiency of some solar collectors, with different selective materials. Likewise, we will weight the influence of terms related to diffuse radiation and spectral distribution. (Author)

  4. Remote sensing of potential and actual daily transpiration of plant canopies based on spectral reflectance and infrared thermal measurements: Concept with preliminary test

    International Nuclear Information System (INIS)

    Inoue, Y.; Moran, M.S.; Pinter, P.J.Jr.

    1994-01-01

    A new concept for estimating potential and actual values of daily transpiration rate of vegetation canopies is presented along with results of an initial test. The method is based on a physical foundation of spectral radiation balance for a vegetation canopy, the key inputs to the model being the remotely sensed spectral reflectance and the surface temperature of the plant canopy. The radiation interception or absorptance is estimated more directly from remotely sensed spectral data than it is from the leaf area index. The potential daily transpiration is defined as a linear function of the absorbed solar radiation, which can be estimated using a linear relationship between the fraction absorptance of solar radiation and the remotely sensed Soil Adjusted Vegetation Index for the canopy. The actual daily transpiration rate is estimated by combining this concept with the Jackson-Idso Crop Water Stress Index, which also can be calculated from remotely sensed plant leaf temperatures measured by infrared thermometry. An initial demonstration with data sets from an alfalfa crop and a rangeland suggests that the method may give reasonable estimates of potential and actual values of daily transpiration rate over diverse vegetation area based on simple remote sensing measurements and basic meteorological parameters

  5. Time-resolved spectral measurements above 80 A

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Ceglio, N.; Medecki, H.

    1983-01-01

    We have made time-resolved spectral measurements above 80 A from laser-produced plasmas. These are made using a transmission grating spectrograph whose primary components are a cylindrically-curved x-ray mirror for light collection, a transmission grating for spectral dispersions, and an x-ray streak camera for temporal resolution. A description of the instrument and an example of the data are given

  6. Experimental evaluation of noise spectral density to investigate structure defects and electrical behavior of solar cells

    International Nuclear Information System (INIS)

    Ashur, S. M.

    2007-01-01

    In this work current voltage characteristics and voltage spectral density, in both forward and reverse bias operations were evaluated for a group of mono- crystalline silicon solar cells. The cells were tested for the sake of device quality evaluation and identification of failure modes and mechanisms. Experimental results showed transport characteristics with varying slopes. In addition, electrical noise density versus frequency response, for the constant voltage mode, showed an extremum of noise voltage spectral density at zero D.C. frequency. It decreased with increasing frequency and revealed spikes of the noise voltage density at certain frequencies. (author)

  7. Solar cell efficiency measurements

    International Nuclear Information System (INIS)

    Ostoja, P.

    1989-01-01

    Solar cells (and solar modules) have to be tested for their performance by means of sound reliable measurement procedures. The need for such measurements arises at various stages of research, of production, and of photovoltaic systems sizing and dimensioning. In fact, accurate measurements are necessary to the researcher, who studies new materials and new processes, to the manufacturer, who has to control his product and, finally, to the user, who needs sound measurements, in order to be in a position to make effective decisions about what kink of product will be needed and with what critical characteristics. In short, standard measurements that allow cells and modules to be characterized serve as a common language, allowing effective communication about products and requirements. 3 refs

  8. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  9. Optical depth retrievals from Delta-T SPN1 measurements of broadband solar irradiance at ground

    Science.gov (United States)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick

    2016-04-01

    The SPN1 radiometer, manufactured by Delta-T Devices Ltd., is an instrument designed for the measurement of global solar irradiance and its components (diffuse, direct) at ground level. In the present study, the direct irradiance component has been used to retrieve an effective total optical depth, by applying the Beer-Lambert law to the broadband measurements. The results have been compared with spectral total optical depths derived from two Cimel CE318 and Prede POM01 sun-sky radiometers, located at the Burjassot site in Valencia (Spain), during years 2013 - 2015. The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. In turn, the Beer-Lambert law has been applied to the broadband direct solar component to obtain an effective total optical depth, representative of the total extinction in the atmosphere. For the assessment of the total optical depth values retrieved with the SPN1, two different sun-sky radiometers (Cimel CE318 and Prede POM01L) have been employed. Both instruments belong to the international networks AERONET and SKYNET. The modified SUNRAD package has been applied in both Cimel and Prede instruments. Cloud affected data has been removed by applying the Smirnov cloud-screening procedure in the SUNRAD algorithm. The broadband SPN1 total optical depth has been analysed by comparison with the spectral total optical depth from the sun-sky radiometer measurements at wavelengths 440, 500, 675, 870 and 1020 nm. The slopes and intercepts have been estimated to be 0.47 - 0.98 and 0.055 - 0.16 with increasing wavelength. The average correlation coefficients and RMSD were 0.80 - 0.83 and 0.034 - 0.036 for all the channels. The

  10. Chapter 1: Reliably Measuring the Performance of Emerging Photovoltaic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rumbles, Garry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reese, Matthew O [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Marshall, Ashley [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-08

    Determining the power conversion efficiency of photovoltaic solar cells, especially those from new, emerging areas of technology, is important if advances in performance are to be made. However, although precise measurements are important, it is the accuracy of these types of measurements that can cause issues. Accurate measurements not only promote the development of new technology platforms, but they also enable comparisons with established technologies and allow assessments of advancements within the same field. This chapter provides insights into how measurements can be made with reasonable accuracy using both the components of the measuring system and a good protocol to acquire good data. The chapter discusses how to measure a calibrated lamp spectrum, determine a spectral mismatch factor, identify the correct reference cell and filter, define the illuminated active area, measure J-V curves to avoid any hysteresis effects, take note of sample degradation issues and avoid the temptation to artificially enhance efficiency data.

  11. Extreme ultraviolet (EUV) solar spectral irradiance (SSI) for ionospheric application - history and contemporary state-of-art

    Science.gov (United States)

    Schmidtke, G.; Jacobi, Ch.; Nikutowski, B.; Erhardt, Ch.

    2014-11-01

    After a historical survey of space related EUV measurements in Germany and the role of Karl Rawer in pursuing this work, we describe present developments in EUV spectroscopy and provide a brief outlook on future activities. The group of Karl Rawer has performed the first scientific space project in Western Europe on 19th October 1954. Then it was decided to include the field of solar EUV spectroscopy in ionospheric investigations. Starting in 1957 an intensified development of instrumentation was going on to explore solar EUV radiation, atmospheric airglow and auroral emissions until the institute had to stop space activities in the early nineteen-eighties. EUV spectroscopy was continued outside of the institute during eight years. This area of work was supported again by the institute developing the Auto-Calibrating Spectrometers (SolACES) for a mission on the International Space Station (ISS). After more than six years in space the instrument is still in operation. Meanwhile the work on the primary task also to validate EUV data available from other space missions has made good progress. The first results of validating those data and combine them into one set of EUV solar spectral irradiance are very promising. It will be recommended for using it by the science and application community. Moreover, a new low-cost type of an EUV spectrometer is presented for monitoring the solar EUV radiation. It shall be further developed for providing EUV-TEC data to be applied in ionospheric models replacing the Covington index F10.7. Applying these data for example in the GNSS signal evaluation a more accurate determination of GNSS receiver positions is expected for correcting the propagation delays of navigation signals traveling through the ionosphere from space to earth. - Latest results in the field of solar EUV spectroscopy are discussed, too.

  12. Performance of spectral fitting methods for vegetation fluorescence quantification

    NARCIS (Netherlands)

    Meroni, M.; Busetto, D.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W.

    2010-01-01

    The Fraunhofer Line Discriminator (FLD) principle has long been considered as the reference method to quantify solar-induced chlorophyll fluorescence (F) from passive remote sensing measurements. Recently, alternative retrieval algorithms based on the spectral fitting of hyperspectral radiance

  13. The CubeSat Imaging X-ray Solar Spectrometer (CubIXSS) Mission Concept

    Science.gov (United States)

    Caspi, Amir; Shih, Albert Y.; Warren, Harry; DeForest, Craig; Laurent, Glenn Thomas; Schwartz, Richard A.; Woods, Thomas N.; Mason, James; Palo, Scott; Steslicki, Marek; Sylwester, Janusz; Gburek, Szymon; Mrozek, Tomasz; Kowalinski, Miroslaw; Torre, Gabriele; Crowley, Geoffrey; Schattenburg, Mark

    2017-08-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics, origins, and evolution of these energetic processes, providing probes both into the temperature distributions and elemental compositions of hot plasmas; spatially-resolved measurements are critical for understanding energy transport and mass flow. A better understanding of the thermal plasma improves our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed small satellite mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-FastSDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. Multiple detectors and tailored apertures provide sensitivity to a wide range of solar conditions, optimized for a launch during solar minimum. The precise spectra from these instruments will provide detailed measurements of the coronal temperature distribution and elemental abundances from the quiet Sun to active regions and flares. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a custom pinhole camera and Chandra-heritage X-ray transmission diffraction grating to provide spatially- resolved, full-Sun imaging spectroscopy from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. MOXSI’s unique capabilities enable SXR spectroscopy and temperature diagnostics of individual

  14. Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement

    CERN Document Server

    Bahcall, J N; Peña-Garay, C; Bahcall, John N; Peña-Garay, Carlos

    2001-01-01

    For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) using an enhanced CC cross section for deuterium (due to radiative corrections), and 4) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favore...

  15. A theoretical analysis of the impact of atmospheric parameters on the spectral, electrical and thermal performance of a concentrating III–V triple-junction solar cell

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Stark, Cameron; O’Donovan, Tadhg S.

    2016-01-01

    Highlights: • An integrated spectral dependent electrical–thermal model has been developed. • The effect of atmospheric parameters on system’s performance is evaluated. • The HCPV cooling requirements under “hot & dry” conditions are quantified. • Case studies show the impact of heat transfer coefficient on annual energy yield. • The integrated modelling allows the system’s optimisation. - Abstract: The spectral sensitivity of a concentrating triple-junction (3J) solar cell has been investigated. The atmospheric parameters such as the air mass (AM), aerosol optical depth (AOD) and precipitable water (PW) change the distribution of the solar spectrum in a way that the spectral, electrical and thermal performance of a 3J solar cell is affected. In this paper, the influence of the spectral changes on the performance of each subcell and whole cell has been analysed. It has been shown that increasing the AM and AOD have a negative impact on the spectral and electrical performance of 3J solar cells while increasing the PW has a positive effect, although, to a lesser degree. A three-dimensional finite element analysis model is used to quantify the effect of each atmospheric parameter on the thermal performance for a range of heat transfer coefficients from the back-plate to the ambient air and also ambient temperature. It is shown that a heat transfer coefficient greater than 1300 W/(m"2 K) is required to keep the solar cell under 100 °C at all times. In order to get a more realistic assessment and also to investigate the effect of heat transfer coefficient on the annual energy yield, the methodology is applied for four US locations using data from a typical meteorological year (TMY3).

  16. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    Science.gov (United States)

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  17. Solar UVR instrument inter-comparison focussing on measurement interval recording setting and solar zenith angle as important factors

    CSIR Research Space (South Africa)

    Wright, GY

    2015-09-01

    Full Text Available considerations, to make meaningful deductions from the data. By comparing two solar UVR instruments, namely, a UV biometer and a Davis Vantage Pro2 UVR Detector, we look at an important factor influencing ambient solar UVR, namely SZA, and its impact... Vantage Pro2 UV detector comprises a transducer which is a semiconductor photodiode with a spectral response that matches the McKinley/Diffey Erythemal Action Spectrum. It includes a diffuser which provides good cosine response and multiple hard...

  18. Solar-Geophysical Data Number 553, September 1990. Part 1 (prompt reports). Data for August 1990, July 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-09-01

    ;Contents: Detailed index for 1990; Data for August 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and Worldwide), Solar activity indices, Solar flares, Solar radio emission, Standford mean solar magnetic field; Data for July 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Solar radio spectral Bleien and Ondrejov Jun 90, Cosmic ray Huancayo Jun 90, Geomagnetic activity indices May-Jun 90

  19. Faraday rotation fluctutation spectra observed during solar occultation of the Helios spacecraft

    Science.gov (United States)

    Andreev, V.; Efimov, A. I.; Samoznaev, L.; Bird, M. K.

    1995-01-01

    Faraday rotation (FR) measurements using linearly polarized radio signals from the two Helios spacecraft were carried out during the period from 1975 to 1984. This paper presents the results of a spectral analysis of the Helios S-band FR fluctuations observed at heliocentric distances from 2.6 to 15 solar radii during the superior conjunctions 1975-1983. The mean intensity of the FR fluctuations does not exceed the noise level for solar offsets greater than ca. 15 solar radii. The rms FR fluctuation amplitude increases rapidly as the radio ray path approaches the Sun, varying according to a power law (exponent: 2.85 +/- 0.15) at solar distances 4-12 solar radii. At distances inside 4 solar radii the increase is even steeper (exponent: 5.6 +/- 0.2). The equivalent two-dimensional FR fluctuation spectrum is well modeled by a single power-law over the frequency range from 5 to 50 mHz. For heliocentric distances larger than 4 solar radii the spectral index varies between 1.1 and 1.6 with a mean value of 1.4 +/- 0.2, corresponding to a 3-D spectral index p = 2.4. FR fluctuations thus display a somwhat lower spectral index compared with phase and amplitude fluctuations. Surprisingly high values of the spectral index were found for measurements inside 4 solar radii (p = 2.9 +/- 0.2). This may arise from the increasingly dominant effect of the magnetic field on radio wave propagation at small solar offsets. Finally, a quasiperiodic component, believed to be associated with Alfven waves, was discovered in some (but not all!) fluctuation spectra observed simultaneously at two ground stations. Characteristic periods and bulk velocities of this component were 240 +/- 30 sec and 300 +/- 60 km/s, respectively.

  20. Automated multifunction apparatus for spectral and polarization measurements

    International Nuclear Information System (INIS)

    Stepanov, A.N.; Kurakov, A.Ya.

    1992-01-01

    An automated spectral apparatus is described that is based on an SDL-2 spectrometer for spectral and polarization measurements with small specimens (0.15 x 0.15 mm) by the Fourier-coefficient method in the visible and ultraviolet regions over a wide range of temperatures. The absorption, dichroism, birefringence, and polarization orientation of natural waves are determined simultaneously in a single measurement cycle. Polarization-luminescence spectra can also be recorded from one region of the specimen without its adjustment. 3 refs., 3 figs

  1. Spectrally-Selective Photonic Structures for PV Applications

    Directory of Open Access Journals (Sweden)

    Benedikt Bläsi

    2010-01-01

    Full Text Available We review several examples of how spectrally-selective photonic structures may be used to improve solar cell systems. Firstly, we introduce different spectrally-selective structures that are based on interference effects. Examples shown include Rugate filter, edge filter and 3D photonic crystals such as artificial opals. In the second part, we discuss several examples of photovoltaic (PV concepts that utilize spectral selectivity such as fluorescence collectors, upconversion systems, spectrum splitting concepts and the intermediate reflector concept. The potential of spectrally selective filters in the context of solar cells is discussed.

  2. Solar Energy Measurement Using Arduino

    Directory of Open Access Journals (Sweden)

    Jumaat Siti Amely

    2018-01-01

    Full Text Available This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was measured using the current sensor module that can sense the current generated by the solar panel. These parameters as the input value for the Arduino and the output was display at the Liquid Crystal Display (LCD screen. The LCD screen display output of the temperature, the light intensity, the voltage and the current value. The purpose of Arduino to convert the analog input of parameter to the digital output and display via LCD screen. Other than that, this project also involve with a design to ensure that device case are easy to be carry around.

  3. Project STOP (Spectral Thermal Optimization Program)

    Science.gov (United States)

    Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.

    1977-01-01

    The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.

  4. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  5. On the causes of spectral enhancements in solar wind power spectra

    Science.gov (United States)

    Unti, T.; Russell, C. T.

    1976-01-01

    Enhancements in power spectra of the solar-wind ion flux in the frequency neighborhood of 0.5 Hz had been noted by Unti et al. (1973). It was speculated that these were due to convected small-scale density irregularities. In this paper, 54 flux spectra calculated from OGO 5 data are examined. It is seen that the few prominent spectral peaks which occur were not generated by density irregularities, but were due to several different causes, including convected discontinuities and propagating transverse waves. A superposition of many spectra, however, reveals a moderate enhancement at a frequency corresponding to convected features with a correlation length of a proton gyroradius, consistent with the results of Neugebauer (1975).

  6. Radio wave scattering observations of the solar corona: First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    International Nuclear Information System (INIS)

    Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.

    1981-01-01

    Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17 0 to +7 0 . Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20 0 to near 90 0 . We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49 2 for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/

  7. The solar noise barrier project 3. The effects of seasonal spectral variation, cloud cover and heat distribution on the performance of full-scale luminescent solar concentrator panels

    NARCIS (Netherlands)

    Debije, M.G.; Tzikas, C.; de Jong, M.; Kanellis, M.; Slooff, L.H.

    We report on the relative performances of two large-scale luminescent solar concentrator (LSC) noise barriers placed in an outdoor environment monitored for over a year. Comparisons are made for the performances of a number of attached photovoltaic cells with changing spectral illumination, cloud

  8. Simultaneous measurement of spectral sky radiance by a non-scanning multidirectional spectroradiometer (MUDIS)

    International Nuclear Information System (INIS)

    Riechelmann, Stefan; Schrempf, Michael; Seckmeyer, Gunther

    2013-01-01

    We present a novel non-scanning multidirectional spectroradiometer (MUDIS) measuring the spectral sky radiance as a function of zenith and azimuth angle with a high spectral and temporal resolution. The instrument is based on a hyperspectral imager and measures spectral sky radiance in the wavelength range of 250–600 nm at 113 different directions simultaneously. MUDIS has been intercalibrated with a sky scanning CCD spectroradiometer (SCCD). Sky radiance measurements have been performed with both instruments under cloudless and overcast sky. The spectral actinic irradiance derived from those measurements agrees within 8% for wavelengths higher than 320 nm. The bias between synchronous MUDIS and SCCD sky radiance measurements during cloudless and overcast sky is below 5% for 320 and 500 nm with a 1σ standard deviation of less than 10%. MUDIS enables us to perform more than 220 000 spectral sky radiance measurements instead of approximately 6000 SCCD spectral sky radiance measurements per day and to measure spatial variations of spectral sky radiance simultaneously. (paper)

  9. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  10. Towards a measurement of the spectral runnings

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Julian B.; Kovetz, Ely D.; Raccanelli, Alvise; Kamionkowski, Marc; Silk, Joseph, E-mail: julianmunoz@jhu.edu, E-mail: ekovetz1@jhu.edu, E-mail: alvise@icc.ub.edu, E-mail: mkamion1@jhu.edu, E-mail: joseph.silk@physics.ox.ac.uk [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States)

    2017-05-01

    Single-field slow-roll inflation predicts a nearly scale-free power spectrum of perturbations, as observed at the scales accessible to current cosmological experiments. This spectrum is slightly red, showing a tilt (1− n {sub s} )∼ 0.04. A direct consequence of this tilt are nonvanishing runnings α {sub s} = d n {sub s} / dlog k , and β {sub s} = dα {sub s} / dlog k , which in the minimal inflationary scenario should reach absolute values of 10{sup −3} and 10{sup −5}, respectively. In this work we calculate how well future surveys can measure these two runnings. We consider a Stage-4 (S4) CMB experiment and show that it will be able to detect significant deviations from the inflationary prediction for α {sub s} , although not for β {sub s} . Adding to the S4 CMB experiment the information from a WFIRST-like or a DESI-like survey improves the sensitivity to the runnings by ∼ 20%, and 30%, respectively. A spectroscopic survey with a billion objects, such as the SKA, will add enough information to the S4 measurements to allow a detection of α {sub s} =10{sup −3}, required to probe the single-field slow-roll inflationary paradigm. We show that only a very-futuristic interferometer targeting the dark ages will be capable of measuring the minimal inflationary prediction for β {sub s} . The results of other probes, such as a stochastic background of gravitational waves observable by LIGO, the Ly-α forest, and spectral distortions, are shown for comparison. Finally, we study the claims that large values of β {sub s} , if extrapolated to the smallest scales, can produce primordial black holes of tens of solar masses, which we show to be easily testable by the S4 CMB experiment.

  11. On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence

    Science.gov (United States)

    Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua

    2018-04-01

    The power spectrum of magnetic fluctuations has a break at the high-frequency end of the inertial range. Beyond this break, the spectrum becomes steeper than the Kolmogorov law f ‑5/3. The break frequency was found to be associated with plasma beta (β). However, the full-range β dependence of the ion-scale spectral break has not been presented before in observational studies. Here we show the continuous variation of the break frequency on full-range β in the solar wind turbulence. By using measurements from the WIND and Ulysses spacecraft, we show the break frequency (f b ) normalized, respectively, by the frequencies corresponding to ion inertial length (f di ), ion gyroradius ({f}ρ i), and cyclotron resonance scale (f ri ) as a function of β for 1306 intervals. Their β values spread from 0.005 to 20, which nearly covers the full β range of the observed solar wind turbulence. It is found that {f}b/{f}{di} ({f}b/{f}ρ i) generally decreases (increases) with β, while {f}b/{f}{ri} is nearly a constant. We perform a linear fit on the statistical result, and obtain the empirical formulas {f}b/{f}{di}∼ {β }-1/4, {f}b/{f}ρ i∼ {β }1/4, and {f}b/{f}{ri}∼ 0.90 to describe the relation between f b and β. We also compare our observations with a numerical simulation and the prediction by ion cyclotron resonance theory. Our result favors the idea that the cyclotron resonance is an important mechanism for energy dissipation at the spectral break. When β ≪ 1 and β ≫ 1, the break at f di and {f}ρ i may also be associated with other processes.

  12. Investigation of spectral distribution and variation of irradiance with the passage time of CSI lamps which constitute a solar simulator; Solar simulator ni shiyosuru CSI lamp no supekutoru bunpu, hosha shodo no keiji henka ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T; Yamada, T; Noguchi, T [Japan Quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    Study was made on time-variation of the performance of CSI lamps for solar simulators. In order to accurately evaluate the standard heat collection performance of solar systems in a room, MITI installed an artificial solar light source in the Solar Techno-Center of Japan Quality Assurance Organization for trial use and evaluation. CSI lamp is superior in durability, and can simulate the solar light in the daytime. The light source is composed of 72 metal halide lamps of 1kW arranged in a plane of 3.5times3.5m. The study result on time-variation of a spectral distribution and irradiance by intermittent switching of lamps showed a sufficient durability of 2000h. To ensure the accuracy of a solar heat collector measurement system enough, periodic calibration is being carried out using reference goods. To ensure the reliability and stability for a switching system, periodic maintenance of a power source, stabilizer and electric system is also being carried out in addition to CSI lamps. The stable irradiance and accuracy are being kept by such maintenance and periodic exchange of lamps. 6 figs., 4 tabs.

  13. SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations

    Science.gov (United States)

    Meftah, M.; Damé, L.; Bolsée, D.; Hauchecorne, A.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Bureau, J.; Weber, M.; Bramstedt, K.; Hilbig, T.; Thiéblemont, R.; Marchand, M.; Lefèvre, F.; Sarkissian, A.; Bekki, S.

    2018-03-01

    Context. Since April 5, 2008 and up to February 15, 2017, the SOLar SPECtrometer (SOLSPEC) instrument of the SOLAR payload on board the International Space Station (ISS) has performed accurate measurements of solar spectral irradiance (SSI) from the middle ultraviolet to the infrared (165 to 3088 nm). These measurements are of primary importance for a better understanding of solar physics and the impact of solar variability on climate. In particular, a new reference solar spectrum (SOLAR-ISS) is established in April 2008 during the solar minima of cycles 23-24 thanks to revised engineering corrections, improved calibrations, and advanced procedures to account for thermal and aging corrections of the SOLAR/SOLSPEC instrument. Aims: The main objective of this article is to present a new high-resolution solar spectrum with a mean absolute uncertainty of 1.26% at 1σ from 165 to 3000 nm. This solar spectrum is based on solar observations of the SOLAR/SOLSPEC space-based instrument. Methods: The SOLAR/SOLSPEC instrument consists of three separate double monochromators that use concave holographic gratings to cover the middle ultraviolet (UV), visible (VIS), and infrared (IR) domains. Our best ultraviolet, visible, and infrared spectra are merged into a single absolute solar spectrum covering the 165-3000 nm domain. The resulting solar spectrum has a spectral resolution varying between 0.6 and 9.5 nm in the 165-3000 nm wavelength range. We build a new solar reference spectrum (SOLAR-ISS) by constraining existing high-resolution spectra to SOLAR/SOLSPEC observed spectrum. For that purpose, we account for the difference of resolution between the two spectra using the SOLAR/SOLSPEC instrumental slit functions. Results: Using SOLAR/SOLSPEC data, a new solar spectrum covering the 165-3000 nm wavelength range is built and is representative of the 2008 solar minimum. It has a resolution better than 0.1 nm below 1000 nm and 1 nm in the 1000-3000 nm wavelength range. The new

  14. Radiation Testing of PICA at the Solar Power Tower

    Science.gov (United States)

    White, Susan

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  15. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  16. Solar flare location effect on the spectral characteristics of the diurnal anisotropy of cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, R S; Kumar, S; Naqvi, T N [Aligarh Muslim Univ. (India)

    1977-01-01

    The spectral parameters of the diurnal anisotropy of cosmic ray intensity are studied separately for days where the solar flares have occurred on the western limb as well as on the eastern limb of the solar disc for both nucleonic as well as mesonic components of the cosmic rays. It is observed that the diurnal amplitude of the cosmic ray intensity in space is larger for days where solar flares have occurred on the western limb of the solar disc as compared to the days where solar flares have occurred on the eartern limb of the solar disc. This is true in both nucleonic as well as mesonic components of the cosmic ray intensity. The average value of the direction in space of diurnal anisotropy in local asymptotic time for various stations is almost same and is observed at around the same hours for flares which occur on the western as well as eastern limb of the solar disc. When these results are compared with the direction of the diurnal anisotropy in space on quiet days, it is found that the direction of the diurnal anisotropy on days where solar flares have occurred on the western limb as well as eastern limb of the solar disc is earlier in comparison to quiet days. This phase shift towards earlier hours is about three hours for nucleonic as well as mesonic components of the cosmic rays intensity. The variation of the rigidity exponent observed on different types of days for the nucleonic component has also been discussed.

  17. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    Science.gov (United States)

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  18. Making Ultraviolet Spectro-Polarimetry Polarization Measurements with the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.

  19. NIR emitting K2SrCl4:Eu2+, Nd3+ phosphor as a spectral converter for CIGS solar cell

    Science.gov (United States)

    Tawalare, P. K.; Bhatkar, V. B.; Omanwar, S. K.; Moharil, S. V.

    2018-05-01

    Intense near-infrared emitting phosphor K2SrCl4:Eu2+,Nd3+ with various concentrations of Nd3+ were synthesized. These are characterized with X-ray diffraction, reflectance, photoluminescence emission and photoluminescence excitation spectroscopy, PL lifetime measurements. The emission can be excited by a broad band in near ultra violet region as a consequence of Eu2+→Nd3+ energy transfer. The efficiency of Eu2+→Nd3+ energy transfer is as high as 95%. Fluorescence decay curves for Eu2+ doped samples are almost exponential and described by τ = 500 ns. Eu2+ lifetimes are shortened after Nd3+ doping. Near infrared Emission intensity is limited by Nd3+→Nd3+ energy transfer and the consequent concentration quenching. Nd3+ emission matches well with the spectral response of CIGS and CIS solar cells. Absorption of near ultra violet radiations followed by conversion to near infrared indicates the potential application in solar photovoltaics.

  20. Effect of altitude on solar UVR and spectral and spatial variations of UV irradiances measured inWagrain, Austria in winter

    DEFF Research Database (Denmark)

    Baczynska, Katarzyna A; Pearson, Andy J; O'Hagan, John B

    2013-01-01

    Ultraviolet radiation spectral irradiance was measured at different altitudes on horizontal and tilted planes in different azimuth directions on cloudless days in Austria, in March 2010, within the Impact of Climatic and Environmental factors on Personal Ultraviolet Radiation Exposure project...

  1. Note: Photoluminescence measurement system for multi-junction solar cells.

    Science.gov (United States)

    Trespidi, F; Malchiodi, A; Farina, F

    2017-05-01

    We describe a photoluminescence spectroscopy system developed for studying phenomena of optical coupling in multiple-junction solar cells and processed/unprocessed wafers, under the high solar concentration levels typical of HCPV (High Concentration PhotoVoltaic) systems. The instrument operates at room temperature over two spectral ranges: 475 nm-1100 nm and 950 nm-1650 nm. Power densities exceeding 10 000 suns can be obtained on the sample. The system can host up to four compact focusable solid state laser sources, presently only three are mounted and operated at 450 nm, 520 nm, and 785 nm; they provide overlapped beams on the sample surface and can shine simultaneously the sample to study possible mutual interaction between the different junctions.

  2. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  3. Solar gravitational redshift

    International Nuclear Information System (INIS)

    Lopresto, J.C.; Chapman, R.D.

    1980-01-01

    Wavelengths of solar spectrum lines should be shifted toward the red by the Sun's gravitational field as predicted by metric theories of gravity according to the principle of equivalence. Photographic wavelengths of 738 solar Fe 1 lines and their corresponding laboratory wavelengths have been studied. The measured solar wavelength minus the laboratory wavelength (Δlambdasub(observed)) averaged for the strong lines agrees well with the theoretically predicted shift (Δlambdasub(theoretical)). Studies show that the departures depend on line strength. No dependence of the departures on wavelength was found within the existing data. By studying strong lines over a wide spectral range, velocity shifts caused by the complex motions in the solar atmosphere seem to affect the results in a minimal fashion. (orig.)

  4. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  5. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  6. Solar Cell Calibration and Measurement Techniques

    Science.gov (United States)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  7. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  8. ON THE COMBINATION OF IMAGING-POLARIMETRY WITH SPECTROPOLARIMETRY OF UPPER SOLAR ATMOSPHERES DURING SOLAR ECLIPSES

    International Nuclear Information System (INIS)

    Qu, Z. Q.; Deng, L. H.; Dun, G. T.; Chang, L.; Zhang, X. Y.; Cheng, X. M.; Qu, Z. N.; Xue, Z. K.; Ma, L.; Allington-Smith, J.; Murray, G.

    2013-01-01

    We present results from imaging polarimetry (IP) of upper solar atmospheres during a total solar eclipse on 2012 November 13 and spectropolarimetry of an annular solar eclipse on 2010 January 15. This combination of techniques provides both the synoptic spatial distribution of polarization above the solar limb and spectral information on the physical mechanism producing the polarization. Using these techniques together we demonstrate that even in the transition region, the linear polarization increases with height and can exceed 20%. IP shows a relatively smooth background distribution in terms of the amplitude and direction modified by solar structures above the limb. A map of a new quantity that reflects direction departure from the background polarization supplies an effective technique to improve the contrast of this fine structure. Spectral polarimetry shows that the relative contribution to the integrated polarization over the observed passband from the spectral lines decreases with height while the contribution from the continuum increases as a general trend. We conclude that both imaging and spectral polarimetry obtained simultaneously over matched spatial and spectral domains will be fruitful for future eclipse observations

  9. Composition and Spectral Evolution of Energetic Ions at Voyager 1 in the Vicinity of the Solar Wind Termination Boundary

    Science.gov (United States)

    Hill, M. E.; Krimigis, S. M.; Hamilton, D. C.; Decker, R. B.; Roelof, E. C.

    2003-12-01

    For a six-month period beginning in mid-2002, measurements from the Low Energy Charged Particle (LECP) instrument aboard Voyager 1 (V1) indicate that the spacecraft was in a region having a low, subsonic solar wind speed. Before and after this period of interest (POI), the observations indicate higher, supersonic solar wind speeds. During the POI there was a low-energy particle enhancement showing intensity increases up to two orders of magnitude over the preceding period, with a composition that is poor in C, and for which the relative intensities of He and O are consistent with anomalous cosmic ray (ACR) composition. Consistency with ACR composition is determined based on ``species scaling'' arguments associated with transport effects. However, since the ACR peak for H is obscured by galactic cosmic rays, the relative H composition is uncertain and may diverge from ACR levels at higher energies per nucleon or may indeed differ from ACR-like composition. We have argued that these and other observations offer evidence that V1 crossed the termination shock (TS), resided downstream of the TS in the heliosheath for about six months, and then re-crossed the TS (which has a variable position), thus reentering the region of supersonic solar wind plasma early in 2003. To investigate this event further, we are undertaking analysis on time scales shorter than the entire six-month period, including the investigation of energy spectra using higher temporal resolution. The noted difference between the expected idealized TS spectrum and that which we observe is reduced when shorter time intervals are examined. There are also possible spectral features indicative of the transport of a very local ACR-like population from the TS to V1 in the upstream region just before and after the POI. Using the LECP instrument, which affords the lowest energy particle measurements from V1, we will pursue the ion composition by considering, e.g., the species scaling in light of the possible

  10. Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter

    International Nuclear Information System (INIS)

    Hirvonen, Juha-Matti; Poikonen, Tuomas; Vaskuri, Anna; Kärhä, Petri; Ikonen, Erkki

    2013-01-01

    A spectrally adjustable radiance source based on light-emitting diodes (LEDs) has been constructed for spectral responsivity measurements of radiance and luminance meters. A 300 mm integrating sphere source with adjustable output port is illuminated using 30 thermally stabilized narrow-band LEDs covering the visible wavelength range of 380–780 nm. The functionality of the measurement setup is demonstrated by measuring the relative spectral responsivities of a luminance meter and a photometer head with cosine-corrected input optics. (paper)

  11. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  12. Spectral response data for development of cool coloured tile coverings

    Science.gov (United States)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  13. Solar Radius Determination from Sodism/Picard and HMI/SDO Observations of the Decrease of the Spectral Solar Radiance during the 2012 June Venus Transit

    Science.gov (United States)

    Hauchecorne, A.; Meftah, M.; Irbah, A.; Couvidat, S.; Bush, R.; Hochedez, J.-F.

    2014-03-01

    On 2012 June 5-6, the transit of Venus provided a rare opportunity to determine the radius of the Sun using solar imagers observing a well-defined object, namely, the planet and its atmosphere, partially occulting the Sun. A new method has been developed to estimate the solar radius during a planetary transit. It is based on the estimation of the spectral solar radiance decrease in a region around the contact between the planet and the Sun at the beginning of the ingress and at the end of the egress. The extrapolation to zero of the radiance decrease versus the Sun-to-Venus apparent angular distance allows estimation of the solar radius at the time of first and fourth contacts. This method presents the advantage of being almost independent on the plate scale, the distortion, the refraction by the planetary atmosphere, and on the point-spread function of the imager. It has been applied to two space solar visible imagers, SODISM/PICARD and HMI/SDO. The found results are mutually consistent, despite their different error budgets: 959.''85 ± 0.''19 (1σ) for SODISM at 607.1 nm and 959.''90 ± 0.''06 (1σ) for HMI at 617.3 nm.

  14. Solar radius determination from SODISM/PICARD and HMI/SDO observations of the decrease of the spectral solar radiance during the 2012 June Venus transit

    International Nuclear Information System (INIS)

    Hauchecorne, A.; Meftah, M.; Irbah, A.; Hochedez, J.-F.; Couvidat, S.; Bush, R.

    2014-01-01

    On 2012 June 5-6, the transit of Venus provided a rare opportunity to determine the radius of the Sun using solar imagers observing a well-defined object, namely, the planet and its atmosphere, partially occulting the Sun. A new method has been developed to estimate the solar radius during a planetary transit. It is based on the estimation of the spectral solar radiance decrease in a region around the contact between the planet and the Sun at the beginning of the ingress and at the end of the egress. The extrapolation to zero of the radiance decrease versus the Sun-to-Venus apparent angular distance allows estimation of the solar radius at the time of first and fourth contacts. This method presents the advantage of being almost independent on the plate scale, the distortion, the refraction by the planetary atmosphere, and on the point-spread function of the imager. It has been applied to two space solar visible imagers, SODISM/PICARD and HMI/SDO. The found results are mutually consistent, despite their different error budgets: 959.''85 ± 0.''19 (1σ) for SODISM at 607.1 nm and 959.''90 ± 0.''06 (1σ) for HMI at 617.3 nm.

  15. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  16. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  17. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  18. Solar flares as harbinger of new physics

    CERN Document Server

    Zioutas, K; Semertzidis, Y.; Papaevangelou, T.; Georgiopoulou, E.; Gardikiotis, A.; Dafni, T.; Tsagri, M.; Semertzidis, Y.; Papaevangelou, T.; Dafni, T.

    2011-01-01

    This work provides additional evidence on the involvement of exotic particles like axions and/or other WISPs, following recent measurements during the quietest Sun and flaring Sun. Thus, SPHINX mission observed a minimum basal soft X-rays emission in the extreme solar minimum in 2009. The same scenario (with ~17 meV axions) fits also the dynamical behaviour of white-light solar flares, like the measured spectral components in the visible and in soft X-rays, and, the timing between them. Solar chameleons remain a viable candidate, since they may preferentially convert to photons in outer space.

  19. Metrology of the Solar Spectral Irradiance at the Top Of Atmosphere in the Near Infrared using Ground Based Instruments. Final results of the PYR-ILIOS campaign (Mauna Loa Observatory, June-July 2016).

    Science.gov (United States)

    Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.

    2017-12-01

    The availability of reference spectra for the Solar Spectral Irradiance (SSI) is important for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. Until recently, some large and unsolved discrepancies (up to 10 %) were observed in the 1.6 μm region between space instruments, models and ground-based measurements. We designed a ground-based instrumentation for SSI measurements at the Top Of Atmosphere (TOA) through atmospheric NIR windows using the Bouguer-Langley technique. The main instrument is a double NIR spectroradiometer designed by Bentham (UK), radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. It was absolute calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign was carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) follows the four-month IRESPERAD campaign which was carried out in the summer 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3'week PYR-ILIOS campaign and compare them with the ATLAS 3 spectrum as well as from recently reprocessed NIR solar spectra obtained with SOLAR/SOLSPEC on ISS and SCIAMACHY on ENVISAT. The uncertainty budget of the PYR-ILIOS results will be discussed.

  20. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux

    International Nuclear Information System (INIS)

    Lee, Hyunjin; Chai, Kwankyo; Kim, Jongkyu; Lee, Sangnam; Yoon, Hwanki; Yu, Changkyun; Kang, Yongheack

    2014-01-01

    We evaluated optical performance of a solar furnace in the KIER (Korea Institute of Energy Research) by measuring the highly concentrated solar flux with the flux mapping method. We presented and analyzed optical performance in terms of concentrated solar flux distribution and power distribution. We investigated concentration ratio, stagnation temperature, total power, and concentration accuracy with help of a modeling code based on the ray tracing method and thereby compared with other solar furnaces. We also discussed flux changes by shutter opening angles and by position adjustment of reflector facets. In the course of flux analysis, we provided a better understanding of reference flux measurement for calibration, reflectivity measurement with a portable reflectometer, shadowing area consideration for effective irradiation, as well as accuracy and repeatability of flux measurements. The results in the present study will help proper utilization of a solar furnace by facilitating comparison between flux measurements at different conditions and flux estimation during operation

  1. The PV LED Engine - a new generation of intelligent solar powered LED lighting

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    parameters are ltered mathematical by the optical properties of the materials in front of the solar panel and assumptions about the soiling parameters. Lab measurements of solar cells/panels underdierent lighting conditions (spectrally and intensity) makes it possible to simulate performance of realsolar...... projectat design and simulation tool for small PV applications for the urban environment is developed. The tool is advanced in its calculations on the solar irradiation parameters being very dierent in the urban environment compared to roof top applications both spectrally and in intensity variations...... panels of different technologies in the addressed environment since detailed electrical characteristicsis known by the measurements. Optical parameters for the protection layer (in front of the solar panel)are put into a material library so the optimal choice can be made for a given application...

  2. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  3. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  4. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  5. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  6. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao; Zhang, Xi; Yu, Bang-Yao; Xi, Bao-Jia; Wang, Xue; Feng, Huan-Xue; Zhang, Meng, E-mail: lshao@hebtu.edu.cn [Department of Space Sciences and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Bin-Bin [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Wu, Xue-Feng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Dong [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-01

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical framework that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.

  7. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  8. Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption

    Directory of Open Access Journals (Sweden)

    Viktor A. Öberg

    2017-10-01

    Full Text Available A facile heat-up synthesis route is used to synthesize environmentally friendly Ag2S colloidal quantum dots (CQDs that are applied as light absorbing material in solid state p-i-n junction solar cell devices. The as-synthesized Ag2S CQDs have an average size of around 3.5 nm and exhibit broad light absorption covering ultraviolet, visible, and near infrared wavelength regions. The solar cell devices are constructed with a device architecture of FTO/TiO2/Ag2S CQDs/hole transport material (HTM /Au using a solution-processed approach. Different HTMs, N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl-9,9′-spirobi(9H-fluorene-2,2′,7,7′ tetramine (spiro-OMeTAD, poly(3-hexylthiophene-2,5-diyl (P3HT, and poly((2,3-bis(3-octyloxyphenyl-5,8-quinoxalinediyl-2,5-thiophenediyl TQ1 are studied for maximizing the device photovoltaic performance. The solar cell device with P3HT as a hole transport material gives the highest performance and the solar cell exhibit broad spectral absorption. These results indicate that Ag2S CQD have high potential for utilization as environmentally friendly light absorbing materials for solar cell application and that the hole transport material is critical to maximize the solar cell photovoltaic performance.

  9. On the spectral composition of global radiation

    Energy Technology Data Exchange (ETDEWEB)

    Major, G

    1983-01-01

    The global radiation is recorded at several stations on the Earth. The information about its spectral composition is poor. In this paper the spectral composition means the ratio of spectral global radiation measured by coloured glass filter domes to the total global radiation. From the measuements made by Klein and Goldberg it follows that the monthly ratios vary significantly from place to place, while the variations from month to month at one place are significant only at the station which lies near to the North Pole. The Budapest data proved the dominant effect of cloudiness on the spectral composition of global radiation. This effect is in good statistical relationship with the relative global radiation. The regression constant tabulated in this paper do not contain the error of zero point elevation which is due to the overheating of glass filters by the absorbed solar radiation.

  10. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    Science.gov (United States)

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  11. Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2008-12-01

    Full Text Available Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.

    Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (τ<1.5. Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will

  12. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. II. IN THREE SOURCES OF A FLARING LOOP

    International Nuclear Information System (INIS)

    Huang Guangli; Li Jianping

    2011-01-01

    Based on the spatially resolvable data of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radio Heliograph (NoRH), co-analysis of solar hard X-ray and microwave spectral evolution is performed in three separate sources located in one looptop (LT) and two footpoints (FPs) of a huge flaring loop in the 2003 October 24 flare. The RHESSI image spectral evolution in 10-100 keV is always fitted by the well-known soft-hard-soft (SHS) pattern in the three sources. When the total energy is divided into four intervals similar to the Yohkoh/Hard X-ray Telescope, i.e., 12.5-32.5 keV, 32.5-52.5 keV, 52.5-72.5 keV, and 72.5-97.5 keV, the SHS pattern in lower energies is converted gradually to the hard-soft-hard (HSH) pattern in higher energies in all three sources. However, the break energy in the LT and the northeast FP (∼32.5 keV) is evidently smaller than that in the southwest FP (∼72.5 keV). Regarding microwave spectral evolution of the NoRH data, the well-known soft-hard-harder pattern appeared in the southwest FP, while the HSH pattern coexisted in the LT and the northeast FP. The different features of the hard X-ray and microwave spectral evolutions in the three sources may be explained by the loop-loop interaction with another huge loop in the LT and with a compact loop in the northeast FP, where the trapping effect is much stronger than that in the southwest FP. The comparison between the LT and FP spectral indices suggests that the radiation mechanism of X-rays may be quite different in different energy intervals and sources. The calculated electron spectral indices from the predicted mechanisms of X-rays gradually become closer to those from the microwave data with increasing X-ray energies.

  13. Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet

    Science.gov (United States)

    Danehy, Paul M.; Hires, Drew V.; Johansen, Craig T.; Bathel, Brett F.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.

    2012-01-01

    Calibrated spectral radiance measurements of gaseous emission spectra have been obtained from the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. A fiber-optic coupled spectrometer collected natural luminosity from the flow. Spectral radiance measurements are reported between 340 and 1000 nm. Both Silicon Carbide (SiC) and Phenolic Impregnated Carbon Ablator (PICA) samples were placed in the flow. Test gases studied included a mostly-N2 atmosphere (95% nitrogen, 5% argon), a simulated Earth Air atmosphere (75% nitrogen, 20% oxygen, 5% argon) and a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon). The bulk enthalpy of the flow was varied as was the location of the measurement. For the intermediate flow enthalpy tested (20 MJ/kg), emission from the Mars simulant gas was about 10 times higher than the Air flow and 15 times higher than the mostly-N2 atmosphere. Shock standoff distances were estimated from the spectral radiance measurements. Within-run, run-to-run and day-to-day repeatability of the emission were studied, with significant variations (15-100%) noted.

  14. Spectrally selective paint coatings. Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Crnjak Orel, Z.C.; Klanjsek Gunde, M. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia)

    2001-06-01

    Preparation and characterization of spectrally selective paint coating for photothermal solar energy conversion are discussed. The applied methods for preparation of paints with described measurements and calculations of black-pigmented coatings were reviewed. The article represents not only possible future applications but also past and current applications of spectrally selective paint coating which are used all over the world since the 1980s. Spectrally selective paint coatings based on combinations of two types of resins, various types of pigments and three types of silica, were prepared. The influence of pigment type and pigment volume concentration (PVC) was studied by applying the Kubelka-Munk (K-M) theory. The relation between the degrees of dispersion and distribution of pigment particles across the paint layer is discussed in terms of K-M coefficients.

  15. Prototype simulates remote sensing spectral measurements on fruits and vegetables

    Science.gov (United States)

    Hahn, Federico

    1998-09-01

    A prototype was designed to simulate spectral packinghouse measurements in order to simplify fruit and vegetable damage assessment. A computerized spectrometer is used together with lenses and an externally controlled illumination in order to have a remote sensing simulator. A laser is introduced between the spectrometer and the lenses in order to mark the zone where the measurement is being taken. This facilitates further correlation work and can assure that the physical and remote sensing measurements are taken in the same place. Tomato ripening and mango anthracnose spectral signatures are shown.

  16. Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland

    Science.gov (United States)

    Tanikawa, T.

    2017-12-01

    The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.

  17. Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites

    International Nuclear Information System (INIS)

    Alonso-Abella, M.; Chenlo, F.; Nofuentes, G.; Torres-Ramírez, M.

    2014-01-01

    This work is aimed at looking into the impact of the solar spectrum distribution on the energy yield of some PV (photovoltaic) materials on both monthly and annual time scales. The relative spectral responses of eight different PV solar cells – representative of each considered technology – have been selected. Modeling solar spectra in four sites located in the north hemisphere together with a 12-month experimental campaign in which spectral irradiances were periodically recorded in two of these sites located in Spain have provided highly interesting results. Regardless of the site, the considered amorphous silicon and cadmium telluride PV cells experience the most noticeable modeled and experimental variations of their monthly spectral gains, whilst flatter seasonal ones are identified in the remaining considered PV technologies. Thus, the maximum monthly variations of these spectral gains take place in the a-Si PV cell, ranging from −16% (winter) to 4% (summer) in Stuttgart. Anyway, the monthly spread of the spectral effects decreases as the latitude of the site does. Last, the impact of the solar spectrum distribution is remarkably reduced when the period of integration is enlarged up to a year. In fact, annual spectral gains keep below 2.2% for all the studied technologies and sites. - Highlights: • Monthly and annual spectral effects on eight different PV (photovoltaic) technologies studied. • Modeled spectra in four sites combined with relative spectral responses. • Measured spectra (12 months) in two sites combined with relative spectral responses. • Higher bandgap technologies: noticeable monthly variations in their spectral gains. • Annual spectral gains keep below 2.2% for all the studied technologies and sites

  18. The Herschel/HIFI unbiased spectral survey of the solar-mass protostar IRAS16293

    Science.gov (United States)

    Bottinelli, S.; Caux, E.; Cecarelli, C.; Kahane, C.

    2012-03-01

    Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high-mass protostars, very little data exist on low-mass protostars, with only one such ground-based survey carried out towards this kind of object. However, since low-mass protostars are believed to resemble our own Sun's progenitor, the information provided by spectral surveys is crucial in order to uncover the birth mechanisms of low-mass stars and hence of our Sun. To help fill up this gap in our understanding, we carried out an almost complete spectral survey towards the solar-type protostar IRAS16293-2422 with the HIFI instrument onboard Herschel. The observations covered a range of about 700 GHz, in which a few hundreds lines were detected with more than 3σ confidence interval certainty and identified. All the detected lines which were free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Contrarily to what is observed in the millimeter range, no lines from complex organic molecules have been observed. In this work, we characterize the different components of IRAS16293-2422 (a known binary at least) by analyzing the numerous emission and absorption lines identified.

  19. A spectral measurement method for determining white OLED average junction temperatures

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah

    2016-09-01

    The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.

  20. A rapid method of estimating the solar irradiance spectra with potential lighting applications

    NARCIS (Netherlands)

    Gao, Y.; Dong, J.; Isabella, O.; Zeman, M.; Zhang, G

    2016-01-01

    Diverse solar irradiance spectra can be observed under different conditions of time, date, location, weather, etc. Since the solar irradiance spectrum is required by certain scientific and engineering applications, obtaining accurate spectral data is essential. Measurements by spectrophotometers are

  1. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  2. Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.

    2013-05-01

    Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.

  3. Remote spectral measurements of the blood volume pulse with applications for imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.

    2018-02-01

    Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.

  4. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  5. Advance on solar instrumentation in China

    Science.gov (United States)

    Yan, Yihua

    2015-08-01

    The solar observing facilities in China are introduced with the emphasis on the development in recent years and future plans for both ground and space-based solar instrumentations. The recent solar instruments are as follows: A new generation Chinese Spectral Radioreliograph (CSRH) has been constructed at Mingantu Observing Station in Zhengxiangbaiqi, inner Mongolia of China since 2013 and is in test observations now. CSRH has two arrays with 40 × 4.5 m and 60 × 2 m parabolic antennas covering 0.4-2 GHz and 2-15 GHz frequency range. CSRH is renamed as MUSER (Mingantu Ultrawide Spectral Radiheliograph) after its accomplishment. A new 1 m vacuum solar telescope (NVST) has been installed in 2010 at Fuxian lake, 60 km away from Kunming, Yunana. At present it is the best seeing place in China. A new telescope called ONSET (Optical and NIR Solar Eruption Tracer) has been established at the same site as NVST in 2011. ONSET has been put into operation since 2013. For future ground-based plans, Chinese Giant Solar Telescope (CGST) with spatial resolution equivalent to 8m and effective area of 5m full-aperture telescope has been proposed and was formally listed into the National Plans of Major Science & Technology Infrastructures in China. The pre-study and site survey for CGST have been pursued. A 1-meter mid-infrared telescope for precise measurement of the solar magnetic field has been funded by NSFC in 2014 as a national major scientific instrument development project. This project will develop the first mid-infrared solar magnetic observation instrument in the world aiming at increasing the precision of the transverse magnetic field measurement by one order of magnitude. For future ground-based plans, we promote the Deep-space Solar Observatory (DSO) with 1-m aperture telescope to be formally funded. The ASO-S (an Advanced Space-based Solar Observatory) has been supported in background phase by Space Science Program as a small mission. Other related space solar

  6. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    Science.gov (United States)

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-03-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airborne field campaigns: the North Atlantic Rainfall VALidation (NARVAL) mission, the Mid-Latitude Cirrus Experiment (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) campaign. Radiative transfer simulations are used to quantify the sensitivity of measured upward radiance I with respect to τ, ice crystal effective radius reff, viewing angle of the sensor θV, spectral surface albedo α, and ice crystal shape. From the calculations it is concluded that sideward viewing measurements are generally better suited than radiance data from the nadir direction to retrieve τ of optically thin cirrus, especially at wavelengths larger than λ = 900 nm. Using sideward instead of nadir-directed spectral radiance measurements significantly improves the sensitivity and accuracy in retrieving τ, in particular for optically thin cirrus of τ ≤ 2. The comparison of retrievals of τ based on nadir and sideward viewing radiance measurements from SMART, mini-DOAS and independent estimates of τ from an additional active remote sensing instrument, the Water Vapor Lidar Experiment in Space (WALES), shows general agreement within the range of measurement uncertainties. For the selected example a mean τ of 0.54 ± 0.2 is derived from SMART, and 0.49 ± 0.2 by mini-DOAS nadir channels, while WALES obtained a mean value of τ = 0.32 ± 0.02 at 532 nm wavelength, respectively. The mean of τ derived from the sideward viewing mini

  7. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    Science.gov (United States)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  8. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  9. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    Energy Technology Data Exchange (ETDEWEB)

    Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi, E-mail: takikawa@ee.tut.ac.jp [Toyohashi University of Technology, 1-1 Habarigaoka, Tempaku, Toyohashi 441-8580 (Japan); Tanoue, Hideto [Kitakyushu National College of Technology, 5-20-1, Kokuraminami, Kitakyushu, Fukuoka 802-0985 (Japan)

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  10. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    Science.gov (United States)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  11. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    International Nuclear Information System (INIS)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-01-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD

  12. Spectro-Polarimetry of Fine-Grained Ice and Dust Surfaces Measured in the Laboratory to Study Solar System Objects and Beyond

    Science.gov (United States)

    Poch, O.; Cerubini, R.; Pommerol, A.; Thomas, N.; Schmid, H. M.; Potin, S.; Beck, P.; Schmitt, B.; Brissaud, O.; Carrasco, N.; Szopa, C.; Buch, A.

    2017-12-01

    The polarization of the light is very sensitive to the size, morphology, porosity and composition of the scattering particles. As a consequence, polarimetric observations could significantly complement observations performed in total light intensity, providing additional constraints to interpret remote sensing observations of Solar System and extra-solar objects. This presentation will focus on measurements performed in the laboratory on carefully characterized surface samples, providing reference data that can be used to test theoretical models and predict or interpret spectro-polarimetric observations. Using methods developed in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern, we produce well-characterized and reproducible surfaces made of water ice particles having different grain sizes and porosities, as well as mineral/organic dusts, pure or mixed together, as analogues of planetary or small bodies surfaces. These surface samples are illuminated with a randomly polarized light source simulating the Sun. The polarization of their scattered light is measured at multiple phase angles and wavelengths, allowing to study the shape of the polarimetric phase curves and their spectral dependence, with two recently developed setups: The POLarimeter for Icy Samples (POLICES), at the University of Bern, allows the measurement of the weak polarization of ice surfaces from 400 to 800 nm, with direct application to icy satellites. Using a precision Stokes polarimeter, this setup is also used to study the spectral variations of circular polarization in the light scattered by biotic versus abiotic surfaces. The Spectrogonio radiometer with cHanging Angles for Detection Of Weak Signals (SHADOWS), at IPAG (University of Grenoble Alpes), measures linear polarization spectra from 0.35 to 5 μm in the light scattered by dark meteorite powders or icy samples, with application to primitive objects of the Solar System (asteroids, comets).

  13. Total electron count variability and stratospheric ozone effects on solar backscatter and LWIR emissions

    Science.gov (United States)

    2017-03-10

    heating occur. This method is achieved though measuring the intensity ratio of sky- scattered sunlight at a pair of UV wavelengths at solar zenith angles...cause impacts to direct-sun, UV, and zenith measurements . OOB light can affect the low intensity spectrum of solar light, which is not fully removed by...several key spectral properties that are pertinent to its measurement . Ozone is greenhouse gas that plays a primary role in the absorption of solar UV

  14. Measurement tolerance analysis of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cimo, J.; Maderkova, L.; Horak, J.; Igaz, D.; Pasztorova, S. [Department of Biomereorlogy and Hydrology, Slovak Agriculture University, Nitra (Slovakia)

    2012-07-01

    Solar radiant energy is bane and almost the only one source of heat for Earth 's surface and for atmosphere, and almost the only one source of energy for physical processes. Solar energy is one of the most available and the most ecological energy source. Currently the firm Kipp and Zonen belongs to prominent producer of sensors for measuring of global radiation. These sensors are the most used in our country and also in network of meteorological measurements of WMO. Therefore the two types of measuring sensors for global radiation (pyranometer PMP6, CMP 11) in comparison with calculation method Savin-Angstrom are analysed. (author)

  15. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    Science.gov (United States)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  16. Photogating effect as a defect probe in hydrogenated nanocrystalline silicon solar cells

    NARCIS (Netherlands)

    Li, H. B. T.; Schropp, R.E.I.; Rubinelli, F.A.

    2010-01-01

    The measurement of the spectrally resolved collection efficiency is of great importance in solar cell characterization. Under standard conditions the bias light is a solar simulator or a light source with a similar broadband irradiation spectrum. When a colored blue or red bias light is used

  17. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    Science.gov (United States)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  18. Signal-to-solar clutter calculations of AK-47 muzzle flash at various spectral bandpasses near the potassium D1/D2 doublet

    Science.gov (United States)

    Klett, Karl K., Jr.

    2010-04-01

    An analysis was performed, using MODTRAN, to determine the best filters to use for detecting the muzzle flash of an AK-47 in daylight conditions in the desert. Filters with bandwidths of 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 nanometers (nm) were analyzed to understand how the optical bandwidth affects the signal-to-solar clutter ratio. These filters were evaluated near the potassium D1 and D2 doublet emission lines that occur at 769.89 and 766.49 nm respectively that are observed where projectile propellants are used. The maximum spectral radiance, from the AK-47 muzzle flash, is 1.88 x 10-2 W/cm2 str micron, and is approximately equal to the daytime atmospheric spectral radiance. The increased emission, due to the potassium doublet lines, and decreased atmospheric transmission, due to oxygen absorption, combine to create a condition where the signal-to-solar clutter ratio is greater than 1. The 3 nm filter, has a signal-to-solar clutter ratio of 2.09 when centered at 765.37 nm and provides the best combination of both cost and signal sensitivity.

  19. The Instruments and Capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats

    Science.gov (United States)

    Moore, Christopher S.; Caspi, Amir; Woods, Thomas N.; Chamberlin, Phillip C.; Dennis, Brian R.; Jones, Andrew R.; Mason, James P.; Schwartz, Richard A.; Tolbert, Anne K.

    2018-02-01

    The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 (5 × 10^{-8} - 5 ×10^{-5} W m^{-2}) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.

  20. Measurement of high-temperature spectral emissivity using integral blackbody approach

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-11-01

    Spectral emissivity is one of the most critical thermophysical properties of a material for heat design and analysis. Especially in the traditional radiation thermometry, normal spectral emissivity is very important. We developed a prototype instrument based upon an integral blackbody method to measure material's spectral emissivity at elevated temperatures. An optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit was used to implemented the system. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated reference blackbody which had an effective total emissivity greater than 0.985. During the measurement, a pneumatic cylinder pushed a graphite rode and then the sample crucible to the cold opening within hundreds of microseconds. The linear pyrometer was used to monitor the brightness temperature of the sample surface, and the corresponding opto-converted voltage was fed and recorded by a digital multimeter. To evaluate the temperature drop of the sample along the pushing process, a physical model was proposed. The tube was discretized into several isothermal cylindrical rings, and the temperature of each ring was measurement. View factors between sample and rings were utilized. Then, the actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage signal and the calculated actual temperature, normal spectral emissivity under the that temperature point was obtained. Graphite sample at 1300°C was measured to prove the validity of the method.

  1. Jupiter's Mid-Infrared Aurora: Solar Connection and Minor Constituents

    Science.gov (United States)

    Kostiuk, Theodore; Livengood, T.A.; Fast, K.E.; Hewagama, T.; Schmilling, F.; Sonnabend, G.; Delgado, J.

    2009-01-01

    High spectral resolution in the 12 pin region of the polar regions of Jupiter reveal unique information on auroral phenomena and upper stratospheric composition. Polar aurorae in Jupiter's atmosphere radiate; throughout the electromagnetic spectrum from X-ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based. spectroscopic measurements of Jupiter's northern mid-IR aurora acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane, emission brightness and solar 10.7-cm radar flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high scalar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. The spectra measured contain features that cannot be attributed to ethane and are most likely spectra of minor constituents whose molecular bands overlap the v9 band of ethane. Possible candidates are allene, propane, and other higher order hydrocarbons. These features appear to be enhanced in the active polar regions. Laboratory measurements at comparable spectral resolution of spectra of candidate molecules will be used to identify the constituents. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the NASA/ESA Europa Jupiter System Mission.

  2. Measurement of solar energy radiation in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, P.O. Box 2533 (United Arab Emirates)

    2009-04-15

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 N, 54.45 E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m{sup 2}, respectively. The highest one-minute average daily solar radiation was 1041 W/m{sup 2}. Yearly average daily energy input was 18.48 MJ/m{sup 2}/day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture. (author)

  3. Measurement of solar energy radiation in Abu Dhabi, UAE

    International Nuclear Information System (INIS)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A.

    2009-01-01

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 deg. N, 54.45 deg. E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m 2 , respectively. The highest one-minute average daily solar radiation was 1041 W/m 2 . Yearly average daily energy input was 18.48 MJ/m 2 /day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture

  4. Solar Spectral and Module Temperature Influence on the Outdoor Performance of Thin Film PV Modules Deployed on a Sunny Inland Site

    Directory of Open Access Journals (Sweden)

    G. Nofuentes

    2013-01-01

    Full Text Available This work aims at analysing the influence of both module temperature and solar spectrum distribution on the outdoor performance of the following thin film technologies: hydrogenated amorphous silicon (a-Si:H, cadmium telluride (CdTe, copper indium gallium selenide sulfide (CIGS, and hydrogenated amorphous silicon/hydrogenated microcrystalline silicon hetero-junction (a-Si:H/μc-Si:H. A 12-month experimental campaign carried out in a sunny inland site in which a module of each one of these technologies was tested and measured outdoors has provided the necessary empirical data. Results show that module temperature exerts a limited influence on the performance of the tested a-Si:H, CdTe, and a-Si:H/μc-Si:H modules. In contrast, the outdoor behaviour of the CIGS module is the most affected by its temperature. Blue-rich spectra enhance the outdoor behaviour of the a-Si:H and a-Si:H/μc-Si:H modules while it is the other way round for the CIGS module. However, the CdTe specimen shows little sensitivity to the solar spectrum distribution. Anyway, spectral effects are scarcely relevant on an annual basis, ranging from gains for the CIGS module (1.5% to losses for the a-Si:H module (1.0%. However, the seasonal impact of the spectrum shape is more noticeable in these two materials; indeed, spectral issues may cause performance gains or losses of up to some 4% when winter and summer periods are considered.

  5. Solar-Geophysical Data Number 546, February 1990. Part 1 (prompt reports). data for January 1990, December 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-02-01

    Contents include: detailed index for 1989-1990; data for January 1990--solar-terrestrial environment, IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for December 1989--solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data--cosmic-ray measurements by neutron monitor, reprint of halftone-page Kitt Peak solar magnetic field synoptic chart November 1989

  6. Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es [Istituto Ricerche Solari Locarno, 6600, Locarno, Switzerland, associated to USI, Università della Svizzera Italiana (Switzerland)

    2017-07-01

    Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.

  7. A Preliminary Analysis of Solar Irradiance Measurements at TNB Solar Research Centre for Optimal Orientation of Fixed Solar Panels installed in Selangor Malaysia

    International Nuclear Information System (INIS)

    Hashim, A M; Ahmad, B; Shafie, R M; Rusli, R; Aziz, M A; Hassan, J; Wanik, M Z C; Ali, M A M

    2013-01-01

    The well established rule for orienting fixed solar devices is to face south for places in the northern hemisphere and northwards for the southern hemisphere. However for regions near the equator such as in Selangor Malaysia, the position of the sun at solar noon is always near zenith both to the north and south depending on location and month of year. This paper reports an analysis of global solar radiation data taken at TNB Solar Research Centre, Malaysia. The solar radiation is measured using both shaded and exposed pyranometers together with a pyrheliometer which is mounted on a sun-tracker. The analysis on the solar measurements show that a near regular solar irradiation pattern had occurred often enough during the year to recommend an optimum azimuth orientation of installing the fixed solar panels tilted facing towards east. Even though all the solar measurements were done at a single location in TNBR Solar Research Centre at Bangi, for locations near the equator with similar weather pattern, the recommended azimuth direction of installing fixed solar panels and collectors tilted eastward will also be generally valid.

  8. High temperature spectral emissivity measurement using integral blackbody method

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  9. Generation of solar spectrum by using LEDs

    Science.gov (United States)

    Lu, Pengzhi; Yang, Hua; Pei, Yanrong; Li, Jing; Xue, Bin; Wang, Junxi; Li, Jinmin

    2016-09-01

    Light emitting diode (LED) has been recognized as an applicable light source for indoor and outdoor lighting, city beautifying, landscape facilities, and municipal engineering etc. Conventional LED has superior characteristics such as long life time, low power consumption, high contrast, and wide viewing angle. Recently, LED with high color-rendering index and special spectral characteristics has received more and more attention. This paper is intended to report a solar spectrum simulated by multichip LED light source. The typical solar spectrum of 5500k released by CIE was simulated as a reference. Four types of LEDs with different spectral power distributions would be used in the LED light source, which included a 430nm LED, a 480nm LED, a 500nm LED and a white LED. In order to obtain better simulation results, the white LED was achieved by a 450nm LED chip with the mixture of phosphor. The phosphor combination was prepared by mixing green phosphor, yellow phosphor and red phosphor in a certain proportion. The multichip LED light source could provide a high fidelity spectral match with the typical solar spectrum of 5500k by adjusting injection current to each device. The luminous flux, CIE chromaticity coordinate x, y, CCT, and Ra were 104.7 lm, 0.3337, 0.3681, 5460K, and 88.6, respectively. Because of high color-rendering index and highly match to the solar spectrum, the multichip LED light source is a competitive candidate for applications where special spectral is required, such as colorimetric measurements, visual inspection, gemstone identification and agriculture.

  10. Solar-geophysical data number 584, April 1993. Part 1 (prompt reports). Data for March, February 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-04-01

    Contents: data for march 1993: solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for february 1993: solar active regions; sudden ionospheric disturbances; solar radio spectral observations; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is applicable to studies in communications, environmental science,and solar energy

  11. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  12. Photovoltaic yield: correction method for the mismatch between the solar spectrum and the reference ASTMG AM1.5G spectrum

    Directory of Open Access Journals (Sweden)

    Mambrini Thomas

    2015-01-01

    Full Text Available We propose a method for a spectral correction of the predicted PV yield and we show the importance of the spectral mismatch on the solar cell. Indeed, currently predicted PV yield are made considering solar irradiation, ambient temperature, incidence angle and partially (or not the solar spectrum. However, the solar spectrum is not always the same. It varies depending on the site location, atmospheric conditions, time of the day...This may impact the photovoltaic solar cells differently according to their technology (crystalline Silicon, thin film, multi-junctions... This paper presents a method for calculating the correction of the short-circuit current of a photovoltaic cell due to the mismatch of the solar spectrum with the reference ASTM AM1.5G spectrum, for a specific site, throughout the year, using monthly data of AERONET (AErosol RObotic NETwork established by NASA and CNRS and the model SMARTS (simple model for atmospheric transmission of sunshine developed by the NREL. We applied this correction method on the site of Palaiseau (France, 48.7°N, 2.2°E, 156 m, close to our laboratory, just for comparison and the example of Blida (Algeria, 36°N, 2°E, 230 m is given for one year. This example illustrates the importance of this spectral correction to better estimate the photovoltaic yield. To be more precise, instead of modeling the solar spectral distribution, one can measure it with a spectro-radiometer, and then, derive the spectral mismatch correction. Some of our typical measurements are presented in this paper.

  13. Solar-geophysical data number 586, June 1993. Part 1 (prompt reports). Data for May, April 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-06-01

    Contents: data for may 1993; solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for april 1993; solar active regions; sudden ionospheric disturbances; solar radio spectral observations; solar radioheliograph; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is relevant to studies in atmospheric/environmental science, solar energy, plasma physics, and communications

  14. Remote Thermal IR Spectroscopy of our Solar System

    Science.gov (United States)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  15. In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Higinio González-Jorge

    2010-04-01

    Full Text Available Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.

  16. Solar-Geophysical Data Number 535, March 1989. Part 1 (prompt reports). Data for February, January 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-03-01

    Contentsinclude: detailed index for 1988-1989; data for february 1989 (IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for January 1989 (solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data (solar-active regions-- H-alpha synoptic charts 1806-1808 (September-November 1988), cosmic-ray measurements by neutron monitor--thule, December 1988, geomagnetic indices -- sudden commencements/solar flare effects December 1988)

  17. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    Science.gov (United States)

    Smith, G. B.; Deller, C. A.; Swift, P. D.; Gentle, A.; Garrett, P. D.; Fisher, W. K.

    2002-04-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior.

  18. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    International Nuclear Information System (INIS)

    Smith, G.B.; Deller, C.A.; Swift, P.D.; Gentle, A.; Garrett, P.D.; Fisher, W.K.

    2002-01-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior

  19. Spectral-Domain Measurement of Strain Sensitivity of a Two-Mode Birefringent Side-Hole Fiber

    Directory of Open Access Journals (Sweden)

    Waclaw Urbanczyk

    2012-09-01

    Full Text Available The strain sensitivity of a two-mode birefringent side-hole fiber is measured in the spectral domain. In a simple experimental setup comprising a broadband source, a polarizer, a two-mode birefringent side-hole fiber under varied elongations, an analyzer and a compact spectrometer, the spectral interferograms are resolved. These are characterized by the equalization wavelength at which spectral interference fringes have the highest visibility (the largest period due to the zero group optical path difference between the fundamental, the LP01 mode and the higher-order, the LP11 mode. The spectral interferograms with the equalization wavelength are processed to retrieve the phase as a function of the wavelength. From the retrieved phase functions corresponding to different elongations of a two-mode birefringent side-hole fiber under test, the spectral strain sensitivity is obtained. Using this approach, the intermodal spectral strain sensitivity was measured for both x and y polarizations. Moreover, the spectral polarimetric sensitivity to strain was measured for the fundamental mode when a birefringent delay line was used in tandem with the fiber. Its spectral dependence was also compared with that obtained from a shift of the spectral interferograms not including the equalization wavelength, and good agreement was confirmed.

  20. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  1. Solar-Geophysical Data Number 539, July 1989. Part 1 (prompt reports). Data for June, May 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-07-01

    Contents include: detailed index for 1988-1989; data for June 1989 -- IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for May 1989 -- solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data -- solar radio emission (Nancay 169-MHz solar interferometric chart, May 1989)

  2. Solar-Geophysical Data Number 551, July 1990. Part 1 (prompt reports). Data for June, May 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-07-01

    ;Contents: Detailed index for 1989-1990; Data for June 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for May 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Geomagnetic indices February-April 1990--sudden commencements/solar flare effects

  3. Spectrally resolved pressure dependence measurements of air fluorescence emission with AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.; Klages, H.

    2008-01-01

    The knowledge of the fluorescence emission as a function of atmospheric parameters is essential for the detection of extensive air showers with the fluorescence technique. In this paper, we summarize AIRFLY published measurements of the pressure dependence of the fluorescence yield. The spectral distribution of the fluorescent light between 280 and 429 nm has been measured with high resolution. Relative intensities of 34 spectral lines have been determined. The pressure dependence of 25 lines was measured in terms of quenching reference pressures p λ ' in air. This set of AIRFLY measurements yields the most comprehensive parametrization of the pressure dependence of the fluorescent spectrum.

  4. Spectral downshifting in MBO{sub 3}:Nd{sup 3+} (M=Y, La) phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Omanwar, S.K.; Sawala, N.S. [Sant Gadge Baba Amravati University, Department of Physics, Amravati, MH (India)

    2017-11-15

    The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd{sup 3+} doped YBO{sub 3} and LaBO{sub 3} phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd{sup 3+} doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology. (orig.)

  5. Solar-geophysical data number 587, July 1993. Part 1 (prompt reports). data for June, May 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-07-01

    Contents: data for june 1993; solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for may 1993; solar active regions; sudden ionospheric disturbances; solar radio spectral observations; solar radioheliograph - 164 mhz - nancay; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is applicable to research in solar energy, plasma physics, communications, and environmental science

  6. Solar-Geophysical Data Number 568, December 1991. Part 1 (prompt reports). Data for November, October 1991 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1991-12-01

    The contents include: Detailed index for 1991; Data for November 1991--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for October 1991--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Cosmic ray measurements by neutron monitor (Climax February and May 1990, Deep River May-August 1991), Geomagnetic indices (Sudden commencements/Solar flare effects January-May 1991); Errata--August 1991 Geomagnetic activity indices

  7. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  8. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  9. Nonlinear generation of kinetic-scale waves by magnetohydrodynamic Alfvén waves and nonlocal spectral transport in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-04-20

    We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.

  10. Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors

    Institute of Scientific and Technical Information of China (English)

    Yen-Chi Chen; Teng-Ming Chen

    2011-01-01

    The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle,which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response.In this study,the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the ncar-infiared spectral range.The short circuit current (Isc),open circuit voltage (Voc),and conversion efficiency (η) of spectral conversion cells were measured.Preliminary experimental results revealed that the light conversion efficiency of a 1.5%-2.7% increase in Si-based cell was achieved.

  11. Ionospheric propagation effects on spectral widths measured by SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    X. Vallières

    2004-06-01

    Full Text Available SuperDARN HF radars provide a global survey of the large-scale convection transversely to the Earth's magnetic field in the high-latitude ionosphere. In addition to the mean plasma velocity, this network also provides measurements of spectral widths which are related to the level of turbulence of the sounded plasma. There is an increasing interest in using spectral widths in geophysical studies, since they are used to monitor the footprints of several magnetospheric regions. In the present paper, we show the effect of radio wave propagation through a typical turbulent ionosphere on spectral widths measured by SuperDARN radars. This effect has already been evidenced experimentally in a previous paper. Here, we model the effects of meso-scale structures on a radar wave front and study their impact on a typical measurement. Numerical simulations reproduce the effect evidenced experimentally and show the role of meso-scale structures (1-10km in the systematic bias that affects spectral width values. As in experimental data, this effect is shown to be increasing with decreasing radar frequency.

  12. Ionospheric propagation effects on spectral widths measured by SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    X. Vallières

    2004-06-01

    Full Text Available SuperDARN HF radars provide a global survey of the large-scale convection transversely to the Earth's magnetic field in the high-latitude ionosphere. In addition to the mean plasma velocity, this network also provides measurements of spectral widths which are related to the level of turbulence of the sounded plasma. There is an increasing interest in using spectral widths in geophysical studies, since they are used to monitor the footprints of several magnetospheric regions. In the present paper, we show the effect of radio wave propagation through a typical turbulent ionosphere on spectral widths measured by SuperDARN radars. This effect has already been evidenced experimentally in a previous paper. Here, we model the effects of meso-scale structures on a radar wave front and study their impact on a typical measurement. Numerical simulations reproduce the effect evidenced experimentally and show the role of meso-scale structures (1-10km in the systematic bias that affects spectral width values. As in experimental data, this effect is shown to be increasing with decreasing radar frequency.

  13. On the measurements of large scale solar velocity fields

    International Nuclear Information System (INIS)

    Andersen, B.N.

    1985-01-01

    A general mathematical formulation for the correction of the scattered light influence on solar Doppler shift measurements has been developed. This method has been applied to the straylight correction of measurements of solar rotation, limb effect, large scale flows and oscillations. It is shown that neglecting the straylight errors may cause spurious large scale velocity fields, oscillations and erronous values for the solar rotation and limb effect. The influence of active regions on full disc velocity measurements has been studied. It is shown that a 13 day periodicity in the global velocity signal will be introduced by the passage of sunspots over the solar disc. With different types of low resolution apertures, other periodicities may be introduced. Accurate measurements of the center-to-limb velocity shift are presented for a set of magnetic insensitive lines well suited for solar velocity measurements. The absolute wavelenght shifts are briefly discussed. The stronger lines have a ''supergravitational'' shift of 300-400 m/s at the solar limb. The results may be explained by the presence of a 20-25 m/s poleward meridional flow and a latitudinal dependence of the granular parameters. Using a simple model it is shown that the main properites of the observations are explained by a 5% increase in the granular size with latitude. Data presented indicate that the resonance line K I, 769.9 nm has a small but significant limb effect of 125 m/s from center to limb

  14. Solar X-rays from Axions: Rest-Mass Dependent Signatures

    CERN Document Server

    Zioutas, Konstantin; Semertzidis, Yannis; Papaevangelou, Thomas; Gardikiotis, Antonios; Dafni, Theopisti; Anastassopoulos, Vassilis

    2010-01-01

    The spectral shape of solar X-rays is a power law. The more active the Sun is, the less steep the distribution. This behaviour can be explained by axion regeneration to X-rays occurring ~400km deep into the photosphere. Their down-comptonization reproduces the measured spectral shape, pointing at axions with rest mass m_a~17 meV/c2, without contradicting astrophysical-laboratory limits. Directly measured soft X-ray spectra from the extremely quiet Sun during 2009 (SphinX mission), though hitherto overlooked, fitt the axion scenario.

  15. Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels

    Science.gov (United States)

    Kyle, H. Lee; Hoyt, Douglas V.; Hickey, John R.; Maschhoff, Robert H.; Vallette, Brenda J.

    1993-01-01

    The Earth Radiation Budget (ERB) experiment on the Nimbus-7 satellite measured the total solar irradiance plus broadband spectral components on a nearly daily basis from 16 Nov. 1978, until 16 June 1992. Months of additional observations were taken in late 1992 and in 1993. The emphasis is on the electrically self calibrating cavity radiometer, channel 10c, which recorded accurate total solar irradiance measurements over the whole period. The spectral channels did not have inflight calibration adjustment capabilities. These channels can, with some additional corrections, be used for short-term studies (one or two solar rotations - 27 to 60 days), but not for long-term trend analysis. For channel 10c, changing radiometer pointing, the zero offsets, the stability of the gain, the temperature sensitivity, and the influences of other platform instruments are all examined and their effects on the measurements considered. Only the question of relative accuracy (not absolute) is examined. The final channel 10c product is also compared with solar measurements made by independent experiments on other satellites. The Nimbus experiment showed that the mean solar energy was about 0.1 percent (1.4 W/sqm) higher in the excited Sun years of 1979 and 1991 than in the quiet Sun years of 1985 and 1986. The error analysis indicated that the measured long-term trends may be as accurate as +/- 0.005 percent. The worse-case error estimate is +/- 0.03 percent.

  16. Response of the middle atmosphere to solar UV and dynamical perturbations

    International Nuclear Information System (INIS)

    Chandra, S.

    1989-01-01

    Recent studies of solar UV related changes of ozone and temperature have considerably improved the understanding of the solar UV and ozone relationship in the middle atmosphere on time scales of a solar rotation. These studies have shown that during periods of high solar activity, ozone in the upper stratosphere has a measurable response to changes in the solar UV flux in accordance with theoretical predictions. The problem of measuring solar response of the stratospheric ozone and temperature on time scales of a solar cycle is more difficult. In the altitude range of 2 mb, the model based calculations, based on plausible scenarios of solar UV variation, suggest a change of less than 4 percent in ozone mixing ratio and 1 to 2 K in temperature. The relative response was studied of the middle atmosphere to solar forcing at 155 and 27 day periods as indicated from the spectral analyses of a number of solar indices

  17. Solar polarimetry: observations and theories

    Energy Technology Data Exchange (ETDEWEB)

    Rees, D E [Sydney Univ. (Australia). Dept. of Applied Mathematics

    1982-01-01

    This review surveys some recent observations of polarization in solar spectral lines with emphasis on their theoretical interpretation. Observations of non-magnetic resonance line polarization offer a new approach to temperature and density modelling of the atmosphere. They also provide a basis for comparison in Hanle effect studies of weak magnetic fields on the solar disk. Measurements of the Hanle effect are being used to deduce vector magnetic fields in prominences. It is now feasible to try to infer the vector field distribution in an active region such as a sunspot from analysis of the stokes parameter profiles of a Zeeman split line.

  18. The spectral imaging facility: Setup characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  19. White light spectral interferometer for measuring dispersion in the visible-near infrared

    Science.gov (United States)

    Arosa, Yago; Rodríguez Fernández, Carlos Damian; Algnamat, Bilal S.; López-Lago, Elena; de la Fuente, Raul

    2017-08-01

    We have designed a spectrally resolved interferometer to measure the refractive index of transparent samples over a wide spectral band from 400 to 1550 nm. The measuring device consists of a Michelson interferometer whose output is analyzed by means of three fiber spectrometers. The first one is a homemade prism spectrometer, which obtains the interferogram produced by the sample over 400 to 1050 nm; the second one is a homemade transmission grating spectrometer thought to measure the interferogram in the near infrared spectral band from 950 to 1550 nm; the last one is a commercial Czerny-Turner spectrometer used to make high precision measurements of the displacement between the Michelson mirrors also using white light interferometry. The whole system is illuminated by a white light source with an emission spectrum similar to black body. We have tested the instrument with solid and liquids samples achieving accuracy to the fourth decimal on the refractive index after fitting it to a Cauchy formula

  20. Design and testing of an innovative solar radiation measurement device

    International Nuclear Information System (INIS)

    Badran, Omar; Al-Salaymeh, Ahmed; El-Tous, Yousif; Abdala, Wasfi

    2010-01-01

    After review of studies conducted on the solar radiation measuring systems, a new innovative instrument that would help in measuring the accurate solar radiation on horizontal surfaces has been designed and tested. An advanced instrument with ease of use and high precision that would enable the user to take the readings in terms of solar intensity (W/m 2 ) has been tested. Also, the innovative instrument can record instantaneous readings of the solar intensities as well as the averages value of the solar radiation flux during certain periods of time. The instrument based in its design on being programmed by programmable interfacing controller (PIC). Furthermore, the power supply circuit is fed by the solar energy cells and does not need an external power source.

  1. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.; Yang, P.E.; Lin, Y.P.; Lin, B.Y.; Chen, H.J.; Lai, R.C.; Cheng, J.S.

    2011-01-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well

  2. Spectral emissivity measurements of liquid refractory metals by spectrometers combined with an electrostatic levitator

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Okada, Junpei T; Paradis, Paul-François; Ito, Yusuke; Masaki, Tadahiko; Watanabe, Yuki

    2012-01-01

    A spectral emissivity measurement system combined with an electrostatic levitator was developed for high-temperature melts. The radiation intensity from a high-temperature sample was measured with a multichannel photospectrometer (MCPD) over the 700–1000 nm spectral range, while a Fourier transform infrared spectrometer (FTIR) measured the radiation over the 1.1–6 µm interval. These spectrometers were calibrated with a blackbody radiation furnace, and the spectral hemispherical emissivity was calculated. The system's capability was evaluated with molten zirconium samples. The spectral hemispherical emissivity of molten zirconium showed a negative wavelength dependence and an almost constant variation over the 1850–2210 K temperature range. The total hemispherical emissivity of zirconium calculated by integrating the spectral hemispherical emissivity was found to be around 0.32, which showed good agreement with the literature values. The constant pressure heat capacity of molten zirconium at melting temperature was calculated to be 40.9 J mol −1 K −1 . (paper)

  3. About Solar Radiation Intensity Measurements and Data Processing

    Directory of Open Access Journals (Sweden)

    MICH-VANCEA Claudiu

    2012-10-01

    Full Text Available Measuring the intensity of solar radiation is one of the directions of investigation necessary for the implementation of photovoltaic systems in a particular geographical area. This can be done by using specific measuring equipment (pyranometer sensors based onthermal or photovoltaic principle. In this paper it is presented a method for measuring solar radiation (which has two main components - direct radiation and diffuse radiation with sensors based on photovoltaic principle. Such data are processed for positioning solarpanels, in order their efficiency to be maximized.

  4. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  5. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    Science.gov (United States)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  6. Review on the solar spectral variability in the EUV for space weather purposes

    Directory of Open Access Journals (Sweden)

    J. Lilensten

    2008-02-01

    Full Text Available The solar XUV-EUV flux is the main energy source in the terrestrial diurnal thermosphere: it produces ionization, dissociation, excitation and heating. Accurate knowledge of this flux is of prime importance for space weather. We first list the space weather applications that require nowcasting and forecasting of the solar XUV-EUV flux. We then review present models and discuss how they account for the variability of the solar spectrum. We show why the measurement of the full spectrum is difficult, and why it is illusory to retrieve it from its atmospheric effects. We then address the problem of determining a set of observations that are adapted for space weather purposes, in the frame of ionospheric studies. Finally, we review the existing and future space experiments that are devoted to the observation of the solar XUV-EUV spectrum.

  7. INERTIAL RANGE TURBULENCE OF FAST AND SLOW SOLAR WIND AT 0.72 AU AND SOLAR MINIMUM

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, Eliza; Echim, Marius; Munteanu, Costel [Institute for Space Sciences, Măgurele (Romania); Zhang, Tielong [Space Research Institute, Graz (Austria); Bruno, Roberto [INAF-IAPS, Istituto di Astrofizica e Planetologia Spaziali, Rome (Italy); Kovacs, Peter, E-mail: eliteo@spacescience.ro [Geological and Geophysical Institute of Hungary, Budapest (Hungary)

    2015-05-10

    We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s{sup −1}. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005–0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is −1.60 for fast solar wind and −1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.

  8. Solar proton events and their effect on space systems

    International Nuclear Information System (INIS)

    Tranquille, C.

    1994-01-01

    Solar protons present a major problem to space systems because of the ionisation and displacement effects which arise from their interaction with matter. This is likely to become a greater problem in the future due to the use of more sensitive electronic components and the proposed expansion of manned activities in space. An outline is provided of the physical processes associated with individual solar events, the solar activity cycle and the transport of solar particles between the Sun and the Earth. The problems of predicting solar event fluences, both over short- and long-term periods, are discussed. The currently available solar proton event models used for long-term forecasting are briefly reviewed, and the advantages and deficiencies of each model are investigated. Predictions using the models are compared to measurements made by the GOES-7 satellite during the rising phase of the current solar cycle. These measurements are also used to illustrate the sensitivity of the models to the choice of confidence level and to the spectral form used for extrapolation over the solar proton energy range. (author)

  9. Spectral BRDF measurements of metallic samples for laser processing applications

    International Nuclear Information System (INIS)

    Vitali, L; Fustinoni, D; Gramazio, P; Niro, A

    2015-01-01

    The spectral bidirectional reflectance distribution function (BRDF) of metals plays an important role in industrial processing involving laser-surface interaction. In particular, in laser metal machining, absorbance is strongly dependent on the radiation incidence angle as well as on finishing and contamination grade of the surface, and in turn it can considerably affect processing results. Very recently, laser radiation is also used to structure metallic surfaces, in order to produce many particular optical effects, ranging from a high level polishing to angular color shifting. Of course, full knowledge of the spectral BRDF of these structured layers makes it possible to infer reflectance or color for any irradiation and viewing angles. In this paper, we present Vis-NIR spectral BRDF measurements of laser-polished metallic, opaque, flat samples commonly employed in such applications. The resulting optical properties seem to be dependent on the atmospheric composition during the polishing process in addition to the roughness. The measurements are carried out with a Perkin Elmer Lambda 950 double-beam spectrophotometer, equipped with the Absolute Reflectance/Transmittance Analyzer (ARTA) motorized goniometer. (paper)

  10. Relationship of transpiration and evapotranspiration to solar radiation and spectral reflectance in soybean [Glycine max] canopies: A simple method for remote sensing of canopy transpiration

    International Nuclear Information System (INIS)

    Choi, E.N.; Inoue, Y.

    2004-01-01

    Abstract The study investigated diurnal and seasonal dynamics of evapotranspiration (ET) and transpiration (Tr) in a soybean canopy, as well as the relationships among ET, Tr, solar radiation and remotely sensed spectral reflectance. The eddy covariance method (ECM) and stem heat balance method (SHBM) were used for independent measurement of ET and Tr, respectively. Micrometeorological, soil, and spectral reflectance data were acquired for the entire growing season. The instantaneous values of canopy-Tr estimated by SHBM and ET by ECM were well synchronized with each other, and both were strongly affected by the solar radiation. The daily values canopy-Tr increased rapidly with increasing leaf area index (LAI), and got closer to the ET even at a low value of LAI such as 1.5-2. The daily values of ET were moderately correlated with global solar radiation (Rs), and more closely with the potential evapotranspiration (ETp), estimated by the 'radiation method.' This fact supported the effectiveness of the simple radiation method in estimation of evapotranspiration. The ratio of Tr/ET as well as the ratio of ground heat flux (G) to Rs (G/Rs) was closely related to LAI, and LAI was a key variable in determining the energy partitioning to soil and vegetation. It was clearly shown that a remotely sensed vegetation index such as SAVI (soil adjusted vegetation index) was effective for estimating LAI, and further useful for directly estimating energy partitioning to soil and vegetation. The G and Tr/ET were both well estimated by the vegetation index. It was concluded that the combination of a simple radiation method with remotely sensed information can provide useful information on energy partitioning and Tr/ET in vegetation canopies

  11. Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)

    Science.gov (United States)

    Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven

    2002-01-01

    Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that

  12. GREENHOUSE PLASTIC FILMS CAPABLE OF MODIFYING THE SPECTRAL DISTRIBUTION OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2010-03-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of innovative covering films for protected cultivation capable of modifying the spectral distribution of the transmitted radiation and thus the vegetative activity. Two photoselective films, three photoluminescent films and one low-density polyethylene film were used as greenhouse coverings for cherry trees and peach trees, grown in pots. The photoselective films were characterised by a reduction of the R/FR ratio in comparison to the natural solar radiation. Tree growth parameters, such as the apical shoot of cherry trees and the shoot of peach trees, were monitored. Different responses to vegetative activities were observed under the films, depending on the species, with a higher shoots growth rate in the peach with respect to the cherry. The photoselective film characterised by the lowest R/FR ratio significantly enhanced the growth of cherry and peach trees in comparison to the trees cultivated under the other greenhouse films

  13. Effects of spectral variation on the device performance of copper indium diselenide and multi-crystalline silicon photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Okullo, W.; Munji, M.K.; Vorster, F.J.; van Dyk, E.E. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth (South Africa)

    2011-02-15

    We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of copper indium diselenide and multi-crystalline silicon photovoltaic modules. Such investigations are of importance in characterization of photovoltaic devices. The investigation centres on the analysis of outdoor solar spectral measurements carried out at 10 min intervals on clear-sky days. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of both modules. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effects of the spectral variation on the performance of the two photovoltaic modules are reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the late afternoon spectra in each case account for the decreased current collection and hence power and efficiency of both modules. (author)

  14. The spectral irradiance traceability chain at PTB

    International Nuclear Information System (INIS)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-01-01

    by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer’s spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

  15. The spectral irradiance traceability chain at PTB

    Energy Technology Data Exchange (ETDEWEB)

    Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

    2013-05-10

    confirmed by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

  16. Simulation study of the aerosol information content in OMI spectral reflectance measurements

    Directory of Open Access Journals (Sweden)

    B. Veihelmann

    2007-06-01

    Full Text Available The Ozone Monitoring Instrument (OMI is an imaging UV-VIS solar backscatter spectrometer and is designed and used primarily to retrieve trace gases like O3 and NO2 from the measured Earth reflectance spectrum in the UV-visible (270–500 nm. However, also aerosols are an important science target of OMI. The multi-wavelength algorithm is used to retrieve aerosol parameters from OMI spectral reflectance measurements in up to 20 wavelength bands. A Principal Component Analysis (PCA is performed to quantify the information content of OMI reflectance measurements on aerosols and to assess the capability of the multi-wavelength algorithm to discern various aerosol types. This analysis is applied to synthetic reflectance measurements for desert dust, biomass burning aerosols, and weakly absorbing anthropogenic aerosol with a variety of aerosol optical thicknesses, aerosol layer altitudes, refractive indices and size distributions. The range of aerosol parameters considered covers the natural variability of tropospheric aerosols. This theoretical analysis is performed for a large number of scenarios with various geometries and surface albedo spectra for ocean, soil and vegetation. When the surface albedo spectrum is accurately known and clouds are absent, OMI reflectance measurements have 2 to 4 degrees of freedom that can be attributed to aerosol parameters. This information content depends on the observation geometry and the surface albedo spectrum. An additional wavelength band is evaluated, that comprises the O2-O2 absorption band at a wavelength of 477 nm. It is found that this wavelength band adds significantly more information than any other individual band.

  17. Interpretation of UV radiometric measurements of spectrally non-uniform sources

    International Nuclear Information System (INIS)

    Murphy, P.J.; Gardner, D.G.

    1988-01-01

    Narrow bandpass UV radiometers are used in a variety of high-temperature measurement applications. Significant systematic errors, in the form of an apparent wavelength shift in the system response curve, may be introduced when interpreting data obtained from spectrally nonuniform sources. Theoretical calculations, using transmission curves from commercially available narrow bandpass filters, show that the apparent shift in the system spectral response is a function of temperature for a blackbody source. A brief comparison between the theoretical analysis and experimentaal data is presented

  18. Solar-Geophysical Data Number 536, April 1989. Part 1 (prompt reports). Data for March, February 1989 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-04-01

    Contents include: detailed index for 1988-1989; data for March 1989--(IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for February 1989--(solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data--(solar-active-regions - H-alpha synoptic charts 1809-1810 (November-December 1988), cosmic ray measurements by neutron monitor January 1989, geomagnetic indices - sudden commencements/solar flare effects January 1989, Pioneer XII interplanetary magnetic field magnitudes July 1989, Pioneer XII solar wind January-December 1988, march special event data)

  19. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  20. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  1. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    Science.gov (United States)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  2. Solar Maximum Mission Experiment - Ultraviolet Spectroscopy and Polarimetry on the Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hanssen, E.; Cheng, C. C.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.; Gurman, J. B.; Hyder, C. L.

    1981-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft is described. It is pointed out that the instrument, which operates in the wavelength range 1150-3600 A, has a spatial resolution of 2-3 arcsec and a spectral resolution of 0.02 A FWHM in second order. A Gregorian telescope, with a focal length of 1.8 m, feeds a 1 m Ebert-Fastie spectrometer. A polarimeter comprising rotating Mg F2 waveplates can be inserted behind the spectrometer entrance slit; it permits all four Stokes parameters to be determined. Among the observing modes are rasters, spectral scans, velocity measurements, and polarimetry. Examples of initial observations made since launch are presented.

  3. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  4. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    International Nuclear Information System (INIS)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-01-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hz<ν<0.5 Hz, where the spectral density is approximately constant. The radial variation of the spectral density is analyzed and compared with Ulysses 1991 data, a period of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  5. Solar-Geophysical Data Number 571, March 1992. Part 1 (prompt reports). Data for February, January 1992 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1992-03-01

    The contents include: Detailed index for 1991-1992; Data for February 1992--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for January 1992--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Cosmic rays Climax and Huancayo Jul-Dec 91, Sudden Commencements Jun-Aug 91, and Geomagnetic indices Dec 91

  6. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  7. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    Science.gov (United States)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  8. New experimental device for high-temperature normal spectral emissivity measurements of coatings

    International Nuclear Information System (INIS)

    Honnerová, Petra; Martan, Jiří; Kučera, Martin; Honner, Milan; Hameury, Jacques

    2014-01-01

    A new experimental device for normal spectral emissivity measurements of coatings in the infrared spectral range from 1.38 μm to 26 μm and in the temperature range from 550 K to 1250 K is presented. A Fourier transform infrared spectrometer (FTIR) is used for the detection of sample and blackbody spectral radiation. Sample heating is achieved by a fiber laser with a scanning head. Surface temperature is measured by two methods. The first method uses an infrared camera and a reference coating with known effective emissivity, the second method is based on the combination of Christiansen wavelength with contact and noncontact surface temperature measurement. Application of the method is shown on the example of a high-temperature high-emissivity coating. Experimental results obtained with this apparatus are compared with the results performed by a direct method of Laboratoire National d’Essais (LNE) in France. The differences in the spectra are analyzed. (paper)

  9. Indoor measurement of photovoltaic device characteristics at varying irradiance, temperature and spectrum for energy rating

    International Nuclear Information System (INIS)

    Bliss, M; Betts, T R; Gottschalg, R

    2010-01-01

    The first three-dimensional performance matrix for use in photovoltaic (PV) energy rating is reported utilizing a novel energy rating solar simulator based on LEDs. Device characteristics are measured indoors at varying irradiance (G), temperature (T) and spectrum (E). This opens the possibility for a more accurate measurement system for energy yield prediction of PV devices, especially for devices with high spectral dependence such as wide bandgap solar cells as they take into account spectral changes in the light. The main aspects of the LED-based solar simulator used are briefly described. A measurement method is developed and detailed in the paper, which takes into account the current imperfections in the achievable spectrum. Measurement results for a crystalline silicon solar cell are used to demonstrate the measurement approach. An uncertainty analysis of the measurement system is given, resulting in an overall absolute uncertainty of 4.3% (coverage factor k = 2) in maximum power measurements at 765 W m −2 irradiance with scope for further improvements

  10. Selection/extraction of spectral regions for autofluorescence spectra measured in the oral cavity

    NARCIS (Netherlands)

    Skurichina, M; Paclik, P; Duin, RPW; de Veld, D; Sterenborg, HJCM; Witjes, MJH; Roodenburg, JLN; Fred, A; Caelli, T; Duin, RPW; Campilho, A; DeRidder, D

    2004-01-01

    Recently a number of successful algorithms to select/extract discriminative spectral regions was introduced. These methods may be more beneficial than the standard feature selection/extraction methods for spectral classification. In this paper, on the example of autofluorescence spectra measured in

  11. Water vapour retrieval using the Precision Solar Spectroradiometer

    Science.gov (United States)

    Raptis, Panagiotis-Ioannis; Kazadzis, Stelios; Gröbner, Julian; Kouremeti, Natalia; Doppler, Lionel; Becker, Ralf; Helmis, Constantinos

    2018-02-01

    The Precision Solar Spectroradiometer (PSR) is a new spectroradiometer developed at Physikalisch-Meteorologisches Observatorium Davos - World Radiation Center (PMOD-WRC), Davos, measuring direct solar irradiance at the surface, in the 300-1020 nm spectral range and at high temporal resolution. The purpose of this work is to investigate the instrument's potential to retrieve integrated water vapour (IWV) using its spectral measurements. Two different approaches were developed in order to retrieve IWV: the first one uses single-channel and wavelength measurements, following a theoretical water vapour high absorption wavelength, and the second one uses direct sun irradiance integrated at a certain spectral region. IWV results have been validated using a 2-year data set, consisting of an AERONET sun-photometer Cimel CE318, a Global Positioning System (GPS), a microwave radiometer profiler (MWP) and radiosonde retrievals recorded at Meteorological Observatorium Lindenberg, Germany. For the monochromatic approach, better agreement with retrievals from other methods and instruments was achieved using the 946 nm channel, while for the spectral approach the 934-948 nm window was used. Compared to other instruments' retrievals, the monochromatic approach leads to mean relative differences up to 3.3 % with the coefficient of determination (R2) being in the region of 0.87-0.95, while for the spectral approach mean relative differences up to 0.7 % were recorded with R2 in the region of 0.96-0.98. Uncertainties related to IWV retrieval methods were investigated and found to be less than 0.28 cm for both methods. Absolute IWV deviations of differences between PSR and other instruments were determined the range of 0.08-0.30 cm and only in extreme cases would reach up to 15 %.

  12. Comparison of solar irradiances measured by SBUV, SME, and rockets

    International Nuclear Information System (INIS)

    Schlesinger, B.M.; Heath, D.F.

    1988-01-01

    Solar Backscatter Ultraviolet (SBUV) measurements of the solar irradiance between 170 and 320 nm have been compared with rocket and Solar Mesosphere Explorer (SME) ultraviolet spectrometer measurements. The SBUV and SME data were those available from the National Space Sciences Data Center (NSSDC). The published rocket measurement are sensitive enough to detect substantial systematic changes with time in other instruments and to check absolute calibration but not sufficiently sensitive to validate claims of changes in the solar ultraviolet irradiance longer than 170 nm. The SBUV irradiances show as systematic decrease with time not seen in the rocket measurements; a correction for this decrease, based on changes between the instrument properties measured in 1980--1981 and those in 1984, is introduced. Ratios of spectra in early 1982 to those in mid-1984, calculated using the SME and SBUV solar irradiances, have been compared with each other asnd with those predicted from Mg 280-nm variations. The scatter and overall structure in the SME spectra from the NSSDC is 3--5%, of the order of or larger than most of the changes predicted by the Mg index. The corrected SBUV ratio and the Mg index prediction for it agree to within 1% such agreement supports a common origin for variations between solar maximum and minimum and those for individual rotations: the degree to which active regions cover the visible hemisphere of the Sun. copyright American Geophysical Union 1988

  13. Characterization of perovskite solar cells: Towards a reliable measurement protocol

    Directory of Open Access Journals (Sweden)

    Eugen Zimmermann

    2016-09-01

    Full Text Available Lead halide perovskite solar cells have shown a tremendous rise in power conversion efficiency with reported record efficiencies of over 20% making this material very promising as a low cost alternative to conventional inorganic solar cells. However, due to a differently severe “hysteretic” behaviour during current density-voltage measurements, which strongly depends on scan rate, device and measurement history, preparation method, device architecture, etc., commonly used solar cell measurements do not give reliable or even reproducible results. For the aspect of commercialization and the possibility to compare results of different devices among different laboratories, it is necessary to establish a measurement protocol which gives reproducible results. Therefore, we compare device characteristics derived from standard current density-voltage measurements with stabilized values obtained from an adaptive tracking of the maximum power point and the open circuit voltage as well as characteristics extracted from time resolved current density-voltage measurements. Our results provide insight into the challenges of a correct determination of device performance and propose a measurement protocol for a reliable characterisation which is easy to implement and has been tested on varying perovskite solar cells fabricated in different laboratories.

  14. Determining the Optimum Tilt Angle and Orientation for Solar Energy Collection Based on Measured Solar Radiance Data

    OpenAIRE

    Li, Danny H. W.; Lam, Tony N. T.

    2007-01-01

    A prior requirement to the design of any solar-based conversion systems is the knowledge of optimum orientation and tilt surface at which peak solar energy can be collected. In many parts of the world, however, the solar radiation data for the surfaces of interest are not always available. This paper presents a numerical approach to calculate the solar radiation on sloped planes by integrating the measured sky radiance distributions. The annual total solar yield at different sloped surfaces ...

  15. The SUVIT Instrument on the Solar-C Mission

    Science.gov (United States)

    Tarbell, Theodore D.; Ichimoto, Kiyoshi

    2014-06-01

    Solar-C is a new space mission being proposed to JAXA, with significant contributions anticipated from NASA, ESA, and EU countries. The main scientific objectives are to: reveal the mechanisms for heating and dynamics of the chromosphere and corona and acceleration of the solar wind; determine the physical origin of the large-scale explosions and eruptions that drive short-term solar, heliospheric, and geospace variability; use the solar atmosphere as a laboratory for understanding fundamental physical processes; make unprecedented observations of the polar magnetic fields. The unique approaches of Solar-C to achieve these goals are to: determine the properties and evolution of the 3-dimensional magnetic field, especially on small spatial scales, and for the first time observed in the crucial low beta plasma region; observe all the temperature regimes of the atmosphere seamlessly at the highest spatial resolution ever achieved; observe at high cadence the prevailing dynamics in all regions of the atmosphere; determine physical properties from high resolution spectroscopic measurements throughout the atmosphere and into the solar wind. The powerful suite of instruments onboard Solar-C will be sensitive to temperatures from the photosphere 5500 K) to solar flares 20 MK) with no temperature gap, with spatial resolution at all temperatures of 0.3″ or less (0.1″ in the lower atmosphere) and at high cadence. The purpose of the Solar UV-Visible-IR Telescope (SUVIT) is to obtain chromospheric velocity, temperature, density and magnetic field diagnostics over as wide arange of heights as possible, through high cadence spectral line profiles and vector spectro-polarimetry. SUVIT is a meter-class telescope currently under study at 1.4m in order to obtain sufficientresolution and S/N. SUVIT has two complementary focal plane packages, the Filtergraph that makes high cadence imaging observations with the highest spatial resolution and the Spectro-polarimeter that makes

  16. Solar wind electron densities from Viking dual-frequency radio measurements

    International Nuclear Information System (INIS)

    Muhleman, D.O.; Anderson, J.D.

    1981-01-01

    Simultaneous phase coherent, two-frequency measurements of the time delay between the Earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii (R/sub sun/) to 200 R/sub sun/. The measurements were made during a period of solar activity minimum (1976--1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r/sup -2.7/ and r/sup -2.04/. However, the more rapidly falling term quickly disappears at moderate latitudes (approx.20 0 ), leaving only the inverse-square behavior

  17. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    Science.gov (United States)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  18. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  19. A synthetic method of solar spectrum based on LED

    Science.gov (United States)

    Wang, Ji-qiang; Su, Shi; Zhang, Guo-yu; Zhang, Jian

    2017-10-01

    A synthetic method of solar spectrum which based on the spectral characteristics of the solar spectrum and LED, and the principle of arbitrary spectral synthesis was studied by using 14 kinds of LED with different central wavelengths.The LED and solar spectrum data were selected by Origin Software firstly, then calculated the total number of LED for each center band by the transformation relation between brightness and illumination and Least Squares Curve Fit in Matlab.Finally, the spectrum curve of AM1.5 standard solar spectrum was obtained. The results met the technical indexes of the solar spectrum matching with ±20% and the solar constant with >0.5.

  20. Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: evaluation of estimation errors in spectral sensitivity measurements

    Science.gov (United States)

    Facheris, L.; Cuccoli, F.; Argenti, F.

    2008-10-01

    NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.

  1. 7Be solar neutrino measurement with KamLAND

    Science.gov (United States)

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.; KamLAND Collaboration

    2015-11-01

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582 ±94 (kt d)-1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26 ±0.52 ) ×109cm-2s-1 , assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a νe survival probability of 0.66 ±0.15 is determined from the KamLAND data. Utilizing a global three-flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82 ±1.02 ) ×109cm-2s-1 , which is consistent with the standard solar model predictions.

  2. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  3. Spectral Analysis of the sdO Standard Star Feige 34

    Science.gov (United States)

    Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.

    2017-03-01

    We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.

  4. Potential of optical spectral transmission measurements for joint inflammation measurements in rheumatoid arthritis patients

    Science.gov (United States)

    Meier, A. J. Louise; Rensen, Wouter H. J.; de Bokx, Pieter K.; de Nijs, Ron N. J.

    2012-08-01

    Frequent monitoring of rheumatoid arthritis (RA) patients enables timely treatment adjustments and improved outcomes. Currently this is not feasible due to a shortage of rheumatologists. An optical spectral transmission device is presented for objective assessment of joint inflammation in RA patients, while improving diagnostic accuracy and clinical workflow. A cross-sectional, nonrandomized observational study was performed with this device. In the study, 77 proximal interphalangeal (PIP) joints in 67 patients have been analyzed. Inflammation of these PIP joints was also assessed by a rheumatologist with a score varying from 1 (not inflamed) to 5 (severely inflamed). Out of 77 measurements, 27 were performed in moderate to strongly inflamed PIP joints. Comparison between the clinical assessment and an optical measurement showed a correlation coefficient r=0.63, p<0.001, 95% CI [0.47, 0.75], and a ROC curve (AUC=0.88) that shows a relative good specificity and sensitivity. Optical spectral transmission measurements in a single joint correlate with clinical assessment of joint inflammation, and therefore might be useful in monitoring joint inflammation in RA patients.

  5. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia. ohoud-aljawi@hotmail.com (Malaysia)

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance of UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.

  6. Characterizing the solar reflection from wildfire smoke plumes using airborne multiangle measurements

    Science.gov (United States)

    Gatebe, C. K.; Varnai, T.; Gautam, R.; Poudyal, R.; Singh, M. K.

    2016-12-01

    To help better understand forest fire smoke plumes, this study examines sunlight reflected from plumes that were observed over Canada during the ARCTAS campaign in summer 2008. In particular, the study analyzes multiangle and multispectral measurements of smoke scattering by the airborne Cloud Absorption Radiometer (CAR). In combination with other in-situ and remote sensing information and radiation modeling, CAR data is used for characterizing the radiative properties and radiative impact of smoke particles—which inherently depend on smoke particle properties that influence air quality. In addition to estimating the amount of reflected and absorbed sunlight, the work includes using CAR data to create spectral and broadband top-of-atmosphere angular distribution models (ADMs) of solar radiation reflected by smoke plumes, and examining the sensitivity of such angular models to scene parameters. Overall, the results help better understand the radiative properties and radiative effects of smoke particles, and are anticipated to help better interpret satellite data on smoke plumes.

  7. Evaluation of long term performance measurements of PV modules with different technologies

    OpenAIRE

    Degner, T.; Ries, M.

    2004-01-01

    PV modules of six different technologies (m-Si, mc-Si, EFG, CIS, CdTe, a-Si) have been monitored concerning the performance under external conditions for a period of more than 2 years. In addition to the standard solar radiation measurements with pyranometer solar sensors with corresponding cell technology have been used to supplement the measurements. This allows in principle to consider spectral effects. The solar radiation measured with the sensor and the pyranometer is analysed on monthly...

  8. Optical and Structural Characterization of Nickel Coatings for Solar Collector Receivers

    OpenAIRE

    Pratesi, S.; Sani, E.; De Lucia, M.

    2014-01-01

    The development of spectrally selective materials is gaining an increasing role in solar thermal technology. The ideal spectrally selective solar absorber requires high absorbance at the solar spectrum wavelengths and low emittance at the wavelengths of thermal spectrum. Selective coating represents a promising route to improve the receiver efficiency for parabolic trough collectors (PTCs). In this work, we describe an intermediate step in the fabrication of black-chrome based solar absorbers...

  9. Quality assurance of the Brewer spectral UV measurements in Finland

    Directory of Open Access Journals (Sweden)

    K. Lakkala

    2008-06-01

    Full Text Available The quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long-term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and is included in the data processing software. The results showed that the actual cosine correction factor of the two Finnish Brewers can vary between 1.08–1.13 and 1.08–1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the instruments' internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long-term spectral responsivity was calculated using the time series of several lamps using two slightly different methods. The long-term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT for the whole of the measurement time-periods 1990–2006 and 1995–2006 for Sodankylä and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002–2007.

  10. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  11. Observations of the transmittance in two solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Almanza, R.; Bryant, M.C.

    1983-11-01

    A NaCl salt gradient solar pond has been in continuous operation at the University of New Mexico since the fall of 1975; a smaller pond, using KNO/sub 3/ to produce the salinity gradient, was commissioned in the fall of 1981. The distribution of absorbed radiation in the ponds is of key importance in the determination of their efficiencies for collecting and storing solar energy. The absorption coefficient of light in an aqueous solution is very dependent upon wavelength; the spectral distribution of sunlight shifts toward the blue and the amount of solar energy absorbed per unit length of path declines with depth of penetration. The presence of suspended solids and bioforms further complicate the transmittance of sun light through the pond, specially since this contamination tends to vary strongly with depth. Because of its importance to the phytoplankton population , considerable work has been done by oceanographers on the absorption and scattering of light for different wavelengths. However, in a solar pond the big question is the amount of energy reaching the lower convective layer (storage). Several attempts have been made to measure the transmittance in solar ponds, mainly NaCl but the problem is to find a temperature-insensitive submersible pyranometer. Convenient formulas have been offered for the attenuation of solar radiation in pond water by considering it to be divided into spectral bands, or by fitting simple analytical functions, or specifying the extintion coefficient. (For the first method, it is necessary to know the absorption and scattering of light for different lambda.) In this paper some measurements of transmittance in the UNM ponds, are presented thereby exhibiting a simple procedure which may be of interest to others in this field.

  12. An overview of global solar radiation measurements in Ghardaia area, south Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Gairaa, Kacem; Bakelli, Yahia [Applied Research Unit for Renewables Energies, Ouargla Road, Ghardaia (Algeria)

    2011-07-01

    This paper presents an overview of actual solar radiation data measurements in Ghardaia site (32.360 N, 3.810 W, 450 m above MSL). Global solar radiation and surface temperatures were measured and analyzed for one complete year from 1 January-31December 2005. The data thus recorded are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar energy-model. Hourly, daily and monthly solar radiation was made from five-minute recorded by EKO Pyranometer. The highest measured daily and monthly mean solar radiation was found to be 369 and 326 (W/m2), and the highest five minute averaged solar radiation values up to 1268 (W/m2) were observed in the summer season from May to September, and the yearly average daily energy input was 21.83 (MJ/m2/day). Besides the global solar radiation, the daily and monthly average temperature variations are discussed. The collected data indicate that Ghardaia has a strong potential for solar energy applications.

  13. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  14. Spectral analysis of the geomagnetic activity index Ap during different IMF conditions (1947-1978)

    International Nuclear Information System (INIS)

    Francia, P.; Villante, U.

    1986-01-01

    The spectral analysis of the geomagnetic activity index Ap (1947-1978) has been conducted for intervals associated respectively with two and four sectors of the interplanetary magnetic fields per solar rotation. A recurrent 2-sector structure is typically associated with an emerging spectral peak close to T s (T s being the period of solar rotation as seen from Earth), while the T 2 /2 modulation becomes more important during intervals corresponding to four sectors per solar rotation. The recurrence tendency of two high-velocity streams per solar rotation seems to reinforce the relative importance of the T 2 /2 modulation

  15. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    Science.gov (United States)

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  16. Measurement of the lepton τ spectral functions and applications to quantum chromodynamic

    International Nuclear Information System (INIS)

    Hoecker, A.

    1997-01-01

    This thesis presents measurements of the τ vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e + e - annihilation. A combined fit of the pion form factor from τ decays and e + e - data is performed using different parametrizations. The mass and the width of the ρ ± (770) and the ρ 0 (770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M ρ ± (770) - M ρ 0 (770) =(0.0±1.0) MeV/c 2 and Γ ρ ± (770) - Γ ρ 0 (770) =(0.1 ± 1.9) MeV/c 2 . Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be α E =(2.68±0.91) x 10 -4 fm 3 . The τ vector and axial-vector hadronic widths and certain spectral moments are exploited to measure α s and non-perturbative contributions at the τ mass scale. The best, and experimentally and theoretically most robust, determination of α s (M τ ) is obtained from the inclusive (V + A) fit that yields α s (M τ )= 0.348±0.017 giving α s (M Z )=0.1211 ± 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the τ hadronic width to masses smaller that the τ mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6.9±0.5. The vector spectral functions are used to improve the precision of the experimental determination of the hadronic contribution to the anomalous magnetic moment of the muon a μ =(g - 2)/2 and to the running of the QED

  17. GOSAT and OCO-2 Inter-comparison on Measured Spectral Radiance and Retrieved Carbon Dioxide

    Science.gov (United States)

    Kataoka, F.; Kuze, A.; Shiomi, K.; Suto, H.; Crisp, D.; Bruegge, C. J.; Schwandner, F. M.

    2016-12-01

    TANSO-FTS onboard GOSAT and grating spectrometer on OCO-2 use different measurement techniques to measure carbon dioxide (CO2) and molecular oxygen (O2). Both instruments observe sunlight reflected from the Earth's surface in almost the same spectral range. As a first step in cross calibrating these two instruments, we compared spectral radiance observations within the three short wave infrared (SWIR) spectral bands centered on the O2 A-band (O2A), the weak CO2 band near 1.6 microns (Weak-CO2) and 2.06 micons (Strong-CO2) bands at temporally coincident and spatially collocated points. In this work, we reconciled the different size of the footprints and evaluated at various types of surface targets such as ocean, desert and forest. For radiometric inter-comparisons, we consider long term instrument sensitivity degradation in orbit and differences in viewing geometry and associated differences in surface bidirectional reflectance distribution function (BRDF). Measured spectral radiances agree very well within 5% for all bands. This presentation will summarize these comparisons of GOSAT and OCO-2 spectral radiance observations and associated estimates of carbon dioxide and related parameters retrieved with the same algorithm at matchup points. We will also discuss instrument related uncertainties from various target observations.

  18. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    Science.gov (United States)

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed

  19. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    Science.gov (United States)

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  20. Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning

    International Nuclear Information System (INIS)

    Macfarlane, R.M.; Sun, Y.; Sellin, P.B.; Cone, R.L.

    2007-01-01

    Two-pulse and stimulated photon echoes and spectral hole burning were measured on the transition from the lowest component of the 4 I 15/2 manifold to the lowest component of 4 I 13/2 of Er 3+ in a silicate optical fiber at 1.6 K. The two-pulse echo decays gave decoherence times as long as 230 ns for magnetic fields above 2 T. A large field dependent contribution to the homogeneous line width of >2 MHz was found and interpreted in terms of coupling to magnetic tunneling modes (TLS) in the glass. The stimulated echoes measured at 2 T showed spectral diffusion of 0.8 MHz/decade of time between 0.4 and 500 μs. Spectral diffusion in this high field region is attributed to coupling to elastic TLS modes which have a distribution of flip rates in glasses. Time-resolved spectral hole burning at very low field showed stronger spectral diffusion of 5.7 MHz/decade of time, attributed to coupling to magnetic spin-elastic TLS modes

  1. Share of erythema dose of solar radiation in high mountains

    International Nuclear Information System (INIS)

    Blumthaler, M.; Ambach, W.

    1987-01-01

    The erythema dose was measured using a Robertson-Berger Sunburn Meter. The spectral sensitivity of the detector is adapted to an erythema action spectrum with the optical center at about 300 nm. The erythema dose is expressed in the biologically relevant Sunburn Units (SU). The Robertson-Berger Sunburn Meter has been recommended by the WMO for global monitoring of solar UV-B erythema dose. UV-A radiation was measured with a UV-radiometer. The spectral sensitivity of the detector has a flat maximum at 345 nm and a half band width of +- 25 nm. Global radiation was measured using a pyranometer. All detectors were placed horizontally and calibrated several times. Readings were taken in intervals of one minute

  2. Solar spectrum conversion for photovoltaics using nanoparticles

    OpenAIRE

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction semiconductor solar cells only effectively convert photons of energy close to the semiconductor band gap (Eg) as a result of the mismatch between the incident solar spectrum and the spectral absorption properties...

  3. Spectral measurements of muzzle flash with multispectral and hyperspectral sensor

    Science.gov (United States)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Piątkowski, T.; Polakowski, H.

    2011-08-01

    The paper presents some practical aspects of the measurements of muzzle flash signatures. Selected signatures of sniper shot in typical scenarios has been presented. Signatures registered during all phases of muzzle flash were analyzed. High precision laboratory measurements were made in a special ballistic laboratory and as a result several flash patterns were registered. The field measurements of a muzzle flash were also performed. During the tests several infrared cameras were used, including the measurement class devices with high accuracy and frame rates. The registrations were made in NWIR, SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Some typical infrared shot signatures were presented. Beside the cameras, the LWIR imaging spectroradiometer HyperCam was also used during the laboratory experiments and the field tests. The signatures collected by the HyperCam device were useful for the determination of spectral characteristics of the muzzle flash, whereas the analysis of thermal images registered during the tests provided the data on temperature distribution in the flash area. As a result of the measurement session the signatures of several types handguns, machine guns and sniper rifles were obtained which will be used in the development of passive infrared systems for sniper detection.

  4. Berlin Reflectance Spectral Library (BRSL)

    Science.gov (United States)

    Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.

    2017-09-01

    The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.

  5. Methods for measuring the spectral reflectivity of advanced materials at high temperature

    International Nuclear Information System (INIS)

    Salikhov, T.P.; Kan, V.V.

    1993-01-01

    For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)

  6. A comparison of solar irradiances measured by SBUV, SME, and rockets

    Science.gov (United States)

    Schlesinger, Barry M.; Heath, Donald F.

    1988-01-01

    In this paper, Solar Backscatter Ultraviolet (SBUV) measurements of solar irradiance and predictions from the Mg 280-nm index are compared with each other and with coincident Solar Mesosphere Explorer (SME) and rocket measurements. The SBUV irradiances show a systematic decrease with time not seen in the rocket measurements; a correction for this decrease is introduced. The scatter and overall structure in the SME spectra is 3-5 percent, of the order of or larger than most of the changes predicted by the Mg index. The corrected SBUV ratio and the Mg index prediction for it agree to within 1 percent. Such agreement supports a common origin for variations between solar maximum and minimum and those for individual rotations: the degree to which active regions cover the visible hemisphere of the sun.

  7. Algorithmic Foundation of Spectral Rarefaction for Measuring Satellite Imagery Heterogeneity at Multiple Spatial Scales

    Science.gov (United States)

    Rocchini, Duccio

    2009-01-01

    Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600

  8. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    Science.gov (United States)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  9. Spectral signature of ultraviolet solar irradiance in Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Pinedo V, J. L; Mireles G, F; Rios M, C; Quirino T, L. L; Davila R, J. I [Universidad Autonoma de Zacatecas, Zacatecas, Zacatecas (Mexico)

    2006-10-15

    This study presents an analysis of the global ultraviolet spectral irradiance (290-400 nm) registered in Zacatecas, a city near the Tropic of Cancer, located at 2500 m above sea level, latitude of 22 degrees N and longitude of 102 degrees W. The spectra have been measured using a Bentham radiometer with a 0.5 nm step in wavelength. The measurements show relatively high levels of ultraviolet irradiance (UV), which may be characteristic of areas close to the Tropic of Cancer. Faced with an increase of the incidence of skin cancer among the population of Zacatecas, these measurements highlight that a damage prevention plan is required. [Spanish] En este trabajo se presenta un analisis de la radiacion espectral global ultravioleta (290-400 nm) registrada en Zacatecas, una ciudad vecina al tropico de cancer, situada a 2500 m sobre el nivel del mar, latitud de 22 grados N y longitud de 102 grados O. Los espectros correspondientes han sido medidos mediante un espectroradiometro Bentham con un paso de 0.5 nm de longitud de onda. Las mediciones muestran niveles de radiacion ultravioleta (UV) relativamente elevados, que pueden ser caracteristicos de las zonas vecinas al tropico de cancer. Frente al aumento de incidencia de cancer en la piel en la poblacion del estado de Zacatecas, estas mediciones ponen en relieve la necesidad de formular un plan preventivo de danos.

  10. Albedos and spectral signatures determination and it connection to geological processes: Simile between Earth and other solar system bodies

    Science.gov (United States)

    Suarez, J.; Ochoa, L.; Saavedra, F.

    2017-07-01

    Remote sensing has always been the best investigation tool for planetary sciences. In this research have been used data of Surface albedo, electromagnetic spectra and satelital imagery in search of understanding glacier dynamics in some bodies of the solar system, and how it's related to their compositions and associated geological processes, this methodology is very common in icy moons studies. Through analytic software's some albedos map's and geomorphological analysis were made that allow interpretation of different types of ice in the glacier's and it's interaction with other materials, almost all the images were worked in the visible and infrared ranges of the spectrum; spectral data were later used to connect the reflectance whit chemical and reologic properties of the compounds studied. It have been concluded that the albedo analysis is an effective tool to differentiate materials in the bodies surfaces, but the application of spectral data is necessary to know the exact compounds of the glaciers and to have a better understanding of the icy bodies.

  11. Establishing a method to measure bone structure using spectral CT

    Science.gov (United States)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  12. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-01-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes

  13. Approaching conversion limit with all-dielectric solar cell reflectors.

    Science.gov (United States)

    Fu, Sze Ming; Lai, Yi-Chun; Tseng, Chi Wei; Yan, Sheng Lun; Zhong, Yan Kai; Shen, Chang-Hong; Shieh, Jia-Min; Li, Yu-Ren; Cheng, Huang-Chung; Chi, Gou-chung; Yu, Peichen; Lin, Albert

    2015-02-09

    Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.

  14. Observational study on the fine structure and dynamics of a solar jet. II. Energy release process revealed by spectral analysis

    Science.gov (United States)

    Sakaue, Takahito; Tei, Akiko; Asai, Ayumi; Ueno, Satoru; Ichimoto, Kiyoshi; Shibata, Kazunari

    2018-01-01

    We report on a solar jet phenomenon associated with the C5.4 class flare on 2014 November 11. The data of the jet was provided by the Solar Dynamics Observatory, the X-Ray Telescope (XRT) aboard Hinode, and the Interface Region Imaging Spectrograph and Domeless Solar Telescope (DST) at Hida Observatory, Kyoto University. These plentiful data enabled us to present this series of papers to discuss all the processes of the observed phenomena, including energy storage, event trigger, and energy release. In this paper, we focus on the energy release process of the observed jet, and mainly describe our spectral analysis on the Hα data of DST to investigate the internal structure of the Hα jet and its temporal evolution. This analysis reveals that in the physical quantity distributions of the Hα jet, such as line-of-sight velocity and optical thickness, there is a significant gradient in the direction crossing the jet. We interpret this internal structure as the consequence of the migration of the energy release site, based on the idea of ubiquitous reconnection. Moreover, by measuring the horizontal flow of the fine structures in the jet, we succeeded in deriving the three-dimensional velocity field and the line-of-sight acceleration field of the Hα jet. The analysis result indicates that part of the ejecta in the Hα jet experienced additional acceleration after it had been ejected from the lower atmosphere. This secondary acceleration was found to occur in the vicinity of the intersection between the trajectories of the Hα jet and the X-ray jet observed by Hinode/XRT. We propose that a fundamental cause of this phenomenon is magnetic reconnection involving the plasmoid in the observed jet.

  15. Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements

    Science.gov (United States)

    Korablev, Oleg I.; Bertaux, Jean-Loup; Vinogradov, Imant I.; Kalinnikov, Yurii K.; Nevejans, D.; Neefs, E.; Le Barbu, T.; Durry, G.

    2017-11-01

    A new concept of a high-resolution near-IR spectrometer consisting of an echelle grating combined with an acousto-optic tunable filter (AOTF) for separation of diffraction orders, is developed for space-borne studies of planetary atmospheres. A compact design with no moving parts within the mass budget of 3-5 kg allows to reach the resolving power λ/Δλ of 20000-30000. Only a small piece of spectrum in high diffraction orders can be measured at a time, but thanks to flexibility of the AOTF electrical tuning, such pieces of spectrum can be measured randomly and rapidly within the spectral range. This development can be used for accurate measurements of important atmospheric gases, such as CO2 in terrestrial atmosphere, isotopic ratios and minor gases. A spectrometer, based on this principle, SOIR (Solar Occultation InfraRed) is being built for Venus Express (2005) ESA mission. Instruments based on this principle have high potential for the studies of the Earth, in particular for measurements of isotopes of water in the lower atmosphere, either in solar occultation profiling (tangent altitude <10 km), or observing solar glint for integral quantities of the components. Small size of hardware makes them ideal for micro-satellites, which are now agile enough to provide necessary pointing for solar occultation or glint observations. Also, the atmosphere of Mars has never been observed at local scales with such a high spectral resolution. A laboratory prototype consisting of 275-mm echelle spectrometer with Hamamatsu InGaAs 512-pixel linear array and the AOTF has demonstrated λ/Δλ≍30000 in the spectral range of 1-1.7 μm. The next set up, covering the spectral ranges of 1-1.7 μm and 2.3-4.3 μm, and the Venus Express SOIR are briefly discussed.

  16. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2010-02-01

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 μm to 110 μm. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 μm to 160 μm were done. (orig.)

  17. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  18. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  19. Spectral BRDF-based determination of proper measurement geometries to characterize color shift of special effect coatings.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana; Campos, Joaquín; Martínez-Verdú, Francisco; Chorro, Elísabet; Perales, Esther; Pons, Alicia; Hernanz, María Luisa

    2013-02-01

    A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.

  20. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    International Nuclear Information System (INIS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-01-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ∼ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  1. Are resting state spectral power measures related to executive functions in healthy young adults?

    Science.gov (United States)

    Gordon, Shirley; Todder, Doron; Deutsch, Inbal; Garbi, Dror; Getter, Nir; Meiran, Nachshon

    2018-01-08

    Resting-state electroencephalogram (rsEEG) has been found to be associated with psychopathology, intelligence, problem solving, academic performance and is sometimes used as a supportive physiological indicator of enhancement in cognitive training interventions (e.g. neurofeedback, working memory training). In the current study, we measured rsEEG spectral power measures (relative power, between-band ratios and asymmetry) in one hundred sixty five young adults who were also tested on a battery of executive function (EF). We specifically focused on upper Alpha, Theta and Beta frequency bands given their putative role in EF. Our indices enabled finding correlations since they had decent-to-excellent internal and retest reliability and very little range restriction relative to a nation-wide representative large sample. Nonetheless, Bayesian statistical inference indicated support for the null hypothesis concerning lack of monotonic correlation between EF and rsEEG spectral power measures. Therefore, we conclude that, contrary to the quite common interpretation, these rsEEG spectral power measures do not indicate individual differences in the measured EF abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Phase noise measurements with a cryogenic power-splitter to minimize the cross-spectral collapse effect

    Science.gov (United States)

    Hati, Archita; Nelson, Craig W.; Pappas, David P.; Howe, David A.

    2017-11-01

    The cross-spectrum noise measurement technique enables enhanced resolution of spectral measurements. However, it has disadvantages, namely, increased complexity, inability of making real-time measurements, and bias due to the "cross-spectral collapse" (CSC) effect. The CSC can occur when the spectral density of a random process under investigation approaches the thermal noise of the power splitter. This effect can severely bias results due to a differential measurement between the investigated noise and the anti-correlated (phase-inverted) noise of the power splitter. In this paper, we report an accurate measurement of the phase noise of a thermally limited electronic oscillator operating at room temperature (300 K) without significant CSC bias. We mitigated the problem by cooling the power splitter to liquid helium temperature (4 K). We quantify errors of greater than 1 dB that occur when the thermal noise of the oscillator at room temperature is measured with the power splitter at temperatures above 77 K.

  3. Helioseismic measurements in the solar envelope using group velocities of surface waves

    Science.gov (United States)

    Vorontsov, S. V.; Baturin, V. A.; Ayukov, S. V.; Gryaznov, V. K.

    2014-07-01

    At intermediate- and high-degree l, solar p and f modes can be considered as surface waves. Using variational principle, we derive an integral expression for the group velocities of the surface waves in terms of adiabatic eigenfunctions of normal modes, and address the benefits of using group-velocity measurements as a supplementary diagnostic tool in solar seismology. The principal advantage of using group velocities, when compared with direct analysis of the oscillation frequencies, comes from their smaller sensitivity to the uncertainties in the near-photospheric layers. We address some numerical examples where group velocities are used to reveal inconsistencies between the solar models and the seismic data. Further, we implement the group-velocity measurements to the calibration of the specific entropy, helium abundance Y, and heavy-element abundance Z in the adiabatically stratified part of the solar convective envelope, using different recent versions of the equation of state. The results are in close agreement with our earlier measurements based on more sophisticated analysis of the solar oscillation frequencies. These results bring further support to the downward revision of the solar heavy-element abundances in recent spectroscopic measurements.

  4. Assessment and comparison of methods for solar ultraviolet radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.).

  5. Assessment and comparison of methods for solar ultraviolet radiation measurements

    International Nuclear Information System (INIS)

    Leszczynski, K.

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.)

  6. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  7. Charge state evolution in the solar wind. III. Model comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  8. Charge state evolution in the solar wind. III. Model comparison with observations

    International Nuclear Information System (INIS)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B.

    2014-01-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  9. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    Science.gov (United States)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  10. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  11. Solar energy prediction and verification using operational model forecasts and ground-based solar measurements

    International Nuclear Information System (INIS)

    Kosmopoulos, P.G.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Bais, A.

    2015-01-01

    The present study focuses on the predictions and verification of these predictions of solar energy using ground-based solar measurements from the Hellenic Network for Solar Energy and the National Observatory of Athens network, as well as solar radiation operational forecasts provided by the MM5 mesoscale model. The evaluation was carried out independently for the different networks, for two forecast horizons (1 and 2 days ahead), for the seasons of the year, for varying solar elevation, for the indicative energy potential of the area, and for four classes of cloud cover based on the calculated clearness index (k_t): CS (clear sky), SC (scattered clouds), BC (broken clouds) and OC (overcast). The seasonal dependence presented relative rRMSE (Root Mean Square Error) values ranging from 15% (summer) to 60% (winter), while the solar elevation dependence revealed a high effectiveness and reliability near local noon (rRMSE ∼30%). An increment of the errors with cloudiness was also observed. For CS with mean GHI (global horizontal irradiance) ∼ 650 W/m"2 the errors are 8%, for SC 20% and for BC and OC the errors were greater (>40%) but correspond to much lower radiation levels (<120 W/m"2) of consequently lower energy potential impact. The total energy potential for each ground station ranges from 1.5 to 1.9 MWh/m"2, while the mean monthly forecast error was found to be consistently below 10%. - Highlights: • Long term measurements at different atmospheric cases are needed for energy forecasting model evaluations. • The total energy potential at the Greek sites presented ranges from 1.5 to 1.9 MWh/m"2. • Mean monthly energy forecast errors are within 10% for all cases analyzed. • Cloud presence results of an additional forecast error that varies with the cloud cover.

  12. Performance of the Multi-Spectral Solar Telescope Array. III - Optical characteristics of the Ritchey-Chretien and Cassegrain telescopes

    Science.gov (United States)

    Hoover, Richard B.; Baker, Phillip C.; Hadaway, James B.; Johnson, R. B.; Peterson, Cynthia; Gabardi, David R.; Walker, Arthur B., Jr.; Lindblom, J. F.; Deforest, Craig; O'Neal, R. H.

    1991-12-01

    The Multi-Spectral Solar Telescope Array (MSSTA), which is a sounding-rocket-borne observatory for investigating the sun in the soft X-ray/EUV and FUV regimes of the electromagnetic spectrum, utilizes single reflection multilayer coated Herschelian telescopes for wavelengths below 100 A, and five doubly reflecting multilayer coated Ritchey-Chretien and two Cassegrain telescopes for selected wavelengths in the EUV region between 100 and 1000 A. The paper discusses the interferometric alignment, testing, focusing, visible light testing, and optical performance characteristics of the Ritchey-Chretien and Cassegrain telescopes of MSSTA. A schematic diagram of the MSSTA Ritchey-Chretien telescope is presented together with diagrams of the system autocollimation testing.

  13. Solar maximum ultraviolet spectrometer and polarimeter

    Science.gov (United States)

    Tandberg-Hanssen, E.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Hyder, C. L.; Michalitsianos, A. G.; Shine, R. A.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.

    1979-01-01

    The objectives of the UVSP experiment are to study solar ultraviolet radiations, particularly from flares and active regions, and to measure constituents in the terrestrial atmosphere by the extinction of sunlight at satellite dawn and dusk. The instrument is designed to observe the Sun at a variety of spectral and spatial resolutions in the range from 1150 to 3600 A. A Gregorian telescope with effective focal length of 1.8 m is used to feed a 1 m Ebert-Fastie spectrometer. A polarimeter containing rotatable magnesium fluoride waveplates is included behind the spectrometer entrance slit and will allow all four Stokes parameters to be determined. Velocities on the Sun can also be measured. The instrument is controlled by a computer which can interact with the data stream to modify the observing program. The observing modes, including rasters, spectral scans, velocity measurements, and polarimetry, are also described along with plans for mission operations, data handling, and analysis of the observations.

  14. Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes

    Science.gov (United States)

    Jizan, Iman; Helt, L. G.; Xiong, Chunle; Collins, Matthew J.; Choi, Duk-Yong; Joon Chae, Chang; Liscidini, Marco; Steel, M. J.; Eggleton, Benjamin J.; Clark, Alex S.

    2015-01-01

    The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterisation. A promising tool for such characterisation uses classical stimulated processes, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a χ(2) integrated source in A. Eckstein et al. Laser Photon. Rev. 8, L76 (2014). In this work we extend these results to χ(3) integrated sources, directly measuring for the first time the relation between spectral correlation measurements via stimulated and spontaneous four wave mixing in an integrated optical waveguide, a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that this allows additional resolution to be gained when compared to traditional coincidence measurements without any increase in measurement time. As the pump pulse duration can influence the degree of spectral correlation, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral correlation regardless of pump pulse duration, and cements its place as an essential characterisation method for the development of future quantum integrated devices. PMID:26218609

  15. SOLAR OCCULTATION BY TITAN MEASURED BY CASSINI/UVIS

    Energy Technology Data Exchange (ETDEWEB)

    Capalbo, Fernando J.; Benilan, Yves [Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), UMR 7583 du CNRS, Universites Paris Est Creteil (UPEC) and Paris Diderot - UPD, 61 avenue du General de Gaulle, 94010 Creteil Cedex (France); Yelle, Roger V.; Koskinen, Tommi T.; Sandel, Bill R. [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Holsclaw, Gregory M.; McClintock, William E., E-mail: fernando.capalbo@lisa.u-pec.fr [Laboratory for Atmospheric and Space Physics, University of Colorado, 3665 Discovery Drive, Boulder, CO 80303 (United States)

    2013-04-01

    We present the first published analysis of a solar occultation by Titan's atmosphere measured by the Ultraviolet Imaging Spectrograph on board Cassini. The data were measured during flyby T53 in 2009 April and correspond to latitudes between 21 Degree-Sign and 28 Degree-Sign south. The analysis utilizes the absorption of two solar emission lines (584 A and 630 A) in the ionization continuum of the N{sub 2} absorption cross section and solar emission lines around 1085 A where absorption is due to CH{sub 4}. The measured transmission at these wavelengths provides a direct estimate of the N{sub 2} and CH{sub 4} column densities along the line of sight from the spacecraft to the Sun, which we inverted to obtain the number densities. The high signal-to-noise ratio of the data allowed us to retrieve density profiles in the altitude range 1120-1400 km for nitrogen and 850-1300 km for methane. We find an N{sub 2} scale height of {approx}76 km and a temperature of {approx}153 K. Our results are in general agreement with those from previous work, although there are some differences. Particularly, our profiles agree, considering uncertainties, with the density profiles derived from the Voyager 1 Ultraviolet Spectrograph data, and with in situ measurements by the Ion Neutral Mass Spectrometer with revised calibration.

  16. Solar rotation measurements at Mount Wilson. Pt. 2

    International Nuclear Information System (INIS)

    Labonte, B.J.; Howard, R.; Carnegie Institution of Washington, Pasadena

    1981-01-01

    Possible sources of systematic error in solar Doppler rotational velocities are examined. Scattered light is shown to affect the Mount Wilson solar rotation results, but this effect is not enough to bring the spectroscopic results in coincidence with the sunspot rotation. Interference fringes at the spectrograph focus at Mount Wilson have in two intervals affected the rotation results. It has been possible to correlate this error with temperature and thus correct for it. A misalignment between the entrance and exit slits is a possible source of error, but for the Mount Wilson slit configuration the amplitude of this effect is negligibly small. Rapid scanning of the solar image also produces no measurable effect. (orig.)

  17. Assessment of performances of sun zenith angle and altitude parameterisations of atmospheric radiative transfer for spectral surface downwelling solar irradiance

    Science.gov (United States)

    Wald, L.; Blanc, Ph.

    2010-09-01

    Satellite-derived assessments of surface downwelling solar irradiance are more and more used by engineering companies in solar energy. Performances are judged satisfactory for the time being. Nevertheless, requests for more accuracy are increasing, in particular in the spectral definition and in the decomposition of the global radiation into direct and diffuse radiations. One approach to reach this goal is to improve both the modelling of the radiative transfer and the quality of the inputs describing the optical state. Within their joint project Heliosat-4, DLR and MINES ParisTech have adopted this approach to create advanced databases of solar irradiance succeeding to the current ones HelioClim and SolEMi. Regarding the model, we have opted for libRadtran, a well-known model of proven quality. As many similar models, running libRadtran is very time-consuming when it comes to process millions or more pixels or grid cells. This is incompatible with real-time operational process. One may adopt the abacus approach, or look-up tables, to overcome the problem. The model is run for a limited number of cases, covering the whole range of values taken by the various inputs of the model. Abaci are such constructed. For each real case, the irradiance value is computed by interpolating within the abaci. In this way, real-time can be envisioned. Nevertheless, the computation of the abaci themselves requires large computing capabilities. In addition, searching the abaci to find the values to interpolate can be time-consuming as the abaci are very large: several millions of values in total. Moreover, it raises the extrapolation problem of parameter out-of-range during the utilisation of the abaci. Parameterisation, when possible, is a means to reduce the amount of computations to be made and subsequently, the computation effort to create the abaci, the size of the abaci, the extrapolation and the searching time. It describes in analytical manner and with a few parameters the

  18. Measurement of the Strange Spectral Function in Hadronic $\\tau$ Decays

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Tau Lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the tau lepton. The decays tau- -> (Kpi)-nu tau, (Kpipi)-nu tau and (Kpipipi)-nu tau with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including eta mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the tau lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(tau- -> K-pi0nu tau) = (0.471+-0.059stat+-0.023sys)% and B(tau- -> K-pi+pi-nu tau) = (0.415+-0.053stat+-0.040sys)% ha...

  19. Solar Irradiance Measurements Using Smart Devices: A Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems

    Directory of Open Access Journals (Sweden)

    Hussein Al-Taani

    2018-02-01

    Full Text Available Solar irradiance measurement is a key component in estimating solar irradiation, which is necessary and essential to design sustainable energy systems such as photovoltaic (PV systems. The measurement is typically done with sophisticated devices designed for this purpose. In this paper we propose a smartphone-aided setup to estimate the solar irradiance in a certain location. The setup is accessible, easy to use and cost-effective. The method we propose does not have the accuracy of an irradiance meter of high precision but has the advantage of being readily accessible on any smartphone. It could serve as a quick tool to estimate irradiance measurements in the preliminary stages of PV systems design. Furthermore, it could act as a cost-effective educational tool in sustainable energy courses where understanding solar radiation variations is an important aspect.

  20. Broad-band spectral studies of optical lightnings and possible correlation with solar activity

    International Nuclear Information System (INIS)

    Bhat, C.L.; Sapru, M.L.; Kaul, R.K.; Razdan, H.

    1984-01-01

    Optical pulses from lightning discharges have been recorded in a ground-based experiment, meant primarily for the detection of cosmic X- and γ-ray bursts through the atmospheric fluorescence technique. It is shown that the spectral ratio Asub(v)/Asub(y), i.e. the ratio of pulse amplitudes in the violet to that in yellow wavelength bands (3400-4300 A and 4400-6000 A respectively) provides a good indication of the lightning channel temperature, the range of derived temperatures extending from 5.000 K to 60.000 K. Based on the distribution of observed Asub(v)/Asub(y) values on a daily basis, it has been possible to separate the observed lightning activity into two classes. One class of event is shown to be correlated with the peaking of the global atmospheric electric field and occurs preferentially on days when the ground-level cosmic ray intensity shows a significant decrease in association with an increase in geomagnetic activity. The results are discussed in terms of the contemporary views regarding solar control of atmospheric electricity and the various sun-weather correlations reported earlier. (author)

  1. The angular distributions of ultraviolet spectral irradiance at different solar elevation angles under clear sky conditions

    Science.gov (United States)

    Liu, Yan; Hu, LiWen; Wang, Fang; Gao, YanYan; Zheng, Yang; Wang, Yu; Liu, Yang

    2016-01-01

    To investigate the angular distributions of UVA, UVB, and effective UV for erythema and vitamin D (vitD) synthesis, the UV spectral irradiances were measured at ten inclined angles (from 0° to 90°) and seven azimuths (from 0° to 180°) at solar elevation angle (SEA) that ranged from 18.8° to 80° in Shanghai (31.22° N, 121.55° E) under clear sky and the albedo of ground was 0.1. The results demonstrated that in the mean azimuths and with the back to the sun, the UVA, UVB, and erythemally and vitD-weighted irradiances increased with the inclined angles and an increase in SEA. When facing toward the sun at 0°-60° inclined angles, the UVA first increased and then decreased with an increase in SEA; at other inclined angles, the UVA increased with SEA. At 0°-40° inclined angles, the UVB and erythemally and vitD-weighted irradiances first increased and then decreased with an increase in SEA, and their maximums were achieved at SEA 68.7°; at other inclined angles, the above three irradiances increased with an increase in SEA. The maximum UVA, UVB, and erythemally and vitD-weighted irradiances were achieved at an 80° inclined angle at SEA 80° (the highest in our measurements); the cumulative exposure of the half day achieved the maximum at a 60° inclined angle, but not on the horizontal. This study provides support for the assessment of human skin sun exposure.

  2. Solar Radiation Measurement Using Raspberry Pi and Its Modelling Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Priya Selvanathan Shanmuga

    2016-01-01

    Full Text Available The advent of solar energy as the best alternative to traditional energy sources has led to an extensive study on the measurement and prediction of solar radiation. Devices such as pyranometer, pyrrheliometer, global UV radiometer are used for the measurement of solar radiation. The solar radiation measuring instruments available at Innovation Center, MIT Manipal were integrated with a Raspberry Pi to allow remote access to the data through the university Local Area Network. The connections of the data loggers and the Raspberry Pi were enclosed in a plastic box to prevent damage from the rainfall and humidity in Manipal. The solar radiation data was used to validate an Artificial Neural Network model which was developed using various meterological data from 2011-2015.

  3. A High Resolution Solar Spectrograph for the Berkeley Undergraduate Astronomy Lab

    Science.gov (United States)

    Strickler, R.; Bresloff, C.; Graham, J.

    2005-05-01

    The discovery of extra-solar planets has stimulated interest amongst undergraduates. The Doppler method for detecting exoplanets requires extraction of signals at the 1/1000 of a pixel level. To illustrate this technique, we used a newly built spectrometer to extract sub-pixel Doppler shifts in the solar photosphere. We have used this spectrograph to measure the velocity gradient across the sun and hence infer the solar radius. The limb-to-limb Doppler shift is only 1.8 km/s. A spectral resolution > 100,000 would be required to manifest this motion. Achieving such high spectral resolution is unnecessary since even a small telescope can record high SNR (> 100) spectra. Within a few seconds it is possible to discern solar rotational Doppler shifts at resolutions as low as 10,000. We must also understand coordinate transformation to convert the Doppler signal along the observed diameter to the equatorial rotation speed assuming solid body rotation. The spectrograph system includes an 8-inch Schmidt-Cassegrain stationary telescope; a 100-micron diameter multi-mode fiber; aspheric f-number reformatting optics; a collimating lens; a 110 mm, 80 grooves/mm, θ blaze = 64.5 degree replica echelle grating; and an Apogee 1024 x 1024 thermo-electrically cooled CCD. The spectrometer optics are mounted on a 5-ft x 3-ft optical bench. Operating the spectrometer remotely using VNC and a wireless laptop, we pointed the telescope so that the fiber scanned across a diameter of the solar disk while the CCD took repeated exposures. Although we were "guinea pigs," using the spectrograph for the first time in a class, it worked remarkably well. Combining measurement of the solar radius with observation of the rotation period from sunspots, the earth-sun distance can be deduced. In the future, students may measure the eccentricity of earth's orbit by measuring the sun's radial velocity over the course of a year. This work was supported by the NSF through award DUE-0311536.

  4. Electrophysiological measurements of spectral sensitivities: a review

    Directory of Open Access Journals (Sweden)

    R.D. DeVoe

    1997-02-01

    Full Text Available Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level

  5. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    International Nuclear Information System (INIS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-01-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  6. Rapid spectral and flux time variations in a solar burst observed at various dm-mm wavelengths and at hard x rays

    International Nuclear Information System (INIS)

    Zodivaz, A.M.; Kaufmann, P.; Correia, E.; Costa, J.E.R.; Takakura, T.; Cliver, E.W.; Tapping, K.F.; Air Force Geophysics Lab., Hanscom AFB, MA; National Research Council of Canada, Ottawa, Ontario)

    1986-01-01

    A solar burst was observed with high sensitivity and time resolution at cm-mm wavelengths by two different radio observatories (Itapetinga and Algonquin), with high spectral time resolution at dm-mm wavelengths by patrol instruments (Sagamore Hill), and at hard x rays (HXM Hinotori). At the onset of the major burst time structure there was a rapid rise in the spectral turnover frequency (from 5 to 15 GHz), in about 10s, coincident to a reduction of the spectral index in the optically thin part of the spectrum. The burst maxima were not time coincident at the optically thin radio frequencies and at the different hard x ray energy ranges. The profiles at higher radio frequencies exhibited better time coincidence to the high energy x rays. The hardest x ray spectrum (-3) coincided with peak radio emission at the higher frequency (44 GHz). The event appeared to be built up by a first major injection of softer particles followed by other injections of harder particles. Ultrafast time structures were identified as superimposed on the burst emission at the cm-mm high sensitivity data at x rays, with predominant repetition rates ranging from 2.0 to 3.5 Hz

  7. Precise pointing knowledge for SCIAMACHY solar occultation measurements

    Directory of Open Access Journals (Sweden)

    K. Bramstedt

    2012-11-01

    Full Text Available We present a method to precisely determine the viewing direction for solar occultation instruments from scans over the solar disk. Basic idea is the fit of the maximum intensity during the scan, which corresponds to the center of the solar disk in the scanning direction. We apply this method to the solar occultation measurements of the satellite instrument SCIAMACHY, which scans the Sun in elevation direction. The achieved mean precision is 0.46 mdeg, which corresponds to an tangent height error of about 26 m for individual occultation sequences. The deviation of the derived elevation angle from the geolocation information given along with the product has a seasonal cycle with an amplitude of 2.26 mdeg, which is in tangent height an amplitude of about 127 m. The mean elevation angle offset is −4.41 mdeg (249 m. SCIAMACHY's sun follower device controls the azimuth viewing direction during the occultation measurements. The derived mean azimuth direction has an standard error of 0.65 mdeg, which is about 36 m in horizontal direction at the tangent point. We observe also a seasonal cycle of the azimuth mispointing with an amplitude of 2.3 mdeg, which is slightly increasing with time. The almost constant mean offset is 88 mdeg, which is about 5.0 km horizontal offset at the tangent point.

  8. The measurement and interpretation of Ne VII spectral line intensity ratios

    International Nuclear Information System (INIS)

    Lang, J.

    1983-03-01

    Results are presented for the measurement, using the branching ratios calibration method, of the spectral intensities of Ne VII lines emitted from a theta-pinch plasma whose electron temperature and density have been found by laser scattering and alternate techniques. (author)

  9. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  10. On the Limitations of Taylor’s Hypothesis in Parker Solar Probe’s Measurements near the Alfvén Critical Point

    Science.gov (United States)

    Bourouaine, Sofiane; Perez, Jean C.

    2018-05-01

    In this Letter, we present an analysis of two-point, two-time correlation functions from high-resolution numerical simulations of Reflection-driven Alfvén Turbulence near the Alfvén critical point r c. The simulations model the turbulence in a prescribed background solar wind model chosen to match observational constraints. This analysis allows us to investigate the temporal decorrelation of solar wind turbulence and the validity of Taylor’s approximation near the heliocentric distance r c, which Parker Solar Probe (PSP) is expected to explore in the coming years. The simulations show that the temporal decay of the Fourier-transformed turbulence decorrelation function is better described by a Gaussian model rather than a pure exponential time decay, and that the decorrelation frequency is almost linear with perpendicular wave number k ⊥ (perpendicular with respect to the background magnetic field {{\\boldsymbol{B}}}0). Based on the simulations, we conclude that Taylor’s approximation cannot be used in this instance to provide a connection between the frequency ω of the time signal (measured in the probe frame) and the wavevector k ⊥ of the fluctuations because the frequency k ⊥ V sc (V sc is the spacecraft speed) near r c is comparable to the estimated decorrelation frequency. However, the use of Taylor’s approximation still leads to the correct spectral indices of the power spectra measured at the spacecraft frame. In this Letter, based on a Gaussian model, we suggest a modified relationship between ω and k ⊥, which might be useful in the interpretation of future PSP measurements.

  11. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    Science.gov (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  12. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  13. Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1

    Science.gov (United States)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1979-01-01

    Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance.

  14. Spectral and Broad Band Ultraviolet Measurements in Valencia (Spain): A Preliminary Comparison

    International Nuclear Information System (INIS)

    Tena, F.; Marin, M.J.; Martinez-Lozano, J.A.; Utrillas, M.P.; Gomez, J.L.

    2000-01-01

    The Solar Radiation Group of the University of Valencia, in collaboration with the National Institute of Meteorology (INM), recently began a database of erythemal UV irradiance measurements. Such measurements are obtained by a YES UVB-1 pyranometer (280-330 nm) that measures continuously, integrates the values and stores them in a database. The measured values are being compared with those obtained by the integration of the data registered by an Optronic OL 754 spectroradiometer (250-800 nm) considering clear days and different solar zenith angles. For the present study only the data corresponding to the summer (1999) are being considered because these are the days of the year with the higher erythemal values and also the season when people enjoy sunbathing. The results are used to deduce the ultraviolet index (UVI) related to the erythemal doses and the sunburn time. (author)

  15. Spectral and Broad Band Ultraviolet Measurements in Valencia (Spain): A Preliminary Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Tena, F.; Marin, M.J.; Martinez-Lozano, J.A.; Utrillas, M.P.; Gomez, J.L

    2000-07-01

    The Solar Radiation Group of the University of Valencia, in collaboration with the National Institute of Meteorology (INM), recently began a database of erythemal UV irradiance measurements. Such measurements are obtained by a YES UVB-1 pyranometer (280-330 nm) that measures continuously, integrates the values and stores them in a database. The measured values are being compared with those obtained by the integration of the data registered by an Optronic OL 754 spectroradiometer (250-800 nm) considering clear days and different solar zenith angles. For the present study only the data corresponding to the summer (1999) are being considered because these are the days of the year with the higher erythemal values and also the season when people enjoy sunbathing. The results are used to deduce the ultraviolet index (UVI) related to the erythemal doses and the sunburn time. (author)

  16. On the importance of considering the incident spectrum when measuring the outdoor performance of amorphous silicon photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalg, R.; Betts, T.R.; Infield, D.G. [Loughborough University (United Kingdom). Department of Electronic and Electrical Engineering, Centre for Renewable Energy Systems Technology; Kearney, M.J. [University of Surrey, Guildford (United Kingdom). School of Electronics and Physical Sciences, Advanced Technology Institute

    2004-02-01

    Conventional measurement practice for the outdoor performance evaluation of solar cells does not make use of the complete spectrum, relying instead on the total irradiance as measured, say, with a pyranometer. In this paper it is shown that this can result in significant errors for solar cells having wide band gaps, in particular, for amorphous silicon solar cells. Two effects are investigated. The first relates to quantifying the typical errors associated with instantaneous measurements; what one might term the calibration of devices. The second relates to quantifying the impact of neglecting variations in the spectrum on the estimation of the annual energy production. It is observed that the fraction of the spectrum falling in the spectrally useful range for amorphous silicon can vary by as much as +10% to -15% with respect to standard test conditions at the test site used in this study, which translates directly into performance variations of similar magnitude. The relationship between changes due to spectral variations as opposed to variations in device temperature is also investigated. The results show that there is a strong case for investigating spectral effects more thoroughly, and explicitly including the measurement of the spectral distribution in all outdoor performance testing. (author)

  17. Development of Software for Measurement and Analysis of Solar Radiation

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Abul Adli Anuar; Noor Ezati Shuib

    2015-01-01

    This software was under development using LabVIEW to be using with StellarNet spectrometers system with USB communication to computer. LabVIEW have capabilities in hardware interfacing, graphical user interfacing and mathematical calculation including array manipulation and processing. This software read data from StellarNet spectrometer in real-time and then processed for analysis. Several measurement of solar radiation and analysis have been done. Solar radiation involved mainly infra-red, visible light and ultra-violet. With solar radiation spectrum data, information of weather and suitability of plant can be gathered and analyzed. Furthermore, optimization of utilization and safety precaution of solar radiation can be planned. Using this software, more research and development in utilization and safety of solar radiation can be explored. (author)

  18. Comparison of the Changes in the Visible and Infrared Irradiance Observed by the SunPhotometers on EURECA to the UARS Total Solar and UV Irradiances

    Science.gov (United States)

    Pap, Judit

    1995-01-01

    Solar irradiance in the near-UV (335 nm), visible (500 nm) and infrared (778 nm) spectral bands has been measured by the SunPhotometers developed at the World Radiation Center, Davos, Switzerland on board the European Retrievable Carrier between August 1992 and May 1993. Study of the variations in the visible and infrared irradiance is important for both solar and atmospheric physics. The purpose of this paper is to examine the temporal variations observed in the visible and infrared spectral bands after eliminating the trend in the data mainly related to instrument degradation. The effect of active regions in these spectral irradiances is clearly resolved. Variations in the visible and infrared irradiances are compared to total solar irradiance observed by the SOVA2 radiometer on the EURECA platform and by the ACRIMII radiometer on UARS as well as to UV observations of the UARS and NOAA9 satellites. The space-borne spectral irradiance observations are compared to the photometric sunspot deficit and CaII K irradiance measured at the San Fernando Observatory, California State University at Northridge in order to study the effect of active regions in detail.

  19. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  20. Improving the Ni I atomic model for solar and stellar atmospheric models

    International Nuclear Information System (INIS)

    Vieytes, M. C.; Fontenla, J. M.

    2013-01-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  1. Improving the Ni I atomic model for solar and stellar atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Vieytes, M. C. [Instituto de de Astronomía y Física del Espacio, CONICET and UNTREF, Buenos Aires (Argentina); Fontenla, J. M., E-mail: mariela@iafe.uba.ar, E-mail: johnf@digidyna.com [North West Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2013-06-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  2. FAST DIFFERENTIAL EMISSION MEASURE INVERSION OF SOLAR CORONAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Plowman, Joseph; Kankelborg, Charles; Martens, Petrus [Montana State University, Bozeman, MT 59717 (United States)

    2013-07-01

    We present a fast method for reconstructing differential emission measures (DEMs) using solar coronal data. The method consists of a fast, simple regularized inversion in conjunction with an iteration scheme for removal of residual negative emission measure. On average, it computes over 1000 DEMs s{sup -1} for a sample active region observed by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, and achieves reduced chi-squared of order unity with no negative emission in all but a few test cases. The high performance of this method is especially relevant in the context of AIA, which images of order one million solar pixels per second. This paper describes the method, analyzes its fidelity, compares its performance and results with other DEM methods, and applies it to an active region and loop observed by AIA and by the Extreme-ultraviolet Imaging Spectrometer on Hinode.

  3. Spectral calibration of filters and detectors of solar EUV telescope for 13.2 nm for the TESIS experiment

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Shestov, S.V.; Pertsov, A.A.; Reva, A.A.; Zuev, S.Yu.; Lopatin, A.Ya.; Luchin, V.I.; Zhou, Kh.; Khuo, T.

    2008-01-01

    The full-sun EUV telescope for 13.2 nm spectral band for the TESIS experiment is designed to produce images of hot coronal plasma (T ∼ 10 MK). Calibration process of optical elements is presented. Spectral transmission of multilayer Zr/Si filters, sensitivity and radiation tolerance of CCD detector have been measured. Peak transmission of EUV filters in working, spectral band reaches 40-50% (filters with 50 and 55 layers are used), spectral dependence of transmission is close to calculated one. Transmission of filters in white light is equal to (1-2)x10 -6 . Sensitivity of CCD ranges from 0.01 to 0.1 ADC units per photon, radiation tolerance is better than 10 9 rad [ru

  4. Yearly thermal performances of solar heating plants in Denmark – Measured and calculated

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Perers, Bengt

    2018-01-01

    The thermal performance of solar collector fields depends mainly on the mean solar collector fluid temperature of the collector field and on the solar radiation. For Danish solar collector fields for district heating the measured yearly thermal performances per collector area varied in the period...... 2012–2016 between 313 kWh/m2 and 577 kWh/m2, with averages between 411 kWh/m2 and 463 kWh/m2. The percentage difference between the highest and lowest measured yearly thermal performance is about 84%. Calculated yearly thermal performances of typically designed large solar collector fields at six...... different locations in Denmark with measured weather data for the years 2002–2010 vary between 405 kWh/m2 collector and 566 kWh/m2 collector, if a mean solar collector fluid temperature of 60 °C is assumed. This corresponds to a percentage difference between the highest and lowest calculated yearly thermal...

  5. Probabilistic Models for Solar Particle Events

    Science.gov (United States)

    Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.

  6. The delta-Sobolev approach for modeling solar spectral irradiance and radiance

    International Nuclear Information System (INIS)

    Xiang, Xuwu.

    1990-01-01

    The development and evaluation of a solar radiation model is reported, which gives irradiance and radiance results at the bottom and top of an atmosphere of specified optical depth for each of 145 spectral intervals from 0.29 to 4.05 microns. Absorption by water vapor, aerosols, ozone, and uniformly mixed gases; scattering by molecules and aerosols; and non-Lambertian surface reflectance are included in the model. For solving the radiative transfer equation, an innovative delta-Sobolev method is developed. It applies a delta-function modification to the conventional Sobolev solutions in a way analogous to the delta-Eddington method. The irradiance solution by the delta-Sobolev method turns out to be mathematically identical to the delta-Eddington approximation. The radiance solution by the delta-Sobolov method provides a convenient way to obtain the directional distribution pattern of the radiation transfer field, a feature unable to be obtained by most commonly used approximation methods. Such radiance solutions are also especially useful in models for satellite remote sensing. The model is tested against the rigorous Dave model, which solves the radiation transfer problem by the spherical harmonic method, an accurate but very time consuming process. Good agreement between the current model results and those of Dave's model are observed. The advantages of the delta-Sobolev model are simplicity, reasonable accuracy and capability for implementation on a minicomputer or microcomputer

  7. Measurement of the spectral functions of vector current hadronic $\\tau$ decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    A measurement of the spectral functions of non-strange tau vector current final states is presented, using 124,358 tau pairs recorded by the ALEPH detector at LEP during the years 1991 to 1994. The spectral functions of the dominant two- and four-pion tau decay channels are compared to published results of e+e- annihilation experiments via isospin rotation. A combined fit of the pion form factor from tau decays and e+e- data is performed using different parametrizations. The mass and the width of the charged and the neutral rho(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M(rho^+/-(770)) - M(rho^0(770)) = (0.0 +/- 1.0) MeV/c^2 and Gamma(rho^+/-(770)) - Gamma(rho^0(770)) = (0.1 +/- 1.9) MeV/c^2.

  8. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  9. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  10. Response of Solar Irradiance to Sunspot-area Variations

    Science.gov (United States)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  11. Agricultural Soil Spectral Response and Properties Assessment: Effects of Measurement Protocol and Data Mining Technique

    Directory of Open Access Journals (Sweden)

    Asa Gholizadeh

    2017-10-01

    Full Text Available Soil spectroscopy has shown to be a fast, cost-effective, environmentally friendly, non-destructive, reproducible and repeatable analytical technique. Soil components, as well as types of instruments, protocols, sampling methods, sample preparation, spectral acquisition techniques and analytical algorithms have a combined influence on the final performance. Therefore, it is important to characterize these differences and to introduce an effective approach in order to minimize the technical factors that alter reflectance spectra and consequent prediction. To quantify this alteration, a joint project between Czech University of Life Sciences Prague (CULS and Tel-Aviv University (TAU was conducted to estimate Cox, pH-H2O, pH-KCl and selected forms of Fe and Mn. Two different soil spectral measurement protocols and two data mining techniques were used to examine seventy-eight soil samples from five agricultural areas in different parts of the Czech Republic. Spectral measurements at both laboratories were made using different ASD spectroradiometers. The CULS protocol was based on employing a contact probe (CP spectral measurement scheme, while the TAU protocol was carried out using a CP measurement method, accompanied with the internal soil standard (ISS procedure. Two spectral datasets, acquired from different protocols, were both analyzed using partial least square regression (PLSR technique as well as the PARACUDA II®, a new data mining engine for optimizing PLSR models. The results showed that spectra based on the CULS setup (non-ISS demonstrated significantly higher albedo intensity and reflectance values relative to the TAU setup with ISS. However, the majority of statistics using the TAU protocol was not noticeably better than the CULS spectra. The paper also highlighted that under both measurement protocols, the PARACUDA II® engine proved to be a powerful tool for providing better results than PLSR. Such initiative is not only a way to

  12. Influence of solvents on properties of solar selective coatings

    Indian Academy of Sciences (India)

    Solar selective coatings for solar thermal flat-plate collectors consisting of crystalline copper oxides and amorphous nickel oxide composites were obtained by robotic spray pyrolyzed deposition. The parameters were optimized for increased spectral selectivity (): high solar absorptance and low thermal emittance.

  13. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    International Nuclear Information System (INIS)

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  14. Fabrication and characterisation of selective solar absorber surfaces prepared by sol-gel technique

    CSIR Research Space (South Africa)

    Katumba, G

    2006-07-01

    Full Text Available characterization: The near normal spectral hemispherical reflect- ance, R, of the prepared samples was measured in the wavelength interval 0.3 to 20.0 μm1 using a Lambda 900 spec- trophotometer and a Bomem-Michel- son 110 FTIR spectrometer. Solar ab...

  15. Measurement of solar neutrinos flux in Russian-American gallium experiment SAGE for half 22-years cycle of solar activity

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Veretenkin, E.P.; Vermul, V.M.

    2002-01-01

    The results of measuring the solar neutrino capture on the metallic gallium in the Russian-American experiment SAGE for the period slightly exceeding the half of the 22-year cycle of solar activity, are presented. The results of new measurements since April 1998 are quoted and the analysis of all the measurements, performed by years, months and two-year periods, beginning since 1990 are also presented. Simple analysis of the SAGE results together with the results of other solar neutrino experiments leads to estimating the value of the flux of the pp-neutrinos, reaching the Earth without change in their around, equal to (4.6 ± 1.2) x 10 10 neutrino/(cm 2 s). The value of the flux of the pp-neutrinos, originating in the Sun thermonuclear reactions, is equal to (7.6 ± 2.0) x 10 10 neutrino/(cm 2 s), which agrees well with the standard solar model (5.95 ± 0.6) x 10 10 neutrino/(cm 2 s) [ru

  16. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    Science.gov (United States)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  17. Multiple-etalon systems for the Advanced Technology Solar Telescope

    Science.gov (United States)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these

  18. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  19. Measuring Identification and Quantification Errors in Spectral CT Material Decomposition

    Directory of Open Access Journals (Sweden)

    Aamir Younis Raja

    2018-03-01

    Full Text Available Material decomposition methods are used to identify and quantify multiple tissue components in spectral CT but there is no published method to quantify the misidentification of materials. This paper describes a new method for assessing misidentification and mis-quantification in spectral CT. We scanned a phantom containing gadolinium (1, 2, 4, 8 mg/mL, hydroxyapatite (54.3, 211.7, 808.5 mg/mL, water and vegetable oil using a MARS spectral scanner equipped with a poly-energetic X-ray source operated at 118 kVp and a CdTe Medipix3RX camera. Two imaging protocols were used; both with and without 0.375 mm external brass filter. A proprietary material decomposition method identified voxels as gadolinium, hydroxyapatite, lipid or water. Sensitivity and specificity information was used to evaluate material misidentification. Biological samples were also scanned. There were marked differences in identification and quantification between the two protocols even though spectral and linear correlation of gadolinium and hydroxyapatite in the reconstructed images was high and no qualitative segmentation differences in the material decomposed images were observed. At 8 mg/mL, gadolinium was correctly identified for both protocols, but concentration was underestimated by over half for the unfiltered protocol. At 1 mg/mL, gadolinium was misidentified in 38% of voxels for the filtered protocol and 58% of voxels for the unfiltered protocol. Hydroxyapatite was correctly identified at the two higher concentrations for both protocols, but mis-quantified for the unfiltered protocol. Gadolinium concentration as measured in the biological specimen showed a two-fold difference between protocols. In future, this methodology could be used to compare and optimize scanning protocols, image reconstruction methods, and methods for material differentiation in spectral CT.

  20. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  1. Solar excitation of CdS/Cu2S photovoltaic cells

    Science.gov (United States)

    Boer, K. W.

    1976-01-01

    Solar radiation of five typical clear weather days and under a variety of conditions is used to determine the spectral distribution of the photonflux at different planes of a CdS/Cu2S solar cell. The fractions of reflected and absorbed flux are determined at each of the relevant interfaces and active volume elements of the solar cell. The density of absorbed photons is given in respect to spectral and spatial distribution. The variance of the obtained distribution, with changes in insolation and absorption spectra of the active solar cell layers, is indicated. A catalog of typical examples is given in the appendix.

  2. Crosstalk in solar polarization measurements

    Science.gov (United States)

    West, E. A.; Balasubramaniam, K. S.

    1992-01-01

    The instrumental crosstalk associated with the Marshall Space Flight Center Vector Magnetograph and the solar crosstalk created by the magnetic field are described and their impact on the reconstruction of the solar vector magnetic field is analyzed. It is pointed out that identifying and correcting the crosstalk is important in the development of realistic models describing the solar atmosphere. Solar crosstalk is spatially dependent on the structure of the magnetic field while instrumental crosstalk is dependent on the position of the analyzer.

  3. Latitude survey investigation of galactic cosmic ray solar modulation during 1994-2007

    Energy Technology Data Exchange (ETDEWEB)

    Nuntiyakul, W.; Ruffolo, D.; Sáiz, A. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Evenson, P.; Bieber, J. W.; Clem, J.; Pyle, R. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Duldig, M. L.; Humble, J. E., E-mail: w.nuntiyakul@gmail.com, E-mail: david.ruf@mahidol.ac.th, E-mail: alejandro.sai@mahidol.ac.th, E-mail: evenson@udel.edu, E-mail: jwbieber@bartol.udel.edu, E-mail: clem@bartol.udel.edu, E-mail: pyle@bartol.udel.edu, E-mail: John.Humble@utas.edu.au, E-mail: Marc.Duldig@utas.edu.au [School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001 (Australia)

    2014-11-01

    The Galactic cosmic ray spectrum exhibits subtle variations over the 22 yr solar magnetic cycle in addition to the more dramatic variations over the 11 yr sunspot cycle. Neutron monitors are large ground-based detectors that provide accurate measurements of variations in the cosmic ray flux at the top of the atmosphere above the detector. At any given location the magnetic field of the Earth excludes particles below a well-defined rigidity (momentum per unit charge) known as the cutoff rigidity, which can be accurately calculated using detailed models of the geomagnetic field. By carrying a neutron monitor to different locations, e.g., on a ship, the Earth itself serves as a magnet spectrometer. By repeating such latitude surveys with identical equipment, a sensitive measurement of changes in the spectrum can be made. In this work, we analyze data from the 1994 through 2007 series of latitude surveys conducted by the Bartol Research Institute, the University of Tasmania, and the Australian Antarctic Division. We confirm the curious 'crossover' in spectra measured near solar minima during epochs of opposite solar magnetic polarity, and show that it is directly related to a sudden change in the spectral behavior of solar modulation at the time of the polarity reversal, as revealed from contemporaneous variations in the survey data and a fixed station. We suggest that the spectral change and crossover result from the interaction of effects due to gradient/curvature drifts with a systematic change in the interplanetary diffusion coefficient caused by turbulent magnetic helicity.

  4. Photometric intensity and polarization measurements of the solar corona.

    Science.gov (United States)

    Mcdougal, D. S.

    1971-01-01

    Use of a satellite photometric observatory (SPO) to measure the solar corona from Miahuatlan, Mexico during the Mar. 7, 1970, total eclipse of the sun. The SPO is equipped with a 24-in. Cassegrainian telescope, a four-channel photoelectric photometer, a Wollaston prism, and a rotating half-wave plate. Simultaneous measurements were made of the two orthogonal components of coronal light in the B and R bands of the UBVRI system. A 1-minute arc aperture was scanned from the lunar disk center out to five solar radii in a series of spirals of gradually increasing radius. For the first time, simultaneous multicolor intensity, degree, and angle of polarization profiles are computed from photoelectric measurements. Comparison of the variations of the measurements for each spiral scan yield a detailed picture of the intensity and polarization features in the K corona.

  5. Trilogy, a Planetary Geodesy Mission Concept for Measuring the Expansion of the Solar System.

    Science.gov (United States)

    Smith, David E; Zuber, Maria T; Mazarico, Erwan; Genova, Antonio; Neumann, Gregory A; Sun, Xiaoli; Torrence, Mark H; Mao, Dan-Dan

    2018-04-01

    The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, G . The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year -1 AU -1 , which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system -- Earth's Moon, Mars and Venus -- and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.

  6. Trilogy, a planetary geodesy mission concept for measuring the expansion of the solar system

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Mazarico, Erwan; Genova, Antonio; Neumann, Gregory A.; Sun, Xiaoli; Torrence, Mark H.; Mao, Dan-dan

    2018-04-01

    The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, G. The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year-1 AU-1, which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system - Earth's Moon, Mars and Venus - and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.

  7. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  8. The I-V Measurement System for Solar Cells Based on MCU

    International Nuclear Information System (INIS)

    Chen Fengxiang; Ai Yu; Wang Jiafu; Wang Lisheng

    2011-01-01

    In this paper, an I-V measurement system for solar cells based on Single-chip Microcomputer (MCU) is presented. According to the test principles of solar cells, this measurement system mainly comprises of two parts-data collecting, data processing and displaying. The MCU mainly used as to acquire data, then the collecting results is sent to the computer by serial port. The I-V measurement results of our test system are shown in the human-computer interaction interface based on our hardware circuit. By comparing the test results of our I-V tester and the results of other commercial I-V tester, we found errors for most parameters are less than 5%, which shows our I-V test result is reliable. Because the MCU can be applied in many fields, this I-V measurement system offers a simple prototype for portable I-V tester for solar cells.

  9. The I-V Measurement System for Solar Cells Based on MCU

    Energy Technology Data Exchange (ETDEWEB)

    Chen Fengxiang; Ai Yu; Wang Jiafu; Wang Lisheng, E-mail: phonixchen79@yahoo.com.cn [Department of physics science and technology, Wuhan University of Technology, Wuhan city, Hubei Province, 430070 (China)

    2011-02-01

    In this paper, an I-V measurement system for solar cells based on Single-chip Microcomputer (MCU) is presented. According to the test principles of solar cells, this measurement system mainly comprises of two parts-data collecting, data processing and displaying. The MCU mainly used as to acquire data, then the collecting results is sent to the computer by serial port. The I-V measurement results of our test system are shown in the human-computer interaction interface based on our hardware circuit. By comparing the test results of our I-V tester and the results of other commercial I-V tester, we found errors for most parameters are less than 5%, which shows our I-V test result is reliable. Because the MCU can be applied in many fields, this I-V measurement system offers a simple prototype for portable I-V tester for solar cells.

  10. Periodicities observed on solar flux index (F10.7) during geomagnetic disturbances

    Science.gov (United States)

    Adhikari, B.; Narayan, C.; Chhatkuli, D. N.

    2017-12-01

    Solar activities change within the period of 11 years. Sometimes the greatest event occurs in the period of solar maxima and the lowest activity occurs in the period of solar minimum. During the time period of solar activity sunspots number will vary. A 10.7 cm solar flux measurement is a determination of the strength of solar radio emission. The solar flux index is more often used for the prediction and monitoring of the solar activity. This study mainly focused on the variation on solar flux index and amount of electromagnetic wave in the atmosphere. Both seasonal and yearly variation on solar F10.7 index. We also analyzed the dataset obatained from riometer.Both instruments show seasonal and yearly variations. We also observed the solar cycle dependence on solar flux index and found a strong dependence on solar activity. Results also show that solar intensities higher during the rising phase of solar cycle. We also observed periodicities on solar flux index using wavelet analysis. Through this analysis, it was found that the power intensities of solar flux index show a high spectral variability.

  11. Janus: Graphical Software for Analyzing In-Situ Measurements of Solar-Wind Ions

    Science.gov (United States)

    Maruca, B.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.

    2016-12-01

    In-situ observations of solar-wind ions provide tremendous insights into the physics of space plasmas. Instrument on spacecraft measure distributions of ion energies, which can be processed into scientifically useful data (e.g., values for ion densities and temperatures). This analysis requires a strong, technical understanding of the instrument, so it has traditionally been carried out by the instrument teams using automated software that they had developed for that purpose. The automated routines are optimized for typical solar-wind conditions, so they can fail to capture the complex (and scientifically interesting) microphysics of transient solar-wind - such as coronal mass ejections (CME's) and co-rotating interaction regions (CIR's) - which are often better analyzed manually.This presentation reports on the ongoing development of Janus, a new software package for processing in-situ measurement of solar-wind ions. Janus will provide user with an easy-to-use graphical user interface (GUI) for carrying out highly customized analyses. Transparent to the user, Janus will automatically handle the most technical tasks (e.g., the retrieval and calibration of measurements). For the first time, users with only limited knowledge about the instruments (e.g., non-instrumentalists and students) will be able to easily process measurements of solar-wind ions. Version 1 of Janus focuses specifically on such measurements from the Wind spacecraft's Faraday Cups and is slated for public release in time for this presentation.

  12. Protocol of measurement techniques - Project colored solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2004-08-15

    This illustrated annual report for the Swiss Federal Office of Energy (SFOE) takes a look at work done at the Swiss Federal Institute of Technology in Lausanne, Switzerland, on multi-layer, thin-film interference coatings for solar collector glazing. The correct combinations of refractive indices and film thickness are discussed. The authors state that corresponding multi-layered thin film stacks will have to be realised experimentally in a controlled and reproducible way. New thin film materials are to be tailored to exhibit optimised optical and ageing properties. The development of these coatings is to be based on various measurement techniques, such as spectro-photometry, measurements of total power throughput by means of a solar simulator, spectroscopic ellipsometry, scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The paper provides many examples of typical data and explains which film properties can be inferred from each method and thus describes both the function and purpose of the different measurement techniques.

  13. Distributed solar radiation fast dynamic measurement for PV cells

    Science.gov (United States)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  14. Spectral measurements of fluctuating ω/sub pe/ radiation from Alcator C tokamak

    International Nuclear Information System (INIS)

    Gandy, R.F.; Yates, D.

    1984-01-01

    High resolution spectral measurements have been made of the fluctuating electron plasma frequency (ω/sub pe/) radiation from Alcator C. Three techniques have been used in making the measurements. Features as narrow as 350 kHz have been observed (Δf/f approx. = 6 x 10 -6 ), impling that a highly coherent process is responsible for the emission

  15. Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements

    Science.gov (United States)

    Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.

    2017-12-01

    Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter

  16. Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21

    International Nuclear Information System (INIS)

    Torr, M.R.; Torr, D.G.; Hinteregger, H.E.

    1980-01-01

    Measurements of the solar flux in the Schumann-Runge continuum (1350-1750 A) by the Atmosphere Explorer satellites reveal a strong dependence on solar activity. Solar intensities over the rising phase of cycle 21, increase by more than a factor of two at the shorter wavelengths (1350 A), with a smaller change (approx.10%) at 1750 A. A significant 27 day variability is found to exist superimposed on the solar cycle variation. Because radiation in this portion of the spectum is important to the lower thermosphere in the photodissociation of 0 2 and the production of 0( 1 D), we use the unattenuated Schumann-Runge continuum dissociation frequency as a parameter to illustrate the magnitude and temporal characteristics of this variation. The values of this parameter, J/sub infinity/(0 2 )/sub SR/, range from 1.5 x 10 -6 s -1 for April 23, 1974, to 2.8 x 10 -6 s -1 for February 19, 1979. In studies of oxygen in the lower thermosphere, it is therefore necessary to use solar spectral intensities representative of the actual conditions for which the calculations are made. Both the J/sub infinity/(0 2 )/sub SR/ parameter and the solar flux at various wavelengths over the 1350 to 1750 A range can be expressed in terms of the F10.7 index to a reasonable approximation

  17. SPECTRAL RECONSTRUCTION BASED ON SVM FOR CROSS CALIBRATION

    Directory of Open Access Journals (Sweden)

    H. Gao

    2017-05-01

    Full Text Available Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor’s passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF, SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  18. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  19. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  20. Measurement of solar spectra relating to photosynthesis and solar cells: an inquiry lab for secondary science.

    Science.gov (United States)

    Ruggirello, Rachel M; Balcerzak, Phyllis; May, Victoria L; Blankenship, Robert E

    2012-07-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar cells. This laboratory was used with high-school science teachers who then took this experience back to their classrooms. During this exercise, teachers used an economical spectroradiometer to measure the solar spectrum and relate this to photosynthetic light absorption by determining the quality of light beneath trees. Following this investigation, teachers learned about the plant-inspired dye-sensitized solar cells and constructed one. To connect their light quality investigation to the efficiency of photosynthesis and solar cells, teachers then collected data at locations with varying quality and intensity of light. In sum, this investigation provides a crucial connection between photosynthesis and cutting edge research on solar energy technologies. Our learning experience provides a new instructional model for understanding a little investigated aspect of photosynthesis and connects to authentic scientific research. Copyright © 2012 Wiley Periodicals, Inc.

  1. Shuttle SBUV (SSBUV) Solar Spectral Irradiance V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shuttle Solar Backscatter Ultraviolet (SSBUV) level-2 irradiance data are available for eight space shuttle missions flown between 1989 and 1996. SSBUV, a...

  2. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  3. Direct Measurement of the 7Be Solar Neutrino Flux with 192 Days of Borexino Data

    International Nuclear Information System (INIS)

    Arpesella, C.; Di Pietro, G.; Monzani, M. E.; Back, H. O.; Hardy, S.; Joyce, M.; Manecki, S.; Raghavan, R. S.; Rountree, D.; Vogelaar, R. B.; Balata, M.; Di Credico, A.; Gazzana, S.; Korga, G.; Laubenstein, M.; Orsini, M.; Papp, L.; Razeto, A.; Tartaglia, R.; Bellini, G.

    2008-01-01

    We report the direct measurement of the 7 Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7 Be neutrinos is 49±3 stat ±4 syst counts/(day·100 ton). The hypothesis of no oscillation for 7 Be solar neutrinos is inconsistent with our measurement at the 4σ C.L. Our result is the first direct measurement of the survival probability for solar ν e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7 Be, pp, and CNO solar ν e , and the limit on the effective neutrino magnetic moment using solar neutrinos

  4. ADielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Institute of Scientific and Technical Information of China (English)

    寿春晖; 骆仲泱; 王涛; 沈伟东; ROSENGARTEN Gary; 王诚; 倪明江; 岑可法

    2011-01-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.%In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications.The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented.A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed.The calculated results show the advantages of this spectrally selective method for solar power generation.

  5. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    International Nuclear Information System (INIS)

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-01-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a ∼50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  6. Solar system science with ESA Euclid

    Science.gov (United States)

    Carry, B.

    2018-01-01

    Context. The ESA Euclid mission has been designed to map the geometry of the dark Universe. Scheduled for launch in 2020, it will conduct a six-year visible and near-infrared imaging and spectroscopic survey over 15 000 deg2 down to VAB 24.5. Although the survey will avoid ecliptic latitudes below 15°, the survey pattern in repeated sequences of four broadband filters seems well-adapted to detect and characterize solar system objects (SSOs). Aims: We aim at evaluating the capability of Euclid of discovering SSOs and of measuring their position, apparent magnitude, and spectral energy distribution. We also investigate how the SSO orbits, morphology (activity and multiplicity), physical properties (rotation period, spin orientation, and 3D shape), and surface composition can be determined based on these measurements. Methods: We used the current census of SSOs to extrapolate the total amount of SSOs that will be detectable by Euclid, that is, objects within the survey area and brighter than the limiting magnitude. For each different population of SSO, from neighboring near-Earth asteroids to distant Kuiper-belt objects (KBOs) and including comets, we compared the expected Euclid astrometry, photometry, and spectroscopy with the SSO properties to estimate how Euclid will constrain the SSOs dynamical, physical, and compositional properties. Results: With the current survey design, about 150 000 SSOs, mainly from the asteroid main-belt, should be observable by Euclid. These objects will all have high inclination, which is a difference to many SSO surveys that focus on the ecliptic plane. Euclid may be able to discover several 104 SSOs, in particular, distant KBOs at high declination. The Euclid observations will consist of a suite of four sequences of four measurements and will refine the spectral classification of SSOs by extending the spectral coverage provided by Gaia and the LSST, for instance, to 2 microns. Combined with sparse photometry such as measured by Gaia

  7. Environmental stability study of holographic solar spectrum splitting materials

    Science.gov (United States)

    Chrysler, Benjamin D.; Ayala Pelaez, Silvana; Wu, Yuechen; Vorndran, Shelby D.; Kostuk, Raymond K.

    2016-09-01

    In this study the impact of outdoor temperature variations and solar illumination exposure on spectral filter material and holographic optical elements is examined. Although holographic components have been shown to be useful for solar spectrum splitting designs, relatively little quantitative data exist to demonstrate the extent to which these materials can withstand outdoor conditions. As researchers seek to investigate practical spectrum splitting designs, the environmental stability of holographic materials should be considered as an important factor. In the experiment presented, two holographic materials, Covestro Bayfol HX photopolymer and dichromated gelatin, and 3M reflective polymer filter materials are exposed to outdoor conditions for a period of several months. The environmental effect on absorption, spectral and angular bandwidth, peak efficiency, and Bragg matching conditions for the holograms are examined. Spectral bandwidth and transmittance of the 3M reflective filter material are also monitored. Holographic gratings are recorded, measured, and mounted on glass substrates and then sealed with a glass cover plate. The test samples are then mounted on a photovoltaic panel to simulate realistic temperature conditions and placed at an outdoor test facility in Tucson, Arizona. A duplicate set of holograms and 3M filter material is stored as a control group and periodically compared over the test period.

  8. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  9. SOLAR MIXTURE OPACITY CALCULATIONS USING DETAILED CONFIGURATION AND LEVEL ACCOUNTING TREATMENTS

    International Nuclear Information System (INIS)

    Blancard, Christophe; Cossé, Philippe; Faussurier, Gérald

    2012-01-01

    An opacity model (OPAS) combining detailed configuration and level accounting treatments has been developed to calculate radiative opacity of plasmas in local thermodynamic equilibrium. The model is presented and used to compute spectral opacities of a solar mixture. Various density-temperature couples have been considered from the solar center up to the vicinity of the radiative/convective zone interface. For a given solar thermodynamic path, OPAS calculations are compared to Opacity Project (OP) and OPAL data. Rosseland mean opacity values are in very good agreement over all the considered solar thermodynamic path, while OPAS and OP spectral opacities of each element may vary considerably. Main sources of discrepancy are discussed.

  10. Erythemal solar UV measurement network in New Zealand

    International Nuclear Information System (INIS)

    Smith, G.J.

    1993-01-01

    Measured daily total erythemal doses for 1989, 1990 and 1991 were presented and the cloudless-sky daily dose at the autumn equinox was approximately 30-50% higher than at the spring equinox as a result of the seasonal variation in ozone levels. In addition a substantially lower spring equinox erythemal dose was observed in 1991, probably as a result of increased aerosols arising from the Pinatubo eruption. An asymmetry in the diurnal pattern of irradiances about solar noon has been observed on cloudless days. Higher UV irradiances have been usually observed in the afternoons than in the mornings. Measurement of erythemal radiation is needed for skin cancer epidemiology projects. Given the uncertainties relating to the exposure of individuals to solar erythemal radiation, personal dosimeters may be very useful in providing more reliable personal UV exposure data. (author). 4 refs

  11. Stark shift measurements of Xe II and Xe III spectral lines

    International Nuclear Information System (INIS)

    Cirisan, M; Pelaez, R J; Djurovic, S; Aparicio, J A; Mar, S

    2007-01-01

    Stark shift measurements of singly and doubly ionized Xe spectral lines are presented in this paper. Shifts of 110 Xe II lines and 42 Xe III lines are reported, including a significant number of new results. A low-pressure-pulsed arc with 95% of He and 5% of Xe was used as a plasma source. All measurements were performed under the following plasma conditions: electron density (0.2-1.4) x 10 23 m -3 and electron temperature 18 000-23 000 K. The measured Stark shifts are compared with other experimental and theoretical data

  12. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  13. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Reichert

    2016-09-01

    Full Text Available We present a first quantification of the near-infrared (NIR water vapor continuum absorption from an atmospheric radiative closure experiment carried out at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.. Continuum quantification is achieved via radiative closure using radiometrically calibrated solar Fourier transform infrared (FTIR absorption spectra covering the 2500 to 7800 cm−1 spectral range. The dry atmospheric conditions at the Zugspitze site (IWV 1.4 to 3.3 mm enable continuum quantification even within water vapor absorption bands, while upper limits for continuum absorption can be provided in the centers of window regions. Throughout 75 % of the 2500 to 7800 cm−1 spectral range, the Zugspitze results agree within our estimated uncertainty with the widely used MT_CKD 2.5.2 model (Mlawer et al., 2012. In the wings of water vapor absorption bands, our measurements indicate about 2–5 times stronger continuum absorption than MT_CKD, namely in the 2800 to 3000 cm−1 and 4100 to 4200 cm−1 spectral ranges. The measurements are consistent with the laboratory measurements of Mondelain et al. (2015, which rely on cavity ring-down spectroscopy (CDRS, and the calorimetric–interferometric measurements of Bicknell et al. (2006. Compared to the recent FTIR laboratory studies of Ptashnik et al. (2012, 2013, our measurements are consistent within the estimated errors throughout most of the spectral range. However, in the wings of water vapor absorption bands our measurements indicate typically 2–3 times weaker continuum absorption under atmospheric conditions, namely in the 3200 to 3400, 4050 to 4200, and 6950 to 7050 cm−1 spectral regions.

  14. Precision Measurement of the Beryllium-7 Solar Neutrino Interaction Rate in Borexino

    Science.gov (United States)

    Saldanha, Richard Nigel

    Solar neutrinos, since their first detection nearly forty years ago, have revealed valuable information regarding the source of energy production in the Sun, and have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) oscillation parameters with matter interactions due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. This thesis presents a precision measurement of the 7Be solar neutrino interaction rate within Borexino, an underground liquid scintillator detector that is designed to measure solar neutrino interactions through neutrino-electron elastic scattering. The thesis includes a detailed description of the analysis techniques developed and used for this measurement as well as an evaluation of the relevant systematic uncertainties that affect the precision of the result. The rate of neutrino-electron elastic scattering from 0.862 MeV 7Be neutrinos is determined to be 45.4 +/- 1.6 (stat) +/- 1.5 (sys) counts/day/100 ton. Due to extensive detector calibrations and improved analysis methods, the systematic uncertainty in the interaction rate has been reduced by more than a factor of two from the previous evaluation. In the no-oscillation hypothesis, the interaction rate corresponds to a 0.862 MeV 7Be electron neutrino flux of (2.75 +/- 0.13) x 10 9 cm-2 sec-1. Including the predicted neutrino flux from the Standard Solar Model yields an electron neutrino survival probability of Pee 0.51 +/- 0.07 and rules out the no-oscillation hypothesis at 5.1sigma The LMA-MSW neutrino oscillation model predicts a transition in the solar Pee value between low ( 10 MeV) energies which has not yet been experimentally confirmed. This result, in conjunction with the Standard Solar Model, represents the most precise measurement of the electron neutrino survival probability for solar neutrinos at sub-MeV energies.

  15. Trojan Asteroids: Spectral Groups, Volatiles, and Rotational Variation

    Science.gov (United States)

    Emery, J. P.; Takir, D.; Stamper, N. G.; Lucas, M. P.

    2017-12-01

    Trojan asteroids comprise a substantial population of primitive bodies confined to Jupiter's stable Lagrange regions. ecause they likely became trapped in these orbits at the end of the initial phase of planetary formation and subsequent migration, the compositions of Trojans provide unique perspectives on chemical and dynamical processes that shaped the Solar System. Ices and organics are of particular interest for understanding Trojan histories. Published near-infrared (0.7 to 4.0 mm) spectra of Trojans show no absorption bands due to H2O or organics. However, if the Trojan asteroids formed at or beyond their present heliocentric distance of 5.2 AU and never spent significant amounts of time closer to the Sun, they should contain H2O ice. Two VNIR spectral groups exist within the Trojans: 2/3 of large Trojans form a cluster with very red (D-type-like) spectral slopes, while the other 1/3 cluster around less-red (P-type-like) slopes. Visible colors of smaller Trojans suggest that the ratio of red to less-red Trojans decreases with decreasing size, from which Wong and Brown (2015; AJ 150:174) suggest that the interiors of all Trojans are represented by the less-red spectral group. In order to further test the hypothesis that Trojans contain H­2O ice and complex organics and to test the result from visible colors that the spectral group ratio changes with size, we have measured near-infrared (0.8 - 2.5 μm) spectra of small ( 35 to 75 km) Trojans from both swarms using the SpeX spectrograph at the NASA Infrared Telescope Facility (IRTF). We have also measured 2 - 4 μm spectra of several Trojans to search for spectral signatures of H2O and organics. We confirm that the two spectral groups persist to smaller sizes, and we still detect no absorption features that would be diagnostic of composition. The spectrum of two large Trojans show evidence of spectral slope variations with rotation, but spectra of several others do not. We will present the new spectra and

  16. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  17. Evaluation of discrimination measures to characterize spectrally similar leaves of African Savannah trees

    CSIR Research Space (South Africa)

    Dudeni, N

    2009-08-01

    Full Text Available tree species. SDA builds a step-by-step model which evaluates the contribution of each spectral band with respect to the discriminatory power of the model. The discriminatory power of the model is measured by the Wilk’s lambda. A spectral band... therefore enters the model if it, according to the Wilk’s lambda criterion, contributes more to the discrimination of the tree species, while it is removed if it contributes least to the discriminatory power of the model. A discriminant model can generally...

  18. A path to practical Solar Pumped Lasers via Radiative Energy Transfer.

    Science.gov (United States)

    Reusswig, Philip D; Nechayev, Sergey; Scherer, Jennifer M; Hwang, Gyu Weon; Bawendi, Moungi G; Baldo, Marc A; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd(3+)-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm(-2), or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  19. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  20. Electron density diagnostics in the 10-100 A interval for a solar flare

    Science.gov (United States)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.; Mason, H. E.

    1986-01-01

    Electron density measurements from spectral-line diagnostics are reported for a solar flare on July 13, 1982, 1627 UT. The spectrogram, covering the 10-95 A interval, contained usable lines of helium-like ions C V, N VI, O VII, and Ne IX which are formed over the temperature interval 0.7-3.5 x 10 to the 6th K. In addition, spectral-line ratios of Si IX, Fe XIV, and Ca XV were compared with new theoretical estimates of their electron density sensitivity to obtain additional electron density diagnostics. An electron density of 3 x 10 to the 10th/cu cm was obtained. The comparison of these results from helium-like and other ions gives confidence in the utility of these tools for solar coronal analysis and will lead to a fuller understanding of the phenomena observed in this flare.